1
|
Liang S, Duan Z, He X, Yang X, Yuan Y, Liang Q, Pan Y, Zhou G, Zhang M, Liu S, Tian Z. Natural variation in GmSW17 controls seed size in soybean. Nat Commun 2024; 15:7417. [PMID: 39198482 PMCID: PMC11358545 DOI: 10.1038/s41467-024-51798-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
Seed size/weight plays an important role in determining crop yield, yet only few genes controlling seed size have been characterized in soybean. Here, we perform a genome-wide association study and identify a major quantitative trait locus (QTL), named GmSW17 (Seed Width 17), on chromosome 17 that determine soybean seed width/weight in natural population. GmSW17 encodes a ubiquitin-specific protease, an ortholog to UBP22, belonging to the ubiquitin-specific protease (USPs/UBPs) family. Further functional investigations reveal that GmSW17 interacts with GmSGF11 and GmENY2 to form a deubiquitinase (DUB) module, which influences H2Bub levels and negatively regulates the expression of GmDP-E2F-1, thereby inhibiting the G1-to-S transition. Population analysis demonstrates that GmSW17 undergo artificial selection during soybean domestication but has not been fixed in modern breeding. In summary, our study identifies a predominant gene related to soybean seed weight, providing potential advantages for high-yield breeding in soybean.
Collapse
Affiliation(s)
- Shan Liang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Xuemei He
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xia Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yaqin Yuan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qianjin Liang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yi Pan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guoan Zhou
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Min Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shulin Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Zhixi Tian
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Zaragoza JZ, Klap K, Heidstra R, Zhou W, Scheres B. The dual role of the RETINOBLASTOMA-RELATED protein in the DNA damage response is coordinated by the interaction with LXCXE-containing proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1194-1206. [PMID: 38321589 DOI: 10.1111/tpj.16665] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
Living organisms possess mechanisms to safeguard genome integrity. To avoid spreading mutations, DNA lesions are detected and cell division is temporarily arrested to allow repair mechanisms. Afterward, cells either resume division or respond to unsuccessful repair by undergoing programmed cell death (PCD). How the success rate of DNA repair connects to later cell fate decisions remains incompletely known, particularly in plants. The Arabidopsis thaliana RETINOBLASTOMA-RELATED1 (RBR) protein and its partner E2FA, play both structural and transcriptional functions in the DNA damage response (DDR). Here we provide evidence that distinct RBR protein interactions with LXCXE motif-containing proteins guide these processes. Using the N849F substitution in the RBR B-pocket domain, which specifically disrupts binding to the LXCXE motif, we show that these interactions are dispensable in unchallenging conditions. However, N849F substitution abolishes RBR nuclear foci and promotes PCD and growth arrest upon genotoxic stress. NAC044, which promotes growth arrest and PCD, accumulates after the initial recruitment of RBR to foci and can bind non-focalized RBR through the LXCXE motif in a phosphorylation-independent manner, allowing interaction at different cell cycle phases. Disrupting NAC044-RBR interaction impairs PCD, but their genetic interaction points to opposite independent roles in the regulation of PCD. The LXCXE-binding dependency of the roles of RBR in the DDR suggests a coordinating mechanism to translate DNA repair success to cell survival. We propose that RBR and NAC044 act in two distinct DDR pathways, but interact to integrate input from both DDR pathways to decide upon an irreversible cell fate decision.
Collapse
Affiliation(s)
- Jorge Zamora Zaragoza
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Department of Biotechnology, Rijk Zwaan Breeding B.V., Eerste Kruisweg 9, 4793 RS, Fijnaart, The Netherlands
| | - Katinka Klap
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Renze Heidstra
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Wenkun Zhou
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ben Scheres
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Department of Biotechnology, Rijk Zwaan Breeding B.V., Eerste Kruisweg 9, 4793 RS, Fijnaart, The Netherlands
| |
Collapse
|
3
|
Rawat SS, Laxmi A. Sugar signals pedal the cell cycle! FRONTIERS IN PLANT SCIENCE 2024; 15:1354561. [PMID: 38562561 PMCID: PMC10982403 DOI: 10.3389/fpls.2024.1354561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024]
Abstract
Cell cycle involves the sequential and reiterative progression of important events leading to cell division. Progression through a specific phase of the cell cycle is under the control of various factors. Since the cell cycle in multicellular eukaryotes responds to multiple extracellular mitogenic cues, its study in higher forms of life becomes all the more important. One such factor regulating cell cycle progression in plants is sugar signalling. Because the growth of organs depends on both cell growth and proliferation, sugars sensing and signalling are key control points linking sugar perception to regulation of downstream factors which facilitate these key developmental transitions. However, the basis of cell cycle control via sugars is intricate and demands exploration. This review deals with the information on sugar and TOR-SnRK1 signalling and how they manoeuvre various events of the cell cycle to ensure proper growth and development.
Collapse
Affiliation(s)
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
4
|
Simonini S, Bencivenga S, Grossniklaus U. A paternal signal induces endosperm proliferation upon fertilization in Arabidopsis. Science 2024; 383:646-653. [PMID: 38330116 DOI: 10.1126/science.adj4996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024]
Abstract
In multicellular organisms, sexual reproduction relies on the formation of highly differentiated cells, the gametes, which await fertilization in a quiescent state. Upon fertilization, the cell cycle resumes. Successful development requires that male and female gametes are in the same phase of the cell cycle. The molecular mechanisms that reinstate cell division in a fertilization-dependent manner are poorly understood in both animals and plants. Using Arabidopsis, we show that a sperm-derived signal induces the proliferation of a female gamete, the central cell, precisely upon fertilization. The central cell is arrested in S phase by the activity of the RETINOBLASTOMA RELATED1 (RBR1) protein. Upon fertilization, delivery of the core cell cycle component CYCD7;1 causes RBR1 degradation and thus S phase progression, ensuring the formation of functional endosperm and, consequently, viable seeds.
Collapse
Affiliation(s)
- Sara Simonini
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Stefano Bencivenga
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Ueli Grossniklaus
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| |
Collapse
|
5
|
Hu Y, Liu Y, Lu L, Tao JJ, Cheng T, Jin M, Wang ZY, Wei JJ, Jiang ZH, Sun WC, Liu CL, Gao F, Zhang Y, Li W, Bi YD, Lai YC, Zhou B, Yu DY, Yin CC, Wei W, Zhang WK, Chen SY, Zhang JS. Global analysis of seed transcriptomes reveals a novel PLATZ regulator for seed size and weight control in soybean. THE NEW PHYTOLOGIST 2023; 240:2436-2454. [PMID: 37840365 DOI: 10.1111/nph.19316] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Seed size and weight are important factors that influence soybean yield. Combining the weighted gene co-expression network analysis (WGCNA) of 45 soybean accessions and gene dynamic changes in seeds at seven developmental stages, we identified candidate genes that may control the seed size/weight. Among these, a PLATZ-type regulator overlapping with 10 seed weight QTLs was further investigated. This zinc-finger transcriptional regulator, named as GmPLATZ, is required for the promotion of seed size and weight in soybean. The GmPLATZ may exert its functions through direct binding to the promoters and activation of the expression of cyclin genes and GmGA20OX for cell proliferation. Overexpression of the GmGA20OX enhanced seed size/weight in soybean. We further found that the GmPLATZ binds to a 32-bp sequence containing a core palindromic element AATGCGCATT. Spacing of the flanking sequences beyond the core element facilitated GmPLATZ binding. An elite haplotype Hap3 was also identified to have higher promoter activity and correlated with higher gene expression and higher seed weight. Orthologues of the GmPLATZ from rice and Arabidopsis play similar roles in seeds. Our study reveals a novel module of GmPLATZ-GmGA20OX/cyclins in regulating seed size and weight and provides valuable targets for breeding of crops with desirable agronomic traits.
Collapse
Affiliation(s)
- Yang Hu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Liu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long Lu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tong Cheng
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Jin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhou-Ya Wang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun-Jie Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Hao Jiang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wan-Cai Sun
- Qilu Zhongke Academy of Modern Microbiology Technology, Jinan, 250018, China
| | - Cheng-Lan Liu
- Qilu Zhongke Academy of Modern Microbiology Technology, Jinan, 250018, China
| | - Feng Gao
- Qilu Zhongke Academy of Modern Microbiology Technology, Jinan, 250018, China
| | - Yong Zhang
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161000, China
| | - Wei Li
- Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Ying-Dong Bi
- Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Yong-Cai Lai
- Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Bin Zhou
- Crop Research Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - De-Yue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Qilu Zhongke Academy of Modern Microbiology Technology, Jinan, 250018, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Williamson D, Tasker-Brown W, Murray JAH, Jones AR, Band LR. Modelling how plant cell-cycle progression leads to cell size regulation. PLoS Comput Biol 2023; 19:e1011503. [PMID: 37862377 PMCID: PMC10653611 DOI: 10.1371/journal.pcbi.1011503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/16/2023] [Accepted: 09/07/2023] [Indexed: 10/22/2023] Open
Abstract
Populations of cells typically maintain a consistent size, despite cell division rarely being precisely symmetrical. Therefore, cells must possess a mechanism of "size control", whereby the cell volume at birth affects cell-cycle progression. While size control mechanisms have been elucidated in a number of other organisms, it is not yet clear how this mechanism functions in plants. Here, we present a mathematical model of the key interactions in the plant cell cycle. Model simulations reveal that the network of interactions exhibits limit-cycle solutions, with biological switches underpinning both the G1/S and G2/M cell-cycle transitions. Embedding this network model within growing cells, we test hypotheses as to how cell-cycle progression can depend on cell size. We investigate two different mechanisms at both the G1/S and G2/M transitions: (i) differential expression of cell-cycle activator and inhibitor proteins (with synthesis of inhibitor proteins being independent of cell size), and (ii) equal inheritance of inhibitor proteins after cell division. The model demonstrates that both these mechanisms can lead to larger daughter cells progressing through the cell cycle more rapidly, and can thus contribute to cell-size control. To test how these features enable size homeostasis over multiple generations, we then simulated these mechanisms in a cell-population model with multiple rounds of cell division. These simulations suggested that integration of size-control mechanisms at both G1/S and G2/M provides long-term cell-size homeostasis. We concluded that while both size independence and equal inheritance of inhibitor proteins can reduce variations in cell size across individual cell-cycle phases, combining size-control mechanisms at both G1/S and G2/M is essential to maintain size homeostasis over multiple generations. Thus, our study reveals how features of the cell-cycle network enable cell-cycle progression to depend on cell size, and provides a mechanistic understanding of how plant cell populations maintain consistent size over generations.
Collapse
Affiliation(s)
- Daniel Williamson
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - William Tasker-Brown
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, United Kingdom
| | - James A. H. Murray
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, United Kingdom
| | - Angharad R. Jones
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, United Kingdom
| | - Leah R. Band
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| |
Collapse
|
7
|
Jiang T, Zhou T. Unraveling the Mechanisms of Virus-Induced Symptom Development in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2830. [PMID: 37570983 PMCID: PMC10421249 DOI: 10.3390/plants12152830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Plant viruses, as obligate intracellular parasites, induce significant changes in the cellular physiology of host cells to facilitate their multiplication. These alterations often lead to the development of symptoms that interfere with normal growth and development, causing USD 60 billion worth of losses per year, worldwide, in both agricultural and horticultural crops. However, existing literature often lacks a clear and concise presentation of the key information regarding the mechanisms underlying plant virus-induced symptoms. To address this, we conducted a comprehensive review to highlight the crucial interactions between plant viruses and host factors, discussing key genes that increase viral virulence and their roles in influencing cellular processes such as dysfunction of chloroplast proteins, hormone manipulation, reactive oxidative species accumulation, and cell cycle control, which are critical for symptom development. Moreover, we explore the alterations in host metabolism and gene expression that are associated with virus-induced symptoms. In addition, the influence of environmental factors on virus-induced symptom development is discussed. By integrating these various aspects, this review provides valuable insights into the complex mechanisms underlying virus-induced symptoms in plants, and emphasizes the urgency of addressing viral diseases to ensure sustainable agriculture and food production.
Collapse
Affiliation(s)
| | - Tao Zhou
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
8
|
Wang J, Li X, Chen X, Tang W, Yu Z, Xu T, Tian H, Ding Z. Dual regulations of cell cycle regulator DPa by auxin in Arabidopsis root distal stem cell maintenance. Proc Natl Acad Sci U S A 2023; 120:e2218503120. [PMID: 37126711 PMCID: PMC10175748 DOI: 10.1073/pnas.2218503120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/29/2023] [Indexed: 05/03/2023] Open
Abstract
The plant hormone auxin plays a key role to maintain root stem cell identity which is essential for root development. However, the molecular mechanism by which auxin regulates root distal stem cell (DSC) identity is not well understood. In this study, we revealed that the cell cycle factor DPa is a vital regulator in the maintenance of root DSC identity through multiple auxin signaling cascades. On the one hand, auxin positively regulates the transcription of DPa via AUXIN RESPONSE FACTOR 7 and ARF19. On the other hand, auxin enhances the protein stability of DPa through MITOGEN-ACTIVATED PROTEIN KINASE 3 (MPK3)/MPK6-mediated phosphorylation. Consistently, mutation of the identified three threonine residues (Thr10, Thr25, and Thr227) of DPa to nonphosphorylated form alanine (DPa3A) highly decreased the phosphorylation level of DPa, which decreased its protein stability and affected the maintenance of root DSC identity. Taken together, this study provides insight into the molecular mechanism of how auxin regulates root distal stem cell identity through the dual regulations of DPa at both transcriptional and posttranslational levels.
