1
|
Revalska M, Radkova M, Zhiponova M, Vassileva V, Iantcheva A. Functional Genomics of Legumes in Bulgaria-Advances and Future Perspectives. Genes (Basel) 2025; 16:296. [PMID: 40149448 PMCID: PMC11941780 DOI: 10.3390/genes16030296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Members of the Leguminosae family are important crops that provide food, animal feed and vegetable oils. Legumes make a substantial contribution to sustainable agriculture and the nitrogen cycle through their unique ability to fix atmospheric nitrogen in agricultural ecosystems. Over the past three decades, Medicago truncatula and Lotus japonicus have emerged as model plants for genomic and physiological research in legumes. The advancement of innovative molecular and genetic tools, particularly insertional mutagenesis using the retrotransposon Tnt1, has facilitated the development of extensive mutant collections and enabled precise gene tagging in plants for the identification of key symbiotic and developmental genes. Building on these resources, twelve years ago, our research team initiated the establishment of a platform for functional genomic studies of legumes in Bulgaria. In the framework of this initiative, we conducted systematic sequencing of selected mutant lines and identified genes involved in plant growth and development for detailed functional characterization. This review summarizes our findings on the functions of selected genes involved in the growth and development of the model species, discusses the molecular mechanisms underlying important developmental processes and examines the potential for the translation of this fundamental knowledge to improve commercially important legume crops in Bulgaria and globally.
Collapse
Affiliation(s)
- Miglena Revalska
- AgroBioInstitute, Agricultural Academy, Blvd. Dragan Tsankov 8, 1164 Sofia, Bulgaria; (M.R.); (M.R.)
| | - Mariana Radkova
- AgroBioInstitute, Agricultural Academy, Blvd. Dragan Tsankov 8, 1164 Sofia, Bulgaria; (M.R.); (M.R.)
| | - Miroslava Zhiponova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov blvd., 1164 Sofia, Bulgaria;
| | - Valya Vassileva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria;
| | - Anelia Iantcheva
- AgroBioInstitute, Agricultural Academy, Blvd. Dragan Tsankov 8, 1164 Sofia, Bulgaria; (M.R.); (M.R.)
| |
Collapse
|
2
|
Wang H, Xie Z. Cullin-Conciliated Regulation of Plant Immune Responses: Implications for Sustainable Crop Protection. PLANTS (BASEL, SWITZERLAND) 2024; 13:2997. [PMID: 39519916 PMCID: PMC11548191 DOI: 10.3390/plants13212997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Cullins are crucial components of the ubiquitin-proteasome system, playing pivotal roles in the regulation of protein metabolism. This review provides insight into the wide-ranging functions of cullins, particularly focusing on their impact on plant growth, development, and environmental stress responses. By modulating cullin-mediated protein mechanisms, researchers can fine-tune hormone-signaling networks to improve various agronomic traits, including plant architecture, flowering time, fruit development, and nutrient uptake. Furthermore, the targeted manipulation of cullins that are involved in hormone-signaling pathways, e.g., cytokinin, auxin, gibberellin, abscisic acids, and ethylene, can boost crop growth and development while increasing yield and enhancing stress tolerance. Furthermore, cullins also play important roles in plant defense mechanisms through regulating the defense-associated protein metabolism, thus boosting resistance to pathogens and pests. Additionally, this review highlights the potential of integrating cullin-based strategies with advanced biological tools, such as CRISPR/Cas9-mediated genome editing, genetic engineering, marker-associated selections, gene overexpression, and gene knockout, to achieve precise modifications for crop improvement and sustainable agriculture, with the promise of creating resilient, high-yielding, and environmentally friendly crop varieties.
Collapse
Affiliation(s)
- Hongtao Wang
- Laboratory of Biological Germplasm Resources Evaluation and Application in Changbai Mountain, School of Life Science, Tonghua Normal University, Yucai Road Tonghua 950, Tonghua 137000, China;
| | - Zhiming Xie
- College of Life Sciences, Baicheng Normal University, Baicheng 137000, China
| |
Collapse
|
3
|
Qu K, Yin Z, Gao C, Song G, Guo Z, Yin G, Tang J, Yuan Y, Dong C, Jiang Y, Niu J, Li Q. Mutagenesis-Derived Resistance to Black Point in Wheat. PLANT DISEASE 2024; 108:899-907. [PMID: 37822099 DOI: 10.1094/pdis-07-23-1369-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Black point, a severe global wheat disease, necessitates deploying resistant cultivars for effective control. However, susceptibility remains prevalent among most wheat cultivars. Identifying new sources of resistance and understanding their mechanisms are crucial for breeding resistant cultivars. This study pinpointed black point resistance in an ethyl methane sulfonate (EMS)-mutagenized wheat population of Wanyuanbai 1 (WYB) and analyzed resistant mutants using RNA-Seq. The findings revealed the following: (i) wyb-18, among 10,008 EMS-mutagenized lines, exhibited robust resistance with significantly lower black point incidence under artificial Bipolaris sorokiniana inoculation in 2020 and 2021 (average incidence of 5.2% over 2 years), markedly reduced compared with WYB (50.9%). (ii) wyb-18 kernels displayed black point symptoms at 12 days after inoculation (dai), 3 days later than WYB. At 15 dai, wyb-18 kernels had isolated black spots, unlike WYB kernels, where the entire embryo turned black. (iii) wyb-18 showed heightened antioxidant enzyme activity, including peroxidase, catalase, and superoxide dismutase. (iv) Analysis of 543 differentially expressed genes between wyb-18 and WYB at 9 dai identified enrichment in the MAPK signaling pathway through KEGG analysis. Ten genes in this pathway exhibited upregulated expression, while one was downregulated in wyb-18. Among these genes, PR1, WRKY11, SAPK5, and TraesCS1A02G326800 (chitin recognition protein) consistently showed upregulation in wyb-18, making them potential candidates for black point resistance. These results offer valuable germplasm resources for breeding and novel insights into the mechanisms of black point resistance.
Collapse
Affiliation(s)
- Kefei Qu
- National Engineering Research Center for Wheat, College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhao Yin
- National Engineering Research Center for Wheat, College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Chuang Gao
- National Engineering Research Center for Wheat, College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Gaili Song
- National Engineering Research Center for Wheat, College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhenfeng Guo
- National Engineering Research Center for Wheat, College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Guihong Yin
- National Engineering Research Center for Wheat, College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Jianwei Tang
- National Engineering Research Center for Wheat, College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuhao Yuan
- National Engineering Research Center for Wheat, College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Chunhao Dong
- National Engineering Research Center for Wheat, College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Yumei Jiang
- National Engineering Research Center for Wheat, College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Jishan Niu
- National Engineering Research Center for Wheat, College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Qiaoyun Li
- National Engineering Research Center for Wheat, College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
4
|
Kheng S, Choe SH, Sahu N, Park JI, Kim HT. Identification of Gene Responsible for Conferring Resistance against Race KN2 of Podosphaera xanthii in Melon. Int J Mol Sci 2024; 25:1134. [PMID: 38256205 PMCID: PMC10816175 DOI: 10.3390/ijms25021134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/26/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Powdery mildew caused by Podosphaera xanthii is a serious fungal disease which causes severe damage to melon production. Unlike with chemical fungicides, managing this disease with resistance varieties is cost effective and ecofriendly. But, the occurrence of new races and a breakdown of the existing resistance genes poses a great threat. Therefore, this study aimed to identify the resistance locus responsible for conferring resistance against P. xanthii race KN2 in melon line IML107. A bi-parental F2 population was used in this study to uncover the resistance against race KN2. Genetic analysis revealed the resistance to be monogenic and controlled by a single dominant gene in IML107. Initial marker analysis revealed the position of the gene to be located on chromosome 2 where many of the resistance gene against P. xanthii have been previously reported. Availability of the whole genome of melon and its R gene analysis facilitated the identification of a F-box type Leucine Rich Repeats (LRR) to be accountable for the resistance against race KN2 in IML107. The molecular marker developed in this study can be used for marker assisted breeding programs.
Collapse
Affiliation(s)
| | | | | | | | - Hoy-Taek Kim
- Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea; (S.K.); (S.-H.C.); (N.S.); (J.-I.P.)
| |
Collapse
|
5
|
Wu M, Musazade E, Yang X, Yin L, Zhao Z, Zhang Y, Lu J, Guo L. ATL Protein Family: Novel Regulators in Plant Response to Environmental Stresses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20419-20440. [PMID: 38100516 DOI: 10.1021/acs.jafc.3c05603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Plants actively develop intricate regulatory mechanisms to counteract the harmful effects of environmental stresses. The ubiquitin-proteasome pathway, a crucial mechanism, employs E3 ligases (E3s) to facilitate the conjugation of ubiquitin to specific target substrates, effectively marking them for proteolytic degradation. E3s play critical roles in many biological processes, including phytohormonal signaling and adaptation to environmental stresses. Arabidopsis Toxicosa en Levadura (ATL) proteins, belonging to a subfamily of RING-H2 E3s, actively modulate diverse physiological processes and plant responses to environmental stresses. Despite studies on the functions of certain ATL family members in rice and Arabidopsis, most ATLs still need more comprehensive study. This review presents an overview of the ubiquitin-proteasome system (UPS), specifically focusing on the pivotal role of E3s and associated enzymes in plant development and environmental adaptation. Our study seeks to unveil the active modulation of plant responses to environmental stresses by E3s and ATLs, emphasizing the significance of ATLs within this intricate process. By emphasizing the importance of studying the roles of E3s and ATLs, our review contributes to developing more resilient plant varieties and promoting sustainable agricultural practices while establishing a research roadmap for the future.
Collapse
Affiliation(s)
- Ming Wu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Elshan Musazade
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Xiao Yang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Le Yin
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Zizhu Zhao
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Yu Zhang
- Land Requisition Affairs Center of Jilin Province, Changchun 130062, P.R. China
| | - Jingmei Lu
- School of Life Sciences, Northeast Normal University, Changchun 130024, P.R. China
| | - Liquan Guo
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| |
Collapse
|
6
|
Kaur R, Vasistha NK, Ravat VK, Mishra VK, Sharma S, Joshi AK, Dhariwal R. Genome-Wide Association Study Reveals Novel Powdery Mildew Resistance Loci in Bread Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:3864. [PMID: 38005757 PMCID: PMC10675159 DOI: 10.3390/plants12223864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023]
Abstract
Powdery mildew (PM), caused by the fungal pathogen Blumeria graminis f. sp. tritici (Bgt), significantly threatens global bread wheat production. Although the use of resistant cultivars is an effective strategy for managing PM, currently available wheat cultivars lack sufficient levels of resistance. To tackle this challenge, we conducted a comprehensive genome-wide association study (GWAS) using a diverse panel of 286 bread wheat genotypes. Over three consecutive years (2020-2021, 2021-2022, and 2022-2023), these genotypes were extensively evaluated for PM severity under field conditions following inoculation with virulent Bgt isolates. The panel was previously genotyped using the Illumina 90K Infinium iSelect assay to obtain genome-wide single-nucleotide polymorphism (SNP) marker coverage. By applying FarmCPU, a multilocus mixed model, we identified a total of 113 marker-trait associations (MTAs) located on chromosomes 1A, 1B, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 6B, 7A, and 7B at a significance level of p ≤ 0.001. Notably, four novel MTAs on chromosome 6B were consistently detected in 2020-2021 and 2021-2022. Furthermore, within the confidence intervals of the identified SNPs, we identified 96 candidate genes belonging to different proteins including 12 disease resistance/host-pathogen interaction-related protein families. Among these, protein kinases, leucine-rich repeats, and zinc finger proteins were of particular interest due to their potential roles in PM resistance. These identified loci can serve as targets for breeding programs aimed at developing disease-resistant wheat cultivars.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Sigh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour 173101, India
| | - Neeraj Kumar Vasistha
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Sigh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour 173101, India
- Department of Genetics and Plant Breeding, Rajiv Gandhi University, Rono Hills, Itanagar 791112, India
| | - Vikas Kumar Ravat
- Department of Plant Pathology, Rajiv Gandhi University, Rono Hills, Itanagar 791112, India
| | - Vinod Kumar Mishra
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Sandeep Sharma
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Arun Kumar Joshi
- Borlaug Institute for South Asia (BISA), NASC Complex, DPS Marg, New Delhi 110012, India
- International Maize and Wheat Improvement Center (CIMMYT) Regional Office, NASC Complex, DPS Marg, New Delhi 110012, India
| | - Raman Dhariwal
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 1 Avenue South, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
7
|
Saxena H, Negi H, Sharma B. Role of F-box E3-ubiquitin ligases in plant development and stress responses. PLANT CELL REPORTS 2023:10.1007/s00299-023-03023-8. [PMID: 37195503 DOI: 10.1007/s00299-023-03023-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/27/2023] [Indexed: 05/18/2023]
Abstract
KEY MESSAGE F-box E3-ubiquitin ligases regulate critical biological processes in plant development and stress responses. Future research could elucidate why and how plants have acquired a large number of F-box genes. The ubiquitin-proteasome system (UPS) is a predominant regulatory mechanism employed by plants to maintain the protein turnover in the cells and involves the interplay of three classes of enzymes, E1 (ubiquitin-activating), E2 (ubiquitin-conjugating), and E3 ligases. The diverse and most prominent protein family among eukaryotes, F-box proteins, are a vital component of the multi-subunit SCF (Skp1-Cullin 1-F-box) complex among E3 ligases. Several F-box proteins with multifarious functions in different plant systems have evolved rapidly over time within closely related species, but only a small part has been characterized. We need to advance our understanding of substrate-recognition regulation and the involvement of F-box proteins in biological processes and environmental adaptation. This review presents a background of E3 ligases with particular emphasis on the F-box proteins, their structural assembly, and their mechanism of action during substrate recognition. We discuss how the F-box proteins regulate and participate in the signaling mechanisms of plant development and environmental responses. We highlight an urgent need for research on the molecular basis of the F-box E3-ubiquitin ligases in plant physiology, systems biology, and biotechnology. Further, the developments and outlooks of the potential technologies targeting the E3-ubiquitin ligases for developing crop improvement strategies have been discussed.
