1
|
Wang HQ, Zhao XY, Tang Z, Huang XY, Wang P, Zhang W, Zhang Y, Luan S, Zhao FJ. Mechanosensing antagonizes ethylene signaling to promote root gravitropism in rice. Nat Commun 2025; 16:3712. [PMID: 40251159 PMCID: PMC12008199 DOI: 10.1038/s41467-025-59047-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 04/07/2025] [Indexed: 04/20/2025] Open
Abstract
Root gravitropism relies on gravity perception by the root cap and requires tightly regulated phytohormone signaling. Here, we isolate a rice mutant that displays root coiling in hydroponics but normal gravitropic growth in soil. We identify COILING ROOT IN WATER 1 (CRW1) encoding an ETHYLENE-INSENSITIVE3 (EIN3)-BINDING F-BOX PROTEIN (OsEBF1) as the causative gene for the mutant phenotype. We show that the OsCRW1-EIN3 LIKE 1 and 2 (OsEIL1/2)-ETHYLENE RESPONSE FACTOR 82 (OsERF82) module controls the production of reactive oxygen species in the root tip, subsequently impacting root cap stability, polar localization of PIN-FORMED 2 (OsPIN2), symmetric distribution of auxin, and ultimately gravitropic growth of roots. The OsEIL1/2-OsERF82 ethylene signaling module is effectively impeded by applying gentle mechanical resistance to root tips, including growing in water-saturated paddy soil. We further show that mechanosensing-induced calcium signaling is required and sufficient for antagonizing the ethylene signaling pathway. This study has revealed previously unanticipated interplay among ethylene, auxin, and mechanosensing in the control of plant gravitropism.
Collapse
Affiliation(s)
- Han-Qing Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing-Yu Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhong Tang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin-Yuan Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peng Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenhua Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunhui Zhang
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Ma Y, Zeng T, Li Z, Jue D, Sui Y, Wang X, Zhong H, Yang J. Transcriptomic analysis reveals long non-coding RNA involved in the key metabolic pathway in response to Botrytis cinerea in kiwifruit. BMC PLANT BIOLOGY 2025; 25:474. [PMID: 40234757 PMCID: PMC11998429 DOI: 10.1186/s12870-025-06499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/01/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND Understanding the molecular mechanisms that confer kiwifruit resistance to Botrytis cinerea is essential for developing resistant cultivars. Long non-coding RNAs (lncRNAs), known to participate in various physiological processes including plant defense against diseases, have an undefined role in kiwifruit's resistance. RESULTS Our study aimed to identify lncRNAs induced by B. cinerea infection in 'Hongyang' kiwifruit at 0 to 3 days post-inoculation (dpi) through high-throughput sequencing. The differential expression analysis identified 126 differentially expressed lncRNAs (DELs). Subsequent GO and KEGG analyses indicated that these lncRNAs' target genes were predominantly associated with plant-pathogen interactions, carbohydrate metabolism including starch and sucrose, mitogen-activated protein kinase (MAPK) signaling pathways, and plant hormone signal transduction. Co-expression analysis revealed that lncRNAs modulate the expression of genes involved in phytohormone signaling pathways, such as those for auxin, ethylene (ETH), abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA), as well as the MAPK signaling pathway. This regulation affects the biosynthesis of defense-related secondary metabolites like ADP-glucose, sucrose, 1,3-β-glucan, and cellulose, thereby enhancing the fruit's disease resistance. CONCLUSION Our findings offer valuable insights into the mechanisms by which lncRNAs respond to biotic stress in kiwifruit, potentially aiding in the development of strategies for breeding kiwifruit with improved resistance to B. cinerea.
Collapse
Affiliation(s)
- Yijia Ma
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Smart Agriculture, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Tianjing Zeng
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Smart Agriculture, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Zhexin Li
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Smart Agriculture, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China.
| | - Dengwei Jue
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Smart Agriculture, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Yuan Sui
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Smart Agriculture, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Xu Wang
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Smart Agriculture, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Hongpan Zhong
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Smart Agriculture, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Jiaqi Yang
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Smart Agriculture, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| |
Collapse
|
3
|
Chakraborty R, Rehman RU, Siddiqui MW, Liu H, Seth CS. Phytohormones: Heart of plants' signaling network under biotic, abiotic, and climate change stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109839. [PMID: 40194506 DOI: 10.1016/j.plaphy.2025.109839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/06/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025]
Abstract
Industrialization has made the world increasingly unstable, subjecting plants to various constraints. As a consequence, plants are constantly experiencing biological, environmental, and climatic constraints, necessitating defense mechanisms to ensure their survival. Plants are vulnerable to various biotic factors, including insects, pathogens (bacterial, fungal, viral, and nematodes), weeds, and herbivores. They also face different abiotic and climate change challenges such as drought (regulated by genes like GH3, DREB, ZIFL1;3, etc), salinity, heavy metals, metalloids, ultraviolet radiations (UV), ozone (O3), low and high temperature (chilling/cold/freezing/heat), carbon dioxide (CO2), chlorofluorocarbons (CFCs), and flooding/hypoxia/anoxia. Different transcriptional factors, such as KNOX1, PYK10, and NRP1, regulate these abiotic and climate change stresses. Different phytohormones such as auxin (regulated by components AUX/IAA3, PIN, indole-glucosinolate, indole-3-acetaldoxine), gibberellin (key elements involved in the synthesis and signaling such as DELLA, GA3ox, RhHB1), cytokinin (signaling through ARR5), ethylene (involved transcription factors like AP2/ERF), abscisic acid (signaling regulated through SnRK2), salicylic acid, jasmonic acid (regulated by JAZ1/TIFYIOA), brassinosteroids, nitric oxide, and strigolactones (synthetic precursor being GR24) control plants' maturation in normal and stressed conditions by regulating various metabolic and physiological plant activities. Phytohormonal interactions and their synergy are often assessed by different techniques and assays such as CRISPR/Cas9, ELISA, RIA, luciferase, GAL4, and mEmerald GFP. Their synthesis and signaling are regulated by various genes (such as YUCCA1, YUCCA5, GA3ox, etc), transporters (PIN, such as PIN, ABCB, NPF, etc), and receptors (such as PLY4, PLY5, BZR1/BES1, MYC2, etc) and have different precursors such as L-arginine, L-tryptophan, phenylalanine, linolenic acid, S-adenosylmethionine, geranylgeranyl diphosphate. This review comprehensively analyses the breakthrough in phytohormones and their signaling in regulating plants' growth and maturation. Their significance in combating the biotic, abiotic, and climate change stresses, improving stress adaptation to identify novel strategies enhancing plant resilience, sustainable agriculture, and ensuring food security.
Collapse
Affiliation(s)
- Ritika Chakraborty
- Department of Botany, University of Delhi, New Delhi, 110007, Delhi, India.
| | - Reiaz Ul Rehman
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India.
| | - Mohammed Wasim Siddiqui
- Department of Food Science and Post-Harvest Technology, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, 813210, India.
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China.
| | | |
Collapse
|
4
|
Liu Y, Liu S, Jing Y, Li J, Lin R. Light regulates seed dormancy through FHY3-mediated activation of ACC OXIDASE 1 in Arabidopsis. PLANT MOLECULAR BIOLOGY 2025; 115:44. [PMID: 40082285 DOI: 10.1007/s11103-025-01559-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/05/2025] [Indexed: 03/16/2025]
Abstract
Seed dormancy enables plants to delay germination until conditions are favorable for the survival of the next generation. Seed dormancy and germination are controlled by a combination of external and internal signals, in which light and ethylene act as critical regulators. However, how light and ethylene are interlinked to control these two processes remains to be investigated. Here, we show that ethylene and its precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), promote seed germination under light. Light facilitates the conversion of ACC to ethylene, in which phytochrome B (phyB) and FAR-RED ELONGATED HYPOCOTYL3 (FHY3) are functionally required. ACC oxidases (ACOs) catalyze the conversion of ACC to ethylene, among which ACO1 is specifically and predominantly expressed in imbibed seeds. Ethylene induces FHY3 protein accumulation in imbibed seeds, whereby FHY3 directly binds to ACO1 promoter and specifically mediates light-promoted ACO1 expression. Light promotes ACO1 protein accumulation. Overexpression of ACO1 significantly promotes seed germination, and almost completely restores the dormant defect of fhy3 loss-of-function mutants. In summary, this study reveals an ethylene-responsive regulatory cascade of phyB-FHY3-ACO1 that integrates external light input with internal factors to regulate seed dormancy and germination.
Collapse
Affiliation(s)
- Yitong Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuangrong Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanjun Jing
- Biotechnology Institute, Xianghu Laboratory, Hangzhou, 311231, China
| | - Jialong Li
- Biotechnology Institute, Xianghu Laboratory, Hangzhou, 311231, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- Biotechnology Institute, Xianghu Laboratory, Hangzhou, 311231, China.
| |
Collapse
|
5
|
Tu CY, Zheng L, Yan J, Shen RF, Zhu XF. ACS2 and ACS6, especially ACS2 is involved in MPK6 evoked production of ethylene under Cd stress, which exacerbated Cd toxicity in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112354. [PMID: 39672386 DOI: 10.1016/j.plantsci.2024.112354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/04/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
As one of the heavy metal pollutants with strong biological toxicity, cadmium (Cd) is easily absorbed by plant roots, which seriously restricts the growth of plants, causes the quality of agricultural products to decline and threatens human health. Many complex signal transduction pathways are involved in the process of plant response to Cd stress. Among them, plant hormone ethylene is an important signal molecule for plant response to various environmental stresses, and its regulatory mechanism and signal transduction pathway in Cd stress response need to be further clarified. Here, we discovered that Cd stress induced a significant increment in ethylene production in Arabidopsis roots, and the amount of ethylene produced was positively correlated with the inhibition of Arabidopsis root growth and Cd accumulation. Simultaneously, Cd stress stimulated the detoxification mechanism within cells and promoted the expression of METAL TOLERANCE PROTEIN 3 (MTP3), IRON-REGULATED TRANSPORTER2 (IRT2), IRON REGULATED GENE 2 (IREG2) genes implicated in Cd vacuolar compartmentation. However, whether this is associated with ethylene signal transduction remains to be further explored. Further studies have revealed that the Cd induced ethylene burst is attributed to the up-regulation of the expression of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE (ACS) genes that mediated by MITONGEN-ACTIVATED PROTEIN KINASE 6 (MAPK6) in Arabidopsis roots, and among them, ACS2 and ACS6, especially ACS2, are involved in MAPK6-induced ethylene production under Cd stress. The results of this study provide new ideas for understanding the signal transduction pathway of plant response to Cd stress.
Collapse
Affiliation(s)
- Chun Yan Tu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Lu Zheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Jing Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China.
| |
Collapse
|
6
|
Wang R, Bowerman AF, Chen Y, Zheng L, Shen R, Pogson B, Lan P. Ethylene modulates wheat response to phosphate deficiency. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1314-1332. [PMID: 39584670 DOI: 10.1093/jxb/erae483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/22/2024] [Indexed: 11/26/2024]
Abstract
Ethylene is involved in the response to P deficiency in some model plants such as Arabidopsis and rice, but its role in wheat remains unclear. Following our recent study demonstrating the role of differentially expressed genes encoding ethylene response factors (ERFs) in response to P starvation in wheat, this study aims to investigate remodeling of the ethylene pathway and the physiological roles of ethylene in wheat under P deficiency using transcriptome analysis and the addition of the exogenous ethylene analogue, ethephon, or ethylene inhibitors. ERFs with at least a 2-fold expression change upon P deficiency had a distribution biased towards chromosome 4B. A group of genes encoding aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase were up-regulated under P starvation, suggesting an increase in ACC and ethylene content, which was verified by biochemical measurements and gas chromatography-mass spectrometry analysis. Under P deficiency, both root and shoot biomass decreased with application of exogenous ethephon or ethylene inhibitors, while root fork numbers and root surface area decreased upon ethephon treatment. Phosphate (Pi) concentrations in roots and old leaves increased with ethephon treatment, and Pi redistribution in roots and younger leaves was altered under Pi starvation. Our findings can guide breeding of germplasm with high Pi efficiency.
