1
|
Alabadí D, Sun TP. Green Revolution DELLA Proteins: Functional Analysis and Regulatory Mechanisms. ANNUAL REVIEW OF PLANT BIOLOGY 2025; 76:373-400. [PMID: 39621537 DOI: 10.1146/annurev-arplant-053124-050732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
The DELLA genes, also referred to as Green Revolution genes, encode conserved master growth regulators in plants. The nuclear-localized DELLA proteins are transcription regulators that interact with hundreds of transcription factors and other transcription regulators. They not only function as gibberellin signaling repressors in vascular plants but also play a central role in coordinating diverse signaling pathways in response to both internal hormonal signals and external cues (e.g., light and nutrient conditions, biotic and abiotic stresses). Through a combination of genetic, genomic, biochemical, and structural studies, significant advances have been made in understanding both the functional domains and motifs within DELLAs and the molecular mechanisms underlying their function. Here, we highlight new insights into the molecular workings of DELLA proteins, including an evolutionary perspective.
Collapse
Affiliation(s)
- David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain;
| | - Tai-Ping Sun
- Department of Biology, Duke University, Durham, North Carolina, USA;
| |
Collapse
|
2
|
Zhu H, Chen H, Kantharaj V, Sun W, Wei S, Xuan YH. SLR1-LPA1 signal regulates sheath blight resistance and lamina joint angle in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109689. [PMID: 40015197 DOI: 10.1016/j.plaphy.2025.109689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/29/2024] [Accepted: 02/22/2025] [Indexed: 03/01/2025]
Abstract
Previous studies have suggested that Dense and Erect Panicle 1 (DEP1) interacts with Lose Plant Architecture 1 (LPA1) to regulate auxin transport by which DEP1-LPA1 modulates rice sheath blight (ShB) resistance. In this study, we identified that dep1 and lpa1 exhibited semi-dwarfism and dep1/lpa1 was shorter than the single mutant. LPA1 OX displayed higher height, whereas DEP1 OX exhibited similar height with wild-type. The gibberellic acid (GA)-dependent shoot growth was inhibited in dep1 and lpa1 while activated in LPA1 OX, suggesting that LPA1 may play a role in GA signaling transduction. Yeast two-hybrid screening revealed that slender rice 1 (SLR1), a GA signaling negative regulator, interacted with LPA1. Additionally, slr1 was less susceptible to ShB, whereas the GA signaling positive regulator DWARF1 mutant d1 was more susceptible to ShB. This suggested that GA signaling positively regulates rice resistance to ShB. Furthermore, slr1 was similar to LPA1 OX in terms of reduced lamina joint angle, whereas d1 did not show any difference. This implied that SLR1 may regulate LPA1 dependent signaling to control the lamina joint angle via a mechanism that was independent of GA signaling. Transcriptome data indicated that GA signaling and catabolic genes were regulated by LPA1. Transient and ChIP assays suggested that LPA1 bound to the promoter of gibberellin 2-beta-dioxygenase, a GA catabolic gene, to activate its expression. These findings indicated that LPA1 modulated GA homeostasis and SLR1 interacted with and inhibited LPA1 to regulate ShB resistance and lamina joint angle in rice.
Collapse
Affiliation(s)
- Hongyao Zhu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Huan Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Vimalraj Kantharaj
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Wenpeng Sun
- Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Songhong Wei
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Yuan Hu Xuan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin, 300071, China.
| |
Collapse
|
3
|
Xu Y, Du J, Hao R, Ma S, Ma Y, Zhou G, Hu R, Li S. Gibberellin signaling regulates pectin biosynthesis in Arabidopsis. Nat Commun 2025; 16:4065. [PMID: 40307219 PMCID: PMC12044110 DOI: 10.1038/s41467-025-59268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 04/14/2025] [Indexed: 05/02/2025] Open
Abstract
Pectin is an abundant polysaccharide with essential roles in various biological processes. Despite considerable advances in understanding the regulatory mechanisms of pectin biosynthesis, the influence of phytohormones on this process remains unclear. Here we report that gibberellins (GA) promotes pectin biosynthesis in Arabidopsis. The DELLA proteins, as GA signaling repressors, interact with TRANSPARENT TESTA GLABRA2 (TTG2) and components of the MYB-bHLH-WD40 (MBW) complex, the key regulators of pectin biosynthesis, to repress their transcriptional regulatory activities. Furthermore, the MBW proteins and TTG2 physically interact and synergistically activate the downstream target GLABRA2, whereas this interaction and collaboration are competitively attenuated by DELLAs. Genetic analyses validate that GA-mediated pectin biosynthesis relies on functional TTG2 and MBW proteins. Moreover, the pectin biosynthesis mediated by the GA-DELLA-MBW-TTG2 module contributes to GA-regulated seedling growth. Our findings reveal the significance of the GA-DELLA-MBW-TTG2 signaling cascade in the regulation of pectin biosynthesis and plant development.
Collapse
Affiliation(s)
- Yan Xu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao, PR China
| | - Jinge Du
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Ruili Hao
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao, PR China
| | - Siqi Ma
- Tobacco Research, Institute of Chinese Academy of Agricultural Sciences, Qingdao, PR China
| | - Yujiao Ma
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao, PR China
| | - Gongke Zhou
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, PR China
| | - Ruibo Hu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao, PR China.
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, PR China.
| | - Shengjun Li
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao, PR China.
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, PR China.
| |
Collapse
|
4
|
Wang D, Zhao X, Su T, Wang W, Xin X, Zhang B, Zhang D, Yu Y, Wang Z, Zhang F, Zhou L, Li P, Yu S. Exogenous Gibberellin Delays Postharvest Leaf Senescence in Pak Choi by Modulating Transcriptomic and Metabolomic Profiles. Foods 2025; 14:981. [PMID: 40231988 PMCID: PMC11941532 DOI: 10.3390/foods14060981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 04/16/2025] Open
Abstract
Postharvest leaf senescence is a pivotal determinant influencing the quality and shelf life of leafy vegetables, exemplified by pak choi (Brassica rapa L. subsp. chinensis). While the regulatory role of gibberellin (GA) in modulating leaf senescence has been documented across diverse plant species, the underlying physiological and molecular mechanisms remain insufficiently characterized. This study, through a combination of transcriptomic and metabolomic analyses, investigated the effect of exogenous GA on postharvest leaf senescence in pak choi. GA treatment alleviated etiolation, maintained chlorophyll levels, reduced conductivity and malondialdehyde content, and delayed the onset of senescence symptoms in postharvest pak choi. Transcriptome profiling indicated that GA suppressed the expression of the senescence-associated genes BraSRGs and BraSAGs. In addition, GA influenced chlorophyll degradation and preserved chlorophyll content by modulating the expression of genes implicated in chlorophyll metabolism, including BraPPH, BraSGR1, BraNYCI, and BraPAO. GA treatment impacted lipid levels and regulated the degradation of membrane phospholipids. Furthermore, exogenous GA treatment disrupted the efficacy of the jasmonic acid signal pathway, primarily through the transcriptional downregulation of key regulatory genes, including BraJAZ10 and BraJAR1. These results provide insights into the role of GA in delaying postharvest leaf senescence and highlight potential targets for improving postharvest management in leafy vegetables.
Collapse
Affiliation(s)
- Dan Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China;
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China; (X.Z.); (T.S.); (W.W.); (X.X.); (B.Z.); (D.Z.); (Y.Y.); (F.Z.); (S.Y.)
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Xiuyun Zhao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China; (X.Z.); (T.S.); (W.W.); (X.X.); (B.Z.); (D.Z.); (Y.Y.); (F.Z.); (S.Y.)
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Tongbing Su
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China; (X.Z.); (T.S.); (W.W.); (X.X.); (B.Z.); (D.Z.); (Y.Y.); (F.Z.); (S.Y.)
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Weihong Wang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China; (X.Z.); (T.S.); (W.W.); (X.X.); (B.Z.); (D.Z.); (Y.Y.); (F.Z.); (S.Y.)
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Xiaoyun Xin
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China; (X.Z.); (T.S.); (W.W.); (X.X.); (B.Z.); (D.Z.); (Y.Y.); (F.Z.); (S.Y.)
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Bin Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China; (X.Z.); (T.S.); (W.W.); (X.X.); (B.Z.); (D.Z.); (Y.Y.); (F.Z.); (S.Y.)