Collapse
Affiliation(s)
- Junxia Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, 266237 Qingdao, Shandong, China
| | - Xiaoxuan Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, 266237 Qingdao, Shandong, China
| | - Xiaolu Chen
- Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, 350002Fuzhou, Fujian, China
| | - Wenxin Tang
- Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, 350002Fuzhou, Fujian, China
| | - Zipeng Yu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, 266237 Qingdao, Shandong, China
| | - Tongda Xu
- Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, 350002Fuzhou, Fujian, China
| | - Huiyu Tian
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, 266237 Qingdao, Shandong, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, 266237 Qingdao, Shandong, China
| |
Collapse
|
9
|
Zheng WJ, Li WQ, Peng Y, Shao Y, Tang L, Liu CT, Zhang D, Zhang LJ, Li JH, Luo WZ, Yuan ZC, Zhao BR, Mao BG. E2Fs co-participate in cadmium stress response through activation of MSHs during the cell cycle. FRONTIERS IN PLANT SCIENCE 2022; 13:1068769. [PMID: 36531377 PMCID: PMC9749859 DOI: 10.3389/fpls.2022.1068769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Cadmium is one of the most common heavy metal contaminants found in agricultural fields. MutSα, MutSβ, and MutSγ are three different MutS-associated protein heterodimer complexes consisting of MSH2/MSH6, MSH2/MSH3, and MSH2/MSH7, respectively. These complexes have different mismatch recognition properties and abilities to support MMR. However, changes in mismatch repair genes (OsMSH2, OsMSH3, OsMSH6, and OsMSH7) of the MutS system in rice, one of the most important food crops, under cadmium stress and their association with E2Fs, the key transcription factors affecting cell cycles, are poorly evaluated. In this study, we systematically categorized six rice E2Fs and confirmed that OsMSHs were the downstream target genes of E2F using dual-luciferase reporter assays. In addition, we constructed four msh mutant rice varieties (msh2, msh3, msh6, and msh7) using the CRISPR-Cas9 technology, exposed these mutant rice seedlings to different concentrations of cadmium (0, 2, and 4 mg/L) and observed changes in their phenotype and transcriptomic profiles using RNA-Seq and qRT-PCR. We found that the difference in plant height before and after cadmium stress was more significant in mutant rice seedlings than in wild-type rice seedlings. Transcriptomic profiling and qRT-PCR quantification showed that cadmium stress specifically mobilized cell cycle-related genes ATR, CDKB2;1, MAD2, CycD5;2, CDKA;1, and OsRBR1. Furthermore, we expressed OsE2Fs in yeasts and found that heterologous E2F expression in yeast strains regulated cadmium tolerance by regulating MSHs expression. Further exploration of the underlying mechanisms revealed that cadmium stress may activate the CDKA/CYCD complex, which phosphorylates RBR proteins to release E2F, to regulate downstream MSHs expression and subsequent DNA damage repairment, thereby enhancing the response to cadmium stress.
Collapse
Affiliation(s)
- Wen-Jie Zheng
- Longping Branch, College of Biology, Hunan University, Changsha, China
| | - Wang-Qing Li
- Longping Branch, College of Biology, Hunan University, Changsha, China
| | - Yan Peng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Ye Shao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Li Tang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Ci-Tao Liu
- College of Agricultural, Hunan Agricultural University, Changsha, China
| | - Dan Zhang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
- College of Agricultural, Hunan Agricultural University, Changsha, China
| | - Lan-Jing Zhang
- College of Agricultural, Hunan Agricultural University, Changsha, China
| | - Ji-Huan Li
- College of Agricultural, Hunan Agricultural University, Changsha, China
| | - Wu-Zhong Luo
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Zhi-Cheng Yuan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Bing-Ran Zhao
- Longping Branch, College of Biology, Hunan University, Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
- College of Agricultural, Hunan Agricultural University, Changsha, China
| | - Bi-Gang Mao
- Longping Branch, College of Biology, Hunan University, Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| |
Collapse
|
10
|
Liu F, Lou W, Wang J, Li Q, Shen W. Glutathione produced by γ-glutamyl cysteine synthetase acts downstream of hydrogen to positively influence lateral root branching. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:68-76. [PMID: 34333372 DOI: 10.1016/j.plaphy.2021.07.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen gas (H2) mediation of lateral root (LR) branching was previously described. However, related signaling pathway is largely unexplored. In this study, we discovered that application with H2 using hydrogen-rich water, mimicking the responses of exogenous glutathione (GSH), not only enhanced GSH synthesis, but also induced tomato LR development. The changes in the transcripts of auxin signaling-related genes and cell cycle regulatory genes were matched with above phenotypes. The addition of H2 could trigger higher transcript levels of SlGSH1 and SlGSH2, encoding γ-glutamylcysteine synthetase (γ-ECS) and glutathione synthetase (GS), confirming the stimulation of GSH synthesis. These responses were greatly abolished when the inhibitor of γ-ECS was applied. The inhibition in lateral root primordium development, especially in emergence stage, was also observed. Genetic evidence revealed that the defects in GSH production and lateral rooting in Arabidopsis cad2-1, a γ-ECS defective mutant, were obviously abolished in the presence of GSH compared to those in the presence of H2. Further evidence revealed that mRNA levels of target genes elicited by H2 in wild-type, were differentially impaired in mutant plants. Together, above data clearly demonstrated that γ-ECS-dependent GSH production might be closely associated with H2 control of LR branching.
Collapse
Affiliation(s)
- Feijie Liu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Wang Lou
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Junjie Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qiang Li
- Guangdong Province Agricultural Technology Promotion Center, Guangzhou 510520, China.
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
11
|
Shimotohno A, Aki SS, Takahashi N, Umeda M. Regulation of the Plant Cell Cycle in Response to Hormones and the Environment. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:273-296. [PMID: 33689401 DOI: 10.1146/annurev-arplant-080720-103739] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developmental and environmental signals converge on cell cycle machinery to achieve proper and flexible organogenesis under changing environments. Studies on the plant cell cycle began 30 years ago, and accumulated research has revealed many links between internal and external factors and the cell cycle. In this review, we focus on how phytohormones and environmental signals regulate the cell cycle to enable plants to cope with a fluctuating environment. After introducing key cell cycle regulators, we first discuss how phytohormones and their synergy are important for regulating cell cycle progression and how environmental factors positively and negatively affect cell division. We then focus on the well-studied example of stress-induced G2 arrest and view the current model from an evolutionary perspective. Finally, we discuss the mechanisms controlling the transition from the mitotic cycle to the endocycle, which greatly contributes to cell enlargement and resultant organ growth in plants.
Collapse
Affiliation(s)
- Akie Shimotohno
- Department of Biological Science, The University of Tokyo, Tokyo 113-0033, Japan
- Current affiliation: Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan;
| | - Shiori S Aki
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan; , ,
| | - Naoki Takahashi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan; , ,
| | - Masaaki Umeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan; , ,
| |
Collapse
|
12
|
Zheng T, Dai L, Liu Y, Li S, Zheng M, Zhao Z, Qu GZ. Overexpression Populus d-Type Cyclin Gene PsnCYCD1;1 Influences Cell Division and Produces Curved Leaf in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22115837. [PMID: 34072501 PMCID: PMC8197873 DOI: 10.3390/ijms22115837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
d-type cyclins (CYCDs) are a special class of cyclins and play extremely important roles in plant growth and development. In the plant kingdom, most of the existing studies on CYCDs have been done on herbaceous plants, with few on perennial woody plants. Here, we identified a Populus d-type cyclin gene, PsnCYCD1;1, which is mainly transcribed in leaf buds and stems. The promoter of PsnCYCD1;1 activated GUS gene expression and transgenic Arabidopsis lines were strongly GUS stained in whole seedlings and mature anthers. Moreover, subcellular localization analysis showed the fluorescence signal of PsnCYCD1;1-GFP fusion protein is present in the nucleus. Furthermore, overexpression of the PsnCYCD1;1 gene in Arabidopsis can promote cell division and lead to small cell generation and cytokinin response, resulting in curved leaves and twisted inflorescence stems. Moreover, the transcriptional levels of endogenous genes, such as ASs, KNATs, EXP10, and PHB, were upregulated by PsnCYCD1;1. Together, our results indicated that PsnCYCD1;1 participates in cell division by cytokinin response, providing new information on controlling plant architecture in woody plants.
Collapse
Affiliation(s)
- Tangchun Zheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (T.Z.); (L.D.); (Y.L.); (S.L.); (M.Z.); (Z.Z.)
- National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Lijuan Dai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (T.Z.); (L.D.); (Y.L.); (S.L.); (M.Z.); (Z.Z.)
| | - Yi Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (T.Z.); (L.D.); (Y.L.); (S.L.); (M.Z.); (Z.Z.)
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (T.Z.); (L.D.); (Y.L.); (S.L.); (M.Z.); (Z.Z.)
| | - Mi Zheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (T.Z.); (L.D.); (Y.L.); (S.L.); (M.Z.); (Z.Z.)
| | - Zhongnan Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (T.Z.); (L.D.); (Y.L.); (S.L.); (M.Z.); (Z.Z.)
| | - Guan-Zheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (T.Z.); (L.D.); (Y.L.); (S.L.); (M.Z.); (Z.Z.)
- Correspondence: ; Tel.: +86-451-8219-2693
| |
Collapse
|
13
|
Desvoyes B, Gutierrez C. Roles of plant retinoblastoma protein: cell cycle and beyond. EMBO J 2020; 39:e105802. [PMID: 32865261 PMCID: PMC7527812 DOI: 10.15252/embj.2020105802] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/16/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
The human retinoblastoma (RB1) protein is a tumor suppressor that negatively regulates cell cycle progression through its interaction with members of the E2F/DP family of transcription factors. However, RB-related (RBR) proteins are an early acquisition during eukaryote evolution present in plant lineages, including unicellular algae, ancient plants (ferns, lycophytes, liverworts, mosses), gymnosperms, and angiosperms. The main RBR protein domains and interactions with E2Fs are conserved in all eukaryotes and not only regulate the G1/S transition but also the G2/M transition, as part of DREAM complexes. RBR proteins are also important for asymmetric cell division, stem cell maintenance, and the DNA damage response (DDR). RBR proteins play crucial roles at every developmental phase transition, in association with chromatin factors, as well as during the reproductive phase during female and male gametes production and embryo development. Here, we review the processes where plant RBR proteins play a role and discuss possible avenues of research to obtain a full picture of the multifunctional roles of RBR for plant life.
Collapse
|
14
|
Zluhan-Martínez E, Pérez-Koldenkova V, Ponce-Castañeda MV, Sánchez MDLP, García-Ponce B, Miguel-Hernández S, Álvarez-Buylla ER, Garay-Arroyo A. Beyond What Your Retina Can See: Similarities of Retinoblastoma Function between Plants and Animals, from Developmental Processes to Epigenetic Regulation. Int J Mol Sci 2020; 21:E4925. [PMID: 32664691 PMCID: PMC7404004 DOI: 10.3390/ijms21144925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
The Retinoblastoma protein (pRb) is a key cell cycle regulator conserved in a wide variety of organisms. Experimental analysis of pRb's functions in animals and plants has revealed that this protein participates in cell proliferation and differentiation processes. In addition, pRb in animals and its orthologs in plants (RBR), are part of highly conserved protein complexes which suggest the possibility that analogies exist not only between functions carried out by pRb orthologs themselves, but also in the structure and roles of the protein networks where these proteins are involved. Here, we present examples of pRb/RBR participation in cell cycle control, cell differentiation, and in the regulation of epigenetic changes and chromatin remodeling machinery, highlighting the similarities that exist between the composition of such networks in plants and animals.