Collapse
Affiliation(s)
- Ruonan Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton, Australian Capital Territory 0200, Australia
| | - Andrew F Bowerman
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton, Australian Capital Territory 0200, Australia
| | - Yinglong Chen
- UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - Lu Zheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Barry Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton, Australian Capital Territory 0200, Australia
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Nanjing 211135, China
| |
Collapse
|
7
|
Li L, Gupta A, Zhu C, Xu K, Watanabe Y, Tanaka M, Seki M, Mochida K, Kanno Y, Seo M, Nguyen KH, Tran CD, Chu HD, Yin H, Jia KP, Tran LSP, Yin X, Li W. Strigolactone and karrikin receptors regulate phytohormone biosynthetic and catabolic processes. PLANT CELL REPORTS 2025; 44:60. [PMID: 39982558 DOI: 10.1007/s00299-025-03456-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
KEY MESSAGE Karrikin plays a more critical role in affecting the homeostasis of ABA and cytokinins, while strigolactones play a more critical role in influencing the homeostasis of jasmonic acid and gibberellins. Strigolactones (SLs) and karrikins (KARs) regulate plant growth and development through their crosstalk, and through the crosstalk between them and other phytohormones, such as abscisic acid (ABA) and auxin. However, how SL and KAR signaling pathways influence the levels of other phytohormones is still unknown. Here, we performed a comparative transcriptome analysis of the Arabidopsis thaliana double mutant dwarf14 karrikin-insensitive 2 (d14 kai2), deficient in SL and KAR perception, and the wild-type (WT) using their rosette leaves. Ten gene ontology terms related to phytohormones were enriched with differentially expressed genes derived from the 'd14 kai2 vs WT' comparison. Our data revealed that the levels of auxin, ABA and salicylic acid (SA) were higher in d14 and kai2 single and d14 kai2 mutant plants than in WT, which was consistent with the results of previous investigations. In contrast, the levels of cytokinins (CKs) were found to be lower in all single and double mutants than in WT. The levels of active gibberellins were lower in d14 and d14 kai2 mutants than in WT, while they were comparable in kai2 and WT plants. Similarly, the levels of jasmonic acid (JA) were lower in d14 and d14 kai2 plants, but higher in kai2 plants than in WT. Both transcriptome and qRT-PCR analyses indicated that SL and KAR signaling pathways affect the levels of auxin, SA, CKs, gibberellin 4 (GA4) and ABA by influencing the expression of their biosynthetic (in case of auxin, SA, GA4 and CKs) and catabolic (in case of ABA) genes. Collectively, our data demonstrated that KAI2 plays a more critical role in the homeostasis of ABA and CKs, while D14 plays a more critical role in the homeostasis of JA and gibberellins. Findings of this study indicate a complex and broad crosstalk among various phytohormones in plants, which can be considered for future exogenous applications and hormone engineering.
Collapse
Affiliation(s)
- Liangliang Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Jilin Da'an Agro-Ecosystem National Observation and Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Aarti Gupta
- Department of Botany, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Chenbo Zhu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Jilin Da'an Agro-Ecosystem National Observation and Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Kun Xu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Jilin Da'an Agro-Ecosystem National Observation and Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yasuko Watanabe
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-Cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Maho Tanaka
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, Yokohama, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, Yokohama, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-Cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Yuri Kanno
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-Cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Mitsunori Seo
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-Cho, Tsurumi, Yokohama, 230-0045, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Nakagami-gun, Okinawa, 903-0213, Japan
| | - Kien Huu Nguyen
- Department of Genetic Engineering, Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham-Van-Dong Str., Hanoi, 100000, Vietnam
| | - Cuong Duy Tran
- Department of Genetic Engineering, Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham-Van-Dong Str., Hanoi, 100000, Vietnam
| | - Ha Duc Chu
- Faculty of Agricultural Technology, University of Engineering and Technology, Vietnam National University, Hanoi, 122300, Vietnam
| | - Hengxia Yin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Kun-Peng Jia
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, Department of Life Sciences, Henan University, Kaifeng, China
| | - Lam-Son Phan Tran
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Xiaojian Yin
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
- Jilin Da'an Agro-Ecosystem National Observation and Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Weiqiang Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
- Jilin Da'an Agro-Ecosystem National Observation and Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| |
Collapse
|
8
|
Carlomagno A, Bonghi C, Montanaro G, Ferrandino A, Rasori A, Nuzzo V, Novello V. The Role of Naphthaleneacetic Acid and 1-Methylcyclopropene in Preventing Preharvest Berry Dropping in Vitis vinifera L. PLANTS (BASEL, SWITZERLAND) 2025; 14:280. [PMID: 39861632 PMCID: PMC11768357 DOI: 10.3390/plants14020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Fruit dropping represents a concern in many fruit species, including Vitis vinifera L. This research investigated the role of two plant growth regulators (PGRs), naphthaleneacetic acid (NAA) and 1-methylcyclopropene (1-MCP), in mitigating preharvest berry dropping (PHBD) through affecting ethylene (ET) and auxin (AUX) metabolism and interactions, key hormones involved in abscission. The experiment was carried out on cv. Dolcetto, with PGR treatments applied at 43, 53, and 90 days after anthesis (DAA) for NAA and at 56 DAA for 1-MCP. Berry dropping incidence, yield parameters, and transcript levels of genes related to ET and AUX pathways were analyzed, including VIT_212s0059g01380, VIT_211s0016g02380, VIT_207s0005g00820, VIT_216s0013g00980, VIT_203s0091g00310, and VIT_207s0104g00800. Both NAA and 1-MCP significantly reduced PHBD, with NAA achieving a 92% reduction and 1-MCP an 82% reduction compared to control vines. Transcript analysis revealed differential gene expression patterns, indicating that NAA affects the ET biosynthesis pathway, while 1-MCP interferes with ET receptor signaling. The results suggest that both PGRs effectively reduced berry dropping, providing a basis for integrated crop management strategies to mitigate PHBD in grapevine cultivars susceptible to this physiological disorder.
Collapse
Affiliation(s)
- Antonio Carlomagno
- Department of Agricultural, Forest, Food, and Environmental Sciences, Università degli Studi della Basilicata, 85100 Potenza, Italy; (G.M.); (V.N.)
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, Università degli Studi di Padova, 35020 Legnaro, Italy; (C.B.); (A.R.)
| | - Giuseppe Montanaro
- Department of Agricultural, Forest, Food, and Environmental Sciences, Università degli Studi della Basilicata, 85100 Potenza, Italy; (G.M.); (V.N.)
| | - Alessandra Ferrandino
- Department of Agricultural, Forest and Food Sciences, Università degli Studi di Torino, 10095 Grugliasco, Italy; (A.F.); (V.N.)
| | - Angela Rasori
- Department of Agronomy, Food, Natural Resources, Animals and Environment, Università degli Studi di Padova, 35020 Legnaro, Italy; (C.B.); (A.R.)
| | - Vitale Nuzzo
- Department of Agricultural, Forest, Food, and Environmental Sciences, Università degli Studi della Basilicata, 85100 Potenza, Italy; (G.M.); (V.N.)
| | - Vittorino Novello
- Department of Agricultural, Forest and Food Sciences, Università degli Studi di Torino, 10095 Grugliasco, Italy; (A.F.); (V.N.)
| |
Collapse
|
9
|
Li H, Liu L, Kong X, Wang X, Si A, Zhao F, Huang Q, Yu Y, Chen Z. Time-Course Transcriptomics Analysis Reveals Molecular Mechanisms of Salt-Tolerant and Salt-Sensitive Cotton Cultivars in Response to Salt Stress. Int J Mol Sci 2025; 26:329. [PMID: 39796184 PMCID: PMC11719879 DOI: 10.3390/ijms26010329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Salt stress is an environmental factor that limits plant seed germination, growth, and survival. We performed a comparative RNA sequencing transcriptome analysis during germination of the seeds from two cultivars with contrasting salt tolerance responses. A transcriptomic comparison between salt-tolerant cotton cv Jin-mian 25 and salt-sensitive cotton cv Su-mian 3 revealed both similar and differential expression patterns between the two genotypes during salt stress. The expression of genes related to aquaporins, kinases, reactive oxygen species (ROS) scavenging, trehalose biosynthesis, and phytohormone biosynthesis and signaling that include ethylene (ET), gibberellin (GA), abscisic acid (ABA), jasmonic acid (JA), and brassinosteroid (BR) were systematically investigated between the cultivars. Despite the involvement of these genes in cotton's response to salt stress in positive or negative ways, their expression levels were mostly similar in both genotypes. Interestingly, a PXC2 gene (Ghir_D08G025150) was identified, which encodes a leucine-rich repeat receptor-like protein kinase (LRR-RLK). This gene showed an induced expression pattern after salt stress treatment in salt-tolerant cv Jin-mian 25 but not salt-sensitive cv Su-mian 3. Our multifaceted transcriptome approach illustrated a differential response to salt stress between salt-tolerant and salt-sensitive cotton.
Collapse
Affiliation(s)
- Hang Li
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science/Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding, Shihezi 832000, China; (H.L.); (L.L.); (X.K.); (X.W.); (A.S.); (F.Z.); (Q.H.)
| | - Li Liu
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science/Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding, Shihezi 832000, China; (H.L.); (L.L.); (X.K.); (X.W.); (A.S.); (F.Z.); (Q.H.)
| | - Xianhui Kong
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science/Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding, Shihezi 832000, China; (H.L.); (L.L.); (X.K.); (X.W.); (A.S.); (F.Z.); (Q.H.)
| | - Xuwen Wang
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science/Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding, Shihezi 832000, China; (H.L.); (L.L.); (X.K.); (X.W.); (A.S.); (F.Z.); (Q.H.)
| | - Aijun Si
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science/Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding, Shihezi 832000, China; (H.L.); (L.L.); (X.K.); (X.W.); (A.S.); (F.Z.); (Q.H.)
| | - Fuxiang Zhao
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science/Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding, Shihezi 832000, China; (H.L.); (L.L.); (X.K.); (X.W.); (A.S.); (F.Z.); (Q.H.)
| | - Qian Huang
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science/Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding, Shihezi 832000, China; (H.L.); (L.L.); (X.K.); (X.W.); (A.S.); (F.Z.); (Q.H.)
| | - Yu Yu
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science/Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding, Shihezi 832000, China; (H.L.); (L.L.); (X.K.); (X.W.); (A.S.); (F.Z.); (Q.H.)
| | - Zhiwen Chen
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China
| |
Collapse
|
10
|
Liu L, Wang Y, Guo J, Han Z, Yu K, Song Y, Chen H, Gao H, Yang Y, Zhao Z. Natural variation in MdNAC5 contributes to fruit firmness and ripening divergence in apple. HORTICULTURE RESEARCH 2025; 12:uhae284. [PMID: 39866962 PMCID: PMC11758708 DOI: 10.1093/hr/uhae284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/26/2024] [Indexed: 01/28/2025]
Abstract
Fruit firmness is an important trait for characterizing the quality and value of apple. It also serves as an indicator of fruit maturity, as it is a complex trait regulated by multiple genes. Resequencing techniques can be employed to elucidate variations in such complex fruit traits. Here, the whole genomes of 294 F 1 hybrids of 'Fuji' and 'Cripp's Pink' were resequenced, and a high-density binmap was constructed using 5014 bin markers with a total map distance of 2213.23 cM and an average map distance of 0.44 cM. Quantitative trait loci (QTLs) of traits related to fruit were mapped, and an A-T allele variant identified in the coding region of MdNAC5 was found to potentially regulate fruit firmness and ripening. The overexpression of MdNAC5 A resulted in higher production of methionine and 1-aminocyclopropanecarboxylic acid compared to MdNAC5 T , leading to reduced fruit firmness and accelerated ripening in apples and tomatoes. Furthermore, the activities of MdNAC5 A and MdNAC5 T were enhanced through their differential binding to the promoter regions of MdACS1 and MdERF3. Spatial variations in MdNAC5 A and MdNAC5 T caused changes in MdACS1 expression following their interaction with MdERF3. Ultimately, utilizing different MdNAC5 alleles offers a strategy to manipulate fruit firmness in apple breeding.
Collapse
Affiliation(s)
- Li Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- College of Life Science, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianhua Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ziqi Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kaixuan Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yaxiao Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hongfei Chen
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Hua Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yazhou Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhengyang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
11
|
Li T, Peng Z, Kangxi D, Inzé D, Dubois M. ETHYLENE RESPONSE FACTOR6, A Central Regulator of Plant Growth in Response to Stress. PLANT, CELL & ENVIRONMENT 2025; 48:882-892. [PMID: 39360583 DOI: 10.1111/pce.15181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
ETHYLENE RESPONSE FACTOR6 (ERF6) has emerged as a central player in stress-induced plant growth inhibition. It orchestrates complex pathways that enable plants to acclimate and thrive in challenging environments. In response to various abiotic and biotic stresses, ERF6 is promptly activated through both ethylene-dependent and -independent pathways, and contributes to enhanced stress tolerance mechanisms by activating a broad spectrum of genes at various developmental stages. Despite the crucial role of ERF6, there is currently a lack of published comprehensive insights into its function in plant growth and stress response. In this respect, based on the tight connection between ethylene and ERF6, we review the latest research findings on how ethylene regulates stress responses and the mechanisms involved. In addition, we summarize the trends and advances in ERF6-mediated plant performance under optimal and stressful conditions. Finally, we also highlight key questions and suggest potential paths to unravel the ERF6 regulon in future research.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Zhen Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Du Kangxi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Marieke Dubois
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| |
Collapse
|
12
|
Shankar S, Mohanty AK, DeEll JR, Carter K, Lenz R, Misra M. Advances in antimicrobial techniques to reduce postharvest loss of fresh fruit by microbial reduction. NPJ SUSTAINABLE AGRICULTURE 2024; 2:25. [PMID: 39759422 PMCID: PMC11698397 DOI: 10.1038/s44264-024-00029-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 10/08/2024] [Indexed: 01/07/2025]
Abstract
This review will provide new ideas for preserving fruits and decreasing fruit waste. This review outlines and evaluates research concerning postharvest fruit preservation employing antimicrobial strategies, which involve the integration of biological control alongside physical or chemical methods. The concurrent deployment of two or three of these techniques, particularly biological approaches, has demonstrated enhanced and synergistic antimicrobial outcomes in practical scenarios.
