1
|
Prasad A, Sharma S, Prasad M. Post translational modifications at the verge of plant-geminivirus interaction. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194983. [PMID: 37717937 DOI: 10.1016/j.bbagrm.2023.194983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Plant-virus interaction is a complex phenomenon and involves the communication between plant and viral factors. Viruses have very limited coding ability yet, they are able to cause infection which results in huge agro-economic losses throughout the globe each year. Post-translational modifications (PTMs) are covalent modifications of proteins that have a drastic effect on their conformation, stability and function. Like the host proteins, geminiviral proteins are also subject to PTMs and these modifications greatly expand the diversity of their functions. Additionally, these viral proteins can also interact with the components of PTM pathways and modulate them. Several studies have highlighted the importance of PTMs such as phosphorylation, ubiquitination, SUMOylation, myristoylation, S-acylation, acetylation and methylation in plant-geminivirus interaction. PTMs also regulate epigenetic modifications during geminivirus infection which determines viral gene expression. In this review, we have summarized the role of PTMs in regulating geminiviral protein function, influence of PTMs on viral gene expression and how geminiviral proteins interact with the components of PTM pathways to modulate their function.
Collapse
Affiliation(s)
- Ashish Prasad
- Department of Botany, Kurukshetra University, Kurukshetra, India.
| | | | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India; Department of Plant Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
2
|
Breves SS, Silva FA, Euclydes NC, Saia TFF, Jean-Baptiste J, Andrade Neto ER, Fontes EPB. Begomovirus-Host Interactions: Viral Proteins Orchestrating Intra and Intercellular Transport of Viral DNA While Suppressing Host Defense Mechanisms. Viruses 2023; 15:1593. [PMID: 37515277 PMCID: PMC10384534 DOI: 10.3390/v15071593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Begomoviruses, which belong to the Geminiviridae family, are intracellular parasites transmitted by whiteflies to dicotyledonous plants thatsignificantly damage agronomically relevant crops. These nucleus-replicating DNA viruses move intracellularly from the nucleus to the cytoplasm and then, like other plant viruses, cause disease by spreading systemically throughout the plant. The transport proteins of begomoviruses play a crucial role in recruiting host components for the movement of viral DNA within and between cells, while exhibiting functions that suppress the host's immune defense. Pioneering studies on species of the Begomovirus genus have identified specific viral transport proteins involved in intracellular transport, cell-to-cell movement, and systemic spread. Recent research has primarily focused on viral movement proteins and their interactions with the cellular host transport machinery, which has significantly expanded understanding on viral infection pathways. This review focuses on three components within this context: (i) the role of viral transport proteins, specifically movement proteins (MPs) and nuclear shuttle proteins (NSPs), (ii) their ability to recruit host factors for intra- and intercellular viral movement, and (iii) the suppression of antiviral immunity, with a particular emphasis on bipartite begomoviral movement proteins.
Collapse
Affiliation(s)
- Sâmera S Breves
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - Fredy A Silva
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - Nívea C Euclydes
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - Thainá F F Saia
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - James Jean-Baptiste
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - Eugenio R Andrade Neto
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - Elizabeth P B Fontes
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| |
Collapse
|
3
|
Jeevalatha A, Siddappa S, Kumar R, Tiwari RK, Lal MK, Sharma S, Chakrabarti SK, Singh BP. RNA-seq analysis reveals an early defense response to tomato leaf curl New Delhi virus in potato cultivar Kufri Bahar. Funct Integr Genomics 2023; 23:215. [PMID: 37389664 DOI: 10.1007/s10142-023-01138-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023]
Abstract
Potatoes in India are very susceptible to apical leaf curl disease, which causes severe symptoms and greater yield losses. Because the majority of potato cultivars are susceptible to the virus, it is crucial to discover sources of resistance and investigate the mechanism of resistance/susceptibility in potato cultivars. In this study, the gene expression profile of two potato cultivars, Kufri Bahar (resistant) and Kufri Pukhraj (susceptible), varying in their level of resistance to ToLCNDV, was analyzed using RNA-Seq. The Ion ProtonTM system was used to sequence eight RiboMinus RNA libraries from inoculated and uninoculated potato plants at 15 and 20 days after inoculation (DAI). The findings indicated that the majority of differentially expressed genes (DEGs) were cultivar-or time-specific. These DEGs included genes for proteins that interact with viruses, genes linked with the cell cycle, genes for proteins involved in defense, transcription and translation initiation factors, and plant hormone signaling pathway genes. Interestingly, defense responses were generated early in Kufri Bahar, at 15 DAI, which may have impeded the replication and spread of ToLCNDV. This research provides a genome-wide transcriptional analysis of two potato cultivars with variable levels of ToLCNDV resistance. At an early stage, we observed suppression of genes that interact with viral proteins, induction of genes associated with restriction of cell division, genes encoding defense proteins, AP2/ERF transcription factors, and altered expression of zinc finger protein genes, HSPs, JA, and SA pathway-related genes. Our findings add to a greater comprehension of the molecular basis of potato resistance to ToLCNDV and may aid in the development of more effective disease management techniques.
Collapse
Affiliation(s)
- Arjunan Jeevalatha
- ICAR- Central Potato Research Institute, Shimla, 171 001, Himachal Pradesh, India
- ICAR- Indian Institute of Spices Research, Kozhikode, 673 012, Kerala, India
| | - Sundaresha Siddappa
- ICAR- Central Potato Research Institute, Shimla, 171 001, Himachal Pradesh, India
| | - Ravinder Kumar
- ICAR- Central Potato Research Institute, Shimla, 171 001, Himachal Pradesh, India.
| | - Rahul Kumar Tiwari
- ICAR- Central Potato Research Institute, Shimla, 171 001, Himachal Pradesh, India.
| | - Milan Kumar Lal
- ICAR- Central Potato Research Institute, Shimla, 171 001, Himachal Pradesh, India
| | - Sanjeev Sharma
- ICAR- Central Potato Research Institute, Shimla, 171 001, Himachal Pradesh, India
| | | | - Bir Pal Singh
- ICAR- Central Potato Research Institute, Shimla, 171 001, Himachal Pradesh, India
| |
Collapse
|
4
|
Lee K, Back K. Human Naa50 Shows Serotonin N-Acetyltransferase Activity, and Its Overexpression Enhances Melatonin Biosynthesis, Resulting in Osmotic Stress Tolerance in Rice. Antioxidants (Basel) 2023; 12:antiox12020319. [PMID: 36829878 PMCID: PMC9952165 DOI: 10.3390/antiox12020319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
A new clade of serotonin N-acetyltransferase (SNAT), the penultimate enzyme in the melatonin biosynthetic pathway, has been reported in the archaeon Thermoplasma volcanium. The closest homolog of archaea SNAT in human was an N-alpha-acetyltransferase50 (Naa50). To determine whether human Naa50 (hNaa50) shows SNAT enzyme activity, we chemically synthesized and expressed the hNaa50 gene in Escherichia coli, followed by Ni2+ affinity purification. Purified recombinant hNaa50 showed SNAT activity (Km and Vmax values of 986 μM and 1800 pmol/min/mg protein, respectively). To assess its in vivo function, hNaa50 was overexpressed in rice (hNaa50-OE). The transgenic rice plants produced more melatonin than nontransgenic wild-type rice, indicating that hNaa50 is functionally coupled with melatonin biosynthesis. Due to its overproduction of melatonin, hNaa50-OE had a higher tolerance against osmotic stress than the wild type. Enhanced expression of the chaperone genes BIP1 and CNX in hNaa50-OE plants was responsible for the increased tolerance. It is concluded that hNaa50 harbors serotonin N-acetyltransferase enzyme activity in addition to its initial N-alpha-acetyltransferase, suggesting the bifunctionality of the hNaa50 enzyme toward serotonin and protein substrates. Consequently, ectopic overexpression of hNaa50 in rice enhanced melatonin synthesis, indicating that hNaa50 is in fact involved in melatonin biosynthesis.
Collapse
|
5
|
Chang H, Lee C, Chang C, Jan F. FKBP-type peptidyl-prolyl cis-trans isomerase interacts with the movement protein of tomato leaf curl New Delhi virus and impacts viral replication in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2022; 23:561-575. [PMID: 34984809 PMCID: PMC8916215 DOI: 10.1111/mpp.13181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/29/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Begomoviruses belonging to the family Geminiviridae are plant-infecting DNA viruses. Begomoviral movement protein (MP) has been reported to be required for virus movement, host range determination, and symptom development. In the present study, the FK506-binding protein (FKBP)-type peptidyl-prolyl cis-trans isomerase (NbFKPPIase) of Nicotiana benthamiana was identified by a yeast two-hybrid screening system using the MP of tomato leaf curl New Delhi virus (ToLCNDV) oriental melon (OM) isolate (MPOM ) as bait. Transient silencing of the gene encoding NbFKPPIase increased replication of three test begomoviruses, and transient overexpression decreased viral replication, indicating that NbFKPPIase plays a role in defence against begomoviruses. However, infection of N. benthamiana by ToLCNDV-OM or overexpression of the gene encoding MPOM drastically reduced the expression of the gene encoding NbFKPPIase. Fluorescence resonance energy transfer analysis revealed that MPOM interacted with NbFKPPIase in the periphery of cells. Expression of the gene encoding NbFKPPIase was induced by salicylic acid but not by methyl jasmonate or ethylene. Moreover, the expression of the gene encoding NbFKPPIase was down-regulated in response to 6-benzylaminopurine and up-regulated in response to gibberellin or indole-3-acetic acid, suggesting a role of NbFKPPIase in plant development. Transcriptome analysis and comparison of N. benthamiana transient silencing and overexpression of the gene encoding MPOM led to the identification of several differentially expressed genes whose functions are probably associated with cell cycle regulation. Our results indicate that begomoviruses could suppress NbFKPPIase-mediated defence and biological functions by transcriptional inhibition and physical interaction between MP and NbFKPPIase to facilitate infection.
Collapse
Affiliation(s)
- Ho‐Hsiung Chang
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
| | - Chia‐Hwa Lee
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
- Ph.D. Program in Microbial GenomicsNational Chung Hsing University and Academia SinicaTaichung and TaipeiTaiwan
| | - Chung‐Jan Chang
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
- Department of Plant PathologyUniversity of GeorgiaGriffinGeorgiaUSA
| | - Fuh‐Jyh Jan
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
- Ph.D. Program in Microbial GenomicsNational Chung Hsing University and Academia SinicaTaichung and TaipeiTaiwan
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
| |
Collapse
|
6
|
Functional Characterization of Serotonin N-Acetyltransferase in Archaeon Thermoplasma volcanium. Antioxidants (Basel) 2022; 11:antiox11030596. [PMID: 35326246 PMCID: PMC8945778 DOI: 10.3390/antiox11030596] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Serotonin N-acetyltransferase is the penultimate enzyme in the melatonin biosynthetic pathway that catalyzes serotonin into N-acetylserotonin. Many SNAT genes have been cloned and characterized from organisms ranging from bacteria to plants and mammals. However, to date, no SNAT gene has been identified from Archaea. In this study, three archaeal SNAT candidate genes were synthesized and expressed in Escherichia coli, and SNAT enzyme activity was measured using their purified recombinant proteins. Two SNAT candidate genes, from Methanoregulaceae (Archaea) and Pyrococcus furiosus, showed no SNAT enzyme activity, whereas a SNAT candidate gene from Thermoplasma volcanium previously named TvArd1 exhibited SNAT enzyme activity. The substrate affinity and the maximum reaction rate of TvSNAT toward serotonin were 621 μM and 416 pmol/min/mg protein, respectively. The highest amine substrate was tyramine, followed by tryptamine, serotonin, and 5-methoxytryptamine, which were similar to those of plant SNAT enzymes. Homologs of TvSNAT were found in many Archaea families. Ectopic overexpression of TvSNAT in rice resulted in increased melatonin content, antioxidant activity, and seed size in conjunction with the enhanced expression of seed size-related gene. This study is the first to report the discovery of SNAT gene in Archaea. Future research avenues include the cloning of TvSNAT orthologs in different phyla, and identification of their regulation and functions related to melatonin biosynthesis in living organisms.