Collapse
Affiliation(s)
- Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
- Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán 04510, Mexico
| | - Vadim Pérez-Koldenkova
- Laboratorio Nacional de Microscopía Avanzada, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc, 330. Col. Doctores, Alc. Cuauhtémoc 06720, Mexico;
| | - Martha Verónica Ponce-Castañeda
- Unidad de Investigación Médica en Enfermedades Infecciosas, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Sergio Miguel-Hernández
- Laboratorio de Citopatología Ambiental, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Calle Wilfrido Massieu Esquina Cda, Manuel Stampa 07738, Mexico;
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| |
Collapse
|
15
|
Chen J, Li H, Yang K, Wang Y, Yang L, Hu L, Liu R, Shi Z. Melatonin facilitates lateral root development by coordinating PAO-derived hydrogen peroxide and Rboh-derived superoxide radical. Free Radic Biol Med 2019; 143:534-544. [PMID: 31520769 DOI: 10.1016/j.freeradbiomed.2019.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 10/26/2022]
Abstract
Melatonin, a phytochemical, can regulate lateral root (LR) formation, but the downstream signaling of melatonin remains elusive. Here we investigated the roles of hydrogen peroxide (H2O2) and superoxide radical (O2•‾) in melatonin-promoted LR formation in tomato (Solanum lycopersicum) roots by using physiological, histochemical, bioinformatic, and biochemical approaches. The increase in endogenous melatonin level stimulated reactive oxygen species (ROS)-dependent development of lateral root primordia (LRP) and LR. Melatonin promoted LRP/LR formation and modulated the expression of cell cycle genes (SlCDKA1, SlCYCD3;1, and SlKRP2) by stimulating polyamine oxidase (PAO)-dependent H2O2 production and respiratory burst oxidase homologue (Rboh)-dependent O2•‾ production, respectively. Screening of SlPAOs and SlRbohs gene family combined with gene expression analysis suggested that melatonin-promoted LR formation was correlated to the upregulation of SlPAO1, SlRboh3, and SlRboh4 in LR-emerging zone. Transient expression analysis confirmed that SlPAO1 was able to produce H2O2 while SlRboh3 and SlRboh4 were capable of producing O2•‾. Melatonin-ROS signaling cassette was also found in the regulation of LR formation in rice root and lateral hyphal branching in fungi. These results suggested that SlPAO1-H2O2 and SlRboh3/4-O2•‾ acted as downstream of melatonin to regulate the expression of cell cycle genes, resulting in LRP initiation and LR development. Such findings uncover one of the regulatory pathways for melatonin-regulated LR formation, which extends our knowledge for melatonin-regulated plant intrinsic physiology.
Collapse
Affiliation(s)
- Jian Chen
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Hui Li
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Kang Yang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yongzhu Wang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Lifei Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liangbin Hu
- Department of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Ruixian Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Zhiqi Shi
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
16
|
Ahmad Z, Magyar Z, Bögre L, Papdi C. Cell cycle control by the target of rapamycin signalling pathway in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2275-2284. [PMID: 30918972 DOI: 10.1093/jxb/erz140] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Cells need to ensure a sufficient nutrient and energy supply before committing to proliferate. In response to positive mitogenic signals, such as light, sugar availability, and hormones, the target of rapamycin (TOR) signalling pathway promotes cell growth that connects to the entry and passage through the cell division cycle via multiple signalling mechanisms. Here, we summarize current understanding of cell cycle regulation by the RBR-E2F regulatory hub and the DREAM-like complexes, and highlight possible functional relationships between these regulators and TOR signalling. A genetic screen recently uncovered a downstream signalling component to TOR that regulates cell proliferation, YAK1, a member of the dual specificity tyrosine phosphorylation-regulated kinase (DYRK) family. YAK1 activates the plant-specific SIAMESE-RELATED (SMR) cyclin-dependent kinase inhibitors and therefore could be important to regulate both the CDKA-RBR-E2F pathway to control the G1/S transition and the mitotic CDKB1;1 to control the G2/M transition. TOR, as a master regulator of both protein synthesis-driven cell growth and cell proliferation is also central for cell size homeostasis. We conclude the review by briefly highlighting the potential applications of combining TOR and cell cycle knowledge in the context of ensuring future food security.
Collapse
Affiliation(s)
- Zaki Ahmad
- School of Biological Sciences, Bourne Laboratory. Royal Holloway, University of London, Egham, Surrey, UK
| | - Zoltán Magyar
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences Szeged, Hungary
| | - László Bögre
- School of Biological Sciences, Bourne Laboratory. Royal Holloway, University of London, Egham, Surrey, UK
| | - Csaba Papdi
- School of Biological Sciences, Bourne Laboratory. Royal Holloway, University of London, Egham, Surrey, UK
| |
Collapse
|
17
|
Genome-Wide Analysis of the D-type Cyclin Gene Family Reveals Differential Expression Patterns and Stem Development in the Woody Plant Prunus mume. FORESTS 2019. [DOI: 10.3390/f10020147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cyclins, a prominent class of cell division regulators, play an extremely important role in plant growth and development. D-type cyclins (CYCDs) are the rate-limiting components of the G1 phase. In plants, studies of CYCDs are mainly concerned with herbaceous plants, yet little information is available about these genes in perennial woody plants, especially ornamental plants. Here, twelve Prunus mume CYCD (PmCYCDs) genes are identified and characterized. The PmCYCDs were named on the basis of orthologues in Arabidopsis thaliana and Oryza sativa. Gene structure and conserved domains of each subgroup CYCDs was similar to that of their orthologues in A. thaliana and O. sativa. However, PmCYCDs exhibited different tissue-specific expression patterns in root, stem, leaf, bud, and fruit organs. The results of qRT-PCR showed that all PmCYCDs, except PmCYCD5;2 and PmCYCD7;1, were primarily highly expressed in leaf buds, shoots, and stems. In addition, the transcript levels of PmCYCD genes were analyzed in roots under different treatments, including exogenous applications of NAA, 6-BA, GA3, ABA, and sucrose. Interestingly, although PmCYCDs were induced by sucrose, the extent of gene induction among PmCYCD subgroups varied. The induction of PmCYCD1;2 by hormones depended on the presence of sucrose. PmCYCD3;1 was stimulated by NAA, and induction was strengthened when sugar and hormones were applied together. Taken together, our study demonstrates that PmCYCDs are functional in plant stem development and provides a basis for selecting members of the cyclin gene family as candidate genes for ornamental plant breeding.
Collapse
|
18
|
Gómez MS, Falcone Ferreyra ML, Sheridan ML, Casati P. Arabidopsis E2Fc is required for the DNA damage response under UV-B radiation epistatically over the microRNA396 and independently of E2Fe. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:749-764. [PMID: 30427087 DOI: 10.1111/tpj.14158] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/25/2018] [Accepted: 11/02/2018] [Indexed: 05/17/2023]
Abstract
UV-B radiation inhibits plant growth, and this inhibition is, to a certain extent, regulated by miR396-mediated repression of Growth Regulating Transcription factors (GRFs). Moreover, E2Fe transcription factor also modulates Arabidopsis leaf growth. Here, we provide evidence that, at UV-B intensities that induce DNA damage, E2Fc participates in the inhibition of cell proliferation. We demonstrate that E2Fc-deficient plants show a lower inhibition of leaf size under UV-B conditions that damage DNA, decreased cell death after exposure and altered SOG1 and ATR expression. Interestingly, the previously reported participation of E2Fe in UV-B responses, which is a transcriptional target of E2Fc, is independent and different from that described for E2Fc. Conversely, we here demonstrate that E2Fc has an epistatic role over the miR396 pathway under UV-B conditions. Finally, we show that inhibition of cell proliferation by UV-B is independent of the regulation of class II TCP transcription factors. Together, our results demonstrate that E2Fc is required for miR396 activity on cell proliferation under UV-B, and that its role is independent of E2Fe, probably modulating DNA damage responses through the regulation of SOG1 and ATR transcript levels.
Collapse
Affiliation(s)
- María S Gómez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - María L Falcone Ferreyra
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - María L Sheridan
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| |
Collapse
|
19
|
Zhang QQ, Li Y, Fu ZY, Liu XB, Yuan K, Fang Y, Liu Y, Li G, Zhang XS, Chong K, Ge L. Intact Arabidopsis RPB1 functions in stem cell niches maintenance and cell cycling control. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:150-167. [PMID: 29752751 DOI: 10.1111/tpj.13939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/07/2018] [Accepted: 03/27/2018] [Indexed: 05/14/2023]
Abstract
Plant meristem activity depends on accurate execution of transcriptional networks required for establishing optimum functioning of stem cell niches. An Arabidopsis mutant card1-1 (constitutive auxin response with DR5:GFP) that encodes a truncated RPB1 (RNA Polymerase II's largest subunit) with shortened C-terminal domain (CTD) was identified. Phosphorylation of the CTD repeats of RPB1 is coupled to transcription in eukaryotes. Here we uncover that the truncated CTD of RPB1 disturbed cell cycling and enlarged the size of shoot and root meristem. The defects in patterning of root stem cell niche in card1-1 indicates that intact CTD of RPB1 is necessary for fine-tuning the specific expression of genes responsible for cell-fate determination. The gene-edited plants with different CTD length of RPB1, created by CRISPR-CAS9 technology, confirmed that both the full length and the DK-rich tail of RPB1's CTD play roles in the accurate transcription of CYCB1;1 encoding a cell-cycle marker protein in root meristem and hence participate in maintaining root meristem size. Our experiment proves that the intact RPB1 CTD is necessary for stem cell niche maintenance, which is mediated by transcriptional regulation of cell cycling genes.
Collapse
Affiliation(s)
- Qian-Qian Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Ying Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Zhao-Ying Fu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xun-Biao Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Kai Yuan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Ying Fang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xian-Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Lei Ge
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
20
|
Dubois M, Selden K, Bediée A, Rolland G, Baumberger N, Noir S, Bach L, Lamy G, Granier C, Genschik P. SIAMESE-RELATED1 Is Regulated Posttranslationally and Participates in Repression of Leaf Growth under Moderate Drought. PLANT PHYSIOLOGY 2018; 176:2834-2850. [PMID: 29472278 PMCID: PMC5884595 DOI: 10.1104/pp.17.01712] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/10/2018] [Indexed: 05/06/2023]
Abstract
The plant cell cycle is tightly regulated by factors that integrate endogenous cues and environmental signals to adapt plant growth to changing conditions. Under drought, cell division in young leaves is blocked by an active mechanism, reducing the evaporative surface and conserving energy resources. The molecular function of cyclin-dependent kinase-inhibitory proteins (CKIs) in regulating the cell cycle has already been well studied, but little is known about their involvement in cell cycle regulation under adverse growth conditions. In this study, we show that the transcript of the CKI gene SIAMESE-RELATED1 (SMR1) is quickly induced under moderate drought in young Arabidopsis (Arabidopsis thaliana) leaves. Functional characterization further revealed that SMR1 inhibits cell division and affects meristem activity, thereby restricting the growth of leaves and roots. Moreover, we demonstrate that SMR1 is a short-lived protein that is degraded by the 26S proteasome after being ubiquitinated by a Cullin-RING E3 ubiquitin ligase. Consequently, overexpression of a more stable variant of the SMR1 protein leads to a much stronger phenotype than overexpression of the native SMR1. Under moderate drought, both the SMR1 transcript and SMR1 protein accumulate. Despite this induction, smr1 mutants do not show overall tolerance to drought stress but do show less growth inhibition of young leaves under drought. Surprisingly, the growth-repressive hormone ethylene promotes SMR1 induction, but the classical drought hormone abscisic acid does not.
Collapse
Affiliation(s)
- Marieke Dubois
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg, 67084 Strasbourg, France
| | - Katia Selden
- Biochimie et Physiologie Moléculaire des Plantes, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Montpellier SupAgro, 34060 Montpellier, France
| | - Alexis Bediée
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Université de Montpellier, Institut National de la Recherche Agronomique, Montpellier SupAgro, 34060 Montpellier, France
| | - Gaëlle Rolland
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Université de Montpellier, Institut National de la Recherche Agronomique, Montpellier SupAgro, 34060 Montpellier, France
| | - Nicolas Baumberger
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg, 67084 Strasbourg, France
| | - Sandra Noir
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg, 67084 Strasbourg, France
| | - Lien Bach
- Biochimie et Physiologie Moléculaire des Plantes, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Montpellier SupAgro, 34060 Montpellier, France
| | - Geneviève Lamy
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg, 67084 Strasbourg, France
| | - Christine Granier
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Université de Montpellier, Institut National de la Recherche Agronomique, Montpellier SupAgro, 34060 Montpellier, France
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg, 67084 Strasbourg, France
- Biochimie et Physiologie Moléculaire des Plantes, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Montpellier SupAgro, 34060 Montpellier, France
| |
Collapse
|
21
|
Weimer AK, Matos JL, Sharma N, Patell F, Murray JAH, Dewitte W, Bergmann DC. Lineage- and stage-specific expressed CYCD7;1 coordinates the single symmetric division that creates stomatal guard cells. Development 2018; 145:dev.160671. [PMID: 29467245 DOI: 10.1242/dev.160671] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/13/2018] [Indexed: 11/20/2022]
Abstract
Plants, with cells fixed in place by rigid walls, often utilize spatial and temporally distinct cell division programs to organize and maintain organs. This leads to the question of how developmental regulators interact with the cell cycle machinery to link cell division events with particular developmental trajectories. In Arabidopsis leaves, the development of stomata, two-celled epidermal valves that mediate plant-atmosphere gas exchange, relies on a series of oriented stem cell-like asymmetric divisions followed by a single symmetric division. The stomatal lineage is embedded in a tissue in which other cells transition from proliferation to postmitotic differentiation earlier, necessitating stomatal lineage-specific factors to prolong competence to divide. We show that the D-type cyclin, CYCD7;1, is specifically expressed just prior to the symmetric guard cell-forming division, and that it is limiting for this division. Further, we find that CYCD7;1 is capable of promoting divisions in multiple contexts, likely through RBR1-dependent promotion of the G1/S transition, but that CYCD7;1 is regulated at the transcriptional level by cell type-specific transcription factors that confine its expression to the appropriate developmental window.