Collapse
Affiliation(s)
- Shiv Shankar
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
- School of Engineering, Thornbrough Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
| | - Amar K. Mohanty
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
- School of Engineering, Thornbrough Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
| | - Jennifer R. DeEll
- Ontario Ministry of Agriculture, Food and Rural Affairs, Simcoe Research Station, 1283 Blueline Road, Simcoe, ON Canada
| | - Kathryn Carter
- Ontario Ministry of Agriculture, Food and Rural Affairs, Simcoe Research Station, 1283 Blueline Road, Simcoe, ON Canada
| | - Ruben Lenz
- Advanced Micro Polymers Inc., Steeles Ave E, Milton, ON Canada
| | - Manjusri Misra
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
- School of Engineering, Thornbrough Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
| |
Collapse
|
13
|
Tipu MMH, Sherif SM. Ethylene and its crosstalk with hormonal pathways in fruit ripening: mechanisms, modulation, and commercial exploitation. FRONTIERS IN PLANT SCIENCE 2024; 15:1475496. [PMID: 39574438 PMCID: PMC11579711 DOI: 10.3389/fpls.2024.1475496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/10/2024] [Indexed: 11/24/2024]
Abstract
Ethylene is an important phytohormone that orchestrates a multitude of physiological and biochemical processes regulating fruit ripening, from early maturation to post-harvest. This review offers a comprehensive analysis of ethylene's multifaceted roles in climacteric fruit ripening, characterized by a pronounced increase in ethylene production and respiration rates. It explores potential genetic and molecular mechanisms underlying ethylene's action, focusing on key transcription factors, biosynthetic pathway genes, and signal transduction elements crucial for the expression of ripening-related genes. The varied sensitivity and dependency of ripening traits on ethylene are elucidated through studies employing genetic mutations and ethylene inhibitors such as AVG and 1-MCP. Additionally, the modulation of ripening traits by ethylene is influenced by its interaction with other phytohormones, including auxins, abscisic acid, gibberellins, jasmonates, brassinosteroids, and salicylic acid. Pre-harvest fruit drop is intricately linked to ethylene, which triggers enzyme activity in the abscission zone, leading to cell wall degradation and fruit detachment. This review also highlights the potential for applying ethylene-related knowledge in commercial contexts to enhance fruit quality, control pre-harvest drop, and extend shelf life. Future research directions are proposed, advocating for the integration of physiological, genetic, biochemical, and transcriptional insights to further elucidate ethylene's role in fruit ripening and its interaction with other hormonal pathways.
Collapse
Affiliation(s)
| | - Sherif M. Sherif
- Virginia Tech School of Plant and Environmental Sciences, Alson H. Smith Jr. Agricultural Research and Extension Center, Winchester, VA, United States
| |
Collapse
|
14
|
Azaryan A, Atighi MR, Shams-Bakhsh M. Infection of tomato plants by tomato yellow leaf curl virus (TYLCV) potentiates the ethylene and salicylic acid pathways to fend off root-knot nematode (Meloidogyne incognita) parasitism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109271. [PMID: 39504658 DOI: 10.1016/j.plaphy.2024.109271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
In nature, it is common for plants to be infected by multiple pathogens simultaneously, and deciphering the underlying mechanisms of such interactions has remained elusive. The occurrence of root-knot nematode (RKN), Meloidogyne incognita, and tomato yellow leaf curl virus (TYLCV; Begomovirus coheni) has been reported in most tomato cultivation areas. We investigated the interaction between RKN and TYLCV in tomato plants at phenotypic, biochemical, and gene expression levels. Several treatments were considered including mock inoculation, inoculation with TYLCV or RKN alone, simultaneous inoculation with both TYLCV and RKN, and sequential inoculations with a five-day interval. Among them, simultaneous inoculation showed the highest impact on RKN suppression compared to mock-inoculated plants. Biochemical assays in the time-point experiments demonstrated that the pick of defense capacity of plants occurs at 48- and 72-h post-inoculation. Gene expression analyses utilizing marker genes from main hormonal pathways involved in plant defense, including salicylic acid (SA), jasmonic acid (JA), and ethylene (ET), indicated that ET and SA are highly involved in the potentiation of TYLCV-induced defense against RKN. To validate the action of SA and ET in the induction of defense against RKN by TYLCV, transgenic lines deficient in SA (NahG) and ET (ACD) accumulation were co-inoculated with TYLCV and RKN. Both transgenic lines failed to express TYLCV-induced defense against RKN. These findings demonstrate an antagonistic effect of TYLCV against RKN in tomato plants, mediated by SA and ET signaling pathways.
Collapse
Affiliation(s)
- Ayub Azaryan
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Atighi
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Masoud Shams-Bakhsh
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
15
|
Zheng L, Wen Y, Lin Y, Tian J, Shaobai J, Hao Z, Wang C, Sun T, Wang L, Chen C. Phytohormonal dynamics in the abscission zone of Korla fragrant pear during calyx abscission: a visual study. FRONTIERS IN PLANT SCIENCE 2024; 15:1452072. [PMID: 39439514 PMCID: PMC11493647 DOI: 10.3389/fpls.2024.1452072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/05/2024] [Indexed: 10/25/2024]
Abstract
Introduction Phytohormones play a crucial role in regulating the abscission of plant organs and tissues. Methods In this study, the ultrastructure of the sepals of Korla fragrant pears was observed using a transmission electron microscope, and high-performance liquid and gas chromatography were used to analyze the dynamic changes of phytohormones in the abscission zone during the calyx abscission process of Korla fragrant pears, and mass spectrometry imaging was applied to ascertain the spatial distribution of phytohormones. Results The results revealed that the mitochondria in the abscission zone of the decalyx fruits were regularly distributed around the cell wall, and the chloroplasts were moderately present. In contrast, in the persistent calyx fruit, the corresponding parts of the abscission zone showed a scattered distribution of mitochondria within the cells, and there was a higher number of chloroplasts, which also contained starch granules inside. Mass spectrometry imaging revealed that ABA was enriched in the abscission zone of the decalyx fruit, and their ionic signal intensities were significantly stronger than those of the persistent calyx fruit. However, the ionic signal intensities of Indole-3-acetic acid (IAA) and Gibberellin A3 (GA3) of the persistent calyx fruit were significantly stronger than those in the abscission zone of the decalyx fruit and were concentrated in the persistent calyx fruit. 1-Aminocyclopropanecarboxylic Acid (ACC) did not show distinct regional distribution in both the decalyx and persistent calyx fruits. Furthermore, before the formation of the abscission zone, the levels of IAA, GA3, and zeatin (ZT) in the abscission zone of the decalyx fruits were significantly lower than those in the persistent calyx fruits by 37.9%, 57.7%, and 33.0%, respectively, while the levels of abscisic acid (ABA) and ethylene (ETH) were significantly higher by 21.9% and 25.0%, respectively. During the formation of the abscission zone, the levels of IAA, GA3, and ZT in the abscission zone of the decalyx fruits were significantly lower than those in the persistent calyx fruits by 41.7%, 71.7%, and 24.6%, respectively, while the levels of ABA and ETH were significantly higher by 15.2% and 80.0%, respectively. After the formation of the abscission zone, the levels of IAA and GA3 in the abscission zone of the decalyx fruits were lower than those in the persistent calyx fruits by 20.8% and 47.8%, respectively, while the levels of ABA and ETH were higher by 271.8% and 26.9%, respectively. In summary, during the calyx abscission process of Korla fragrant pears, IAA and GA3 in the abscission zone inhibited abscission, while ABA and ETH promoted calyx abscission. These research findings enrich the understanding of the regulatory mechanism of plant hormones on calyx abscission and provide a theoretical basis for the study of exogenous plant growth regulators for regulating calyx abscission in Korla fragrant pear.
Collapse
Affiliation(s)
- Lingling Zheng
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Yue Wen
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Yan Lin
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Jia Tian
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Junjie Shaobai
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Zhichao Hao
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Chunfeng Wang
- Korla Fragrant Pear Research Centre, Korla, Xinjiang, China
| | - Tianyu Sun
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Lei Wang
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Chen Chen
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| |
Collapse
|
16
|
Neyshabouri FA, Ghotbi-Ravandi AA, Shariatmadari Z, Tohidfar M. Cadmium toxicity promotes hormonal imbalance and induces the expression of genes involved in systemic resistances in barley. Biometals 2024; 37:1147-1160. [PMID: 38615113 DOI: 10.1007/s10534-024-00597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/07/2024] [Indexed: 04/15/2024]
Abstract
Cadmium (Cd) is a widely distributed pollutant that adversely affects plants' metabolism and productivity. Phytohormones play a vital role in the acclimation of plants to metal stress. On the other hand, phytohormones trigger systemic resistances, including systemic acquired resistance (SAR) and induced systemic resistance (ISR), in plants in response to biotic interactions. The present study aimed to investigate the possible induction of SAR and ISR pathways in relation to the hormonal alteration of barley seedlings in response to Cd stress. Barley seedlings were exposed to 1.5 mg g-1 Cd in the soil for three days. The nutrient content, oxidative status, phytohormones profile, and expression of genes involved in SAR and ISR pathways of barley seedlings were examined. Cd accumulation resulted in a reduction in the nutrient content of barley seedlings. The specific activity of superoxide dismutase and the hydrogen peroxide content significantly increased in response to Cd toxicity. Abscisic acid, jasmonic acid, and ethylene content increased under Cd exposure. Cd treatment resulted in the upregulation of NPR1, PR3, and PR13 genes in SAR pathways. The transcripts of PAL1 and LOX2.2 genes in the ISR pathway were also significantly increased in response to Cd treatment. These findings suggest that hormonal-activated systemic resistances are involved in the response of barley to Cd stress.
Collapse
Affiliation(s)
- Fatemeh Alzahra Neyshabouri
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ali Akbar Ghotbi-Ravandi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Zeinab Shariatmadari
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Masoud Tohidfar
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
17
|
Huang LJ, Zhang J, Lin Z, Yu P, Lu M, Li N. The AP2/ERF transcription factor ORA59 regulates ethylene-induced phytoalexin synthesis through modulation of an acyltransferase gene expression. J Cell Physiol 2024; 239:e30935. [PMID: 36538653 DOI: 10.1002/jcp.30935] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The gaseous ethylene (ET) and the oxylipin-derived jasmonic acid (JA) in plants jointly regulate an arsenal of pathogen responsive genes involved in defending against necrotrophic pathogens. The APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) transcription factor ORA59 is a major positive regulator of the ET/JA-mediated defense pathway in Arabidopsis thaliana. The Arabidopsis agmatine coumaroyltransferase (AtACT) catalyzes the formation of hydroxycinnamic acid amides (HCAAs) which are effective toxic antimicrobial substances known as phytoalexins and play an important role in plant defense response. However, induction and regulation of AtACT gene expression and HCAAs synthesis in plants remain less understood. Through gene coexpression network analysis, we identified a list of GCC-box cis-element containing genes that were coexpressed with ORA59 under diverse biotic stress conditions and might be potential downstream targets of this AP2/ERF-domain transcription factor. Particularly, ORA59 directly binds to AtACT gene promoter via the GCC-boxes and activates AtACT gene expression. The ET precursor 1-aminocyclopropane-1-carboxylic acid (ACC)-treatment significantly induces AtACT gene expression. Both ORA59 and members of the class II TGA transcription factors are indispensable for ACC-induced AtACT expression. Interestingly, the expression of AtACT is also subject to the signaling crosstalk of the salicylic acid- and ET/JA-mediated defense response pathways. In addition, we found that genes of the phenylpropanoid metabolism pathway were specifically induced by Botrytis cinerea. Taking together, these evidence suggest that the ET/JA signaling pathway activate the expression of AtACT to increase antimicrobial HCAAs production through the transcription factor ORA59 in response to the infection of necrotrophic plant pathogens.