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Deshuang Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China; (X.Z.); (T.S.); (W.W.); (X.X.); (B.Z.); (D.Z.); (Y.Y.); (F.Z.); (S.Y.)
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Yangjun Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China; (X.Z.); (T.S.); (W.W.); (X.X.); (B.Z.); (D.Z.); (Y.Y.); (F.Z.); (S.Y.)
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China;
| | - Fenglan Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China; (X.Z.); (T.S.); (W.W.); (X.X.); (B.Z.); (D.Z.); (Y.Y.); (F.Z.); (S.Y.)
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Linyi Zhou
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China;
| | - Peirong Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China; (X.Z.); (T.S.); (W.W.); (X.X.); (B.Z.); (D.Z.); (Y.Y.); (F.Z.); (S.Y.)
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Shuancang Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China; (X.Z.); (T.S.); (W.W.); (X.X.); (B.Z.); (D.Z.); (Y.Y.); (F.Z.); (S.Y.)
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| |
Collapse
|
5
|
Huang Z, Han X, He K, Ye J, Yu C, Xu T, Zhang J, Du J, Fu Q, Hu Y. Nitrate attenuates abscisic acid signaling via NIN-LIKE PROTEIN8 in Arabidopsis seed germination. THE PLANT CELL 2025; 37:koaf046. [PMID: 40123384 PMCID: PMC11952927 DOI: 10.1093/plcell/koaf046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 01/15/2025] [Indexed: 03/25/2025]
Abstract
Abscisic acid (ABA) suppresses Arabidopsis (Arabidopsis thaliana) seed germination and post-germinative growth. Nitrate stimulates seed germination, but whether it directly regulates ABA signaling and the associated underlying molecular mechanisms remain unknown. Here, we showed that nitrate alleviates the repressive effects of ABA on seed germination independently of the nitric oxide (NO) pathway. Moreover, nitrate attenuates ABA signaling activated by ABSCISIC ACID INSENSITIVE3 (ABI3) and ABI5, two critical transcriptional regulators of the ABA pathway. Mechanistic analyses demonstrated that ABI3 and ABI5 physically interact with the nitrate signaling-related core transcription factor NIN-LIKE PROTEIN 8 (NLP8). After ABA treatment, NLP8 suppresses ABA responses during seed germination without affecting ABA content. Notably, nitrate represses ABA signaling mainly through NLP8. Genetic analyses showed that NLP8 acts upstream of ABI3 and ABI5. Specifically, NLP8 inhibits the transcriptional functions of ABI3 and ABI5, as well as their ABA-induced accumulation. Additionally, NLP8 overexpression largely suppresses the ABA hypersensitivity of mutant plants exhibiting impaired NO biosynthesis or signaling. Collectively, our study reveals that nitrate counteracts the inhibitory effects of ABA signaling on seed germination and provides mechanistic insights into the NLP8-ABI3/ABI5 interactions and their antagonistic relationships in ABA signaling.
Collapse
Affiliation(s)
- Zhichong Huang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Kunrong He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jingwen Ye
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Chunlan Yu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Tingting Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Juping Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Jiancan Du
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Qiantang Fu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- State Key Laboratory of Chemo and Biosensing and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410128, China
| |
Collapse
|
6
|
Sun Y, Yuan T. Genome-wide analysis of GRAS gene family and functional identification of a putative development and maintenance of axillary meristematic tissue gene PlGRAS22 in Paeonia ludlowii. Int J Biol Macromol 2025; 297:139879. [PMID: 39818398 DOI: 10.1016/j.ijbiomac.2025.139879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/21/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
The GRAS gene family, is instrumental in a myriad of biological processes, including plant growth and development. Our findings revealed that Paeonia ludlowii (Stern & G.Taylor) D.Y.Hong) harbored 45 PlGRAS genes, which are categorized into eight subfamilies. These genes are distributed across chromosomes 1 through 5, with their encoded proteins exhibiting variation in physicochemical properties. The promoter regions of the Paeonia ludlowii GRAS genes are enriched with cis-acting elements associated with growth and development, hormonal responses, and light signaling, among others. Among these genes, we have pinpointed PlGRAS22, which bears the closest resemblance to the AtLAS gene in Arabidopsis. Notably, this gene exhibits heightened expression levels within the LAS subfamily across a range of tissues, and it demonstrates an exceptionally robust response to treatments with exogenous gibberellins and cytokinins. The subdued expression of TRV2-PlGRAS22 within the flower buds of the Paeonia ludlowii has resulted in a diminished development of axillary bud primordia. Intriguingly, overexpression of PlGRAS22 in Arabidopsis led to an increase in the number of branches, highlighting its potential role in developmental processes. Furthermore, through the use of luciferase and yeast one-hybrid assays, we have demonstrated that PlGRAS22 interacts with the SPL transcription factor PlSPL3. The comprehensive analysis presented in this study lays a solid foundation for future investigations into the functional roles of Paeonia ludlowii GRAS genes and elucidates the underlying mechanisms governing growth and development in this species.
Collapse
Affiliation(s)
- Yue Sun
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, China
| | - Tao Yuan
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, China.
| |
Collapse
|
7
|
Zhao H, Sun P, Tong C, Li X, Yang T, Jiang Y, Zhao B, Dong J, Jiang B, Shen J, Li Z. CsIREH1 phosphorylation regulates DELLA protein affecting plant height in cucumber (Cucumis sativus). THE NEW PHYTOLOGIST 2025; 245:1528-1546. [PMID: 39673233 DOI: 10.1111/nph.20309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/11/2024] [Indexed: 12/16/2024]
Abstract
Plant height is a critical agronomic trait that affects crop yield, plant architecture, and environmental adaptability. Gibberellins (GAs) regulate plant height, with DELLA proteins acting as key repressors in the GA signaling pathway by inhibiting GA-induced growth. While DELLA phosphorylation is essential for regulating plant height, the precise mechanisms underlying this process remain incompletely understood. In this study, we identified a cucumber mutant with delayed growth, which exhibited reduced sensitivity to GA treatment. Through bulked segregant analysis (BSA-seq) combined with molecular marker linkage analysis, we successfully identified and cloned the gene responsible for the dwarf phenotype, CsIREH1 (INCOMPLETE ROOT HAIR ELONGATION 1), which encodes an AGC protein kinase. Further research revealed that CsIREH1 interacts with and phosphorylates DELLA proteins, specifically targeting CsGAIP and CsGAI2. We propose that IREH1-dependent phosphorylation of DELLA proteins prevents their excessive accumulation, thereby maintaining normal plant growth. Therefore, investigating the role of IREH1-mediated DELLA phosphorylation provides valuable insights and theoretical foundations for understanding how plants regulate growth mechanisms.
Collapse
Affiliation(s)
- Hongjiao Zhao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Piaoyun Sun
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Can Tong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiangbao Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tongwen Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanxin Jiang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Bosi Zhao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Junyang Dong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Biao Jiang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Junjun Shen
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zheng Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
8
|
Wen H, Wang L, Gong Y, Zhang Y, Zhao T, Feng C, Wang J, Lin J. Genome-Wide Identification and Characterization of GRAS Transcription Factor Family in Cultivated Hybrid Sugarcane ZZ1 ( Saccharum officinarum) and Their Role in Development and Stress. Int J Mol Sci 2024; 25:13470. [PMID: 39769233 PMCID: PMC11678106 DOI: 10.3390/ijms252413470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/21/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
GRAS gene family plays multifunctional roles in plant growth, development, and resistance to various biotic and abiotic stresses, belonging to the plant-specific transcription factor (TF) family. In this study, a genome-wide survey and systematic analysis of the GRAS family in cultivated hybrid sugarcane ZZ1 (Saccharum officinarum) with economic and industrial importance was carried out. We identified 747 GRAS genes with complete structural domains and classified these into 11 subfamilies by phylogenetic analyses, exhibiting a diverse range of molecular weight and isoelectric points, thereby indicating a broad structural and functional spectrum. Analysis of Protein motif and gene structure revealed a conserved yet variable arrangement of motifs within the GRAS TFs, suggesting its potential for diverse functional roles. Furthermore, the identification of numerous cis-regulatory elements by GRAS TFs promoter sequence analysis, implying their complex regulation in response to environmental and physiological signals. Tertiary structure predictions analyses using AlphaFold3 highlighted the structural flexibility and conservation within the GRAS family, with disordered regions potentially contributing to their functional versatility. Weighted Gene Co-expression Network Analysis (WGCNA) provided insights into the potential roles of ShGRAS21A in sugarcane's response to smut infection. This comprehensive investigation of the GRAS family in ZZ1 not only uncovers their structural diversity but also sheds light on their potential regulatory roles in plant growth, development, and stress response. The findings contribute to a deeper understanding of GRAS TFs functions and lay the groundwork for future studies on their role in sugarcane improvement and disease resistance.
