1
|
Liu XQ, Liu H, Fu MJ, Zhang LW, Yin SF, Tang Z, Zhao FJ, Huang XY. The cation/H + exchanger OsCAX2 is involved in cadmium uptake and contributes to differential grain cadmium accumulation between Indica and Japonica rice. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137252. [PMID: 39842113 DOI: 10.1016/j.jhazmat.2025.137252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/23/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Rice is a major source of dietary cadmium (Cd), a toxic heavy metal that poses serious threat to human health. How rice takes up and accumulates Cd is not fully understood. Here, we characterize the function of a cation/H+ exchanger, OsCAX2, in Cd uptake in roots and Cd accumulation in shoots and grains. OsCAX2 exhibited Cd and calcium (Ca) transport activities when was heterologously expressed in yeast. OsCAX2 was mainly expressed in roots, particularly in lateral roots, and in the exodermis and endodermis of primary roots. OsCAX2 is localized at the plasma membrane. Knockout of OsCAX2 significantly decreased Cd uptake in roots and Cd accumulation in shoots and grains. Knockout of OsCAX2 also decreased the Ca concentration in roots, but not in shoots or grains. Surprisingly, overexpression of OsCAX2 also resulted in a significant decrease in the Cd concentrations in roots and shoots. We further reveal that the variation in the coding sequence of OsCAX2 contributes to differential grain Cd accumulation between two major rice subspecies, Indica and Japonica. Our results demonstrate that OsCAX2 functions in Cd/Ca uptake in roots and could be a useful target for breeding or genetic engineering low Cd rice varieties.
Collapse
Affiliation(s)
- Xiang-Qian Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Huan Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng-Jie Fu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Li-Wen Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Si-Fan Yin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhong Tang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin-Yuan Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya 572024, China.
| |
Collapse
|
2
|
Zhe Z, Hongjiao Z, Tongtong Y, Kexin W, Jingjing X, Hongrui Z, Siyue Q, Hong A, Bo Q, Huihui Z. The homeostasis of ions and reactive oxygen species in root and shoot play crucial roles in the tolerance of alfalfa to salt alkali stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109175. [PMID: 39362124 DOI: 10.1016/j.plaphy.2024.109175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
High pH saline-alkali stress, mainly NaHCO3, limited the development of animal husbandry in Songnen Plain. Ion imbalance and reactive oxygen species (ROS) metabolism disorder caused by saline-alkali stress inhibited plant growth. In this study, we compared the differences in ion absorption, transport and ROS metabolism between saline-tolerant alfalfa (ZD) and saline-sensitive alfalfa (ZM) under NaHCO3 stress using physiology and transcripomics techniques. WGCNA analysis identified key genes associated with NaHCO3 stress-induced changes. NaHCO3 stress inhibited the absorption of K+ and Mg2+, but activated Ca2+ signal. Furthermore, ZD maintained higher K+, Mg2+ and Ca2+ contents and the K+/Na+ ratio than ZM, this is mainly related to the higher expression of proteins or channel-encoding genes involved in ion absorption and transport in ZD. Antioxidant enzyme systems can be activated in response to NaHCO3 stress. Peroxidase (EC 1.11.1.6), catalase (EC 1.11.1.7) and glutathione transferase (EC 2.5.1.18) activities were higher in ZD than ZM, and most genes encoding the relevant enzymes also demonstrated a stronger up-regulation trend in ZD. Although NaHCO3 stress inhibited Trx-Prx pathway, ZD related enzymes and their genes were also inhibited less than ZM. WGCNA results identified many genes involved in ion absorption, transport and antioxidant systems that play an important role in NaHCO3 stress adaptation. Collectively, ZD has the stronger ion homeostasis regulation and ROS scavenging ability, so it's more resistant to NaHCO3. The results provide theoretical guidance for further understanding of the molecular mechanism of NaHCO3 resistance and provide potential genes for research to improve saline-alkali tolerance in alfalfa.
Collapse
Affiliation(s)
- Zhang Zhe
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Zhang Hongjiao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Yao Tongtong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Wang Kexin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Xu Jingjing
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Zhang Hongrui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Qi Siyue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Ao Hong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Qin Bo
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China; Crop Resources Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| | - Zhang Huihui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
3
|
Jamra G, Ghosh S, Singh N, Tripathy MK, Aggarwal A, Singh RDR, Srivastava AK, Kumar A, Pandey GK. Ectopic overexpression of Eleusine coracana CAX3 confers tolerance to metal and ion stress in yeast and Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108613. [PMID: 38696868 DOI: 10.1016/j.plaphy.2024.108613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/22/2024] [Accepted: 04/05/2024] [Indexed: 05/04/2024]
Abstract
Ionic and metal toxicity in plants is still a global problem for the environment, agricultural productivity and ultimately poses human health threats when these metal ions accumulate in edible organs of plants. Metal and ion transport from cytosol to the vacuole is considered an important component of metal and ion tolerance and a plant's potential utility in phytoremediation. Finger millet (Eleusine coracana) is an orphan crop but has prominent nutritional value in comparison to other cereals. Previous transcriptomic studies suggested that one of the calcium/proton exchanger (EcCAX3) is strongly upregulated during different developmental stages of spikes development in plant. This finding led us to speculate that high calcium accumulation in the grain might be because of CAX3 function. Moreover, phylogenetic analysis shows that EcCAX3 is more closely related to foxtail millet, sorghum and rice CAX3 protein. To decipher the functional role of EcCAX3, we have adopted complementation of yeast triple mutant K677 (Δpmc1Δvcx1Δcnb1), which has defective calcium transport machinery. Furthermore, metal tolerance assay shows that EcCAX3 expression conferred tolerance to different metal stresses in yeast. The gain-of-function study suggests that EcCAX3 overexpressing Arabidopsis plants shows better tolerance to higher concentration of different metal ions as compared to wild type Col-0 plants. EcCAX3-overexpression transgenic lines exhibits abundance of metal transporters and cation exchanger transporter transcripts under metal stress conditions. Furthermore, EcCAX3-overexpression lines have higher accumulation of macro- and micro-elements under different metal stress. Overall, this finding highlights the functional role of EcCAX3 in the regulation of metal and ion homeostasis and this could be potentially utilized to engineer metal fortification and generation of stress tolerant crops in near future.
Collapse
Affiliation(s)
- Gautam Jamra
- Dept. of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India; Dept. of Molecular Biology and Genetic Engineering, GBPUAT, Pantnagar Uttarakhand, 263145, India
| | - Soma Ghosh
- Dept. of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Nidhi Singh
- Dept. of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Manas Kumar Tripathy
- Dept. of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Aparna Aggarwal
- Dept. of Molecular Biology and Genetic Engineering, GBPUAT, Pantnagar Uttarakhand, 263145, India
| | - Reema Devi Rajan Singh
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Anil Kumar
- Dept. of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India; Dept. of Molecular Biology and Genetic Engineering, GBPUAT, Pantnagar Uttarakhand, 263145, India; Director Education, Rani Lakshmi Bai Central Agriculture University, Jhansi, NH-75, Near Pahuj Dam, Gwalior Road, Jhansi, Uttar Pradesh, 284003, India.
| | - Girdhar K Pandey
- Dept. of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
4
|
Lian S, Chen Y, Zhou Y, Feng T, Chen J, Liang L, Qian Y, Huang T, Zhang C, Wu F, Zou W, Li Z, Meng L, Li M. Functional differentiation and genetic diversity of rice cation exchanger (CAX) genes and their potential use in rice improvement. Sci Rep 2024; 14:8642. [PMID: 38622172 PMCID: PMC11018787 DOI: 10.1038/s41598-024-58224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
Cation exchanger (CAX) genes play an important role in plant growth/development and response to biotic and abiotic stresses. Here, we tried to obtain important information on the functionalities and phenotypic effects of CAX gene family by systematic analyses of their expression patterns, genetic diversity (gene CDS haplotypes, structural variations, gene presence/absence variations) in 3010 rice genomes and nine parents of 496 Huanghuazhan introgression lines, the frequency shifts of the predominant gcHaps at these loci to artificial selection during modern breeding, and their association with tolerances to several abiotic stresses. Significant amounts of variation also exist in the cis-regulatory elements (CREs) of the OsCAX gene promoters in 50 high-quality rice genomes. The functional differentiation of OsCAX gene family were reflected primarily by their tissue and development specific expression patterns and in varied responses to different treatments, by unique sets of CREs in their promoters and their associations with specific agronomic traits/abiotic stress tolerances. Our results indicated that OsCAX1a and OsCAX2 as general signal transporters were in many processes of rice growth/development and responses to diverse environments, but they might be of less value in rice improvement. OsCAX1b, OsCAX1c, OsCAX3 and OsCAX4 was expected to be of potential value in rice improvement because of their associations with specific traits, responsiveness to specific abiotic stresses or phytohormones, and relatively high gcHap and CRE diversity. Our strategy was demonstrated to be highly efficient to obtain important genetic information on genes/alleles of specific gene family and can be used to systematically characterize the other rice gene families.
Collapse
Affiliation(s)
- Shangshu Lian
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yanjun Chen
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Yanyan Zhou
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Ting Feng
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Jingsi Chen
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Lunping Liang
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Yingzhi Qian
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Tao Huang
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Chenyang Zhang
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Fengcai Wu
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Wenli Zou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Zhikang Li
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Lijun Meng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Min Li
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
5
|
Mathew IE, Rhein HS, Yang J, Gradogna A, Carpaneto A, Guo Q, Tappero R, Scholz-Starke J, Barkla BJ, Hirschi KD, Punshon T. Sequential removal of cation/H + exchangers reveals their additive role in elemental distribution, calcium depletion and anoxia tolerance. PLANT, CELL & ENVIRONMENT 2024; 47:557-573. [PMID: 37916653 DOI: 10.1111/pce.14756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/21/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
Multiple Arabidopsis H+ /Cation exchangers (CAXs) participate in high-capacity transport into the vacuole. Previous studies have analysed single and double mutants that marginally reduced transport; however, assessing phenotypes caused by transport loss has proven enigmatic. Here, we generated quadruple mutants (cax1-4: qKO) that exhibited growth inhibition, an 85% reduction in tonoplast-localised H+ /Ca transport, and enhanced tolerance to anoxic conditions compared to CAX1 mutants. Leveraging inductively coupled plasma mass spectrometry (ICP-MS) and synchrotron X-ray fluorescence (SXRF), we demonstrate CAX transporters work together to regulate leaf elemental content: ICP-MS analysis showed that the elemental concentrations in leaves strongly correlated with the number of CAX mutations; SXRF imaging showed changes in element partitioning not present in single CAX mutants and qKO had a 40% reduction in calcium (Ca) abundance. Reduced endogenous Ca may promote anoxia tolerance; wild-type plants grown in Ca-limited conditions were anoxia tolerant. Sequential reduction of CAXs increased mRNA expression and protein abundance changes associated with reactive oxygen species and stress signalling pathways. Multiple CAXs participate in postanoxia recovery as their concerted removal heightened changes in postanoxia Ca signalling. This work showcases the integrated and diverse function of H+ /Cation transporters and demonstrates the ability to improve anoxia tolerance through diminishing endogenous Ca levels.
Collapse
Affiliation(s)
- Iny Elizebeth Mathew
- Pediatrics-Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, USA
| | - Hormat Shadgou Rhein
- Pediatrics-Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, USA
| | - Jian Yang
- Pediatrics-Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, USA
| | - Antonella Gradogna
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Armando Carpaneto
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Genova, Italy
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genova, Italy
| | - Qi Guo
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Ryan Tappero
- Brookhaven National Laboratory, Photon Sciences Department, Upton, New York, USA
| | | | - Bronwyn J Barkla
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Kendal D Hirschi
- Pediatrics-Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, USA
| | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
6
|
Kanamori K, Nishimura K, Horie T, Sato MH, Kajino T, Koyama T, Ariga H, Tanaka K, Yotsui I, Sakata Y, Taji T. Golgi apparatus-localized CATION CALCIUM EXCHANGER4 promotes osmotolerance of Arabidopsis. PLANT PHYSIOLOGY 2024; 194:1166-1180. [PMID: 37878763 PMCID: PMC10828203 DOI: 10.1093/plphys/kiad571] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
Calcium (Ca2+) is a major ion in living organisms, where it acts as a second messenger for various biological phenomena. The Golgi apparatus retains a higher Ca2+ concentration than the cytosol and returns cytosolic Ca2+ to basal levels after transient elevation in response to environmental stimuli such as osmotic stress. However, the Ca2+ transporters localized in the Golgi apparatus of plants have not been clarified. We previously found that a wild-type (WT) salt-tolerant Arabidopsis (Arabidopsis thaliana) accession, Bu-5, showed osmotic tolerance after salt acclimatization, whereas the Col-0 WT did not. Here, we isolated a Bu-5 background mutant gene, acquired osmotolerance-defective 6 (aod6), which reduces tolerance to osmotic, salt, and oxidative stresses, with a smaller plant size than the WT. The causal gene of the aod6 mutant encodes CATION CALCIUM EXCHANGER4 (CCX4). The aod6 mutant was more sensitive than the WT to both deficient and excessive Ca2+. In addition, aod6 accumulated higher Ca2+ than the WT in the shoots, suggesting that Ca2+ homeostasis is disturbed in aod6. CCX4 expression suppressed the Ca2+ hypersensitivity of the csg2 (calcium sensitive growth 2) yeast (Saccharomyces cerevisiae) mutant under excess CaCl2 conditions. We also found that aod6 enhanced MAP kinase 3/6 (MPK3/6)-mediated immune responses under osmotic stress. Subcellular localization analysis of mGFP-CCX4 showed GFP signals adjacent to the trans-Golgi apparatus network and co-localization with Golgi apparatus-localized markers, suggesting that CCX4 localizes in the Golgi apparatus. These results suggest that CCX4 is a Golgi apparatus-localized transporter involved in the Ca2+ response and plays important roles in osmotic tolerance, shoot Ca2+ content, and normal growth of Arabidopsis.
