1
|
Zhang ZW, Fu YF, Chen GD, Reinbothe C, Reinbothe S, Yuan S. The interplay of singlet oxygen and ABI4 in plant growth regulation. TRENDS IN PLANT SCIENCE 2025; 30:156-166. [PMID: 39414457 DOI: 10.1016/j.tplants.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 10/18/2024]
Abstract
Abscisic acid (ABA) and the AP2/ERF (APETALA 2/ETHYLENE-RESPONSIVE FACTOR)-type transcription factor ABA INSENSITIVE 4 (ABI4) control plant growth and development. We review how singlet oxygen, which is produced in chloroplasts of the fluorescent mutant of Arabidopsis thaliana (arabidopsis), and ABI4 may cooperate in transcriptional and translational reprogramming to cause plants to halt growth or demise. Key elements of singlet oxygen- and ABI4-dependent chloroplast-to-nucleus retrograde signaling involve the chloroplast EXECUTER (EX) 1 and EX2 proteins as well as nuclear WRKY transcription factors. Mutants designed to study singlet oxygen signaling, that lack either ABI4 or the EX1 and EX2 proteins, do not show most of the growth effects of singlet oxygen. We propose a model that positions ABI4 downstream of WRKY transcription factors and EX1 and EX2.
Collapse
Affiliation(s)
- Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Investigation and Monitoring, Protection, and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Yu-Fan Fu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Investigation and Monitoring, Protection, and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Guang-Deng Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Investigation and Monitoring, Protection, and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China.
| | - Christiane Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes, Université Grenoble Alpes, Grenoble 38400, France
| | - Steffen Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes, Université Grenoble Alpes, Grenoble 38400, France.
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Investigation and Monitoring, Protection, and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China.
| |
Collapse
|
2
|
Duan J, Lee KP, Dogra V, Zhang S, Liu K, Caceres-Moreno C, Lv S, Xing W, Kato Y, Sakamoto W, Liu R, Macho AP, Kim C. Impaired PSII Proteostasis Promotes Retrograde Signaling via Salicylic Acid. PLANT PHYSIOLOGY 2019; 180:2182-2197. [PMID: 31160506 PMCID: PMC6670100 DOI: 10.1104/pp.19.00483] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/21/2019] [Indexed: 05/18/2023]
Abstract
Photodamage of the PSII reaction center (RC) is an inevitable process in an oxygen-rich environment. The damaged PSII RC proteins (Dam-PSII) undergo degradation via the thylakoid membrane-bound FtsH metalloprotease, followed by posttranslational assembly of PSII. While the effect of Dam-PSII on gene regulation is described for cyanobacteria, its role in land plants is largely unknown. In this study, we reveal an intriguing retrograde signaling pathway by using the Arabidopsis (Arabidopsis thaliana) yellow variegated2-9 mutant, which expresses a mutated FtsH2 (FtsH2G267D) metalloprotease, specifically impairing its substrate-unfolding activity. This lesion leads to the perturbation of PSII protein homeostasis (proteostasis) and the accumulation of Dam-PSII. Subsequently, this results in an up-regulation of salicylic acid (SA)-responsive genes, which is abrogated by inactivation of either an SA transporter in the chloroplast envelope membrane or extraplastidic SA signaling components as well as by removal of SA. These results suggest that the stress hormone SA, which is mainly synthesized via the chloroplast isochorismate pathway in response to the impaired PSII proteostasis, mediates the retrograde signaling. These findings reinforce the emerging view of chloroplast function toward plant stress responses and suggest SA as a potential plastid factor mediating retrograde signaling.
Collapse
Affiliation(s)
- Jianli Duan
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Keun Pyo Lee
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Vivek Dogra
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Siyuan Zhang
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiwei Liu
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Carlos Caceres-Moreno
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Lv
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Weiman Xing
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yusuke Kato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Renyi Liu
- College of Horticulture and FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
3
|
Molinero-Rosales N, Martín-Rodríguez JÁ, Ho-Plágaro T, García-Garrido JM. Identification and expression analysis of the arbuscular mycorrhiza-inducible Rieske non-heme oxygenase Ptc52 gene from tomato. JOURNAL OF PLANT PHYSIOLOGY 2019; 237:95-103. [PMID: 31051335 DOI: 10.1016/j.jplph.2019.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
Arbuscular mycorrhizal (AM) formation enhances plant growth and fitness through improved uptake of water and mineral nutrients in exchange for carbon compounds to the AM fungus. The fungal structure for the reciprocal exchange of nutrients in the symbiosis is the arbuscule, and defence genes expressed in cells containing arbuscules could play a role in the control of hyphal spread and arbuscule formation in the root. We characterized and analyzed the Ptc52 gene from tomato (SlPtc52), a member of the gene family of non-heme oxygenases, whose function has been related to the lethal leaf spot 1 (Lls1) lesion mimic phenotype in plants which is sometimes associated with enhanced disease resistance. Sequence analysis of the SlPTC52 protein revealed conserved typical motifs from non-heme oxygenases, including a Rieske [2Fe-2S] motif, a mononuclear non-heme iron-binding motif and a C-terminal CxxC motif. The level of transcript accumulation was low in stem, flower and green fruits, and high in leaves. Although SlPtc52 expression was perceptible at low levels in roots, its expression increased concomitantly with AM fungus root colonization. Tomato non-mycorrhizal hairy roots expressing the GUS protein under the control of promoter SlPtc52 exhibited GUS activity in the endodermis, the apical meristem of the root tip and in the lateral root primordium. AM fungal colonization also resulted in intensive GUS activity that clearly corresponds to cortical cells containing arbuscules. SlPtc52 gene silencing led to a delay in root colonization and a decrease in arbuscular abundance, suggesting that SlPTC52 plays a regulatory role during AM symbiosis.
Collapse
Affiliation(s)
- Nuria Molinero-Rosales
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ) CSIC, Calle Profesor Albareda nº1, 18008, Granada, Spain
| | | | - Tania Ho-Plágaro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ) CSIC, Calle Profesor Albareda nº1, 18008, Granada, Spain
| | - José Manuel García-Garrido
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ) CSIC, Calle Profesor Albareda nº1, 18008, Granada, Spain.
| |
Collapse
|
4
|
Wang L, Apel K. Dose-dependent effects of 1O2 in chloroplasts are determined by its timing and localization of production. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:29-40. [PMID: 30272237 PMCID: PMC6939833 DOI: 10.1093/jxb/ery343] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 09/25/2018] [Indexed: 05/23/2023]
Abstract
In plants, highly reactive singlet oxygen (1O2) is known to inhibit photosynthesis and to damage the cell as a cytotoxin. However, more recent studies have also proposed 1O2 as a signal. In plants under stress, not only 1O2 but also other reactive oxygen species (ROS) are generated simultaneously, thus making it difficult to link a particular response to the release of 1O2 and establish a signaling role for this ROS. This obstacle has been overcome by the identification of conditional mutants of Arabidopsis thaliana that selectively generate 1O2 and trigger various 1O2-mediated responses. In chloroplasts of these mutants, chlorophyll or its biosynthetic intermediates may act as a photosensitizer and generate 1O2. These 1O2-mediated responses are not only dependent on the dosage of 1O2 but also are determined by the timing and suborganellar localization of its production. This spatial- and temporal-dependent variability of 1O2-mediated responses emphasizes the importance of 1O2 as a highly versatile and short-lived signal that acts throughout the life cycle of a plant.
Collapse
Affiliation(s)
- Liangsheng Wang
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Klaus Apel
- Boyce Thompson Institute, Ithaca, NY, USA
- Institute of Molecular Plant Biology, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| |
Collapse
|
5
|
Wang Y, Liu S, Tian X, Fu Y, Jiang X, Li Y, Wang G. Influence of light intensity on chloroplast development and pigment accumulation in the wild-type and etiolated mutant plants of Anthurium andraeanum 'Sonate'. PLANT SIGNALING & BEHAVIOR 2018; 13:e1482174. [PMID: 30047818 PMCID: PMC6149518 DOI: 10.1080/15592324.2018.1482174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/25/2018] [Indexed: 06/08/2023]
Abstract
Seedlings of wild-type and etiolate mutant plants of Anthurium andraeanum cultivar 'Sonate' were treated for 15 d with different light intensities (20, 100, and 400 µmol·m-2·s-1) to analyze leaf plastid development and pigment content. Significant changes appeared in treated seedlings, including in leaf color, plastid ultrastructure, chloroplast development gene AaGLK expression, chlorophyll and anthocyanin contents, and protoplast shape. Wild-type and etiolated plants exhibited different plastid structures under the same light condition. The results suggest that light intensity is a crucial environmental factor influencing plastid development and leaf color formation in the A. andraeanum cultivar 'Sonate'.
Collapse
Affiliation(s)
- Y. Wang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - S. Liu
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - X. Tian
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Y. Fu
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - X. Jiang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Y. Li
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - G. Wang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Buhr F, Lahroussi A, Springer A, Rustgi S, von Wettstein D, Reinbothe C, Reinbothe S. NADPH:protochlorophyllide oxidoreductase B (PORB) action in Arabidopsis thaliana revisited through transgenic expression of engineered barley PORB mutant proteins. PLANT MOLECULAR BIOLOGY 2017; 94:45-59. [PMID: 28260138 DOI: 10.1007/s11103-017-0592-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/09/2017] [Indexed: 06/06/2023]
Abstract
NADPH:protochlorophyllide oxidoreductase (POR) is a key enzyme for the light-induced greening of etiolated angiosperm plants. It belongs to the 'RED' family of reductases, epimerases and dehydrogenases. All POR proteins characterized so far contain evolutionarily conserved cysteine residues implicated in protochlorophyllide (Pchlide)-binding and catalysis. cDNAs were constructed by site-directed mutagenesis that encode PORB mutant proteins with defined Cys→Ala exchanges. These cDNAs were expressed in transgenic plants of a PORB-deficient knock-out mutant (porB) of Arabidopsis thaliana. Results show that porB plants expressing PORB mutant proteins with Ala substitutions of Cys276 or Cys303 are hypersensitive to high-light conditions during greening. Hereby, failure to assemble higher molecular weight complexes of PORB with its twin isoenzyme, PORA, as encountered with (Cys303→Ala)-PORB plants, caused more severe effects than replacing Cys276 by an Ala residue in the active site of the enzyme, as encountered in (Cys276→Ala)-PORB plants. Our results are consistent with the presence of two distinct pigment binding sites in PORB, with Cys276 establishing the active site of the enzyme and Cys303 providing a second, low affinity pigment binding site that is essential for the assembly of higher molecular mass light-harvesting PORB::PORA complexes and photoprotection of etiolated seedlings. Failure to assemble such complexes provoked photodynamic damage through the generation of singlet oxygen. Together, our data highlight the importance of PORB for Pchlide homoeostasis and greening in Arabidopsis.