Collapse
Affiliation(s)
- Hao Wen
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (H.W.); (T.Z.); (C.F.)
| | - Lidan Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China;
| | - Yuqing Gong
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.G.); (Y.Z.)
| | - Yu Zhang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.G.); (Y.Z.)
| | - Tingting Zhao
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (H.W.); (T.Z.); (C.F.)
| | - Cuilian Feng
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (H.W.); (T.Z.); (C.F.)
| | - Jungang Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (H.W.); (T.Z.); (C.F.)
| | - Jishan Lin
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China; (H.W.); (T.Z.); (C.F.)
| |
Collapse
|
9
|
Guo F, Lv M, Zhang J, Li J. Crosstalk between Brassinosteroids and Other Phytohormones during Plant Development and Stress Adaptation. PLANT & CELL PHYSIOLOGY 2024; 65:1530-1543. [PMID: 38727547 DOI: 10.1093/pcp/pcae047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/30/2024] [Accepted: 05/08/2024] [Indexed: 11/14/2024]
Abstract
Brassinosteroids (BRs) are a group of polyhydroxylated phytosterols that play essential roles in regulating plant growth and development as well as stress adaptation. It is worth noting that BRs do not function alone, but rather they crosstalk with other endogenous signaling molecules, including the phytohormones auxin, cytokinins, gibberellins, abscisic acid, ethylene, jasmonates, salicylic acid and strigolactones, forming elaborate signaling networks to modulate plant growth and development. BRs interact with other phytohormones mainly by regulating each others' homeostasis, transport or signaling pathway at the transcriptional and posttranslational levels. In this review, we focus our attention on current research progress in BR signal transduction and the crosstalk between BRs and other phytohormones.
Collapse
Affiliation(s)
- Feimei Guo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Minghui Lv
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jingjie Zhang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
10
|
Huang X, Zentella R, Park J, Reser L, Bai DL, Ross MM, Shabanowitz J, Hunt DF, Sun TP. Phosphorylation activates master growth regulator DELLA by promoting histone H2A binding at chromatin in Arabidopsis. Nat Commun 2024; 15:7694. [PMID: 39227587 PMCID: PMC11372120 DOI: 10.1038/s41467-024-52033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
DELLA proteins are conserved master growth regulators that play a central role in controlling plant development in response to internal and environmental cues. DELLAs function as transcription regulators, which are recruited to target promoters by binding to transcription factors (TFs) and histone H2A via their GRAS domain. Recent studies showed that DELLA stability is regulated post-translationally via two mechanisms, phytohormone gibberellin-induced polyubiquitination for its rapid degradation, and Small Ubiquitin-like Modifier (SUMO)-conjugation to increase its accumulation. Moreover, DELLA activity is dynamically modulated by two distinct glycosylations: DELLA-TF interactions are enhanced by O-fucosylation, but inhibited by O-linked N-acetylglucosamine (O-GlcNAc) modification. However, the role of DELLA phosphorylation remains unclear as previous studies showing conflicting results ranging from findings that suggest phosphorylation promotes or reduces DELLA degradation to others indicating it has no effect on its stability. Here, we identify phosphorylation sites in REPRESSOR OF ga1-3 (RGA, an AtDELLA) purified from Arabidopsis by mass spectrometry analysis, and show that phosphorylation of two RGA peptides in the PolyS and PolyS/T regions enhances RGA activity by promoting H2A binding and RGA association with target promoters. Notably, phosphorylation does not affect RGA-TF interactions or RGA stability. Our study has uncovered a molecular mechanism of phosphorylation-induced DELLA activity.
Collapse
Affiliation(s)
- Xu Huang
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Rodolfo Zentella
- Department of Biology, Duke University, Durham, NC, 27708, USA
- U.S. Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, Raleigh, NC, 27607, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jeongmoo Park
- Department of Biology, Duke University, Durham, NC, 27708, USA
- Syngenta, Research Triangle Park, NC, 27709, USA
| | - Larry Reser
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Dina L Bai
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Mark M Ross
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Donald F Hunt
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
- Department of Pathology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Tai-Ping Sun
- Department of Biology, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
11
|
Zhang T, Peng W, Xiao H, Cao S, Chen Z, Su X, Luo Y, Liu Z, Peng Y, Yang X, Jiang GF, Xu X, Ma Z, Zhou Y. Population genomics highlights structural variations in local adaptation to saline coastal environments in woolly grape. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1408-1426. [PMID: 38578160 DOI: 10.1111/jipb.13653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
Structural variations (SVs) are a feature of plant genomes that has been largely unexplored despite their significant impact on plant phenotypic traits and local adaptation to abiotic and biotic stress. In this study, we employed woolly grape (Vitis retordii), a species native to the tropical and subtropical regions of East Asia with both coastal and inland habitats, as a valuable model for examining the impact of SVs on local adaptation. We assembled a haplotype-resolved chromosomal reference genome for woolly grape, and conducted population genetic analyses based on whole-genome sequencing (WGS) data from coastal and inland populations. The demographic analyses revealed recent bottlenecks in all populations and asymmetric gene flow from the inland to the coastal population. In total, 1,035 genes associated with plant adaptive regulation for salt stress, radiation, and environmental adaptation were detected underlying local selection by SVs and SNPs in the coastal population, of which 37.29% and 65.26% were detected by SVs and SNPs, respectively. Candidate genes such as FSD2, RGA1, and AAP8 associated with salt tolerance were found to be highly differentiated and selected during the process of local adaptation to coastal habitats in SV regions. Our study highlights the importance of SVs in local adaptation; candidate genes related to salt stress and climatic adaptation to tropical and subtropical environments are important genomic resources for future breeding programs of grapevine and its rootstocks.
Collapse
Affiliation(s)
- Tianhao Zhang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, College of Forestry, Guangxi University, Nanning, 530004, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjing Peng
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Hua Xiao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Shuo Cao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhuyifu Chen
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Xiangnian Su
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Yuanyuan Luo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Zhongjie Liu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Yanling Peng
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Xiping Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Guo-Feng Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Xiaodong Xu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Zhiyao Ma
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Yongfeng Zhou
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| |
Collapse
|
12
|
Hao X, Gong Y, Chen S, Ma C, Duanmu H. Genome-Wide Identification of GRAS Transcription Factors and Their Functional Analysis in Salt Stress Response in Sugar Beet. Int J Mol Sci 2024; 25:7132. [PMID: 39000240 PMCID: PMC11241673 DOI: 10.3390/ijms25137132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/08/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
GAI-RGA-and-SCR (GRAS) transcription factors can regulate many biological processes such as plant growth and development and stress defense, but there are few related studies in sugar beet. Salt stress can seriously affect the yield and quality of sugar beet (Beta vulgaris). Therefore, this study used bioinformatics methods to identify GRAS transcription factors in sugar beet and analyzed their structural characteristics, evolutionary relationships, regulatory networks and salt stress response patterns. A total of 28 BvGRAS genes were identified in the whole genome of sugar beet, and the sequence composition was relatively conservative. According to the topology of the phylogenetic tree, BvGRAS can be divided into nine subfamilies: LISCL, SHR, PAT1, SCR, SCL3, LAS, SCL4/7, HAM and DELLA. Synteny analysis showed that there were two pairs of fragment replication genes in the BvGRAS gene, indicating that gene replication was not the main source of BvGRAS family members. Regulatory network analysis showed that BvGRAS could participate in the regulation of protein interaction, material transport, redox balance, ion homeostasis, osmotic substance accumulation and plant morphological structure to affect the tolerance of sugar beet to salt stress. Under salt stress, BvGRAS and its target genes showed an up-regulated expression trend. Among them, BvGRAS-15, BvGRAS-19, BvGRAS-20, BvGRAS-21, LOC104892636 and LOC104893770 may be the key genes for sugar beet's salt stress response. In this study, the structural characteristics and biological functions of BvGRAS transcription factors were analyzed, which provided data for the further study of the molecular mechanisms of salt stress and molecular breeding of sugar beet.