Collapse
Affiliation(s)
- Annika K Weimer
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Juliana L Matos
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Nidhi Sharma
- Howard Hughes Medical Institute (HHMI), Stanford University, Stanford, CA 94305, USA
| | - Farah Patell
- Cardiff School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK.,Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | - James A H Murray
- Cardiff School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK.,Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | - Walter Dewitte
- Cardiff School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK.,Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305, USA .,Howard Hughes Medical Institute (HHMI), Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
22
|
Liu H, Zhang H, Dong YX, Hao YJ, Zhang XS. DNA METHYLTRANSFERASE1-mediated shoot regeneration is regulated by cytokinin-induced cell cycle in Arabidopsis. THE NEW PHYTOLOGIST 2018; 217:219-232. [PMID: 28960381 DOI: 10.1111/nph.14814] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/19/2017] [Indexed: 05/22/2023]
Abstract
DNA methylation plays a critical role in diverse biological processes of plants. Arabidopsis DNA METHYLTRANSFERASE1 (MET1) represses shoot regeneration by inhibiting WUSCHEL (WUS) expression, which is essential for shoot initiation. However, the upstream signals regulating MET1 expression during this process are unclear. We analyzed the signals regulating MET1 expression using a number of established strategies, such as genetic analysis, confocal microscopy, quantitative real-time PCR and chromatin immunoprecipitation. MET1 expression patterns underwent dynamic changes with the initiation of WUS during shoot regeneration. The cell cycle regulator E2FA was characterized as an upstream factor directly promoting MET1 expression. Moreover, cytokinin promoted MET1 expression partially by enhancing CYCD3 expression. Our findings reveal that MET1-mediated shoot regeneration is regulated by the cytokinin-induced cell cycle, and provide new insights into the regulation of DNA methylation in shoot regeneration.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Hui Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yu Xiu Dong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yu Jin Hao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| |
Collapse
|
23
|
Mei Y, Yang X, Huang C, Zhang X, Zhou X. Tomato leaf curl Yunnan virus-encoded C4 induces cell division through enhancing stability of Cyclin D 1.1 via impairing NbSKη -mediated phosphorylation in Nicotiana benthamiana. PLoS Pathog 2018; 14:e1006789. [PMID: 29293689 PMCID: PMC5766254 DOI: 10.1371/journal.ppat.1006789] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 01/12/2018] [Accepted: 12/04/2017] [Indexed: 12/27/2022] Open
Abstract
The whitefly-transmitted geminiviruses induce severe developmental abnormalities in plants. Geminivirus-encoded C4 protein functions as one of viral symptom determinants that could induce abnormal cell division. However, the molecular mechanism by which C4 contributes to cell division induction remains unclear. Here we report that tomato leaf curl Yunnan virus (TLCYnV) C4 interacts with a glycogen synthase kinase 3 (GSK3)/SHAGGY-like kinase, designed NbSKη, in Nicotiana benthamiana. Pro32, Asn34 and Thr35 of TLCYnV C4 are critical for its interaction with NbSKη and required for C4-induced typical symptoms. Interestingly, TLCYnV C4 directs NbSKη to the membrane and reduces the nuclear-accumulation of NbSKη. The relocalization of NbSKη impairs phosphorylation dependent degradation on its substrate-Cyclin D1.1 (NbCycD1;1), thereby increasing the accumulation level of NbCycD1;1 and inducing the cell division. Moreover, NbSKη-RNAi, 35S::NbCycD1;1 transgenic N. benthamiana plants have the similar phenotype as 35S::C4 transgenic N. benthamiana plants on callus-like tissue formation resulted from abnormal cell division induction. Thus, this study provides new insights into mechanism of how a viral protein hijacks NbSKη to induce abnormal cell division in plants.
Collapse
Affiliation(s)
- Yuzhen Mei
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changjun Huang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, United States of America
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, United States of America
| | - Xiuren Zhang
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, United States of America
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, United States of America
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
24
|
Zhao C, Lasses T, Bako L, Kong D, Zhao B, Chanda B, Bombarely A, Cruz-Ramírez A, Scheres B, Brunner AM, Beers EP. XYLEM NAC DOMAIN1, an angiosperm NAC transcription factor, inhibits xylem differentiation through conserved motifs that interact with RETINOBLASTOMA-RELATED. THE NEW PHYTOLOGIST 2017; 216:76-89. [PMID: 28742236 DOI: 10.1111/nph.14704] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/13/2017] [Indexed: 05/19/2023]
Abstract
The Arabidopsis thaliana gene XYLEM NAC DOMAIN1 (XND1) is upregulated in xylem tracheary elements. Yet overexpression of XND1 blocks differentiation of tracheary elements. The molecular mechanism of XND1 action was investigated. Phylogenetic and motif analyses indicated that XND1 and its homologs are present only in angiosperms and possess a highly conserved C-terminal region containing linear motifs (CKII-acidic, LXCXE, E2FTD -like and LXCXE-mimic) predicted to interact with the cell cycle and differentiation regulator RETINOBLASTOMA-RELATED (RBR). Protein-protein interaction and functional analyses of XND1 deletion mutants were used to test the importance of RBR-interaction motifs. Deletion of either the LXCXE or the LXCXE-mimic motif reduced both the XND1-RBR interaction and XND1 efficacy as a repressor of differentiation, with loss of the LXCXE motif having the strongest negative impacts. The function of the XND1 C-terminal domain could be partially replaced by RBR fused to the N-terminal domain of XND1. XND1 also transactivated gene expression in yeast and plants. The properties of XND1, a transactivator that depends on multiple linear RBR-interaction motifs to inhibit differentiation, have not previously been described for a plant protein. XND1 harbors an apparently angiosperm-specific combination of interaction motifs potentially linking the general differentiation regulator RBR with a xylem-specific pathway for inhibition of differentiation.
Collapse
Affiliation(s)
- Chengsong Zhao
- Department of Horticulture, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Theres Lasses
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, S-901 87, Umeå, Sweden
| | - Laszlo Bako
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, S-901 87, Umeå, Sweden
| | - Danyu Kong
- Department of Horticulture, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Bingyu Zhao
- Department of Horticulture, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Bidisha Chanda
- Department of Horticulture, Virginia Tech, Blacksburg, VA, 24061, USA
| | | | - Alfredo Cruz-Ramírez
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada, CINVESTAV, Irapuato, Guanajuato, 36821, México
| | - Ben Scheres
- Plant Developmental Biology, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Amy M Brunner
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Eric P Beers
- Department of Horticulture, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
25
|
Li X, Yang Z, Han W, Lu X, Jin S, Yang W, Li J, He W, Qian Y. Fangchinoline suppresses the proliferation, invasion and tumorigenesis of human osteosarcoma cells through the inhibition of PI3K and downstream signaling pathways. Int J Mol Med 2017; 40:311-318. [PMID: 28586029 PMCID: PMC5504998 DOI: 10.3892/ijmm.2017.3013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 05/23/2017] [Indexed: 12/15/2022] Open
Abstract
Osteosarcoma is the most common malignant bone tumor. Most patients diagnosed with osteosarcoma are less than 20 years of age. Osteosarcoma cells proliferate rapidly and invade other tissues. At present, neoadjuvant chemotherapy is the primary pharmacodynamic strategy to prevent the progression of osteosarcoma. However, adverse effects of this strategy limit its long-term application. Previous research has shown that fangchinoline exerts antitumor effects on several types of tumor cells; however, its effect on osteosarcoma cells remains unknown. The present study evaluated the effects of fangchinoline on the proliferation, apoptosis, migration and invasion of osteosarcoma cells in vitro and on their tumorigenesis in vivo and determined the possible underlying mechanism of action. Fangchinoline-treated MG63 and U20S cells showed significantly decreased proliferation and significantly increased apoptosis. Fangchinoline markedly suppressed the migration and invasion of the MG63 cells. Fangchinoline-treated MG63 cells showed significantly decreased expression of phosphoinositide 3-kinase (PI3K) and Aktp-Thr308. Moreover, fangchinoline-treated MG63 cells showed downregulated expression of cyclin D1 and matrix metalloproteinase 2 and 9, which act downstream of PI3K, and upregulated expression of caspase-3 and caspase-8. Furthermore, fangchinoline suppressed the growth of subcutaneous osteosarcoma tumors in Balb/c mice subcutaneously injected with osteosarcoma cells. These findings suggest that fangchinoline inhibits the progression of osteosarcoma by suppressing the proliferation, migration and invasion and by accelerating the apoptosis of osteosarcoma cells. In addition, our results suggest that the mechanism underlying the antitumor effects of fangchinoline involve the inhibition of PI3K and its downstream signaling pathways.
Collapse
Affiliation(s)
- Xiucheng Li
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Zhifan Yang
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Weiqi Han
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Xuanyuan Lu
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Songtao Jin
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Wanlei Yang
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Jianlei Li
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Wei He
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Yu Qian
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| |
Collapse
|
26
|
Garza-Aguilar SM, Lara-Núñez A, García-Ramírez E, Vázquez-Ramos JM. Modulation of CycD3;1-CDK complexes by phytohormones and sucrose during maize germination. PHYSIOLOGIA PLANTARUM 2017; 160:84-97. [PMID: 27995635 DOI: 10.1111/ppl.12537] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/14/2016] [Accepted: 12/12/2016] [Indexed: 06/06/2023]
Abstract
Maize CycD3;1 associates to CDKA or CDKB1;1 proteins during germination and the complexes formed develop kinase activity. These complexes appear to vary in size as germination proceeds, suggesting association to different sets of proteins. CycD3;1 and associated CDK proteins respond to phytohormones and sucrose. Results revealed a reduction in the CycD3;1 protein amount along germination in the presence of indoleacetic acid (IAA) or abscisic acid (ABA), although in the latter protein levels recover at the end of germination. While the levels of CDKA increase with IAA, they decrease with ABA. Both phytohormones, IAA and ABA, increase levels of CDKB1;1 only during the early germination times. CycD3;1 associated kinase activity is only reduced by both phytohormones towards the end of the germination period. On the other hand, lack of sucrose in the imbibition medium strongly reduces CycD3;1 protein levels without affecting the levels of neither CDKA nor CDKB1;1. The corresponding CycD3;1 associated kinase activity is also severely decreased. The presence of sucrose in the medium appears to stabilize the CycD3;1 protein levels.
Collapse
Affiliation(s)
- Sara M Garza-Aguilar
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Aurora Lara-Núñez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Elpidio García-Ramírez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jorge M Vázquez-Ramos
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
27
|
Peláez R, Niculcea M, Martínez A. The Mammalian Peptide Adrenomedullin Acts as a Growth Factor in Tobacco Plants. Front Physiol 2017; 8:219. [PMID: 28446879 PMCID: PMC5388738 DOI: 10.3389/fphys.2017.00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/27/2017] [Indexed: 11/29/2022] Open
Abstract
Growth factors are extracellular signals that regulate cell proliferation and total body mass. Some animal growth factors can work on plant tissues and vice versa. Here we show that the mammalian growth factor adrenomedullin (AM) induces growth in tobacco plants. Addition of synthetic AM resulted in a dose-dependent growth of tobacco calluses. Furthermore, AM transgenic plants showed enhanced survival and significant increases in stem diameter, plant height, leaf length, weight of all organs, and a reduction in the time to flowering when compared to plants transformed with the control vector. These differences were maintained when organs were dried, resulting in a mean total biomass increase of 21.3%. The levels of soluble sugars and proteins in the leaves were unchanged between genotypes. AM transgenic plants had a significantly higher expression of cyclin D3 and the transcription factor E2FB than controls, suggesting that cell cycle regulation may be part of the intracellular signaling of AM in plants. In summary, mammalian AM increases vascular plants' survival and biomass with no apparent detriment of plant's morphological and/or biochemical properties, thus this strategy could be useful for crop productivity improvement.
Collapse
Affiliation(s)
| | | | - Alfredo Martínez
- Biomass Booster LtdLogroño, Spain.,Oncology Area, Center for Biomedical Research of La RiojaLogroño, Spain
| |
Collapse
|
28
|
Godínez-Palma SK, Rosas-Bringas FR, Rosas-Bringas OG, García-Ramírez E, Zamora-Zaragoza J, Vázquez-Ramos JM. Two maize Kip-related proteins differentially interact with, inhibit and are phosphorylated by cyclin D-cyclin-dependent kinase complexes. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1585-1597. [PMID: 28369656 PMCID: PMC5444471 DOI: 10.1093/jxb/erx054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The family of maize Kip-related proteins (KRPs) has been studied and a nomenclature based on the relationship to rice KRP genes is proposed. Expression studies of KRP genes indicate that all are expressed at 24 h of seed germination but expression is differential in the different tissues of maize plantlets. Recombinant KRP1;1 and KRP4;2 proteins, members of different KRP classes, were used to study association to and inhibitory activity on different maize cyclin D (CycD)-cyclin-dependent kinase (CDK) complexes. Kinase activity in CycD2;2-CDK, CycD4;2-CDK, and CycD5;3-CDK complexes was inhibited by both KRPs; however, only KRP1;1 inhibited activity in the CycD6;1-CDK complex, not KRP4;2. Whereas KRP1;1 associated with either CycD2;2 or CycD6;1, and to cyclin-dependent kinase A (CDKA) recombinant proteins, forming ternary complexes, KRP4;2 bound CDKA and CycD2;2 but did not bind CycD6;1, establishing a differential association capacity. All CycD-CDK complexes included here phosphorylated both the retinoblastoma-related (RBR) protein and the two KRPs; interestingly, while KRP4;2 phosphorylated by the CycD2;2-CDK complex increased its inhibitory capacity, when phosphorylated by the CycD6;1-CDK complex the inhibitory capacity was reduced or eliminated. Evidence suggests that the phosphorylated residues in KRP4;2 may be different for every kinase, and this would influence its performance as a cyclin-CDK inhibitor.