Collapse
Affiliation(s)
- Frank Buhr
- Biologie Environnementale et Systémique (BEeSy), Université Grenoble-Alpes, LBFA, BP53F, 38041, Grenoble cedex 9, France
| | - Abderrahim Lahroussi
- Biologie Environnementale et Systémique (BEeSy), Université Grenoble-Alpes, LBFA, BP53F, 38041, Grenoble cedex 9, France
| | - Armin Springer
- Biologie Environnementale et Systémique (BEeSy), Université Grenoble-Alpes, LBFA, BP53F, 38041, Grenoble cedex 9, France
- Medical Biology and Electron Microscopy Centre, University Medical Center Rostock, Strempelstraße 14, 18057, Rostock, Germany
| | - Sachin Rustgi
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC, 29506, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
| | - Diter von Wettstein
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
| | - Christiane Reinbothe
- Biologie Environnementale et Systémique (BEeSy), Université Grenoble-Alpes, LBFA, BP53F, 38041, Grenoble cedex 9, France
| | - Steffen Reinbothe
- Biologie Environnementale et Systémique (BEeSy), Université Grenoble-Alpes, LBFA, BP53F, 38041, Grenoble cedex 9, France.
| |
Collapse
|
7
|
Hauenstein M, Christ B, Das A, Aubry S, Hörtensteiner S. A Role for TIC55 as a Hydroxylase of Phyllobilins, the Products of Chlorophyll Breakdown during Plant Senescence. THE PLANT CELL 2016; 28:2510-2527. [PMID: 27655840 PMCID: PMC5134989 DOI: 10.1105/tpc.16.00630] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/08/2016] [Accepted: 09/19/2016] [Indexed: 05/04/2023]
Abstract
Chlorophyll degradation is the most obvious hallmark of leaf senescence. Phyllobilins, linear tetrapyrroles that are derived from opening of the chlorin macrocycle by the Rieske-type oxygenase PHEOPHORBIDE a OXYGENASE (PAO), are the end products of chlorophyll degradation. Phyllobilins carry defined modifications at several peripheral positions within the tetrapyrrole backbone. While most of these modifications are species-specific, hydroxylation at the C32 position is commonly found in all species analyzed to date. We demonstrate that this hydroxylation occurs in senescent chloroplasts of Arabidopsis thaliana. Using bell pepper (Capsicum annuum) chromoplasts, we establish that phyllobilin hydroxylation is catalyzed by a membrane-bound, molecular oxygen-dependent, and ferredoxin-dependent activity. As these features resemble the requirements of PAO, we considered membrane-bound Rieske-type oxygenases as potential candidates. Analysis of mutants of the two Arabidopsis Rieske-type oxygenases (besides PAO) uncovered that phyllobilin hydroxylation depends on TRANSLOCON AT THE INNER CHLOROPLAST ENVELOPE55 (TIC55). Our work demonstrates a catalytic activity for TIC55, which in the past has been considered as a redox sensor of protein import into plastids. Given the wide evolutionary distribution of both PAO and TIC55, we consider that chlorophyll degradation likely coevolved with land plants.
Collapse
Affiliation(s)
- Mareike Hauenstein
- Institute of Plant Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Bastien Christ
- Institute of Plant Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Aditi Das
- Institute of Plant Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Sylvain Aubry
- Institute of Plant Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | | |
Collapse
|
8
|
Klasek L, Inoue K. Dual Protein Localization to the Envelope and Thylakoid Membranes Within the Chloroplast. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 323:231-63. [PMID: 26944623 DOI: 10.1016/bs.ircmb.2015.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The chloroplast houses various metabolic processes essential for plant viability. This organelle originated from an ancestral cyanobacterium via endosymbiosis and maintains the three membranes of its progenitor. Among them, the outer envelope membrane functions mainly in communication with cytoplasmic components while the inner envelope membrane houses selective transport of various metabolites and the biosynthesis of several compounds, including membrane lipids. These two envelope membranes also play essential roles in import of nuclear-encoded proteins and in organelle division. The third membrane, the internal membrane system known as the thylakoid, houses photosynthetic electron transport and chemiosmotic phosphorylation. The inner envelope and thylakoid membranes share similar lipid composition. Specific targeting pathways determine their defined proteomes and, thus, their distinct functions. Nonetheless, several proteins have been shown to exist in both the envelope and thylakoid membranes. These proteins include those that play roles in protein transport, tetrapyrrole biosynthesis, membrane dynamics, or transport of nucleotides or inorganic phosphate. In this review, we summarize the current knowledge about proteins localized to both the envelope and thylakoid membranes in the chloroplast, discussing their roles in each membrane and potential mechanisms of their dual localization. Addressing the unanswered questions about these dual-localized proteins should help advance our understanding of chloroplast development, protein transport, and metabolic regulation.
Collapse
Affiliation(s)
- Laura Klasek
- Department of Plant Sciences, University of California at Davis, Davis, CA, United States of America
| | - Kentaro Inoue
- Department of Plant Sciences, University of California at Davis, Davis, CA, United States of America.
| |
Collapse
|
9
|
Gray J, Rustgi S, von Wettstein D, Reinbothe C, Reinbothe S. Common functions of the chloroplast and mitochondrial co-chaperones cpDnaJL (CDF1) and mtDnaJ (PAM16) in protein import and ROS scavenging in Arabidopsis thaliana. Commun Integr Biol 2015; 9:e1119343. [PMID: 27829973 PMCID: PMC5100655 DOI: 10.1080/19420889.2015.1119343] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 10/26/2022] Open
Abstract
As semi-autonomous cell organelles that contain only limited coding information in their own DNA, chloroplasts and mitochondria must import the vast majority of their protein constituents from the cytosol. Respective protein import machineries have been identified that mediate the uptake of chloroplast and mitochondrial proteins and interact with molecular chaperones of the HEAT-SHOCK PROTEIN (HSP) 70 family operating as import motors. Recent work identified unexpected new functions of 2 DnaJ co-chaperones in mitochondrial and chloroplast protein translocation and suggest a common mechanism of reactive oxygen species (ROS) scavenging that shall be discussed here.
Collapse
Affiliation(s)
- John Gray
- Department of Biological Sciences, University of Toledo , Toledo, OH, USA
| | - Sachin Rustgi
- Department of Crop and Soil Sciences, School of Molecular Biosciences, Center for Reproductive Biology, Washington State University , Pullman, WA, USA
| | - Diter von Wettstein
- Department of Crop and Soil Sciences, School of Molecular Biosciences, Center for Reproductive Biology, Washington State University , Pullman, WA, USA
| | - Christiane Reinbothe
- Biologie Environnementale et systémique (BEeSy), Université Joseph Fourier , Grenoble, France
| | - Steffen Reinbothe
- Biologie Environnementale et systémique (BEeSy), Université Joseph Fourier , Grenoble, France
| |
Collapse
|
10
|
Chen S, Kim C, Lee JM, Lee HA, Fei Z, Wang L, Apel K. Blocking the QB-binding site of photosystem II by tenuazonic acid, a non-host-specific toxin of Alternaria alternata, activates singlet oxygen-mediated and EXECUTER-dependent signalling in Arabidopsis. PLANT, CELL & ENVIRONMENT 2015; 38:1069-80. [PMID: 25292361 DOI: 10.1111/pce.12462] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 05/27/2023]
Abstract
Necrotrophic fungal pathogens produce toxic compounds that induce cell death in infected plants. Often, the primary targets of these toxins and the way a plant responds to them are not known. In the present work, the effect of tenuazonic acid (TeA), a non-host-specific toxin of Alternaria alternata, on Arabidopsis thaliana has been analysed. TeA blocks the QB -binding site at the acceptor side of photosystem II (PSII). As a result, charge recombination at the reaction centre (RC) of PSII is expected to enhance the formation of the excited triplet state of the RC chlorophyll that promotes generation of singlet oxygen ((1)O₂). (1)O₂ activates a signalling pathway that depends on the two EXECUTER (EX) proteins EX1 and EX2 and triggers a programmed cell death response. In seedlings treated with TeA at half-inhibition concentration (1)O₂-mediated and EX-dependent signalling is activated as indicated by the rapid and transient up-regulation of (1)O₂-responsive genes in wild type, and its suppression in ex1/ex2 mutants. Lesion formation occurs when seedlings are exposed to higher concentrations of TeA for a longer period of time. Under these conditions, the programmed cell death response triggered by (1)O₂-mediated and EX-dependent signalling is superimposed by other events that also contribute to lesion formation.