Collapse
Affiliation(s)
- Harshita Saxena
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia Griffin Campus, 1109 Experiment Street, Griffin, GA, 30223, USA
| | - Harshita Negi
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC, 29208, USA
| | - Bhaskar Sharma
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC, 3216, Australia.
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
8
|
Li J, Shi X, Wang C, Li Q, Lu J, Zeng D, Xie J, Shi Y, Zhai W, Zhou Y. Genome-Wide Association Study Identifies Resistance Loci for Bacterial Blight in a Collection of Asian Temperate Japonica Rice Germplasm. Int J Mol Sci 2023; 24:ijms24108810. [PMID: 37240156 DOI: 10.3390/ijms24108810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/29/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Growing resistant rice cultivars is the most effective strategy to control bacterial blight (BB), a devastating disease caused by Xanthomonas oryzae pv. oryzae (Xoo). Screening resistant germplasm and identifying resistance (R) genes are prerequisites for breeding resistant rice cultivars. We conducted a genome-wide association study (GWAS) to detect quantitative trait loci (QTL) associated with BB resistance using 359 East Asian temperate Japonica accessions inoculated with two Chinese Xoo strains (KS6-6 and GV) and one Philippine Xoo strain (PXO99A). Based on the 55K SNPs Array dataset of the 359 Japonica accessions, eight QTL were identified on rice chromosomes 1, 2, 4, 10, and 11. Four of the QTL coincided with previously reported QTL, and four were novel loci. Six R genes were localized in the qBBV-11.1, qBBV-11.2, and qBBV-11.3 loci on chromosome 11 in this Japonica collection. Haplotype analysis revealed candidate genes associated with BB resistance in each QTL. Notably, LOC_Os11g47290 in qBBV-11.3, encoding a leucine-rich repeat receptor-like kinase, was a candidate gene associated with resistance to the virulent strain GV. Knockout mutants of Nipponbare with the susceptible haplotype of LOC_Os11g47290 exhibited significantly improved BB resistance. These results will be useful for cloning BB resistance genes and breeding resistant rice cultivars.
Collapse
Affiliation(s)
- Jianmin Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Xiaorong Shi
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Chunchao Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Quanlin Li
- Institute of Genetics and Developmental Biological, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Jialing Lu
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dan Zeng
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junping Xie
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Yingyao Shi
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Wenxue Zhai
- Institute of Genetics and Developmental Biological, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Yongli Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
9
|
Zhang B, Feng H, Ge W, Wang X, Zhang J, Ji R. BrUFO positively regulates the infection of Chinese cabbage by Plasmodiophora brassicae. FRONTIERS IN PLANT SCIENCE 2023; 14:1128515. [PMID: 36968418 PMCID: PMC10034201 DOI: 10.3389/fpls.2023.1128515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Chinese cabbage is one of the most important vegetable crops in China. However, the clubroot disease caused by the infection of Plasmodiophora brassicae (P. brassicae) has seriously affected the yield and quality of Chinese cabbage. In our previous study, BrUFO gene was found to be significantly up-regulated in diseased roots of Chinese cabbage after inoculation with P. brassicae. UFO (UNUSUAL FLORAL ORGANS) have the properties of substrate recognition during ubiquitin-mediated proteolysis. A variety of plant can activate immunity response through the ubiquitination pathway. Therefore, it is very important to study the function of UFO in response to P. brassicae. METHODS In this study, The expression pattern of BrUFO Gene was measured by qRT-PCR and In situ Hybridization (ISH). The expression location of BrUFO in cells was determined by subcellular localization. The function of BrUFO was verified by Virus-induced Gene Silencing (VIGS). proteins interacting with BrUFO protein were screened by yeast two-hybrid. RESULTS Quantitative real-time polymerase chain reactions (qRT-PCR) and in situ hybridization analysis showed that expression of BrUFO gene in the resistant plants was lower than that in susceptible plants. Subcellular localization analysis showed that BrUFO gene was expressed in the nucleus. Virus-induced gene silencing (VIGS) analysis showed that silencing of BrUFO gene reduced the incidence of clubroot disease. Six proteins interacting with BrUFO protein were screened by Y2H assay. Two of them (Bra038955, a B-cell receptor-associated 31-like protein and Bra021273, a GDSL-motif esterase/acyltransferase/lipase Enzyme) were confirmed to strongly interact with BrUFO protein. DISCUSSION BrUFO gene should be a key gene of chinese cabbage against the infection of P. brassicae. BrUFO gene silencing improves the resistance of plants to clubroot disease. BrUFO protein may interact with CUS2 to induce ubiquitination in PRR-mediated PTI reaction through GDSL lipases, so as to achieve the effect of Chinese cabbage against the infection of P. brassicae.
Collapse
|
10
|
Singh S, Gaurav SS, Vasistha NK, Kumar U, Joshi AK, Mishra VK, Chand R, Gupta PK. Genetics of spot blotch resistance in bread wheat ( Triticum aestivum L.) using five models for GWAS. FRONTIERS IN PLANT SCIENCE 2023; 13:1036064. [PMID: 36743576 PMCID: PMC9891466 DOI: 10.3389/fpls.2022.1036064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Genetic architecture of resistance to spot blotch in wheat was examined using a Genome-Wide Association Study (GWAS) involving an association panel comprising 303 diverse genotypes. The association panel was evaluated at two different locations in India including Banaras Hindu University (BHU), Varanasi (Uttar Pradesh), and Borlaug Institute for South Asia (BISA), Pusa, Samastipur (Bihar) for two consecutive years (2017-2018 and 2018-2019), thus making four environments (E1, BHU 2017-18; E2, BHU 2018-19; E3, PUSA, 2017-18; E4, PUSA, 2018-19). The panel was genotyped for 12,196 SNPs based on DArT-seq (outsourced to DArT Ltd by CIMMYT); these SNPs included 5,400 SNPs, which could not be assigned to individual chromosomes and were therefore, described as unassigned by the vendor. Phenotypic data was recorded on the following three disease-related traits: (i) Area Under Disease Progress Curve (AUDPC), (ii) Incubation Period (IP), and (iii) Lesion Number (LN). GWAS was conducted using each of five different models, which included two single-locus models (CMLM and SUPER) and three multi-locus models (MLMM, FarmCPU, and BLINK). This exercise gave 306 MTAs, but only 89 MTAs (33 for AUDPC, 30 for IP and 26 for LN) including a solitary MTA detected using all the five models and 88 identified using four of the five models (barring SUPER) were considered to be important. These were used for further analysis, which included identification of candidate genes (CGs) and their annotation. A majority of these MTAs were novel. Only 70 of the 89 MTAs were assigned to individual chromosomes; the remaining 19 MTAs belonged to unassigned SNPs, for which chromosomes were not known. Seven MTAs were selected on the basis of minimum P value, number of models, number of environments and location on chromosomes with respect to QTLs reported earlier. These 7 MTAs, which included five main effect MTAs and two for epistatic interactions, were considered to be important for marker-assisted selection (MAS). The present study thus improved our understanding of the genetics of resistance against spot blotch in wheat and provided seven MTAs, which may be used for MAS after due validation.
Collapse
Affiliation(s)
- Sahadev Singh
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Shailendra Singh Gaurav
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Neeraj Kumar Vasistha
- Department of Genetics-Plant Breeding and Biotechnology, Dr Khem Singh Gill, Akal College of Agriculture, Eternal University, Sirmaur, India
| | - Uttam Kumar
- Borlaug Institute for South Asia (BISA), Ludhiana, India
| | - Arun Kumar Joshi
- The International Maize and Wheat Improvement Center (CIMMYT), Borlaug Institute for South Asia (BISA), G-2, B-Block, NASC Complex, DPS Marg, New Delhi, India
| | - Vinod Kumar Mishra
- Department of Genetics and Plant Breeding, Indian Institute of Agricultural Science, Banaras Hindu University, Varanasi, India
| | - Ramesh Chand
- Department of Mycology and Plant Pathology, Indian Institute of Agricultural Science Banaras Hindu University, Varanasi, India
| | - Pushpendra Kumar Gupta
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
- Borlaug Institute for South Asia (BISA), Ludhiana, India
- Murdoch’s Centre for Crop & Food Innovation, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
11
|
Navathe S, Pandey AK, Sharma S, Chand R, Mishra VK, Kumar D, Jaiswal S, Iquebal MA, Govindan V, Joshi AK, Singh PK. New Genomic Regions Identified for Resistance to Spot Blotch and Terminal Heat Stress in an Interspecific Population of Triticum aestivum and T. spelta. PLANTS (BASEL, SWITZERLAND) 2022; 11:2987. [PMID: 36365440 PMCID: PMC9657703 DOI: 10.3390/plants11212987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Wheat is one of the most widely grown and consumed food crops in the world. Spot blotch and terminal heat stress are the two significant constraints mainly in the Indo-Gangetic plains of South Asia. The study was undertaken using 185 recombinant lines (RILs) derived from the interspecific hybridization of 'Triticum aestivum (HUW234) × T. spelta (H+26)' to reveal genomic regions associated with tolerance to combined stress to spot blotch and terminal heat. Different physiological (NDVI, canopy temperature, leaf chlorophyll) and grain traits (TGW, grain size) were observed under stressed (spot blotch, terminal heat) and non-stressed environments. The mean maturity duration of RILs under combined stress was reduced by 12 days, whereas the normalized difference vegetation index (NDVI) was 46.03%. Similarly, the grain size was depleted under combined stress by 32.23% and thousand kernel weight (TKW) by 27.56% due to spot blotch and terminal heat stress, respectively. The genetic analysis using 6734 SNP markers identified 37 significant loci for the area under the disease progress curve (AUDPC) and NDVI. The genome-wide functional annotation of the SNP markers revealed gene functions such as plant chitinases, NB-ARC and NBS-LRR, and the peroxidase superfamily Cytochrome P450 have a positive role in the resistance through a hypersensitive response. Zinc finger domains, cysteine protease coding gene, F-box protein, ubiquitin, and associated proteins, play a substantial role in the combined stress of spot blotch and terminal heat in bread wheat, according to genomic domains ascribed to them. The study also highlights T. speltoides as a source of resistance to spot blotch and terminal heat tolerance.