Collapse
|
7
|
Devendran R, Namgial T, Reddy KK, Kumar M, Zarreen F, Chakraborty S. Insights into the multifunctional roles of geminivirus-encoded proteins in pathogenesis. Arch Virol 2022; 167:307-326. [PMID: 35079902 DOI: 10.1007/s00705-021-05338-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/23/2021] [Indexed: 12/18/2022]
Abstract
Geminiviruses are a major threat to agriculture in tropical and subtropical regions of the world. Geminiviruses have small genome with limited coding capacity. Despite this limitation, these viruses have mastered hijacking the host cellular metabolism for their survival. To compensate for the small size of their genome, geminiviruses encode multifunctional proteins. In addition, geminiviruses associate themselves with satellite DNA molecules which also encode proteins that support the virus in establishing successful infection. Geminiviral proteins recruit multiple host factors, suppress the host defense, and manipulate host metabolism to establish infection. We have updated the knowledge accumulated about the proteins of geminiviruses and their satellites in the context of pathogenesis in a single review. We also discuss their interactions with host factors to provide a mechanistic understanding of the infection process.
Collapse
Affiliation(s)
- Ragunathan Devendran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Tsewang Namgial
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Kishore Kumar Reddy
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Manish Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Fauzia Zarreen
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
8
|
Gouveia-Mageste BC, Martins LGC, Dal-Bianco M, Machado JPB, da Silva JCF, Kim AY, Yazaki J, dos Santos AA, Ecker JR, Fontes EPB. A plant-specific syntaxin-6 protein contributes to the intracytoplasmic route for the begomovirus CabLCV. PLANT PHYSIOLOGY 2021; 187:158-173. [PMID: 34618135 PMCID: PMC8418432 DOI: 10.1093/plphys/kiab252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/09/2021] [Indexed: 06/13/2023]
Abstract
Because of limited free diffusion in the cytoplasm, viruses must use active transport mechanisms to move intracellularly. Nevertheless, how the plant single-stranded DNA begomoviruses hijack the host intracytoplasmic transport machinery to move from the nucleus to the plasmodesmata remains enigmatic. Here, we identified nuclear shuttle protein (NSP)-interacting proteins from Arabidopsis (Arabidopsis thaliana) by probing a protein microarray and demonstrated that the cabbage leaf curl virus NSP, a facilitator of the nucleocytoplasmic trafficking of viral (v)DNA, interacts in planta with an endosomal vesicle-localized, plant-specific syntaxin-6 protein, designated NSP-interacting syntaxin domain-containing protein (NISP). NISP displays a proviral function, unlike the syntaxin-6 paralog AT2G18860 that failed to interact with NSP. Consistent with these findings, nisp-1 mutant plants were less susceptible to begomovirus infection, a phenotype reversed by NISP complementation. NISP-overexpressing lines accumulated higher levels of vDNA than wild-type. Furthermore, NISP interacted with an NSP-interacting GTPase (NIG) involved in NSP-vDNA nucleocytoplasmic translocation. The NISP-NIG interaction was enhanced by NSP. We also showed that endosomal NISP associates with vDNA. NISP may function as a docking site for recruiting NIG and NSP into endosomes, providing a mechanism for the intracytoplasmic translocation of the NSP-vDNA complex toward and from the cell periphery.
Collapse
Affiliation(s)
- Bianca Castro Gouveia-Mageste
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Laura Gonçalves Costa Martins
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Maximiller Dal-Bianco
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - João Paulo Batista Machado
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
- Agronomy Institute, Universidade Federal de Viçosa, Campus Florestal, Florestal, Minas Gerais 35690-000, Brazil
| | - José Cleydson Ferreira da Silva
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Alice Y. Kim
- Genomic Analysis Laboratory, Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Junshi Yazaki
- Genomic Analysis Laboratory, Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa 230-0045, Japan
| | - Anésia Aparecida dos Santos
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
- Departament of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Joseph R. Ecker
- Howard Hughes Medical Institute and Plant Biology Laboratory, The Salk Institute of Biological Studies, La Jolla, California 92037, USA
| | - Elizabeth Pacheco Batista Fontes
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| |
Collapse
|
9
|
Liu X, Huang W, Zhai Z, Ye T, Yang C, Lai J. Protein modification: A critical modulator in the interaction between geminiviruses and host plants. PLANT, CELL & ENVIRONMENT 2021; 44:1707-1715. [PMID: 33506956 DOI: 10.1111/pce.14008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/06/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Geminiviruses are a large group of single-stranded DNA viruses that infect plants and cause severe agricultural losses worldwide. Given geminiviruses only have small genomes that encode a few proteins, viral factors have to interact with host components to establish an environment suitable for virus infection, whilst the host immunity system recognizes and targets these viral components during infection. Post-translational protein modifications, such as phosphorylation, lipidation, ubiquitination, SUMOylation, acetylation and methylation, have been reported to be critical during the interplay between host plants and geminiviruses. Here we summarize the research progress, including phosphorylation and lipidation which usually control the activity and localization of viral factors; as well as ubiquitination and histone modification which are predominantly interfered with by viral components. We also discuss the dynamic competition on protein modifications between host defence and geminivirus efficient infection, as well as potential applications of protein modifications in geminivirus resistance. The summary and perspective of this topic will improve our understanding on the mechanism of geminivirus-plant interaction and contribute to further protection of plants from virus infection.
Collapse
Affiliation(s)
- Xiaoshi Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Wei Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Zhenqian Zhai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Tushu Ye
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| |
Collapse
|
10
|
Lee HY, Back K. Melatonin Regulates Chloroplast Protein Quality Control via a Mitogen-Activated Protein Kinase Signaling Pathway. Antioxidants (Basel) 2021; 10:antiox10040511. [PMID: 33806011 PMCID: PMC8064490 DOI: 10.3390/antiox10040511] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Serotonin N-acetyltransferase 1 (SNAT1), the penultimate enzyme for melatonin biosynthesis has shown N-acetyltransferase activity toward multiple substrates, including histones, serotonin, and plastid proteins. Under two different light conditions such as 50 or 100 μmol m−2 s−1, a SNAT1-knockout (snat1) mutant of Arabidopsis thaliana ecotype Columbia (Col-0) exhibited small size phenotypes relative over wild-type (WT) Arabidopsis Col-0. Of note, the small phenotype is stronger when growing at the 50 μmol m−2 s−1, exhibiting a dwarfism phenotype and delayed flowering. The snat1 Arabidopsis Col-0 accumulated less starch than the WT Col-0. Moreover, snat1 exhibited lower Lhcb1, Lhcb4, and RBCL protein levels, compared with the WT Col-0, but no changes in the corresponding transcripts, suggesting the involvement of melatonin in chloroplast protein quality control (CPQC). Accordingly, caseinolytic protease (Clp) and chloroplast heat shock proteins (CpHSPs), two key proteins involved in CPQC, as well as ROS defense were suppressed in snat1. In contrast, exogenous melatonin treatment induced expression of Clp, CpHSP, APX1, and GST, but not other growth-related genes such as DWF4, KS, and IAA1. Finally, the induction of ClpR1, APX1, and GST1 in response to melatonin was inhibited in the mitogen-activated protein kinase (MAPK) knockdown Arabidopsis (mpk3/6), suggesting that melatonin-mediated CPQC was mediated, in part, by the MAPK signaling cascade. These results suggest that melatonin is involved in CPQC, which plays a pivotal role in starch synthesis in plants.
Collapse
|
11
|
Kumar S, Karmakar R, Gupta I, Patel AK. Interaction of potyvirus helper component-proteinase (HcPro) with RuBisCO and nucleosome in viral infections of plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:313-322. [PMID: 32251956 DOI: 10.1016/j.plaphy.2020.03.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Bean common mosaic virus (BCMV) causes severe disease in Phaseolus vulgaris plants. One of its non structural protein, the helper-component proteinase (HcPro) involves in multiple roles in aphid transmission, RNA binding, suppression of gene silencing and protease activity. The multifunctional role of HcPro hint towards its regulation at multiple host cellular sites. The mechanisms of these regulatory activities are poorly understood. Therefore, it is very important to study the molecular level interaction of HcPro with different cellular components. In this study, we demonstrate that the HcPro interacts with RuBisCo, an enzyme of chloroplast origin which might plays a crucial role in virus infection. A further line of experiments were carried out with factors of nuclear origin. Due to nucleic acid binding activity of HcPro, it showed interaction with dsDNA of nucleosome, as ascertained through electrophoretic mobility shift assay (EMSA). Interestingly, HcPro interacts with host nucleoprotein histones, H3 and H4. The gel-overlay assay and native electrophoresis-western blot analysis (NEWeB) revealed a direct interaction of BCMV HcPro with host nucleosome and with histones. These findings suggest that the BCMV through HcPro, not only utilize the host cytoplasmic components but also use host nuclear factors for its propagation and disease development.
Collapse
Affiliation(s)
- Sunil Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Ruma Karmakar
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 10016, India
| | - Ishu Gupta
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Ashok Kumar Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
12
|
Martins LGC, Raimundo GAS, Ribeiro NGA, Silva JCF, Euclydes NC, Loriato VAP, Duarte CEM, Fontes EPB. A Begomovirus Nuclear Shuttle Protein-Interacting Immune Hub: Hijacking Host Transport Activities and Suppressing Incompatible Functions. FRONTIERS IN PLANT SCIENCE 2020; 11:398. [PMID: 32322262 PMCID: PMC7156597 DOI: 10.3389/fpls.2020.00398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/19/2020] [Indexed: 05/21/2023]
Abstract
Begomoviruses (Geminiviridae family) represent a severe constraint to agriculture worldwide. As ssDNA viruses that replicate in the nuclei of infected cells, the nascent viral DNA has to move to the cytoplasm and then to the adjacent cell to cause disease. The begomovirus nuclear shuttle protein (NSP) assists the intracellular transport of viral DNA from the nucleus to the cytoplasm and cooperates with the movement protein (MP) for the cell-to-cell translocation of viral DNA to uninfected cells. As a facilitator of intra- and intercellular transport of viral DNA, NSP is predicted to associate with host proteins from the nuclear export machinery, the intracytoplasmic active transport system, and the cell-to-cell transport complex. Furthermore, NSP functions as a virulence factor that suppresses antiviral immunity against begomoviruses. In this review, we focus on the protein-protein network that converges on NSP with a high degree of centrality and forms an immune hub against begomoviruses. We also describe the compatible host functions hijacked by NSP to promote the nucleocytoplasmic and intracytoplasmic movement of viral DNA. Finally, we discuss the NSP virulence function as a suppressor of the recently described NSP-interacting kinase 1 (NIK1)-mediated antiviral immunity. Understanding the NSP-host protein-protein interaction (PPI) network will probably pave the way for strategies to generate more durable resistance against begomoviruses.