Collapse
Affiliation(s)
- Silvia K Godínez-Palma
- Facultad de Química, Departamento de Bioquímica, UNAM, Avenida Universidad y Copilco, México DF 04510, México
| | - Fernando R Rosas-Bringas
- Facultad de Química, Departamento de Bioquímica, UNAM, Avenida Universidad y Copilco, México DF 04510, México
- I. Medizinische Klinik and Poliklinik, Universitätsmedizin der Johannes Gutenberg-Universität Mainz Obere Zahlbacherstr. 63 55131 Mainz, Germany
| | - Omar G Rosas-Bringas
- Facultad de Química, Departamento de Bioquímica, UNAM, Avenida Universidad y Copilco, México DF 04510, México
| | - Elpidio García-Ramírez
- Facultad de Química, Departamento de Bioquímica, UNAM, Avenida Universidad y Copilco, México DF 04510, México
| | - Jorge Zamora-Zaragoza
- Facultad de Química, Departamento de Bioquímica, UNAM, Avenida Universidad y Copilco, México DF 04510, México
- Department of Plant Sciences, Plant Developmental Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Jorge M Vázquez-Ramos
- Facultad de Química, Departamento de Bioquímica, UNAM, Avenida Universidad y Copilco, México DF 04510, México
| |
Collapse
|
29
|
Lee DJ, Choi HJ, Moon ME, Chi YT, Ji KY, Choi D. Superoxide serves as a putative signal molecule for plant cell division: overexpression of CaRLK1 promotes the plant cell cycle via accumulation of O 2- and decrease in H 2 O 2. PHYSIOLOGIA PLANTARUM 2017; 159:228-243. [PMID: 27528370 DOI: 10.1111/ppl.12487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 05/26/2023]
Abstract
Reactive oxygen species (ROS) exert both positive and negative effects on plant growth and development and therefore receive a great deal of attention in current research. A hot pepper, Capsicum annuum receptor-like kinase 1 (CaRLK1) was ectopically expressed in Nicotiana tabacum BY-2 cell and Nicotiana benthamiana plants. This ectopic expression of CaRLK1 enhanced cell division and proliferation in both heterologous systems. Apparently, CaRLK1 is involved in controlling the cell cycle, possibly by inducing expressions of cyclin B1, cyclin D3, cyclin-dependent protein kinase 3, condensin complex subunit 2 and anaphase-promoting complex subunit 11 genes. CaRLK1 overexpression also increased transcript accumulation of NADPH oxidase genes, generation of O2- and catalase (CAT) activity/protein levels. In parallel, it decreased cellular H2 O2 levels and cell size. Treatment with Tiron or diphenyleneiodonium (DPI) both decreased the cell division rate and O2- concentrations, but increased cellular H2 O2 levels. Tobacco BY-2 cells overexpressing CaRLK1 were more sensitive to amino-1,2,4-triazole (3-AT), a CAT inhibitor, than control cells, suggesting that the increased H2 O2 levels may not function as a signal for cell division and proliferation. Overexpression of CaRLK1 stimulated progression of the cell cycle from G0 /G1 phase into the S phase. It is concluded that the CaRLK1 protein plays a pivotal role in controlling the level of O2- as signaling molecule which promotes cell division, concomitant with a reduction in H2 O2 by the induction of CAT activity/protein.
Collapse
Affiliation(s)
- Dong Ju Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Hyun Jun Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Mid-Eum Moon
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and life Sciences, College of Agriculture & Life Sciences, Seoul National University, Seoul, South Korea
| | - Youn-Tae Chi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Kon-Young Ji
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and life Sciences, College of Agriculture & Life Sciences, Seoul National University, Seoul, South Korea
- Seed Biotechnology Institute, Institute of Green Bio Science and Technology, Pyeongchang Campus, Seoul National University, Pyeongchang, South Korea
| |
Collapse
|
30
|
García-Cruz KV, García-Ponce B, Garay-Arroyo A, Sanchez MDLP, Ugartechea-Chirino Y, Desvoyes B, Pacheco-Escobedo MA, Tapia-López R, Ransom-Rodríguez I, Gutierrez C, Alvarez-Buylla ER. The MADS-box XAANTAL1 increases proliferation at the Arabidopsis root stem-cell niche and participates in transition to differentiation by regulating cell-cycle components. ANNALS OF BOTANY 2016; 118:787-796. [PMID: 27474508 PMCID: PMC5055633 DOI: 10.1093/aob/mcw126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/16/2016] [Indexed: 05/08/2023]
Abstract
Background Morphogenesis depends on the concerted modulation of cell proliferation and differentiation. Such modulation is dynamically adjusted in response to various external and internal signals via complex transcriptional regulatory networks that mediate between such signals and regulation of cell-cycle and cellular responses (proliferation, growth, differentiation). In plants, which are sessile, the proliferation/differentiation balance is plastically adjusted during their life cycle and transcriptional networks are important in this process. MADS-box genes are key developmental regulators in eukaryotes, but their role in cell proliferation and differentiation modulation in plants remains poorly studied. Methods We characterize the XAL1 loss-of-function xal1-2 allele and overexpression lines using quantitative cellular and cytometry analyses to explore its role in cell cycle, proliferation, stem-cell patterning and transition to differentiation. We used quantitative PCR and cellular markers to explore if XAL1 regulates cell-cycle components and PLETHORA1 (PLT1) gene expression, as well as confocal microscopy to analyse stem-cell niche organization. Key Results We previously showed that XAANTAL1 (XAL1/AGL12) is necessary for Arabidopsis root development as a promoter of cell proliferation in the root apical meristem. Here, we demonstrate that XAL1 positively regulates the expression of PLT1 and important components of the cell cycle: CYCD3;1, CYCA2;3, CYCB1;1, CDKB1;1 and CDT1a. In addition, we show that xal1-2 mutant plants have a premature transition to differentiation with root hairs appearing closer to the root tip, while endoreplication in these plants is partially compromised. Coincidently, the final size of cortex cells in the mutant is shorter than wild-type cells. Finally, XAL1 overexpression-lines corroborate that this transcription factor is able to promote cell proliferation at the stem-cell niche. Conclusion XAL1 seems to be an important component of the networks that modulate cell proliferation/differentiation transition and stem-cell proliferation during Arabidopsis root development; it also regulates several cell-cycle components.
Collapse
Affiliation(s)
- Karla V. García-Cruz
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México
| | - María De La Paz Sanchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México
| | - Yamel Ugartechea-Chirino
- Centro de Investigación en Dinámica Celular, Facultad de Ciencias, Universidad Autónoma de Morelos, Av. Universidad 1001, Col Chamilpa, Cuernavaca, Morelos, 62209, México
| | - Bénédicte Desvoyes
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Mario A. Pacheco-Escobedo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México
| | - Rosalinda Tapia-López
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México
| | - Ivan Ransom-Rodríguez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México
| | - Crisanto Gutierrez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Elena R. Alvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México
- *For correspondence. E-mail
| |
Collapse
|
31
|
Liu Y, Lai J, Yu M, Wang F, Zhang J, Jiang J, Hu H, Wu Q, Lu G, Xu P, Yang C. The Arabidopsis SUMO E3 Ligase AtMMS21 Dissociates the E2Fa/DPa Complex in Cell Cycle Regulation. THE PLANT CELL 2016; 28:2225-2237. [PMID: 27492969 PMCID: PMC5059808 DOI: 10.1105/tpc.16.00439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/22/2016] [Accepted: 08/01/2016] [Indexed: 05/03/2023]
Abstract
Development requires the proper execution and regulation of the cell cycle via precise, conserved mechanisms. Critically, the E2F/DP complex controls the expression of essential genes during cell cycle transitions. Here, we discovered the molecular function of the Arabidopsis thaliana SUMO E3 ligase METHYL METHANESULFONATE SENSITIVITY GENE21 (AtMMS21) in regulating the cell cycle via the E2Fa/DPa pathway. DPa was identified as an AtMMS21-interacting protein and AtMMS21 competes with E2Fa for interaction with DPa. Moreover, DPa is a substrate for SUMOylation mediated by AtMMS21, and this SUMOylation enhances the dissociation of the E2Fa/DPa complex. AtMMS21 also affects the subcellular localization of E2Fa/DPa. The E2Fa/DPa target genes are upregulated in the root of mms21-1 and mms21-1 mutants showed increased endoreplication. Overexpression of DPa affected the root development of mms21-1, and overexpression of AtMMS21 completely recovered the abnormal phenotypes of 35S:E2Fa-DPa plants. Our results suggest that AtMMS21 dissociates the E2Fa/DPa complex via competition and SUMOylation in the regulation of plant cell cycle.
Collapse
Affiliation(s)
- Yiyang Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Mengyuan Yu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Feige Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Juanjuan Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jieming Jiang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Huan Hu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Qian Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Guohui Lu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Panglian Xu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
32
|
Ahn CS, Cho HK, Lee DH, Sim HJ, Kim SG, Pai HS. Functional characterization of the ribosome biogenesis factors PES, BOP1, and WDR12 (PeBoW), and mechanisms of defective cell growth and proliferation caused by PeBoW deficiency in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5217-32. [PMID: 27440937 PMCID: PMC5014167 DOI: 10.1093/jxb/erw288] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The nucleolar protein pescadillo (PES) controls biogenesis of the 60S ribosomal subunit through functional interactions with Block of Proliferation 1 (BOP1) and WD Repeat Domain 12 (WDR12) in plants. In this study, we determined protein characteristics and in planta functions of BOP1 and WDR12, and characterized defects in plant cell growth and proliferation caused by a deficiency of PeBoW (PES-BOP1-WDR12) proteins. Dexamethasone-inducible RNAi of BOP1 and WDR12 caused developmental arrest and premature senescence in Arabidopsis, similar to the phenotype of PES RNAi. Both the N-terminal domain and WD40 repeats of BOP1 and WDR12 were critical for specific associations with 60S/80S ribosomes. In response to nucleolar stress or DNA damage, PeBoW proteins moved from the nucleolus to the nucleoplasm. Kinematic analyses of leaf growth revealed that depletion of PeBoW proteins led to dramatically suppressed cell proliferation, cell expansion, and epidermal pavement cell differentiation. A deficiency in PeBoW proteins resulted in reduced cyclin-dependent kinase Type A activity, causing reduced phosphorylation of histone H1 and retinoblastoma-related (RBR) protein. PeBoW silencing caused rapid transcriptional modulation of cell-cycle genes, including reduction of E2Fa and Cyclin D family genes, and induction of several KRP genes, accompanied by down-regulation of auxin-related genes and up-regulation of jasmonic acid-related genes. Taken together, these results suggest that the PeBoW proteins involved in ribosome biogenesis play a critical role in plant cell growth and survival, and their depletion leads to inhibition of cell-cycle progression, possibly modulated by phytohormone signaling.
Collapse
Affiliation(s)
- Chang Sook Ahn
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hui Kyung Cho
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Du-Hwa Lee
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hee-Jung Sim
- Center for Genome Engineering, Institute for Basic Science, Daejeon 305-811, Korea
| | - Sang-Gyu Kim
- Center for Genome Engineering, Institute for Basic Science, Daejeon 305-811, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
33
|
Huang J, Wijeratne AJ, Tang C, Zhang T, Fenelon RE, Owen HA, Zhao D. Ectopic expression of TAPETUM DETERMINANT1 affects ovule development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1311-26. [PMID: 26685185 DOI: 10.1093/jxb/erv523] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plants have evolved to extensively employ leucine-rich repeat receptor-like kinases (LRR-RLKs), the largest family of RLKs, to control growth, development, and defense. In Arabidopsis thaliana, the EXCESS MICROSPOROCYTES1 (EMS1) LRR-RLK and its potential small protein ligand TAPETUM DETERMINANT1 (TPD1) are specifically required for anther cell differentiation; however, TPD1 and EMS1 orthologs also control megaspore mother cell proliferation in rice and maize ovules. Here, the molecular function of TPD1 was demonstrated during ovule development in Arabidopsis using a gain-of-function approach. In ovules, the EMS1 gene was primarily expressed in nucellus epidermis and chalaza, whereas the expression of TPD1 was weakly restricted to the distal end of integuments. Ectopic expression of TPD1 caused pleiotropic defects in ovule and seed development. RNA sequencing analysis showed that ectopic expression of TPD1 altered expression of auxin signaling genes and core cell-cycle genes during ovule development. Moreover, ectopic expression of TPD1 not only affected auxin response but also enhanced expression of cyclin genes CYCD3;3 and CYCA2;3 in ovules. Thus, these results provide insight into the molecular mechanism by which TPD1-EMS1 signaling controls plant development possibly via regulation of auxin signaling and cell-cycle genes.