Collapse
Affiliation(s)
- Li-Jun Huang
- Laboratory of Forest Genetics and Plant Breeding, College of Forestry, Central South University of Forestry and Technology, Hunan, China
| | - Jiayi Zhang
- Laboratory of Forest Genetics and Plant Breeding, College of Forestry, Central South University of Forestry and Technology, Hunan, China
| | - Zeng Lin
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Hunan, China
| | - Peiyao Yu
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Hunan, China
| | - Mengzhu Lu
- Laboratory of Forest Genetics and Plant Breeding, College of Forestry, Central South University of Forestry and Technology, Hunan, China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A and F University, Zhejiang, China
| | - Ning Li
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Hunan, China
- Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Hunan, China
| |
Collapse
|
18
|
Mourad AMI, Börner A, Esmail SM. Effectiveness and Genetic Control of Trichoderma spp. as a Biological Control of Wheat Powdery Mildew Disease. PHYTOPATHOLOGY 2024; 114:2221-2234. [PMID: 38970807 DOI: 10.1094/phyto-05-24-0157-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Wheat powdery mildew (WPM) is one of the most devasting diseases that affects wheat yield worldwide. Few efforts have been made to control such a serious disease. An effective way to control WPM is urgently needed. Biological control is an effective way to control plant diseases worldwide. In this study, the efficiency of three different Trichoderma spp. in controlling WPM at the seedling growth stage was tested using 35 highly diverse wheat genotypes. Highly significant differences were found in WPM resistance among the four treatments, confirming the efficiency of Trichoderma in controlling WPM. Of the three species, T. asperellum T34 (T34) was the most effective species in controlling WPM, as it reduced the symptoms by 50.56%. A set of 196 wheat genotypes was used to identify the genetic control of the WPM resistance induced by T34. A total of 39, 27, and 18 gene models were identified to contain the significant markers under Pm, T34, and the improvement in powdery mildew resistance due to T34 (T34_improvement) conditions. Furthermore, no gene model was common between T34 and Pm, suggesting the presence of completely different genetic systems controlling the resistance under T34 and Pm. The functional annotation and biological process pathways of the detected gene models confirm their association with the normal and induced resistance. This study, for the first time, confirms the efficiency of T34 in controlling WPM and provides a deep understanding of the genetic control of induced and normal resistance to WPM.
Collapse
Affiliation(s)
- Amira M I Mourad
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Seeland, OT Gatersleben, Germany
- Department of Agronomy, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Seeland, OT Gatersleben, Germany
| | - Samar M Esmail
- Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, 12619 Giza, Egypt
| |
Collapse
|
19
|
Su X, Wang J, Sun S, Peng W, Li M, Mao P, Dou L. Genome-wide identification of the EIN3/EIL transcription factor family and their responses under abiotic stresses in Medicago sativa. BMC PLANT BIOLOGY 2024; 24:898. [PMID: 39343877 PMCID: PMC11440698 DOI: 10.1186/s12870-024-05588-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Medicago sativa, often referred to as the "king of forage", is prized for its high content of protein, minerals, carbohydrates, and digestible nutrients. However, various abiotic stresses can hinder its growth and development, ultimately resulting in reduced yield and quality, including water deficiency, high salinity, and low temperature. The ethylene-insensitive 3 (EIN3)/ethylene-insensitive 3-like (EIL) transcription factors are key regulators in the ethylene signaling pathway in plants, playing crucial roles in development and in the response to abiotic stresses. Research on the EIN3/EIL gene family has been reported for several species, but minimal information is available for M. sativa. RESULTS In this study, we identified 10 MsEIN3/EIL genes from the M. sativa genome (cv. Zhongmu No.1), which were classified into three clades based on phylogenetic analysis. The conserved structural domains of the MsEIN3/EIL genes include motifs 1, 2, 3, 4, and 9. Gene duplication analyses suggest that segmental duplication (SD) has played a significant role in the expansion of the MsEIN3/EIL gene family throughout evolution. Analysis of the cis-acting elements in the promoters of MsEIN3/EIL genes indicates their potential to respond to various hormones and environmental stresses. We conducted a further analysis of the tissue-specific expression of the MsEIN3/EIL genes and assessed the gene expression profiles of MsEIN3/EIL under various stresses using transcriptome data, including cold, drought, salt and abscisic acid treatments. The results showed that MsEIL1, MsEIL4, and MsEIL5 may act as positive regulatory factors involved in M. sativa's response to abiotic stress, providing important genetic resources for molecular design breeding. CONCLUSION This study investigated MsEIN3/EIL genes in M. sativa and identified three candidate transcription factors involved in the regulation of abiotic stresses. These findings will offer valuable insights into uncovering the molecular mechanisms underlying various stress responses in M. sativa.
Collapse
Affiliation(s)
- Xinru Su
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Juan Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shoujiang Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wenxin Peng
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Manli Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Peisheng Mao
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Liru Dou
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
20
|
Luo P, Wu J, Li TT, Shi P, Ma Q, Di DW. An Overview of the Mechanisms through Which Plants Regulate ROS Homeostasis under Cadmium Stress. Antioxidants (Basel) 2024; 13:1174. [PMID: 39456428 PMCID: PMC11505430 DOI: 10.3390/antiox13101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Cadmium (Cd2+) is a non-essential and highly toxic element to all organic life forms, including plants and humans. In response to Cd stress, plants have evolved multiple protective mechanisms, such as Cd2+ chelation, vesicle sequestration, the regulation of Cd2+ uptake, and enhanced antioxidant defenses. When Cd2+ accumulates in plants to a certain level, it triggers a burst of reactive oxygen species (ROS), leading to chlorosis, growth retardation, and potentially death. To counteract this, plants utilize a complex network of enzymatic and non-enzymatic antioxidant systems to manage ROS and protect cells from oxidative damage. This review systematically summarizes how various elements, including nitrogen, phosphorus, calcium, iron, and zinc, as well as phytohormones such as abscisic acid, auxin, brassinosteroids, and ethylene, and signaling molecules like nitric oxide, hydrogen peroxide, and hydrogen sulfide, regulate the antioxidant system under Cd stress. Furthermore, it explores the mechanisms by which exogenous regulators can enhance the antioxidant capacity and mitigate Cd toxicity.
Collapse
Affiliation(s)
- Pan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jingjing Wu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China;
| | - Ting-Ting Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Nanjing (UCASNJ), Nanjing 211135, China
| | - Peihua Shi
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China;
| | - Qi Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Dong-Wei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Nanjing (UCASNJ), Nanjing 211135, China
| |
Collapse
|
21
|
Corbineau F. Ethylene, a Signaling Compound Involved in Seed Germination and Dormancy. PLANTS (BASEL, SWITZERLAND) 2024; 13:2674. [PMID: 39409543 PMCID: PMC11478528 DOI: 10.3390/plants13192674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024]
Abstract
The present review is focused on current findings on the involvement of ethylene in seed biology. The responsiveness of seeds to ethylene depends on the species and the dormancy status, improving concentrations ranging from 0.1 to 200 μL L-1. The signaling pathway of ethylene starts with its binding to five membrane-anchored receptors, which results in the deactivation of Constitutive Triple Response 1 (CTR1, a protein kinase) that does not exert its inhibitory effect on Ethylene Insensitive 2 (EIN2) by phosphorylating its cytosolic C-terminal domain. An analysis of germination in the presence of inhibitors of ethylene synthesis or action, and using seeds from mutant lines altered in terms of the genes involved in ethylene synthesis (acs) and the signaling pathway (etr1, ein2, ein4, ctr1 and erf1), demonstrates the involvement of ethylene in the regulation of seed dormancy. The promoting effect of ethylene is also regulated through crosstalk with abscisic acid (ABA) and gibberellins (GAs), essential hormones involved in seed germination and dormancy, and Reactive Oxygen Species (ROS). Using a mutant of the proteolytic N-degron pathway, Proteolysis (PRT6), the Ethylene Response Factors (ERFs) from group VII (HRE1, HRE2, RAP 2.2, RAP2.3 and RAP 2.12) have also been identified as being involved in seed insensitivity to ethylene. This review highlights the key roles of EIN2 and EIN3 in the ethylene signaling pathway and in interactions with different hormones and discusses the responsiveness of seeds to ethylene, depending on the species and the dormancy status.
Collapse
|
22
|
Zhang Z, Ma J, Yang X, Liang S, Liu Y, Yuan Y, Liang Q, Shen Y, Zhou G, Zhang M, Tian Z, Liu S. Natural GmACO1 allelic variations confer drought tolerance and influence nodule formation in soybean. ABIOTECH 2024; 5:351-355. [PMID: 39279855 PMCID: PMC11399508 DOI: 10.1007/s42994-024-00160-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/09/2024] [Indexed: 09/18/2024]
Abstract
Soybean [Glycine max (L.) Merr.] is one of the most important, but a drought-sensitive, crops. Identifying the genes controlling drought tolerance is important in soybean breeding. Here, through a genome-wide association study, we identified one significant association locus, located on chromosome 8, which conferred drought tolerance variations in a natural soybean population. Allelic analysis and genetic validation demonstrated that GmACO1, encoding for a 1-aminocyclopropane-1-carboxylate oxidase, was the causal gene in this association locus, and positively regulated drought tolerance in soybean. Meanwhile, we determined that GmACO1 expression was reduced after rhizobial infection, and that GmACO1 negatively regulated soybean nodule formation. Overall, our findings provide insights into soybean cultivars for future breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-024-00160-w.
Collapse
Affiliation(s)
- Zhifang Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Junkui Ma
- The Industrial Crop Institute, Shanxi Agricultural University/Shanxi Academy of Agricultural Sciences, Taiyuan, 030031 China
| | - Xia Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Shan Liang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yucheng Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yaqin Yuan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qianjin Liang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yanting Shen
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Guoan Zhou
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Min Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zhixi Tian
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Shulin Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
23
|
Zhang S, Wu S, Jia Z, Zhang J, Li Y, Ma X, Fan B, Wang P, Gao Y, Ye Z, Wang W. Exploring the influence of a single-nucleotide mutation in EIN4 on tomato fruit firmness diversity through fruit pericarp microstructure. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2379-2394. [PMID: 38623687 PMCID: PMC11331787 DOI: 10.1111/pbi.14352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/04/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024]
Abstract
Tomato (Solanum lycopersicum) stands as one of the most valuable vegetable crops globally, and fruit firmness significantly impacts storage and transportation. To identify genes governing tomato firmness, we scrutinized the firmness of 266 accessions from core collections. Our study pinpointed an ethylene receptor gene, SlEIN4, located on chromosome 4 through a genome-wide association study (GWAS) of fruit firmness in the 266 tomato core accessions. A single-nucleotide polymorphism (SNP) (A → G) of SlEIN4 distinguished lower (AA) and higher (GG) fruit firmness genotypes. Through experiments, we observed that overexpression of SlEIN4AA significantly delayed tomato fruit ripening and dramatically reduced fruit firmness at the red ripe stage compared with the control. Conversely, gene editing of SlEIN4AA with CRISPR/Cas9 notably accelerated fruit ripening and significantly increased fruit firmness at the red ripe stage compared with the control. Further investigations revealed that fruit firmness is associated with alterations in the microstructure of the fruit pericarp. Additionally, SlEIN4AA positively regulates pectinase activity. The transient transformation assay verified that the SNP (A → G) on SlEIN4 caused different genetic effects, as overexpression of SlEIN4GG increased fruit firmness. Moreover, SlEIN4 exerts a negative regulatory role in tomato ripening by impacting ethylene evolution through the abundant expression of ethylene pathway regulatory genes. This study presents the first evidence of the role of ethylene receptor genes in regulating fruit firmness. These significant findings will facilitate the effective utilization of firmness and ripening traits in tomato improvement, offering promising opportunities for enhancing tomato storage and transportation capabilities.
Collapse
Affiliation(s)
- Shiwen Zhang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| | - Shengqing Wu
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| | - Zhiqi Jia
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Ying Li
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| | - Xingyun Ma
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| | - Bingli Fan
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| | - Panqiao Wang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| | - Yanna Gao
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Wei Wang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
24
|
Peng X, Li H, Xu W, Yang Q, Li D, Fan T, Li B, Ding J, Ku W, Deng D, Zhu F, Xiao L, Wang R. The AtMINPP Gene, Encoding a Multiple Inositol Polyphosphate Phosphatase, Coordinates a Novel Crosstalk between Phytic Acid Metabolism and Ethylene Signal Transduction in Leaf Senescence. Int J Mol Sci 2024; 25:8969. [PMID: 39201658 PMCID: PMC11354338 DOI: 10.3390/ijms25168969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Plant senescence is a highly coordinated process that is intricately regulated by numerous endogenous and environmental signals. The involvement of phytic acid in various cell signaling and plant processes has been recognized, but the specific roles of phytic acid metabolism in Arabidopsis leaf senescence remain unclear. Here, we demonstrate that in Arabidopsis thaliana the multiple inositol phosphate phosphatase (AtMINPP) gene, encoding an enzyme with phytase activity, plays a crucial role in regulating leaf senescence by coordinating the ethylene signal transduction pathway. Through overexpressing AtMINPP (AtMINPP-OE), we observed early leaf senescence and reduced chlorophyll contents. Conversely, a loss-of-function heterozygous mutant (atminpp/+) exhibited the opposite phenotype. Correspondingly, the expression of senescence-associated genes (SAGs) was significantly upregulated in AtMINPP-OE but markedly decreased in atminpp/+. Yeast one-hybrid and chromatin immunoprecipitation assays indicated that the EIN3 transcription factor directly binds to the promoter of AtMINPP. Genetic analysis further revealed that AtMINPP-OE could accelerate the senescence of ein3-1eil1-3 mutants. These findings elucidate the mechanism by which AtMINPP regulates ethylene-induced leaf senescence in Arabidopsis, providing insights into the genetic manipulation of leaf senescence and plant growth.