Collapse
|
13
|
Kumar RV. Plant Antiviral Immunity Against Geminiviruses and Viral Counter-Defense for Survival. Front Microbiol 2019; 10:1460. [PMID: 31297106 PMCID: PMC6607972 DOI: 10.3389/fmicb.2019.01460] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/11/2019] [Indexed: 12/27/2022] Open
Abstract
The family Geminiviridae includes plant-infecting viruses whose genomes are composed of one or two circular non-enveloped ssDNAs(+) of about 2.5-5.2 kb each in size. These insect-transmissible geminiviruses cause significant crop losses across continents and pose a serious threat to food security. Under the control of promoters generally located within the intergenic region, their genomes encode five to eight ORFs from overlapping viral transcripts. Most proteins encoded by geminiviruses perform multiple functions, such as suppressing defense responses, hijacking ubiquitin-proteasomal pathways, altering hormonal responses, manipulating cell cycle regulation, and exploiting protein-signaling cascades. Geminiviruses establish complex but coordinated interactions with several host elements to spread and facilitate successful infection cycles. Consequently, plants have evolved several multilayered defense strategies against geminivirus infection and distribution. Recent studies on the evasion of host-mediated resistance factors by various geminivirus proteins through novel mechanisms have provided new insights into the development of antiviral strategies against geminiviruses. This review summarizes the current knowledge concerning virus movement within and between cells, as well as the recent advances in our understanding of the biological roles of virus-encoded proteins in manipulating host-mediated responses and insect transmission. This review also highlights unexplored areas that may increase our understanding of the biology of geminiviruses and how to combat these important plant pathogens.
Collapse
Affiliation(s)
- R. Vinoth Kumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| |
Collapse
|
14
|
Ji XL, Yu NT, Qu L, Li BB, Liu ZX. Banana bunchy top virus (BBTV) nuclear shuttle protein interacts and re-distributes BBTV coat protein in Nicotiana benthamiana. 3 Biotech 2019; 9:121. [PMID: 30863700 DOI: 10.1007/s13205-019-1656-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/26/2019] [Indexed: 01/27/2023] Open
Abstract
Banana bunchy top virus (BBTV) is a circular single-stranded DNA virus with multi-components. The knowledge about interaction between viral proteins and pathogenesis mechanism of BBTV remains unclear. In this study, the coat protein gene (CP, ORF 516 bp) and nuclear shuttle protein gene (NSP, ORF 465 bp) from BBTV B2 isolate of the Southeast-Asia group were cloned. The intracellular localization analysis showed the CP locates in the cell nucleus of tobacco cells, while the NSP distributes in the cell nucleus and cytoplasm. Co-localization analysis indicated the NSP itself does not change distribution, but CP re-distributes to the cell nucleus and cytoplasm, suggesting that NSP interacts with CP and re-locates the CP in the cell. The interaction between CP and NSP was further verified by co-immunoprecipitation (Co-IP) in tobacco protoplasts. The study will help us to understand the interaction between viral proteins and pathogenesis mechanism of BBTV in host plants.
Collapse
Affiliation(s)
- Xiao-Long Ji
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs/Hainan Provincial Key Laboratory of Microbiology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
| | - Nai-Tong Yu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs/Hainan Provincial Key Laboratory of Microbiology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
| | - Ling Qu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs/Hainan Provincial Key Laboratory of Microbiology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
| | - Bin-Bin Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs/Hainan Provincial Key Laboratory of Microbiology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
| | - Zhi-Xin Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs/Hainan Provincial Key Laboratory of Microbiology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
| |
Collapse
|
15
|
Li H, Wang H, Jing M, Zhu J, Guo B, Wang Y, Lin Y, Chen H, Kong L, Ma Z, Wang Y, Ye W, Dong S, Tyler B, Wang Y. A Phytophthora effector recruits a host cytoplasmic transacetylase into nuclear speckles to enhance plant susceptibility. eLife 2018; 7:e40039. [PMID: 30346270 PMCID: PMC6249003 DOI: 10.7554/elife.40039] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/21/2018] [Indexed: 12/14/2022] Open
Abstract
Oomycete pathogens secrete host cell-entering effector proteins to manipulate host immunity during infection. We previously showed that PsAvh52, an early-induced RxLR effector secreted from the soybean root rot pathogen, Phytophthora sojae, could suppress plant immunity. Here, we found that PsAvh52 is required for full virulence on soybean and binds to a novel soybean transacetylase, GmTAP1, in vivo and in vitro. PsAvh52 could cause GmTAP1 to relocate into the nucleus where GmTAP1 could acetylate histones H2A and H3 during early infection, thereby promoting susceptibility to P. sojae. In the absence of PsAvh52, GmTAP1 remained confined to the cytoplasm and did not modify plant susceptibility. These results demonstrate that GmTAP1 is a susceptibility factor that is hijacked by PsAvh52 in order to promote epigenetic modifications that enhance the susceptibility of soybean to P. sojae infection.
Collapse
Affiliation(s)
- Haiyang Li
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Haonan Wang
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Maofeng Jing
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Jinyi Zhu
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Baodian Guo
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Yang Wang
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Yachun Lin
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Han Chen
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Liang Kong
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Zhenchuan Ma
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Yan Wang
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Wenwu Ye
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Suomeng Dong
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Brett Tyler
- Center for Genome Research and BiocomputingOregon State UniversityCorvallisUnited States
- Department of Botany and Plant PathologyOregon State UniversityCorvallisUnited States
| | - Yuanchao Wang
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| |
Collapse
|
16
|
|
17
|
Jeevalatha A, Siddappa S, Kumar A, Kaundal P, Guleria A, Sharma S, Nagesh M, Singh BP. An insight into differentially regulated genes in resistant and susceptible genotypes of potato in response to tomato leaf curl New Delhi virus-[potato] infection. Virus Res 2017; 232:22-33. [PMID: 28115198 DOI: 10.1016/j.virusres.2017.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 01/04/2017] [Accepted: 01/08/2017] [Indexed: 12/13/2022]
Abstract
Apical leaf curl disease, caused by tomato leaf curl New Delhi virus-[potato] (ToLCNDV-[potato]) is one of the most important viral diseases of potato in India. Genetic resistance source for ToLCNDV in potato is not identified so far. However, the cultivar Kufri Bahar is known to show lowest seed degeneration even under high vector levels. Hence, microarray analysis was performed to identify differentially regulated genes during ToLCNDV-[potato] infection in a resistant (Kufri Bahar) and a susceptible cultivar (Kufri Pukhraj). Under artificial inoculation conditions, in Kufri Pukhraj, symptom expressions started at 15days after inoculation (DAI) and then progressed to severe symptoms, whereas no or only very mild symptoms were observed in Kufri Bahar up to 35 DAI. Correspondingly, qPCR assay indicated a high viral load in Kufri Pukhraj and a very low viral load in Kufri Bahar. Microarray analysis showed that a total of 1111 genes and 2588 genes were differentially regulated (|log2 (Fold Change)|>2) in Kufri Bahar and Kufri Pukhraj, respectively, following ToLCNDV-[potato] infection. Gene ontology and mapman analyses revealed that these altered transcripts were involved in various biological & metabolic processes. Several genes with unknown functions were 5 to 100 fold expressed after virus infection and further experiments are necessary to ascertain their role in disease resistance or susceptibility. This study gives an insight into differentially regulated genes in response to ToLCNDV-[potato] infection in resistant and susceptible cultivars and could serve as the basis for the development of new strategies for disease management.
Collapse
Affiliation(s)
- Arjunan Jeevalatha
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India.
| | - Sundaresha Siddappa
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Ashwani Kumar
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Priyanka Kaundal
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Anupama Guleria
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Sanjeev Sharma
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Mandadi Nagesh
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Bir Pal Singh
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| |
Collapse
|
18
|
Hipp K, Schäfer B, Kepp G, Jeske H. Properties of African Cassava Mosaic Virus Capsid Protein Expressed in Fission Yeast. Viruses 2016; 8:E190. [PMID: 27399762 PMCID: PMC4974525 DOI: 10.3390/v8070190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/22/2016] [Accepted: 06/29/2016] [Indexed: 11/21/2022] Open
Abstract
The capsid proteins (CPs) of geminiviruses combine multiple functions for packaging the single-stranded viral genome, insect transmission and shuttling between the nucleus and the cytoplasm. African cassava mosaic virus (ACMV) CP was expressed in fission yeast, and purified by SDS gel electrophoresis. After tryptic digestion of this protein, mass spectrometry covered 85% of the amino acid sequence and detected three N-terminal phosphorylation sites (threonine 12, serines 25 and 62). Differential centrifugation of cell extracts separated the CP into two fractions, the supernatant and pellet. Upon isopycnic centrifugation of the supernatant, most of the CP accumulated at densities typical for free proteins, whereas the CP in the pellet fraction showed a partial binding to nucleic acids. Size-exclusion chromatography of the supernatant CP indicated high order complexes. In DNA binding assays, supernatant CP accelerated the migration of ssDNA in agarose gels, which is a first hint for particle formation. Correspondingly, CP shifted ssDNA to the expected densities of virus particles upon isopycnic centrifugation. Nevertheless, electron microscopy did not reveal any twin particles, which are characteristic for geminiviruses.
Collapse
Affiliation(s)
- Katharina Hipp
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany.
| | - Benjamin Schäfer
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany.
| | - Gabi Kepp
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany.
| | - Holger Jeske
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany.
| |
Collapse
|
19
|
Brustolini OJ, Machado JPB, Condori-Apfata JA, Coco D, Deguchi M, Loriato VA, Pereira WA, Alfenas-Zerbini P, Zerbini FM, Inoue-Nagata AK, Santos AA, Chory J, Silva FF, Fontes EP. Sustained NIK-mediated antiviral signalling confers broad-spectrum tolerance to begomoviruses in cultivated plants. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1300-1311. [PMID: 25688422 PMCID: PMC4857726 DOI: 10.1111/pbi.12349] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 12/30/2014] [Accepted: 01/06/2015] [Indexed: 05/20/2023]
Abstract
Begomovirus-associated epidemics currently threaten tomato production worldwide due to the emergence of highly pathogenic virus species and the proliferation of a whitefly B biotype vector that is adapted to tomato. To generate an efficient defence against begomovirus, we modulated the activity of the immune defence receptor nuclear shuttle protein (NSP)-interacting kinase (NIK) in tomato plants; NIK is a virulence target of the begomovirus NSP during infection. Mutation of T474 within the kinase activation loop promoted the constitutive activation of NIK-mediated defences, resulting in the down-regulation of translation-related genes and the suppression of global translation. Consistent with these findings, transgenic lines harbouring an activating mutation (T474D) were tolerant to the tomato-infecting begomoviruses ToYSV and ToSRV. This phenotype was associated with reduced loading of coat protein viral mRNA in actively translating polysomes, lower infection efficiency and reduced accumulation of viral DNA in systemic leaves. Our results also add some relevant insights into the mechanism underlying the NIK-mediated defence. We observed that the mock-inoculated T474D-overexpressing lines showed a constitutively infected wild-type transcriptome, indicating that the activation of the NIK-mediated signalling pathway triggers a typical response to begomovirus infection. In addition, the gain-of-function mutant T474D could sustain an activated NIK-mediated antiviral response in the absence of the virus, further confirming that phosphorylation of Thr-474 is the crucial event that leads to the activation of the kinase.