Collapse
Affiliation(s)
- Jian Huang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Asela J Wijeratne
- Molecular and Cellular Imaging Center, Ohio State University, Wooster, OH 44691, USA
| | - Chong Tang
- Department of Biochemistry and Molecular Biology, University of Nevada-Reno, Reno, NV 89557, USA
| | - Tianyu Zhang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Rebecca E Fenelon
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Heather A Owen
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Dazhong Zhao
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| |
Collapse
|
34
|
de Jonge J, Kodde J, Severing EI, Bonnema G, Angenent GC, Immink RGH, Groot SPC. Low Temperature Affects Stem Cell Maintenance in Brassica oleracea Seedlings. FRONTIERS IN PLANT SCIENCE 2016; 7:800. [PMID: 27375654 PMCID: PMC4896912 DOI: 10.3389/fpls.2016.00800] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/22/2016] [Indexed: 05/11/2023]
Abstract
Most of the above ground tissues in higher plants originate from stem cells located in the shoot apical meristem (SAM). Several plant species can suffer from spontaneous stem cell arrest resulting in lack of further shoot development. In Brassica oleracea this SAM arrest is known as blindness and occurs in an unpredictable manner leading to considerable economic losses for plant raisers and farmers. Detailed analyses of seedlings showed that stem cell arrest is triggered by low temperatures during germination. To induce this arrest reproducibly and to study the effect of the environment, an assay was developed. The role of genetic variation on the susceptibility to develop blind seedlings was analyzed by a quantitative genetic mapping approach, using seeds from a double haploid population from a cross between broccoli and Chinese kale, produced at three locations. The analysis revealed, besides an effect of the seed production location, a region on linkage group C3 associated with blindness sensitivity. A subsequent dynamic genome-wide transcriptome analysis resulted in the identification of around 3000 differentially expressed genes early after blindness induction. A large number of cell cycle genes were en masse induced early during the development of blindness, whereas shortly after, all were down-regulated. This miss-regulation of core cell cycle genes is accompanied with a strong reduction of cells reaching the DNA replication phase. From the differentially expressed genes, 90 were located in the QTL region C3. Among them are two genes belonging to the MINICHROMOSOMAL MAINTENANCE gene family, known to be involved in DNA replication, a RETINOBLASTOMA-RELATED gene, a key regulator for cell cycle initiation, and several MutS homologs genes, involved in DNA repair. These genes are potential candidates for being involved in the development of blindness in Brassica oleracea sensitive genotypes.
Collapse
Affiliation(s)
- Jennifer de Jonge
- Bioscience, Plant Research International, Wageningen University and Research CenterWageningen, Netherlands
- Laboratory of Molecular Biology, Wageningen University, Wageningen University and Research CenterWageningen, Netherlands
| | - Jan Kodde
- Bioscience, Plant Research International, Wageningen University and Research CenterWageningen, Netherlands
| | - Edouard I. Severing
- Bioscience, Plant Research International, Wageningen University and Research CenterWageningen, Netherlands
| | - Guusje Bonnema
- Wageningen UR Plant Breeding, Wageningen University, Wageningen University and Research CenterWageningen, Netherlands
| | - Gerco C. Angenent
- Bioscience, Plant Research International, Wageningen University and Research CenterWageningen, Netherlands
- Laboratory of Molecular Biology, Wageningen University, Wageningen University and Research CenterWageningen, Netherlands
| | - Richard G. H. Immink
- Bioscience, Plant Research International, Wageningen University and Research CenterWageningen, Netherlands
- Laboratory of Molecular Biology, Wageningen University, Wageningen University and Research CenterWageningen, Netherlands
| | - Steven P. C. Groot
- Bioscience, Plant Research International, Wageningen University and Research CenterWageningen, Netherlands
- *Correspondence: Steven P. C. Groot,
| |
Collapse
|
35
|
Saavedra L, Catarino R, Heinz T, Heilmann I, Bezanilla M, Malhó R. Phosphatase and Tensin Homolog Is a Growth Repressor of Both Rhizoid and Gametophore Development in the Moss Physcomitrella patens. PLANT PHYSIOLOGY 2015; 169:2572-86. [PMID: 26463087 PMCID: PMC4677911 DOI: 10.1104/pp.15.01197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/08/2015] [Indexed: 05/19/2023]
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid phosphatase implicated in cellular proliferation and survival. In animal cells, loss of PTEN leads to increased levels of phosphatidylinositol (3,4,5)-trisphosphate, stimulation of glucose and lipid metabolism, cellular growth, and morphological changes (related to adaptation and survival). Intriguingly, in plants, phosphatidylinositol (3,4,5)-trisphosphate has not been detected, and the enzymes that synthesize it were never reported. In this study we performed a genetic, biochemical, and functional characterization of the moss Physcomitrella patens PTEN gene family. P. patens has four PTENs, which are ubiquitously expressed during the entire moss life cycle. Using a knock-in approach, we show that all four genes are expressed in growing tissues, namely caulonemal and rhizoid cells. At the subcellular level, PpPTEN-green fluorescent protein fusions localized to the cytosol and the nucleus. Analysis of single and double knockouts revealed no significant phenotypes at different developmental stages, indicative of functional redundancy. However, compared with wild-type triple and quadruple pten knockouts, caulonemal cells grew faster, switched from the juvenile protonemal stage to adult gametophores earlier, and produced more rhizoids. Furthermore, analysis of lipid content and quantitative real-time polymerase chain reaction data performed in quadruple mutants revealed altered phosphoinositide levels [increase in phosphatidylinositol (3,5)-bisphosphate and decrease in phosphatidylinositol 3-phosphate] and up-regulation of marker genes from the synthesis phase of the cell cycle (e.g. P. patens proliferating cell nuclear antigen, ribonucleotide reductase, and minichromosome maintenance) and of the retinoblastoma-related protein gene P. patens retinoblastoma-related protein1. Together, these results suggest that PpPTEN is a suppressor of cell growth and morphogenic development in plants.
Collapse
Affiliation(s)
- Laura Saavedra
- Universidade de Lisboa, Faculdade de Ciências, Biosystems and Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal (L.S., R.C., R.M.);Institute of Biochemistry and Biotechnology/Cellular Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany (T.H., I.H.); andUniversity of Massachusetts, Amherst, Massachusetts 01003 (M.B.)
| | - Rita Catarino
- Universidade de Lisboa, Faculdade de Ciências, Biosystems and Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal (L.S., R.C., R.M.);Institute of Biochemistry and Biotechnology/Cellular Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany (T.H., I.H.); andUniversity of Massachusetts, Amherst, Massachusetts 01003 (M.B.)
| | - Tobias Heinz
- Universidade de Lisboa, Faculdade de Ciências, Biosystems and Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal (L.S., R.C., R.M.);Institute of Biochemistry and Biotechnology/Cellular Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany (T.H., I.H.); andUniversity of Massachusetts, Amherst, Massachusetts 01003 (M.B.)
| | - Ingo Heilmann
- Universidade de Lisboa, Faculdade de Ciências, Biosystems and Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal (L.S., R.C., R.M.);Institute of Biochemistry and Biotechnology/Cellular Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany (T.H., I.H.); andUniversity of Massachusetts, Amherst, Massachusetts 01003 (M.B.)
| | - Magdalena Bezanilla
- Universidade de Lisboa, Faculdade de Ciências, Biosystems and Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal (L.S., R.C., R.M.);Institute of Biochemistry and Biotechnology/Cellular Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany (T.H., I.H.); andUniversity of Massachusetts, Amherst, Massachusetts 01003 (M.B.)
| | - Rui Malhó
- Universidade de Lisboa, Faculdade de Ciências, Biosystems and Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal (L.S., R.C., R.M.);Institute of Biochemistry and Biotechnology/Cellular Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany (T.H., I.H.); andUniversity of Massachusetts, Amherst, Massachusetts 01003 (M.B.)
| |
Collapse
|
36
|
Centomani I, Sgobba A, D'Addabbo P, Dipierro N, Paradiso A, De Gara L, Dipierro S, Viggiano L, de Pinto MC. Involvement of DNA methylation in the control of cell growth during heat stress in tobacco BY-2 cells. PROTOPLASMA 2015; 252:1451-9. [PMID: 25712591 DOI: 10.1007/s00709-015-0772-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/26/2015] [Indexed: 05/24/2023]
Abstract
The alteration of growth patterns, through the adjustment of cell division and expansion, is a characteristic response of plants to environmental stress. In order to study this response in more depth, the effect of heat stress on growth was investigated in tobacco BY-2 cells. The results indicate that heat stress inhibited cell division, by slowing cell cycle progression. Cells were stopped in the pre-mitotic phases, as shown by the increased expression of CycD3-1 and by the decrease in the NtCycA13, NtCyc29 and CDKB1-1 transcripts. The decrease in cell length and the reduced expression of Nt-EXPA5 indicated that cell expansion was also inhibited. Since DNA methylation plays a key role in controlling gene expression, the possibility that the altered expression of genes involved in the control of cell growth, observed during heat stress, could be due to changes in the methylation state of their promoters was investigated. The results show that the altered expression of CycD3-1 and Nt-EXPA5 was consistent with changes in the methylation state of the upstream region of these genes. These results suggest that DNA methylation, controlling the expression of genes involved in plant development, contributes to growth alteration occurring in response to environmental changes.
Collapse
Affiliation(s)
- Isabella Centomani
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Alessandra Sgobba
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Pietro D'Addabbo
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Nunzio Dipierro
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Annalisa Paradiso
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Laura De Gara
- Centro Integrato di Ricerca, Università Campus Bio-Medico di Roma, via A. del Portillo 21, 00128, Rome, Italy
| | - Silvio Dipierro
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Luigi Viggiano
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Maria Concetta de Pinto
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy.
- Istituto di Bioscienze e Biorisorse, CNR, Via G. Amendola 165/A, 70126, Bari, Italy.
| |
Collapse
|
37
|
Strzalka WK, Aggarwal C, Krzeszowiec W, Jakubowska A, Sztatelman O, Banas AK. Arabidopsis PCNAs form complexes with selected D-type cyclins. FRONTIERS IN PLANT SCIENCE 2015; 6:516. [PMID: 26379676 PMCID: PMC4550699 DOI: 10.3389/fpls.2015.00516] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/26/2015] [Indexed: 05/29/2023]
Abstract
Proliferating Cell Nuclear Antigen (PCNA) is a key nuclear protein of eukaryotic cells. It has been shown to form complexes with cyclin dependent kinases, cyclin dependent kinase inhibitors and the D-type cyclins which are involved in the cell cycle control. In Arabidopsis two genes coding for PCNA1 and PCNA2 proteins have been identified. In this study by analyzing Arabidopsis PCNA/CycD complexes we tested the possible functional differentiation of PCNA1/2 proteins in cell cycle control. Most out of the 10 cyclins investigated showed only nuclear localization except CycD2;1, CycD4;1, and CycD4;2 which were observed both in the nucleus and cytoplasm. Using the Y2H, BiFC and FLIM-FRET techniques we identified D-type cyclins which formed complexes with either PCNA1 or PCNA2. Among the candidates tested only CycD1;1, CycD3;1, and CycD3;3 were not detected in a complex with the PCNA proteins. Moreover, our results indicate that the formation of CycD3;2/PCNA and CycD4;1/PCNA complexes can be regulated by other as yet unidentified factor(s). Additionally, FLIM-FRET analyses suggested that in planta the distance between PCNA1/CycD4;1, PCNA1/CycD6;1, PCNA1/CycD7;1, and PCNA2/CycD4;2 proteins was shorter than that between PCNA2/CycD4;1, PCNA2/CycD6;1, PCNA2/CycD7;1, and PCNA1/CycD4;2 pairs. These data indicate that the nine amino acid differences between PCNA1 and PCNA2 have an impact on the architecture of Arabidopsis CycD/PCNA complexes.