Collapse
Affiliation(s)
- Kazuki Kanamori
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Kohji Nishimura
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue 690-8504, Japan
| | - Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano 386-8567, Japan
| | - Masa H Sato
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Takuma Kajino
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Takashi Koyama
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Hirotaka Ariga
- Department of Plant Sciences, Institute of Agrobiological Science, NARO, Ibaraki 305-8602, Japan
| | - Keisuke Tanaka
- NODAI Genome Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Izumi Yotsui
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Yoichi Sakata
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Teruaki Taji
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| |
Collapse
|
7
|
Jobert F, Yadav S, Robert S. Auxin as an architect of the pectin matrix. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6933-6949. [PMID: 37166384 PMCID: PMC10690733 DOI: 10.1093/jxb/erad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
Auxin is a versatile plant growth regulator that triggers multiple signalling pathways at different spatial and temporal resolutions. A plant cell is surrounded by the cell wall, a complex and dynamic network of polysaccharides. The cell wall needs to be rigid to provide mechanical support and protection and highly flexible to allow cell growth and shape acquisition. The modification of the pectin components, among other processes, is a mechanism by which auxin activity alters the mechanical properties of the cell wall. Auxin signalling precisely controls the transcriptional output of several genes encoding pectin remodelling enzymes, their local activity, pectin deposition, and modulation in different developmental contexts. This review examines the mechanism of auxin activity in regulating pectin chemistry at organ, cellular, and subcellular levels across diverse plant species. Moreover, we ask questions that remain to be addressed to fully understand the interplay between auxin and pectin in plant growth and development.
Collapse
Affiliation(s)
- François Jobert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
- CRRBM, Université de Picardie Jules Verne, 80000, Amiens, France
| | - Sandeep Yadav
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| | - Stéphanie Robert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| |
Collapse
|
8
|
Jun SE, Shim JS, Park HJ. Beyond NPK: Mineral Nutrient-Mediated Modulation in Orchestrating Flowering Time. PLANTS (BASEL, SWITZERLAND) 2023; 12:3299. [PMID: 37765463 PMCID: PMC10535918 DOI: 10.3390/plants12183299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Flowering time in plants is a complex process regulated by environmental conditions such as photoperiod and temperature, as well as nutrient conditions. While the impact of major nutrients like nitrogen, phosphorus, and potassium on flowering time has been well recognized, the significance of micronutrient imbalances and their deficiencies should not be neglected because they affect the floral transition from the vegetative stage to the reproductive stage. The secondary major nutrients such as calcium, magnesium, and sulfur participate in various aspects of flowering. Micronutrients such as boron, zinc, iron, and copper play crucial roles in enzymatic reactions and hormone biosynthesis, affecting flower development and reproduction as well. The current review comprehensively explores the interplay between microelements and flowering time, and summarizes the underlying mechanism in plants. Consequently, a better understanding of the interplay between microelements and flowering time will provide clues to reveal the roles of microelements in regulating flowering time and to improve crop reproduction in plant industries.
Collapse
Affiliation(s)
- Sang Eun Jun
- Department of Molecular Genetics, Dong-A University, Busan 49315, Republic of Korea;
| | - Jae Sun Shim
- School of Biological Science and Technology, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hee Jin Park
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
9
|
Cui S, Liu H, Wu Y, Zhang L, Nie S. Genome-Wide Identification of BrCAX Genes and Functional Analysis of BrCAX1 Involved in Ca 2+ Transport and Ca 2+ Deficiency-Induced Tip-Burn in Chinese Cabbage ( Brassica rapa L. ssp. pekinensis). Genes (Basel) 2023; 14:1810. [PMID: 37761950 PMCID: PMC10531375 DOI: 10.3390/genes14091810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Calcium (Ca2+) plays essential roles in plant growth and development. Ca2+ deficiency causes a physiological disorder of tip-burn in Brassiceae crops and is involved in the regulation of cellular Ca2+ homeostasis. Although the functions of Ca2+/H+ exchanger antiporters (CAXs) in mediating transmembrane transport of Ca2+ have been extensively characterized in multiple plant species, the potential roles of BrCAX genes remain unclear in Chinese cabbage. In this study, eight genes of the BrCAX family were genome-widely identified in Chinese cabbage. These BrCAX proteins contained conserved Na_Ca_ex domain and belonged to five members of the CAX family. Molecular evolutionary analysis and sequence alignment revealed the evolutionary conservation of BrCAX family genes. Expression profiling demonstrated that eight BrCAX genes exhibited differential expression in different tissues and under heat stress. Furthermore, Ca2+ deficiency treatment induced the typical symptoms of tip-burn in Chinese cabbage seedlings and a significant decrease in total Ca2+ content in both roots and leaves. The expression changes in BrCAX genes were related to the response to Ca2+ deficiency-induced tip-burn of Chinese cabbage. Specially, BrCAX1-1 and BrCAX1-2 genes were highly expressed gene members of the BrCAX family in the leaves and were significantly differentially expressed under Ca2+ deficiency stress. Moreover, overexpression of BrCAX1-1 and BrCAX1-2 genes in yeast and Chinese cabbage cotyledons exhibited a higher Ca2+ tolerance, indicating the Ca2+ transport capacity of BrCAX1-1 and BrCAX1-2. In addition, suppression expression of BrCAX1-1 and BrCAX1-2 genes reduced cytosolic Ca2+ levels in the root tips of Chinese cabbage. These results provide references for functional studies of BrCAX genes and to investigate the regulatory mechanisms underlying Ca2+ deficiency disorder in Brassiceae vegetables.
Collapse
Affiliation(s)
| | | | | | | | - Shanshan Nie
- State Key Laboratory of Crop Stress Biology for Arid Area, College of Horticulture, Northwest A&F University, Xianyang 712100, China; (S.C.); (H.L.); (Y.W.); (L.Z.)
| |
Collapse
|
10
|
Beacham AM, Wilkins KA, Davies JM, Monaghan JM. Vacuolar Ca 2+/H + exchanger and Ca 2+-ATPase homologues are differentially regulated in tipburn-resistant and susceptible lettuce (Lactuca sativa) cultivars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107792. [PMID: 37285692 DOI: 10.1016/j.plaphy.2023.107792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/21/2023] [Indexed: 06/09/2023]
Abstract
Tipburn is a physiological disorder of lettuce (Lactuca sativa) and other leafy crops that causes external and internal leaf discolouration and results in serious quality issues for the fresh produce industry. Tipburn occurrence is difficult to predict and no completely effective control methods exist. This is compounded by poor knowledge of the underlying physiological and molecular basis of the condition, which appears to be associated with deficiency of calcium and other nutrients. Vacuolar calcium transporters, which are involved in calcium homeostasis in Arabidopsis, show differential expression in tipburn-resistant and susceptible Brassica oleracea lines. We therefore investigated expression of a subset of L. sativa vacuolar calcium transporter homologues, belonging to the Ca2+/H+ exchanger and Ca2+-ATPase classes, in tipburn-resistant and susceptible cultivars. This indicated that some L. sativa vacuolar calcium transporter homologues belonging to these gene classes exhibited higher expression levels in resistant cultivars, whilst others had higher expression in susceptible cultivars or were independent of tipburn phenotype. In addition, some homologues were more highly expressed in symptomatic versus asymptomatic leaves in susceptible cultivars, suggesting that tipburn-induced increases in expression are unsuccessful in conferring resistance and that differential baseline expression of such genes is important for tipburn resistance. Knowledge of individual genes associated with tipburn resistance will improve breeding for such traits and the development of resistant lettuce varieties.
Collapse
Affiliation(s)
- Andrew M Beacham
- Centre for Crop and Environmental Sciences, Harper Adams University, Edgmond, Shropshire, TF10 8NB, UK.
| | - Katie A Wilkins
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Julia M Davies
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - James M Monaghan
- Centre for Crop and Environmental Sciences, Harper Adams University, Edgmond, Shropshire, TF10 8NB, UK
| |
Collapse
|
11
|
Rivetta A, Pesenti M, Sacchi GA, Nocito FF, Cocucci M. Cadmium Transport in Maize Root Segments Using a Classical Physiological Approach: Evidence of Influx Largely Exceeding Efflux in Subapical Regions. PLANTS (BASEL, SWITZERLAND) 2023; 12:992. [PMID: 36903851 PMCID: PMC10005225 DOI: 10.3390/plants12050992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The bidirectional fluxes of cadmium and calcium across the plasma membrane were assessed and compared in subapical maize root segments. This homogeneous material provides a simplified system for investigating ion fluxes in whole organs. The kinetic profile of cadmium influx was characterized by a combination of a saturable rectangular hyperbola (Km = 30.15) and a straight line (k = 0.0013 L h-1 g-1 fresh weight), indicating the presence of multiple transport systems. In contrast, the influx of calcium was described by a simple Michaelis-Menten function (Km = 26.57 µM). The addition of calcium to the medium reduced cadmium influx into the root segments, suggesting a competition between the two ions for the same transport system(s). The efflux of calcium from the root segments was found to be significantly higher than that of cadmium, which was extremely low under the experimental conditions used. This was further confirmed by comparing cadmium and calcium fluxes across the plasma membrane of inside-out vesicles purified from maize root cortical cells. The inability of the root cortical cells to extrude cadmium may have driven the evolution of metal chelators for detoxifying intracellular cadmium ions.
Collapse
Affiliation(s)
| | | | | | | | - Maurizio Cocucci
- Dipartimento di Scienze Agrarie e Ambientali—Produzione, Territorio, Agroenergia (DiSAA), Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
12
|
Liu Y, He G, He Y, Tang Y, Zhao F, He T. Discovery of cadmium-tolerant biomacromolecule (StCAX1/4 transportproteins) in potato and its potential regulatory relationship with WRKY transcription factors. Int J Biol Macromol 2023; 228:385-399. [PMID: 36581029 DOI: 10.1016/j.ijbiomac.2022.12.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/04/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022]
Abstract
The cation/H+ exchanger (CAX) involved in Ca2+, Mg2+ and Mn2+ transport is a special class of vacuolar transporters that play an important role in maintaining ion homeostasis in plant cells. However, it has been rarely reported whether CAX proteins have unique tolerance to cadmium stress. In our research, the cadmium-resistant potato variety "Yunshu 505" was taken as the object, through biological etc. methods, explored 1: response mode of StCAXs to cadmium stress; 2: the evolutionary characteristics and Cd ion binding sites of StCAXs; and 3: possible upstream regulatory pathways of StCAXs. The results showed that cadmium stress significantly induced the expression of StCAX1/4, and there were specific mutations in the evolution process, thus the possible main binding site of Cd ion (EDEE/DH/GxxxxxS/EEEE) was speculated. StCAX1/4 interacts with several proteins, and be regulated by transcription factors, especially the WRKY6. This synergistic regulation through WRKY6 may be an important pathway through which StCAX1/4 imparts high cadmium tolerance to potato. These results provide certain support for understanding the binding sites and specific evolutionary mechanisms of key amino acid residues of cadmium ion in StCAXs, also provide new clues for the identification and regulatory model of potato CAX key positive stress-responsive proteins under cadmium stress.