Collapse
Affiliation(s)
- Shiguo Chen
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853-1801, USA; College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Cell growth defect factor 1 is crucial for the plastid import of NADPH:protochlorophyllide oxidoreductase A in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2015; 112:5838-43. [PMID: 25901327 DOI: 10.1073/pnas.1506339112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Tetrapyrroles such as chlorophyll, heme, and bacteriochlorophyll play fundamental roles in the energy absorption and transduction of all photosynthetic organisms. They are synthesized via a complex pathway taking place in chloroplasts. Chlorophyll biosynthesis in angiosperms involves 16 steps of which only one is light-requiring and driven by the NADPH:protochlorophyllide oxidoreductase (POR). Three POR isoforms have been identified in Arabidopsis thaliana--designated PORA, PORB, and PORC--that are differentially expressed in etiolated, light-exposed, and light-adapted plants. All three isoforms are encoded by nuclear genes, are synthesized as larger precursors in the cytosol (pPORs), and are imported posttranslationally into the plastid compartment. Import of the precursor to the dark-specific isoform PORA (pPORA) is protochlorophyllide (Pchlide)-dependent and due to the operation of a unique translocon complex dubbed PTC (Pchlide-dependent translocon complex) in the plastid envelope. Here, we identified a ∼30-kDa protein that participates in pPORA import. The ∼30-kDa protein is identical to the previously identified CELL GROWTH DEFECT FACTOR 1 (CDF1) in Arabidopsis that is conserved in higher plants and Synechocystis. CDF1 operates in pPORA import and stabilization and hereby acts as a chaperone for PORA protein translocation. CDF1 permits tight interactions between Pchlide synthesized in the plastid envelope and the importing PORA polypeptide chain such that no photoexcitative damage occurs through the generation of singlet oxygen operating as a cell death inducer. Together, our results identify an ancient mechanism dating back to the endosymbiotic origin of chloroplasts as a key element of Pchlide-dependent pPORA import.
Collapse
|
12
|
Delfosse K, Wozny MR, Jaipargas EA, Barton KA, Anderson C, Mathur J. Fluorescent Protein Aided Insights on Plastids and their Extensions: A Critical Appraisal. FRONTIERS IN PLANT SCIENCE 2015; 6:1253. [PMID: 26834765 PMCID: PMC4719081 DOI: 10.3389/fpls.2015.01253] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/21/2015] [Indexed: 05/20/2023]
Abstract
Multi-colored fluorescent proteins targeted to plastids have provided new insights on the dynamic behavior of these organelles and their interactions with other cytoplasmic components and compartments. Sub-plastidic components such as thylakoids, stroma, the inner and outer membranes of the plastid envelope, nucleoids, plastoglobuli, and starch grains have been efficiently highlighted in living plant cells. In addition, stroma filled membrane extensions called stromules have drawn attention to the dynamic nature of the plastid and its interactions with the rest of the cell. Use of dual and triple fluorescent protein combinations has begun to reveal plastid interactions with mitochondria, the nucleus, the endoplasmic reticulum and F-actin and suggests integral roles of plastids in retrograde signaling, cell to cell communication as well as plant-pathogen interactions. While the rapid advances and insights achieved through fluorescent protein based research on plastids are commendable it is necessary to endorse meaningful observations but subject others to closer scrutiny. Here, in order to develop a better and more comprehensive understanding of plastids and their extensions we provide a critical appraisal of recent information that has been acquired using targeted fluorescent protein probes.
Collapse
|
13
|
Dyson BC, Webster RE, Johnson GN. GPT2: a glucose 6-phosphate/phosphate translocator with a novel role in the regulation of sugar signalling during seedling development. ANNALS OF BOTANY 2014; 113:643-52. [PMID: 24489010 PMCID: PMC3936590 DOI: 10.1093/aob/mct298] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS GPT2, a glucose 6-phosphate/phosphate translocator, plays an important role in environmental sensing in mature leaves of Arabidopsis thaliana. Its expression has also been detected in arabidopsis seeds and seedlings. In order to examine the role of this protein early in development, germination and seedling growth were studied. METHODS Germination, greening and establishment of seedlings were monitored in both wild-type Arabidopsis thaliana and in a gpt2 T-DNA insertion knockout line. Seeds were sown on agar plates in the presence or absence of glucose and abscisic acid. Relative expression of GPT2 in seedlings was measured using quantitative PCR. KEY RESULTS Plants lacking GPT2 expression were delayed (25-40 %) in seedling establishment, specifically in the process of cotyledon greening (rather than germination). This phenotype could not be rescued by glucose in the growth medium, with greening being hypersensitive to glucose. Germination itself was, however, hyposensitive to glucose in the gpt2 mutant. CONCLUSIONS The expression of GPT2 modulates seedling development and plays a crucial role in determining the response of seedlings to exogenous sugars during their establishment. This allows us to conclude that endogenous sugar signals function in controlling germination and the transition from heterotrophic to autotrophic growth, and that the partitioning of glucose 6-phosphate, or related metabolites, between the cytosol and the plastid modulates these developmental responses.
Collapse
Affiliation(s)
- Beth C. Dyson
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Rachel E. Webster
- The Manchester Museum, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Giles N. Johnson
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
- For correspondence. E-mail
| |
Collapse
|
14
|
Kim C, Apel K. 1O2-mediated and EXECUTER-dependent retrograde plastid-to-nucleus signaling in norflurazon-treated seedlings of Arabidopsis thaliana. MOLECULAR PLANT 2013; 6:1580-91. [PMID: 23376773 PMCID: PMC3842135 DOI: 10.1093/mp/sst020] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 01/20/2013] [Indexed: 05/18/2023]
Abstract
Chloroplast development depends on the synthesis and import of a large number of nuclear-encoded proteins. The synthesis of some of these proteins is affected by the functional state of the plastid via a process known as retrograde signaling. Retrograde plastid-to-nucleus signaling has been often characterized in seedlings of Arabidopsis thaliana exposed to norflurazon (NF), an inhibitor of carotenoid biosynthesis. Results of this work suggested that, throughout seedling development, a factor is released from the plastid to the cytoplasm that indicates a perturbation of plastid homeostasis and represses nuclear genes required for normal chloroplast development. The identity of this factor is still under debate. Reactive oxygen species (ROS) were among the candidates discussed as possible retrograde signals in NF-treated plants. In the present work, this proposed role of ROS has been analyzed. In seedlings grown from the very beginning in the presence of NF, ROS-dependent signaling was not detectable, whereas, in seedlings first exposed to NF after light-dependent chloroplast formation had been completed, enhanced ROS production occurred and, among others, (1)O2-mediated and EXECUTER-dependent retrograde signaling was induced. Hence, depending on the developmental stage at which plants are exposed to NF, different retrograde signaling pathways may be activated, some of which are also active in non-treated plants under light stress.
Collapse
Affiliation(s)
| | - Klaus Apel
- To whom correspondence should be addressed. E-mail , tel. +1-607-2797734
| |
Collapse
|
15
|
Solymosi K, Aronsson H. Etioplasts and Their Significance in Chloroplast Biogenesis. PLASTID DEVELOPMENT IN LEAVES DURING GROWTH AND SENESCENCE 2013. [DOI: 10.1007/978-94-007-5724-0_3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
16
|
Kim C, Meskauskiene R, Zhang S, Lee KP, Lakshmanan Ashok M, Blajecka K, Herrfurth C, Feussner I, Apel K. Chloroplasts of Arabidopsis are the source and a primary target of a plant-specific programmed cell death signaling pathway. THE PLANT CELL 2012; 24:3026-39. [PMID: 22797473 PMCID: PMC3426130 DOI: 10.1105/tpc.112.100479] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/18/2012] [Accepted: 06/25/2012] [Indexed: 05/18/2023]
Abstract
Enhanced levels of singlet oxygen ((1)O(2)) in chloroplasts trigger programmed cell death. The impact of (1)O(2) production in chloroplasts was monitored first in the conditional fluorescent (flu) mutant of Arabidopsis thaliana that accumulates (1)O(2) upon a dark/light shift. The onset of (1)O(2) production is rapidly followed by a loss of chloroplast integrity that precedes the rupture of the central vacuole and the final collapse of the cell. Inactivation of the two plastid proteins EXECUTER (EX1) and EX2 in the flu mutant abrogates these responses, indicating that disintegration of chloroplasts is due to EX-dependent signaling rather than (1)O(2) directly. In flu seedlings, (1)O(2)-mediated cell death signaling operates as a default pathway that results in seedlings committing suicide. By contrast, EX-dependent signaling in the wild type induces the formation of microlesions without decreasing the viability of seedlings. (1)O(2)-mediated and EX-dependent loss of plastid integrity and cell death in these plants occurs only in cells containing fully developed chloroplasts. Our findings support an as yet unreported signaling role of (1)O(2) in the wild type exposed to mild light stress that invokes photoinhibition of photosystem II without causing photooxidative damage of the plant.
Collapse
Affiliation(s)
- Chanhong Kim
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853-1801
- Swiss Federal Institute of Technology Zürich, Institute of Plant Sciences, CH8092 Zurich, Switzerland
| | - Rasa Meskauskiene
- Swiss Federal Institute of Technology Zürich, Institute of Plant Sciences, CH8092 Zurich, Switzerland
| | - Shengrui Zhang
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853-1801
| | - Keun Pyo Lee
- Swiss Federal Institute of Technology Zürich, Institute of Plant Sciences, CH8092 Zurich, Switzerland
| | - Munusamy Lakshmanan Ashok
- Swiss Federal Institute of Technology Zürich, Institute of Plant Sciences, CH8092 Zurich, Switzerland
| | - Karolina Blajecka
- Swiss Federal Institute of Technology Zürich, Institute of Plant Sciences, CH8092 Zurich, Switzerland
| | - Cornelia Herrfurth
- Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, D-37073 Gottingen, Germany
| | - Ivo Feussner
- Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, D-37073 Gottingen, Germany
| | - Klaus Apel
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853-1801
- Swiss Federal Institute of Technology Zürich, Institute of Plant Sciences, CH8092 Zurich, Switzerland
- Address correspondence to
| |
Collapse
|
17
|
Šimková K, Kim C, Gacek K, Baruah A, Laloi C, Apel K. The chloroplast division mutant caa33 of Arabidopsis thaliana reveals the crucial impact of chloroplast homeostasis on stress acclimation and retrograde plastid-to-nucleus signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:701-12. [PMID: 22014227 PMCID: PMC3274639 DOI: 10.1111/j.1365-313x.2011.04825.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Retrograde plastid-to-nucleus signaling tightly controls and coordinates the nuclear and plastid gene expression that is required for plastid biogenesis and chloroplast activity. As chloroplasts act as sensors of environmental changes, plastid-derived signaling also modulates stress responses of plants by transferring stress-related signals and altering nuclear gene expression. Various mutant screens have been undertaken to identify constituents of plastid signaling pathways. Almost all mutations identified in these screens target plastid-specific but not extraplastidic functions. They have been suggested to define either genuine constituents of retrograde signaling pathways or components required for the synthesis of plastid signals. Here we report the characterization of the constitutive activator of AAA-ATPase (caa33) mutant, which reveals another way of how mutations that affect plastid functions may modulate retrograde plastid signaling. caa33 disturbs a plastid-specific function by impeding plastid division, and thereby perturbing plastid homeostasis. This results in preconditioning plants by activating the expression of stress genes, enhancing pathogen resistance and attenuating the capacity of the plant to respond to plastid signals. Our study reveals an intimate link between chloroplast activity and the susceptibility of the plant to stress, and emphasizes the need to consider the possible impact of preconditioning on retrograde plastid-to-nucleus signaling.