Collapse
Affiliation(s)
- Wojciech K. Strzalka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
- The Bioremediation Department, Malopolska Centre of Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Chhavi Aggarwal
- Department of Gene Expression, Faculty of Biology, Adam Mickiewicz UniversityPoznan, Poland
| | - Weronika Krzeszowiec
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Agata Jakubowska
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Olga Sztatelman
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Agnieszka K. Banas
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| |
Collapse
|
38
|
Takatsuka H, Umeda-Hara C, Umeda M. Cyclin-dependent kinase-activating kinases CDKD;1 and CDKD;3 are essential for preserving mitotic activity in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:1004-1017. [PMID: 25942995 DOI: 10.1111/tpj.12872] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 04/14/2015] [Accepted: 04/24/2015] [Indexed: 05/23/2023]
Abstract
For the full activation of cyclin-dependent kinases (CDKs), not only cyclin binding but also CDK phosphorylation is required. This activating phosphorylation is mediated by CDK-activating kinases (CAKs). Arabidopsis has four genes showing similarity to vertebrate-type CAKs, three CDKDs (CDKD;1-CDKD;3) and one CDKF (CDKF;1). We previously found that the cdkf;1 mutant is defective in post-embryonic development, even though the kinase activities of core CDKs remain unchanged relative to the wild type. This raised a question about the involvement of CDKDs in CDK activation in planta. Here we report that the cdkd;1 cdkd;3 double mutant showed gametophytic lethality. Most cdkd;1-1 cdkd;3-1 pollen grains were defective in pollen mitosis I and II, producing one-cell or two-cell pollen grains that lacked fertilization ability. We also found that the double knock-out of CDKD;1 and CDKD;3 caused arrest and/or delay in the progression of female gametogenesis at multiple steps. Our genetic analyses revealed that the functions of CDKF;1 and CDKD;1 or CDKD;3 do not overlap, either during gametophyte and embryo development or in post-embryonic development. Consistent with these analyses, CDKF;1 expression in the cdkd;1-1 cdkd;3-1 mutant could not rescue the gametophytic lethality. These results suggest that, in Arabidopsis, CDKD;1 and CDKD;3 function as CAKs controlling mitosis, whereas CDKF;1 plays a distinct role, mainly in post-embryonic development. We propose that CDKD;1 and CDKD;3 phosphorylate and activate all core CDKs, CDKA, CDKB1 and CDKB2, thereby governing cell cycle progression throughout plant development.
Collapse
Affiliation(s)
- Hirotomo Takatsuka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Chikage Umeda-Hara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Masaaki Umeda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
- JST, CREST, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
39
|
Ishikawa M, Hasebe M. Cell cycle reentry from the late S phase: implications from stem cell formation in the moss Physcomitrella patens. JOURNAL OF PLANT RESEARCH 2015; 128:399-405. [PMID: 25801272 DOI: 10.1007/s10265-015-0713-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/22/2015] [Indexed: 06/04/2023]
Abstract
Differentiated cells are in a non-dividing, quiescent state, but some differentiated cells can reenter the cell cycle in response to appropriate stimuli. Quiescent cells are generally arrested at the G0/G1 phase, reenter the cell cycle, and progress to the S phase to replicate their genomic DNA. On the other hand, some types of cells are arrested at the different phase and reenter the cell cycle from there. In the moss Physcomitrella patens, the differentiated leaf cells of gametophores formed in the haploid generation contain approximately 2C DNA content, and DNA synthesis is necessary for reentry into the cell cycle, which is suggested to be arrested at late S phase. Here we review various cell-division reactivation processes in which cells reenter the cell cycle from the late S phase, and discuss possible mechanisms of such unusual cell cycle reentries with special emphasis on Physcomitrella.
Collapse
Affiliation(s)
- Masaki Ishikawa
- National Institute for Basic Biology, 38 Nishigonaka, Myodaiji-cho, Okazaki, 444-8585, Japan,
| | | |
Collapse
|
40
|
Polyn S, Willems A, De Veylder L. Cell cycle entry, maintenance, and exit during plant development. CURRENT OPINION IN PLANT BIOLOGY 2015; 23:1-7. [PMID: 25449720 DOI: 10.1016/j.pbi.2014.09.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/22/2014] [Accepted: 09/30/2014] [Indexed: 05/24/2023]
Abstract
Growth and development of plants are driven by the continuous production of new cells at the meristems; hence, it is of pivotal importance for plants to precisely regulate the timing and extent of cell proliferation. Although over the past decades the molecular components underlying cell cycle progression have been the subject of intensive research, knowledge remains scarce on how the various elements connect with developmental pathways. Recently, advances have been made that link cell cycle entry with nutrient availability, cell division maintenance with stem cell organization, and cell cycle exit with reactive oxygen species and developmental programs.
Collapse
Affiliation(s)
- Stefanie Polyn
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Alex Willems
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium.
| |
Collapse
|
41
|
Ábrahám E, Yu P, Farkas I, Darula Z, Varga E, Lukács N, Ayaydin F, Medzihradszky KF, Dombrádi V, Dudits D, Horváth GV. The B″ regulatory subunit of protein phosphatase 2A mediates the dephosphorylation of rice retinoblastoma-related protein-1. PLANT MOLECULAR BIOLOGY 2015; 87:125-141. [PMID: 25398395 DOI: 10.1007/s11103-014-0265-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 11/04/2014] [Indexed: 06/04/2023]
Abstract
The phosphorylation of plant retinoblastoma-related (RBR) proteins by cyclin-dependent kinases (CDKs) is well documented, but the counteracting phosphatases have not been identified yet. We report here that rice retinoblastoma-related protein-1 (OsRBR1) interacted with the B″ subunit of rice protein phosphatase 2A (OsPP2A B″) and underwent reversible phosphorylation during the cell division cycle. The OsRBR1-OsPP2A B" association required B domain in OsRBR1 and the C-terminal region of OsPP2A B″. We found by immunoprecipitation that OsPP2A B″, OsPP2A catalytic subunit subtype II, PSTAIRE-type CDK and OsRBR1 were in the same protein complex, indicating a physical association between the phosphatase, the kinase and their common substrate. OsPP2A B″ contains three predicted CDK phosphorylation sites: Ser95, Ser102 and Ser119. The in vitro phosphorylation of Ser95 and Ser119 with PSTAIRE-kinases was verified by mass spectrometry. We generated a series of phosphorylation site mutants to mimic the dephosphorylated or phosphorylated states of OsPP2A B″, and confirmed that all of the three predicted sites can be phosphorylated. Yeast two-hybrid experiments suggested that the phosphorylation of OsPP2A B″ promoted the formation of the OsPP2A holoenzyme. A triple phosphorylation mimicking OsPP2A B″ mutant containing holoenzyme showed higher activity in phosphatase assays. Our data collectively show that the phosphatase activity of OsPP2A against OsRBR1 is regulated by the phosphorylation of its B″ regulatory subunit. However, the analysis of the effect of okadaic acid, a phosphatase inhibitor, in rice cell suspension cultures revealed that the dephosphorylation of OsRBR1 was completely inhibited only by high dose (300 nM) of the okadaic acid during the cell cycle progression. Therefore the role of the protein phosphatase 1 should be considered as an additional post translational regulatory component of RBR protein function in higher plants.
Collapse
Affiliation(s)
- Edit Ábrahám
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fang SC, Chung CL, Chen CH, Lopez-Paz C, Umen JG. Defects in a new class of sulfate/anion transporter link sulfur acclimation responses to intracellular glutathione levels and cell cycle control. PLANT PHYSIOLOGY 2014; 166:1852-68. [PMID: 25361960 PMCID: PMC4256884 DOI: 10.1104/pp.114.251009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/29/2014] [Indexed: 05/18/2023]
Abstract
We previously identified a mutation, suppressor of mating type locus3 15-1 (smt15-1), that partially suppresses the cell cycle defects caused by loss of the retinoblastoma tumor suppressor-related protein encoded by the MAT3 gene in Chlamydomonas reinhardtii. smt15-1 single mutants were also found to have a cell cycle defect leading to a small-cell phenotype. SMT15 belongs to a previously uncharacterized subfamily of putative membrane-localized sulfate/anion transporters that contain a sulfate transporter domain and are found in a widely distributed subset of eukaryotes and bacteria. Although we observed that smt15-1 has a defect in acclimation to sulfur-limited growth conditions, sulfur acclimation (sac) mutants, which are more severely defective for acclimation to sulfur limitation, do not have cell cycle defects and cannot suppress mat3. Moreover, we found that smt15-1, but not sac mutants, overaccumulates glutathione. In wild-type cells, glutathione fluctuated during the cell cycle, with highest levels in mid G1 phase and lower levels during S and M phases, while in smt15-1, glutathione levels remained elevated during S and M. In addition to increased total glutathione levels, smt15-1 cells had an increased reduced-to-oxidized glutathione redox ratio throughout the cell cycle. These data suggest a role for SMT15 in maintaining glutathione homeostasis that impacts the cell cycle and sulfur acclimation responses.
Collapse
Affiliation(s)
- Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan County 741, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Institute of Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (C.-L.C.); andDonald Danforth Plant Science Center, St. Louis, Missouri 63132 (C.L.-P., J.G.U.)
| | - Chin-Lin Chung
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan County 741, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Institute of Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (C.-L.C.); andDonald Danforth Plant Science Center, St. Louis, Missouri 63132 (C.L.-P., J.G.U.)
| | - Chun-Han Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan County 741, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Institute of Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (C.-L.C.); andDonald Danforth Plant Science Center, St. Louis, Missouri 63132 (C.L.-P., J.G.U.)
| | - Cristina Lopez-Paz
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan County 741, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Institute of Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (C.-L.C.); andDonald Danforth Plant Science Center, St. Louis, Missouri 63132 (C.L.-P., J.G.U.)
| | - James G Umen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan County 741, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Institute of Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (C.-L.C.); andDonald Danforth Plant Science Center, St. Louis, Missouri 63132 (C.L.-P., J.G.U.)
| |
Collapse
|
43
|
Sun X, Ling S, Lu Z, Ouyang YD, Liu S, Yao J. OsNF-YB1, a rice endosperm-specific gene, is essential for cell proliferation in endosperm development. Gene 2014; 551:214-21. [PMID: 25178525 DOI: 10.1016/j.gene.2014.08.059] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 08/19/2014] [Accepted: 08/28/2014] [Indexed: 12/23/2022]
Abstract
Cell cycle regulators are crucial for normal endosperm development and seed size determination. However, how the cell cycle related genes regulate endosperm development remains unclear. In this study, we reported a rice Nuclear Factor Y (NF-Y) gene OsNF-YB1, which was also identified as an endosperm-specific gene. Transcriptional profiling and promoter analysis revealed that OsNF-YB1 was highly expressed at the early stages of rice endosperm development (5-7 DAP, days after pollination). Repression of OsNF-YB1 resulted in differential expression of the genes in cell cycle pathway, which caused abnormal seeds with defected embryo and endosperm. Basic cytological analysis demonstrated that the reduced endosperm cell numbers disintegrated with the development of those abnormal seeds in OsNF-YB1 RNAi plants. Taken together, these results suggested that the endosperm-specific gene OsNF-YB1 might be a cell cycle regulator and played a role in maintaining the endosperm cell proliferation.
Collapse
Affiliation(s)
- Xiaocong Sun
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sheng Ling
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhanhua Lu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi-Dan Ouyang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shasha Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jialing Yao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
44
|
Forzani C, Aichinger E, Sornay E, Willemsen V, Laux T, Dewitte W, Murray JAH. WOX5 suppresses CYCLIN D activity to establish quiescence at the center of the root stem cell niche. Curr Biol 2014; 24:1939-44. [PMID: 25127220 PMCID: PMC4148176 DOI: 10.1016/j.cub.2014.07.019] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/09/2014] [Accepted: 07/08/2014] [Indexed: 11/28/2022]
Abstract
In Arabidopsis, stem cells maintain the provision of new cells for root growth. They surround a group of slowly dividing cells named the quiescent center (QC), and, together, they form the stem cell niche (SCN). The QC acts as the signaling center of the SCN, repressing differentiation of the surrounding stem cells [1] and providing a pool of cells able to replace damaged stem cells [2, 3]. Maintenance of the stem cells depends on the transcription factor WUSCHEL-RELATED HOMEOBOX 5 (WOX5), which is specifically expressed in the QC [4]. However, the molecular mechanisms by which WOX5 promotes stem cell fate and whether WOX5 regulates proliferation of the QC are unknown. Here, we reveal a new role for WOX5 in restraining cell division in the cells of the QC, thereby establishing quiescence. In contrast, WOX5 and CYCD3;3/CYCD1;1 both promote cell proliferation in the nascent columella. The additional QC divisions occurring in wox5 mutants are suppressed in mutant combinations with the D type cyclins CYCD3;3 and CYCD1;1. Moreover, ectopic expression of CYCD3;3 in the QC is sufficient to induce cell division in the QC. WOX5 thus suppresses QC divisions that are otherwise promoted by CYCD3;3 and CYCD1;1, in part by interacting with the CYCD3;3 promoter to repress CYCD3;3 expression in the QC. Therefore, we propose a specific role for WOX5 in initiating and maintaining quiescence of the QC by excluding CYCD activity from the QC. WOX5 prevents divisions at the root stem cell niche center to initiate quiescence WOX5 suppresses CYCD expression in the quiescent center to restrict cell divisions WOX5 binds to the CYCD3;3 promoter CYCD3;3 and CYCD1;1 stimulate division during formation of the columella
Collapse
Affiliation(s)
- Celine Forzani
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, UK
| | - Ernst Aichinger
- Faculty of Biology, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Emily Sornay
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, UK
| | - Viola Willemsen
- Plant Developmental Biology, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Thomas Laux
- Faculty of Biology, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Walter Dewitte
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, UK.
| | - James A H Murray
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, UK.
| |
Collapse
|
45
|
Zhou M, Xu M, Wu L, Shen C, Ma H, Lin J. CbCBF from Capsella bursa-pastoris enhances cold tolerance and restrains growth in Nicotiana tabacum by antagonizing with gibberellin and affecting cell cycle signaling. PLANT MOLECULAR BIOLOGY 2014; 85:259-75. [PMID: 24532380 DOI: 10.1007/s11103-014-0181-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 02/06/2014] [Indexed: 05/08/2023]
Abstract
Plant cells respond to cold stress via a regulatory mechanism leading to enhanced cold acclimation accompanied by growth retardation. The C-repeat binding factor (CBF) signaling pathway is essential for cold response of flowering plants. Our previously study documented a novel CBF-like gene from the cold-tolerant Capsella bursa-pastoris named CbCBF, which was responsive to chilling temperatures. Here, we show that CbCBF expression is obviously responsive to chilling, freezing, abscisic acid, gibberellic acid (GA), indoleacetic acid or methyl jasmonate treatments and that the CbCBF:GFP fusion protein was localized to the nucleus. In addition, CbCBF overexpression conferred to the cold-sensitive tobacco plants enhanced tolerance to chilling and freezing, as well as dwarfism and delayed flowering. The leaf cells of CbCBF overexpression tobacco lines attained smaller sizes and underwent delayed cell division with reduced expression of cyclin D genes. The dwarfism of CbCBF transformants can be partially restored by GA application. Consistently, CbCBF overexpression reduced the bioactive gibberellin contents and disturbed the expression of gibberellin metabolic genes in tobacco. Meanwhile, cold induced CbCBF expression and cold tolerance in C. bursa-pastoris are reduced by GA. We conclude that CbCBF confers cold resistance and growth inhibition to tobacco cells by interacting with gibberellin and cell cycle pathways, likely through activation of downstream target genes.