Collapse
Affiliation(s)
- Yao Liu
- College of Agricultural, Guizhou University, Guiyang 550025, PR China.
| | - Guandi He
- College of Agricultural, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, PR China.
| | - Yeqing He
- College of Agricultural, Guizhou University, Guiyang 550025, PR China.
| | - Yueyue Tang
- College of Agricultural, Guizhou University, Guiyang 550025, PR China.
| | - Fulin Zhao
- College of Agricultural, Guizhou University, Guiyang 550025, PR China.
| | - Tengbing He
- College of Agricultural, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, PR China; Institute of New Rural Development of Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
13
|
Physiological and Transcriptional Responses of Apocynum venetum to Salt Stress at the Seed Germination Stage. Int J Mol Sci 2023; 24:ijms24043623. [PMID: 36835035 PMCID: PMC9966927 DOI: 10.3390/ijms24043623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Apocynum venetum is a semi-shrubby perennial herb that not only prevents saline-alkaline land degradation but also produces leaves for medicinal uses. Although physiological changes during the seed germination of A. venetum in response to salt stress have been studied, the adaptive mechanism to salt conditions is still limited. Here, the physiological and transcriptional changes during seed germination under different NaCl treatments (0-300 mmol/L) were examined. The results showed that the seed germination rate was promoted at low NaCl concentrations (0-50 mmol/L) and inhibited with increased concentrations (100-300 mmol/L); the activity of antioxidant enzymes exhibited a significant increase from 0 (CK) to 150 mmol/L NaCl and a significant decrease from 150 to 300 mmol/L; and the content of osmolytes exhibited a significant increase with increased concentrations, while the protein content peaked at 100 mmol/L NaCl and then significantly decreased. A total of 1967 differentially expressed genes (DEGs) were generated during seed germination at 300 mmol/L NaCl versus (vs.) CK, with 1487 characterized genes (1293 up-regulated, UR; 194 down-regulated, DR) classified into 11 categories, including salt stress (29), stress response (146), primary metabolism (287), cell morphogenesis (156), transcription factor (TFs, 62), bio-signaling (173), transport (144), photosynthesis and energy (125), secondary metabolism (58), polynucleotide metabolism (21), and translation (286). The relative expression levels (RELs) of selected genes directly involved in salt stress and seed germination were observed to be consistent with the changes in antioxidant enzyme activities and osmolyte contents. These findings will provide useful references to improve seed germination and reveal the adaptive mechanism of A. venetum to saline-alkaline soils.
Collapse
|
14
|
Mathew IE, Rhein HS, Green AJ, Hirschi KD. Generating Reproducing Anoxia Conditions for Plant Phenotyping. Bio Protoc 2023; 13:e4603. [PMID: 36816988 PMCID: PMC9909309 DOI: 10.21769/bioprotoc.4603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/02/2022] [Accepted: 01/10/2023] [Indexed: 02/04/2023] Open
Abstract
Based on the availability of oxygen, plant growth environment can be normoxic (normal environment), hypoxic (reduced oxygen, <21%), or anoxic (complete depletion of oxygen). Hypoxic/anoxic environment is created when a plant is exposed to stresses such as submergence, flooding, or pathogen attack. Survival of the plants following stress conditions is in part dependent on their ability to overcome the stress induced by anoxia/hypoxia conditions. This shows the need for the development of strategies for understanding the mechanisms involved in plant tolerance to anoxia. Previous studies have employed different methods for establishing an anerobic environment. Here, we describe a simple method for creating anoxic environment using an anaerobic atmosphere generation bag. Anoxic conditions can be maintained in a cylindrical jar, a rectangular box, or a vacuum sealer bag, enabling the screening of a large number of samples. This protocol is particularly useful to screen plant mutants that are tolerant to anoxia. The method is simple, easy, cost-efficient, reproducible, and does not require any sophisticated instruments. Graphic abstract.
Collapse
Affiliation(s)
- Iny E. Mathew
- Pediatrics-Nutrition, Children’s Nutrition Research, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hormat Shadgou Rhein
- Pediatrics-Nutrition, Children’s Nutrition Research, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ardawna J. Green
- Pediatrics-Nutrition, Children’s Nutrition Research, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kendal D. Hirschi
- Pediatrics-Nutrition, Children’s Nutrition Research, Baylor College of Medicine, Houston, TX, 77030, USA,*For correspondence:
| |
Collapse
|
15
|
Yang J, Mathew IE, Rhein H, Barker R, Guo Q, Brunello L, Loreti E, Barkla BJ, Gilroy S, Perata P, Hirschi KD. The vacuolar H+/Ca transporter CAX1 participates in submergence and anoxia stress responses. PLANT PHYSIOLOGY 2022; 190:2617-2636. [PMID: 35972350 PMCID: PMC9706465 DOI: 10.1093/plphys/kiac375] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/17/2022] [Indexed: 05/04/2023]
Abstract
A plant's oxygen supply can vary from normal (normoxia) to total depletion (anoxia). Tolerance to anoxia is relevant to wetland species, rice (Oryza sativa) cultivation, and submergence tolerance of crops. Decoding and transmitting calcium (Ca) signals may be an important component to anoxia tolerance; however, the contribution of intracellular Ca transporters to this process is poorly understood. Four functional cation/proton exchangers (CAX1-4) in Arabidopsis (Arabidopsis thaliana) help regulate Ca homeostasis around the vacuole. Our results demonstrate that cax1 mutants are more tolerant to both anoxic conditions and submergence. Using phenotypic measurements, RNA-sequencing, and proteomic approaches, we identified cax1-mediated anoxia changes that phenocopy changes present in anoxia-tolerant crops: altered metabolic processes, diminished reactive oxygen species production post anoxia, and altered hormone signaling. Comparing wild-type and cax1 expressing genetically encoded Ca indicators demonstrated altered cytosolic Ca signals in cax1 during reoxygenation. Anoxia-induced Ca signals around the plant vacuole are involved in the control of numerous signaling events related to adaptation to low oxygen stress. This work suggests that cax1 anoxia response pathway could be engineered to circumvent the adverse effects of flooding that impair production agriculture.
Collapse
Affiliation(s)
- Jian Yang
- Pediatrics-Nutrition, Children’s Nutrition Research, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Iny Elizebeth Mathew
- Pediatrics-Nutrition, Children’s Nutrition Research, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hormat Rhein
- Pediatrics-Nutrition, Children’s Nutrition Research, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Richard Barker
- Department of Botany, Birge Hall, University of Wisconsin, Wisconsin, USA
| | - Qi Guo
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
| | - Luca Brunello
- Plant Lab, Institute of Life Sciences, Scuola Superiore Sant'Anna, San Giuliano Terme, Pisa, Italy
| | - Elena Loreti
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy
| | - Bronwyn J Barkla
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
| | - Simon Gilroy
- Department of Botany, Birge Hall, University of Wisconsin, Wisconsin, USA
| | - Pierdomenico Perata
- Plant Lab, Institute of Life Sciences, Scuola Superiore Sant'Anna, San Giuliano Terme, Pisa, Italy
| | - Kendal D Hirschi
- Pediatrics-Nutrition, Children’s Nutrition Research, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
16
|
Shikanai Y, Takahashi S, Enomoto Y, Yamagami M, Yamaguchi K, Shigenobu S, Kamiya T, Fujiwara T. Arabidopsis Glucan Synthase-Like1 (GSL1) Is Required for Tolerance to Low-Calcium Conditions and Exhibits a Function Comparable to GSL10. PLANT & CELL PHYSIOLOGY 2022; 63:1474-1484. [PMID: 35876020 DOI: 10.1093/pcp/pcac106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/16/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Crops that exhibit symptoms of calcium (Ca) deficiency constitute a major agricultural problem. Molecular breeding of resistant cultivars is a promising method for overcoming this problem. However, the involved genes must first be identified. Here, we show that the glucan synthase-like (GSL) 1 gene is essential for low-Ca tolerance in Arabidopsis thaliana. GSL1 is homologous to GSL10, which we previously showed was essential for low-Ca tolerance. Under low-Ca conditions, gsl1 mutants exhibit reduced growth and the onset of necrosis in new leaves. These symptoms are typical of Ca-deficient crops. A grafting experiment suggested that the shoot genotype, but not the root genotype, was important for the suppression of shoot necrosis. The ectopic accumulation of callose under low-Ca conditions was significantly reduced in gsl1 mutants compared with wild-type plants. Because the corresponding single-mutant phenotypes are similar, we investigated the interaction between GSL1 and GSL10 by testing the gsl1 gsl10 double mutant for sensitivity to low-Ca conditions. The double mutant exhibited a more severe phenotype than did the single mutants, indicating that the effects of GSL1 and GSL10 on low-Ca tolerance are additive. Because GSL genes are highly conserved within the plant kingdom, the GSL loci may be useful for breeding low-Ca tolerant crops.
Collapse
Affiliation(s)
- Yusuke Shikanai
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Satomi Takahashi
- Faculty of Agriculture, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Yusuke Enomoto
- Department of Radioecology, Institute of Environmental Sciences, Aomori, 039-3212 Japan
- Showa Gakuin Junior & Senior High School, Higashisugano, Ichikawa, Chiba, 272-0823 Japan
| | - Mutsumi Yamagami
- Department of Radioecology, Institute of Environmental Sciences, Aomori, 039-3212 Japan
| | - Katsushi Yamaguchi
- NIBB Core Research Facilities, National Institute for Basic Biology, Aichi, 444-8585 Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, Aichi, 444-8585 Japan
| | - Takehiro Kamiya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| |
Collapse
|
17
|
Zhou Z, Zheng S, Haq SIU, Zheng D, Qiu QS. Regulation of pollen tube growth by cellular pH and ions. JOURNAL OF PLANT PHYSIOLOGY 2022; 277:153792. [PMID: 35973258 DOI: 10.1016/j.jplph.2022.153792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/29/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Tip growth of the pollen tube is a model system for the study of cell polarity establishment in flowering plants. The tip growth of the pollen tube displays an oscillating pattern corresponding to cellular ion and pH dynamics. Therefore, cellular pH and ions play an important role in pollen growth and development. In this review, we summarized the current advances in understanding the function of cellular pH and ions in regulating pollen tube growth. We analyzed the physiological roles and underlying mechanisms of cellular pH and ions, including Ca2+, K+, and Cl-, in regulating pollen tube growth. We further examined the function of Ca2+ in regulating cytoskeletons, small G proteins, and cell wall development in relation to pollen tube growth. We also examined the regulatory roles of cellular pH in pollen tube growth as well as pH regulation of ion flow, cell wall development, auxin signaling, and cytoskeleton function in pollen. In addition, we assessed the regulation of pollen tube growth by proton pumps and the maintenance of pH homeostasis in the trans-Golgi network by ion transporters. The interplay of ion homeostasis and pH dynamics was also assessed. We discussed the unanswered questions regarding pollen tube growth that need to be addressed in the future.
Collapse
Affiliation(s)
- Zhenguo Zhou
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China.
| | - Sheng Zheng
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, Qinghai, 810016, China
| | - Syed Inzimam Ul Haq
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, Qinghai, 810016, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
| |
Collapse
|
18
|
Park CJ, Shin R. Calcium channels and transporters: Roles in response to biotic and abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:964059. [PMID: 36161014 PMCID: PMC9493244 DOI: 10.3389/fpls.2022.964059] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Calcium (Ca2+) serves as a ubiquitous second messenger by mediating various signaling pathways and responding to numerous environmental conditions in eukaryotes. Therefore, plant cells have developed complex mechanisms of Ca2+ communication across the membrane, receiving the message from their surroundings and transducing the information into cells and organelles. A wide range of biotic and abiotic stresses cause the increase in [Ca2+]cyt as a result of the Ca2+ influx permitted by membrane-localized Ca2+ permeable cation channels such as CYCLIC NUCLEOTIDE-GATE CHANNELs (CNGCs), and voltage-dependent HYPERPOLARIZATION-ACTIVATED CALCIUM2+ PERMEABLE CHANNELs (HACCs), as well as GLUTAMATE RECEPTOR-LIKE RECEPTORs (GLRs) and TWO-PORE CHANNELs (TPCs). Recently, resistosomes formed by some NUCLEOTIDE-BINDING LEUCINE-RICH REPEAT RECEPTORs (NLRs) are also proposed as a new type of Ca2+ permeable cation channels. On the contrary, some Ca2+ transporting membrane proteins, mainly Ca2+-ATPase and Ca2+/H+ exchangers, are involved in Ca2+ efflux for removal of the excessive [Ca2+]cyt in order to maintain the Ca2+ homeostasis in cells. The Ca2+ efflux mechanisms mediate the wide ranges of cellular activities responding to external and internal stimuli. In this review, we will summarize and discuss the recent discoveries of various membrane proteins involved in Ca2+ influx and efflux which play an essential role in fine-tuning the processing of information for plant responses to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Chang-Jin Park
- Department of Bioresources Engineering, Sejong University, Seoul, South Korea
| | - Ryoung Shin
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| |
Collapse
|
19
|
Seidel T. The Plant V-ATPase. FRONTIERS IN PLANT SCIENCE 2022; 13:931777. [PMID: 35845650 PMCID: PMC9280200 DOI: 10.3389/fpls.2022.931777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/03/2022] [Indexed: 05/25/2023]
Abstract
V-ATPase is the dominant proton pump in plant cells. It contributes to cytosolic pH homeostasis and energizes transport processes across endomembranes of the secretory pathway. Its localization in the trans Golgi network/early endosomes is essential for vesicle transport, for instance for the delivery of cell wall components. Furthermore, it is crucial for response to abiotic and biotic stresses. The V-ATPase's rather complex structure and multiple subunit isoforms enable high structural flexibility with respect to requirements for different organs, developmental stages, and organelles. This complexity further demands a sophisticated assembly machinery and transport routes in cells, a process that is still not fully understood. Regulation of V-ATPase is a target of phosphorylation and redox-modifications but also involves interactions with regulatory proteins like 14-3-3 proteins and the lipid environment. Regulation by reversible assembly, as reported for yeast and the mammalian enzyme, has not be proven in plants but seems to be absent in autotrophic cells. Addressing the regulation of V-ATPase is a promising approach to adjust its activity for improved stress resistance or higher crop yield.