Collapse
Affiliation(s)
- Sudhir Navathe
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
- Agharkar Research Institute, G.G. Agharkar Road, Pune 411004, India
| | - Ajeet Kumar Pandey
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Sandeep Sharma
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ramesh Chand
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vinod Kumar Mishra
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi 110012, India
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi 110012, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi 110012, India
| | - Velu Govindan
- International Maize and Wheat Improvement Center (CIMMYT), Veracruz 56237, Mexico
| | - Arun Kumar Joshi
- Borlaug Institute for South Asia, NASC Complex, DPS Marg, New Delhi 110012, India
- International Maize and Wheat Improvement Center (CIMMYT), G-2, B-Block, NASC Complex, DPS Marg, New Delhi 110012, India
| | - Pawan Kumar Singh
- International Maize and Wheat Improvement Center (CIMMYT), Veracruz 56237, Mexico
| |
Collapse
|
12
|
Wen TY, Wu XQ, Ye JR, Qiu YJ, Rui L, Zhang Y. A Bursaphelenchus xylophilus pathogenic protein Bx-FAR-1, as potential control target, mediates the jasmonic acid pathway in pines. PEST MANAGEMENT SCIENCE 2022; 78:1870-1880. [PMID: 35060311 DOI: 10.1002/ps.6805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The pine wilt disease (PWD) caused by Bursaphelenchus xylophilus is a devastating forest disease and its pathogenesis remains unclear. Secreted enzymes and proteins are important pathogenicity determinants and Bx-FAR-1 is an important pathogenic protein involved in the interaction between pine and B. xylophilus. However, the function of the Bx-FAR-1 protein in monitoring and prevention PWD remains unknown. RESULTS We found a small peptide of B. xylophilus effector Bx-FAR-1 is sufficient for immunosuppression function in Nicotiana benthamiana. Transient expression of Bx-FAR-1 in N. benthamiana revealed that nuclear localization is required for its function. The results of the ligand binding test showed that Bx-FAR-1 protein had the ability to bind fatty acid and retinol. We demonstrated that Bx-FAR-1 targeted to the nuclei of Pinus thunbergii using the polyclonal antibody by immunologic approach. The content of jasmonic acid (JA) was significantly increased in P. thunbergii infected with B. xylophilus when Bx-FAR-1 was silenced. We identified an F-box protein as the host target of Bx-FAR-1 by yeast two-hybrid and co-immunoprecipitation. Moreover, we found that Pt-F-box-1 was up-regulated during B. xylophilus infection and the expression of Pt-F-box-1 was increased in Bx-FAR-1 double-stranded RNA (dsRNA)-treated host pines. CONCLUSION This study illustrated that Bx-FAR-1 might mediate the JA pathway to destroy the immune system of P. thunbergii, indicating that PWN likely secretes effectors to facilitate parasitism and promote infection, which could better reveal the pathogenesis mechanisms of B. xylophilus and would be beneficial for developing disease control strategies.
Collapse
Affiliation(s)
- Tong-Yue Wen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Jian-Ren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Yi-Jun Qiu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Lin Rui
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Yan Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
13
|
Wang A, Chen W, Tao S. Genome-wide characterization, evolution, structure, and expression analysis of the F-box genes in Caenorhabditis. BMC Genomics 2021; 22:889. [PMID: 34895149 PMCID: PMC8665587 DOI: 10.1186/s12864-021-08189-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 11/19/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND F-box proteins represent a diverse class of adaptor proteins of the ubiquitin-proteasome system (UPS) that play critical roles in the cell cycle, signal transduction, and immune response by removing or modifying cellular regulators. Among closely related organisms of the Caenorhabditis genus, remarkable divergence in F-box gene copy numbers was caused by sizeable species-specific expansion and contraction. Although F-box gene number expansion plays a vital role in shaping genomic diversity, little is known about molecular evolutionary mechanisms responsible for substantial differences in gene number of F-box genes and their functional diversification in Caenorhabditis. Here, we performed a comprehensive evolution and underlying mechanism analysis of F-box genes in five species of Caenorhabditis genus, including C. brenneri, C. briggsae, C. elegans, C. japonica, and C. remanei. RESULTS Herein, we identified and characterized 594, 192, 377, 39, 1426 F-box homologs encoding putative F-box proteins in the genome of C. brenneri, C. briggsae, C. elegans, C. japonica, and C. remanei, respectively. Our work suggested that extensive species-specific tandem duplication followed by a small amount of gene loss was the primary mechanism responsible for F-box gene number divergence in Caenorhabditis genus. After F-box gene duplication events occurred, multiple mechanisms have contributed to gene structure divergence, including exon/intron gain/loss, exonization/pseudoexonization, exon/intron boundaries alteration, exon splits, and intron elongation by tandem repeats. Based on high-throughput RNA sequencing data analysis, we proposed that F-box gene functions have diversified by sub-functionalization through highly divergent stage-specific expression patterns in Caenorhabditis species. CONCLUSIONS Massive species-specific tandem duplications and occasional gene loss drove the rapid evolution of the F-box gene family in Caenorhabditis, leading to complex gene structural variation and diversified functions affecting growth and development within and among Caenorhabditis species. In summary, our findings outline the evolution of F-box genes in the Caenorhabditis genome and lay the foundation for future functional studies.
Collapse
Affiliation(s)
- Ailan Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, 712100 Shaanxi China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi China
- Geneis (Beijing) Co., Beijing, China
| | - Wei Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, 712100 Shaanxi China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi China
| | - Shiheng Tao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, 712100 Shaanxi China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi China
| |
Collapse
|
14
|
Effects on Capsicum annuum Plants Colonized with Trichoderma atroviride P. Karst Strains Genetically Modified in Taswo1, a Gene Coding for a Protein with Expansin-like Activity. PLANTS 2021; 10:plants10091919. [PMID: 34579451 PMCID: PMC8468806 DOI: 10.3390/plants10091919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/01/2022]
Abstract
Here, we analyzed the effects on Capsicum annuum plants of Trichoderma atroviride P. Karst strains altered in the expression of SWOLLENIN (SWO1), a protein with amorphogenic activity on plant cell wall components. Strains of T. atroviride that overexpressed the Taswo1 gene were constructed as well as deletion mutants. A novel, cheap and accurate method for assessing root colonization was developed. Colonization assays showed that the Taswo1 overexpressing strains invaded the host root better than the WT, resulting in a stronger plant growth-promoting effect. The expression of plant defense marker genes for both the systemic acquired resistance and induced systemic resistance pathways was enhanced in plants inoculated with Taswo1 overexpressing strains, while inoculation with deletion mutant strains resulted in a similar level of expression to that observed upon inoculation with the wild-type strain. Response to pathogen infection was also enhanced in the plants inoculated with the Taswo1 overexpressing strains, and surprisingly, an intermediate level of protection was achieved with the mutant strains. Tolerance to abiotic stresses was also higher in plants inoculated with the Taswo1 overexpressing strains but was similar in plants inoculated with the wild-type or the mutant strains. Compatible osmolyte production in drought conditions was studied. This study may contribute to improving Trichoderma biocontrol and biofertilization abilities.
Collapse
|
15
|
Elhadi GMI, Kamal NM, Gorafi YSA, Yamasaki Y, Takata K, Tahir ISA, Itam MO, Tanaka H, Tsujimoto H. Exploitation of Tolerance of Wheat Kernel Weight and Shape-Related Traits from Aegilops tauschii under Heat and Combined Heat-Drought Stresses. Int J Mol Sci 2021; 22:1830. [PMID: 33673217 PMCID: PMC7917938 DOI: 10.3390/ijms22041830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/25/2022] Open
Abstract
Kernel weight and shape-related traits are inherited stably and increase wheat yield. Narrow genetic diversity limits the progress of wheat breeding. Here, we evaluated kernel weight and shape-related traits and applied genome-wide association analysis to a panel of wheat multiple synthetic derivative (MSD) lines. The MSD lines harbored genomic fragments from Aegilops tauschii. These materials were grown under optimum conditions in Japan, as well as under heat and combined heat-drought conditions in Sudan. We aimed to explore useful QTLs for kernel weight and shape-related traits under stress conditions. These can be useful for enhancing yield under stress conditions. MSD lines possessed remarkable genetic variation for all traits under all conditions, and some lines showed better performance than the background parent Norin 61. We identified 82 marker trait associations (MTAs) under the three conditions; most of them originated from the D genome. All of the favorable alleles originated from Ae. tauschii. For the first time, we identified markers on chromosome 5D associated with a candidate gene encoding a RING-type E3 ubiquitin-protein ligase and expected to have a role in regulating wheat seed size. Our study provides important knowledge for the improvement of wheat yield under optimum and stress conditions. The results emphasize the importance of Ae. tauschii as a gene reservoir for wheat breeding.
Collapse
Affiliation(s)
- Gamila Mohamed Idris Elhadi
- United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan; (G.M.I.E.); (M.O.I.)
| | - Nasrein Mohamed Kamal
- Arid Land Research Center, Tottori University, Tottori 680-0001, Japan; (N.M.K.); (Y.S.A.G.); (Y.Y.)
- Wheat Research Program, Agricultural Research Corporation, P.O. Box 126, Wad Medani, Sudan;
| | - Yasir Serag Alnor Gorafi
- Arid Land Research Center, Tottori University, Tottori 680-0001, Japan; (N.M.K.); (Y.S.A.G.); (Y.Y.)
- Wheat Research Program, Agricultural Research Corporation, P.O. Box 126, Wad Medani, Sudan;
| | - Yuji Yamasaki
- Arid Land Research Center, Tottori University, Tottori 680-0001, Japan; (N.M.K.); (Y.S.A.G.); (Y.Y.)
| | - Kanenori Takata
- National Agriculture and Food Research Organization, Fukuyama 721-8514, Japan;
| | - Izzat S. A. Tahir
- Wheat Research Program, Agricultural Research Corporation, P.O. Box 126, Wad Medani, Sudan;
| | - Michel O. Itam
- United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan; (G.M.I.E.); (M.O.I.)
| | - Hiroyuki Tanaka
- Faculty of Agriculture, Tottori University, Tottori 680-8550, Japan;
| | - Hisashi Tsujimoto
- Arid Land Research Center, Tottori University, Tottori 680-0001, Japan; (N.M.K.); (Y.S.A.G.); (Y.Y.)
| |
Collapse
|
16
|
Kaur J, Kaur J, Dhillon GS, Kaur H, Singh J, Bala R, Srivastava P, Kaur S, Sharma A, Chhuneja P. Characterization and Mapping of Spot Blotch in Triticum durum-Aegilops speltoides Introgression Lines Using SNP Markers. FRONTIERS IN PLANT SCIENCE 2021; 12:650400. [PMID: 34122476 PMCID: PMC8193842 DOI: 10.3389/fpls.2021.650400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/20/2021] [Indexed: 05/17/2023]
Abstract
Spot blotch (SB) of wheat is emerging as a major threat to successful wheat production in warm and humid areas of the world. SB, also called leaf blight, is caused by Bipolaris sorokiniana, and is responsible for high yield losses in Eastern Gangetic Plains Zone in India. More recently, SB is extending gradually toward cooler, traditional wheat-growing North-Western part of the country which is a major contributor to the national cereal basket. Deployment of resistant cultivars is considered as the most economical and ecologically sound measure to avoid losses due to this disease. In the present study, 89 backcross introgression lines (DSBILs) derived from Triticum durum (cv. PDW274-susceptible) × Aegilops speltoides (resistant) were evaluated against SB for four consecutive years, 2016-2020. Phenotypic evaluation of these lines showed a continuous variation in disease severity indicating that the resistance to SB is certainly quantitative in nature. Phenotypic data of DSBILs were further used for mapping QTLs using SNPs obtained by genotyping by sequencing. To identify QTLs stable across the environments, Best Linear Unbiased Estimates (BLUEs) and Predictions (BLUPs) were used for mapping QTLs based on stepwise regression-based Likelihood Ratio Test (RSTEP-LRT) for additive effect of markers and single marker analysis (SMA). Five QTLs, Q.Sb.pau-2A, Q.Sb.pau-2B, Q.Sb.pau-3B, Q.Sb.pau-5B, and Q.Sb.pau-6A, linked to SB resistance were mapped across chromosomes 2A, 2B, 3B, 5B, and 6A. Genes found adjacent to the SNP markers linked to these QTLs were literature mined to identify possible candidate genes by studying their role in plant pathogenesis. Further, highly resistant DSBIL (DSBIL-13) was selected to cross with a susceptible hexaploidy cultivar (HD3086) generating BC2F1 population. The QTL Q.Sb.pau-5B, linked to SNP S5B_703858864, was validated on this BC2F1 population and thus, may prove to be a potential diagnostic marker for SB resistance.
Collapse
Affiliation(s)
- Jashanpreet Kaur
- Department of Plant Pathology, Punjab Agricultural University, Ludhiana, India
| | - Jaspal Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | | | - Harmandeep Kaur
- Department of Plant Pathology, Punjab Agricultural University, Ludhiana, India
| | - Jasvir Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Ritu Bala
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
- *Correspondence: Parveen Chhuneja,
| |
Collapse
|
17
|
Li H, Wei C, Meng Y, Fan R, Zhao W, Wang X, Yu X, Laroche A, Kang Z, Liu D. Identification and expression analysis of some wheat F-box subfamilies during plant development and infection by Puccinia triticina. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:535-548. [PMID: 32836199 DOI: 10.1016/j.plaphy.2020.06.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
As one of the largest protein families in plants, F-box proteins are involved in many important cellular processes. Until now, a limited number of investigations have been conducted on wheat F-box genes due to its variable structure and large and polyploid genome. Classification, identification, structural analysis, evolutionary relationship, and chromosomal distribution of some wheat F-box genes are described in the present study. A total number of 1013 potential F-box proteins which are encoded by 409 genes was identified in wheat, and classified into 12 subfamilies based on their C-terminal domain structures. Furthermore, proteins with identical or similar C-terminal domain were clustered together. Location of 409 F-box genes was identified on all 21 wheat chromosomes but showed an uneven distribution. Segmental duplication was the main reason for the increase in the number of wheat F-box genes. Gene expression analysis based on digital PCR showed that most of the F-box genes were highly expressed in the later development stages of wheat, including the formation of spike, grain, flag leaf, and participated in drought stress (DS), heat stress (HS), and their combination (HD). Of the nine F-box genes we investigated using quantitative PCR (qPCR) following fungal pathogen infection, five were involved in wheat resistance to the infection by leaf rust pathogen and one in the susceptible response. These results provide important information on wheat F-box proteins for further functional studies, especially the proteins that played roles in response to heat and drought stresses and leaf rust pathogen infection.