Collapse
Affiliation(s)
- Xiaoyun Peng
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Haiou Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Wenzhong Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
| | - Qian Yang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Dongming Li
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China;
| | - Tingting Fan
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Bin Li
- Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Junhui Ding
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Wenzhen Ku
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Danyi Deng
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Feiying Zhu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
- Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Ruozhong Wang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| |
Collapse
|
25
|
Pérez-Hedo M, Gallego-Giraldo C, Forner-Giner MÁ, Ortells-Fabra R, Urbaneja A. Plant volatile-triggered defense in citrus against biotic stressors. FRONTIERS IN PLANT SCIENCE 2024; 15:1425364. [PMID: 39049855 PMCID: PMC11266131 DOI: 10.3389/fpls.2024.1425364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Plants employ sophisticated defense mechanisms, including releasing volatile organic compounds, to defend against biotic and abiotic stresses. These compounds play a crucial role in plant defense by attracting natural enemies and facilitating communication between plants to activate defense mechanisms. However, there has been no research on how exposure to these compounds activates defense mechanisms in citrus plants. To elucidate the underlying mechanisms governing citrus defensive activation, we conducted a molecular analysis of the rootstock Citrange carrizo [a hybrid of Citrus sinensis × Poncirus trifoliata] in response to defense activation by the volatile (Z)-3-hexenyl propanoate [(Z)-3-HP], utilizing a groundbreaking transcriptomic analysis involving the genomes of both parental species. Our results revealed significant gene expression changes, notably the overexpression of genes related to plant immunity, antioxidant activity, defense against herbivores, and tolerance to abiotic stress. Significantly, P. trifoliata contributed most notably to the hybrid's gene expression profile in response to (Z)-3-HP. Additionally, plants exposed to (Z)-3-HP repelled several citrus pests, attracted natural predators, and led to diminished performance of two key citrus pests. Our study emphasizes the complex molecular basis of volatile-triggered defenses in citrus and highlights the potential of plant volatiles in pest control strategies.
Collapse
Affiliation(s)
- Meritxell Pérez-Hedo
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Valencia, Spain
| | - Carolina Gallego-Giraldo
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Valencia, Spain
| | - María Ángeles Forner-Giner
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Citricultura y Producción Vegetal, Moncada, Valencia, Spain
| | - Raúl Ortells-Fabra
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Valencia, Spain
| | - Alberto Urbaneja
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Valencia, Spain
| |
Collapse
|
26
|
Wang C, Yang J, Pan Q, Zhu P, Li J. Integrated transcriptomic and proteomic analysis of exogenous abscisic acid regulation on tuberous root development in Pseudostellaria heterophylla. Front Nutr 2024; 11:1417526. [PMID: 39036490 PMCID: PMC11258014 DOI: 10.3389/fnut.2024.1417526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Abscisic acid (ABA) significantly regulates plant growth and development, promoting tuberous root formation in various plants. However, the molecular mechanisms of ABA in the tuberous root development of Pseudostellaria heterophylla are not yet fully understood. This study utilized Illumina sequencing and de novo assembly strategies to obtain a reference transcriptome associated with ABA treatment. Subsequently, integrated transcriptomic and proteomic analyses were used to determine gene expression profiles in P. heterophylla tuberous roots. ABA treatment significantly increases the diameter and shortens the length of tuberous roots. Clustering analysis identified 2,256 differentially expressed genes and 679 differentially abundant proteins regulated by ABA. Gene co-expression and protein interaction networks revealed ABA positively induced 30 vital regulators. Furthermore, we identified and assigned putative functions to transcription factors (PhMYB10, PhbZIP2, PhbZIP, PhSBP) that mediate ABA signaling involved in the regulation of tuberous root development, including those related to cell wall metabolism, cell division, starch synthesis, hormone metabolism. Our findings provide valuable insights into the complex signaling networks of tuberous root development modulated by ABA. It provided potential targets for genetic manipulation to improve the yield and quality of P. heterophylla, which could significantly impact its cultivation and medicinal value.
Collapse
Affiliation(s)
| | | | | | - Panpan Zhu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jun Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
27
|
Hu J, Wang J, Muhammad T, Yang T, Li N, Yang H, Yu Q, Wang B. Integrative Analysis of Metabolome and Transcriptome of Carotenoid Biosynthesis Reveals the Mechanism of Fruit Color Change in Tomato ( Solanum lycopersicum). Int J Mol Sci 2024; 25:6493. [PMID: 38928199 PMCID: PMC11204166 DOI: 10.3390/ijms25126493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Tomato fruit ripening is accompanied by carotenoid accumulation and color changes. To elucidate the regulatory mechanisms underlying carotenoid synthesis during fruit ripening, a combined transcriptomic and metabolomic analysis was conducted on red-fruited tomato (WP190) and orange-fruited tomato (ZH108). A total of twenty-nine (29) different carotenoid compounds were identified in tomato fruits at six different stages. The abundance of the majority of the carotenoids was enhanced significantly with fruit ripening, with higher levels of lycopene; (E/Z)-lycopene; and α-, β- and γ-carotenoids detected in the fruits of WP190 at 50 and 60 days post anthesis (DPA). Transcriptome analysis revealed that the fruits of two varieties exhibited the highest number of differentially expressed genes (DEGs) at 50 DPA, and a module of co-expressed genes related to the fruit carotenoid content was established by WGCNA. qRT-PCR analysis validated the transcriptome result with a significantly elevated transcript level of lycopene biosynthesis genes (including SlPSY2, SlZCIS, SlPDS, SlZDS and SlCRTSO2) observed in WP190 at 50 DPA in comparison to ZH108. In addition, during the ripening process, the expression of ethylene biosynthesis (SlACSs and SlACOs) and signaling (SlEIN3 and SlERF1) genes was also increased, and these mechanisms may regulate carotenoid accumulation and fruit ripening in tomato. Differential expression of several key genes in the fruit of two tomato varieties at different stages regulates the accumulation of carotenoids and leads to differences in color between the two varieties of tomato. The results of this study provide a comprehensive understanding of carotenoid accumulation and ethylene biosynthesis and signal transduction pathway regulatory mechanisms during tomato fruit development.
Collapse
Affiliation(s)
- Jiahui Hu
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Juan Wang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Tayeb Muhammad
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Tao Yang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Ning Li
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Haitao Yang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Qinghui Yu
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Baike Wang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| |
Collapse
|
28
|
Chen X, Li H, Dong Y, Xu Y, Xu K, Zhang Q, Yao Z, Yu Q, Zhang H, Zhang Z. A wild melon reference genome provides novel insights into the domestication of a key gene responsible for melon fruit acidity. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:144. [PMID: 38809285 DOI: 10.1007/s00122-024-04647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024]
Abstract
KEY MESSAGE A wild melon reference genome elucidates the genomic basis of fruit acidity domestication. Structural variants (SVs) have been reported to impose major effects on agronomic traits, representing a significant contributor to crop domestication. However, the landscape of SVs between wild and cultivated melons is elusive and how SVs have contributed to melon domestication remains largely unexplored. Here, we report a 379-Mb chromosome-scale genome of a wild progenitor melon accession "P84", with a contig N50 of 14.9 Mb. Genome comparison identifies 10,589 SVs between P84 and four cultivated melons with 6937 not characterized in previously analysis of 25 melon genome sequences. Furthermore, the population-scale genotyping of these SVs was determined in 1175 accessions, and 18 GWAS signals including fruit acidity, fruit length, fruit weight, fruit color and sex determination were detected. Based on these genotyped SVs, we identified 3317 highly diverged SVs between wild and cultivated melons, which could be the potential SVs associated with domestication-related traits. Furthermore, we identify novel SVs affecting fruit acidity and proposed the diverged evolutionary trajectories of CmPH, a key regulator of melon fruit acidity, during domestication and selection of different populations. These results will offer valuable resources for genomic studies and genetic improvement in melon.
Collapse
Affiliation(s)
- Xinxiu Chen
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hongbo Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Shenzhen Branch, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, Guangdong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yuanhua Dong
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yuanchao Xu
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Shenzhen Branch, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, Guangdong, China
| | - Kuipeng Xu
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiqi Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Zhiwang Yao
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qing Yu
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huimin Zhang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Zhonghua Zhang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
29
|
Abulfaraj AA, Alshareef SA. Concordant Gene Expression and Alternative Splicing Regulation under Abiotic Stresses in Arabidopsis. Genes (Basel) 2024; 15:675. [PMID: 38927612 PMCID: PMC11202685 DOI: 10.3390/genes15060675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The current investigation endeavors to identify differentially expressed alternatively spliced (DAS) genes that exhibit concordant expression with splicing factors (SFs) under diverse multifactorial abiotic stress combinations in Arabidopsis seedlings. SFs serve as the post-transcriptional mechanism governing the spatiotemporal dynamics of gene expression. The different stresses encompass variations in salt concentration, heat, intensive light, and their combinations. Clusters demonstrating consistent expression profiles were surveyed to pinpoint DAS/SF gene pairs exhibiting concordant expression. Through rigorous selection criteria, which incorporate alignment with documented gene functionalities and expression patterns observed in this study, four members of the serine/arginine-rich (SR) gene family were delineated as SFs concordantly expressed with six DAS genes. These regulated SF genes encompass cactin, SR1-like, SR30, and SC35-like. The identified concordantly expressed DAS genes encode diverse proteins such as the 26.5 kDa heat shock protein, chaperone protein DnaJ, potassium channel GORK, calcium-binding EF hand family protein, DEAD-box RNA helicase, and 1-aminocyclopropane-1-carboxylate synthase 6. Among the concordantly expressed DAS/SF gene pairs, SR30/DEAD-box RNA helicase, and SC35-like/1-aminocyclopropane-1-carboxylate synthase 6 emerge as promising candidates, necessitating further examinations to ascertain whether these SFs orchestrate splicing of the respective DAS genes. This study contributes to a deeper comprehension of the varied responses of the splicing machinery to abiotic stresses. Leveraging these DAS/SF associations shows promise for elucidating avenues for augmenting breeding programs aimed at fortifying cultivated plants against heat and intensive light stresses.
Collapse
Affiliation(s)
- Aala A. Abulfaraj
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Sahar A. Alshareef
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21921, Saudi Arabia;
| |
Collapse
|
30
|
Fu Y, Ma L, Li J, Hou D, Zeng B, Zhang L, Liu C, Bi Q, Tan J, Yu X, Bi J, Luo L. Factors Influencing Seed Dormancy and Germination and Advances in Seed Priming Technology. PLANTS (BASEL, SWITZERLAND) 2024; 13:1319. [PMID: 38794390 PMCID: PMC11125191 DOI: 10.3390/plants13101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
Seed dormancy and germination play pivotal roles in the agronomic traits of plants, and the degree of dormancy intuitively affects the yield and quality of crops in agricultural production. Seed priming is a pre-sowing seed treatment that enhances and accelerates germination, leading to improved seedling establishment. Seed priming technologies, which are designed to partially activate germination, while preventing full seed germination, have exerted a profound impact on agricultural production. Conventional seed priming relies on external priming agents, which often yield unstable results. What works for one variety might not be effective for another. Therefore, it is necessary to explore the internal factors within the metabolic pathways that influence seed physiology and germination. This review unveils the underlying mechanisms of seed metabolism and germination, the factors affecting seed dormancy and germination, as well as the current seed priming technologies that can result in stable and better germination.
Collapse
Affiliation(s)
- Yanfeng Fu
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; (Y.F.); (X.Y.); (L.L.)
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Ma
- Institute for Sustainable Horticulture, Kwantlen Polytechnic University, 20901 Langley Bypass, Langley, BC V3A 8G9, Canada;
| | - Juncai Li
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Danping Hou
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Zeng
- National Agricultural Technology Extension Service Center, Room 622, Building 20, Maizidian Street, Chaoyang District, Beijing 100125, China; (B.Z.); (L.Z.); (C.L.)
| | - Like Zhang
- National Agricultural Technology Extension Service Center, Room 622, Building 20, Maizidian Street, Chaoyang District, Beijing 100125, China; (B.Z.); (L.Z.); (C.L.)
| | - Chunqing Liu
- National Agricultural Technology Extension Service Center, Room 622, Building 20, Maizidian Street, Chaoyang District, Beijing 100125, China; (B.Z.); (L.Z.); (C.L.)
| | - Qingyu Bi
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinsong Tan
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinqiao Yu
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; (Y.F.); (X.Y.); (L.L.)
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Junguo Bi
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; (Y.F.); (X.Y.); (L.L.)