Collapse
Affiliation(s)
- Otávio J.B. Brustolini
- Departamento de Bioquímica e Biologia Molecular, Bioagro, Viçosa, MG, Brazil
- National Institute of Science and Technology in Plant–Pest Interactions, Bioagro, Viçosa, MG, Brazil
| | - Joao Paulo B. Machado
- Departamento de Bioquímica e Biologia Molecular, Bioagro, Viçosa, MG, Brazil
- National Institute of Science and Technology in Plant–Pest Interactions, Bioagro, Viçosa, MG, Brazil
| | - Jorge A. Condori-Apfata
- National Institute of Science and Technology in Plant–Pest Interactions, Bioagro, Viçosa, MG, Brazil
| | - Daniela Coco
- Departamento de Bioquímica e Biologia Molecular, Bioagro, Viçosa, MG, Brazil
- National Institute of Science and Technology in Plant–Pest Interactions, Bioagro, Viçosa, MG, Brazil
| | - Michihito Deguchi
- Departamento de Bioquímica e Biologia Molecular, Bioagro, Viçosa, MG, Brazil
- National Institute of Science and Technology in Plant–Pest Interactions, Bioagro, Viçosa, MG, Brazil
| | - Virgílio A.P. Loriato
- Departamento de Bioquímica e Biologia Molecular, Bioagro, Viçosa, MG, Brazil
- National Institute of Science and Technology in Plant–Pest Interactions, Bioagro, Viçosa, MG, Brazil
| | - Welison A. Pereira
- National Institute of Science and Technology in Plant–Pest Interactions, Bioagro, Viçosa, MG, Brazil
| | - Poliane Alfenas-Zerbini
- National Institute of Science and Technology in Plant–Pest Interactions, Bioagro, Viçosa, MG, Brazil
| | - Francisco M. Zerbini
- National Institute of Science and Technology in Plant–Pest Interactions, Bioagro, Viçosa, MG, Brazil
| | - Alice K. Inoue-Nagata
- National Institute of Science and Technology in Plant–Pest Interactions, Bioagro, Viçosa, MG, Brazil
- Embrapa Vegetables, Brasília, DF, Brazil
| | - Anesia A. Santos
- Departamento de Bioquímica e Biologia Molecular, Bioagro, Viçosa, MG, Brazil
- National Institute of Science and Technology in Plant–Pest Interactions, Bioagro, Viçosa, MG, Brazil
| | - Joanne Chory
- Howard Hughes Medical Institute and Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Fabyano F. Silva
- Departamento de Zootecnia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Elizabeth P.B. Fontes
- Departamento de Bioquímica e Biologia Molecular, Bioagro, Viçosa, MG, Brazil
- National Institute of Science and Technology in Plant–Pest Interactions, Bioagro, Viçosa, MG, Brazil
- Correspondence (Tel +55 31 3899 2948; fax +55-31-38992864; )
| |
Collapse
|
20
|
Allie F, Pierce EJ, Okoniewski MJ, Rey C. Transcriptional analysis of South African cassava mosaic virus-infected susceptible and tolerant landraces of cassava highlights differences in resistance, basal defense and cell wall associated genes during infection. BMC Genomics 2014; 15:1006. [PMID: 25412561 PMCID: PMC4253015 DOI: 10.1186/1471-2164-15-1006] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 10/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cassava mosaic disease is caused by several distinct geminivirus species, including South African cassava mosaic virus-[South Africa:99] (SACMV). To date, there is limited gene regulation information on viral stress responses in cassava, and global transcriptome profiling in SACMV-infected cassava represents an important step towards understanding natural host responses to plant geminiviruses. RESULTS A RNA-seq time course (12, 32 and 67 dpi) study, monitoring gene expression in SACMV-challenged susceptible (T200) and tolerant (TME3) cassava landraces, was performed using the Applied Biosystems (ABI) SOLiD next-generation sequencing platform. The multiplexed paired end sequencing run produced a total of 523 MB and 693 MB of paired-end reads for SACMV-infected susceptible and tolerant cDNA libraries, respectively. Of these, approximately 50.7% of the T200 reads and 55.06% of TME3 reads mapped to the cassava reference genome available in phytozome. Using a log2 fold cut-off (p<0.05), comparative analysis between the six normalized cDNA libraries showed that 4181 and 1008 transcripts in total were differentially expressed in T200 and TME3, respectively, across 12, 32 and 67 days post infection, compared to mock-inoculated. The number of responsive transcripts increased dramatically from 12 to 32 dpi in both cultivars, but in contrast, in T200 the levels did not change significantly at 67 dpi, while in TME3 they declined. GOslim functional groups illustrated that differentially expressed genes in T200 and TME3 were overrepresented in the cellular component category for stress-related genes, plasma membrane and nucleus. Alterations in the expression of other interesting genes such as transcription factors, resistance (R) genes, and histone/DNA methylation-associated genes, were observed. KEGG pathway analysis uncovered important altered metabolic pathways, including phenylpropanoid biosynthesis, sucrose and starch metabolism, and plant hormone signalling. CONCLUSIONS Molecular mechanisms for TME3 tolerance are proposed, and differences in patterns and levels of transcriptome profiling between T200 and TME3 with susceptible and tolerant phenotypes, respectively, support the hypothesis that viruses rearrange their molecular interactions in adapting to hosts with different genetic backgrounds.
Collapse
Affiliation(s)
- Farhahna Allie
- />School of Molecular and Cell Biology, University of the Witwatersrand, 1 Jan Smuts Ave, Braamfontein, Johannesburg, 2000 South Africa
| | - Erica J Pierce
- />School of Molecular and Cell Biology, University of the Witwatersrand, 1 Jan Smuts Ave, Braamfontein, Johannesburg, 2000 South Africa
| | - Michal J Okoniewski
- />Functional Genomics Center, Zurich, UNI ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Chrissie Rey
- />School of Molecular and Cell Biology, University of the Witwatersrand, 1 Jan Smuts Ave, Braamfontein, Johannesburg, 2000 South Africa
| |
Collapse
|
21
|
Abstract
Geminiviruses are a family of plant viruses that cause economically important plant diseases worldwide. These viruses have circular single-stranded DNA genomes and four to eight genes that are expressed from both strands of the double-stranded DNA replicative intermediate. The transcription of these genes occurs under the control of two bidirectional promoters and one monodirectional promoter. The viral proteins function to facilitate virus replication, virus movement, the assembly of virus-specific nucleoprotein particles, vector transmission and to counteract plant host defence responses. Recent research findings have provided new insights into the structure and function of these proteins and have identified numerous host interacting partners. Most of the viral proteins have been shown to be multifunctional, participating in multiple events during the infection cycle and have, indeed, evolved coordinated interactions with host proteins to ensure a successful infection. Here, an up-to-date review of viral protein structure and function is presented, and some areas requiring further research are identified.
Collapse
Affiliation(s)
- Vincent N Fondong
- Department of Biological Sciences, Delaware State University, 1200 North DuPont Highway, Dover, DE 19901, USA.
| |
Collapse
|
22
|
Czosnek H, Eybishtz A, Sade D, Gorovits R, Sobol I, Bejarano E, Rosas-Díaz T, Lozano-Durán R. Discovering host genes involved in the infection by the Tomato Yellow Leaf Curl Virus complex and in the establishment of resistance to the virus using Tobacco Rattle Virus-based post transcriptional gene silencing. Viruses 2013; 5:998-1022. [PMID: 23524390 PMCID: PMC3705308 DOI: 10.3390/v5030998] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 02/02/2023] Open
Abstract
The development of high-throughput technologies allows for evaluating gene expression at the whole-genome level. Together with proteomic and metabolomic studies, these analyses have resulted in the identification of plant genes whose function or expression is altered as a consequence of pathogen attacks. Members of the Tomato yellow leaf curl virus (TYLCV) complex are among the most important pathogens impairing production of agricultural crops worldwide. To understand how these geminiviruses subjugate plant defenses, and to devise counter-measures, it is essential to identify the host genes affected by infection and to determine their role in susceptible and resistant plants. We have used a reverse genetics approach based on Tobacco rattle virus-induced gene silencing (TRV-VIGS) to uncover genes involved in viral infection of susceptible plants, and to identify genes underlying virus resistance. To identify host genes with a role in geminivirus infection, we have engineered a Nicotiana benthamiana line, coined 2IRGFP, which over-expresses GFP upon virus infection. With this system, we have achieved an accurate description of the dynamics of virus replication in space and time. Upon silencing selected N. benthamiana genes previously shown to be related to host response to geminivirus infection, we have identified eighteen genes involved in a wide array of cellular processes. Plant genes involved in geminivirus resistance were studied by comparing two tomato lines: one resistant (R), the other susceptible (S) to the virus. Sixty-nine genes preferentially expressed in R tomatoes were identified by screening cDNA libraries from infected and uninfected R and S genotypes. Out of the 25 genes studied so far, the silencing of five led to the total collapse of resistance, suggesting their involvement in the resistance gene network. This review of our results indicates that TRV-VIGS is an exquisite reverse genetics tool that may provide new insights into the molecular mechanisms underlying plant infection and resistance to infection by begomoviruses.
Collapse
Affiliation(s)
- Henryk Czosnek
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; E-mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +972-8-9489249; Fax: +972- 8 9489899
| | - Assaf Eybishtz
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; E-mail:
| | - Dagan Sade
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; E-mail:
| | - Rena Gorovits
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; E-mail:
| | - Iris Sobol
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; E-mail:
| | - Eduardo Bejarano
- Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain; E-mail:
| | - Tábata Rosas-Díaz
- Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain; E-mail:
| | - Rosa Lozano-Durán
- Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain; E-mail:
| |
Collapse
|
23
|
Krenz B, Jeske H, Kleinow T. The induction of stromule formation by a plant DNA-virus in epidermal leaf tissues suggests a novel intra- and intercellular macromolecular trafficking route. FRONTIERS IN PLANT SCIENCE 2012; 3:291. [PMID: 23293643 PMCID: PMC3530832 DOI: 10.3389/fpls.2012.00291] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 12/06/2012] [Indexed: 05/20/2023]
Abstract
Stromules are dynamic thin protrusions of membrane envelope from plant cell plastids. Despite considerable progress in understanding the importance of certain cytoskeleton elements and motor proteins for stromule maintenance, their function within the cell has yet to be unraveled. Several viruses cause a remodulation of plastid structures and stromule biogenesis within their host plants. For RNA-viruses these interactions were demonstrated to be relevant to the infection process. An involvement of plastids and stromules is assumed in the DNA-virus life cycle as well, but their functional role needs to be determined. Recent findings support a participation of heat shock cognate 70 kDa protein (cpHSC70-1)-containing stromules induced by a DNA-virus infection (Abutilon mosaic virus, AbMV, Geminiviridae) in intra- and intercellular molecule exchange. The chaperone cpHSC70-1 was shown to interact with the AbMV movement protein (MP). Bimolecular fluorescence complementation confirmed the interaction of cpHSC70-1 and MP, and showed a homo-oligomerization of either protein in planta. The complexes were detected at the cellular margin and co-localized with plastids. In healthy plant tissues cpHSC70-1-oligomers occurred in distinct spots at chloroplasts and in small filaments extending from plastids to the cell periphery. AbMV-infection induced a cpHSC70-1-containing stromule network that exhibits elliptical dilations and transverses whole cells. Silencing of the cpHSC70 gene revealed an impact of cpHSC70 on chloroplast stability and restricted AbMV movement, but not viral DNA accumulation. Based on these data, a model is suggested in which these stromules function in molecule exchange between plastids and other organelles and perhaps other cells. AbMV may utilize cpHSC70-1 for trafficking along plastids and stromules into a neighboring cell or from plastids into the nucleus. Experimental approaches to investigate this hypothesis are discussed.