Collapse
Affiliation(s)
- Huying Li
- College of Life Sciences, Hebei Agricultural University/ Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, 071001, China; College of Forestry, Shandong Agricultural University, Taian, Shangdong, 271018, China
| | - Chunru Wei
- College of Life Sciences, Hebei Agricultural University/ Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Yuyu Meng
- College of Life Sciences, Hebei Agricultural University/ Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Runqiao Fan
- College of Life Sciences, Hebei Agricultural University/ Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Weiquan Zhao
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, 071001, China
| | - Xiaodong Wang
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, 071001, China
| | - Xiumei Yu
- College of Life Sciences, Hebei Agricultural University/ Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, 071001, China; Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, 071001, China.
| | - André Laroche
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, T1J 4B1, Canada
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, NWAFU, Yangling, Shaanxi, 712100, China.
| | - Daqun Liu
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, 071001, China.
| |
Collapse
|
18
|
Yang F, Liu J, Guo Y, He Z, Rasheed A, Wu L, Cao S, Nan H, Xia X. Genome-Wide Association Mapping of Adult-Plant Resistance to Stripe Rust in Common Wheat ( Triticum aestivum). PLANT DISEASE 2020; 104:2174-2180. [PMID: 32452749 DOI: 10.1094/pdis-10-19-2116-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a globally devastating disease of common wheat (Triticum aestivum L.), resulting in substantial economic losses. To identify effective resistance genes, a genome-wide association study was conducted on 120 common wheat lines from different wheat-growing regions of China using the wheat 90K iSelect SNP array. Seventeen loci were identified, explaining 9.5 to 21.8% of the phenotypic variation. Most of these genes were detected in the A (seven) and B (seven) genomes, with only three in the D genome. Among them, 11 loci were colocated with known resistance genes or quantitative trait loci reported previously, whereas the other six are likely new resistance loci. Annotation of flanking sequences of significantly associated SNPs indicated the presence of three important candidate genes, including E3 ubiquitin-protein ligase, F-box repeat protein, and disease resistance RPP13-like protein. This study increased our knowledge in understanding the genetic architecture for stripe rust resistance and identified wheat varieties with multiple resistance alleles, which are useful for improvement of stripe rust resistance in breeding.
Collapse
Affiliation(s)
- Fangping Yang
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China
| | - Jindong Liu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Ying Guo
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Awais Rasheed
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Ling Wu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Shiqin Cao
- Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China
| | - Hai Nan
- Tianshui Institute of Agricultural Sciences, Tianshui, Gansu 741200, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| |
Collapse
|
19
|
Genomic Dissection of Anthracnose ( Colletotrichum sublineolum) Resistance Response in Sorghum Differential Line SC112-14. G3-GENES GENOMES GENETICS 2020; 10:1403-1412. [PMID: 32102832 PMCID: PMC7144069 DOI: 10.1534/g3.120.401121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sorghum production is expanding to warmer and more humid regions where its production is being limited by multiple fungal pathogens. Anthracnose, caused by Colletotrichum sublineolum, is one of the major diseases in these regions, where it can cause yield losses of both grain and biomass. In this study, 114 recombinant inbred lines (RILs) derived from resistant sorghum line SC112-14 were evaluated at four distinct geographic locations in the United States for response to anthracnose. A genome scan using a high-density linkage map of 3,838 single nucleotide polymorphisms (SNPs) detected two loci at 5.25 and 1.18 Mb on chromosomes 5 and 6, respectively, that explain up to 59% and 44% of the observed phenotypic variation. A bin-mapping approach using a subset of 31 highly informative RILs was employed to determine the disease response to inoculation with ten anthracnose pathotypes in the greenhouse. A genome scan showed that the 5.25 Mb region on chromosome 5 is associated with a resistance response to nine pathotypes. Five SNP markers were developed and used to fine map the locus on chromosome 5 by evaluating 1,500 segregating F2:3 progenies. Based on the genotypic and phenotypic analyses of 11 recombinants, the locus was narrowed down to a 470-kb genomic region. Following a genome-wide association study based on 574 accessions previously phenotyped and genotyped, the resistance locus was delimited to a 34-kb genomic interval with five candidate genes. All five candidate genes encode proteins associated with plant immune systems, suggesting they may act in synergy in the resistance response.
Collapse
|
20
|
Abd-Hamid NA, Ahmad-Fauzi MI, Zainal Z, Ismail I. Diverse and dynamic roles of F-box proteins in plant biology. PLANTA 2020; 251:68. [PMID: 32072251 DOI: 10.1007/s00425-020-03356-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/05/2020] [Indexed: 05/23/2023]
Abstract
The SCF complex is a widely studied multi-subunit ring E3 ubiquitin ligase that tags targeted proteins with ubiquitin for protein degradation by the ubiquitin 26S-proteasome system (UPS). The UPS is an important system that generally keeps cellular events tightly regulated by purging misfolded or damaged proteins and selectively degrading important regulatory proteins. The specificity of this post-translational regulation is controlled by F-box proteins (FBPs) via selective recognition of a protein-protein interaction motif at the C-terminal domain. Hence, FBPs are pivotal proteins in determining the plant response in multiple scenarios. It is not surprising that the FBP family is one of the largest protein families in the plant kingdom. In this review, the roles of FBPs, specifically in plants, are compiled to provide insights into their involvement in secondary metabolites, plant stresses, phytohormone signalling, plant developmental processes and miRNA biogenesis.
Collapse
Affiliation(s)
- Nur-Athirah Abd-Hamid
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Muhammad-Izzat Ahmad-Fauzi
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Zamri Zainal
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Ismanizan Ismail
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
21
|
Zhang S, Tian Z, Li H, Guo Y, Zhang Y, Roberts JA, Zhang X, Miao Y. Genome-wide analysis and characterization of F-box gene family in Gossypium hirsutum L. BMC Genomics 2019; 20:993. [PMID: 31856713 PMCID: PMC6921459 DOI: 10.1186/s12864-019-6280-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 11/13/2019] [Indexed: 11/18/2022] Open
Abstract
Background F-box proteins are substrate-recognition components of the Skp1-Rbx1-Cul1-F-box protein (SCF) ubiquitin ligases. By selectively targeting the key regulatory proteins or enzymes for ubiquitination and 26S proteasome mediated degradation, F-box proteins play diverse roles in plant growth/development and in the responses of plants to both environmental and endogenous signals. Studies of F-box proteins from the model plant Arabidopsis and from many additional plant species have demonstrated that they belong to a super gene family, and function across almost all aspects of the plant life cycle. However, systematic exploration of F-box family genes in the important fiber crop cotton (Gossypium hirsutum) has not been previously performed. The genome-wide analysis of the cotton F-box gene family is now possible thanks to the completion of several cotton genome sequencing projects. Results In current study, we first conducted a genome-wide investigation of cotton F-box family genes by reference to the published F-box protein sequences from other plant species. 592 F-box protein encoding genes were identified in the Gossypium hirsutume acc.TM-1 genome and, subsequently, we were able to present their gene structures, chromosomal locations, syntenic relationships with their parent species. In addition, duplication modes analysis showed that cotton F-box genes were distributed to 26 chromosomes, with the maximum number of genes being detected on chromosome 5. Although the WGD (whole-genome duplication) mode seems play a dominant role during cotton F-box gene expansion process, other duplication modes including TD (tandem duplication), PD (proximal duplication), and TRD (transposed duplication) also contribute significantly to the evolutionary expansion of cotton F-box genes. Collectively, these bioinformatic analysis suggest possible evolutionary forces underlying F-box gene diversification. Additionally, we also conducted analyses of gene ontology, and expression profiles in silico, allowing identification of F-box gene members potentially involved in hormone signal transduction. Conclusion The results of this study provide first insights into the Gossypium hirsutum F-box gene family, which lays the foundation for future studies of functionality, particularly those involving F-box protein family members that play a role in hormone signal transduction.
Collapse
Affiliation(s)
- Shulin Zhang
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China.,College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Zailong Tian
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Haipeng Li
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Yutao Guo
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Yanqi Zhang
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Jeremy A Roberts
- Faculty of Science and Engineering, School of Biological & Marine Sciences, University of Plymouth, Devon, UK
| | - Xuebin Zhang
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China.
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China.
| |
Collapse
|
22
|
Odilbekov F, Armoniené R, Koc A, Svensson J, Chawade A. GWAS-Assisted Genomic Prediction to Predict Resistance to Septoria Tritici Blotch in Nordic Winter Wheat at Seedling Stage. Front Genet 2019; 10:1224. [PMID: 31850073 PMCID: PMC6901976 DOI: 10.3389/fgene.2019.01224] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 11/05/2019] [Indexed: 02/01/2023] Open
Abstract
Septoria tritici blotch (STB) disease caused by Zymoseptoria tritici is one of the most damaging diseases of wheat causing significant yield losses worldwide. Identification and employment of resistant germplasm is the most cost-effective method to control STB. In this study, we characterized seedling stage resistance to STB in 175 winter wheat landraces and old cultivars of Nordic origin. The study revealed significant (p < 0.05) phenotypic differences in STB severity in the germplasm. Genome-wide association analysis (GWAS) using five different algorithms identified ten significant markers on five chromosomes. Six markers were localized within a region of 2 cM that contained seven candidate genes on chromosome 1B. Genomic prediction (GP) analysis resulted in a model with an accuracy of 0.47. To further improve the prediction efficiency, significant markers identified by GWAS were included as fixed effects in the GP model. Depending on the number of fixed effect markers, the prediction accuracy improved from 0.47 (without fixed effects) to 0.62 (all non-redundant GWAS markers as fixed effects), respectively. The resistant genotypes and single-nucleotide polymorphism (SNP) markers identified in the present study will serve as a valuable resource for future breeding for STB resistance in wheat. The results also highlight the benefits of integrating GWAS with GP to further improve the accuracy of GP.
Collapse
Affiliation(s)
- Firuz Odilbekov
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Rita Armoniené
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.,Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry (LAMMC), Akademija, Lithuania
| | - Alexander Koc
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
23
|
Xu FQ, Xue HW. The ubiquitin-proteasome system in plant responses to environments. PLANT, CELL & ENVIRONMENT 2019; 42:2931-2944. [PMID: 31364170 DOI: 10.1111/pce.13633] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 05/12/2023]
Abstract
The ubiquitin-proteasome system (UPS) is a rapid regulatory mechanism for selective protein degradation in plants and plays crucial roles in growth and development. There is increasing evidence that the UPS is also an integral part of plant adaptation to environmental stress, such as drought, salinity, cold, nutrient deprivation and pathogens. This review focuses on recent studies illustrating the important functions of the UPS components E2s, E3s and subunits of the proteasome and describes the regulation of proteasome activity during plant responses to environment stimuli. The future research hotspots and the potential for utilization of the UPS to improve plant tolerance to stress are discussed.