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
31
|
Mohorović P, Geldhof B, Holsteens K, Rinia M, Daems S, Reijnders T, Ceusters J, Van den Ende W, Van de Poel B. Ethylene inhibits photosynthesis via temporally distinct responses in tomato plants. PLANT PHYSIOLOGY 2024; 195:762-784. [PMID: 38146839 DOI: 10.1093/plphys/kiad685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 12/27/2023]
Abstract
Ethylene is a volatile plant hormone that regulates many developmental processes and responses toward (a)biotic stress. Studies have shown that high levels of ethylene repress vegetative growth in many important crops, including tomato (Solanum lycopersicum), possibly by inhibiting photosynthesis. We investigated the temporal effects of ethylene on young tomato plants using an automated ethylene gassing system to monitor the physiological, biochemical, and molecular responses through time course RNA-seq of a photosynthetically active source leaf. We found that ethylene evokes a dose-dependent inhibition of photosynthesis, which can be characterized by 3 temporally distinct phases. The earliest ethylene responses that marked the first phase and occurred a few hours after the start of the treatment were leaf epinasty and a decline in stomatal conductance, which led to lower light perception and CO2 uptake, respectively, resulting in a rapid decline of soluble sugar levels (glucose, fructose). The second phase of the ethylene effect was marked by low carbohydrate availability, which modulated plant energy metabolism to adapt by using alternative substrates (lipids and proteins) to fuel the TCA cycle. Long-term continuous exposure to ethylene led to the third phase, characterized by starch and chlorophyll breakdown, which further inhibited photosynthesis, leading to premature leaf senescence. To reveal early (3 h) ethylene-dependent regulators of photosynthesis, we performed a ChIP-seq experiment using anti-ETHYLENE INSENSITIVE 3-like 1 (EIL1) antibodies and found several candidate transcriptional regulators. Collectively, our study revealed a temporal sequence of events that led to the inhibition of photosynthesis by ethylene and identified potential transcriptional regulators responsible for this regulation.
Collapse
Affiliation(s)
- Petar Mohorović
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Batist Geldhof
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Kristof Holsteens
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Marilien Rinia
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Stijn Daems
- Research Group for Sustainable Plant Production and Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Campus Geel, Kleinhoefstraat 4, 2440 Geel, Belgium
| | - Timmy Reijnders
- Molecular Biotechnology of Plants and Microorganisms Lab, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Johan Ceusters
- Research Group for Sustainable Plant Production and Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Campus Geel, Kleinhoefstraat 4, 2440 Geel, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Wim Van den Ende
- Molecular Biotechnology of Plants and Microorganisms Lab, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| |
Collapse
|
32
|
Qiu H, Chen Y, Fu J, Zhang C. Expression of ethylene biosynthetic genes during flower senescence and in response to ethephon and silver nitrate treatments in Osmanthus fragrans. Genes Genomics 2024; 46:399-408. [PMID: 38319456 DOI: 10.1007/s13258-023-01489-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/20/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Sweet osmanthus (Osmanthus fragrans) is an ornamental evergreen tree species in China, whose flowers are sensitive to ethylene. The synthesis of ethylene is controlled by key enzymes and restriction enzymes, 1-aminocyclopropane-1-carboxylic acid synthase (ACS) and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), which are encoded by multigene families. However, the key synthase responsible for ethylene regulation in O. fragrans is still unknown. OBJECTIVE This study aims to screen the key ethylene synthase genes of sweet osmanthus flowers in response to ethylene regulation. METHODS In this study, we used the ACO and ACS sequences of Arabidopsis thaliana to search for homologous genes in the O. fragrans petal transcriptome database. These genes were also analyzed bioinformatically. Finally, the expression levels of O. fragrans were compared before and after senescence, as well as after ethephon and silver nitrate treatments. RESULTS The results showed that there are five ACO genes and one ACS gene in O. fragrans transcriptome database, and the phylogenetic tree revealed that the proteins encoded by these genes had high homology to the ACS and ACO proteins in plants. Sequence alignment shows that the OfACO1-5 proteins have the 2OG-Fe(II) oxygenase domain, while OfACS1 contains seven conserved domains, as well as conserved amino acids in transaminases and glutamate residues related to substrate specificity. Expression analysis revealed that the expression levels of OfACS1 and OfACO1-5 were significantly higher at the early senescence stage compared to the full flowering stage. The transcripts of the OfACS1, OfACO2, and OfACO5 genes were upregulated by treatment with ethephon. However, out of these three genes, only OfACO2 was significantly downregulated by treatment with AgNO3. CONCLUSION Our study found that OfACO2 is an important synthase gene in response to ethylene regulation in sweet osmanthus, which would provide valuable data for further investigation into the mechanisms of ethylene-induced senescence in sweet osmanthus flowers.
Collapse
Affiliation(s)
- Hui Qiu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China
| | - Yiwen Chen
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China
| | - Jianxin Fu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China.
| | - Chao Zhang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
33
|
Chen X, Sun Y, Yang Y, Zhao Y, Zhang C, Fang X, Gao H, Zhao M, He S, Song B, Liu S, Wu J, Xu P, Zhang S. The EIN3 transcription factor GmEIL1 improves soybean resistance to Phytophthora sojae. MOLECULAR PLANT PATHOLOGY 2024; 25:e13452. [PMID: 38619823 PMCID: PMC11018115 DOI: 10.1111/mpp.13452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024]
Abstract
Phytophthora root and stem rot of soybean (Glycine max), caused by the oomycete Phytophthora sojae, is an extremely destructive disease worldwide. In this study, we identified GmEIL1, which encodes an ethylene-insensitive3 (EIN3) transcription factor. GmEIL1 was significantly induced following P. sojae infection of soybean plants. Compared to wild-type soybean plants, transgenic soybean plants overexpressing GmEIL1 showed enhanced resistance to P. sojae and GmEIL1-silenced RNA-interference lines showed more severe symptoms when infected with P. sojae. We screened for target genes of GmEIL1 and confirmed that GmEIL1 bound directly to the GmERF113 promoter and regulated GmERF113 expression. Moreover, GmEIL1 positively regulated the expression of the pathogenesis-related gene GmPR1. The GmEIL1-regulated defence response to P. sojae involved both ethylene biosynthesis and the ethylene signalling pathway. These findings suggest that the GmEIL1-GmERF113 module plays an important role in P. sojae resistance via the ethylene signalling pathway.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
- Crop Stress Molecular Biology LaboratoryHeilongjiang Bayi Agricultural UniversityDaqingChina
| | - Yan Sun
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Yu Yang
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Yuxin Zhao
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Chuanzhong Zhang
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Xin Fang
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Hong Gao
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Ming Zhao
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Shengfu He
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Bo Song
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Shanshan Liu
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Junjiang Wu
- Key Laboratory of Soybean Cultivation of Ministry of AgricultureSoybean Research Institute of Heilongjiang Academy of Agricultural SciencesHarbinChina
| | - Pengfei Xu
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Shuzhen Zhang
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
- Plant Science Department, School of Agriculture and BiologyShanghai JiaoTong UniversityShanghaiChina
| |
Collapse
|
34
|
Choi HW. From the Photosynthesis to Hormone Biosynthesis in Plants. THE PLANT PATHOLOGY JOURNAL 2024; 40:99-105. [PMID: 38606440 PMCID: PMC11016555 DOI: 10.5423/ppj.rw.01.2024.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 04/13/2024]
Abstract
Land plants produce glucose (C6H12O6) through photosynthesis by utilizing carbon dioxide (CO2), water (H2O), and light energy. Glucose can be stored in various polysaccharide forms for later use (e.g., sucrose in fruit, amylose in plastids), used to create cellulose, the primary structural component of cell walls, and immediately metabolized to generate cellular energy, adenosine triphosphate, through a series of respiratory pathways including glycolysis, the tricarboxylic acid cycle, and oxidative phosphorylation. Additionally, plants must metabolize glucose into amino acids, nucleotides, and various plant hormones, which are crucial for regulating many aspects of plant physiology. This review will summarize the biosynthesis of different plant hormones, such as auxin, salicylic acid, gibberellins, cytokinins, ethylene, and abscisic acid, in relation to glucose metabolism.
Collapse
Affiliation(s)
- Hyong Woo Choi
- Department of Plant Medicals, College of Life Sciences and Biotechnology, Andong National University, Andong 36729, Korea
| |
Collapse
|
35
|
Tripathi A, Chauhan N, Mukhopadhyay P. Recent advances in understanding the regulation of plant secondary metabolite biosynthesis by ethylene-mediated pathways. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:543-557. [PMID: 38737326 PMCID: PMC11087406 DOI: 10.1007/s12298-024-01441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 05/14/2024]
Abstract
Plants produce a large repertoire of secondary metabolites. The pathways that lead to the biosynthesis of these metabolites are majorly conserved in the plant kingdom. However, a significant portion of these metabolites are specific to certain groups or species due to variations in the downstream pathways and evolution of the enzymes. These metabolites show spatiotemporal variation in their accumulation and are of great importance to plants due to their role in development, stress response and survival. A large number of these metabolites are in huge industrial demand due to their potential use as therapeutics, aromatics and more. Ethylene, as a plant hormone is long known, and its biosynthetic process, signaling mechanism and effects on development and response pathways have been characterized in many plants. Through exogenous treatments, ethylene and its inhibitors have been used to manipulate the production of various secondary metabolites. However, the research done on a limited number of plants in the last few years has only started to uncover the mechanisms through which ethylene regulates the accumulation of these metabolites. Often in association with other hormones, ethylene participates in fine-tuning the biosynthesis of the secondary metabolites, and brings specificity in the regulation depending on the plant, organ, tissue type and the prevailing conditions. This review summarizes the related studies, interprets the outcomes, and identifies the gaps that will help to breed better varieties of the related crops and produce high-value secondary metabolites for human benefits.
Collapse
Affiliation(s)
- Alka Tripathi
- Plant Biotechnology division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015 India
| | - Nisha Chauhan
- Plant Biotechnology division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002 India
| | - Pradipto Mukhopadhyay
- Plant Biotechnology division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002 India
| |
Collapse
|
36
|
Park M, Shin SY, Moon H, Choi W, Shin C. Analysis of the global transcriptome and miRNAome associated with seed dormancy during seed maturation in rice (Oryza sativa L. cv. Nipponbare). BMC PLANT BIOLOGY 2024; 24:215. [PMID: 38532331 DOI: 10.1186/s12870-024-04928-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Seed dormancy is a biological mechanism that prevents germination until favorable conditions for the subsequent generation of plants are encountered. Therefore, this mechanism must be effectively established during seed maturation. Studies investigating the transcriptome and miRNAome of rice embryos and endosperms at various maturation stages to evaluate seed dormancy are limited. This study aimed to compare the transcriptome and miRNAome of rice seeds during seed maturation. RESULTS Oryza sativa L. cv. Nipponbare seeds were sampled for embryos and endosperms at three maturation stages: 30, 45, and 60 days after heading (DAH). The pre-harvest sprouting (PHS) assay was conducted to assess the level of dormancy in the seeds at each maturation stage. At 60 DAH, the PHS rate was significantly increased compared to those at 30 and 45 DAH, indicating that the dormancy is broken during the later maturation stage (45 DAH to 60 DAH). However, the largest number of differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs) were identified between 30 and 60 DAH in the embryo and endosperm, implying that the gradual changes in genes and miRNAs from 30 to 60 DAH may play a significant role in breaking seed dormancy. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses confirmed that DEGs related to plant hormones were most abundant in the embryo during 45 DAH to 60 DAH and 30 DAH to 60 DAH transitions. Alternatively, most of the DEGs in the endosperm were related to energy and abiotic stress. MapMan analysis and quantitative real-time polymerase chain reaction identified four newly profiled auxin-related genes (OsSAUR6/12/23/25) and one ethylene-related gene (OsERF087), which may be involved in seed dormancy during maturation. Additionally, miRNA target prediction (psRNATarget) and degradome dataset (TarDB) indicated a potential association between osa-miR531b and ethylene biosynthesis gene (OsACO4), along with osa-miR390-5p and the abscisic acid (ABA) exporter-related gene (OsMATE19) as factors involved in seed dormancy. CONCLUSIONS Analysis of the transcriptome and miRNAome of rice embryos and endosperms during seed maturation provided new insights into seed dormancy, particularly its relationship with plant hormones such as ABA, auxin, and ethylene.
Collapse
Affiliation(s)
- Minsu Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang-Yoon Shin
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hongman Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Woochang Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chanseok Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
37
|
Wang H, Li Y, Wassie M, Huo L, Shi H. Salicylic Acid Spray Delays Sand Pear Fruit Senescence during Room Temperature Shelf Life by Regulating Antioxidant Capacity and Senescence-Related Genes. PLANTS (BASEL, SWITZERLAND) 2024; 13:848. [PMID: 38592916 PMCID: PMC10975672 DOI: 10.3390/plants13060848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
'Whangkeumbae' (Pyrus pyrifolia) is a variety of sand pear fruit well-known for its smooth surface and good taste. However, the fruit quality is adversely affected by postharvest ethylene production. Therefore, improving postharvest shelf life by regulating fruit senescence is critical to promoting the 'Whangkeumbae' fruit industry. Here, we investigated the effect of salicylic acid (SA) spray on fruit senescence in sand pears during room temperature shelf life. Exogenous SA reduced polyphenol oxidase (PPO) activity and malondialdehyde (MDA) content during room temperature shelf life. Additionally, SA effectively maintained the fruit skin coloration and increased the activity of antioxidant enzymes, such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX). SA treatment inhibited PpPPO1 expression and upregulated PpSOD1, PpAPX6, and PpGST2 expression. Furthermore, SA application downregulated the expression of PpACO2, PpEIN3a, PpNCED1, and PpAOC2, while upregulating PpNPR-1, PpTAR2, and PpCOMT1 during room temperature shelf life. SA treatment also influenced cell wall metabolism and modification genes by inhibiting PpPG1, PpPME2, and PpCEL3 and inducing PpPGIP1 expression. Additionally, SA treatment affected sugar and acid metabolism genes and increased the expression of PpSPS1, PpSUS1, PpSOT1, PpTMT4, PpSWEET15, and PpcyNAD-MDH, but suppressed the expression of PpcyNADP-ME. The Pearson correlation analysis indicated that PPO activity and MDA content were positively correlated with the expression of PpPPO1, PpACO2, PpEIN3a, PpNCED1, PpAOC2, PpPG1, PpPME2, PpCEL3, and PpcyNDA-MDH. Conversely, these factors were negatively associated with the activities of SOD, POD, CAT, and APX, as well as the expression levels of PpSOD1, PpPOD1, PpCAT1, PpAPX6, PpGST2, PpNPR-1, PpTAR2, PpCOMT1, PpPGIP1, PpSPS1, PpSUS1, PpSOT1, PpTMT4, PpSWEET15, and PpcyNAD-MDH. Our results reveal that exogenous SA could delay fruit senescence in sand pear fruit by regulating various biochemical and molecular mechanisms and can be used to effectively extend fruit shelf life during room temperature storage. However, further research is necessary to determine whether the fruits sprayed with SA are suitable for direct human consumption.