Collapse
Affiliation(s)
- Klára Šimková
- ETH Zurich, Institute of Plant Sciences, Switzerland
| | - Chanhong Kim
- Boyce Thompson Institute for Plant Research, Ithaca NY, USA
| | | | - Aiswarya Baruah
- ETH Zurich, Institute of Plant Sciences, Switzerland
- Boyce Thompson Institute for Plant Research, Ithaca NY, USA
| | - Christophe Laloi
- ETH Zurich, Institute of Plant Sciences, Switzerland
- Aix-Marseille Université, Lab Genet Biophys Plantes, Marseille, F-13009, France
- CNRS, UMR Biol Veget & Microbiol Environ, Marseille, F-13009, France
- CEA, DSV, IBEB, Marseille, F-13009, France
| | - Klaus Apel
- ETH Zurich, Institute of Plant Sciences, Switzerland
- Boyce Thompson Institute for Plant Research, Ithaca NY, USA
- Corresponding author: Klaus Apel, Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY-14853-1801, USA. Tel.: 001-6072797734; ; Fax: 001-6072541242
| |
Collapse
|
18
|
Wu W, Elsheery N, Wei Q, Zhang L, Huang J. Defective etioplasts observed in variegation mutants may reveal the light-independent regulation of white/yellow sectors of Arabidopsis leaves. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:846-57. [PMID: 21981015 DOI: 10.1111/j.1744-7909.2011.01079.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Leaf variegation resulting from nuclear gene mutations has been used as a model system to elucidate the molecular mechanisms of chloroplast development. Since most variegation genes also function in photosynthesis, it remains unknown whether their roles in photosynthesis and chloroplast development are distinct. Here, using the variegation mutant thylakoid formation1 (thf1) we show that variegation formation is light independent. It was found that slow and uneven chloroplast development in thf1 can be attributed to defects in etioplast development in darkness. Ultrastructural analysis showed the coexistence of plastids with or without prolamellar bodies (PLB) in cells of thf1, but not of WT. Although THF1 mutation leads to significant decreases in the levels of Pchlide and Pchllide oxidoreductase (POR) expression, genetic and 5-aminolevulinic acid (ALA)-feeding analysis did not reveal Pchlide or POR to be critical factors for etioplast formation in thf1. Northern blot analysis showed that plastid gene expression is dramatically reduced in thf1 compared with that in WT, particularly in the dark. Our results also indicate that chlorophyll biosynthesis and expression of plastidic genes are coordinately suppressed in thf1. Based on these results, we propose a model to explain leaf variegation formation from the plastid development perspective.
Collapse
Affiliation(s)
- Wenjuan Wu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
19
|
Samol I, Rossig C, Buhr F, Springer A, Pollmann S, Lahroussi A, von Wettstein D, Reinbothe C, Reinbothe S. The Outer Chloroplast Envelope Protein OEP16-1 for Plastid Import of NADPH:Protochlorophyllide Oxidoreductase A in Arabidopsis thaliana. ACTA ACUST UNITED AC 2010; 52:96-111. [DOI: 10.1093/pcp/pcq177] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Solymosi K, Schoefs B. Etioplast and etio-chloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms. PHOTOSYNTHESIS RESEARCH 2010; 105:143-66. [PMID: 20582474 DOI: 10.1007/s11120-010-9568-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Accepted: 05/30/2010] [Indexed: 05/03/2023]
Abstract
Chloroplast development is usually regarded as proceeding from proplastids. However, direct or indirect conversion pathways have been described in the literature, the latter involving the etioplast or the etio-chloroplast stages. Etioplasts are characterized by the absence of chlorophylls (Chl-s) and the presence of a unique inner membrane network, the prolamellar body (PLB), whereas etio-chloroplasts contain Chl-s and small PLBs interconnected with chloroplast thylakoids. As etioplast development requires growth in darkness for several days, this stage is generally regarded as a nonnatural pathway of chloroplast development occurring only under laboratory conditions. In this article, we have reviewed the data in favor of the involvement of etioplasts and etio-chloroplasts as intermediary stage(s) in chloroplast formation under natural conditions, the molecular aspects of PLB formation and we propose a dynamic model for its regulation.
Collapse
Affiliation(s)
- Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, Eötvös University, Pázmány P. s. 1/C, 1117 Budapest, Hungary.
| | | |
Collapse
|
21
|
Yuan M, Yuan S, Zhang ZW, Xu F, Chen YE, Du JB, Lin HH. Putative Mutation Mechanism and Light Responses of a Protochlorophyllide Oxidoreductase-Less Barley Mutant NYB. ACTA ACUST UNITED AC 2010; 51:1361-71. [DOI: 10.1093/pcp/pcq097] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Su PH, Li HM. Stromal Hsp70 is important for protein translocation into pea and Arabidopsis chloroplasts. THE PLANT CELL 2010; 22:1516-31. [PMID: 20484004 PMCID: PMC2899880 DOI: 10.1105/tpc.109.071415] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 04/26/2010] [Accepted: 05/10/2010] [Indexed: 05/18/2023]
Abstract
Hsp70 family proteins function as motors driving protein translocation into mitochondria and the endoplasmic reticulum. Whether Hsp70 is involved in protein import into chloroplasts has not been resolved. We show here Arabidopsis thaliana knockout mutants of either of the two stromal cpHsc70s, cpHsc70-1 and cpHsc70-2, are defective in protein import into chloroplasts during early developmental stages. Protein import was found to be affected at the step of precursor translocation across the envelope membranes. From solubilized envelope membranes, stromal cpHsc70 was specifically coimmunoprecipitated with importing precursors and stoichiometric amounts of Tic110 and Hsp93. Moreover, in contrast with receptors at the outer envelope membrane, cpHsp70 is important for the import of both photosynthetic and nonphotosynthetic proteins. These data indicate that cpHsc70 is part of the chloroplast translocon for general import and is important for driving translocation into the stroma. We further analyzed the relationship of cpHsc70 with the other suggested motor system, Hsp93/Tic40. Chloroplasts from the cphsc70-1 hsp93-V double mutant had a more severe import defect than did the single mutants, suggesting that the two proteins function in parallel. The cphsc70-1 tic40 double knockout was lethal, further indicating that cpHsc70-1 and Tic40 have an overlapping essential function. In conclusion, our data indicate that chloroplasts have two chaperone systems facilitating protein translocation into the stroma: the cpHsc70 system and the Hsp93/Tic40 system.
Collapse
Affiliation(s)
| | - Hsou-min Li
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
23
|
Su PH, Li HM. Stromal Hsp70 is important for protein translocation into pea and Arabidopsis chloroplasts. THE PLANT CELL 2010. [PMID: 20484004 DOI: 10.2307/25707053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Hsp70 family proteins function as motors driving protein translocation into mitochondria and the endoplasmic reticulum. Whether Hsp70 is involved in protein import into chloroplasts has not been resolved. We show here Arabidopsis thaliana knockout mutants of either of the two stromal cpHsc70s, cpHsc70-1 and cpHsc70-2, are defective in protein import into chloroplasts during early developmental stages. Protein import was found to be affected at the step of precursor translocation across the envelope membranes. From solubilized envelope membranes, stromal cpHsc70 was specifically coimmunoprecipitated with importing precursors and stoichiometric amounts of Tic110 and Hsp93. Moreover, in contrast with receptors at the outer envelope membrane, cpHsp70 is important for the import of both photosynthetic and nonphotosynthetic proteins. These data indicate that cpHsc70 is part of the chloroplast translocon for general import and is important for driving translocation into the stroma. We further analyzed the relationship of cpHsc70 with the other suggested motor system, Hsp93/Tic40. Chloroplasts from the cphsc70-1 hsp93-V double mutant had a more severe import defect than did the single mutants, suggesting that the two proteins function in parallel. The cphsc70-1 tic40 double knockout was lethal, further indicating that cpHsc70-1 and Tic40 have an overlapping essential function. In conclusion, our data indicate that chloroplasts have two chaperone systems facilitating protein translocation into the stroma: the cpHsc70 system and the Hsp93/Tic40 system.