Collapse
Affiliation(s)
- Fa-Qing Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
- Shanghai College of Life Science, University of Chinese Academy of Sciences, 200032, Shanghai, China
| | - Hong-Wei Xue
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| |
Collapse
|
24
|
Lan HH, Wang CM, Chen SS, Zheng JY. siRNAs Derived from Cymbidium Mosaic Virus and Odontoglossum Ringspot Virus Down-modulated the Expression Levels of Endogenous Genes in Phalaenopsis equestris. THE PLANT PATHOLOGY JOURNAL 2019; 35:508-520. [PMID: 31632225 PMCID: PMC6788414 DOI: 10.5423/ppj.oa.03.2019.0055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/10/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Interplay between Cymbidium mosaic virus (CymMV)/Odontoglossum ringspot virus (ORSV) and its host plant Phalaenopsis equestris remain largely unknown, which led to deficiency of effective measures to control disease of P. equestris caused by infecting viruses. In this study, for the first time, we characterized viral small interfering RNAs (vsiRNAs) profiles in P. equestris co-infected with CymMV and ORSV through small RNA sequencing technology. CymMV and ORSV small interfering RNAs (siRNAs) demonstrated several general and specific/new characteristics. vsiRNAs, with A/U bias at the first nucleotide, were predominantly 21-nt long and they were derived predominantly (90%) from viral positive-strand RNA. 21-nt siRNA duplexes with 0-nt overhangs were the most abundant 21-nt duplexes, followed by 2-nt overhangs and then 1-nt overhangs 21-nt duplexes in infected P. equestris. Continuous but heterogeneous distribution and secondary structures prediction implied that vsiRNAs originate predominantly by direct Dicer-like enzymes cleavage of imperfect duplexes in the most folded regions of the positive strand of both viruses RNA molecular. Furthermore, we totally predicted 54 target genes by vsiRNAs with psRNATarget server, including disease/stress response-related genes, RNA interference core components, cytoskeleton-related genes, photosynthesis or energy supply related genes. Gene Ontology classification showed that a majority of the predicted targets were related to cellular components and cellular processes and performed a certain function. All target genes were down-regulated with different degree by vsiRNAs as shown by real-time reverse transcription polymerase chain reaction. Taken together, CymMV and ORSV siRNAs played important roles in interplay with P. equestris by down modulating the expression levels of endogenous genes in host plant.
Collapse
Affiliation(s)
- Han-hong Lan
- Corresponding author: Phone) +86-596-2528735, FAX) +86-591-2528735, E-mail)
| | | | | | | |
Collapse
|
25
|
Natural variation in ZmFBL41 confers banded leaf and sheath blight resistance in maize. Nat Genet 2019; 51:1540-1548. [DOI: 10.1038/s41588-019-0503-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 08/19/2019] [Indexed: 11/08/2022]
|
26
|
Hwang JE, Hwang SG, Jung IJ, Han SM, Ahn JW, Kim JB. Overexpression of rice F-box protein OsFBX322 confers increased sensitivity to gamma irradiation in Arabidopsis. Genet Mol Biol 2019; 43:e20180273. [PMID: 31479093 PMCID: PMC7251472 DOI: 10.1590/1678-4685-gmb-2018-0273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/25/2019] [Indexed: 11/30/2022] Open
Abstract
Ionizing radiation has a substantial effect on physiological and biochemical
processes in plants via induction of transcriptional changes and diverse genetic
alterations. Previous microarray analysis showed that rice
OsFBX322, which encodes a rice F-box protein, was
downregulated in response to three types of ionizing radiation: gamma
irradiation, ion beams, and cosmic rays. In order to characterize the
radiation-responsive genes in rice, OsFBX322 was selected for
further analysis. OsFBX322 expression patterns in response to
radiation were confirmed using quantitative RT-PCR. Transient expression of a
GFP-OsFBX322 fusion protein in tobacco leaf epidermis indicated that OsFBX322 is
localized to the nucleus. To determine the effect of OsFBX322
expression on radiation response, OsFBX322 was overexpressed in
Arabidopsis. Transgenic overexpression lines were more
sensitive to gamma irradiation than control plants. These results suggest that
OsFBX322 plays a negative role in the defense response to
radiation in plants. In addition, we obtained four co-expression genes of
OsFBX322 by specific co-expression networks using the
ARANCE. Quantitative RT-PCR showed that the four genes were also downregulated
after exposure to the three types of radiation. These results imply that the
co-expressed genes may serve as key regulators in the radiation response pathway
in plants.
Collapse
Affiliation(s)
- Jung Eun Hwang
- National Institute of Ecology, Research Center for Endangered Species, Division of Restoration Research, Yeongyang, Republic of Korea
| | - Sun-Goo Hwang
- Kangwon Natl University, Department of Applied Plant Sciences, Plant Genomics Lab, Chuncheon, Republic of Korea
| | - In Jung Jung
- Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute, Jeongeup, Republic of Korea
| | - Sung Min Han
- Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute, Jeongeup, Republic of Korea
| | - Joon-Woo Ahn
- Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute, Jeongeup, Republic of Korea
| | - Jin-Baek Kim
- Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute, Jeongeup, Republic of Korea
| |
Collapse
|
27
|
Vieira P, Mowery J, Eisenback JD, Shao J, Nemchinov LG. Cellular and Transcriptional Responses of Resistant and Susceptible Cultivars of Alfalfa to the Root Lesion Nematode, Pratylenchus penetrans. FRONTIERS IN PLANT SCIENCE 2019; 10:971. [PMID: 31417588 PMCID: PMC6685140 DOI: 10.3389/fpls.2019.00971] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/11/2019] [Indexed: 05/04/2023]
Abstract
The root lesion nematode (RLN), Pratylenchus penetrans, is a migratory species that attacks a broad range of crops, including alfalfa. High levels of infection can reduce alfalfa forage yields and lead to decreased cold tolerance. Currently, there are no commercially certified varieties with RLN resistance. Little information on molecular interactions between alfalfa and P. penetrans, that would shed light on mechanisms of alfalfa resistance to RLN, is available. To advance our understanding of the host-pathogen interactions and to gain biological insights into the genetics and genomics of host resistance to RLN, we performed a comprehensive assessment of resistant and susceptible interactions of alfalfa with P. penetrans that included root penetration studies, ultrastructural observations, and global gene expression profiling of host plants and the nematode. Several gene-candidates associated with alfalfa resistance to P. penetrans and nematode parasitism genes encoding nematode effector proteins were identified for potential use in alfalfa breeding programs or development of new nematicides. We propose that preformed or constitutive defenses, such as significant accumulation of tannin-like deposits in root cells of the resistant cultivar, could be a key to nematode resistance, at least for the specific case of alfalfa-P. penetrans interaction.
Collapse
Affiliation(s)
- Paulo Vieira
- Molecular Plant Pathology Laboratory, United States Department of Agriculture – Agricultural Research Service, Beltsville, MD, United States
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA, United States
| | - Joseph Mowery
- Electron and Confocal Microscopy Unit, United States Department of Agriculture – Agricultural Research Service, Beltsville, MD, United States
| | - Jonathan D. Eisenback
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA, United States
| | - Jonathan Shao
- Molecular Plant Pathology Laboratory, United States Department of Agriculture – Agricultural Research Service, Beltsville, MD, United States
| | - Lev G. Nemchinov
- Molecular Plant Pathology Laboratory, United States Department of Agriculture – Agricultural Research Service, Beltsville, MD, United States
| |
Collapse
|
28
|
Ahn E, Hu Z, Perumal R, Prom LK, Odvody G, Upadhyaya HD, Magill C. Genome wide association analysis of sorghum mini core lines regarding anthracnose, downy mildew, and head smut. PLoS One 2019; 14:e0216671. [PMID: 31086384 PMCID: PMC6516728 DOI: 10.1371/journal.pone.0216671] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/26/2019] [Indexed: 02/04/2023] Open
Abstract
In previous studies, a sorghum mini core collection was scored over several years for response to Colletotrichum sublineola, Peronosclerospora sorghi, and Sporisorium reilianum, the causal agents of the disease anthracnose, downy mildew, and head smut, respectively. The screening results were combined with over 290,000 Single nucleotide polymorphic (SNP) loci from an updated version of a publicly available genotype by sequencing (GBS) dataset available for the mini core collection. GAPIT (Genome Association and Prediction Integrated Tool) R package was used to identify chromosomal locations that differ in disease response. When the top scoring SNPs were mapped to the most recent version of the published sorghum genome, in each case, a nearby and most often the closest annotated gene has precedence for a role in host defense.
Collapse
Affiliation(s)
- Ezekiel Ahn
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, Texas, United States of America
| | - Zhenbin Hu
- Department of Agronomy, Kansas State University, Manhattan, Kansas, United States of America
| | - Ramasamy Perumal
- Kansas State University, Agricultural Research Center, Hays, Kansas, United States of America
| | - Louis K. Prom
- USDA-ARS Southern Plains Agricultural Research Center, College Station, Texas, United States of America
| | - Gary Odvody
- Texas A&M AgriLife Research, Corpus Christi, Texas, United States of America
| | - Hari D. Upadhyaya
- ICRISAT, Patancheru, Telangana, India
- King Abdulaziz University, Jeddah, Saudi Arabia
| | - Clint Magill
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
29
|
Genome-Wide Identification and Transcriptional Expression Profiles of the F-box Gene Family in Common Walnut (Juglans regia L.). FORESTS 2019. [DOI: 10.3390/f10030275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The common walnut (or Persian walnut), Juglans regia L., is an economically important temperate tree species valued for both its edible nut and high-quality wood. F-box gene family members are involved in plant development, which includes regulating plant development, reproduction, cellular protein degradation, response to biotic and abiotic stresses, and flowering. However, in common walnut (J. regia), there are no reports about the F-box gene family. Here, we report a genome-wide identification of J. regia F-box genes and analyze their phylogeny, duplication, microRNA, pathway, and transcriptional expression profile. In this study, 74 F-box genes were identified and clustered into three groups based on phylogenetic analysis and eight subfamilies based on special domains in common walnut. These common walnut F-box genes are distributed on 31 different pseudo-chromosomes. The gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and microRNA profiles showed that the F-box gene family might play a critical role in the flowering of common walnut. The expressions were significantly higher in female flowers and male flowers compared with leaf and hull tissues at a transcriptome level. The results revealed that the expressions of the F-box gene in female flowers were positively correlated with male flowers, but there was no correlation between any other tissue combinations in common walnut. Our results provided insight into the general characteristics of the F-box genes in common walnut.
Collapse
|
30
|
Klepikova AV, Kulakovskiy IV, Kasianov AS, Logacheva MD, Penin AA. An update to database TraVA: organ-specific cold stress response in Arabidopsis thaliana. BMC PLANT BIOLOGY 2019; 19:49. [PMID: 30813912 PMCID: PMC6393959 DOI: 10.1186/s12870-019-1636-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND Transcriptome map is a powerful tool for a variety of biological studies; transcriptome maps that include different organs, tissues, cells and stages of development are currently available for at least 30 plants. Some of them include samples treated by environmental or biotic stresses. However, most studies explore only limited set of organs and developmental stages (leaves or seedlings). In order to provide broader view of organ-specific strategies of cold stress response we studied expression changes that follow exposure to cold (+ 4 °C) in different aerial parts of plant: cotyledons, hypocotyl, leaves, young flowers, mature flowers and seeds using RNA-seq. RESULTS The results on differential expression in leaves are congruent with current knowledge on stress response pathways, in particular, the role of CBF genes. In other organs, both essence and dynamics of gene expression changes are different. We show the involvement of genes that are confined to narrow expression patterns in non-stress conditions into stress response. In particular, the genes that control cell wall modification in pollen, are activated in leaves. In seeds, predominant pattern is the change of lipid metabolism. CONCLUSIONS Stress response is highly organ-specific; different pathways are involved in this process in each type of organs. The results were integrated with previously published transcriptome map of Arabidopsis thaliana and used for an update of a public database TraVa: http://travadb.org/browse/Species=AthStress .
Collapse
Affiliation(s)
- Anna V. Klepikova
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Bolshoy Karetny per. 19, build.1, Moscow, 127051 Russia
| | - Ivan V. Kulakovskiy
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina 3, Moscow, 119991 Russia
- Institute of Mathematical Problems of Biology RAS - the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Vitkevicha 1, Pushchino, Moscow Region, 142290 Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| | - Artem S. Kasianov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina 3, Moscow, 119991 Russia
| | - Maria D. Logacheva
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Bolshoy Karetny per. 19, build.1, Moscow, 127051 Russia
- Moscow State University, Leninskye gory, build 1, Moscow, 119992 Russia
- Skolkovo Institute of Science and Technology, Nobelya Ulitsa 3, Moscow, 121205 Russia
| | - Aleksey A. Penin
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Bolshoy Karetny per. 19, build.1, Moscow, 127051 Russia
- Moscow State University, Leninskye gory, build 1, Moscow, 119992 Russia
| |
Collapse
|
31
|
Poveda J, Hermosa R, Monte E, Nicolás C. The Trichoderma harzianum Kelch Protein ThKEL1 Plays a Key Role in Root Colonization and the Induction of Systemic Defense in Brassicaceae Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:1478. [PMID: 31803213 PMCID: PMC6873215 DOI: 10.3389/fpls.2019.01478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/24/2019] [Indexed: 05/21/2023]
Abstract
The fungal genus Trichoderma includes strains with biocontrol and/or biostimulant potential and is recognized as a source of genes with biotechnological value. In a previous study the Kelch domain protein, encoded by the Thkel1 gene of Trichoderma harzianum T34, was found to confer tolerance to salt stress when expressed in plants of Arabidopsis thaliana. In the present work, we have overexpressed Thkel1 in rapeseed plants in order to generate an additional biotechnological tool for analyzing the role of this gene in Trichoderma-plant interactions. The overexpression of this gene in Brassicaceae plants improves responses to pathogens through the induction of systemic defenses mediated by jasmonic acid, facilitates root colonization by modulating the myrosinase activity, and, as a result, increases plant productivity. These effects were also observed in Thkel1 overexpressing plants subjected to abiotic stress conditions. Additionally, the differences detected in root colonization levels by T. harzianum wild type and Thkel1 silenced transformants between Arabidopsis or rapeseed and tomato plants indicate that ThKEL1 interacts in different ways in Brassicaceae and non-Brassicaceae plants.