Collapse
|
20
|
Hao P, Lv X, Fu M, Xu Z, Tian J, Wang Y, Zhang X, Xu X, Wu T, Han Z. Long-distance mobile mRNA CAX3 modulates iron uptake and zinc compartmentalization. EMBO Rep 2022; 23:e53698. [PMID: 35254714 PMCID: PMC9066076 DOI: 10.15252/embr.202153698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/25/2022] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Abstract
Iron deficiency in plants can lead to excessive absorption of zinc; however, important details of this mechanism have yet to be elucidated. Here, we report that MdCAX3 mRNA is transported from the leaf to the root, and that MdCAX3 is then activated by MdCXIP1. Suppression of MdCAX3 expression leads to an increase in the root apoplastic pH, which is associated with the iron deficiency response. Notably, overexpression of MdCAX3 does not affect the apoplastic pH in a MdCXIP1 loss-of-function Malus baccata (Mb) mutant that has a deletion in the MdCXIP1 promoter. This deletion in Mb weakens MdCXIP1 expression. Co-expression of MdCAX3 and MdCXIP1 in Mb causes a decrease in the root apoplastic pH. Furthermore, suppressing MdCAX3 in Malus significantly reduces zinc vacuole compartmentalization. We also show that MdCAX3 activated by MdCXIP1 is not only involved in iron uptake, but also in regulating zinc detoxification by compartmentalizing zinc in vacuoles to avoid iron starvation-induced zinc toxicity. Thus, mobile MdCAX3 mRNA is involved in the regulation of iron and zinc homeostasis in response to iron starvation.
Collapse
Affiliation(s)
- Pengbo Hao
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Xinmin Lv
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Mengmeng Fu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Zhen Xu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Ji Tian
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yi Wang
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Xinzhong Zhang
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Xuefeng Xu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Ting Wu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Zhenhai Han
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Zhang Q, Dai X, Wang H, Wang F, Tang D, Jiang C, Zhang X, Guo W, Lei Y, Ma C, Zhang H, Li P, Zhao Y, Wang Z. Transcriptomic Profiling Provides Molecular Insights Into Hydrogen Peroxide-Enhanced Arabidopsis Growth and Its Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:866063. [PMID: 35463436 PMCID: PMC9019583 DOI: 10.3389/fpls.2022.866063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/28/2022] [Indexed: 05/05/2023]
Abstract
Salt stress is an important environmental factor limiting plant growth and crop production. Plant adaptation to salt stress can be improved by chemical pretreatment. This study aims to identify whether hydrogen peroxide (H2O2) pretreatment of seedlings affects the stress tolerance of Arabidopsis thaliana seedlings. The results show that pretreatment with H2O2 at appropriate concentrations enhances the salt tolerance ability of Arabidopsis seedlings, as revealed by lower Na+ levels, greater K+ levels, and improved K+/Na+ ratios in leaves. Furthermore, H2O2 pretreatment improves the membrane properties by reducing the relative membrane permeability (RMP) and malonaldehyde (MDA) content in addition to improving the activities of antioxidant enzymes, including superoxide dismutase, and glutathione peroxidase. Our transcription data show that exogenous H2O2 pretreatment leads to the induced expression of cell cycle, redox regulation, and cell wall organization-related genes in Arabidopsis, which may accelerate cell proliferation, enhance tolerance to osmotic stress, maintain the redox balance, and remodel the cell walls of plants in subsequent high-salt environments.
Collapse
Affiliation(s)
- Qikun Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiuru Dai
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Tai’an, China
| | - Huanpeng Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Fanhua Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Dongxue Tang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chunyun Jiang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
- Linyi Center for Disease Control and Prevention, Linyi, China
| | - Xiaoyan Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Wenjing Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yuanyuan Lei
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hui Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Pinghua Li
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Tai’an, China
| | - Yanxiu Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zenglan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
22
|
Buoso S, Musetti R, Marroni F, Calderan A, Schmidt W, Santi S. Infection by phloem-limited phytoplasma affects mineral nutrient homeostasis in tomato leaf tissues. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153659. [PMID: 35299031 DOI: 10.1016/j.jplph.2022.153659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/27/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Phytoplasmas are sieve-elements restricted wall-less, pleomorphic pathogenic microorganisms causing devastating damage to over 700 plant species worldwide. The invasion of sieve elements by phytoplasmas has several consequences on nutrient transport and metabolism, anyway studies about changes of the mineral-nutrient profile following phytoplasma infections are scarce and offer contrasting results. Here, we examined changes in macro- and micronutrient concentration in tomato plant upon 'Candidatus Phytoplasma solani' infection. To investigate possible effects of 'Ca. P. solani' infection on mineral element allocation, the mineral elements were separately analysed in leaf midrib, leaf lamina and root. Moreover, we focused our analysis on the transcriptional regulation of genes encoding trans-membrane transporters of mineral nutrients. To this aim, a manually curated inventory of differentially expressed genes encoding transporters in tomato leaf midribs was mined from the transcriptional profile of healthy and infected tomato leaf midribs. Results highlighted changes in ion homeostasis in the host plant, and significant modulations at transcriptional level of genes encoding ion transporters and channels.
Collapse
Affiliation(s)
- Sara Buoso
- Department of Agricultural, Food, Environmental and Animal Sciences, Via delle Scienze 206, University of Udine, 33100, Udine, Italy.
| | - Rita Musetti
- Department of Agricultural, Food, Environmental and Animal Sciences, Via delle Scienze 206, University of Udine, 33100, Udine, Italy.
| | - Fabio Marroni
- Department of Agricultural, Food, Environmental and Animal Sciences, Via delle Scienze 206, University of Udine, 33100, Udine, Italy.
| | - Alberto Calderan
- Department of Agricultural, Food, Environmental and Animal Sciences, Via delle Scienze 206, University of Udine, 33100, Udine, Italy; Department of Life Sciences, University of Trieste, Via Licio Giorgieri, 5, 34127, Trieste, Italy.
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, 11529, Taipei, Taiwan; Biotechnology Center, National Chung Hsing University, 40227, Taichung, Taiwan.
| | - Simonetta Santi
- Department of Agricultural, Food, Environmental and Animal Sciences, Via delle Scienze 206, University of Udine, 33100, Udine, Italy.
| |
Collapse
|
23
|
He J, Rössner N, Hoang MTT, Alejandro S, Peiter E. Transport, functions, and interaction of calcium and manganese in plant organellar compartments. PLANT PHYSIOLOGY 2021; 187:1940-1972. [PMID: 35235665 PMCID: PMC8890496 DOI: 10.1093/plphys/kiab122] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/02/2021] [Indexed: 05/05/2023]
Abstract
Calcium (Ca2+) and manganese (Mn2+) are essential elements for plants and have similar ionic radii and binding coordination. They are assigned specific functions within organelles, but share many transport mechanisms to cross organellar membranes. Despite their points of interaction, those elements are usually investigated and reviewed separately. This review takes them out of this isolation. It highlights our current mechanistic understanding and points to open questions of their functions, their transport, and their interplay in the endoplasmic reticulum (ER), vesicular compartments (Golgi apparatus, trans-Golgi network, pre-vacuolar compartment), vacuoles, chloroplasts, mitochondria, and peroxisomes. Complex processes demanding these cations, such as Mn2+-dependent glycosylation or systemic Ca2+ signaling, are covered in some detail if they have not been reviewed recently or if recent findings add to current models. The function of Ca2+ as signaling agent released from organelles into the cytosol and within the organelles themselves is a recurrent theme of this review, again keeping the interference by Mn2+ in mind. The involvement of organellar channels [e.g. glutamate receptor-likes (GLR), cyclic nucleotide-gated channels (CNGC), mitochondrial conductivity units (MCU), and two-pore channel1 (TPC1)], transporters (e.g. natural resistance-associated macrophage proteins (NRAMP), Ca2+ exchangers (CAX), metal tolerance proteins (MTP), and bivalent cation transporters (BICAT)], and pumps [autoinhibited Ca2+-ATPases (ACA) and ER Ca2+-ATPases (ECA)] in the import and export of organellar Ca2+ and Mn2+ is scrutinized, whereby current controversial issues are pointed out. Mechanisms in animals and yeast are taken into account where they may provide a blueprint for processes in plants, in particular, with respect to tunable molecular mechanisms of Ca2+ versus Mn2+ selectivity.
Collapse
Affiliation(s)
- Jie He
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Nico Rössner
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Minh T T Hoang
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Santiago Alejandro
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Edgar Peiter
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
- Author for communication:
| |
Collapse
|
24
|
Li Y, Li Q, Beuchat G, Zeng H, Zhang C, Chen LQ. Combined analyses of translatome and transcriptome in Arabidopsis reveal new players responding to magnesium deficiency. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:2075-2092. [PMID: 34473403 DOI: 10.1111/jipb.13169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Translational control of gene expression, including recruitment of ribosomes to messenger RNA (mRNA), is particularly important during the response to stress. Purification of ribosome-associated mRNAs using translating ribosome affinity purification (TRAP) followed by RNA-sequencing facilitates the study of mRNAs undergoing active transcription and better proxies the translatome, or protein response, to stimuli. To identify plant responses to Magnesium (Mg) deficiency at the translational level, we combined transcriptome and translatome analyses. Excitingly, we found 26 previously unreported Mg-responsive genes that were only regulated at the translational level and not the transcriptional level, during the early response to Mg deficiency. In addition, mutants of the transcription factor ELONGATED HYPOCOTYL 5 (HY5), the H+ /CATION EXCHANGER 1 and 3 (CAX1 and CAX3), and UBIQUITIN 11 (UBQ11) exhibited early chlorosis phenotype under Mg deficiency, supporting their functional involvement in ion homeostasis. Overall, our study strongly supports that TRAP-seq combined with RNA-seq followed by phenotype screening could facilitate the identification of novel players during stress responses.
Collapse
Affiliation(s)
- Yaxin Li
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Qianqian Li
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Gabriel Beuchat
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Houqing Zeng
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Cankui Zhang
- Department of Agronomy and Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, 49707, USA
| | - Li-Qing Chen
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|
25
|
Kocourková D, Kroumanová K, Podmanická T, Daněk M, Martinec J. Phospholipase Dα1 Acts as a Negative Regulator of High Mg 2+-Induced Leaf Senescence in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:770794. [PMID: 34899793 PMCID: PMC8656112 DOI: 10.3389/fpls.2021.770794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/26/2021] [Indexed: 05/16/2023]
Abstract
Magnesium (Mg2+) is a macronutrient involved in essential cellular processes. Its deficiency or excess is a stress factor for plants, seriously affecting their growth and development and therefore, its accurate regulation is essential. Recently, we discovered that phospholipase Dα1 (PLDα1) activity is vital in the stress response to high-magnesium conditions in Arabidopsis roots. This study shows that PLDα1 acts as a negative regulator of high-Mg2+-induced leaf senescence in Arabidopsis. The level of phosphatidic acid produced by PLDα1 and the amount of PLDα1 in the leaves increase in plants treated with high Mg2+. A knockout mutant of PLDα1 (pldα1-1), exhibits premature leaf senescence under high-Mg2+ conditions. In pldα1-1 plants, higher accumulation of abscisic and jasmonic acid (JA) and impaired magnesium, potassium and phosphate homeostasis were observed under high-Mg2+ conditions. High Mg2+ also led to an increase of starch and proline content in Arabidopsis plants. While the starch content was higher in pldα1-1 plants, proline content was significantly lower in pldα1-1 compared with wild type plants. Our results show that PLDα1 is essential for Arabidopsis plants to cope with the pleiotropic effects of high-Mg2+ stress and delay the leaf senescence.