Collapse
Affiliation(s)
- Huiying Wang
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Yawei Li
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Misganaw Wassie
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 666300, China
| | - Liyue Huo
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Haiyan Shi
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
38
|
Gautam H, Khan S, Nidhi, Sofo A, Khan NA. Appraisal of the Role of Gaseous Signaling Molecules in Thermo-Tolerance Mechanisms in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:791. [PMID: 38592775 PMCID: PMC10975175 DOI: 10.3390/plants13060791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/19/2024] [Accepted: 03/09/2024] [Indexed: 04/11/2024]
Abstract
A significant threat to the ongoing rise in temperature caused by global warming. Plants have many stress-resistance mechanisms, which is responsible for maintaining plant homeostasis. Abiotic stresses largely increase gaseous molecules' synthesis in plants. The study of gaseous signaling molecules has gained attention in recent years. The role of gaseous molecules, such as nitric oxide (NO), hydrogen sulfide (H2S), carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), and ethylene, in plants under temperature high-temperature stress are discussed in the current review. Recent studies revealed the critical function that gaseous molecules play in controlling plant growth and development and their ability to respond to various abiotic stresses. Here, we provide a thorough overview of current advancements that prevent heat stress-related plant damage via gaseous molecules. We also explored and discussed the interaction of gaseous molecules. In addition, we provided an overview of the role played by gaseous molecules in high-temperature stress responses, along with a discussion of the knowledge gaps and how this may affect the development of high-temperature-resistant plant species.
Collapse
Affiliation(s)
- Harsha Gautam
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Sheen Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Nidhi
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Adriano Sofo
- Department of European and Mediterranean Cultures: Architecture, Environment, Cultural Heritage (DiCEM), University of Basilicata, 75100 Matera, Italy
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
39
|
Feng L, Dong M, Huang Z, Wang Q, An B, He C, Wang Q, Luo H. CgCFEM1 Is Required for the Full Virulence of Colletotrichum gloeosporioides. Int J Mol Sci 2024; 25:2937. [PMID: 38474183 DOI: 10.3390/ijms25052937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/24/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Colletotrichum gloeosporioides is widely distributed and causes anthracnose on many crops, resulting in serious economic losses. Common fungal extracellular membrane (CFEM) domain proteins have been implicated in virulence and their interaction with the host plant, but their roles in C. gloeosporioides are still unknown. In this study, a CFEM-containing protein of C. gloeosporioides was identified and named as CgCFEM1. The expression levels of CgCFEM1 were found to be markedly higher in appressoria, and this elevated expression was particularly pronounced during the initial stages of infection in the rubber tree. Absence of CgCFEM1 resulted in impaired pathogenicity, accompanied by notable perturbations in spore morphogenesis, conidiation, appressorium development and primary invasion. During the process of appressorium development, the absence of CgCFEM1 enhanced the mitotic activity in both conidia and germ tubes, as well as compromised conidia autophagy. Rapamycin was found to basically restore the appressorium formation, and the activity of target of rapamycin (TOR) kinase was significantly induced in the CgCFEM1 knockout mutant (∆CgCFEM1). Furthermore, CgCFEM1 was proved to suppress chitin-triggered reactive oxygen species (ROS) accumulation and change the expression patterns of defense-related genes. Collectively, we identified a fungal effector CgCFEM1 that contributed to pathogenicity by regulating TOR-mediated conidia and appressorium morphogenesis of C. gloeosporioides and inhibiting the defense responses of the rubber tree.
Collapse
Affiliation(s)
- Liping Feng
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Meixia Dong
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Zhirui Huang
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Qian Wang
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Bang An
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Chaozu He
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Qiannan Wang
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Hongli Luo
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| |
Collapse
|
40
|
Wiczkowski W, Saniewski M, Marasek-Ciołakowska A, Góraj-Koniarska J, Mitrus J, Horbowicz M. Exposure to Light of the Abaxial versus Adaxial Side of Detached Kalanchoë blossfeldiana Leaves Affects Anthocyanin Content and Composition Differently. Int J Mol Sci 2024; 25:2875. [PMID: 38474120 DOI: 10.3390/ijms25052875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
The accumulation and composition of anthocyanins in leaves of Kalanchoë blossfeldiana, detached and kept for five days under natural light conditions, were investigated. The presence of fifteen derivatives of cyanidin, petunidin, and delphinidin was found. Changes in the content of each anthocyanin in the leaves before and after exposure to light on the abaxial (naturally upper) and adaxial (naturally lower) sides of the leaves were compared. When the adaxial side was exposed to light, the anthocyanin contents of the leaves did not change. In contrast, when the abaxial side of detached leaves was exposed to light, there was enhanced accumulation of delphinidin-rhamnoside-glucoside, cyanidin-rhamnoside-glucoside, cyanidin-glucoside-glucoside, and two unknown derivatives of petunidin and delphinidin. Application of methyl jasmonate (JA-Me) on the abaxial side exposed to light inhibited the accumulation of these anthocyanins. This effect could probably be due to the presence of these anthocyanins in the epidermal cells of K. blossfeldiana leaves and was visible in the microscopic view of its cross-section. These anthocyanins were directly exposed to JA-Me, leading to inhibition of their formation and/or accumulation. The lack of significant effects of JA-Me on anthocyanin mono- and tri-glycosides may indicate that they are mainly present in the mesophyll tissue of the leaf.
Collapse
Affiliation(s)
- Wiesław Wiczkowski
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Marian Saniewski
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | | | - Justyna Góraj-Koniarska
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | - Joanna Mitrus
- Institute of Biological Sciences, University of Siedlce, Prusa 14, 08-110 Siedlce, Poland
| | - Marcin Horbowicz
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| |
Collapse
|
41
|
Yan Y, Guo H, Li W. Endoribonuclease DNE1 Promotes Ethylene Response by Modulating EBF1/2 mRNA Processing in Arabidopsis. Int J Mol Sci 2024; 25:2138. [PMID: 38396815 PMCID: PMC10888710 DOI: 10.3390/ijms25042138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The gaseous phytohormone ethylene plays a crucial role in plant growth, development, and stress responses. In the ethylene signal transduction cascade, the F-box proteins EIN3-BINDING F-BOX 1 (EBF1) and EBF2 are identified as key negative regulators governing ethylene sensitivity. The translation and processing of EBF1/2 mRNAs are tightly controlled, and their 3' untranslated regions (UTRs) are critical in these regulations. However, despite their significance, the exact mechanisms modulating the processing of EBF1/2 mRNAs remain poorly understood. In this work, we identified the gene DCP1-ASSOCIATED NYN ENDORIBONUCLEASE 1 (DNE1), which encodes an endoribonuclease and is induced by ethylene treatment, as a positive regulator of ethylene response. The loss of function mutant dne1-2 showed mild ethylene insensitivity, highlighting the importance of DNE1 in ethylene signaling. We also found that DNE1 colocalizes with ETHYLENE INSENSITIVE 2 (EIN2), the core factor manipulating the translation of EBF1/2, and targets the P-body in response to ethylene. Further analysis revealed that DNE1 negatively regulates the abundance of EBF1/2 mRNAs by recognizing and cleaving their 3'UTRs, and it also represses their translation. Moreover, the dne1 mutant displays hypersensitivity to 1,4-dithiothreitol (DTT)-induced ER stress and oxidative stress, indicating the function of DNE1 in stress responses. This study sheds light on the essential role of DNE1 as a modulator of ethylene signaling through regulation of EBF1/2 mRNA processing. Our findings contribute to the understanding of the intricate regulatory process of ethylene signaling and provide insights into the significance of ribonuclease in stress responses.
Collapse
Affiliation(s)
- Yan Yan
- Harbin Institute of Technology, Harbin 150001, China;
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory, Guangdong Higher Education Institute, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongwei Guo
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory, Guangdong Higher Education Institute, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenyang Li
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory, Guangdong Higher Education Institute, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
42
|
Wang L, Ma C, Wang S, Yang F, Sun Y, Tang J, Luo J, Wu J. Ethylene and jasmonate signaling converge on gibberellin catabolism during thigmomorphogenesis in Arabidopsis. PLANT PHYSIOLOGY 2024; 194:758-773. [PMID: 37847103 DOI: 10.1093/plphys/kiad556] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/07/2023] [Accepted: 09/17/2023] [Indexed: 10/18/2023]
Abstract
Touch induces marked morphological changes in plants, including reduced rosette diameters and delayed flowering, a process called thigmomorphogenesis. Previous studies have revealed that thigmomorphogenesis in Arabidopsis (Arabidopsis thaliana) results from touch-induced accumulation of jasmonic acid (JA) and GIBBERELLIN 2-OXIDASE7 (GA2ox7) transcripts, which encode a gibberellin (GA) catabolism enzyme, leading to reduced levels of active GAs. However, the mechanisms underlying thigmomorphogenesis remain uncharacterized. Here, we showed that touch induces ethylene (ET) production in Arabidopsis. After touch treatment, ET biosynthesis and signaling mutants exhibited even greater thigmomorphogenic changes and more decreased GA4 contents than did wild-type (WT) plants. Biochemical analysis indicated that the transcription factor ETHYLENE INSENSITIVE3 (EIN3) of the ET pathway binds to the promoter of GA2ox8 (encoding another GA 2-oxidase performing the same GA modification as GA2ox7) and represses GA2ox8 transcription. Moreover, MYC2, the master regulator of JA signaling, directly promoted GA2ox7 expression by binding the G-box motif on GA2ox7 promoter. Further genetic analysis suggested that the ET and JA pathways independently control the expression of GA2ox8 and GA2ox7, respectively. This study reveals that the ET pathway is a novel repressor of touch-induced thigmomorphogenesis and highlights that the ET and JA pathways converge on GA catabolism but play opposite roles to fine-tune GA4 content during thigmomorphogenesis.
Collapse
Affiliation(s)
- Lei Wang
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Canrong Ma
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuanghua Wang
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Yang
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Sun
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinxiang Tang
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Luo
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqiang Wu
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Diversity and Prominent Crops, Beijing 100093, China
| |
Collapse
|
43
|
Kim YT, Ha STT, In BC. Development of a longevity prediction model for cut roses using hyperspectral imaging and a convolutional neural network. FRONTIERS IN PLANT SCIENCE 2024; 14:1296473. [PMID: 38273951 PMCID: PMC10809400 DOI: 10.3389/fpls.2023.1296473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024]
Abstract
Introduction Hyperspectral imaging (HSI) and deep learning techniques have been widely applied to predict postharvest quality and shelf life in multiple horticultural crops such as vegetables, mushrooms, and fruits; however, few studies show the application of these techniques to evaluate the quality issues of cut flowers. Therefore, in this study, we developed a non-contact and rapid detection technique for the emergence of gray mold disease (GMD) and the potential longevity of cut roses using deep learning techniques based on HSI data. Methods Cut flowers of two rose cultivars ('All For Love' and 'White Beauty') underwent either dry transport (thus impaired cut flower hydration), ethylene exposure, or Botrytis cinerea inoculation, in order to identify the characteristic light wavelengths that are closely correlated with plant physiological states based on HSI. The flower bud of cut roses was selected for HSI measurement and the development of a vase life prediction model utilizing YOLOv5. Results and discussion The HSI results revealed that spectral reflectance between 470 to 680 nm was strongly correlated with gray mold disease (GMD), whereas those between 700 to 900 nm were strongly correlated with flower wilting or vase life. To develop a YOLOv5 prediction model that can be used to anticipate flower longevity, the vase life of cut roses was classed into two categories as over 5 d (+5D) and under 5 d (-5D), based on scoring a grading standard on the flower quality. A total of 3000 images from HSI were forwarded to the YOLOv5 model for training and prediction of GMD and vase life of cut flowers. Validation of the prediction model using independent data confirmed its high predictive accuracy in evaluating the vase life of both 'All For Love' (r2 = 0.86) and 'White Beauty' (r2 = 0.83) cut flowers. The YOLOv5 model also accurately detected and classified GMD in the cut rose flowers based on the image data. Our results demonstrate that the combination of HSI and deep learning is a reliable method for detecting early GMD infection and evaluating the longevity of cut roses.