Collapse
Affiliation(s)
- Xiaolin Hao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (X.H.); (Y.G.); (C.M.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yongyong Gong
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (X.H.); (Y.G.); (C.M.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA;
| | - Chunquan Ma
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (X.H.); (Y.G.); (C.M.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Huizi Duanmu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (X.H.); (Y.G.); (C.M.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
13
|
Lu H, Xu J, Li G, Zhong T, Chen D, Lv J. Genome-wide identification and expression analysis of GRAS gene family in Eucalyptus grandis. BMC PLANT BIOLOGY 2024; 24:573. [PMID: 38890621 PMCID: PMC11184746 DOI: 10.1186/s12870-024-05288-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND The GRAS gene family is a class of plant-specific transcription factors with important roles in many biological processes, such as signal transduction, disease resistance and stress tolerance, plant growth and development. So far, no information available describes the functions of the GRAS genes in Eucalyptus grandis. RESULTS A total of 82 GRAS genes were identified with amino acid lengths ranging from 267 to 817 aa, and most EgrGRAS genes had one exon. Members of the GRAS gene family of Eucalyptus grandis are divided into 9 subfamilies with different protein structures, while members of the same subfamily have similar gene structures and conserved motifs. Moreover, these EgrGRAS genes expanded primarily due to segmental duplication. In addition, cis-acting element analysis showed that this family of genes was involved involved in the signal transduction of various plant hormones, growth and development, and stress response. The qRT-PCR data indicated that 18 EgrGRAS genes significantly responded to hormonal and abiotic stresses. Among them, the expression of EgrGRAS13, EgrGRAS68 and EgrGRAS55 genes was significantly up-regulated during the treatment period, and it was hypothesised that members of the EgrGRAS family play an important role in stress tolerance. CONCLUSIONS In this study, the phylogenetic relationship, conserved domains, cis-elements and expression patterns of GRAS gene family of Eucalyptus grandis were analyzed, which filled the gap in the identification of GRAS gene family of Eucalyptus grandis and laid the foundation for analyzing the function of EgrGRAS gene in hormone and stress response.
Collapse
Affiliation(s)
- Haifei Lu
- College of Urban Construction, Zhejiang Shuren University, Hangzhou, 310015, China
- Key Laboratory of State Forestry Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Jianmin Xu
- Key Laboratory of State Forestry Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Guangyou Li
- Key Laboratory of State Forestry Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Tailin Zhong
- College of Urban Construction, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Danwei Chen
- College of Urban Construction, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Jiabin Lv
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, 230036, Anhui, China.
- Anhui Province Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
14
|
Li YM, Tang XS, Sun MH, Zhang HX, Xie ZS. Expression and function identification of senescence-associated genes under continuous drought treatment in grapevine ( Vitis vinifera L.) leaves. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:877-891. [PMID: 38974354 PMCID: PMC11222358 DOI: 10.1007/s12298-024-01465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/28/2024] [Accepted: 05/16/2024] [Indexed: 07/09/2024]
Abstract
Natural leaf senescence is critical for plant fitness. Drought-induced premature leaf senescence affects grape yield and quality. However, reports on the regulatory mechanisms underlying premature leaf senescence under drought stress are limited. In this study, two-year-old potted 'Muscat Hamburg' grape plants were subjected to continuous natural drought treatment until mature leaves exhibited senescence symptoms. Physiological and biochemical indices related to drought stress and senescence were monitored. Transcriptome and transgenic Arabidopsis were used to perform expression analyses and functional identification of drought-induced senescence-associated genes. Twelve days of continuous drought stress was sufficient to cause various physiological disruptions and visible senescence symptoms in mature 'Muscat Hamburg' leaves. These disruptions included malondialdehyde and H2O2 accumulation, and decreased catalase activity and chlorophyll (Chl) levels. Transcriptome analysis revealed that most genes involved in photosynthesis and Chl synthesis were downregulated after 12 d of drought treatment. Three key Chl catabolic genes (SGR, NYC1, and PAO) were significantly upregulated. Overexpression of VvSGR in wild Arabidopsis further confirmed that SGR directly promoted early yellowing of cotyledons and leaves. In addition, drought treatment decreased expression of gibberellic acid signaling repressors (GAI and GAI1) and cytokinin signal components (AHK4, AHK2, RR22, RR9-1, RR9-2, RR6, and RR4) but significantly increased the expression of abscisic acid, jasmonic acid, and salicylic acid signaling components and responsive transcription factors (bZIP40/ABF2, WRKY54/75/70, ANAC019, and MYC2). Moreover, some NAC members (NAC0002, NAC019, and NAC048) may also be drought-induced senescence-associated genes. These results provide extensive information on candidate genes involved in drought-induced senescence in grape leaves. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01465-2.
Collapse
Affiliation(s)
- You-Mei Li
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - Xuan-Si Tang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - Meng-Hao Sun
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - Hong-Xing Zhang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - Zhao-Sen Xie
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| |
Collapse
|
15
|
Li Q, Chen S, Chen L, Zhuang L, Wei H, Jiang S, Wang C, Qi J, Fang P, Xu J, Tao A, Zhang L. Cloning and functional mechanism of the dwarf gene gba affecting stem elongation and cellulose biosynthesis in jute (Corchorus olitorius). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2003-2019. [PMID: 38536089 DOI: 10.1111/tpj.16724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 06/14/2024]
Abstract
Plant height (PH) is an important factor affecting bast fiber yield in jute. Here, we report the mechanism of dwarfism in the 'Guangbaai' (gba) of jute. The mutant gba had shorter internode length and cell length compared to the standard cultivar 'TaiZi 4' (TZ4). Exogenous GA3 treatment indicated that gba is a GA-insensitive dwarf mutant. Quantitative trait locus (QTL) analysis of three PH-related traits via a high-density genetic linkage map according to re-seq showed that a total of 25 QTLs were identified, including 13 QTLs for PH, with phenotypic variation explained ranging from 2.42 to 74.16%. Notably, the functional mechanism of the candidate gene CoGID1a, the gibberellic acid receptor, of the major locus qPHIL5 was evaluated by transgenic analysis and virus-induced gene silencing. A dwarf phenotype-related single nucleotide mutation in CoGID1a was identified in gba, which was also unique to the dwarf phenotype of gba among 57 cultivars. Cogid1a was unable to interact with the growth-repressor DELLA even in the presence of highly accumulated gibberellins in gba. Differentially expressed genes between transcriptomes of gba and TZ4 after GA3 treatment indicated up-regulation of genes involved in gibberellin and cellulose synthesis in gba. Interestingly, it was found that up-regulation of CoMYB46, a key transcription factor in the secondary cell wall, by the highly accumulated gibberellins in gba promoted the expression of cellulose synthase genes CoCesA4 and CoCesA7. These findings provide valuable insights into fiber development affected by endogenous gibberellin accumulation in plants.
Collapse
Affiliation(s)
- Qin Li
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Siyuan Chen
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lu Chen
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lingling Zhuang
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huawei Wei
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaolian Jiang
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chuanyu Wang
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianmin Qi
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Pingping Fang
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiantang Xu
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Aifen Tao
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liwu Zhang
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
16
|
Shani E, Hedden P, Sun TP. Highlights in gibberellin research: A tale of the dwarf and the slender. PLANT PHYSIOLOGY 2024; 195:111-134. [PMID: 38290048 PMCID: PMC11060689 DOI: 10.1093/plphys/kiae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 02/01/2024]
Abstract
It has been almost a century since biologically active gibberellin (GA) was isolated. Here, we give a historical overview of the early efforts in establishing the GA biosynthesis and catabolism pathway, characterizing the enzymes for GA metabolism, and elucidating their corresponding genes. We then highlight more recent studies that have identified the GA receptors and early GA signaling components (DELLA repressors and F-box activators), determined the molecular mechanism of DELLA-mediated transcription reprograming, and revealed how DELLAs integrate multiple signaling pathways to regulate plant vegetative and reproductive development in response to internal and external cues. Finally, we discuss the GA transporters and their roles in GA-mediated plant development.