Collapse
Affiliation(s)
- Pai-Hsiang Su
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | | |
Collapse
|
24
|
Paddock TN, Mason ME, Lima DF, Armstrong GA. Arabidopsis protochlorophyllide oxidoreductase A (PORA) restores bulk chlorophyll synthesis and normal development to a porB porC double mutant. PLANT MOLECULAR BIOLOGY 2010; 72:445-57. [PMID: 20012672 DOI: 10.1007/s11103-009-9582-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 11/21/2009] [Indexed: 05/03/2023]
Abstract
In angiosperms the strictly light-dependent reduction of protochlorophyllide to chlorophyllide is catalyzed by NADPH:protochlorophyllide oxidoreductase (POR). The Arabidopsis thaliana genome encodes three structurally related but differentially regulated POR genes, PORA, PORB and PORC. PORA is expressed primarily early in development-during etiolation, germination and greening. In contrast, PORB and PORC are not only expressed during seedling development but also throughout the later life of the plant, during which they are responsible for bulk chlorophyll synthesis. The Arabidopsis porB-1 porC-1 mutant displays a severe xantha (highly chlorophyll-deficient) phenotype characterized by smaller prolamellar bodies in etioplasts and decreased thylakoid stacking in chloroplasts. Here we have demonstrated the ability of an ectopic PORA overexpression construct to restore prolamellar body formation in the porB-1 porC-1 double mutant background. In response to illumination, light-dependent chlorophyll production, thylakoid stacking and photomorphogenesis are also restored in PORA-overexpressing porB-1 porC-1 seedlings and adult plants. An Arabidopsis porB-1 porC-1 double mutant can therefore be functionally rescued by the addition of ectopically expressed PORA, which suffices in the absence of either PORB or PORC to direct bulk chlorophyll synthesis and normal plant development.
Collapse
Affiliation(s)
- Troy N Paddock
- Department of Plant Cellular and Molecular Biology, The Ohio State University, 500 Aronoff Laboratory, Columbus, OH, USA.
| | | | | | | |
Collapse
|
25
|
Meskauskiene R, Würsch M, Laloi C, Vidi PA, Coll NS, Kessler F, Baruah A, Kim C, Apel K. A mutation in the Arabidopsis mTERF-related plastid protein SOLDAT10 activates retrograde signaling and suppresses (1)O(2)-induced cell death. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:399-410. [PMID: 19563435 DOI: 10.1111/j.1365-313x.2009.03965.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The conditional flu mutant of Arabidopsis thaliana generates singlet oxygen ((1)O(2)) in plastids during a dark-to-light shift. Seedlings of flu bleach and die, whereas mature plants stop growing and develop macroscopic necrotic lesions. Several suppressor mutants, dubbed singlet oxygen-linked death activator (soldat), were identified that abrogate (1)O(2)-mediated cell death of flu seedlings. One of the soldat mutations, soldat10, affects a gene encoding a plastid-localized protein related to the human mitochondrial transcription termination factor mTERF. As a consequence of this mutation, plastid-specific rRNA levels decrease and protein synthesis in plastids of soldat10 is attenuated. This disruption of chloroplast homeostasis in soldat10 seedlings affects communication between chloroplasts and the nucleus and leads to changes in the steady-state concentration of nuclear gene transcripts. The soldat10 seedlings suffer from mild photo-oxidative stress, as indicated by the constitutive up-regulation of stress-related genes. Even though soldat10/flu seedlings overaccumulate the photosensitizer protochlorophyllide in the dark and activate the expression of (1)O(2)-responsive genes after a dark-to-light shift they do not show a (1)O(2)-dependent cell death response. Disturbance of chloroplast homeostasis in emerging soldat10/flu seedlings seems to antagonize a subsequent (1)O(2)-mediated cell death response without suppressing (1)O(2)-dependent retrograde signaling. The results of this work reveal the unexpected complexity of what is commonly referred to as 'plastid signaling'.
Collapse
Affiliation(s)
- Rasa Meskauskiene
- Institute of Plant Sciences, Plant Genetics, ETH Zurich, CH - 8092 Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Armbruster U, Hertle A, Makarenko E, Zühlke J, Pribil M, Dietzmann A, Schliebner I, Aseeva E, Fenino E, Scharfenberg M, Voigt C, Leister D. Chloroplast proteins without cleavable transit peptides: rare exceptions or a major constituent of the chloroplast proteome? MOLECULAR PLANT 2009; 2:1325-35. [PMID: 19995733 DOI: 10.1093/mp/ssp082] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Most chloroplast proteins (cp proteins) are nucleus-encoded, synthesized on cytosolic ribosomes as precursor proteins containing a presequence (cTP), and post-translationally imported via the Tic/Toc complex into the organelle, where the cTP is removed. Only a few unambiguous instances of cp proteins that do not require cTPs (non-canonical cp proteins) have been reported so far. However, the survey of data from large-scale proteomic studies presented here suggests that the fraction of such proteins in the total cp proteome might be as large as approximately 30%. To explore this discrepancy, we chose a representative set of 28 putative non-canonical cp proteins, and used in vitro import and Red Fluorescent Protein (RFP)-fusion assays to determine their sub-cellular destinations. Four proteins, including embryo defective 1211, glycolate oxidase 2, protein disulfide isomerase-like protein (PDII), and a putative glutathione S-transferase, could be unambiguously assigned to the chloroplast. Several others ('potential cp proteins') were found to be imported into chloroplasts in vitro, but failed to localize to the organelle when RFP was fused to their C-terminal ends. Extrapolations suggest that the fraction of cp proteins that enter the inner compartments of the organelle, although they lack a cTP, might be as large as 11.4% of the total cp proteome. Our data also support the idea that cytosolic proteins that associate with the cp outer membrane might account for false positive cp proteins obtained in earlier studies.
Collapse
Affiliation(s)
- Ute Armbruster
- Lehrstuhl für Botanik, Department Biologie I, Ludwig-Maximilians-Universität München, Menzinger Str. 67, D-80638 München, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Chloroplast biogenesis in angiosperm plants requires the light-dependent transition from an etioplast stage. A key factor in this process is NADPH:protochlorophyllide oxidoreductase A (PORA), which catalyzes the light-dependent reduction of protochlorophyllide to chlorophyllide. In a recent study the chloroplast outer envelope channel OEP16 was described to be involved in etioplast to chloroplast transition by forming the translocation pore for the precursor protein of PORA [Pollmann et al. (2007) Proc Natl Acad Sci USA 104:2019-2023]. This hypothesis was based on the finding that a single OEP16.1 knockout mutant in Arabidopsis thaliana was severely affected during seedling de-etiolation and PORA protein was absent in etioplasts. In contrast, in our study the identical T-DNA insertion line greened normally and showed normal etioplast to chloroplast transition, and mature PORA was present in etioplasts [Philippar et al. (2007) Proc Natl Acad Sci USA 104:678-683]. To address these conflicting results regarding the function of OEP16.1 for PORA import, we analyzed several lines segregating from the original OEP16.1 T-DNA insertion line. Thereby we can unequivocally show that the loss of OEP16.1 neither correlates with impaired PORA import nor causes the observed de-etiolation phenotype. Furthermore, we found that the mutant line contains at least 2 additional T-DNA insertions in the genes for the extracellular polygalacturonase converter AroGP1 and the plastid-localized chorismate mutase CM1. However, detailed examination of the de-etiolation phenotype and a genomewide transcriptional analysis revealed no direct influence of these genes on etioplast to chloroplast transition in Arabidopsis cotyledons.
Collapse
|
28
|
(1)O2-mediated retrograde signaling during late embryogenesis predetermines plastid differentiation in seedlings by recruiting abscisic acid. Proc Natl Acad Sci U S A 2009; 106:9920-4. [PMID: 19482940 DOI: 10.1073/pnas.0901315106] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plastid development in seedlings of Arabidopsis thaliana is affected by the transfer of (1)O(2)-mediated retrograde signals from the plastid to the nucleus and changes in nuclear gene expression during late embryogenesis. The potential impact of these mechanisms on plastid differentiation is maintained throughout seed dormancy and becomes effective only after seed germination. Inactivation of the 2 nuclear-encoded plastid proteins EXECUTER1 and EXECUTER2 blocks (1)O(2)-mediated retrograde signaling before the onset of dormancy and impairs normal plastid formation in germinating seeds. This long-term effect of (1)O(2) retrograde signaling depends on the recruitment of abscisic acid (ABA) during seedling development. Unexpectedly, ABA acts as a positive regulator of plastid formation in etiolated and light-grown seedlings.
Collapse
|
29
|
Plöscher M, Granvogl B, Reisinger V, Eichacker LA. Identification of the N-termini of NADPH : protochlorophyllide oxidoreductase A and B from barley etioplasts (Hordeum vulgare L.). FEBS J 2009; 276:1074-81. [DOI: 10.1111/j.1742-4658.2008.06850.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Aronsson H, Jarvis P. The Chloroplast Protein Import Apparatus, Its Components, and Their Roles. PLANT CELL MONOGRAPHS 2008. [DOI: 10.1007/978-3-540-68696-5_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
31
|
Reinbothe C, Pollmann S, Phetsarath-Faure P, Quigley F, Weisbeek P, Reinbothe S. A pentapeptide motif related to a pigment binding site in the major light-harvesting protein of photosystem II, LHCII, governs substrate-dependent plastid import of NADPH:protochlorophyllide oxidoreductase A. PLANT PHYSIOLOGY 2008; 148:694-703. [PMID: 18441218 PMCID: PMC2556810 DOI: 10.1104/pp.108.120113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
NADPH:protochlorophyllide (Pchlide) oxidoreductase (POR) A is the only known example thus far of a nucleus-encoded plastid protein that is imported to its final destination in a substrate-dependent, Pchlide-regulated manner. Previous work has shown that the cytosolic PORA precursor (pPORA) does not utilize the general import site but uses a distinct translocon designated the Pchlide-dependent translocon complex. Here we demonstrate that a pentapeptide motif, threonine-threonine-serine-proline-glycine (TTSPG) in pPORA's transit peptide (transA), is involved in Pchlide-dependent transport. Deletion of this motif from the COOH-terminal end of transA abolished both Pchlide binding and protein import. Incorporation of the TTSPG motif into normally non-Pchlide-responsive transit sequences conferred the pigment binding properties onto the engineered chimeric precursors but was insufficient to render protein import substrate dependent. An additional motif was identified in the NH(2)-terminal part of transA that was needed for binding of the precursor to the Pchlide-dependent translocon complex. Point mutations of the TTSPG motif identified glycine as the Pchlide binding site. By analogy to the major light-harvesting chlorophyll a/b binding protein of photosystem II, we propose that the peptidyl carbonyl oxygen of glycine may bind directly or via a water molecule to the central Mg atom of the pigment.