Collapse
Affiliation(s)
- Björn Krenz
- Plant Pathology and Plant-Microbe Biology, Cornell UniversityIthaca, NY, USA
| | - Holger Jeske
- Molecular Biology and Plant Virology, Institute of Biology, Universität StuttgartStuttgart, Germany
| | - Tatjana Kleinow
- Molecular Biology and Plant Virology, Institute of Biology, Universität StuttgartStuttgart, Germany
| |
Collapse
|
24
|
Nawaz-ul-Rehman MS, Briddon RW, Fauquet CM. A melting pot of Old World begomoviruses and their satellites infecting a collection of Gossypium species in Pakistan. PLoS One 2012; 7:e40050. [PMID: 22899988 PMCID: PMC3416816 DOI: 10.1371/journal.pone.0040050] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 05/31/2012] [Indexed: 11/19/2022] Open
Abstract
CLCuD in southern Asia is caused by a complex of multiple begomoviruses (whitefly transmitted, single-stranded [ss]DNA viruses) in association with a specific ssDNA satellite; Cotton leaf curl Multan betasatellite (CLCuMuB). A further single ssDNA molecule, for which the collective name alphasatellites has been proposed, is also frequently associated with begomovirus-betasatellite complexes. Multan is in the center of the cotton growing area of Pakistan and has seen some of the worst problems caused by CLCuD. An exhaustive analysis of the diversity of begomoviruses and their satellites occurring in 15 Gossypium species (including G. hirsutum, the mainstay of Pakistan's cotton production) that are maintained in an orchard in the vicinity of Multan has been conducted using φ29 DNA polymerase-mediated rolling-circle amplification, cloning and sequence analysis. The non-cultivated Gossypium species, including non-symptomatic plants, were found to harbor a much greater diversity of begomoviruses and satellites than found in the cultivated G. hirsutum. Furthermore an African cassava mosaic virus (a virus previously only identified in Africa) DNA-A component and a Jatropha curcas mosaic virus (a virus occurring only in southern India) DNA-B component were identified. Consistent with earlier studies of cotton in southern Asia, only a single species of betasatellite, CLCuMuB, was identified. The diversity of alphasatellites was much greater, with many previously unknown species, in the non-cultivated cotton species than in G. hirsutum. Inoculation of newly identified components showed them to be competent for symptomatic infection of Nicotiana benthamiana plants. The significance of the findings with respect to our understanding of the role of host selection in virus diversity in crops and the geographical spread of viruses by human activity are discussed.
Collapse
Affiliation(s)
| | - Rob W. Briddon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| | - Claude M. Fauquet
- Danforth Plant Science Center, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
25
|
Zhou Y, Rojas MR, Park MR, Seo YS, Lucas WJ, Gilbertson RL. Histone H3 interacts and colocalizes with the nuclear shuttle protein and the movement protein of a geminivirus. J Virol 2011; 85:11821-32. [PMID: 21900168 PMCID: PMC3209288 DOI: 10.1128/jvi.00082-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 08/26/2011] [Indexed: 11/20/2022] Open
Abstract
Geminiviruses are plant-infecting viruses with small circular single-stranded DNA genomes. These viruses utilize nuclear shuttle proteins (NSPs) and movement proteins (MPs) for trafficking of infectious DNA through the nuclear pore complex and plasmodesmata, respectively. Here, a biochemical approach was used to identify host factors interacting with the NSP and MP of the geminivirus Bean dwarf mosaic virus (BDMV). Based on these studies, we identified and characterized a host nucleoprotein, histone H3, which interacts with both the NSP and MP. The specific nature of the interaction of histone H3 with these viral proteins was established by gel overlay and in vitro and in vivo coimmunoprecipitation (co-IP) assays. The NSP and MP interaction domains were mapped to the N-terminal region of histone H3. These experiments also revealed a direct interaction between the BDMV NSP and MP, as well as interactions between histone H3 and the capsid proteins of various geminiviruses. Transient-expression assays revealed the colocalization of histone H3 and NSP in the nucleus and nucleolus and of histone H3 and MP in the cell periphery and plasmodesmata. Finally, using in vivo co-IP assays with a Myc-tagged histone H3, a complex composed of histone H3, NSP, MP, and viral DNA was recovered. Taken together, these findings implicate the host factor histone H3 in the process by which an infectious geminiviral DNA complex forms within the nucleus for export to the cell periphery and cell-to-cell movement through plasmodesmata.
Collapse
Affiliation(s)
- Yanchen Zhou
- Department of Plant Pathology, University of California, Davis, California 95616
| | - Maria R. Rojas
- Department of Plant Pathology, University of California, Davis, California 95616
| | - Mi-Ri Park
- Department of Plant Pathology, University of California, Davis, California 95616
| | - Young-Su Seo
- Department of Plant Pathology, University of California, Davis, California 95616
| | - William J. Lucas
- Department of Plant Biology, University of California, Davis, California 95616
| | - Robert L. Gilbertson
- Department of Plant Pathology, University of California, Davis, California 95616
| |
Collapse
|
26
|
Pallas V, García JA. How do plant viruses induce disease? Interactions and interference with host components. J Gen Virol 2011; 92:2691-2705. [PMID: 21900418 DOI: 10.1099/vir.0.034603-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Plant viruses are biotrophic pathogens that need living tissue for their multiplication and thus, in the infection-defence equilibrium, they do not normally cause plant death. In some instances virus infection may have no apparent pathological effect or may even provide a selective advantage to the host, but in many cases it causes the symptomatic phenotypes of disease. These pathological phenotypes are the result of interference and/or competition for a substantial amount of host resources, which can disrupt host physiology to cause disease. This interference/competition affects a number of genes, which seems to be greater the more severe the symptoms that they cause. Induced or repressed genes belong to a broad range of cellular processes, such as hormonal regulation, cell cycle control and endogenous transport of macromolecules, among others. In addition, recent evidence indicates the existence of interplay between plant development and antiviral defence processes, and that interference among the common points of their signalling pathways can trigger pathological manifestations. This review provides an update on the latest advances in understanding how viruses affect substantial cellular processes, and how plant antiviral defences contribute to pathological phenotypes.
Collapse
Affiliation(s)
- Vicente Pallas
- Instituto de Biología Molecular y Celular de las Plantas, CSIC-Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Juan Antonio García
- Centro Nacional de Biotecnología-CSIC, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
27
|
Lozano-Durán R, Rosas-Díaz T, Luna AP, Bejarano ER. Identification of host genes involved in geminivirus infection using a reverse genetics approach. PLoS One 2011; 6:e22383. [PMID: 21818318 PMCID: PMC3144222 DOI: 10.1371/journal.pone.0022383] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Accepted: 06/20/2011] [Indexed: 12/17/2022] Open
Abstract
Geminiviruses, like all viruses, rely on the host cell machinery to establish a successful infection, but the identity and function of these required host proteins remain largely unknown. Tomato yellow leaf curl Sardinia virus (TYLCSV), a monopartite geminivirus, is one of the causal agents of the devastating Tomato yellow leaf curl disease (TYLCD). The transgenic 2IRGFP N. benthamiana plants, used in combination with Virus Induced Gene Silencing (VIGS), entail an important potential as a tool in reverse genetics studies to identify host factors involved in TYLCSV infection. Using these transgenic plants, we have made an accurate description of the evolution of TYLCSV replication in the host in both space and time. Moreover, we have determined that TYLCSV and Tobacco rattle virus (TRV) do not dramatically influence each other when co-infected in N. benthamiana, what makes the use of TRV-induced gene silencing in combination with TYLCSV for reverse genetic studies feasible. Finally, we have tested the effect of silencing candidate host genes on TYLCSV infection, identifying eighteen genes potentially involved in this process, fifteen of which had never been implicated in geminiviral infections before. Seven of the analyzed genes have a potential anti-viral effect, whereas the expression of the other eleven is required for a full infection. Interestingly, almost half of the genes altering TYLCSV infection play a role in postranslational modifications. Therefore, our results provide new insights into the molecular mechanisms underlying geminivirus infections, and at the same time reveal the 2IRGFP/VIGS system as a powerful tool for functional reverse genetics studies.
Collapse
Affiliation(s)
- Rosa Lozano-Durán
- Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| | - Tábata Rosas-Díaz
- Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| | - Ana P. Luna
- Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| | - Eduardo R. Bejarano
- Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| |
Collapse
|
28
|
Zhang Z, Chen H, Huang X, Xia R, Zhao Q, Lai J, Teng K, Li Y, Liang L, Du Q, Zhou X, Guo H, Xie Q. BSCTV C2 attenuates the degradation of SAMDC1 to suppress DNA methylation-mediated gene silencing in Arabidopsis. THE PLANT CELL 2011; 23:273-88. [PMID: 21245466 PMCID: PMC3051253 DOI: 10.1105/tpc.110.081695] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 11/28/2010] [Accepted: 12/22/2010] [Indexed: 05/17/2023]
Abstract
Plant viruses are excellent tools for studying microbial-plant interactions as well as the complexities of host activities. Our study focuses on the role of C2 encoded by Beet severe curly top virus (BSCTV) in the virus-plant interaction. Using BSCTV C2 as bait in a yeast two-hybrid screen, a C2-interacting protein, S-adenosyl-methionine decarboxylase 1 (SAMDC1), was identified from an Arabidopsis thaliana cDNA library. The interaction was confirmed by an in vitro pull-down assay and a firefly luciferase complemention imaging assay in planta. Biochemical analysis further showed that the degradation of the SAMDC1 protein was inhibited by MG132, a 26S proteasome inhibitor, and that C2 could attenuate the degradation of the SAMDC1 protein. Genetic analysis showed that loss of function of SAMDC1 resulted in reduced susceptibility to BSCTV infection and reduced viral DNA accumulation, similar to the effect of BSCTV C2 deficiency. Bisulfite sequencing analysis further showed that C2 deficiency caused enhanced DNA methylation of the viral genome in infected plants. We also showed that C2 can suppress de novo methylation in the FWA transgenic assay in the C2 transgene background. Overexpression of SAMDC1 can mimic the suppressive activity of C2 against green fluorescent protein-directed silencing. These results suggest that C2 interferes with the host defense mechanism of DNA methylation-mediated gene silencing by attenuating the 26S proteasome-mediated degradation of SAMDC1.
Collapse
Affiliation(s)
- Zhonghui Zhang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, China
| | - Hao Chen
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, China
| | - Xiahe Huang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ran Xia
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingzhen Zhao
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianbin Lai
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, China
| | - Kunling Teng
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yin Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, China
| | - Liming Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, China
| | - Quansheng Du
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Huishan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Address correspondence to
| |
Collapse
|
29
|
Niehl A, Heinlein M. Cellular pathways for viral transport through plasmodesmata. PROTOPLASMA 2011; 248:75-99. [PMID: 21125301 DOI: 10.1007/s00709-010-0246-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/16/2010] [Indexed: 05/03/2023]
Abstract
Plant viruses use plasmodesmata (PD) to spread infection between cells and systemically. Dependent on viral species, movement through PD can occur in virion or non-virion form, and requires different mechanisms for targeting and modification of the pore. These mechanisms are supported by viral movement proteins and by other virus-encoded factors that interact among themselves and with plant cellular components to facilitate virus movement in a coordinated and regulated fashion.