Collapse
Affiliation(s)
- Jorge Poveda
- Department of Botany and Plant Physiology, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
| | - Rosa Hermosa
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
| | - Enrique Monte
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
- *Correspondence: Enrique Monte,
| | - Carlos Nicolás
- Department of Botany and Plant Physiology, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
| |
Collapse
|
32
|
Regulation of Plant Immunity by the Proteasome. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 343:37-63. [DOI: 10.1016/bs.ircmb.2018.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
In silico Analysis of qBFR4 and qLBL5 in Conferring Quantitative Resistance Against Rice Blast. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.03] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
34
|
Borah P, Khurana JP. The OsFBK1 E3 Ligase Subunit Affects Anther and Root Secondary Cell Wall Thickenings by Mediating Turnover of a Cinnamoyl-CoA Reductase. PLANT PHYSIOLOGY 2018; 176:2148-2165. [PMID: 29295941 PMCID: PMC5841686 DOI: 10.1104/pp.17.01733] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/29/2017] [Indexed: 05/20/2023]
Abstract
Regulated proteolysis by the ubiquitin-26S proteasome system challenges transcription and phosphorylation in magnitude and is one of the most important regulatory mechanisms in plants. This article describes the characterization of a rice (Oryza sativa) auxin-responsive Kelch-domain-containing F-box protein, OsFBK1, found to be a component of an SCF E3 ligase by interaction studies in yeast. Rice transgenics of OsFBK1 displayed variations in anther and root secondary cell wall content; it could be corroborated by electron/confocal microscopy and lignification studies, with no apparent changes in auxin content/signaling pathway. The presence of U-shaped secondary wall thickenings (or lignin) in the anthers were remarkably less pronounced in plants overexpressing OsFBK1 as compared to wild-type and knockdown transgenics. The roots of the transgenics also displayed differential accumulation of lignin. Yeast two-hybrid anther library screening identified an OsCCR that is a homolog of the well-studied Arabidopsis (Arabidopsis thaliana) IRX4; OsFBK1-OsCCR interaction was confirmed by fluorescence and immunoprecipitation studies. Degradation of OsCCR mediated by SCFOsFBK1 and the 26S proteasome pathway was validated by cell-free experiments in the absence of auxin, indicating that the phenotype observed is due to the direct interaction between OsFBK1 and OsCCR. Interestingly, the OsCCR knockdown transgenics also displayed a decrease in root and anther lignin depositions, suggesting that OsFBK1 plays a role in the development of rice anthers and roots by regulating the cellular levels of a key enzyme controlling lignification.
Collapse
Affiliation(s)
- Pratikshya Borah
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
35
|
Zhou B, Zeng L. Conventional and unconventional ubiquitination in plant immunity. MOLECULAR PLANT PATHOLOGY 2017; 18:1313-1330. [PMID: 27925369 PMCID: PMC6638253 DOI: 10.1111/mpp.12521] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 05/16/2023]
Abstract
Ubiquitination is one of the most abundant types of protein post-translational modification (PTM) in plant cells. The importance of ubiquitination in the regulation of many aspects of plant immunity has been increasingly appreciated in recent years. Most of the studies linking ubiquitination to the plant immune system, however, have been focused on the E3 ubiquitin ligases and the conventional ubiquitination that leads to the degradation of the substrate proteins by the 26S proteasome. By contrast, our knowledge about the role of unconventional ubiquitination that often serves as non-degradative, regulatory signal remains a significant gap. We discuss, in this review, the recent advances in our understanding of ubiquitination in the modulation of plant immunity, with a particular focus on the E3 ubiquitin ligases. We approach the topic from a perspective of two broadly defined types of ubiquitination in an attempt to highlight the importance, yet current scarcity, in our knowledge about the regulation of plant immunity by unconventional ubiquitination.
Collapse
Affiliation(s)
- Bangjun Zhou
- Center for Plant Science Innovation and Department of Plant PathologyUniversity of NebraskaLincolnNE68583USA
| | - Lirong Zeng
- Center for Plant Science Innovation and Department of Plant PathologyUniversity of NebraskaLincolnNE68583USA
- Southern Regional Collaborative Innovation Center for Grain and Oil CropsHunan Agricultural UniversityChangsha410128China
| |
Collapse
|
36
|
Liu J, He Z, Rasheed A, Wen W, Yan J, Zhang P, Wan Y, Zhang Y, Xie C, Xia X. Genome-wide association mapping of black point reaction in common wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2017; 17:220. [PMID: 29169344 PMCID: PMC5701291 DOI: 10.1186/s12870-017-1167-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 11/10/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Black point is a serious threat to wheat production and can be managed by host resistance. Marker-assisted selection (MAS) has the potential to accelerate genetic improvement of black point resistance in wheat breeding. We performed a genome-wide association study (GWAS) using the high-density wheat 90 K and 660 K single nucleotide polymorphism (SNP) assays to better understand the genetic basis of black point resistance and identify associated molecular markers. RESULTS Black point reactions were evaluated in 166 elite wheat cultivars in five environments. Twenty-five unique loci were identified on chromosomes 2A, 2B, 3A, 3B (2), 3D, 4B (2), 5A (3), 5B (3), 6A, 6B, 6D, 7A (5), 7B and 7D (2), respectively, explaining phenotypic variation ranging from 7.9 to 18.0%. The highest number of loci was detected in the A genome (11), followed by the B (10) and D (4) genomes. Among these, 13 were identified in two or more environments. Seven loci coincided with known genes or quantitative trait locus (QTL), whereas the other 18 were potentially novel loci. Linear regression showed a clear dependence of black point scores on the number of favorable alleles, suggesting that QTL pyramiding will be an effective approach to increase resistance. In silico analysis of sequences of resistance-associated SNPs identified 6 genes possibly involved in oxidase, signal transduction and stress resistance as candidate genes involved in black point reaction. CONCLUSION SNP markers significantly associated with black point resistance and accessions with a larger number of resistance alleles can be used to further enhance black point resistance in breeding. This study provides new insights into the genetic architecture of black point reaction.
Collapse
Affiliation(s)
- Jindong Liu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081 China
- Department of Plant Genetics & Breeding/State Key Laboratory for Agrobiotechnology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193 China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081 China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081 China
| | - Awais Rasheed
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081 China
| | - Weie Wen
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081 China
| | - Jun Yan
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences (CAAS), 38 Huanghe Street, Anyang, Henan 455000 China
| | - Pingzhi Zhang
- Crop Research Institute, Anhui Academy of Agricultural Sciences, 40 Nongke South Street, Hefei, Anhui 230001 China
| | - Yingxiu Wan
- Crop Research Institute, Anhui Academy of Agricultural Sciences, 40 Nongke South Street, Hefei, Anhui 230001 China
| | - Yong Zhang
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081 China
| | - Chaojie Xie
- Department of Plant Genetics & Breeding/State Key Laboratory for Agrobiotechnology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193 China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081 China
| |
Collapse
|
37
|
Wang J, Yao W, Wang L, Ma F, Tong W, Wang C, Bao R, Jiang C, Yang Y, Zhang J, Xu Y, Wang X, Zhang C, Wang Y. Overexpression of VpEIFP1, a novel F-box/Kelch-repeat protein from wild Chinese Vitis pseudoreticulata, confers higher tolerance to powdery mildew by inducing thioredoxin z proteolysis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:142-155. [PMID: 28818370 DOI: 10.1016/j.plantsci.2017.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 05/11/2023]
Abstract
An F-box protein (VpEIFP1) induced by Erysiphe necator was isolated from Vitis pseudoreticulata, a wild Chinese grapevine species naturally resistant to powdery mildew (PM). It contains an F-box domain and two Kelch-repeat motifs. Expression profiles indicate the VpEIFP1 is strongly induced at both transcriptional and translational levels by PM infection. A subcellular localisation assay showed that VpEIFP1 is predominantly located in the nucleus and cytoplasm. Overexpression of VpEIFP1 accelerated the accumulation of hydrogen peroxide (H2O2) and up-regulated the expressions of ICS2, NPR1 and PR1 involved in defence responses, resulting in suppression of PM germination and growth. As an F-box protein, VpEIFP1 interacts with thioredoxin z (VpTrxz) in the yeast-two-hybrid (Y2H) assay and in the bimolecular fluorescence complementation (BiFC) assay. Decreased amounts of VpTrxz protein in transgenic grapevine leaves overexpressing VpEIFP1 were restored by proteasome inhibitor MG132, implying that VpEIFP1 mediated VpTrxz for degradation through the SCFVpEIFP1 (Skp1-Cullin-F-box) E3 ubiquitin ligase complex. The RNA interference line of VpTrxz showed increased H2O2 accumulation following PM inoculation. We propose VpEIFP1 positively modulates the grapevine defence response to PM by inducing the degradation of VpTrxz via the ubiquitin/26S proteasome system.
Collapse
Affiliation(s)
- Jie Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenkong Yao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lei Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fuli Ma
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Weihuo Tong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chen Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Rui Bao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Changyue Jiang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yazhou Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianxia Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yan Xu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiping Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chaohong Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yuejin Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
38
|
Sathuvalli V, Mehlenbacher SA, Smith DC. High-Resolution Genetic and Physical Mapping of the Eastern Filbert Blight Resistance Region in 'Jefferson' Hazelnut ( Corylus avellana L.). THE PLANT GENOME 2017; 10. [PMID: 28724074 DOI: 10.3835/plantgenome2016.12.0123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Eastern filbert blight (EFB), caused by the pyrenomycete (Peck) E. Müller, is a devastating disease of European hazelnut ( L) in the US Pacific Northwest. A dominant allele at a single locus from the obsolete pollenizer 'Gasaway' confers a high level of resistance to EFB. To identify the gene responsible for resistance, we initiated map-based cloning efforts in a population of 1488 seedlings that segregated for resistance. Chromosome walking was initiated using primers designed from eight previously identified random amplified polymorphic DNA markers linked to resistance. The bacterial artificial chromosome (BAC) library was screened using the primer pairs in a polymerase chain reaction-based pooling and subpooling strategy. Here, we report construction of a high-resolution genetic map and a physical map of the resistance region. Further, we sequenced BACs in the resistance region and identified and annotated the coding sequences. In seven contigs <1 cM from the resistance locus, 233 genes were predicted. The putative genes were compared with sequences in GenBank using a BLASTP search. Fifty-one markers were placed on the high-resolution genetic map, including markers newly developed from the BACs. Segregation in the mapping population placed the resistance locus in a single contig of three BACs (43F13, 66C22, and 85B7). Two of the putative genes are in the p-loop NTPase and F-box super-families localized in a 135-kb BAC, which have previously been shown to have disease-resistance properties. Further mapping, complementation, and expression tests of the genes in these BACs is essential to confirm which confer resistance to EFB.
Collapse
|
39
|
Kim YY, Cui MH, Noh MS, Jung KW, Shin JS. The FBA motif-containing protein AFBA1 acts as a novel positive regulator of ABA response in Arabidopsis. PLANT & CELL PHYSIOLOGY 2017; 58:574-586. [PMID: 28184867 DOI: 10.1093/pcp/pcx003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
ABA plays a critical role in regulating seed germination and stomatal movement in response to drought stress. Screening ABA-responsive genes led to the identification of a novel Arabidopsis gene encoding a protein which contained a conserved F-box-associated (FBA) domain, subsequently named ABA-responsive FBA domain-containing protein 1 (AFBA1). Expression of ProAFBA1:GUS revealed that this gene was mainly expressed in guard cells. Expression of AFBA1 increased following the application of exogenous ABA and exposure to salt (NaCl) and drought stresses. Seed germination of the loss-of-function mutant (afba1) was insensitive to ABA, salt or mannitol, whereas AFBA1-overexpressing (Ox) seeds were more sensitive to these stresses than the wild-type seeds. The afba1 plants showed decreased drought tolerance, increased water loss rate and ABA-insensitive stomatal movement compared with the wild-type. In contrast, AFBA1-Ox plants exhibited enhanced drought tolerance and a rapid ABA-induced stomatal closure response. The expression of genes encoding serine/threonine protein phosphatases that are known negative regulators of ABA signaling increased in afba1 plants but decreased in AFBA1-Ox plants. AFBA1 was also found to be localized in the nucleus and to interact with an R2R3-type transcription factor, MYB44, leading to the suggestion that it functions in the stabilization of MYB44. Based on these results, we suggest that AFBA1 functions as a novel positive regulator of ABA responses, regulating the expression of genes involved in ABA signal transduction in Arabidopsis through its interaction with positive regulators of ABA signaling including MYB44, and increasing their stability during ABA-mediated responses.