Collapse
|
32
|
Abstract
Plastids are a diverse group of essential organelles in plants that include chloroplasts. The biogenesis and maintenance of these organelles relies on the import of thousands of nucleus-encoded proteins. The complexity of plastid structure has resulted in the evolution of at least four general import pathways that target proteins into and across the double membrane of the plastid envelope. Several of these pathways can be further divided into specialty pathways that mediate and regulate the import of specific classes of proteins. The co-ordination of import by these specialized pathways with changes in gene expression is critical for plastid and plant development. Moreover, protein import is acutely regulated in response to physiological and metabolic changes within the cell. In the present review we summarize the current knowledge of the mechanism of import via these pathways and highlight the regulatory mechanisms that integrate the plastid protein-trafficking pathways with the developmental and metabolic state of the plant.
Collapse
|
33
|
Abstract
Most chloroplast proteins are encoded in the nucleus and synthesized on free, cytosolic ribosomes in precursor form. Each precursor has an amino-terminal extension called a transit peptide, which directs the protein through a post-translational targeting pathway and is removed upon arrival inside the organelle. This 'protein import' process is mediated by the coordinate action of two multiprotein complexes, one in each of the envelope membranes: the TOC and TIC (Translocon at the Outer/ Inner envelope membrane of Chloroplasts) machines. Many components of these complexes have been identified biochemically in pea; these include transit peptide receptors, channel proteins, and molecular chaperones. Intriguingly, the Arabidopsis genome encodes multiple, homologous genes for receptor components of the TOC complex. Careful analysis indicated that the different receptor isoforms operate in different import pathways with distinct precursor recognition specificities. These 'substrate-specific' import pathways might play a role in the differentiation of different plastid types, and/or act to prevent deleterious competition effects between abundant and nonabundant precursors. Until recently, all proteins destined for internal chloroplast compartments were thought to possess a cleavable transit peptide, and to engage the TOC/TIC machinery. New studies using proteomics and other approaches have revealed that this is far from true. Remarkably, a significant number of chloroplast proteins are transported via a pathway that involves the endoplasmic reticulum and Golgi apparatus. Other recent reports have elucidated an intriguing array of protein targeting routes leading to the envelope membranes themselves.
Collapse
Affiliation(s)
- Paul Jarvis
- Department of Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
34
|
Masuda T. Recent overview of the Mg branch of the tetrapyrrole biosynthesis leading to chlorophylls. PHOTOSYNTHESIS RESEARCH 2008; 96:121-43. [PMID: 18273690 DOI: 10.1007/s11120-008-9291-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 01/29/2008] [Indexed: 05/20/2023]
Abstract
In plants, chlorophylls (chlorophyll a and chlorophyll b) are the most abundant tetrapyrrole molecules and are essential for photosynthesis. The first committed step of chlorophyll biosynthesis is the insertion of Mg(2+) into protoporphyrin IX, and thus subsequent steps of the biosynthesis are called the Mg branch. As the Mg branch in higher plants is complex, it was not until the last decade--after many years of intensive research--that most of the genes encoding the enzymes for the pathway were identified. Biochemical and molecular genetic analyses have certainly modified the classic metabolic map of tetrapyrrole biosynthesis, and only recently have the molecular mechanisms of regulatory pathways governing chlorophyll metabolism been elucidated. As a result, novel functions of tetrapyrroles and biosynthetic enzymes have been proposed. In this review, I summarize the recent findings on enzymes involved in the Mg branch, mainly in higher plants.
Collapse
Affiliation(s)
- Tatsuru Masuda
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
35
|
Albrecht V, Ingenfeld A, Apel K. Snowy cotyledon 2: the identification of a zinc finger domain protein essential for chloroplast development in cotyledons but not in true leaves. PLANT MOLECULAR BIOLOGY 2008; 66:599-608. [PMID: 18209955 DOI: 10.1007/s11103-008-9291-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 01/10/2008] [Indexed: 05/21/2023]
Abstract
In cotyledons of etiolated seedlings light-dependent transformation of etioplasts to chloroplasts marks the transition from heterotrophic to autotrophic growth. Genetic factors required for this developmental step were identified by isolating mutants of Arabidopsis thaliana that were impaired in chloroplast development in cotyledons but not in true leaves. Several mutants with chlorophyll-deficient cotyledons were isolated and dubbed snowy cotyledon (sco). Here we describe the identification and detailed characterization of the snowy cotyledon 2 mutant. The mutated SCO2 gene was identified using a map-based cloning strategy. SCO2 was shown to encode a novel protein which contains a single DnaJ-like zinc finger domain. The SCO2 protein fused to GFP was shown to be present in chloroplasts. Inactivation of SCO2 has almost no detectable impact on the levels of transcripts encoding plastid-specific proteins but leads to a significant reduction of plastid protein levels. Even though transcripts of SCO2 have been found ubiquitously in green tissues as well as in roots phenotypic changes due to SCO2 inactivation are confined to cotyledons. The cotyledons in embryos of sco2 are unaffected in their chloroplast biogenesis. Upon precocious germination seedlings of sco2 and wild type are indistinguishable. The SCO2 mutation affects chloroplast biogenesis only at the end of dormancy during seed germination. The transition from heterotrophic to autotrophic growth is dramatically impaired in sco2 when seedlings were kept in the dark for more than 5 days prior to light exposure.
Collapse
Affiliation(s)
- Verónica Albrecht
- Institute of Plant Sciences, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.
| | | | | |
Collapse
|
36
|
Bartsch S, Monnet J, Selbach K, Quigley F, Gray J, von Wettstein D, Reinbothe S, Reinbothe C. Three thioredoxin targets in the inner envelope membrane of chloroplasts function in protein import and chlorophyll metabolism. Proc Natl Acad Sci U S A 2008; 105:4933-8. [PMID: 18349143 PMCID: PMC2290756 DOI: 10.1073/pnas.0800378105] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Indexed: 01/30/2023] Open
Abstract
Thioredoxins (Trxs) are ubiquitous small proteins with a redox-active disulfide bridge. In their reduced form, they constitute very efficient protein disulfide oxidoreductases. In chloroplasts, two types of Trxs (f and m) coexist and play central roles in the regulation of the Calvin cycle and other processes. Here, we identified a class of Trx targets in the inner plastid envelope membrane of chloroplasts that share a CxxC motif approximately 73 aa from their carboxyl-terminal end. Members of this group belong to a superfamily of Rieske iron-sulfur proteins involved in protein translocation and chlorophyll metabolism. These proteins include the protein translocon protein TIC55, the precursor NADPH:protochlorophyllide oxidoreductase translocon protein PTC52, which operates as protochlorophyllide a-oxygenase, and the lethal leaf spot protein LLS1, which is identical with pheophorbide a oxygenase. The role of these proteins in dark/light regulation and oxidative control by the Trx system is discussed.
Collapse
Affiliation(s)
- Sandra Bartsch
- *Lehrstuhl für Pflanzenphysiologie, Universität Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| | - Julie Monnet
- Unité Mixte de Recherche 5575, Centre d'Etudes et de Recherches sur les Macromolécules Organiques, Université Joseph Fourier et Centre National de la Recherche Scientifique, BP53, F-38041 Grenoble Cedex 9, France
| | - Kristina Selbach
- Unité Mixte de Recherche 5575, Centre d'Etudes et de Recherches sur les Macromolécules Organiques, Université Joseph Fourier et Centre National de la Recherche Scientifique, BP53, F-38041 Grenoble Cedex 9, France
| | - Françoise Quigley
- Unité Mixte de Recherche 5575, Centre d'Etudes et de Recherches sur les Macromolécules Organiques, Université Joseph Fourier et Centre National de la Recherche Scientifique, BP53, F-38041 Grenoble Cedex 9, France
| | - John Gray
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606; and
| | - Diter von Wettstein
- Department of Crop and Soil Sciences and School of Molecular Biosciences, Washington State University, Pullman WA 99164-6420
| | - Steffen Reinbothe
- Unité Mixte de Recherche 5575, Centre d'Etudes et de Recherches sur les Macromolécules Organiques, Université Joseph Fourier et Centre National de la Recherche Scientifique, BP53, F-38041 Grenoble Cedex 9, France
| | - Christiane Reinbothe
- *Lehrstuhl für Pflanzenphysiologie, Universität Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
- Unité Mixte de Recherche 5575, Centre d'Etudes et de Recherches sur les Macromolécules Organiques, Université Joseph Fourier et Centre National de la Recherche Scientifique, BP53, F-38041 Grenoble Cedex 9, France
| |
Collapse
|
37
|
The Chloroplast Protein Import Apparatus, Its Components, and Their Roles. PLANT CELL MONOGRAPHS 2008. [DOI: 10.1007/7089_2008_40] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
38
|
Oreb M, Tews I, Schleiff E. Policing Tic 'n' Toc, the doorway to chloroplasts. Trends Cell Biol 2008; 18:19-27. [PMID: 18068366 DOI: 10.1016/j.tcb.2007.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 10/08/2007] [Accepted: 10/22/2007] [Indexed: 10/22/2022]
Abstract
The organization of eukaryotic cells into different membrane-enclosed compartments requires an ordered and regulated system for targeting and translocating proteins synthesized in the cytosol across organellar membranes. Protein translocation through integral membrane proteinaceous complexes shares common principles in different organelles, whereas molecular mechanisms and energy requirements are diverse. Translocation into mitochondria and plastids requires most proteins to cross two membranes, and translocation must be regulated to accommodate environmental or metabolic changes. In the last decade, the first ideas were formulated about the regulation of protein translocation into chloroplasts, thereby laying the foundation for this field. Here, we describe recent models for the regulation of translocation by precursor protein phosphorylation, receptor dimerization, redox sensing and calcium signaling. We suggest how these mechanisms might fit within the regulatory framework for the entry of proteins into chloroplasts.