Collapse
Affiliation(s)
- Annette Niehl
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | | |
Collapse
|
30
|
Chen H, Zhang Z, Teng K, Lai J, Zhang Y, Huang Y, Li Y, Liang L, Wang Y, Chu C, Guo H, Xie Q. Up-regulation of LSB1/GDU3 affects geminivirus infection by activating the salicylic acid pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:12-23. [PMID: 20042021 DOI: 10.1111/j.1365-313x.2009.04120.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Geminiviruses include a large number of single-stranded DNA viruses that are emerging as useful tools to dissect many fundamental processes in plant hosts. However, there have been no reports yet regarding the genetic dissection of the geminivirus-plant interaction. Here, a high-throughput approach was developed to screen Arabidopsis activation-tagged mutants which are resistant to geminivirus Beet severe curly top virus (BSCTV) infection. A mutant, lsb1 (less susceptible to BSCTV 1), was identified, in which BSCTV replication was impaired and BSCTV infectivity was reduced. We found that the three genes closest to the T-DNA were up-regulated in lsb1, and the phenotypes of lsb1 could only be recapitulated by the overexpression of GDU3 (GLUTAMINE DUMPER 3), a gene implicated in amino acid transport. We further demonstrated that activation of LSB1/GDU3 increased the expression of components in the salicylic acid (SA) pathway, which is known to counter geminivirus infection, including the upstream regulator ACD6. These data indicate that up-regulation of LSB1/GDU3 affects BSCTV infection by activating the SA pathway. This study thus provides a new approach to study of the geminivirus-host interaction.
Collapse
Affiliation(s)
- Hao Chen
- Stake Key Laboratory for Biocontrol, Sun Yat-sen (Zhongshan) University, 135 West Xin-Gang Road, Guangzhou 510275, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Trejo-Saavedra DL, Vielle-Calzada JP, Rivera-Bustamante RF. The infective cycle of Cabbage leaf curl virus (CaLCuV) is affected by CRUMPLED LEAF (CRL) gene in Arabidopsis thaliana. Virol J 2009; 6:169. [PMID: 19840398 PMCID: PMC2770057 DOI: 10.1186/1743-422x-6-169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Accepted: 10/20/2009] [Indexed: 11/30/2022] Open
Abstract
Background Geminiviruses are single-stranded DNA viruses that cause serious crop losses worldwide. Successful infection by these pathogens depends extensively on virus-host intermolecular interactions that allow them to express their gene products, to replicate their genomes and to move to adjacent cells and throughout the plant. Results To identify host genes that show an altered regulation in response to Cabbage leaf curl virus (CaLCuV) infection, a screening of transposant Arabidopsis thaliana lines was carried out. Several genes were identified to be virus responsive and one, Crumpled leaf (CRL) gene, was selected for further characterization. CRL was previously reported by Asano et al., (2004) to affect the morphogenesis of all plant organs and the division of plastids. We report here that CRL expression, during CaLCuV infection, shows a short but strong induction at an early stage (3-5 days post inoculation, dpi). To study the role of CRL in CaLCuV infection, CRL over-expressing and silenced transgenic plants were generated. We compared the replication, movement and infectivity of CaLCuV in transgenic and wild type plants. Conclusion Our results showed that CRL over-expressing plants showed an increased susceptibility to CaLCuV infection (as compared to wt plants) whereas CRL-silenced plants, on the contrary, presented a reduced susceptibility to viral infection. The possible role of CRL in the CaLCuV infection cycle is discussed.
Collapse
Affiliation(s)
- Diana L Trejo-Saavedra
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Unidad Irapuato, C.P. 36500, Irapuato, Guanajuato, México.
| | | | | |
Collapse
|
32
|
Dogra SC, Eini O, Rezaian MA, Randles JW. A novel shaggy-like kinase interacts with the Tomato leaf curl virus pathogenicity determinant C4 protein. PLANT MOLECULAR BIOLOGY 2009; 71:25-38. [PMID: 19533382 DOI: 10.1007/s11103-009-9506-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 05/20/2009] [Indexed: 05/10/2023]
Abstract
Tomato leaf curl virus-Australia (ToLCV) C4 protein has been shown to be associated with virus pathogenesis. Here, we demonstrate that C4 acts as a suppressor of gene silencing. To understand the multifunctional role of C4, a novel shaggy-like kinase (SlSK) from tomato, which interacts with ToLCV C4 in a yeast two-hybrid assay, was isolated and interaction between these proteins was confirmed in vitro and in planta. Using deletion analysis of C4, a 12 amino acid region in the C-terminal part of C4 was identified which was shown to be essential for its binding to SlSK. We further demonstrate that this region is not only important for the interaction of C4 with SlSK, but is also required for C4 function to suppress gene silencing activity and to induce virus symptoms in a PVX system. The potential significance of ToLCV C4 and SlSK interaction is discussed.
Collapse
Affiliation(s)
- Satish C Dogra
- School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Adelaide, SA 5064, Australia.
| | | | | | | |
Collapse
|
33
|
Fu HC, Hu JM, Hung TH, Su HJ, Yeh HH. Unusual events involved in Banana bunchy top virus strain evolution. PHYTOPATHOLOGY 2009; 99:812-822. [PMID: 19522579 DOI: 10.1094/phyto-99-7-0812] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Banana bunchy top virus (BBTV) can be transmitted by aphids and consists of at least six integral components (DNA-R, -U3, -S, -M, -C, and -N). Several additional replication-competent components (additional Reps) are associated with some BBTV isolates. A collected BBTV strain (TW3) that causes mild symptoms was selected to study the processes in BBTV evolution. Southern blot hybridization, polymerase chain reaction (PCR), and real-time PCR did not detect DNA-N in TW3. Real-time PCR quantification of BBTV components revealed that, except for the copy number of TW3 DNA-U3, each detected integral component of BBTV TW3 was at least two orders lower than that of the severe strains. No infection was observed in plants inoculated with aphids, which were first given acquisition access to the TW3-infected banana leaves. Recombination analysis revealed recombination between the integral component TW3 DNA-U3 and the additional Rep DNA-Y. All BBTV integral components contain a replication initiation region (stem-loop common region) that share high sequence identity. Sequence alignment revealed that TW3 DNA-R, -S, -M, and -C all have a stem-loop common region containing a characteristic 9-nucleotide deletion found only in all reported DNA-N. Our data suggest that the additional Rep DNAs can serve as sources of additional genetic diversity for integral BBTV components.
Collapse
Affiliation(s)
- Hui-Chuan Fu
- Department of Plant Pathology and Microbiology, College of Agriculture, National Taiwan University, 1 Sec. 4 Roosevelt Road, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
34
|
Okazaki M, Higuchi K, Hanawa Y, Shiraiwa Y, Ezura H. Cloning and characterization of a Chlamydomonas reinhardtii cDNA arylalkylamine N-acetyltransferase and its use in the genetic engineering of melatonin content in the Micro-Tom tomato. J Pineal Res 2009; 46:373-82. [PMID: 19552760 DOI: 10.1111/j.1600-079x.2009.00673.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Melatonin is found in a wide variety of plant species. Several investigators have studied the physiological roles of melatonin in plants. However, its role is not well understood because of the limited information on its biosynthetic pathway. To clarify melatonin biosynthesis in plants, we isolated a cDNA-coded arylalkylamine N-acetyltransferase (AANAT), a possible limiting enzyme for melatonin biosynthesis, from Chlamydomonas reinhardtii (designated as CrAANAT). The predicted amino acid sequence of CrAANAT shares 39.0% homology to AANAT from Ostreococcus tauri and lacks cAMP-dependent protein kinase phosphorylation sites in the N- and C-terminal regions that are conserved in vertebrates. The enzyme activity of CrAANAT was confirmed by in vitro assay using Escherichia coli. Transgenic plants constitutively expressing the CrAANAT were produced using Micro-Tom, a model cultivar of tomato (Solanum lycopersicum L.). The transgenic Micro-Tom exhibited higher melatonin content compared with wild type, suggesting that melatonin was synthesized from serotonin via N-acetylserotonin in plants. Moreover, the melatonin-rich transgenic Micro-Tom can be used to elucidate the role of melatonin in plant development.
Collapse
Affiliation(s)
- Masateru Okazaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
35
|
Abstract
Plant pathogenic geminiviruses have been proliferating worldwide and have, therefore, attracted considerable scientific interest during the past three decades. Current knowledge concerning their virion and genome structure, their molecular biology of replication, recombination, transcription, and silencing, as well as their transport through plants and dynamic competition with host responses are summarized. The topics are chosen to provide a comprehensive introduction for animal virologists, emphasizing similarities and differences to the closest functional relatives, polyomaviruses and circoviruses.
Collapse
|
36
|
Jayaraman A, Puranik S, Rai NK, Vidapu S, Sahu PP, Lata C, Prasad M. cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.). Mol Biotechnol 2008. [PMID: 18592419 DOI: 10.1007/s12033-008-90814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Plant growth and productivity are affected by various abiotic stresses such as heat, drought, cold, salinity, etc. The mechanism of salt tolerance is one of the most important subjects in plant science as salt stress decreases worldwide agricultural production. In our present study we used cDNA-AFLP technique to compare gene expression profiles of a salt tolerant and a salt-sensitive cultivar of foxtail millet (Seteria italica) in response to salt stress to identify early responsive differentially expressed transcripts accumulated upon salt stress and validate the obtained result through quantitative real-time PCR (qRT-PCR). The expression profile was compared between a salt tolerant (Prasad) and susceptible variety (Lepakshi) of foxtail millet in both control condition (L0 and P0) and after 1 h (L1 and P1) of salt stress. We identified 90 transcript-derived fragments (TDFs) that are differentially expressed, out of which 86 TDFs were classified on the basis of their either complete presence or absence (qualitative variants) and 4 on differential expression pattern levels (quantitative variants) in the two varieties. Finally, we identified 27 non-redundant differentially expressed cDNAs that are unique to salt tolerant variety which represent different groups of genes involved in metabolism, cellular transport, cell signaling, transcriptional regulation, mRNA splicing, seed development and storage, etc. The expression patterns of seven out of nine such genes showed a significant increase of differential expression in tolerant variety after 1 h of salt stress in comparison to salt-sensitive variety as analyzed by qRT-PCR. The direct and indirect relationship of identified TDFs with salinity tolerance mechanism is discussed.