Collapse
Affiliation(s)
- Eilon Shani
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Peter Hedden
- Laboratory of Growth Regulators, Institute of Experimental Botany and Palacky University, 78371 Olomouc, Czech Republic
- Sustainable Soils and Crops, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Tai-ping Sun
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
17
|
Xu Q, Yang Z, Jia Y, Wang R, Zhang Q, Gai R, Wu Y, Yang Q, He G, Wu JH, Ming F. PeNAC67-PeKAN2-PeSCL23 and B-class MADS-box transcription factors synergistically regulate the specialization process from petal to lip in Phalaenopsis equestris. MOLECULAR HORTICULTURE 2024; 4:15. [PMID: 38649966 PMCID: PMC11036780 DOI: 10.1186/s43897-023-00079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/26/2023] [Indexed: 04/25/2024]
Abstract
The molecular basis of orchid flower development involves a specific regulatory program in which MADS-box transcription factors play a central role. The recent 'perianth code' model hypothesizes that two types of higher-order heterotetrameric complexes, namely SP complex and L complex, play pivotal roles in the orchid perianth organ formation. Therefore, we explored their roles and searched for other components of the regulatory network.Through the combined analysis for transposase-accessible chromatin with high-throughput sequencing and RNA sequencing of the lip-like petal and lip from Phalaenopsis equestris var.trilip, transcription factor-(TF) genes involved in lip development were revealed. PeNAC67 encoding a NAC-type TF and PeSCL23 encoding a GRAS-type TF were differentially expressed between the lip-like petal and the lip. PeNAC67 interacted with and stabilized PeMADS3, which positively regulated the development of lip-like petal to lip. PeSCL23 and PeNAC67 competitively bound with PeKAN2 and positively regulated the development of lip-like petal to petal by affecting the level of PeMADS3. PeKAN2 as an important TF that interacts with PeMADS3 and PeMADS9 can promote lip development. These results extend the 'perianth code' model and shed light on the complex regulation of orchid flower development.
Collapse
Affiliation(s)
- Qingyu Xu
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhenyu Yang
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yupeng Jia
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Rui Wang
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qiyu Zhang
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ruonan Gai
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yiding Wu
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qingyong Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Guoren He
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ju Hua Wu
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Feng Ming
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
18
|
Wei Y, Li A, Zhao Y, Li W, Dong Z, Zhang L, Zhu Y, Zhang H, Gao Y, Zhang Q. Time-Course Transcriptomic Analysis Reveals Molecular Insights into the Inflorescence and Flower Development of Cardiocrinum giganteum. PLANTS (BASEL, SWITZERLAND) 2024; 13:649. [PMID: 38475495 DOI: 10.3390/plants13050649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Cardiocrinum giganteum is an endemic species of east Asia which is famous for its showy inflorescence and medicinal bulbs. Its inflorescence is a determinate raceme and the flowers bloom synchronously. Morphological observation and time-course transcriptomic analysis were combined to study the process of inflorescence and flower development of C. giganteum. The results show that the autonomic pathway, GA pathway, and the vernalization pathway are involved in the flower formation pathway of C. giganteum. A varied ABCDE flowering model was deduced from the main development process. Moreover, it was found that the flowers in different parts of the raceme in C. giganteum gradually synchronized during development, which is highly important for both evolution and ecology. The results obtained in this work improve our understanding of the process and mechanism of inflorescence and flower development and could be useful for the flowering period regulation and breeding of C. giganteum.
Collapse
Affiliation(s)
- Yu Wei
- Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Ex Situ Conservation, Beijing Botanical Garden, Beijing 100093, China
| | - Aihua Li
- Key Laboratory of National Forestry and Grassland Administration on Plant Ex Situ Conservation, Beijing Botanical Garden, Beijing 100093, China
| | - Yiran Zhao
- Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Wenqi Li
- Key Laboratory of National Forestry and Grassland Administration on Plant Ex Situ Conservation, Beijing Botanical Garden, Beijing 100093, China
| | - Zhiyang Dong
- Key Laboratory of National Forestry and Grassland Administration on Plant Ex Situ Conservation, Beijing Botanical Garden, Beijing 100093, China
| | - Lei Zhang
- Key Laboratory of National Forestry and Grassland Administration on Plant Ex Situ Conservation, Beijing Botanical Garden, Beijing 100093, China
| | - Yuntao Zhu
- Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Hui Zhang
- Key Laboratory of National Forestry and Grassland Administration on Plant Ex Situ Conservation, Beijing Botanical Garden, Beijing 100093, China
| | - Yike Gao
- Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Qixiang Zhang
- Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
19
|
Fan Y, Wan X, Zhang X, Zhang J, Zheng C, Yang Q, Yang L, Li X, Feng L, Zou L, Xiang D. GRAS gene family in rye (Secale cereale L.): genome-wide identification, phylogeny, evolutionary expansion and expression analyses. BMC PLANT BIOLOGY 2024; 24:46. [PMID: 38216860 PMCID: PMC10787399 DOI: 10.1186/s12870-023-04674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/08/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND The GRAS transcription factor family plays a crucial role in various biological processes in different plants, such as tissue development, fruit maturation, and environmental stress. However, the GRAS family in rye has not been systematically analyzed yet. RESULTS In this study, 67 GRAS genes in S. cereale were identified and named based on the chromosomal location. The gene structures, conserved motifs, cis-acting elements, gene replications, and expression patterns were further analyzed. These 67 ScGRAS members are divided into 13 subfamilies. All members include the LHR I, VHIID, LHR II, PFYRE, and SAW domains, and some nonpolar hydrophobic amino acid residues may undergo cross-substitution in the VHIID region. Interested, tandem duplications may have a more important contribution, which distinguishes them from other monocotyledonous plants. To further investigate the evolutionary relationship of the GRAS family, we constructed six comparative genomic maps of homologous genes between rye and different representative monocotyledonous and dicotyledonous plants. The response characteristics of 19 ScGRAS members from different subfamilies to different tissues, grains at filling stages, and different abiotic stresses of rye were systematically analyzed. Paclobutrazol, a triazole-based plant growth regulator, controls plant tissue and grain development by inhibiting gibberellic acid (GA) biosynthesis through the regulation of DELLA proteins. Exogenous spraying of paclobutrazol significantly reduced the plant height but was beneficial for increasing the weight of 1000 grains of rye. Treatment with paclobutrazol, significantly reduced gibberellin levels in grain in the filling period, caused significant alteration in the expression of the DELLA subfamily gene members. Furthermore, our findings with respect to genes, ScGRAS46 and ScGRAS60, suggest that these two family members could be further used for functional characterization studies in basic research and in breeding programmes for crop improvement. CONCLUSIONS We identified 67 ScGRAS genes in rye and further analysed the evolution and expression patterns of the encoded proteins. This study will be helpful for further analysing the functional characteristics of ScGRAS genes.
Collapse
Affiliation(s)
- Yu Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Xianqi Wan
- Sichuan Academy of Agricultural Machinery Science, Chengdu, 610011, P.R. China
| | - Xin Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Jieyu Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Chunyu Zheng
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, 843100, P.R. China
| | - Qiaohui Yang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Li Yang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Xiaolong Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Liang Feng
- Chengdu Institute of Food Inspection, Chengdu, 610000, P.R. China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China.
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China.
| |
Collapse
|
20
|
Liao C, Shen H, Gao Z, Wang Y, Zhu Z, Xie Q, Wu T, Chen G, Hu Z. Overexpression of SlCRF6 in tomato inhibits leaf development and affects plant morphology. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111921. [PMID: 37949361 DOI: 10.1016/j.plantsci.2023.111921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/10/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Cytokinin response factors (CRFs) are transcription factors (TFs) that are specific to plants and have diverse functions in plant growth and stress responses. However, the precise roles of CRFs in regulating tomato plant architecture and leaf development have not been comprehensively investigated. Here, we identified a novel CRF, SlCRF6, which is involved in the regulation of plant growth via the gibberellin (GA) signaling pathway. SlCRF6-overexpressing (SlCRF6-OE) plants displayed pleiotropic phenotypic changes, including reduced internode length and leaf size, which caused dwarfism in tomato plants. This dwarfism could be alleviated by application of exogenous GA3. Remarkably, quantitative real-time PCR (qRTPCR), a dual luciferase reporter assay and a yeast one-hybrid (Y1H) assay revealed that SlCRF6 promoted the expression of SlDELLA (a GA signal transduction inhibitor) in vivo. Furthermore, transgenic plants displayed variegated leaves and diminished chlorophyll content, resulting in decreased photosynthetic efficiency and less starch than in wild-type (WT) plants. The results of transient expression assays and Y1H assays indicated that SlCRF6 suppressed the expression of SlPHAN (leaf morphology-related gene). Collectively, these findings suggest that SlCRF6 plays a crucial role in regulating tomato plant morphology, leaf development, and the accumulation of photosynthetic products.