Collapse
Affiliation(s)
| | | | | | | | - Jan Martinec
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
26
|
Zheng S, Su M, Wang L, Zhang T, Wang J, Xie H, Wu X, Haq SIU, Qiu QS. Small signaling molecules in plant response to cold stress. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153534. [PMID: 34601338 DOI: 10.1016/j.jplph.2021.153534] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Cold stress is one of the harsh environmental stresses that adversely affect plant growth and crop yields in the Qinghai-Tibet Plateau. However, plants have evolved mechanisms to overcome the impact of cold stress. Progress has been made in understanding how plants perceive and transduce low-temperature signals to tolerate cold stress. Small signaling molecules are crucial for cellular signal transduction by initiating the downstream signaling cascade that helps plants to respond to cold stress. These small signaling molecules include calcium, reactive oxygen species, nitric oxide, hydrogen sulfide, cyclic guanosine monophosphate, phosphatidic acid, and sphingolipids. The small signaling molecules are involved in many aspects of cellular and physiological functions, such as inducing gene expression and activating hormone signaling, resulting in upregulation of the antioxidant enzyme activities, osmoprotectant accumulation, malondialdehyde reduction, and photosynthesis improvement. We summarize our current understanding of the roles of the small signaling molecules in cold stress in plants, and highlight their crosstalk in cold signaling transduction. These discoveries help us understand how the plateau plants adapt to the severe alpine environment as well as to develop new crops tolerating cold stress in the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Sheng Zheng
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Min Su
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Lu Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tengguo Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Juan Wang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Huichun Xie
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Xuexia Wu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Syed Inzimam Ul Haq
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
27
|
The Rice Cation/H + Exchanger Family Involved in Cd Tolerance and Transport. Int J Mol Sci 2021; 22:ijms22158186. [PMID: 34360953 PMCID: PMC8348036 DOI: 10.3390/ijms22158186] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Cadmium (Cd), a heavy metal toxic to humans, easily accumulates in rice grains. Rice with unacceptable Cd content has become a serious food safety problem in many rice production regions due to contaminations by industrialization and inappropriate waste management. The development of rice varieties with low grain Cd content is seen as an economic and long-term solution of this problem. The cation/H+ exchanger (CAX) family has been shown to play important roles in Cd uptake, transport and accumulation in plants. Here, we report the characterization of the rice CAX family. The six rice CAX genes all have homologous genes in Arabidopsis thaliana. Phylogenetic analysis identified two subfamilies with three rice and three Arabidopsis thaliana genes in both of them. All rice CAX genes have trans-member structures. OsCAX1a and OsCAX1c were localized in the vacuolar while OsCAX4 were localized in the plasma membrane in rice cell. The consequences of qRT-PCR analysis showed that all the six genes strongly expressed in the leaves under the different Cd treatments. Their expression in roots increased in a Cd dose-dependent manner. GUS staining assay showed that all the six rice CAX genes strongly expressed in roots, whereas OsCAX1c and OsCAX4 also strongly expressed in rice leaves. The yeast (Saccharomyces cerevisiae) cells expressing OsCAX1a, OsCAX1c and OsCAX4 grew better than those expressing the vector control on SD-Gal medium containing CdCl2. OsCAX1a and OsCAX1c enhanced while OsCAX4 reduced Cd accumulation in yeast. No auto-inhibition was found for all the rice CAX genes. Therefore, OsCAX1a, OsCAX1c and OsCAX4 are likely to involve in Cd uptake and translocation in rice, which need to be further validated.
Collapse
|
28
|
Barzana G, Rios JJ, Lopez-Zaplana A, Nicolas-Espinosa J, Yepes-Molina L, Garcia-Ibañez P, Carvajal M. Interrelations of nutrient and water transporters in plants under abiotic stress. PHYSIOLOGIA PLANTARUM 2021; 171:595-619. [PMID: 32909634 DOI: 10.1111/ppl.13206] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/20/2020] [Accepted: 09/03/2020] [Indexed: 05/12/2023]
Abstract
Environmental changes cause abiotic stress in plants, primarily through alterations in the uptake of the nutrients and water they require for their metabolism and growth and to maintain their cellular homeostasis. The plasma membranes of cells contain transporter proteins, encoded by their specific genes, responsible for the uptake of nutrients and water (aquaporins). However, their interregulation has rarely been taken into account. Therefore, in this review we identify how the plant genome responds to abiotic stresses such as nutrient deficiency, drought, salinity and low temperature, in relation to both nutrient transporters and aquaporins. Some general responses or regulation mechanisms can be observed under each abiotic stress such as the induction of plasma membrane transporter expression during macronutrient deficiency, the induction of tonoplast transporters and reduction of aquaporins during micronutrients deficiency. However, drought, salinity and low temperatures generally cause an increase in expression of nutrient transporters and aquaporins in tolerant plants. We propose that both types of transporters (nutrients and water) should be considered jointly in order to better understand plant tolerance of stresses.
Collapse
Affiliation(s)
- Gloria Barzana
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Juan J Rios
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Alvaro Lopez-Zaplana
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Juan Nicolas-Espinosa
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Lucía Yepes-Molina
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Paula Garcia-Ibañez
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Micaela Carvajal
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| |
Collapse
|
29
|
Ma B, Suo Y, Zhang J, Xing N, Gao Z, Lin X, Zheng L, Wang Y. Glutaredoxin like protein (RtGRL1) regulates H 2O 2 and Na + accumulation by maintaining the glutathione pool during abiotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:135-147. [PMID: 33360237 DOI: 10.1016/j.plaphy.2020.11.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Reaumuria trigyna, an endangered recretohalophyte, is a small archaic wild shrub endemic to arid and semiarid plateau regions of Inner Mongolia, China. Based on salt-related transcriptomic data, we isolated a GRX family gene, glutaredoxin like protein (RtGRL1), from R. trigyna that is associated with the removal of active oxygen and regulation of redox status. RtGRL1 encodes a plasma membrane and chloroplast-localized protein induced by salt, cold, drought stress, ABA, and H2O2. In Arabidopsis thaliana, ectopically expressed RtGRL1 positively regulated biomass accumulation, chlorophyll content, germination rate, and primary root length under salt and drought stress. Overexpression of RtGRL1 induced expression of genes related to antioxidant enzymes and proline biosynthesis, thus increasing glutathione biosynthesis, glutathione-dependent detoxification of reactive oxygen species (ROS), and proline content under stress. Changes in RtGRL1 expression consistently affected glutathione/oxidizedglutathione and ascorbate/dehydroascorbate ratios and H2O2 concentrations. Furthermore, RtGRL1 promoted several GSH biosynthesis gene transcripts, decreased leaf Na+ content, and maintained lower Na+/K+ ratios in transgenic A. thaliana compared to wild type plants. These results suggest a critical link between RtGRL1 and ROS modulation, and contribute to a better understanding of the mechanisms governing plant responses to drought and salt stress.
Collapse
Affiliation(s)
- Binjie Ma
- Key Laboratory of Herbage and Endemic Crop Biotechnology, And College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Yafei Suo
- Key Laboratory of Herbage and Endemic Crop Biotechnology, And College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Jie Zhang
- Key Laboratory of Herbage and Endemic Crop Biotechnology, And College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Ningning Xing
- Key Laboratory of Herbage and Endemic Crop Biotechnology, And College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Ziqi Gao
- Key Laboratory of Herbage and Endemic Crop Biotechnology, And College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Xiaofei Lin
- Key Laboratory of Herbage and Endemic Crop Biotechnology, And College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Linlin Zheng
- Key Laboratory of Herbage and Endemic Crop Biotechnology, And College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Yingchun Wang
- Key Laboratory of Herbage and Endemic Crop Biotechnology, And College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| |
Collapse
|
30
|
Zheng Y, Wang LB, Sun SF, Liu SY, Liu MJ, Lin J. Phylogenetic and ion-response analyses reveal a relationship between gene expansion and functional divergence in the Ca 2+/cation antiporter family in Angiosperms. PLANT MOLECULAR BIOLOGY 2021; 105:303-320. [PMID: 33123851 DOI: 10.1007/s11103-020-01088-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/21/2020] [Indexed: 05/28/2023]
Abstract
Plant CaCA superfamily genes with higher tendency to retain after WGD are more gene expression and function differentiated in ion-response. Plants and animals face different environmental stresses but share conserved Ca2+ signaling pathways, such as Ca2+/Cation transport. The Ca2+/cation antiporters superfamily (CaCAs) is an ancient and widespread family of ion-coupled cation transporters found in all kingdoms of life. We analyzed the molecular evolution progress of the family through comparative genomics and phylogenetics of CaCAs genes from plants and animals, grouping these genes into several families and clades, and identified multiple gene duplication retention events, particularly in the CAX (H+/cation exchanger), CCX (cation/Ca2+ exchanger), and NCL (Na+/Ca2+ exchanger-like) families. The tendency of duplication retention differs between families and gene clades. The gene duplication events were probably the result of whole-genome duplication (WGD) in plants and might have led to functional divergence. Tissue and ion-response expression analyses revealed that CaCAs genes with more highly differentiated expression patterns are more likely to be retained as duplicates than those with more conserved expression profiles. Phenotype of Arabidopsis thaliana mutants showed that loss of genes with a greater tendency to be retained after duplication resulted in more severe growth deficiency. CaCAs genes in salt-tolerant species tended to inherit the expression characteristics of their most recent common ancestral genes, with conservative ion-response expression. This study indicates a possible evolutionary scheme for cation transport and illustrates distinct fates and a mechanism for the evolution of gene duplicates. The increased copy numbers of genes and divergences in expression might have contributed to the divergent functions of CaCAs protein, allowing plants to cope with environmental stresses and adapt to a larger number of ecological niches.
Collapse
Affiliation(s)
- Ye Zheng
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China
| | - Lin-Bo Wang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China
| | - Shu-Feng Sun
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China
| | - Shi-Ying Liu
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China
| | - Ming-Jia Liu
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China
| | - Juan Lin
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
31
|
Description of AtCAX4 in Response to Abiotic Stress in Arabidopsis. Int J Mol Sci 2021; 22:ijms22020856. [PMID: 33467091 PMCID: PMC7830611 DOI: 10.3390/ijms22020856] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 02/04/2023] Open
Abstract
High-capacity tonoplast cation/H+ antiport in plants is partially mediated by a family of CAX transporters. Previous studies have reported that CAX activity is affected by an N-terminal autoinhibitory region. CAXs may be present as heterodimers in plant cells, and this phenomenon necessitates further study. In this study, we demonstrate that there is an interaction between CAX4 and CAX1 as determined by the use of a yeast two-hybrid system and a bimolecular fluorescence complementation assay. More specifically, the N-terminal of CAX4 interacts with CAX1. We further observed the over-expression and either a single or double mutant of CAX1 and CAX4 in response to abiotic stress in Arabidopsis. These results suggest that CAX1 and CAX4 can interact to form a heterodimer, and the N-terminal regions of CAX4 play important roles in vivo; this may provide a foundation for a deep study of CAX4 function in the future.
Collapse
|
32
|
Ammonium Accumulation Caused by Reduced Tonoplast V-ATPase Activity in Arabidopsis thaliana. Int J Mol Sci 2020; 22:ijms22010002. [PMID: 33374906 PMCID: PMC7792577 DOI: 10.3390/ijms22010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/06/2023] Open
Abstract
Plant vacuoles are unique compartments that play a critical role in plant growth and development. The vacuolar H+-ATPase (V-ATPase), together with the vacuolar H+-pyrophosphatase (V-PPase), generates the proton motive force that regulates multiple cell functions and impacts all aspects of plant life. We investigated the effect of V-ATPase activity in the vacuole on plant growth and development. We used an Arabidopsisthaliana (L.) Heynh. double mutant, vha-a2 vha-a3, which lacks two tonoplast-localized isoforms of the membrane-integral V-ATPase subunit VHA-a. The mutant is viable but exhibits impaired growth and leaf chlorosis. Nitrate assimilation led to excessive ammonium accumulation in the shoot and lower nitrogen uptake, which exacerbated growth retardation of vha-a2 vha-a3. Ion homeostasis was disturbed in plants with missing VHA-a2 and VHA-a3 genes, which might be related to limited growth. The reduced growth and excessive ammonium accumulation of the double mutant was alleviated by potassium supplementation. Our results demonstrate that plants lacking the two tonoplast-localized subunits of V-ATPase can be viable, although with defective growth caused by multiple factors, which can be alleviated by adding potassium. This study provided a new insight into the relationship between V-ATPase, growth, and ammonium accumulation, and revealed the role of potassium in mitigating ammonium toxicity.