Collapse
Affiliation(s)
- Ananthi Jayaraman
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, JNU Campus, New Delhi 110067, India
| | | | | | | | | | | | | |
Collapse
|
37
|
cDNA-AFLP Analysis Reveals Differential Gene Expression in Response to Salt Stress in Foxtail Millet (Setaria italica L.). Mol Biotechnol 2008; 40:241-51. [DOI: 10.1007/s12033-008-9081-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 06/11/2008] [Indexed: 10/21/2022]
|
38
|
Zhou YC, Garrido-Ramirez ER, Sudarshana MR, Yendluri S, Gilbertson RL. The N-terminus of the Begomovirus nuclear shuttle protein (BV1) determines virulence or avirulence in Phaseolus vulgaris. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1523-34. [PMID: 17990960 DOI: 10.1094/mpmi-20-12-1523] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The BV1 gene of the bipartite Begomovirus genome encodes a nuclear shuttle protein (NSP) that is also an avirulence determinant in common bean. The function of the NSP of two common bean-infecting bipartite begomoviruses, Bean dwarf mosaic virus (BDMV) and Bean golden yellow mosaic virus (BGYMV), was investigated using a series of hybrid DNA-B components expressing chimeric BDMV and BGYMV NSP, and genotypes of the two major common bean gene pools: Andean (cv. Topcrop) and Middle American (cvs. Alpine and UI 114). BDMV DNA-A coinoculated with HBDBG4 (BDMV DNA-B expressing the BGYMV NSP) and HBDBG9 (BDMV DNA-B expressing a chimeric NSP with the N-terminal 1 to 42 amino acids from BGYMV) overcame the BDMV resistance of UI 114. This established that the BDMV NSP is an avirulence determinant in UI 114, and mapped the domain involved in this response to the N-terminus, which is a variable surface-exposed region. BDMV DNA-A coinoculated with HBDBG10, expressing a chimeric NSP with amino acids 43 to 92 from BGYMV, was not infectious, revealing an essential virus-specific domain. In the BGYMV background, the BDMV NSP was a virulence factor in the Andean cv. Topcrop, whereas it was an avirulence factor in the Middle American cultivars, particularly in the absence of the BGYMV NSP. The capsid protein (CP) also played a gene pool-specific role in viral infectivity; it was dispensable for infectivity in the Andean cv. Topcrop, but was required for infectivity of BDMV, BGYMV, and certain hybrid viruses in the Middle American cultivars. Redundancy of the CP and NSP, which are nuclear proteins involved directly or indirectly in viral movement, provides a masking effect that may allow the virus to avoid host defense responses.
Collapse
Affiliation(s)
- Y-C Zhou
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
39
|
Bian XY, Thomas MR, Rasheed MS, Saeed M, Hanson P, De Barro PJ, Rezaian MA. A Recessive Allele (tgr-1) Conditioning Tomato Resistance to Geminivirus Infection Is Associated with Impaired Viral Movement. PHYTOPATHOLOGY 2007; 97:930-7. [PMID: 18943632 DOI: 10.1094/phyto-97-8-0930] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
ABSTRACT Begomoviruses (the family Geminiviridae) are transmitted by the whitefly Bemisia tabaci and contain monopartite or bipartite circular single-stranded (ss)DNA genomes. They have emerged as severe problems in the production of agricultural and horticultural crops worldwide. Here, we report the identification of a tomato breeding line, FLA653, that confers a high level of resistance to Tomato leaf curl virus (TLCV, monopartite). Genetic analysis indicated that the resistance is controlled by a single recessive allele named tgr-1, which is in contrast to previous reports that multiple genetic factors are involved in tomato resistance to begomoviruses. Particle bombardment of an infectious TLCV DNA construct into the detached leaves of FLA653 resulted in the viral replication, but the viral ssDNA accumulated at a much lower level than that in susceptible controls. In situ localization of TLCV in the bombarded leaves suggests that tgr-1 impaired TLCV movement, raising the possibility that it may specify a host factor essential for viral systematic infection. This makes tgr-1 a strong candidate for developing resistance in major crops carrying the gene homologue.
Collapse
|
40
|
Fontenelle MR, Luz DF, Gomes APS, Florentino LH, Zerbini FM, Fontes EPB. Functional analysis of the naturally recombinant DNA-A of the bipartite begomovirus Tomato chlorotic mottle virus. Virus Res 2007; 126:262-7. [PMID: 17367887 DOI: 10.1016/j.virusres.2007.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 02/08/2007] [Accepted: 02/09/2007] [Indexed: 11/18/2022]
Abstract
All geminiviruses found in Brazil belong to the Begomovirus genus with a bipartite genome that is split between two genomic components, DNA-A and DNA-B. The DNA-A of the bipartite begomovirus ToCMoV-[MG-Bt] (Tomato chlorotic mottle virus), however, possesses as a peculiar characteristic the capacity to systemically infect Nicotiana benthamiana. Here we further characterize this variant DNA-A and show that it also infects Solanum lycopersicum and other host plants, in the absence of DNA-B. The ToCMoV-[MG-Bt]-DNA-A encodes an additional ORF, designated AC5, but otherwise its genome organization is similar to other DNA-A from Western Hemisphere begomoviruses. We showed that this AC5 putative ORF is not essential for infection, as disruption of its coding capacity caused no effect on ToCMoV-[MG-Bt]-DNA-A-mediated infection process. Likewise, the ToCMoV-[MG-Bt]-DNA-A ac4 mutant was indistinguishable from its wild type counterpart in all hosts tested. In contrast, an av1 (coat protein) mutant was unable to infect systemically N. benthamiana and Chenopodium quinoa in the absence of DNA-B. However, inclusion of DNA-B in the infection assay fully rescued the movement defect of the ToCMoV-[MG-Bt]-DNA-A av1 mutant. These results suggest that at suboptimal conditions for infection the coat protein is required for ToCMoV-[MG-Bt] systemic movement.
Collapse
Affiliation(s)
- Mariana R Fontenelle
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, 36571.000 Viçosa, MG, Brazil
| | | | | | | | | | | |
Collapse
|
41
|
Ricaud L, Proux C, Renou JP, Pichon O, Fochesato S, Ortet P, Montané MH. ATM-mediated transcriptional and developmental responses to gamma-rays in Arabidopsis. PLoS One 2007; 2:e430. [PMID: 17487278 PMCID: PMC1855986 DOI: 10.1371/journal.pone.0000430] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 04/19/2007] [Indexed: 11/19/2022] Open
Abstract
ATM (Ataxia Telangiectasia Mutated) is an essential checkpoint kinase that signals DNA double-strand breaks in eukaryotes. Its depletion causes meiotic and somatic defects in Arabidopsis and progressive motor impairment accompanied by several cell deficiencies in patients with ataxia telangiectasia (AT). To obtain a comprehensive view of the ATM pathway in plants, we performed a time-course analysis of seedling responses by combining confocal laser scanning microscopy studies of root development and genome-wide expression profiling of wild-type (WT) and homozygous ATM-deficient mutants challenged with a dose of γ-rays (IR) that is sublethal for WT plants. Early morphologic defects in meristematic stem cells indicated that AtATM, an Arabidopsis homolog of the human ATM gene, is essential for maintaining the quiescent center and controlling the differentiation of initial cells after exposure to IR. Results of several microarray experiments performed with whole seedlings and roots up to 5 h post-IR were compiled in a single table, which was used to import gene information and extract gene sets. Sequence and function homology searches; import of spatio-temporal, cell cycling, and mutant-constitutive expression characteristics; and a simplified functional classification system were used to identify novel genes in all functional classes. The hundreds of radiomodulated genes identified were not a random collection, but belonged to functional pathways such as those of the cell cycle; cell death and repair; DNA replication, repair, and recombination; and transcription; translation; and signaling, indicating the strong cell reprogramming and double-strand break abrogation functions of ATM checkpoints. Accordingly, genes in all functional classes were either down or up-regulated concomitantly with downregulation of chromatin deacetylases or upregulation of acetylases and methylases, respectively. Determining the early transcriptional indicators of prolonged S-G2 phases that coincided with cell proliferation delay, or an anticipated subsequent auxin increase, accelerated cell differentiation or death, was used to link IR-regulated hallmark functions and tissue phenotypes after IR. The transcription burst was almost exclusively AtATM-dependent or weakly AtATR-dependent, and followed two major trends of expression in atm: (i)-loss or severe attenuation and delay, and (ii)-inverse and/or stochastic, as well as specific, enabling one to distinguish IR/ATM pathway constituents. Our data provide a large resource for studies on the interaction between plant checkpoints of the cell cycle, development, hormone response, and DNA repair functions, because IR-induced transcriptional changes partially overlap with the response to environmental stress. Putative connections of ATM to stem cell maintenance pathways after IR are also discussed.
Collapse
Affiliation(s)
- Lilian Ricaud
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
| | - Caroline Proux
- Unité de Recherche en Génomique Végétale, UMR INRA 1165 - CNRS 8114 - UEVE, Evry, France
| | - Jean-Pierre Renou
- Unité de Recherche en Génomique Végétale, UMR INRA 1165 - CNRS 8114 - UEVE, Evry, France
| | - Olivier Pichon
- Unité de Recherche en Génomique Végétale, UMR INRA 1165 - CNRS 8114 - UEVE, Evry, France
| | - Sylvain Fochesato
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
| | - Philippe Ortet
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
| | - Marie-Hélène Montané
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Ricaud L, Proux C, Renou JP, Pichon O, Fochesato S, Ortet P, Montané MH. ATM-mediated transcriptional and developmental responses to gamma-rays in Arabidopsis. PLoS One 2007. [PMID: 17487278 DOI: 10.1371/.pone.0000430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
ATM (Ataxia Telangiectasia Mutated) is an essential checkpoint kinase that signals DNA double-strand breaks in eukaryotes. Its depletion causes meiotic and somatic defects in Arabidopsis and progressive motor impairment accompanied by several cell deficiencies in patients with ataxia telangiectasia (AT). To obtain a comprehensive view of the ATM pathway in plants, we performed a time-course analysis of seedling responses by combining confocal laser scanning microscopy studies of root development and genome-wide expression profiling of wild-type (WT) and homozygous ATM-deficient mutants challenged with a dose of gamma-rays (IR) that is sublethal for WT plants. Early morphologic defects in meristematic stem cells indicated that AtATM, an Arabidopsis homolog of the human ATM gene, is essential for maintaining the quiescent center and controlling the differentiation of initial cells after exposure to IR. Results of several microarray experiments performed with whole seedlings and roots up to 5 h post-IR were compiled in a single table, which was used to import gene information and extract gene sets. Sequence and function homology searches; import of spatio-temporal, cell cycling, and mutant-constitutive expression characteristics; and a simplified functional classification system were used to identify novel genes in all functional classes. The hundreds of radiomodulated genes identified were not a random collection, but belonged to functional pathways such as those of the cell cycle; cell death and repair; DNA replication, repair, and recombination; and transcription; translation; and signaling, indicating the strong cell reprogramming and double-strand break abrogation functions of ATM checkpoints. Accordingly, genes in all functional classes were either down or up-regulated concomitantly with downregulation of chromatin deacetylases or upregulation of acetylases and methylases, respectively. Determining the early transcriptional indicators of prolonged S-G2 phases that coincided with cell proliferation delay, or an anticipated subsequent auxin increase, accelerated cell differentiation or death, was used to link IR-regulated hallmark functions and tissue phenotypes after IR. The transcription burst was almost exclusively AtATM-dependent or weakly AtATR-dependent, and followed two major trends of expression in atm: (i)-loss or severe attenuation and delay, and (ii)-inverse and/or stochastic, as well as specific, enabling one to distinguish IR/ATM pathway constituents. Our data provide a large resource for studies on the interaction between plant checkpoints of the cell cycle, development, hormone response, and DNA repair functions, because IR-induced transcriptional changes partially overlap with the response to environmental stress. Putative connections of ATM to stem cell maintenance pathways after IR are also discussed.