Collapse
Affiliation(s)
- Mislav Oreb
- LMU München, Cluster of Excellence CIPS, Department of Biology I, Menziger Str. 67, 80638 München, Germany
| | | | | |
Collapse
|
39
|
Lee KP, Kim C, Landgraf F, Apel K. EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proc Natl Acad Sci U S A 2007; 104:10270-5. [PMID: 17540731 PMCID: PMC1891253 DOI: 10.1073/pnas.0702061104] [Citation(s) in RCA: 335] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Indexed: 11/18/2022] Open
Abstract
Shortly after the release of singlet oxygen ((1)O2), drastic changes in nuclear gene expression occur in the conditional flu mutant of Arabidopsis that reveal a rapid transfer of signals from the plastid to the nucleus. In contrast to retrograde control of nuclear gene expression by plastid signals described earlier, the primary effect of (1)O2 generation in the flu mutant is not the control of chloroplast biogenesis but the activation of a broad range of signaling pathways known to be involved in biotic and abiotic stress responses. This activity of a plastid-derived signal suggests a new function of the chloroplast, namely that of a sensor of environmental changes that activates a broad range of stress responses. Inactivation of the plastid protein EXECUTER1 attenuates the extent of (1)O2-induced up-regulation of nuclear gene expression, but it does not fully eliminate these changes. A second related nuclear-encoded protein, dubbed EXECUTER2, has been identified that is also implicated with the signaling of (1)O2-dependent nuclear gene expression changes. Like EXECUTER1, EXECUTER2 is confined to the plastid. Inactivation of both EXECUTER proteins in the ex1/ex2/flu triple mutant is sufficient to suppress the up-regulation of almost all (1)O2-responsive genes. Retrograde control of (1)O2-responsive genes requires the concerted action of both EXECUTER proteins within the plastid compartment.
Collapse
Affiliation(s)
- Keun Pyo Lee
- Institute of Plant Sciences, Plant Genetics, Swiss Federal Institute of Technology (ETH), CH–8092 Zurich, Switzerland
| | - Chanhong Kim
- Institute of Plant Sciences, Plant Genetics, Swiss Federal Institute of Technology (ETH), CH–8092 Zurich, Switzerland
| | - Frank Landgraf
- Institute of Plant Sciences, Plant Genetics, Swiss Federal Institute of Technology (ETH), CH–8092 Zurich, Switzerland
| | - Klaus Apel
- Institute of Plant Sciences, Plant Genetics, Swiss Federal Institute of Technology (ETH), CH–8092 Zurich, Switzerland
| |
Collapse
|
40
|
Schemenewitz A, Pollmann S, Reinbothe C, Reinbothe S. A substrate-independent, 14:3:3 protein-mediated plastid import pathway of NADPH:protochlorophyllide oxidoreductase A. Proc Natl Acad Sci U S A 2007; 104:8538-43. [PMID: 17483469 PMCID: PMC1895985 DOI: 10.1073/pnas.0702058104] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Indexed: 11/18/2022] Open
Abstract
Plastids are semiautonomous organelles that contain only limited coding information in their own DNA. Because most of their genome was transferred to the nucleus after their endosymbiotic origin, plastids must import the major part of their protein constituents from the cytosol. The exact role of cytosolic targeting factors in the regulation of plastid protein import has not been determined. Here, we report that the nucleus-encoded NADPH:protochlorophyllide (Pchlide) oxidoreductase A plastid precursor (pPORA) can use two different plastid import pathways that differ by the requirements for cytosolic 14:3:3 proteins and Hsp70. pPORA synthesized in a wheat germ lysate segregated into different precursor fractions. While import of free pPORA and only Hsp70-complexed pPORA was Pchlide-dependent and involved the previously identified Pchlide-dependent translocon, 14:3:3 protein- and Hsp70-complexed pPORA was transported into Pchlide-free chloroplasts through the Toc75-containing standard translocon at the outer chloroplast membrane/translocon at the inner chloroplast membrane machinery. A 14:3:3 protein binding site was identified in the mature region of the (35)S-pPORA, which governed 14:3:3 protein- and Hsp70-mediated, Pchlide-independent plastid import. Collectively, our results reveal that the import of pPORA into the plastids is tightly regulated and involves different cytosolic targeting factors and plastid envelope translocon complexes.
Collapse
Affiliation(s)
- Andreas Schemenewitz
- Lehrstuhl für Pflanzenphysiologie, Ruhr-Universität Bochum, Universitätsstrasse 150, Gebäude ND, D-44801 Bochum, Germany
| | - Stephan Pollmann
- Lehrstuhl für Pflanzenphysiologie, Ruhr-Universität Bochum, Universitätsstrasse 150, Gebäude ND, D-44801 Bochum, Germany
| | - Christiane Reinbothe
- Lehrstuhl für Pflanzenphysiologie, Universität Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany; and
- Unité Mixte de Recherche 5575, Université Joseph Fourier et Centre National de la Recherche Scientifique, BP53, F-38041 Grenoble Cedex 9, France
| | - Steffen Reinbothe
- Unité Mixte de Recherche 5575, Université Joseph Fourier et Centre National de la Recherche Scientifique, BP53, F-38041 Grenoble Cedex 9, France
| |
Collapse
|
41
|
Philippar K, Geis T, Ilkavets I, Oster U, Schwenkert S, Meurer J, Soll J. Chloroplast biogenesis: the use of mutants to study the etioplast-chloroplast transition. Proc Natl Acad Sci U S A 2007; 104:678-83. [PMID: 17202255 PMCID: PMC1766443 DOI: 10.1073/pnas.0610062104] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In angiosperm plants, the etioplast-chloroplast transition is light-dependent. A key factor in this process is the protochlorophyllide oxidoreductase A (PORA), which catalyzes the light-induced reduction of protochlorophyllide to chlorophyllide. The import pathway of the precursor protein prePORA into chloroplasts was analyzed in vivo and in vitro by using homozygous loss-of-function mutants in genes coding for chlorophyllide a oxygenase (CAO) or for members of the outer-envelope solute-channel protein family of 16 kDa (OEP16), both of which have been implied to be key factors for the import of prePORA. Our in vivo analyses show that cao or oep16 mutants contain a normally structured prolamellar body that contains the protochlorophyllide holochrome. Furthermore, etioplasts from cao and oep16 mutants contain PORA protein as found by mass spectrometry. Our data demonstrate that both CAO and OEP16 are dispensable for chloroplast biogenesis and play no central role in the import of prePORA in vivo and in vitro as further indicated by protein import studies.
Collapse
Affiliation(s)
- Katrin Philippar
- Department Biology I, Botany, Ludwig-Maximilians-University of Munich, Menzingerstrasse 67, D-80638 Munich, Germany
| | - Tina Geis
- Department Biology I, Botany, Ludwig-Maximilians-University of Munich, Menzingerstrasse 67, D-80638 Munich, Germany
| | - Iryna Ilkavets
- Department Biology I, Botany, Ludwig-Maximilians-University of Munich, Menzingerstrasse 67, D-80638 Munich, Germany
| | - Ulrike Oster
- Department Biology I, Botany, Ludwig-Maximilians-University of Munich, Menzingerstrasse 67, D-80638 Munich, Germany
| | - Serena Schwenkert
- Department Biology I, Botany, Ludwig-Maximilians-University of Munich, Menzingerstrasse 67, D-80638 Munich, Germany
| | - Jörg Meurer
- Department Biology I, Botany, Ludwig-Maximilians-University of Munich, Menzingerstrasse 67, D-80638 Munich, Germany
| | - Jürgen Soll
- Department Biology I, Botany, Ludwig-Maximilians-University of Munich, Menzingerstrasse 67, D-80638 Munich, Germany
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
|
43
|
Abstract
The importance of chlorophyll (Chl) to the process of photosynthesis is obvious, and there is clear evidence that the regulation of Chl biosynthesis has a significant role in the regulation of assembly of the photosynthetic apparatus. The understanding of Chl biosynthesis has rapidly advanced in recent years. The identification of genetic loci associated with each of the biochemical steps has been accompanied by a greater appreciation of the role of Chl biosynthesis intermediates in intracellular signaling. The purpose of this review is to provide a source of information for all the steps in Chl and bacteriochlorophyll a biosynthesis, with an emphasis on steps that are believed to be key regulation points.
Collapse
Affiliation(s)
- David W Bollivar
- Department of Biology, Illinois Wesleyan University, Bloomington, IL 61702-2900, USA.
| |
Collapse
|
44
|
Kessler F, Schnell DJ. The function and diversity of plastid protein import pathways: a multilane GTPase highway into plastids. Traffic 2006; 7:248-57. [PMID: 16497220 DOI: 10.1111/j.1600-0854.2005.00382.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photosynthetic chloroplast is the hallmark organelle of green plants. During the endosymbiotic evolution of chloroplasts, the vast majority of genes from the original cyanobacterial endosymbiont were transferred to the host cell nucleus. Chloroplast biogenesis therefore requires the import of nucleus-encoded proteins from their site of synthesis in the cytosol. The majority of proteins are imported by the activity of Toc and Tic complexes located within the chloroplast envelope. In addition to chloroplasts, plants have evolved additional, non-photosynthetic plastid types that are essential components of all cells. Recent studies indicate that the biogenesis of various plastid types relies on distinct but homologous Toc-Tic import pathways that have specialized in the import of specific classes of substrates. These different import pathways appear to be necessary to balance the essential physiological role of plastids in cellular metabolism with the demands of cellular differentiation and plant development.