Collapse
Affiliation(s)
- Yun Young Kim
- Division of Life Sciences, Korea University, Seoul 136-701, Korea
| | - Mei Hua Cui
- Division of Life Sciences, Korea University, Seoul 136-701, Korea
- School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Min Soo Noh
- Division of Life Sciences, Korea University, Seoul 136-701, Korea
| | - Kwang Wook Jung
- Division of Life Sciences, Korea University, Seoul 136-701, Korea
- DuPont Pioneer Hi-Bred, DuPont (Korea) Inc., Gangnam-gu, Seoul 135-719, Korea
| | - Jeong Sheop Shin
- Division of Life Sciences, Korea University, Seoul 136-701, Korea
| |
Collapse
|
40
|
Xu D, Zhou G. Characteristics of siRNAs derived from Southern rice black-streaked dwarf virus in infected rice and their potential role in host gene regulation. Virol J 2017. [PMID: 28183327 DOI: 10.1186/s12985-017-0699-314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Virus-derived siRNAs (vsiRNAs)-mediated RNA silencing plays important roles in interaction between plant viruses and their hosts. Southern rice black-streaked dwarf virus (SRBSDV) is a newly emerged devastating rice reovirus with ten dsRNA genomic segments. The characteristics of SRBSDV-derived siRNAs and their biological implications in SRBSDV-rice interaction remain unexplored. METHODS VsiRNAs profiling from SRBSDV-infected rice samples was done via small RNA deep sequencing. The putative rice targets of abundantly expressed vsiRNAs were bioinformatically predicted and subjected to functional annotation. Differential expression analysis of rice targets and RNA silencing components between infected and healthy samples was done using RT-qPCR. RESULTS The vsiRNA was barely detectable at 14 days post infection (dpi) but abundantly present along with elevated expression level of the viral genome at 28 dpi. From the 28-dpi sample, 70,878 reads of 18 ~ 30-nt vsiRNAs were recognized (which mostly were 21-nt and 22-nt), covering 75 ~ 91% of the length of the ten genomic segments respectively. 86% of the vsiRNAs had a <50% GC content and 79% of them were 5'-uridylated or adenylated. The production of vsiRNAs had no strand polarity but varied among segment origins. Each segment had a few hotspot regions where vsiRNAs of high abundance were produced. 151 most abundant vsiRNAs were predicted to target 844 rice genes, including several types of host resistance or pathogenesis related genes encoding F-box/LRR proteins, receptor-like protein kinases, universal stress proteins, tobamovirus multiplication proteins, and RNA silencing components OsDCL2a and OsAGO17 respectively, some of which showed down regulation in infected plants in RT-qPCR. GO and KEGG classification showed that a majority of the predicted targets were related to cell parts and cellular processes and involved in carbohydrate metabolism, translation, and signal transduction. The silencing component genes OsDCL2a, OsDCL2b, OsDCL4, and OsAGO18 were down regulated, while OsAGO1d, OsAGO2, OsRDR1 and OsRDR6 were up regulated, significantly, upon SRBSDV infection. CONCLUSIONS SRBSDV can regulate the expression of rice RNA silencing pathway components and the virus might compromise host defense and influence host pathogenesis via siRNA pathways.
Collapse
Affiliation(s)
- Donglin Xu
- Key Laboratory of Microbial Signals and Disease Control of Guangdong Province, College of Agriculture, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Guohui Zhou
- Key Laboratory of Microbial Signals and Disease Control of Guangdong Province, College of Agriculture, South China Agricultural University, 510642, Guangzhou, Guangdong, China.
| |
Collapse
|
41
|
Xu D, Zhou G. Characteristics of siRNAs derived from Southern rice black-streaked dwarf virus in infected rice and their potential role in host gene regulation. Virol J 2017; 14:27. [PMID: 28183327 PMCID: PMC5301327 DOI: 10.1186/s12985-017-0699-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/07/2017] [Indexed: 11/10/2022] Open
Abstract
Background Virus-derived siRNAs (vsiRNAs)-mediated RNA silencing plays important roles in interaction between plant viruses and their hosts. Southern rice black-streaked dwarf virus (SRBSDV) is a newly emerged devastating rice reovirus with ten dsRNA genomic segments. The characteristics of SRBSDV-derived siRNAs and their biological implications in SRBSDV-rice interaction remain unexplored. Methods VsiRNAs profiling from SRBSDV-infected rice samples was done via small RNA deep sequencing. The putative rice targets of abundantly expressed vsiRNAs were bioinformatically predicted and subjected to functional annotation. Differential expression analysis of rice targets and RNA silencing components between infected and healthy samples was done using RT-qPCR. Results The vsiRNA was barely detectable at 14 days post infection (dpi) but abundantly present along with elevated expression level of the viral genome at 28 dpi. From the 28-dpi sample, 70,878 reads of 18 ~ 30-nt vsiRNAs were recognized (which mostly were 21-nt and 22-nt), covering 75 ~ 91% of the length of the ten genomic segments respectively. 86% of the vsiRNAs had a <50% GC content and 79% of them were 5’-uridylated or adenylated. The production of vsiRNAs had no strand polarity but varied among segment origins. Each segment had a few hotspot regions where vsiRNAs of high abundance were produced. 151 most abundant vsiRNAs were predicted to target 844 rice genes, including several types of host resistance or pathogenesis related genes encoding F-box/LRR proteins, receptor-like protein kinases, universal stress proteins, tobamovirus multiplication proteins, and RNA silencing components OsDCL2a and OsAGO17 respectively, some of which showed down regulation in infected plants in RT-qPCR. GO and KEGG classification showed that a majority of the predicted targets were related to cell parts and cellular processes and involved in carbohydrate metabolism, translation, and signal transduction. The silencing component genes OsDCL2a, OsDCL2b, OsDCL4, and OsAGO18 were down regulated, while OsAGO1d, OsAGO2, OsRDR1 and OsRDR6 were up regulated, significantly, upon SRBSDV infection. Conclusions SRBSDV can regulate the expression of rice RNA silencing pathway components and the virus might compromise host defense and influence host pathogenesis via siRNA pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0699-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Donglin Xu
- Key Laboratory of Microbial Signals and Disease Control of Guangdong Province, College of Agriculture, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Guohui Zhou
- Key Laboratory of Microbial Signals and Disease Control of Guangdong Province, College of Agriculture, South China Agricultural University, 510642, Guangzhou, Guangdong, China.
| |
Collapse
|
42
|
Chen S, Li F, Liu D, Jiang C, Cui L, Shen L, Liu G, Yang A. Dynamic expression analysis of early response genes induced by potato virus Y in PVY-resistant Nicotiana tabacum. PLANT CELL REPORTS 2017; 36:297-311. [PMID: 27896424 DOI: 10.1007/s00299-016-2080-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/10/2016] [Indexed: 06/06/2023]
Abstract
KEY MESSAGE Dynamic transcriptional changes of the host early responses genes were detected in PVY-resistant tobacco varieties infected with Potato virus Y; PVY resistance is a complex process that needs series of stress responses. Potato virus Y (PVY) causes a severe viral disease in cultivated crops, especially in Solanum plants. To understand the molecular basis of plant responses to the PVY stress, suppression subtractive hybridization (SSH) and microarray approaches were combined to identify the potentially important or novel genes that were involved in early stages (12 h, 1, 2, 3, 5, 8 days) of tobacco response to PVY infection. Dynamic changes of the host plant early responses to PVY infection on a transcriptional level were detected. In total, 167 different expressed ESTs were identified. The majority of genes involved in the metabolic process were found to be down-regulated at 12 h and 1 day, and then up-regulated at least one later period. Genes related to signaling and transcriptions were almost up-regulated at 12 h, 1 or 2 days, while stress response genes were almost up-regulated at a later stage. Genes involved in transcription, transport, cell wall, and several stress responses were found to have changed expression during the PVY infection stage, and numbers of these genes have not been previously reported to be associated with tobacco PVY infection. The diversity expression of these genes indicated that PVY resistance is a complex process that needs a series of stress responses. To resist the PVY infection, the tobacco plant has numerous active and silent responses.
Collapse
Affiliation(s)
- Shuai Chen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Fengxia Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Dan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Caihong Jiang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Lijie Cui
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Lili Shen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Guanshan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
43
|
Orosa B, He Q, Mesmar J, Gilroy EM, McLellan H, Yang C, Craig A, Bailey M, Zhang C, Moore JD, Boevink PC, Tian Z, Birch PRJ, Sadanandom A. BTB-BACK Domain Protein POB1 Suppresses Immune Cell Death by Targeting Ubiquitin E3 ligase PUB17 for Degradation. PLoS Genet 2017; 13:e1006540. [PMID: 28056034 PMCID: PMC5249250 DOI: 10.1371/journal.pgen.1006540] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 01/20/2017] [Accepted: 12/15/2016] [Indexed: 01/24/2023] Open
Abstract
Hypersensitive response programmed cell death (HR-PCD) is a critical feature in plant immunity required for pathogen restriction and prevention of disease development. The precise control of this process is paramount to cell survival and an effective immune response. The discovery of new components that function to suppress HR-PCD will be instrumental in understanding the regulation of this fundamental mechanism. Here we report the identification and characterisation of a BTB domain E3 ligase protein, POB1, that functions to suppress HR-PCD triggered by evolutionarily diverse pathogens. Nicotiana benthamiana and tobacco plants with reduced POB1 activity show accelerated HR-PCD whilst those with increased POB1 levels show attenuated HR-PCD. We demonstrate that POB1 dimerization and nuclear localization are vital for its function in HR-PCD suppression. Using protein-protein interaction assays, we identify the Plant U-Box E3 ligase PUB17, a well established positive regulator of plant innate immunity, as a target for POB1-mediated proteasomal degradation. Using confocal imaging and in planta immunoprecipitation assays we show that POB1 interacts with PUB17 in the nucleus and stimulates its degradation. Mutated versions of POB1 that show reduced interaction with PUB17 fail to suppress HR-PCD, indicating that POB1-mediated degradation of PUB17 U-box E3 ligase is an important step for negative regulation of specific immune pathways in plants. Our data reveals a new mechanism for BTB domain proteins in suppressing HR-PCD in plant innate immune responses.
Collapse
Affiliation(s)
- Beatriz Orosa
- School of Biological and Biomedical Sciences, Durham University, United Kingdom
| | - Qin He
- Division of Plant Sciences, University of Dundee (at JHI), Invergowrie, Dundee, United Kingdom
- Key Laboratory of Horticultural Plant Biology (HAU), Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Joelle Mesmar
- School of Biological and Biomedical Sciences, Durham University, United Kingdom
| | - Eleanor M. Gilroy
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Hazel McLellan
- Division of Plant Sciences, University of Dundee (at JHI), Invergowrie, Dundee, United Kingdom
| | - Chengwei Yang
- School of Biological and Biomedical Sciences, Durham University, United Kingdom
| | - Adam Craig
- School of Biological and Biomedical Sciences, Durham University, United Kingdom
| | - Mark Bailey
- School of Biological and Biomedical Sciences, Durham University, United Kingdom
| | - Cunjin Zhang
- School of Biological and Biomedical Sciences, Durham University, United Kingdom
| | | | - Petra C. Boevink
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Zhendong Tian
- Key Laboratory of Horticultural Plant Biology (HAU), Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Paul R. J. Birch
- Division of Plant Sciences, University of Dundee (at JHI), Invergowrie, Dundee, United Kingdom
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Ari Sadanandom
- School of Biological and Biomedical Sciences, Durham University, United Kingdom
| |
Collapse
|
44
|
Sahu PP, Sharma N, Puranik S, Chakraborty S, Prasad M. Tomato 26S Proteasome subunit RPT4a regulates ToLCNDV transcription and activates hypersensitive response in tomato. Sci Rep 2016; 6:27078. [PMID: 27252084 PMCID: PMC4890432 DOI: 10.1038/srep27078] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/09/2016] [Indexed: 01/05/2023] Open
Abstract
Involvement of 26S proteasomal subunits in plant pathogen-interactions, and the roles of each subunit in independently modulating the activity of many intra- and inter-cellular regulators controlling physiological and defense responses of a plant were well reported. In this regard, we aimed to functionally characterize a Solanum lycopersicum 26S proteasomal subunit RPT4a (SlRPT4) gene, which was differentially expressed after Tomato leaf curl New Delhi virus (ToLCNDV) infection in tolerant cultivar H-88-78-1. Molecular analysis revealed that SlRPT4 protein has an active ATPase activity. SlRPT4 could specifically bind to the stem-loop structure of intergenic region (IR), present in both DNA-A and DNA-B molecule of the bipartite viral genome. Lack of secondary structure in replication-associated gene fragment prevented formation of DNA-protein complex suggesting that binding of SlRPT4 with DNA is secondary structure specific. Interestingly, binding of SlRPT4 to IR inhibited the function of RNA Pol-II and subsequently reduced the bi-directional transcription of ToLCNDV genome. Virus-induced gene silencing of SlRPT4 gene incited conversion of tolerant attributes of cultivar H-88-78-1 into susceptibility. Furthermore, transient overexpression of SlRPT4 resulted in activation of programmed cell death and antioxidant enzymes system. Overall, present study highlights non-proteolytic function of SlRPT4 and their participation in defense pathway against virus infection in tomato.