Collapse
|
33
|
Kocourková D, Krčková Z, Pejchar P, Kroumanová K, Podmanická T, Daněk M, Martinec J. Phospholipase Dα1 mediates the high-Mg 2+ stress response partially through regulation of K + homeostasis. PLANT, CELL & ENVIRONMENT 2020; 43:2460-2475. [PMID: 32583878 DOI: 10.1111/pce.13831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 06/13/2020] [Accepted: 06/14/2020] [Indexed: 05/28/2023]
Abstract
Intracellular levels of Mg2+ are tightly regulated, as Mg2+ deficiency or excess affects normal plant growth and development. In Arabidopsis, we determined that phospholipase Dα1 (PLDα1) is involved in the stress response to high-magnesium conditions. The T-DNA insertion mutant pldα1 is hypersensitive to increased concentrations of magnesium, exhibiting reduced primary root length and fresh weight. PLDα1 activity increases rapidly after high-Mg2+ treatment, and this increase was found to be dose dependent. Two lines harbouring mutations in the HKD motif, which is essential for PLDα1 activity, displayed the same high-Mg2+ hypersensitivity of pldα1 plants. Moreover, we show that high concentrations of Mg2+ disrupt K+ homeostasis, and that transcription of K+ homeostasis-related genes CIPK9 and HAK5 is impaired in pldα1. Additionally, we found that the akt1, hak5 double mutant is hypersensitive to high-Mg2+ . We conclude that in Arabidopsis, the enzyme activity of PLDα1 is vital in the response to high-Mg2+ conditions, and that PLDα1 mediates this response partially through regulation of K+ homeostasis.
Collapse
Affiliation(s)
- Daniela Kocourková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Krčková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Přemysl Pejchar
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kristýna Kroumanová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tereza Podmanická
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Daněk
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Martinec
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
34
|
Martins V, Gerós H. The grapevine CAX-interacting protein VvCXIP4 is exported from the nucleus to activate the tonoplast Ca 2+/H + exchanger VvCAX3. PLANTA 2020; 252:35. [PMID: 32767128 DOI: 10.1007/s00425-020-03442-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
The nuclear-localized CAX-interacting protein VvCXIP4 is exported to the cytosol after a Ca2+ pulse, to activate the tonoplast-localized Ca2+/H+ exchanger VvCAX3. Vacuolar cation/H+ exchangers (CAXs) have long been recognized as 'housekeeping' components in cellular Ca2+ and trace metal homeostasis, being involved in a range of key cellular and physiological processes. However, the mechanisms that drive functional activation of the transporters are largely unknown. In the present study, we investigated the function of a putative grapevine CAX-interacting protein, VvCXIP4, by testing its ability to activate VvCAX3, previously characterized as a tonoplast-localized Ca2+/H+ exchanger. VvCAX3 contains an autoinhibitory domain that drives inactivation of the transporter and thus, is incapable of suppressing the Ca2+-hypersensitive phenotype of the S. cerevisiae mutant K667. In this study, the co-expression of VvCXIP4 and VvCAX3 in this strain efficiently rescued its growth defect at high Ca2+ levels. Flow cytometry experiments showed that yeast harboring both proteins effectively accumulated higher Ca2+ levels than cells expressing each of the proteins separately. Bimolecular fluorescence complementation (BiFC) assays allowed visualization of the direct interaction between the proteins in tobacco plants and in yeast, and also showed the self-interaction of VvCAX3 but not of VvCXIP4. Subcellular localization studies showed that, despite being primarily localized to the nucleus, VvCXIP4 is able to move to other cell compartments upon a Ca2+ stimulus, becoming prone to interaction with the tonoplast-localized VvCAX3. qPCR analysis showed that both genes are more expressed in grapevine stems and leaves, followed by the roots, and that the steady-state transcript levels were higher in the pulp than in the skin of grape berries. Also, both VvCXIP4 and VvCAX3 were upregulated by Ca2+ and Na+, indicating they share common regulatory mechanisms. However, VvCXIP4 was also upregulated by Li+, Cu2+ and Mn2+, and its expression increased steadily throughout grape berry development, contrary to VvCAX3, suggesting additional physiological roles for VvCXIP4, including the regulation of VvCAXs not yet functionally characterized. The main novelty of the present study was the demonstration of physical interaction between CXIP and CAX proteins from a woody plant model by BiFC assays, demonstrating the intracellular mobilization of CXIPs in response to Ca2+.
Collapse
Affiliation(s)
- Viviana Martins
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-Os-Montes and Alto Douro, 5001-801, Vila Real, Portugal.
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-Os-Montes and Alto Douro, 5001-801, Vila Real, Portugal
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
35
|
Ismail A, El-Sharkawy I, Sherif S. Salt Stress Signals on Demand: Cellular Events in the Right Context. Int J Mol Sci 2020; 21:ijms21113918. [PMID: 32486204 PMCID: PMC7313037 DOI: 10.3390/ijms21113918] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022] Open
Abstract
Plant stress is a real dilemma; it puzzles plant biologists and is a global problem that negatively affects people’s daily lives. Of particular interest is salinity, because it represents one of the major water-related stress types. We aimed to determine the signals that guide the cellular-related events where various adaptation mechanisms cross-talk to cope with salinity-related water stress in plants. In an attempt to unravel these mechanisms and introduce cellular events in the right context, we expansively discussed how salt-related signals are sensed, with particular emphasis on aquaporins, nonselective cation channels (NSCCs), and glycosyl inositol phosphorylceramide (GIPC). We also elaborated on the critical role Ca2+, H+, and ROS in mediating signal transduction pathways associated with the response and tolerance to salt stress. In addition, the fragmentary results from the literature were compiled to develop a harmonized, informational, and contemplative model that is intended to improve our perception of these adaptative mechanisms and set a common platform for plant biologists to identify intriguing research questions in this area.
Collapse
Affiliation(s)
- Ahmed Ismail
- Department of Horticulture, Faculty of Agriculture, Damanhour University, P.O. Box 22516, Damanhour, Egypt;
| | - Islam El-Sharkawy
- Florida A&M University, Center for Viticulture and Small Fruit Research. 6361 Mahan Drive, Tallahassee, FL 32308, USA;
| | - Sherif Sherif
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA 22062, USA
- Correspondence: ; Tel.: +1-540-232-6035
| |
Collapse
|
36
|
Shikanai Y, Yoshida R, Hirano T, Enomoto Y, Li B, Asada M, Yamagami M, Yamaguchi K, Shigenobu S, Tabata R, Sawa S, Okada H, Ohya Y, Kamiya T, Fujiwara T. Callose Synthesis Suppresses Cell Death Induced by Low-Calcium Conditions in Leaves. PLANT PHYSIOLOGY 2020; 182:2199-2212. [PMID: 32024698 PMCID: PMC7140939 DOI: 10.1104/pp.19.00784] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 12/17/2019] [Indexed: 05/08/2023]
Abstract
Despite the importance of preventing calcium (Ca) deficiency disorders in agriculture, knowledge of the molecular mechanisms underlying plant adaptations to low-Ca conditions is limited. In this study, we provide evidence for a crucial involvement of callose synthesis in the survival of Arabidopsis (Arabidopsis thaliana) under low-Ca conditions. A mutant sensitive to low-Ca conditions, low calcium sensitive3 (lcs3), exhibited high levels of cell death in emerging leaves and had defects in its expanding true leaves under low-Ca conditions. Further analyses showed that the causal mutation was located in a putative β-1,3-glucan (callose) synthase gene, GLUCAN SYNTHASE-LIKE10 (GSL10). Yeast complementation assay results showed that GSL10 encodes a functional callose synthase. Ectopic callose significantly accumulated in wild-type plants under low-Ca conditions, but at a low level in lcs3 The low-Ca sensitivity of lcs3 was phenocopied by the application of callose synthase inhibitors in wild-type plants, which resulted in leaf expansion failure, cell death, and reduced ectopic callose levels under low-Ca conditions. Transcriptome analyses showed that the expression of genes related to cell wall and defense responses was altered in both wild-type plants under low-Ca conditions and in lcs3 under normal-Ca conditions, suggesting that GSL10 is required for the alleviation of both cell wall damage and defense responses caused by low Ca levels. These results suggest that callose synthesis is essential for the prevention of cell death under low-Ca conditions and plays a key role in plants' survival strategies under low-Ca conditions.
Collapse
Affiliation(s)
- Yusuke Shikanai
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Ryosuke Yoshida
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Tomoko Hirano
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Yusuke Enomoto
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Baohai Li
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Mayu Asada
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Mutsumi Yamagami
- Department of Radioecology, Institute of Environmental Sciences, Aomori 039-3212, Japan
| | - Katsushi Yamaguchi
- NIBB Core Research Facilities, National Institute for Basic Biology, Aichi 444-8585, Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, Aichi 444-8585, Japan
| | - Ryo Tabata
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Hiroki Okada
- Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| | - Yoshikazu Ohya
- Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| | - Takehiro Kamiya
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
37
|
Schneider HM, Klein SP, Hanlon MT, Kaeppler S, Brown KM, Lynch JP. Genetic control of root anatomical plasticity in maize. THE PLANT GENOME 2020; 13:e20003. [PMID: 33016634 DOI: 10.1002/tpg2.20003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/01/2019] [Indexed: 05/06/2023]
Abstract
Root anatomical phenes have important roles in soil resource capture and plant performance; however, their phenotypic plasticity and genetic architecture is poorly understood. We hypothesized that (a) the responses of root anatomical phenes to water deficit (stress plasticity) and different environmental conditions (environmental plasticity) are genetically controlled and (b) stress and environmental plasticity are associated with different genetic loci than those controlling the expression of phenes under water-stress and well-watered conditions. Root anatomy was phenotyped in a large maize (Zea mays L.) association panel in the field with and without water deficit stress in Arizona and without water deficit stress in South Africa. Anatomical phenes displayed stress and environmental plasticity; many phenotypic responses to water deficit were adaptive, and the magnitude of response varied by genotype. We identified 57 candidate genes associated with stress and environmental plasticity and 64 candidate genes associated with phenes under well-watered and water-stress conditions in Arizona and under well-watered conditions in South Africa. Four candidate genes co-localized between plasticity groups or for phenes expressed under each condition. The genetic architecture of phenotypic plasticity is highly quantitative, and many distinct genes control plasticity in response to water deficit and different environments, which poses a challenge for breeding programs.
Collapse
Affiliation(s)
- Hannah M Schneider
- Dep. of Plant Science, Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Stephanie P Klein
- Dep. of Plant Science, Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Meredith T Hanlon
- Dep. of Plant Science, Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Shawn Kaeppler
- Dep. of Agronomy, Univ. of Wisconsin, Madison, WI, 53706, USA
| | - Kathleen M Brown
- Dep. of Plant Science, Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Jonathan P Lynch
- Dep. of Plant Science, Pennsylvania State Univ., University Park, PA, 16802, USA
| |
Collapse
|
38
|
Plasencia FA, Estrada Y, Flores FB, Ortíz-Atienza A, Lozano R, Egea I. The Ca 2+ Sensor Calcineurin B-Like Protein 10 in Plants: Emerging New Crucial Roles for Plant Abiotic Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2020; 11:599944. [PMID: 33519853 PMCID: PMC7843506 DOI: 10.3389/fpls.2020.599944] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/09/2020] [Indexed: 05/14/2023]
Abstract
Ca2+ is a second messenger that mediates plant responses to abiotic stress; Ca2+ signals need to be decoded by Ca2+ sensors that translate the signal into physiological, metabolic, and molecular responses. Recent research regarding the Ca2+ sensor CALCINEURIN B-LIKE PROTEIN 10 (CBL10) has resulted in important advances in understanding the function of this signaling component during abiotic stress tolerance. Under saline conditions, CBL10 function was initially understood to be linked to regulation of Na+ homeostasis, protecting plant shoots from salt stress. During this process, CBL10 interacts with the CBL-interacting protein kinase 24 (CIPK24, SOS2), this interaction being localized at both the plasma and vacuolar (tonoplast) membranes. Interestingly, recent studies have exposed that CBL10 is a regulator not only of Na+ homeostasis but also of Ca2+ under salt stress, regulating Ca2+ fluxes in vacuoles, and also at the plasma membrane. This review summarizes new research regarding functions of CBL10 in plant stress tolerance, predominantly salt stress, as this is the most commonly studied abiotic stress associated with the function of this regulator. Special focus has been placed on some aspects that are still unclear. We also pay particular attention on the proven versatility of CBL10 to activate (in a CIPK-dependent manner) or repress (by direct interaction) downstream targets, in different subcellular locations. These in turn appear to be the link through which CBL10 could be a key master regulator of stress signaling in plants and also a crucial participant in fruit development and quality, as disruption of CBL10 results in inadequate Ca2+ partitioning in plants and fruit. New emerging roles associated with other abiotic stresses in addition to salt stress, such as drought, flooding, and K+ deficiency, are also addressed in this review. Finally, we provide an outline of recent advances in identification of potential targets of CBL10, as CBL10/CIPKs complexes and as CBL10 direct interactions. The aim is to showcase new research regarding this master regulator of abiotic stress tolerance that may be essential to the maintenance of crop productivity under abiotic stress. This is particularly pertinent when considering the scenario of a projected increase in extreme environmental conditions due to climate change.