Collapse
Affiliation(s)
| | | | - Byung-Chun In
- Department of Smart Horticultural Science, Andong National University, Andong, Republic of Korea
| |
Collapse
|
44
|
Zhang W, Xu Y, Jing L, Jiang B, Wang Q, Wang Y. Preliminary Study on the Formation Mechanism of Malformed Sweet Cherry ( Prunus avium L.) Fruits in Southern China Using Transcriptome and Metabolome Data. Int J Mol Sci 2023; 25:153. [PMID: 38203324 PMCID: PMC10779264 DOI: 10.3390/ijms25010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Gibberellin (GA) is an important plant hormone that is involved in various physiological processes during plant development. Sweet cherries planted in southern China have always encountered difficulty in bearing fruit. In recent years, gibberellin has successfully solved this problem, but there has also been an increase in malformed fruits. This study mainly explores the mechanism of malformed fruit formation in sweet cherries. By analyzing the synthesis pathway of gibberellin using metabolomics and transcriptomics, the relationship between gibberellin and the formation mechanism of deformed fruit was preliminarily determined. The results showed that the content of GA3 in malformed fruits was significantly higher than in normal fruits. The differentially expressed genes in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were mainly enriched in pathways such as "plant hormone signal transduction", "diterpenoid biosynthesis", and "carotenoid biosynthesis". Using Quantitative Real-Time Reverse Transcription PCR (qRT-PCR) analysis, the gibberellin hydrolase gene GA2ox and gibberellin synthase genes GA20ox and GA3ox were found to be significantly up-regulated. Therefore, we speculate that the formation of malformed fruits in sweet cherries may be related to the accumulation of GA3. This lays the foundation for further research on the mechanism of malformed sweet cherry fruits.
Collapse
Affiliation(s)
- Wangshu Zhang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315000, China; (Y.X.); (B.J.); (Q.W.); (Y.W.)
- National & Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yue Xu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315000, China; (Y.X.); (B.J.); (Q.W.); (Y.W.)
| | - Luyang Jing
- Ningbo Innovation Center, Zhejiang University, Ningbo 315000, China; (Y.X.); (B.J.); (Q.W.); (Y.W.)
| | - Baoxin Jiang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315000, China; (Y.X.); (B.J.); (Q.W.); (Y.W.)
| | - Qinghao Wang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315000, China; (Y.X.); (B.J.); (Q.W.); (Y.W.)
| | - Yuxi Wang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315000, China; (Y.X.); (B.J.); (Q.W.); (Y.W.)
| |
Collapse
|
45
|
Frackenpohl J, Abel SAG, Alnafta N, Barber DM, Bojack G, Brant NZ, Helmke H, Mattison RL. Inspired by Nature: Isostere Concepts in Plant Hormone Chemistry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18141-18168. [PMID: 37277148 DOI: 10.1021/acs.jafc.3c01809] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chemical concepts such as isosteres and scaffold hopping have proven to be powerful tools in agrochemical innovation processes. They offer opportunities to modify known molecular lead structures with the aim to improve a range of parameters, including biological efficacy and spectrum, physicochemical properties, stability, and toxicity. While recent biochemical insights into plant-specific receptors and signaling pathways trigger the discovery of the first lead structures, the disclosure of such a new chemical structure sparks a broad range of synthesis activities giving rise to diverse chemical innovation and often a considerable boost in biological activity. Herein, recent examples of isostere concepts in plant-hormone chemistry will be discussed, outlining how synthetic creativity can broaden the scope of natural product chemistry and giving rise to new opportunities in research fields such as abiotic stress tolerance and growth promotion.
Collapse
Affiliation(s)
- Jens Frackenpohl
- Research and Development, Weed Control Chemistry, Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Steven A G Abel
- Research and Development, Weed Control Chemistry, Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Neanne Alnafta
- Research and Development, Weed Control Chemistry, Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - David M Barber
- Research and Development, Weed Control Chemistry, Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Guido Bojack
- Research and Development, Weed Control Chemistry, Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Nicola Z Brant
- Research and Development, Weed Control Chemistry, Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Hendrik Helmke
- Research and Development, Weed Control Chemistry, Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Rebecca L Mattison
- Research and Development, Weed Control Chemistry, Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| |
Collapse
|
46
|
Song Q, Gao W, Du C, Sun W, Wang J, Zuo K. GhXB38D represses cotton fibre elongation through ubiquitination of ethylene biosynthesis enzymes GhACS4 and GhACO1. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2374-2388. [PMID: 37596974 PMCID: PMC10579717 DOI: 10.1111/pbi.14138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 08/21/2023]
Abstract
Ethylene plays an essential role in the development of cotton fibres. Ethylene biosynthesis in plants is elaborately regulated by the activities of key enzymes, 1-aminocyclopropane-1-carboxylate oxidase (ACO) and 1-aminocyclopropane-1-carboxylate synthase (ACS); however, the potential mechanism of post-translational modification of ACO and ACS to control ethylene synthesis in cotton fibres remains unclear. Here, we identify an E3 ubiquitin ligase, GhXB38D, that regulates ethylene biosynthesis during fibre elongation in cotton. GhXB38D gene is highly expressed in cotton fibres during the rapid elongation stage. Suppressing GhXB38D expression in cotton significantly enhanced fibre elongation and length, accompanied by the up-regulation of genes associated with ethylene signalling and fibre elongation. We demonstrated that GhXB38D interacts with the ethylene biosynthesis enzymes GhACS4 and GhACO1 in elongating fibres and specifically mediates their ubiquitination and degradation. The inhibition of GhXB38D gene expression increased the stability of GhACS4 and GhACO1 proteins in cotton fibres and ovules, resulting in an elevated concentration of ethylene. Our findings highlight the role of GhXB38D as a regulator of ethylene synthesis by ubiquitinating ACS4 and ACO1 proteins and modulating their stability. GhXB38D acts as a negative regulator of fibre elongation and serves as a potential target for enhancing cotton fibre yield and quality through gene editing strategy.
Collapse
Affiliation(s)
- Qingwei Song
- Single Cell Research Center, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Wanting Gao
- Single Cell Research Center, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Chuanhui Du
- Single Cell Research Center, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Wenjie Sun
- Single Cell Research Center, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Jin Wang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Kaijing Zuo
- Single Cell Research Center, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
47
|
Fan KT, Hsu CW, Chen YR. Mass spectrometry in the discovery of peptides involved in intercellular communication: From targeted to untargeted peptidomics approaches. MASS SPECTROMETRY REVIEWS 2023; 42:2404-2425. [PMID: 35765846 DOI: 10.1002/mas.21789] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Endogenous peptide hormones represent an essential class of biomolecules, which regulate cell-cell communications in diverse physiological processes of organisms. Mass spectrometry (MS) has been developed to be a powerful technology for identifying and quantifying peptides in a highly efficient manner. However, it is difficult to directly identify these peptide hormones due to their diverse characteristics, dynamic regulations, low abundance, and existence in a complicated biological matrix. Here, we summarize and discuss the roles of targeted and untargeted MS in discovering peptide hormones using bioassay-guided purification, bioinformatics screening, or the peptidomics-based approach. Although the peptidomics approach is expected to discover novel peptide hormones unbiasedly, only a limited number of successful cases have been reported. The critical challenges and corresponding measures for peptidomics from the steps of sample preparation, peptide extraction, and separation to the MS data acquisition and analysis are also discussed. We also identify emerging technologies and methods that can be integrated into the discovery platform toward the comprehensive study of endogenous peptide hormones.
Collapse
Affiliation(s)
- Kai-Ting Fan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Wei Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
48
|
Hao Y, Hu Y, Jaqueth J, Lin J, He C, Lin G, Zhao M, Ren J, Tamang TM, Park S, Robertson AE, White FF, Fu J, Li B, Liu S. Genetic and transcriptomic dissection of host defense to Goss's bacterial wilt and leaf blight of maize. G3 (BETHESDA, MD.) 2023; 13:jkad197. [PMID: 37652038 PMCID: PMC10627284 DOI: 10.1093/g3journal/jkad197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 01/28/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Goss's wilt, caused by the Gram-positive actinobacterium Clavibacter nebraskensis, is an important bacterial disease of maize. The molecular and genetic mechanisms of resistance to the bacterium, or, in general, Gram-positive bacteria causing plant diseases, remain poorly understood. Here, we examined the genetic basis of Goss's wilt through differential gene expression, standard genome-wide association mapping (GWAS), extreme phenotype (XP) GWAS using highly resistant (R) and highly susceptible (S) lines, and quantitative trait locus (QTL) mapping using 3 bi-parental populations, identifying 11 disease association loci. Three loci were validated using near-isogenic lines or recombinant inbred lines. Our analysis indicates that Goss's wilt resistance is highly complex and major resistance genes are not commonly present. RNA sequencing of samples separately pooled from R and S lines with or without bacterial inoculation was performed, enabling identification of common and differential gene responses in R and S lines. Based on expression, in both R and S lines, the photosynthesis pathway was silenced upon infection, while stress-responsive pathways and phytohormone pathways, namely, abscisic acid, auxin, ethylene, jasmonate, and gibberellin, were markedly activated. In addition, 65 genes showed differential responses (up- or down-regulated) to infection in R and S lines. Combining genetic mapping and transcriptional data, individual candidate genes conferring Goss's wilt resistance were identified. Collectively, aspects of the genetic architecture of Goss's wilt resistance were revealed, providing foundational data for mechanistic studies.
Collapse
Affiliation(s)
- Yangfan Hao
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Ying Hu
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | | | - Jinguang Lin
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Cheng He
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Guifang Lin
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Mingxia Zhao
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Jie Ren
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Tej Man Tamang
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Sunghun Park
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, KS 66506, USA
| | - Alison E Robertson
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50010, USA
| | - Frank F White
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Junjie Fu
- Chinese Academy of Agricultural Sciences, Institute of Crop Science, Beijing 100081, China
| | - Bailin Li
- Corteva Agriscience, Johnston, IA 50131, USA
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
49
|
Dacon NJ, Wu NB, Michel BW. Red-shifted activity-based sensors for ethylene via direct conjugation of fluorophore to metal-carbene. RSC Chem Biol 2023; 4:871-878. [PMID: 37920389 PMCID: PMC10619136 DOI: 10.1039/d3cb00079f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/22/2023] [Indexed: 11/04/2023] Open
Abstract
A number of Activity-Based Sensors (ABS) for relatively unreactive small molecules, such as ethylene, necessitates a transition metal for reaction under ambient conditions. Olefin metathesis has emerged as one of the primary strategies to achieve ethylene detection, and other transition metals are used for similarly challenging-to-detect analytes. However, limited studies exist investigating how fluorophore-metal attachment impacts photophysical properties of such ABS. Two new probes were prepared with the chelating benzlidene Ru-ligand directly conjugated to a BODIPY fluorophore and the photophysical properties of the new conjugated ABS were evaluated.
Collapse
Affiliation(s)
- Nicholas J Dacon
- Department of Chemistry and Biochemistry, University of Denver Denver CO 80210 USA
| | - Nathan B Wu
- Department of Chemistry and Biochemistry, University of Denver Denver CO 80210 USA
| | - Brian W Michel
- Department of Chemistry and Biochemistry, University of Denver Denver CO 80210 USA
| |
Collapse
|
50
|
Díaz-Rueda P, Morales de los Ríos L, Romero LC, García I. Old poisons, new signaling molecules: the case of hydrogen cyanide. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6040-6051. [PMID: 37586035 PMCID: PMC10575699 DOI: 10.1093/jxb/erad317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
The high phenotypic plasticity developed by plants includes rapid responses and adaptations to aggressive or changing environments. To achieve this, they evolved extremely efficient mechanisms of signaling mediated by a wide range of molecules, including small signal molecules. Among them, hydrogen cyanide (HCN) has been largely ignored due to its toxic characteristics. However, not only is it present in living organisms, but it has been shown that it serves several functions in all kingdoms of life. Research using model plants has changed the traditional point of view, and it has been demonstrated that HCN plays a positive role in the plant response to pathogens independently of its toxicity. Indeed, HCN induces a response aimed at protecting the plant from pathogen attack, and the HCN is provided either exogenously (in vitro or by some cyanogenic bacteria species present in the rhizosphere) or endogenously (in reactions involving ethylene, camalexin, or other cyanide-containing compounds). The contribution of different mechanisms to HCN function, including a new post-translational modification of cysteines in proteins, namely S-cyanylation, is discussed here. This work opens up an expanding 'HCN field' of research related to plants and other organisms.
Collapse
Affiliation(s)
- Pablo Díaz-Rueda
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), CSIC-Universidad de Sevilla, 41092-Sevilla, Spain
| | | | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), CSIC-Universidad de Sevilla, 41092-Sevilla, Spain
| | - Irene García
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), CSIC-Universidad de Sevilla, 41092-Sevilla, Spain
| |
Collapse
|