Collapse
Affiliation(s)
- Pranav Pankaj Sahu
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Namisha Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Swati Puranik
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Supriya Chakraborty
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
45
|
Osorio-Guarín JA, Enciso-Rodríguez FE, González C, Fernández-Pozo N, Mueller LA, Barrero LS. Association analysis for disease resistance to Fusarium oxysporum in cape gooseberry (Physalis peruviana L). BMC Genomics 2016; 17:248. [PMID: 26988219 PMCID: PMC4797340 DOI: 10.1186/s12864-016-2568-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 03/07/2016] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Vascular wilt caused by Fusarium oxysporum is the most important disease in cape gooseberry (Physalis peruviana L.) in Colombia. The development of resistant cultivars is considered one of the most cost-effective means to reduce the impact of this disease. In order to do so, it is necessary to provide breeders with molecular markers and promising germplasm for introgression of different resistance loci as part of breeding schemes. Here we described an association mapping study in cape gooseberry with the goal to: (i) select promising materials for use in plant breeding and (ii) identify SNPs associated with the cape gooseberry resistance response to the F. oxysporum pathogen under greenhouse conditions, as potential markers for cape gooseberry breeding. RESULTS We found a total of 21 accessions with different resistance responses within a diversity panel of 100 cape gooseberry accessions. A total of 60,663 SNPs were also identified within the same panel by means of GBS (Genotyping By Sequencing). Model-based population structure and neighbor-joining analyses showed three populations comprising the cape gooseberry panel. After correction for population structure and kinship, we identified SNPs markers associated with the resistance response against F. oxysporum. The identification of markers was based on common tags using the reference genomes of tomato and potato as well as the root/stem transcriptome of cape gooseberry. By comparing their location with the tomato genome, 16 SNPs were found in genes involved in defense/resistance response to pathogens, likewise when compared with the genome of potato, 12 markers were related. CONCLUSIONS The work presented herein provides the first association mapping study in cape gooseberry showing both the identification of promising accessions with resistance response phenotypes and the identification of a set of SNP markers mapped to defense/resistance response genes of reference genomes. Thus, the work also provides new knowledge on candidate genes involved in the P. peruviana - F. oxysporum pathosystem as a foundation for further validation in marker-assisted selection. The results have important implications for conservation and breeding strategies in cape gooseberry.
Collapse
Affiliation(s)
- Jaime A. Osorio-Guarín
- />Tibaitatá Research Center, Colombian Corporation for Agricultural Research, Corpoica, Km 14 vía Mosquera, Bogotá, Colombia
| | - Felix E. Enciso-Rodríguez
- />Tibaitatá Research Center, Colombian Corporation for Agricultural Research, Corpoica, Km 14 vía Mosquera, Bogotá, Colombia
| | - Carolina González
- />Tibaitatá Research Center, Colombian Corporation for Agricultural Research, Corpoica, Km 14 vía Mosquera, Bogotá, Colombia
| | | | | | - Luz Stella Barrero
- />Agrobiodiversity Department, National Direction of Research and Development, Corpoica, Km 14 vía Mosquera, Bogotá, Colombia
| |
Collapse
|
46
|
Oomycete interactions with plants: infection strategies and resistance principles. Microbiol Mol Biol Rev 2016; 79:263-80. [PMID: 26041933 DOI: 10.1128/mmbr.00010-15] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Oomycota include many economically significant microbial pathogens of crop species. Understanding the mechanisms by which oomycetes infect plants and identifying methods to provide durable resistance are major research goals. Over the last few years, many elicitors that trigger plant immunity have been identified, as well as host genes that mediate susceptibility to oomycete pathogens. The mechanisms behind these processes have subsequently been investigated and many new discoveries made, marking a period of exciting research in the oomycete pathology field. This review provides an introduction to our current knowledge of the pathogenic mechanisms used by oomycetes, including elicitors and effectors, plus an overview of the major principles of host resistance: the established R gene hypothesis and the more recently defined susceptibility (S) gene model. Future directions for development of oomycete-resistant plants are discussed, along with ways that recent discoveries in the field of oomycete-plant interactions are generating novel means of studying how pathogen and symbiont colonizations overlap.
Collapse
|
47
|
Jamann TM, Luo X, Morales L, Kolkman JM, Chung CL, Nelson RJ. A remorin gene is implicated in quantitative disease resistance in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:591-602. [PMID: 26849237 DOI: 10.1007/s00122-015-2650-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/08/2015] [Indexed: 05/02/2023]
Abstract
Quantitative disease resistance is used by plant breeders to improve host resistance. We demonstrate a role for a maize remorin ( ZmREM6.3 ) in quantitative resistance against northern leaf blight using high-resolution fine mapping, expression analysis, and mutants. This is the first evidence of a role for remorins in plant-fungal interactions. Quantitative disease resistance (QDR) is important for the development of crop cultivars and is particularly useful when loci also confer multiple disease resistance. Despite its widespread use, the underlying mechanisms of QDR remain largely unknown. In this study, we fine-mapped a known quantitative trait locus (QTL) conditioning disease resistance on chromosome 1 of maize. This locus confers resistance to three foliar diseases: northern leaf blight (NLB), caused by the fungus Setosphaeria turcica; Stewart's wilt, caused by the bacterium Pantoea stewartii; and common rust, caused by the fungus Puccinia sorghi. The Stewart's wilt QTL was confined to a 5.26-Mb interval, while the rust QTL was reduced to an overlapping 2.56-Mb region. We show tight linkage between the NLB QTL locus and the loci conferring resistance to Stewart's wilt and common rust. Pleiotropy cannot be excluded for the Stewart's wilt and the common rust QTL, as they were fine-mapped to overlapping regions. Four positional candidate genes within the 243-kb NLB interval were examined with expression and mutant analysis: a gene with homology to an F-box gene, a remorin gene (ZmREM6.3), a chaperonin gene, and an uncharacterized gene. The F-box gene and ZmREM6.3 were more highly expressed in the resistant line. Transposon tagging mutants were tested for the chaperonin and ZmREM6.3, and the remorin mutant was found to be more susceptible to NLB. The putative F-box is a strong candidate, but mutants were not available to test this gene. Multiple lines of evidence strongly suggest a role for ZmREM6.3 in quantitative disease resistance.
Collapse
Affiliation(s)
- Tiffany M Jamann
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA.
| | - Xingyu Luo
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Laura Morales
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Judith M Kolkman
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Chia-Lin Chung
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Rebecca J Nelson
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
48
|
Zhou Y, Li M, Zhao F, Zha H, Yang L, Lu Y, Wang G, Shi J, Chen J. Floral Nectary Morphology and Proteomic Analysis of Nectar of Liriodendron tulipifera Linn. FRONTIERS IN PLANT SCIENCE 2016; 7:826. [PMID: 27379122 PMCID: PMC4905952 DOI: 10.3389/fpls.2016.00826] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/26/2016] [Indexed: 05/08/2023]
Abstract
Nectar is a primary nutrient reward for a variety of pollinators. Recent studies have demonstrated that nectar also has defensive functions against microbial invasion. In this study, the Liriodendron tulipifera nectary was first examined by scanning electron microscopy, and then the nectar was analyzed by two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry, which led to identification of 42 nectar proteins involved in various biological functions. Bioinformatic analysis was then performed on an identified novel rubber elongation factor (REF) protein in L. tulipifera nectar. The protein was particularly abundant, representing ∼60% of the major bands of 31 to 43 kDa, and showed high, stage-specific expression in nectary tissue. The REF family proteins are the major allergens in latex. We propose that REF in L. tulipifera nectar has defensive characteristics against microorganisms.
Collapse
Affiliation(s)
- Yanwei Zhou
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry UniversityNanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry UniversityNanjing, China
| | - Meiping Li
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry UniversityNanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry UniversityNanjing, China
| | - Fangfang Zhao
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry UniversityNanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry UniversityNanjing, China
| | - Hongguang Zha
- College of Life and Environment Science, Huangshan UniversityHuangshan, China
| | - Liming Yang
- School of Life science, Huaiyin Normal UniversityHuai’an, China
| | - Ye Lu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry UniversityNanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry UniversityNanjing, China
| | - Guangping Wang
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry UniversityNanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry UniversityNanjing, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry UniversityNanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry UniversityNanjing, China
- *Correspondence: Jinhui Chen, ; Jisen Shi,
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry UniversityNanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry UniversityNanjing, China
- *Correspondence: Jinhui Chen, ; Jisen Shi,
| |
Collapse
|
49
|
Li X, Wu J, Yin L, Zhang Y, Qu J, Lu J. Comparative transcriptome analysis reveals defense-related genes and pathways against downy mildew in Vitis amurensis grapevine. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 95:1-14. [PMID: 26151858 DOI: 10.1016/j.plaphy.2015.06.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/12/2015] [Accepted: 06/24/2015] [Indexed: 05/21/2023]
Abstract
Downy mildew (DM), caused by oomycete Plasmopara viticola (Pv), can lead to severe damage to Vitis vinifera grapevines. Vitis amurensis has generally been regarded as a DM resistant species. However, when V. amurensis 'Shuanghong' were inoculated with Pv strains 'ZJ-1-1' and 'JL-7-2', the former led to obvious DM symptoms (compatible), while the latter did not develop any DM symptoms but exhibited necrosis (incompatible). In order to underlie molecular mechanism in DM resistance, mRNA-seq based expression profiling of 'Shuanghong' was compared at 12, 24, 48 and 72 h post inoculation (hpi) with these two strains. Specific genes and their corresponding pathways responsible for incompatible interaction were extracted by comparing with compatible interaction. In the incompatible interaction, 37 resistance (R) genes were more expressed at the early stage of infection (12 hpi). Similarly, genes involved in defense signaling, including MAPK. ROS/NO, SA, JA, ET and ABA pathways, and genes associated with defense-related metabolites synthesis, such as pathogenesis-related genes and phenylpropanoids/stilbenoids/flavonoids biosynthesizing genes, were also activated mainly during the early stages of infection. On the other hand, Ca(2+) signaling and primary metabolism, such as photosynthesis and fatty acid synthesis, were more repressed after 'JL-7-2' challenge. Further quantification of some key defense-related factors, including phytohormones, phytoalexins and ROS, generally showed much more accumulation during the incompatible interaction, indicating their important roles in DM defense. In addition, a total of 43 and 52 RxLR effectors were detected during 'JL-7-2' and 'ZJ-1-1' infection processes, respectively.
Collapse
Affiliation(s)
- Xinlong Li
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jiao Wu
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ling Yin
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yali Zhang
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Junjie Qu
- Guangxi Crop Genetic Improvement and Biotechnology Key Lab, Guangxi Academy of Agricultural Science, Guangxi, China
| | - Jiang Lu
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
50
|
Naeem ul Hassan M, Zainal Z, Ismail I. Plant kelch containing F-box proteins: structure, evolution and functions. RSC Adv 2015. [DOI: 10.1039/c5ra01875g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Kelch repeat containing F-box proteins; a review on the progress of the research on these plant specific signalling proteins.
Collapse
Affiliation(s)
- M. Naeem ul Hassan
- School of Bioscience and Biotechnology
- Faculty of Science and Technology
- University Kebangsaan Malaysia
- Bangi, 43600
- Malaysia
| | - Zamri Zainal
- School of Bioscience and Biotechnology
- Faculty of Science and Technology
- University Kebangsaan Malaysia
- Bangi, 43600
- Malaysia
| | - Ismanizan Ismail
- School of Bioscience and Biotechnology
- Faculty of Science and Technology
- University Kebangsaan Malaysia
- Bangi, 43600
- Malaysia
| |
Collapse
|