Collapse
Affiliation(s)
- Felix A. Plasencia
- Department of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Espinardo, Murcia, Spain
| | - Yanira Estrada
- Department of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Espinardo, Murcia, Spain
| | - Francisco B. Flores
- Department of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Espinardo, Murcia, Spain
| | - Ana Ortíz-Atienza
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Almería, Spain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Almería, Spain
| | - Isabel Egea
- Department of Stress Biology and Plant Pathology, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Espinardo, Murcia, Spain
- *Correspondence: Isabel Egea,
| |
Collapse
|
39
|
Navazio L, Formentin E, Cendron L, Szabò I. Chloroplast Calcium Signaling in the Spotlight. FRONTIERS IN PLANT SCIENCE 2020; 11:186. [PMID: 32226434 PMCID: PMC7081724 DOI: 10.3389/fpls.2020.00186] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/07/2020] [Indexed: 05/22/2023]
Abstract
Calcium has long been known to regulate the metabolism of chloroplasts, concerning both light and carbon reactions of photosynthesis, as well as additional non photosynthesis-related processes. In addition to undergo Ca2+ regulation, chloroplasts can also influence the overall Ca2+ signaling pathways of the plant cell. Compelling evidence indicate that chloroplasts can generate specific stromal Ca2+ signals and contribute to the fine tuning of cytoplasmic Ca2+ signaling in response to different environmental stimuli. The recent set up of a toolkit of genetically encoded Ca2+ indicators, targeted to different chloroplast subcompartments (envelope, stroma, thylakoids) has helped to unravel the participation of chloroplasts in intracellular Ca2+ handling in resting conditions and during signal transduction. Intra-chloroplast Ca2+ signals have been demonstrated to occur in response to specific environmental stimuli, suggesting a role for these plant-unique organelles in transducing Ca2+-mediated stress signals. In this mini-review we present current knowledge of stimulus-specific intra-chloroplast Ca2+ transients, as well as recent advances in the identification and characterization of Ca2+-permeable channels/transporters localized at chloroplast membranes. In particular, the potential role played by cMCU, a chloroplast-localized member of the mitochondrial calcium uniporter (MCU) family, as component of plant environmental sensing is discussed in detail, taking into account some specific structural features of cMCU. In summary, the recent molecular identification of some players of chloroplast Ca2+ signaling has opened new avenues in this rapidly developing field and will hopefully allow a deeper understanding of the role of chloroplasts in shaping physiological responses in plants.
Collapse
Affiliation(s)
- Lorella Navazio
- Department of Biology, University of Padova, Padova, Italy
- Botanical Garden, University of Padova, Padova, Italy
| | - Elide Formentin
- Department of Biology, University of Padova, Padova, Italy
- Botanical Garden, University of Padova, Padova, Italy
| | - Laura Cendron
- Department of Biology, University of Padova, Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Padova, Italy
- Botanical Garden, University of Padova, Padova, Italy
- *Correspondence: Ildikò Szabò,
| |
Collapse
|
40
|
Babla M, Cai S, Chen G, Tissue DT, Cazzonelli CI, Chen ZH. Molecular Evolution and Interaction of Membrane Transport and Photoreception in Plants. Front Genet 2019; 10:956. [PMID: 31681411 PMCID: PMC6797626 DOI: 10.3389/fgene.2019.00956] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/06/2019] [Indexed: 12/20/2022] Open
Abstract
Light is a vital regulator that controls physiological and cellular responses to regulate plant growth, development, yield, and quality. Light is the driving force for electron and ion transport in the thylakoid membrane and other membranes of plant cells. In different plant species and cell types, light activates photoreceptors, thereby modulating plasma membrane transport. Plants maximize their growth and photosynthesis by facilitating the coordinated regulation of ion channels, pumps, and co-transporters across membranes to fine-tune nutrient uptake. The signal-transducing functions associated with membrane transporters, pumps, and channels impart a complex array of mechanisms to regulate plant responses to light. The identification of light responsive membrane transport components and understanding of their potential interaction with photoreceptors will elucidate how light-activated signaling pathways optimize plant growth, production, and nutrition to the prevailing environmental changes. This review summarizes the mechanisms underlying the physiological and molecular regulations of light-induced membrane transport and their potential interaction with photoreceptors in a plant evolutionary and nutrition context. It will shed new light on plant ecological conservation as well as agricultural production and crop quality, bringing potential nutrition and health benefits to humans and animals.
Collapse
Affiliation(s)
- Mohammad Babla
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
| | - Shengguan Cai
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Guang Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - David T. Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | | | - Zhong-Hua Chen
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
41
|
Tan X, Li K, Wang Z, Zhu K, Tan X, Cao J. A Review of Plant Vacuoles: Formation, Located Proteins, and Functions. PLANTS 2019; 8:plants8090327. [PMID: 31491897 PMCID: PMC6783984 DOI: 10.3390/plants8090327] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 12/19/2022]
Abstract
Vacuoles, cellular membrane-bound organelles, are the largest compartments of cells, occupying up to 90% of the volume of plant cells. Vacuoles are formed by the biosynthetic and endocytotic pathways. In plants, the vacuole is crucial for growth and development and has a variety of functions, including storage and transport, intracellular environmental stability, and response to injury. Depending on the cell type and growth conditions, the size of vacuoles is highly dynamic. Different types of cell vacuoles store different substances, such as alkaloids, protein enzymes, inorganic salts, sugars, etc., and play important roles in multiple signaling pathways. Here, we summarize vacuole formation, types, vacuole-located proteins, and functions.
Collapse
Affiliation(s)
- Xiaona Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Kaixia Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Zheng Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Keming Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Xiaoli Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Jun Cao
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
42
|
Navarro-León E, Ruiz JM, Albacete A, Blasco B. Effect of CAX1a TILLING mutations and calcium concentration on some primary metabolism processes in Brassica rapa plants. JOURNAL OF PLANT PHYSIOLOGY 2019; 237:51-60. [PMID: 31022665 DOI: 10.1016/j.jplph.2019.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Cation/H+ exchanger transporters (CAXs) are crucial in Ca2+ homeostasis and in the generation of Ca2+ profiles involved in signalling processes. Given the crucial role of CAX1 in Ca2+ homeostasis, CAX1 modifications could have effects on plant metabolism. Three Brassica rapa mutants for CAX1 were obtained through TILLING. The aim of this work is to assess the effect of the different mutations and different Ca2+ doses on plant metabolism. For this, the mutants and the parental line were grown under low, control and high Ca2+ doses and parameters related to nitrogen (N) and tricarboxylic acid (TCA) metabolisms, and amino acid (AAs) and phytohormone profiles were measured. The results show that BraA.cax1a mutations affect metabolism especially under high Ca2+ dose. Thus, BraA.cax1a-7 inhibited some N metabolism enzymes and activated photorespiration activity. On the opposite side, BraA.cax1a-12 mutation provides a better tolerance to high Ca2+ dose. This tolerance could be provided by an improved N and TCA metabolisms enzymes, and a higher glutamate, malate, indole-3-acetic acid and abscisic acid concentrations. Therefore, BraA.cax1a-12 mutation could be used for B. rapa improving; the metabolomics changes observed in this mutant could be responsible for a better tolerance to high Ca2+.
Collapse
Affiliation(s)
- Eloy Navarro-León
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| | - Juan Manuel Ruiz
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| | - Alfonso Albacete
- Department of Plant Nutrition, CEBAS-CSIC, Campus de Espinardo, E-30100, Espinardo, Murcia, Spain.
| | - Begoña Blasco
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| |
Collapse
|
43
|
Fasani E, DalCorso G, Costa A, Zenoni S, Furini A. The Arabidopsis thaliana transcription factor MYB59 regulates calcium signalling during plant growth and stress response. PLANT MOLECULAR BIOLOGY 2019; 99:517-534. [PMID: 30710226 DOI: 10.1007/s11103-019-00833-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/26/2019] [Indexed: 05/04/2023]
Abstract
Transcription factor MYB59 is involved in plant growth and stress responses by acting as negative regulator of Ca signalling and homeostasis. The Arabidopsis thaliana transcription factor MYB59 is induced by cadmium (Cd) and plays a key role in the regulation of cell cycle progression and root elongation, but its mechanism of action is poorly understood. We investigated the expression of MYB59 and differences between wild-type plants, the myb59 mutant and MYB59-overexpressing lines (obtained by transformation in the mutant genotype) during plant growth and in response to various forms of stress. We also compared the transcriptomes of wild-type and myb59 mutant plants to determine putative MYB59 targets. The myb59 mutant has longer roots, smaller leaves and smaller cells than wild-type plants and responds differently to stress in germination assay. Transcriptomic analysis revealed the upregulation in the myb59 mutant of multiple genes involved in calcium (Ca) homeostasis and signalling, including those encoding calmodulin-like proteins and Ca transporters. Notably, MYB59 was strongly induced by Ca deficiency, and the myb59 mutant was characterized by higher levels of cytosolic Ca in root cells and showed a modest alteration of Ca transient frequency in guard cells, associated with the absence of Ca-induced stomatal closure. These results indicate that MYB59 negatively regulates Ca homeostasis and signalling during Ca deficiency, thus controlling plant growth and stress responses.
Collapse
Affiliation(s)
- Elisa Fasani
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Giovanni DalCorso
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Alex Costa
- Department of Life Sciences, University of Milano, 20133, Milan, Italy
| | - Sara Zenoni
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Antonella Furini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
44
|
Ahmadi H, Corso M, Weber M, Verbruggen N, Clemens S. CAX1 suppresses Cd-induced generation of reactive oxygen species in Arabidopsis halleri. PLANT, CELL & ENVIRONMENT 2018; 41:2435-2448. [PMID: 29879753 DOI: 10.1111/pce.13362] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/12/2018] [Accepted: 05/25/2018] [Indexed: 05/11/2023]
Abstract
The molecular analysis of metal hyperaccumulation in species such as Arabidopsis halleri offers the chance to gain insights into metal homeostasis and into the evolution of adaptation to extreme habitats. A prerequisite of metal hyperaccumulation is metal hypertolerance. Genetic analysis of a backcross population derived from Arabidopsis lyrata × A. halleri crosses revealed three quantitative trait loci for Cd hypertolerance. A candidate gene for Cdtol2 is AhCAX1, encoding a vacuolar Ca2+ /H+ antiporter. We developed a method for the transformation of vegetatively propagated A. halleri plants and generated AhCAX1-silenced lines. Upon Cd2+ exposure, several-fold higher accumulation of reactive oxygen species (ROS) was detectable in roots of AhCAX1-silenced plants. In accordance with the dependence of Cdtol2 on external Ca2+ concentration, this phenotype was exclusively observed in low Ca2+ conditions. The effects of external Ca2+ on Cd accumulation cannot explain the phenotype as they were not influenced by the genotype. Our data strongly support the hypothesis that higher expression of CAX1 in A. halleri relative to other Arabidopsis species represents a Cd hypertolerance factor. We propose a function of AhCAX1 in preventing a positive feedback loop of Cd-elicited ROS production triggering further Ca2+ -dependent ROS accumulation.