Collapse
Affiliation(s)
- Changguang Liao
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Hui Shen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Zihan Gao
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Yunshu Wang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Zhiguo Zhu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China; College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, Jiangxi, PR China.
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Ting Wu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
21
|
Xie Z, Yang D, Zhou Z, Li K, Yi P, Liu A, Zhou Z, Tu X. A genome-wide analysis of the GRAS gene family in upland cotton and a functional study of the role of the GhGRAS55 gene in regulating early maturity in cotton. Biotechnol J 2023; 18:e2300201. [PMID: 37575005 DOI: 10.1002/biot.202300201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
The members of the GRAS gene family play important roles in regulating plant growth and development, but their functions in regulating early plant maturity traits are still unknown. In this study, we used a series of bioinformatics tools to identify GRAS gene family members and investigate the function of the gene family (GhGRAS55) using a genome-wide database of upland cotton samples. A total of 58 members of the GRAS gene family were identified and screened, which were distributed on 21 chromosomes within the whole cotton genome. The results of the phylogenetic analysis showed that the genes of upland cotton, island cotton, African cotton, Raymond cotton, and Arabidopsis were distributed in subfamilies I-VIII, although subfamily II did not contain any upland cotton or Arabidopsis GRAS family members. The structures and other characteristics of the genes in this family were clarified using bioinformatics technology. The transcriptomic sequencing results for early and late maturing cotton species showed that the expression of most GRAS family genes, such as GhGRAS10, GhGRAS5511, and GhGRAS55, was lower in early maturing species than late maturing species. We also found that cotton plants with GhGRAS55 genes that were silenced by virus-induced gene silencing (VIGS) technology showed early bud emergence phenotypes, so it could be speculated that the GhGRAS55 gene has the function of regulating early maturity in cotton.
Collapse
Affiliation(s)
- Zhangshu Xie
- Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology, Changsha, China
- Cotton Research Institute, Agricultural College, Hunan Agricultural University, Changsha, China
| | - Dan Yang
- Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology, Changsha, China
- Cotton Research Institute, Agricultural College, Hunan Agricultural University, Changsha, China
- Agriculture and Rural Bureau of Jingzhou County, Jingzhou, China
| | - Zhenzhong Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Kan Li
- Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology, Changsha, China
- Cotton Research Institute, Agricultural College, Hunan Agricultural University, Changsha, China
| | - Penghui Yi
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Aiyu Liu
- Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology, Changsha, China
- Cotton Research Institute, Agricultural College, Hunan Agricultural University, Changsha, China
| | - Zhonghua Zhou
- Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology, Changsha, China
- Cotton Research Institute, Agricultural College, Hunan Agricultural University, Changsha, China
| | - Xiaoju Tu
- Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology, Changsha, China
- Cotton Research Institute, Agricultural College, Hunan Agricultural University, Changsha, China
| |
Collapse
|
22
|
Li J, Li Q, Wang W, Zhang X, Chu C, Tang X, Zhu B, Xiong L, Zhao Y, Zhou D. DELLA-mediated gene repression is maintained by chromatin modification in rice. EMBO J 2023; 42:e114220. [PMID: 37691541 PMCID: PMC10620761 DOI: 10.15252/embj.2023114220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
DELLA proteins are master regulators of gibberellic acid (GA) signaling through their effects on gene expression. Enhanced DELLA accumulation in rice and wheat varieties has greatly contributed to grain yield increases during the green revolution. However, the molecular basis of DELLA-mediated gene repression remains elusive. In this work, we show that the rice DELLA protein SLENDER RICE1 (SLR1) forms a tripartite complex with Polycomb-repressive complex 2 (PRC2) and the histone deacetylase HDA702 to repress downstream genes by establishing a silent chromatin state. The slr1 mutation and GA signaling resulted in dissociation of PRC2 and HDA702 from GA-inducible genes. Loss-of-function or downregulation of the chromatin regulators impaired SLR1-dependent histone modification and gene repression. Time-resolved analysis of GA signaling revealed that GA-induced transcriptional activation was associated with a rapid increase of H3K9ac followed by H3K27me3 removal. Collectively, these results establish a general epigenetic mechanism for DELLA-mediated gene repression and reveal details of the chromatin dynamics during transcriptional activation stimulated by GA signaling.
Collapse
Affiliation(s)
- Junjie Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Qi Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Wentao Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Xinran Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Chen Chu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Xintian Tang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Bo Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Dao‐Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- Institute of Plant Science Paris‐Saclay (IPS2), CNRS, INRAEUniversity Paris‐SaclayOrsayFrance
| |
Collapse
|
23
|
Pietrykowska H, Alisha A, Aggarwal B, Watanabe Y, Ohtani M, Jarmolowski A, Sierocka I, Szweykowska-Kulinska Z. Conserved and non-conserved RNA-target modules in plants: lessons for a better understanding of Marchantia development. PLANT MOLECULAR BIOLOGY 2023; 113:121-142. [PMID: 37991688 PMCID: PMC10721683 DOI: 10.1007/s11103-023-01392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/19/2023] [Indexed: 11/23/2023]
Abstract
A wide variety of functional regulatory non-coding RNAs (ncRNAs) have been identified as essential regulators of plant growth and development. Depending on their category, ncRNAs are not only involved in modulating target gene expression at the transcriptional and post-transcriptional levels but also are involved in processes like RNA splicing and RNA-directed DNA methylation. To fulfill their molecular roles properly, ncRNAs must be precisely processed by multiprotein complexes. In the case of small RNAs, DICER-LIKE (DCL) proteins play critical roles in the production of mature molecules. Land plant genomes contain at least four distinct classes of DCL family proteins (DCL1-DCL4), of which DCL1, DCL3 and DCL4 are also present in the genomes of bryophytes, indicating the early divergence of these genes. The liverwort Marchantia polymorpha has become an attractive model species for investigating the evolutionary history of regulatory ncRNAs and proteins that are responsible for ncRNA biogenesis. Recent studies on Marchantia have started to uncover the similarities and differences in ncRNA production and function between the basal lineage of bryophytes and other land plants. In this review, we summarize findings on the essential role of regulatory ncRNAs in Marchantia development. We provide a comprehensive overview of conserved ncRNA-target modules among M. polymorpha, the moss Physcomitrium patens and the dicot Arabidopsis thaliana, as well as Marchantia-specific modules. Based on functional studies and data from the literature, we propose new connections between regulatory pathways involved in Marchantia's vegetative and reproductive development and emphasize the need for further functional studies to understand the molecular mechanisms that control ncRNA-directed developmental processes.
Collapse
Affiliation(s)
- Halina Pietrykowska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Alisha Alisha
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Bharti Aggarwal
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Misato Ohtani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192, Nara, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Chiba, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Kanagawa, Japan
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Izabela Sierocka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
24
|
Rana D, Sharma P, Arpita K, Srivastava H, Sharma S, Gaikwad K. Genome-wide identification and characterization of GRAS gene family in pigeonpea ( Cajanus cajan (L.) Millspaugh). 3 Biotech 2023; 13:363. [PMID: 37840881 PMCID: PMC10570252 DOI: 10.1007/s13205-023-03782-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
The GRAS proteins are plant-specific transcription factors (TFs) that play a crucial role in various plant physiological processes, including tissue development and stress responses. To date, GRAS family has been comprehensively characterized in Arabidopsis, soybean, rice, chickpea and other plant species. To understand the structural and functional aspects of pigeonpea (C. cajan), we identified 60 putative GRAS (CcGRAS) genes from pigeonpea genome and further analysed their physicochemical properties, subcellular locations, evolutionary classification, exon-intron structures, conserved domains, gene duplication events and cis-promoter regions. Based on the sequence similarity, CcGRAS family was clustered into 9 subfamilies and the genes with a similar structure and motif distribution were clustered in the same group. The gene duplication studies revealed that these genes were derived from tandem and dispersed duplication events. The cis-promoter regulatory analysis of CcGRAS genes indicated the presence of three types of cis-acting elements including light-responsive, hormone-responsive and plant growth and development related. The expression profiling of CcGRAS genes revealed their tissue-specific functions and differential nature. Collectively, this study highlights relevant functional and regulatory elements of GRAS family in pigeonpea creating a significant resource for future functional studies. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03782-x.