Collapse
Affiliation(s)
- Felix Kessler
- Laboratoire de Physiologie Végétale, Institut de Botanique, Université de Neuchâtel, Rue Emile-Argand 11, 2007 Neuchâtel, Switzerland.
| | | |
Collapse
|
45
|
Smith MD. Protein import into chloroplasts: an ever-evolving storyThis review is one of a selection of papers published in the Special Issue on Plant Cell Biology. ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b06-050] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chloroplasts are but one type of a diverse group of essential organelles that distinguish plant cells and house many critical biochemical pathways, including photosynthesis. The biogenesis of plastids is essential to plant growth and development and relies on the targeting and import of thousands of nuclear-encoded proteins from the cytoplasm. The import of the vast majority of these proteins is dependent on translocons located in the outer and inner envelope membranes of the chloroplast, termed the Toc and Tic complexes, respectively. The core components of the Toc and Tic complexes have been identified within the last 12 years; however, the precise functions of many components are still being elucidated, and new components are still being identified. In Arabidopsis thaliana (and other species), many of the components are encoded by more than one gene, and it appears that the isoforms differentially associate with structurally distinct import complexes. Furthermore, it appears that these complexes represent functionally distinct targeting pathways, and the regulation of import by these separate pathways may play a role in the differentiation and specific functions of distinct plastid types during plant growth and development. This review summarizes these recent discoveries and emphasizes the mechanisms of differential Toc complex assembly and substrate recognition.
Collapse
Affiliation(s)
- Matthew D. Smith
- Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada (e-mail: )
| |
Collapse
|
46
|
Reinbothe C, Bartsch S, Eggink LL, Hoober JK, Brusslan J, Andrade-Paz R, Monnet J, Reinbothe S. A role for chlorophyllide a oxygenase in the regulated import and stabilization of light-harvesting chlorophyll a/b proteins. Proc Natl Acad Sci U S A 2006; 103:4777-82. [PMID: 16537436 PMCID: PMC1450246 DOI: 10.1073/pnas.0511066103] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Arabidopsis CAO gene encodes a 52-kDa protein with predicted localization in the plastid compartment. Here, we report that CAO is an intrinsic Rieske iron-sulfur protein of the plastid-envelope inner and thylakoid membranes. Activity measurements revealed that CAO catalyzes chlorophyllide a to chlorophyllide b conversion in vitro and that the enzyme was only slightly active with protochlorophyllide a, the nonreduced precursor of chlorophyllide a. Protein import and organelle fractionation studies identified CAO to be distinct from Ptc52 in the substrate-dependent transport pathway of NADPH:protochlorophyllide oxidoreductase A but instead to be part of a separate translocon complex. This complex was involved in the regulated import and stabilization of the chlorophyllide b-binding light-harvesting proteins Lhcb1 (LHCII) and Lhcb4 (CP29) in chloroplasts. Together, our results provide insights into the plastid subcompartmentalization and evolution of chlorophyll precursor biosynthesis in relation to protein import in higher plants.
Collapse
Affiliation(s)
- Christiane Reinbothe
- *Lehrstuhl für Pflanzenphysiologie, Universität Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| | - Sandra Bartsch
- *Lehrstuhl für Pflanzenphysiologie, Universität Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| | - Laura L. Eggink
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501
| | - J. Kenneth Hoober
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501
| | - Judy Brusslan
- Department of Biological Science, California State University, Long Beach, CA 90840-3702; and
| | - Ricardo Andrade-Paz
- Department of Biological Science, California State University, Long Beach, CA 90840-3702; and
| | - Julie Monnet
- Université Joseph Fourier et Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5575, CERMO, BP53, F-38041 Grenoble Cedex 9, France
| | - Steffen Reinbothe
- Université Joseph Fourier et Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5575, CERMO, BP53, F-38041 Grenoble Cedex 9, France
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
47
|
Albrecht V, Ingenfeld A, Apel K. Characterization of the snowy cotyledon 1 mutant of Arabidopsis thaliana: the impact of chloroplast elongation factor G on chloroplast development and plant vitality. PLANT MOLECULAR BIOLOGY 2006; 60:507-18. [PMID: 16525888 DOI: 10.1007/s11103-005-4921-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 11/07/2005] [Indexed: 05/07/2023]
Abstract
During seedling development chloroplast formation marks the transition from heterotrophic to autotrophic growth. The development and activity of chloroplasts may differ in cotyledons that initially serve as a storage organ and true leaves whose primary function is photosynthesis. A genetic screen was used for the identification of genes that affect selectively chloroplast function in cotyledons of Arabidopsis thaliana. Several mutants exhibiting pale cotyledons and green true leaves were isolated and dubbed snowy cotyledon (sco). One of the mutants, sco1, was characterized in more detail. The mutated gene was identified using map-based cloning. The mutant contains a point mutation in a gene encoding the chloroplast elongation factor G, leading to an amino acid exchange within the predicted 70S ribosome-binding domain. The mutation results in a delay in the onset of germination. At this early developmental stage embryos still contain undifferentiated proplastids, whose proper function seems necessary for seed germination. In light-grown sco1 seedlings the greening of cotyledons is severely impaired, whereas the following true leaves develop normally as in wild-type plants. Despite this apparent similarity of chloroplast development in true leaves of mutant and wild-type plants various aspects of mature plant development are also affected by the sco1 mutation such as the onset of flowering, the growth rate, and seed production. The onset of senescence in the mutant and the wild-type plants occurs, however, at the same time, suggesting that in the mutant this particular developmental step does not seem to suffer from reduced protein translation efficiency in chloroplasts.
Collapse
Affiliation(s)
- Verónica Albrecht
- Institute of Plant Sciences, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.
| | | | | |
Collapse
|
48
|
Reumann S, Inoue K, Keegstra K. Evolution of the general protein import pathway of plastids (review). Mol Membr Biol 2005; 22:73-86. [PMID: 16092526 DOI: 10.1080/09687860500041916] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The evolutionary process that transformed a cyanobacterial endosymbiont into contemporary plastids involved not only inheritance but also invention. Because gram-negative bacteria lack a system for polypeptide import, the envelope translocon complex of the general protein import pathway was the most important invention of organelle evolution resulting in a pathway to import back into plastids those nuclear-encoded proteins supplemented with a transit peptide. Genome information of cyanobacteria, phylogenetically diverse plastids, and the nuclei of the first red alga, a diatom, and Arabidopsis thaliana allows us to trace back the evolutionary origin of the twelve currently known translocon components and to partly deduce their assembly sequence. Development of the envelope translocon was initiated by recruitment of a cyanobacterial homolog of the protein-import channel Toc75, which belongs to a ubiquitous and essential family of Omp85/D15 outer membrane proteins of gram-negative bacteria that mediate biogenesis of beta-barrel proteins. Likewise, three other translocon subunits (Tic20, Tic22, and Tic55) and several stromal chaperones have been inherited from the ancestral cyanobacterium and modified to take over the novel function of precursor import. Most of the remaining subunits seem to be of eukaryotic origin, recruited from pre-existing nuclear genes. The next subunits that joined the evolving protein import complex likely were Toc34 and Tic110, as indicated by the presence of homologous genes in the red alga Cyanidioschyzon merolae, followed by the stromal processing peptidase, members of the Toc159 receptor family, Toc64, Tic40, and finally some regulatory redox components (Tic62, Tic32), all of which were probably required to increase specificity and efficiency of precursor import.
Collapse
Affiliation(s)
- Sigrun Reumann
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Göttingen, Germany.
| | | | | |
Collapse
|
49
|
Bédard J, Jarvis P. Recognition and envelope translocation of chloroplast preproteins. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:2287-320. [PMID: 16087701 DOI: 10.1093/jxb/eri243] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plastids are a diverse group of plant organelles that perform essential functions including important steps in many biosynthetic pathways. Chloroplasts are the best characterized type of plastid, and constitute the site of oxygenic photosynthesis in plants, a process essential to all higher life forms. It is well established that the majority (>90%) of chloroplast proteins are nucleus-encoded and must be post-translationally imported into these envelope-bound compartments. Most nucleus-encoded chloroplast proteins are translated in precursor form on cytosolic ribosomes, targeted to the chloroplast surface, and then imported across the double-membrane envelope by translocons in the outer and inner envelope membranes of the chloroplast, termed TOC and TIC, respectively. Recently, significant progress has been made in our understanding of how proteins are targeted to the chloroplast surface and translocated across the chloroplast envelope into the stroma. Evidence suggesting the existence of multiple import pathways at the outer envelope membrane for different classes of precursor proteins has been presented. These pathways appear to utilize similar TOC complexes equipped with different combinations of homologous GTPase receptors, providing preprotein recognition specificity.
Collapse
Affiliation(s)
- Jocelyn Bédard
- Department of Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | | |
Collapse
|
50
|
Fulgosi H, Lepedus H, Cesar V, Ljubesić N. Differential accumulation of plastid preprotein translocon components during spruce (Picea abies L. Karst.) needle development. Biol Chem 2005; 386:777-83. [PMID: 16201873 DOI: 10.1515/bc.2005.091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
We demonstrate that basic components of the plastid protein-import apparatus originally found in pea, Toc34, Toc159, and Tic110, are also conserved in evolutionarily younger gymnosperms. We show that multiple isoforms of the preprotein receptor Toc34 differentially accumulate in various stages of needle development, while the amounts of Toc159 drastically decrease during chloroplast morphogenesis. Spruce Toc34 and Toc159 receptors are able to recognise and interact with the angiosperm precursor of the Rubisco small subunit. Young proplastids found in closed buds contain a highly elevated number of protein translocation complexes equipped with only two types of outer envelope receptors, Toc159 and a 30-kDa Toc34-related protein. Photosystem II (PSII) can already be assembled in a fully functional complex at this very early stage of needle development, suggesting that no additional receptor isoforms are needed for translocation of all necessary PSII components. We conclude that the accumulation of evolutionarily conserved plastid preprotein translocation components is differentially regulated during spruce needle development.
Collapse
Affiliation(s)
- Hrvoje Fulgosi
- Department of Molecular Biology, Ruder Bosković Institute, Zagreb, Croatia.
| | | | | | | |
Collapse
|