Collapse
Affiliation(s)
- Mingqi Zhou
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China
| | | | | | | | | | | |
Collapse
|
46
|
Kuwabara A, Gruissem W. Arabidopsis RETINOBLASTOMA-RELATED and Polycomb group proteins: cooperation during plant cell differentiation and development. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2667-76. [PMID: 24638900 DOI: 10.1093/jxb/eru069] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
RETINOBLASTOMA (RB) is a tumour suppressor gene originally discovered in patients that develop eye tumours. The pRb protein is now well established as a key cell-cycle regulator which suppresses G1-S transition via interaction with E2F-DP complexes. pRb function is also required for a wide range of biological processes, including the regulation of stem-cell maintenance, cell differentiation, permanent cell-cycle exit, DNA repair, and genome stability. Such multifunctionality of pRb is thought to be facilitated through interactions with various binding partners in a context-dependent manner. Although the molecular network in which RB controls various biological processes is not fully understood, it has been found that pRb interacts with transcription factors and chromatin modifiers to either suppress or promote the expression of key genes during the switch from cell proliferation to differentiation. RETINOBLASTOMA-RELATED (RBR) is the plant orthologue of RB and is also known to negatively control the G1-S transition. Similar to its animal counterpart, plant RBR has various roles throughout plant development; however, much of its molecular functions outside of the G1-S transition are still unknown. One of the better-characterized molecular mechanisms is the cooperation of RBR with the Polycomb repressive complex 2 (PRC2) during plant-specific developmental events. This review summarizes the current understanding of this cooperation and focuses on the processes in Arabidopsis in which the RBR-PRC2 cooperation facilitates cell differentiation and developmental transitions.
Collapse
Affiliation(s)
- Asuka Kuwabara
- Department of Biology, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Wilhelm Gruissem
- Department of Biology, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| |
Collapse
|
47
|
Yang K, Wang H, Xue S, Qu X, Zou J, Le J. Requirement for A-type cyclin-dependent kinase and cyclins for the terminal division in the stomatal lineage of Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2449-61. [PMID: 24687979 PMCID: PMC4036514 DOI: 10.1093/jxb/eru139] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Arabidopsis stoma is a specialized epidermal valve made up of a pair of guard cells around a pore whose aperture controls gas exchange between the shoot and atmosphere. Guard cells (GCs) are produced by a symmetric division of guard mother cells (GMCs). The R2R3-MYB transcription factor FOUR LIPS (FLP) and its paralogue MYB88 restrict the division of a GMC to one. Previously, the upstream regions of several core cell cycle genes were identified as the direct targets of FLP/MYB88, including the B-type cyclin-dependent kinase CDKB1;1 and A2-type cyclin CYCA2;3. Here we show that CDKA;1 is also an immediate direct target of FLP/MYB88 through the binding to cis-regulatory elements in the CDKA;1 promoter region. CDKA;1 activity is required not only for normal GMC divisions but also for the excessive cell overproliferation in flp myb88 mutant GMCs. The impaired defects of GMC division in cdkb1;1 1;2 mutants could be partially rescued by a stage-specific expression of CDKA;1. Although targeted overexpression of CDKA;1 does not affect stomatal development, ectopic expression of the D3-type cyclin CYCD3;2 induces GC subdivision, resulting in a stoma with 3-4 GCs instead of the normal two. Co-overexpression of CDKA;1 with CYCD3;2, but not with CYCA2;3, confers a synergistic effect with respect to GC subdivision. Thus, in addition to a role in stomatal formative asymmetric divisions at early developmental stages, CDKA;1 is needed in triggering GMC symmetric divisions at the late stage of stomatal development. However, timely down-regulation of CDKA;1-CYCD3 activity is required for restriction of GC proliferation.
Collapse
Affiliation(s)
- Kezhen Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China
| | - Hongzhe Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China
| | - Shan Xue
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China
| | - Xiaoxiao Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China
| | - Junjie Zou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China
| | - Jie Le
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing 100093, China
| |
Collapse
|
48
|
Lin HY, Chen JC, Wei MJ, Lien YC, Li HH, Ko SS, Liu ZH, Fang SC. Genome-wide annotation, expression profiling, and protein interaction studies of the core cell-cycle genes in Phalaenopsis aphrodite. PLANT MOLECULAR BIOLOGY 2014; 84:203-26. [PMID: 24222213 PMCID: PMC3840290 DOI: 10.1007/s11103-013-0128-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/03/2013] [Indexed: 05/06/2023]
Abstract
Orchidaceae is one of the most abundant and diverse families in the plant kingdom and its unique developmental patterns have drawn the attention of many evolutionary biologists. Particular areas of interest have included the co-evolution of pollinators and distinct floral structures, and symbiotic relationships with mycorrhizal flora. However, comprehensive studies to decipher the molecular basis of growth and development in orchids remain scarce. Cell proliferation governed by cell-cycle regulation is fundamental to growth and development of the plant body. We took advantage of recently released transcriptome information to systematically isolate and annotate the core cell-cycle regulators in the moth orchid Phalaenopsis aphrodite. Our data verified that Phalaenopsis cyclin-dependent kinase A (CDKA) is an evolutionarily conserved CDK. Expression profiling studies suggested that core cell-cycle genes functioning during the G1/S, S, and G2/M stages were preferentially enriched in the meristematic tissues that have high proliferation activity. In addition, subcellular localization and pairwise interaction analyses of various combinations of CDKs and cyclins, and of E2 promoter-binding factors and dimerization partners confirmed interactions of the functional units. Furthermore, our data showed that expression of the core cell-cycle genes was coordinately regulated during pollination-induced reproductive development. The data obtained establish a fundamental framework for study of the cell-cycle machinery in Phalaenopsis orchids.
Collapse
Affiliation(s)
- Hsiang-Yin Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, No. 59, Siraya Blvd., Xinshi District, Tainan, 741 Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Jhun-Chen Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, No. 59, Siraya Blvd., Xinshi District, Tainan, 741 Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan
| | - Miao-Ju Wei
- Biotechnology Center in Southern Taiwan, Academia Sinica, No. 59, Siraya Blvd., Xinshi District, Tainan, 741 Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan
| | - Yi-Chen Lien
- Biotechnology Center in Southern Taiwan, Academia Sinica, No. 59, Siraya Blvd., Xinshi District, Tainan, 741 Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan
| | - Huang-Hsien Li
- Biotechnology Center in Southern Taiwan, Academia Sinica, No. 59, Siraya Blvd., Xinshi District, Tainan, 741 Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan
| | - Swee-Suak Ko
- Biotechnology Center in Southern Taiwan, Academia Sinica, No. 59, Siraya Blvd., Xinshi District, Tainan, 741 Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan
| | - Zin-Huang Liu
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, No. 59, Siraya Blvd., Xinshi District, Tainan, 741 Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan
| |
Collapse
|
49
|
de Freitas Lima M, Eloy NB, Bottino MC, Hemerly AS, Ferreira PCG. Overexpression of the anaphase-promoting complex (APC) genes in Nicotiana tabacum promotes increasing biomass accumulation. Mol Biol Rep 2013; 40:7093-102. [PMID: 24178345 DOI: 10.1007/s11033-013-2832-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/26/2013] [Indexed: 10/26/2022]
Abstract
The anaphase-promoting complex (APC) plays pivotal roles in cell cycle pathways related to plant development. In this study, we present evidence that overproduction of APC10 from Arabidopsis thaliana in tobacco (Nicotiana tabacum) plants promotes significant increases in biomass. Analyzes of plant's fresh and dried weight, root length, number of days to flower and number of seeds of plants overexpressing AtAPC10 verified an improved agronomic performance of the transgenic plants. Detailed analyzes of the leaf growth at the cellular level, and measurements of leaf cell number, showed that AtAPC10 also produce more cells, showing an enhancement of proliferation in these plants. In addition, crossing of plants overexpressing AtAPC10 and AtCDC27a resulted in a synergistic accumulation of biomass and these transgenic plants exhibited superior characteristics compared to the parental lines. The results of the present study suggest that transgenic plants expressing AtAPC10 and AtAPC10/AtCDC27a concomitantly are promising leads to develop plants with higher biomass.
Collapse
Affiliation(s)
- Marcelo de Freitas Lima
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, CCS, Cidade Universitária - Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil,
| | | | | | | | | |
Collapse
|
50
|
Perilli S, Perez-Perez JM, Di Mambro R, Peris CL, Díaz-Triviño S, Del Bianco M, Pierdonati E, Moubayidin L, Cruz-Ramírez A, Costantino P, Scheres B, Sabatini S. RETINOBLASTOMA-RELATED protein stimulates cell differentiation in the Arabidopsis root meristem by interacting with cytokinin signaling. THE PLANT CELL 2013; 25:4469-78. [PMID: 24285791 PMCID: PMC3875730 DOI: 10.1105/tpc.113.116632] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/04/2013] [Accepted: 11/14/2013] [Indexed: 05/23/2023]
Abstract
Maintenance of mitotic cell clusters such as meristematic cells depends on their capacity to maintain the balance between cell division and cell differentiation necessary to control organ growth. In the Arabidopsis thaliana root meristem, the antagonistic interaction of two hormones, auxin and cytokinin, regulates this balance by positioning the transition zone, where mitotically active cells lose their capacity to divide and initiate their differentiation programs. In animals, a major regulator of both cell division and cell differentiation is the tumor suppressor protein RETINOBLASTOMA. Here, we show that similarly to its homolog in animal systems, the plant RETINOBLASTOMA-RELATED (RBR) protein regulates the differentiation of meristematic cells at the transition zone by allowing mRNA accumulation of AUXIN RESPONSE FACTOR19 (ARF19), a transcription factor involved in cell differentiation. We show that both RBR and the cytokinin-dependent transcription factor ARABIDOPSIS RESPONSE REGULATOR12 are required to activate the transcription of ARF19, which is involved in promoting cell differentiation and thus root growth.
Collapse
Affiliation(s)
- Serena Perilli
- Department of Biology and Biotechnology, Laboratories of Functional Genomics and Proteomics of Model Systems, University of Rome Sapienza, 00185 Rome, Italy
| | - José Manuel Perez-Perez
- Molecular Genetics, Department of Biology, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Riccardo Di Mambro
- Department of Biology and Biotechnology, Laboratories of Functional Genomics and Proteomics of Model Systems, University of Rome Sapienza, 00185 Rome, Italy
| | - Cristina Llavata Peris
- Department of Biology and Biotechnology, Laboratories of Functional Genomics and Proteomics of Model Systems, University of Rome Sapienza, 00185 Rome, Italy
| | - Sara Díaz-Triviño
- Molecular Genetics, Department of Biology, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Marta Del Bianco
- Department of Biology and Biotechnology, Laboratories of Functional Genomics and Proteomics of Model Systems, University of Rome Sapienza, 00185 Rome, Italy
| | - Emanuela Pierdonati
- Department of Biology and Biotechnology, Laboratories of Functional Genomics and Proteomics of Model Systems, University of Rome Sapienza, 00185 Rome, Italy
| | - Laila Moubayidin
- Department of Biology and Biotechnology, Laboratories of Functional Genomics and Proteomics of Model Systems, University of Rome Sapienza, 00185 Rome, Italy
| | - Alfredo Cruz-Ramírez
- Molecular Genetics, Department of Biology, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Paolo Costantino
- Department of Biology and Biotechnology, Laboratories of Functional Genomics and Proteomics of Model Systems, University of Rome Sapienza, 00185 Rome, Italy
| | - Ben Scheres
- Molecular Genetics, Department of Biology, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Sabrina Sabatini
- Department of Biology and Biotechnology, Laboratories of Functional Genomics and Proteomics of Model Systems, University of Rome Sapienza, 00185 Rome, Italy
| |
Collapse
|