Collapse
Affiliation(s)
- Divyansh Rana
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201313 India
| | - Priya Sharma
- Department of Biotechnology, Jamia Hamdard, New Delhi, Delhi 110062 India
- ICAR National Institute for Plant Biotechnology, ICAR, New Delhi, Delhi 110012 India
| | - Kumari Arpita
- ICAR National Institute for Plant Biotechnology, ICAR, New Delhi, Delhi 110012 India
| | - Harsha Srivastava
- ICAR National Institute for Plant Biotechnology, ICAR, New Delhi, Delhi 110012 India
| | - Sandhya Sharma
- ICAR National Institute for Plant Biotechnology, ICAR, New Delhi, Delhi 110012 India
| | - Kishor Gaikwad
- ICAR National Institute for Plant Biotechnology, ICAR, New Delhi, Delhi 110012 India
| |
Collapse
|
25
|
Mishra S, Chaudhary R, Pandey B, Singh G, Sharma P. Genome-wide identification and expression analysis of the GRAS gene family under abiotic stresses in wheat (Triticum aestivum L.). Sci Rep 2023; 13:18705. [PMID: 37907517 PMCID: PMC10618205 DOI: 10.1038/s41598-023-45051-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/15/2023] [Indexed: 11/02/2023] Open
Abstract
The GRAS transcription factors are multifunctional proteins involved in various biological processes, encompassing plant growth, metabolism, and responses to both abiotic and biotic stresses. Wheat is an important cereal crop cultivated worldwide. However, no systematic study of the GRAS gene family and their functions under heat, drought, and salt stress tolerance and molecular dynamics modeling in wheat has been reported. In the present study, we identified the GRAS gene in Triticum aestivum through systematically performing gene structure analysis, chromosomal location, conserved motif, phylogenetic relationship, and expression patterns. A total of 177 GRAS genes were identified within the wheat genome. Based on phylogenetic analysis, these genes were categorically placed into 14 distinct subfamilies. Detailed analysis of the genetic architecture revealed that the majority of TaGRAS genes had no intronic regions. The expansion of the wheat GRAS gene family was proven to be influenced by both segmental and tandem duplication events. The study of collinearity events between TaGRAS and analogous orthologs from other plant species provided valuable insights into the evolution of the GRAS gene family in wheat. It is noteworthy that the promoter regions of TaGRAS genes consistently displayed an array of cis-acting elements that are associated with stress responses and hormone regulation. Additionally, we discovered 14 miRNAs that target key genes involved in three stress-responsive pathways in our study. Moreover, an assessment of RNA-seq data and qRT-PCR results revealed a significant increase in the expression of TaGRAS genes during abiotic stress. These findings highlight the crucial role of TaGRAS genes in mediating responses to different environmental stresses. Our research delved into the molecular dynamics and structural aspects of GRAS domain-DNA interactions, marking the first instance of such information being generated. Overall, the current findings contribute to our understanding of the organization of the GRAS genes in the wheat genome. Furthermore, we identified TaGRAS27 as a candidate gene for functional research, and to improve abiotic stress tolerance in the wheat by molecular breeding.
Collapse
Affiliation(s)
- Shefali Mishra
- Deenbandhu Chhotu Ram University of Science and Technology, Murthal, India
- ICAR-Indian Institute of Wheat and Barley Research, Agrasain Marg, PO BOX-158, Karnal, Haryana, India
| | - Reeti Chaudhary
- Deenbandhu Chhotu Ram University of Science and Technology, Murthal, India
| | - Bharti Pandey
- ICAR-National Dairy Research Institute, Karnal, India
| | - Gyanendra Singh
- ICAR-Indian Institute of Wheat and Barley Research, Agrasain Marg, PO BOX-158, Karnal, Haryana, India
| | - Pradeep Sharma
- ICAR-Indian Institute of Wheat and Barley Research, Agrasain Marg, PO BOX-158, Karnal, Haryana, India.
| |
Collapse
|
26
|
Fukazawa J, Mori K, Ando H, Mori R, Kanno Y, Seo M, Takahashi Y. Jasmonate inhibits plant growth and reduces gibberellin levels via microRNA5998 and transcription factor MYC2. PLANT PHYSIOLOGY 2023; 193:2197-2214. [PMID: 37562026 DOI: 10.1093/plphys/kiad453] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023]
Abstract
Jasmonate (JA) and gibberellins (GAs) exert antagonistic effects on plant growth and development in response to environmental and endogenous stimuli. Although the crosstalk between JA and GA has been elucidated, the role of JA in GA biosynthesis remains unclear. Therefore, in this study, we investigated the mechanism underlying JA-mediated regulation of endogenous GA levels in Arabidopsis (Arabidopsis thaliana). Transient and electrophoretic mobility shift assays showed that transcription factor MYC2 regulates GA inactivation genes. Using transgenic plants, we further evaluated the contribution of MYC2 in regulating GA inactivation genes. JA treatment increased DELLA accumulation but did not inhibit DELLA protein degradation. Additionally, JA treatment decreased bioactive GA content, including GA4, significantly decreased the expression of GA biosynthesis genes, including ent-kaurene synthase (AtKS), GA 3β-hydroxylase (AtGA3ox1), and AtGA3ox2, and increased the expression of GA inactivation genes, including GA 2 oxidase (AtGA2ox4), AtGA2ox7, and AtGA2ox9. Conversely, JA treatment did not significantly affect gene expression in the myc2 myc3 myc4 triple mutant, demonstrating the MYC2-4-dependent effects of JA in GA biosynthesis. Additionally, JA post-transcriptionally regulated AtGA3ox1 expression. We identified microRNA miR5998 as an AtGA3ox1-associated miRNA; its overexpression inhibited plant growth by suppressing AtGA3ox1 expression. Overall, our findings indicate that JA treatment inhibits endogenous GA levels and plant growth by decreasing the expression of GA biosynthesis genes and increasing the expression of GA inactivation genes via miR5998 and MYC2 activities.
Collapse
Affiliation(s)
- Jutarou Fukazawa
- Program of Basic Biology, Graduate School of Integrated Science for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Kazuya Mori
- Program of Basic Biology, Graduate School of Integrated Science for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Hiroki Ando
- Program of Basic Biology, Graduate School of Integrated Science for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Ryota Mori
- Program of Basic Biology, Graduate School of Integrated Science for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Yohsuke Takahashi
- Program of Basic Biology, Graduate School of Integrated Science for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
27
|
Huang X, Zentella R, Park J, Reser L, Bai DL, Ross MM, Shabanowitz J, Hunt DF, Sun TP. Phosphorylation Promotes DELLA Activity by Enhancing Its Binding to Histone H2A at Target Chromatin in Arabidopsis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561786. [PMID: 37873288 PMCID: PMC10592715 DOI: 10.1101/2023.10.10.561786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
DELLA proteins are conserved master growth regulators that play a central role in controlling plant development in response to internal and environmental cues. DELLAs function as transcription regulators, which are recruited to target promoters by binding to transcription factors (TFs) and histone H2A via its GRAS domain. Recent studies showed that DELLA stability is regulated post-translationally via two mechanisms, phytohormone gibberellin-induced polyubiquitination for its rapid degradation, and Small Ubiquitin-like Modifier (SUMO)- conjugation to alter its accumulation. Moreover, DELLA activity is dynamically modulated by two distinct glycosylations: DELLA-TF interactions are enhanced by O -fucosylation, but inhibited by O -linked N -acetylglucosamine ( O -GlcNAc) modification. However, the role of DELLA phosphorylation remains unclear. Here, we identified phosphorylation sites in REPRESSOR OF ga1-3 (RGA, an AtDELLA) purified from Arabidopsis by tandem mass spectrometry analysis, and showed that phosphorylation of the RGA LKS-peptide in the poly- S/T region enhances RGA-H2A interaction and RGA association with target promoters. Interestingly, phosphorylation does not affect RGA-TF interactions. Our study has uncovered that phosphorylation is a new regulatory mechanism of DELLA activity.