Collapse
Affiliation(s)
- Hassan Ahmadi
- University of Bayreuth, Department of Plant Physiology, and Bayreuth Center of Ecology and Environmental Research, Bayreuth, Germany
| | - Massimiliano Corso
- Université Libre de Bruxelles, Laboratory of Plant Physiology and Molecular Genetics, Brussels, Belgium
| | - Michael Weber
- University of Bayreuth, Department of Plant Physiology, and Bayreuth Center of Ecology and Environmental Research, Bayreuth, Germany
| | - Nathalie Verbruggen
- Université Libre de Bruxelles, Laboratory of Plant Physiology and Molecular Genetics, Brussels, Belgium
| | - Stephan Clemens
- University of Bayreuth, Department of Plant Physiology, and Bayreuth Center of Ecology and Environmental Research, Bayreuth, Germany
| |
Collapse
|
45
|
De Vriese K, Costa A, Beeckman T, Vanneste S. Pharmacological Strategies for Manipulating Plant Ca 2+ Signalling. Int J Mol Sci 2018; 19:E1506. [PMID: 29783646 PMCID: PMC5983822 DOI: 10.3390/ijms19051506] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 11/20/2022] Open
Abstract
Calcium is one of the most pleiotropic second messengers in all living organisms. However, signalling specificity is encoded via spatio-temporally regulated signatures that act with surgical precision to elicit highly specific cellular responses. How this is brought about remains a big challenge in the plant field, in part due to a lack of specific tools to manipulate/interrogate the plant Ca2+ toolkit. In many cases, researchers resort to tools that were optimized in animal cells. However, the obviously large evolutionary distance between plants and animals implies that there is a good chance observed effects may not be specific to the intended plant target. Here, we provide an overview of pharmacological strategies that are commonly used to activate or inhibit plant Ca2+ signalling. We focus on highlighting modes of action where possible, and warn for potential pitfalls. Together, this review aims at guiding plant researchers through the Ca2+ pharmacology swamp.
Collapse
Affiliation(s)
- Kjell De Vriese
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Alex Costa
- Department of Biosciences, University of Milan, 20133 Milan, Italy.
- Instititute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy.
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
- Lab of Plant Growth Analysis, Ghent University Global Campus, Songdomunhwa-Ro, 119, Yeonsu-gu, Incheon 21985, Korea.
| |
Collapse
|
46
|
Costa A, Navazio L, Szabo I. The contribution of organelles to plant intracellular Calcium signalling. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4996169. [PMID: 29767757 DOI: 10.1093/jxb/ery185] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 05/18/2023]
Abstract
Calcium (Ca2+) is among the most important intracellular messengers in living organisms. Understanding of the players and dynamics of Ca2+ signalling pathways in plants may help to unravel the molecular basis of their exceptional flexibility to respond and to adapt to different stimuli. In the present review we focus on new tools that have recently revolutionized our view of organellar Ca2+ signalling as well as on the current knowledge regarding the pathways mediating Ca2+ fluxes across intracellular membranes. The contribution of organelles and cellular subcompartments to the orchestrated response via Ca2+ signalling within a cell is also discussed, underlining the fact that one of the greatest challenges in the field is the elucidation of how influx and efflux Ca2+ transporters/channels are regulated in a concerted manner to translate specific information into a Ca2+ signature.
Collapse
Affiliation(s)
- Alex Costa
- Department of Biosciences, University of Milan, Via G. Celoria, Milan, Italy
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Via G. Celoria, Milan, Italy
| | - Lorella Navazio
- Department of Biology, University of Padova, Via U. Bassi, Padova, Italy
- Botanical Garden, University of Padova, Via Orto Botanico, Padova, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Via U. Bassi, Padova, Italy
- Botanical Garden, University of Padova, Via Orto Botanico, Padova, Italy
- Institute of Neurosciences, Consiglio Nazionale delle Ricerche, Via U. Bassi, Padova, Italy
| |
Collapse
|
47
|
Inducing Ni sensitivity in the Ni hyperaccumulator plant Alyssum inflatum Nyárády (Brassicaceae) by transforming with CAX1, a vacuolar membrane calcium transporter. Ecol Res 2018. [DOI: 10.1007/s11284-018-1560-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Egea I, Pineda B, Ortíz-Atienza A, Plasencia FA, Drevensek S, García-Sogo B, Yuste-Lisbona FJ, Barrero-Gil J, Atarés A, Flores FB, Barneche F, Angosto T, Capel C, Salinas J, Vriezen W, Esch E, Bowler C, Bolarín MC, Moreno V, Lozano R. The SlCBL10 Calcineurin B-Like Protein Ensures Plant Growth under Salt Stress by Regulating Na + and Ca 2+ Homeostasis. PLANT PHYSIOLOGY 2018; 176:1676-1693. [PMID: 29229696 PMCID: PMC5813568 DOI: 10.1104/pp.17.01605] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/07/2017] [Indexed: 05/19/2023]
Abstract
Characterization of a new tomato (Solanum lycopersicum) T-DNA mutant allowed for the isolation of the CALCINEURIN B-LIKE PROTEIN 10 (SlCBL10) gene whose lack of function was responsible for the severe alterations observed in the shoot apex and reproductive organs under salinity conditions. Physiological studies proved that SlCBL10 gene is required to maintain a proper low Na+/Ca2+ ratio in growing tissues allowing tomato growth under salt stress. Expression analysis of the main responsible genes for Na+ compartmentalization (i.e. Na+/H+ EXCHANGERs, SALT OVERLY SENSITIVE, HIGH-AFFINITY K+ TRANSPORTER 1;2, H+-pyrophosphatase AVP1 [SlAVP1] and V-ATPase [SlVHA-A1]) supported a reduced capacity to accumulate Na+ in Slcbl10 mutant leaves, which resulted in a lower uploading of Na+ from xylem, allowing the toxic ion to reach apex and flowers. Likewise, the tomato CATION EXCHANGER 1 and TWO-PORE CHANNEL 1 (SlTPC1), key genes for Ca2+ fluxes to the vacuole, showed abnormal expression in Slcbl10 plants indicating an impaired Ca2+ release from vacuole. Additionally, complementation assay revealed that SlCBL10 is a true ortholog of the Arabidopsis (Arabidopsis thaliana) CBL10 gene, supporting that the essential function of CBL10 is conserved in Arabidopsis and tomato. Together, the findings obtained in this study provide new insights into the function of SlCBL10 in salt stress tolerance. Thus, it is proposed that SlCBL10 mediates salt tolerance by regulating Na+ and Ca2+ fluxes in the vacuole, cooperating with the vacuolar cation channel SlTPC1 and the two vacuolar H+-pumps, SlAVP1 and SlVHA-A1, which in turn are revealed as potential targets of SlCBL10.
Collapse
Affiliation(s)
- Isabel Egea
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, 30100 Espinardo, Murcia, Spain
| | - Benito Pineda
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia. s/n. 46022 Valencia, Spain
| | - Ana Ortíz-Atienza
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de Almería, 04120 Almería, Spain
| | - Félix A Plasencia
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, 30100 Espinardo, Murcia, Spain
| | - Stéphanie Drevensek
- Institut de Biologie de l'École Normale Supérieure, Paris Sciences et Lettres Research University, CNRS UMR 8197, INSERM U1024. F-75005 Paris, France
| | - Begoña García-Sogo
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia. s/n. 46022 Valencia, Spain
| | - Fernando J Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de Almería, 04120 Almería, Spain
| | - Javier Barrero-Gil
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Alejandro Atarés
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia. s/n. 46022 Valencia, Spain
| | - Francisco B Flores
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, 30100 Espinardo, Murcia, Spain
| | - Fredy Barneche
- Institut de Biologie de l'École Normale Supérieure, Paris Sciences et Lettres Research University, CNRS UMR 8197, INSERM U1024. F-75005 Paris, France
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de Almería, 04120 Almería, Spain
| | - Carmen Capel
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de Almería, 04120 Almería, Spain
| | - Julio Salinas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Wim Vriezen
- Bayer Vegetable Seeds, 6083 AB Nunhem, The Netherlands
| | | | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure, Paris Sciences et Lettres Research University, CNRS UMR 8197, INSERM U1024. F-75005 Paris, France
| | - Maria C Bolarín
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, 30100 Espinardo, Murcia, Spain
| | - Vicente Moreno
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia. s/n. 46022 Valencia, Spain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de Almería, 04120 Almería, Spain
| |
Collapse
|
49
|
Martins V, Carneiro F, Conde C, Sottomayor M, Gerós H. The grapevine VvCAX3 is a cation/H + exchanger involved in vacuolar Ca 2+ homeostasis. PLANTA 2017; 246:1083-1096. [PMID: 28801786 DOI: 10.1007/s00425-017-2754-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 08/03/2017] [Indexed: 05/05/2023]
Abstract
The grapevine VvCAX3 mediates calcium transport in the vacuole and is mostly expressed in green grape berries and upregulated by Ca 2+ , Na + and methyl jasmonate. Calcium is an essential plant nutrient with important regulatory and structural roles in the berries of grapevine (Vitis vinifera L.). On the other hand, the proton-cation exchanger CAX proteins have been shown to impact Ca2+ homeostasis with important consequences for fruit integrity and resistance to biotic/abiotic stress. Here, the CAX gene found in transcriptomic databases as having one of the highest expressions in grapevine tissues, VvCAX3, was cloned and functionally characterized. Heterologous expression in yeast showed that a truncated version of VvCAX3 lacking its NNR autoinhibitory domain (sCAX3) restored the ability of the yeast strain to grow in 100-200 mM Ca2+, demonstrating a role in Ca2+ transport. The truncated VvCAX3 was further shown to be involved in the transport of Na+, Li+, Mn2+ and Cu2+ in yeast cells. Subcellular localization studies using fluorescently tagged proteins confirmed VvCAX3 as a tonoplast transporter. VvCAX3 is expressed in grapevine stems, leaves, roots, and berries, especially at pea size, decreasing gradually throughout development, in parallel with the pattern of calcium accumulation in the fruit. The transcript abundance of VvCAX3 was shown to be regulated by methyl jasmonate (MeJA), Ca2+, and Na+ in grape cell suspensions, and the VvCAX3 promotor contains several predicted cis-acting elements related to developmental and stress response processes. As a whole, the results obtained add new insights on the mechanisms involved in calcium homeostasis and intracellular compartmentation in grapevine, and indicate that VvCAX3 may be an interesting target towards the development of strategies for enhancement of grape berry properties.
Collapse
Affiliation(s)
- Viviana Martins
- Centro de Investigação e de Tecnologias Agro-ambientais e Biológicas, CITAB-UMinho Pole, Departamento de Biologia, Escola de Ciências, Universidade do Minho, Braga, Portugal.
| | - Filipa Carneiro
- Centro de Investigação e de Tecnologias Agro-ambientais e Biológicas, CITAB-UMinho Pole, Departamento de Biologia, Escola de Ciências, Universidade do Minho, Braga, Portugal
| | - Carlos Conde
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Mariana Sottomayor
- CIBIO-InBIO, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Hernâni Gerós
- Centro de Investigação e de Tecnologias Agro-ambientais e Biológicas, CITAB-UMinho Pole, Departamento de Biologia, Escola de Ciências, Universidade do Minho, Braga, Portugal
- Centro de Biologia Molecular e Ambiental (CBMA), Departamento de Biologia, Escola de Ciências, Universidade do Minho, Braga, Portugal
- Centro de Engenharia Biológica (CEB), Universidade do Minho, Braga, Portugal
| |
Collapse
|
50
|
Tang RJ, Luan S. Regulation of calcium and magnesium homeostasis in plants: from transporters to signaling network. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:97-105. [PMID: 28709026 DOI: 10.1016/j.pbi.2017.06.009] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 05/26/2023]
Abstract
Calcium (Ca2+) and magnesium (Mg2+) are the most abundant divalent cations in plants. As a nutrient and a signaling ion, Ca2+ levels in the cell are tightly controlled by an array of channels and carriers that provide mechanistic basis for Ca2+ homeostasis and the generation of Ca2+ signals. Although a family of CorA-type Mg2+ transporters plays a key role in controlling Mg2+ homeostasis in plants, more components are yet to be identified. Ca2+ and Mg2+ appear to have antagonistic interactions in plant cells, and therefore plants depend on a homeostatic balance between Ca2+ and Mg2+ for optimal growth and development. Maintenance of such a balance in response to changing nutrient status in the soil emerges as a critical feature of plant mineral nutrition. Studies have uncovered signaling mechanisms that perceive nutrient status as a signal and regulate transport activities as adaptive responses. This 'nutrient sensing' network is exemplified by the Ca2+-dependent CBL (calcineurin B-like)-CIPK (CBL-interacting protein kinase) pathway that serves as a major link between environmental nutrient status and transport activities. In this review, we analyze the recent literature on Ca2+ and Mg2+ transport systems and their regulation and provide our perspectives on future research.
Collapse
Affiliation(s)
- Ren-Jie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, United States
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, United States.
| |
Collapse
|