Collapse
Affiliation(s)
- Lilian Ricaud
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Culver JN, Padmanabhan MS. Virus-induced disease: altering host physiology one interaction at a time. ANNUAL REVIEW OF PHYTOPATHOLOGY 2007; 45:221-43. [PMID: 17417941 DOI: 10.1146/annurev.phyto.45.062806.094422] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Virus infections are the cause of numerous plant disease syndromes that are generally characterized by the induction of disease symptoms such as developmental abnormalities, chlorosis, and necrosis. How viruses induce these disease symptoms represents a long-standing question in plant pathology. Recent studies indicate that symptoms are derived from specific interactions between virus and host components. Many of these interactions have been found to contribute to the successful completion of the virus life-cycle, although the role of other interactions in the infection process is not yet known. However, all share the potential to disrupt host physiology. From this information we are beginning to decipher the progression of events that lead from specific virus-host interactions to the establishment of disease symptoms. This review highlights our progress in understanding the mechanisms through which virus-host interactions affect host physiology. The emerging picture is one of complexity involving the individual effects of multiple virus-host interactions.
Collapse
Affiliation(s)
- James N Culver
- Center for Biosystems Research, University of Maryland Biotechnology Institute, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA.
| | | |
Collapse
|
44
|
Florentino LH, Santos AA, Fontenelle MR, Pinheiro GL, Zerbini FM, Baracat-Pereira MC, Fontes EPB. A PERK-like receptor kinase interacts with the geminivirus nuclear shuttle protein and potentiates viral infection. J Virol 2006; 80:6648-56. [PMID: 16775352 PMCID: PMC1488943 DOI: 10.1128/jvi.00173-06] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The nuclear shuttle protein (NSP) from bipartite geminiviruses facilitates the intracellular transport of viral DNA from the nucleus to the cytoplasm and acts in concert with the movement protein (MP) to promote the cell-to-cell spread of the viral DNA. A proline-rich extensin-like receptor protein kinase (PERK) was found to interact specifically with NSP of Cabbage leaf curl virus (CaLCuV) and of tomato-infecting geminiviruses through a yeast two-hybrid screening. The PERK-like protein, which we designated NsAK (for NSP-associated kinase), is structurally organized into a proline-rich N-terminal domain, followed by a transmembrane segment and a C-terminal serine/threonine kinase domain. The viral protein interacted stably with defective versions of the NsAK kinase domain, but not with the potentially active enzyme, in an in vitro binding assay. In vitro-translated NsAK enhanced the phosphorylation level of NSP, indicating that NSP functions as a substrate for NsAK. These results demonstrate that NsAK is an authentic serine/threonine kinase and suggest a functional link for NSP-NsAK complex formation. This interpretation was corroborated by in vivo infectivity assays showing that loss of NsAK function reduces the efficiency of CaLCuV infection and attenuates symptom development. Our data implicate NsAK as a positive contributor to geminivirus infection and suggest it may regulate NSP function.
Collapse
Affiliation(s)
- Lilian H Florentino
- Departamento de Bioquímica e Biologia Molecular/BIOAGRO, Universidade Federal de Viçosa, 36571.000 Viçosa, MG, Brazil
| | | | | | | | | | | | | |
Collapse
|
45
|
Carvalho MF, Turgeon R, Lazarowitz SG. The geminivirus nuclear shuttle protein NSP inhibits the activity of AtNSI, a vascular-expressed Arabidopsis acetyltransferase regulated with the sink-to-source transition. PLANT PHYSIOLOGY 2006; 140:1317-30. [PMID: 16461385 PMCID: PMC1435821 DOI: 10.1104/pp.105.075556] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Revised: 01/27/2006] [Accepted: 01/27/2006] [Indexed: 05/06/2023]
Abstract
DNA viruses can suppress or enhance the activity of cellular acetyltransferases to regulate virus gene expression and to affect cell cycle progression in support of virus replication. A role for protein acetylation in regulating the nuclear export of the bipartite geminivirus (Begomovirus) DNA genome was recently suggested by the findings that the viral movement protein NSP, a nuclear shuttle protein, interacts with the Arabidopsis (Arabidopsis thaliana) nuclear acetyltransferase AtNSI (nuclear shuttle protein interactor), and that this interaction and NSI expression are necessary for cabbage leaf curl virus infection and pathogenicity. To further investigate the consequences of NSI-NSP interactions, and the potential role of NSI in Arabidopsis growth and development, we used a reverse yeast two-hybrid selection and deletion analysis to identify NSI mutants that failed to interact with NSP, and promoter fusions to a uidA reporter gene to analyze the pattern of NSI expression during plant development. We found that NSI self assembles into highly active enzyme complexes and that high concentrations of NSP, in the absence of viral DNA, can inhibit NSI activity in vitro. Based on our detailed analysis of three NSI missense mutants, we identified an 88-amino acid putative domain, which spans NSI residues 107 to 194, as being required for both NSI oligomerization and its interaction with NSP. Finally, we found that NSI is predominantly transcribed in vascular cells, and that its expression is developmentally regulated in a manner that resembles the sink-to-source transition. Our data indicate that NSP can inhibit NSI activity by interfering with its assembly into highly active complexes, and suggest a mechanism by which NSP can both recruit NSI to regulate nuclear export of the viral genome and down-regulate NSI activity on cellular targets, perhaps to affect cellular differentiation and favor virus replication.
Collapse
Affiliation(s)
- Miguel F Carvalho
- Department of Plant Pathology, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
46
|
Krichevsky A, Kozlovsky SV, Gafni Y, Citovsky V. Nuclear import and export of plant virus proteins and genomes. MOLECULAR PLANT PATHOLOGY 2006; 7:131-146. [PMID: 20507434 DOI: 10.1111/j.1364-3703.2006.00321.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Nuclear import and export are crucial processes for any eukaryotic cell, as they govern substrate exchange between the nucleus and the cytoplasm. Proteins involved in the nuclear transport network are generally conserved among eukaryotes, from yeast and fungi to animals and plants. Various pathogens, including some plant viruses, need to enter the host nucleus to gain access to its replication machinery or to integrate their DNA into the host genome; the newly replicated viral genomes then need to exit the nucleus to spread between host cells. To gain the ability to enter and exit the nucleus, these pathogens encode proteins that recognize cellular nuclear transport receptors and utilize the host's nuclear import and export pathways. Here, we review and discuss our current knowledge about the molecular mechanisms by which plant viruses find their way into and out of the host cell nucleus.
Collapse
Affiliation(s)
- Alexander Krichevsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | | | | | | |
Collapse
|
47
|
Hussain M, Mansoor S, Iram S, Fatima AN, Zafar Y. The nuclear shuttle protein of Tomato leaf curl New Delhi virus is a pathogenicity determinant. J Virol 2005; 79:4434-9. [PMID: 15767443 PMCID: PMC1061533 DOI: 10.1128/jvi.79.7.4434-4439.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 10/21/2004] [Indexed: 11/20/2022] Open
Abstract
The role of the movement protein (MP) and nuclear shuttle protein (NSP) in the pathogenicity of Tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus, was studied. Both genes were expressed in Nicotiana benthamiana, Nicotiana tabacum, and Lycopersicon esculentum plants with the Potato virus X (PVX) expression vector or by stable transformation of gene constructs under the control of the 35S promoter in N. tabacum. No phenotypic changes were observed in any of the three species when the MP was expressed from the PVX vector or constitutively expressed in transgenic plants. Expression of the ToLCNDV NSP from the PVX vector in N. benthamiana resulted in leaf curling that is typical of the disease symptoms caused by ToLCNDV in this species. Expression of NSP from PVX in N. tabacum and L. esculentum resulted in a hypersensitive response (HR), demonstrating that the ToLCVDV NSP is a target of host defense responses in these hosts. The NSP, when expressed as a transgene under the control of the 35S promoter, resulted in necrotic lesions in expanded leaves that initiated from a point and then spread across the leaf. The necrotic response was systemic in all the transgenic plants. Deletion of 100 amino acids from the C terminus did not compromise the HR response, suggesting that this region has no role in HR. Deletion of 60 or 100 amino acids from the N terminus of NSP abolished the HR response, suggesting that these sequences are required for the HR response. These findings demonstrate that the ToLCNDV NSP is a pathogenicity determinant as well as a target of host defense responses.
Collapse
Affiliation(s)
- Mazhar Hussain
- National Institute of Biotechnology and Genetic Engineering, Faislalabad, Pakistan
| | | | | | | | | |
Collapse
|
48
|
Rojas MR, Hagen C, Lucas WJ, Gilbertson RL. Exploiting chinks in the plant's armor: evolution and emergence of geminiviruses. ANNUAL REVIEW OF PHYTOPATHOLOGY 2005; 43:361-94. [PMID: 16078889 DOI: 10.1146/annurev.phyto.43.040204.135939] [Citation(s) in RCA: 364] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The majority of plant-infecting viruses utilize an RNA genome, suggesting that plants have imposed strict constraints on the evolution of DNA viruses. The geminiviruses represent a family of DNA viruses that has circumvented these impediments to emerge as one of the most successful viral pathogens, causing severe economic losses to agricultural production worldwide. The genetic diversity reflected in present-day geminiviruses provides important insights into the evolution and biology of these pathogens. To maximize replication of their DNA genome, these viruses acquired and evolved mechanisms to manipulate the plant cell cycle machinery for DNA replication, and to optimize the number of cells available for infection. In addition, several strategies for cell-to-cell and long-distance movement of the infectious viral DNA were evolved and refined to be compatible with the constraints imposed by the host endogenous macromolecular trafficking machinery. Mechanisms also evolved to circumvent the host antiviral defense systems. Effectively combatting diseases caused by geminiviruses represents a major challenge and opportunity for biotechnology.
Collapse
Affiliation(s)
- Maria R Rojas
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of California, Davis, California 95616, USA.
| | | | | | | |
Collapse
|
49
|
Abstract
In a eukaryotic cell, the nuclear envelope (NE) separates genetic information from the environment of biosynthesis and metabolism. Transfer of macromolecules across the NE involves the nuclear pores--large multisubunit protein complexes--and machinery that facilitates rapid, directional, and selective transport. While core elements of the transport process are conserved between kingdoms, different solutions to similar problems have also evolved. Although the structure and composition of the yeast and mammalian nuclear pore have been unraveled recently, the plant nuclear pore remains largely enigmatic. Like any other process, nucleocytoplasmic transport can be regulated. Several examples from plants are discussed that promise insights into the regulation of signaling pathways. While controlling the partitioning of cellular components, the nuclear envelope also presents an obstacle to viruses and transforming agents that need access to the genome, and different mechanisms have evolved to overcome this obstacle. Finally, the recent recognition of the importance of small RNAs for gene regulation emphasizes the need to understand small RNA nuclear export and the levels of its regulation. This review attempts to wed our molecular-mechanistic understanding of nucleocytoplasmic trafficking drawn from all model systems with the intriguing examples of regulated nucleocytoplasmic partitioning in plants.
Collapse
Affiliation(s)
- Iris Meier
- Plant Biotechnology Center and Department of Plant Cellular and Molecular Biology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
50
|
Abstract
Genetic resistance to plant viruses has been used for at least 80 years to control agricultural losses to viral diseases. To date, hundreds of naturally occurring genes for resistance to plant viruses have been reported from studies of both monocot and dicot crops, their wild relatives, and the plant model, Arabidopsis. The isolation and characterization of a few of these genes in the past decade have resulted in detailed knowledge of some of the molecules that are critical in determining the outcome of plant viral infection. In this chapter, we have catalogued genes for resistance to plant viruses and have summarized current knowledge regarding their identity and inheritance. Insofar as information is available, the genetic context, genomic organization, mechanisms of resistance and agricultural deployment of plant virus resistance genes are also discussed.
Collapse
Affiliation(s)
- Byoung-Cheorl Kang
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|