Collapse
|
28
|
Xiong H, Lu D, Li Z, Wu J, Ning X, Lin W, Bai Z, Zheng C, Sun Y, Chi W, Zhang L, Xu X. The DELLA-ABI4-HY5 module integrates light and gibberellin signals to regulate hypocotyl elongation. PLANT COMMUNICATIONS 2023; 4:100597. [PMID: 37002603 PMCID: PMC10504559 DOI: 10.1016/j.xplc.2023.100597] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 05/29/2023]
Abstract
Plant growth is coordinately controlled by various environmental and hormonal signals, of which light and gibberellin (GA) signals are two critical factors with opposite effects on hypocotyl elongation. Although interactions between the light and GA signaling pathways have been studied extensively, the detailed regulatory mechanism of their direct crosstalk in hypocotyl elongation remains to be fully clarified. Previously, we reported that ABA INSENSITIVE 4 (ABI4) controls hypocotyl elongation through its regulation of cell-elongation-related genes, but whether it is also involved in GA signaling to promote hypocotyl elongation is unknown. In this study, we show that promotion of hypocotyl elongation by GA is dependent on ABI4 activation. DELLAs interact directly with ABI4 and inhibit its DNA-binding activity. In turn, ABI4 combined with ELONGATED HYPOCOTYL 5 (HY5), a key positive factor in light signaling, feedback regulates the expression of the GA2ox GA catabolism genes and thus modulates GA levels. Taken together, our results suggest that the DELLA-ABI4-HY5 module may serve as a molecular link that integrates GA and light signals to control hypocotyl elongation.
Collapse
Affiliation(s)
- Haibo Xiong
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China; Sanya Institute of Henan University, Sanya 572025, China; Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China
| | - Dandan Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China; Sanya Institute of Henan University, Sanya 572025, China
| | - Zhiyuan Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China; Sanya Institute of Henan University, Sanya 572025, China; Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China
| | - Jianghao Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China; Sanya Institute of Henan University, Sanya 572025, China
| | - Xin Ning
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China; Sanya Institute of Henan University, Sanya 572025, China; Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China
| | - Weijun Lin
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China; Sanya Institute of Henan University, Sanya 572025, China; Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China
| | - Zechen Bai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Canhui Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China; Sanya Institute of Henan University, Sanya 572025, China
| | - Yang Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China; Sanya Institute of Henan University, Sanya 572025, China
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China; Sanya Institute of Henan University, Sanya 572025, China
| | - Xiumei Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China; Sanya Institute of Henan University, Sanya 572025, China.
| |
Collapse
|
29
|
Hu G, Ge X, Wang P, Chen A, Li F, Wu J. The cotton miR171a-SCL6 module mediates plant resistance through regulating GhPR1 expression. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107995. [PMID: 37666042 DOI: 10.1016/j.plaphy.2023.107995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
Plants have developed intricate defense mechanisms in response to fluctuating environmental cues, including the use of microRNA (miRNA) as post-transcriptional regulators. However, the specific mechanisms through which miRNA contributes to disease resistance remain largely elusive. While the miR171-SCLs have been investigated in an eclectic array of plants, there has been a notable scarcity of research specifically focused on cotton (Gossypium hirsutum). In our previous miRNA-sequencing analysis, we found that ghr-miR171a displayed a differential response to infections by Verticillium dahliae. In this study, we further investigated the function of the miR171a-SCL6 module in cotton during V. dahliae infection. The ghr-miR171a was confirmed to direct the cleavage of GhSCL6 mRNA in the post-transcriptional process, as evidenced by 5' RLM-RACE, β-glucuronidase (GUS) histochemical staining and enzyme activity assay. Interestingly, we found that overexpressing ghr-miR171a reduced cotton plants' resistance to V. dahliae, while suppressing ghr-miR171a increased the plants' defense capacity. The GhSCL6 protein, when fused with green fluorescent protein (GFP), localizes in the cell nucleus, indicating its potential role in gene regulation. This was further corroborated by yeast two-hybrid assays, which verified GhSCL6's transcriptional activation ability. Through quantitative reverse transcriptase PCR (qRT-PCR), luciferase (LUC) fluorescence, and yeast one-hybrid assays, we found that GhSCL6 binds to the GT-box element of the GhPR1 promoter, activating its expression and thereby enhancing plant disease resistance. Taken together, our findings demonstrate that the cotton miR171a-SCL6 module regulates Verticillium wilt resistance in plants through the post-transcriptional process. This insight may offer new perspectives for disease resistance strategies in cotton.
Collapse
Affiliation(s)
- Guang Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoyang Ge
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Peng Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Aimin Chen
- The Key Laboratory for the Creation of Cotton Varieties in the Northwest, Ministry of Agriculture and Rural Affairs, Join Hope Seeds Co. Ltd, Changji, 831100, China
| | - Fuguang Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Jiahe Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
30
|
Oh J, Choi JW, Jang S, Kim SW, Heo JO, Yoon EK, Kim SH, Lim J. Transcriptional control of hydrogen peroxide homeostasis regulates ground tissue patterning in the Arabidopsis root. FRONTIERS IN PLANT SCIENCE 2023; 14:1242211. [PMID: 37670865 PMCID: PMC10475948 DOI: 10.3389/fpls.2023.1242211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/01/2023] [Indexed: 09/07/2023]
Abstract
In multicellular organisms, including higher plants, asymmetric cell divisions (ACDs) play a crucial role in generating distinct cell types. The Arabidopsis root ground tissue initially has two layers: endodermis (inside) and cortex (outside). In the mature root, the endodermis undergoes additional ACDs to produce the endodermis itself and the middle cortex (MC), located between the endodermis and the pre-existing cortex. In the Arabidopsis root, gibberellic acid (GA) deficiency and hydrogen peroxide (H2O2) precociously induced more frequent ACDs in the endodermis for MC formation. Thus, these findings suggest that GA and H2O2 play roles in regulating the timing and extent of MC formation. However, details of the molecular interaction between GA signaling and H2O2 homeostasis remain elusive. In this study, we identified the PEROXIDASE 34 (PRX34) gene, which encodes a class III peroxidase, as a molecular link to elucidate the interconnected regulatory network involved in H2O2- and GA-mediated MC formation. Under normal conditions, prx34 showed a reduced frequency of MC formation, whereas the occurrence of MC in prx34 was restored to nearly WT levels in the presence of H2O2. Our results suggest that PRX34 plays a role in H2O2-mediated MC production. Furthermore, we provide evidence that SCARECROW-LIKE 3 (SCL3) regulates H2O2 homeostasis by controlling transcription of PRX34 during root ground tissue maturation. Taken together, our findings provide new insights into how H2O2 homeostasis is achieved by SCL3 to ensure correct radial tissue patterning in the Arabidopsis root.
Collapse
Affiliation(s)
- Jiyeong Oh
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Ji Won Choi
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Sejeong Jang
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Seung Woo Kim
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jung-Ok Heo
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Eun Kyung Yoon
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Soo-Hwan Kim
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Jun Lim
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
31
|
Gomez MD, Cored I, Barro-Trastoy D, Sanchez-Matilla J, Tornero P, Perez-Amador MA. DELLA proteins positively regulate seed size in Arabidopsis. Development 2023; 150:dev201853. [PMID: 37435751 PMCID: PMC10445750 DOI: 10.1242/dev.201853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023]
Abstract
Human and animal nutrition is mainly based on seeds. Seed size is a key factor affecting seed yield and has thus been one of the primary objectives of plant breeders since the domestication of crop plants. Seed size is coordinately regulated by signals of maternal and zygotic tissues that control the growth of the seed coat, endosperm and embryo. Here, we provide previously unreported evidence for the role of DELLA proteins, key repressors of gibberellin responses, in the maternal control of seed size. The gain-of-function della mutant gai-1 produces larger seeds as a result of an increase in the cell number in ovule integuments. This leads to an increase in ovule size and, in turn, to an increase in seed size. Moreover, DELLA activity promotes increased seed size by inducing the transcriptional activation of AINTEGUMENTA, a genetic factor that controls cell proliferation and organ growth, in the ovule integuments of gai-1. Overall, our results indicate that DELLA proteins are involved in the control of seed size and suggest that modulation of the DELLA-dependent pathway could be used to improve crop yield.
Collapse
Affiliation(s)
- Maria Dolores Gomez
- Department of Development and Hormonal Action in Plants, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Isabel Cored
- Department of Development and Hormonal Action in Plants, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Daniela Barro-Trastoy
- Department of Development and Hormonal Action in Plants, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Joaquin Sanchez-Matilla
- Department of Development and Hormonal Action in Plants, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Pablo Tornero
- Department of Development and Hormonal Action in Plants, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Miguel A. Perez-Amador
- Department of Development and Hormonal Action in Plants, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| |
Collapse
|
32
|
Huang X, Tian H, Park J, Oh DH, Hu J, Zentella R, Qiao H, Dassanayake M, Sun TP. The master growth regulator DELLA binding to histone H2A is essential for DELLA-mediated global transcription regulation. NATURE PLANTS 2023; 9:1291-1305. [PMID: 37537399 PMCID: PMC10681320 DOI: 10.1038/s41477-023-01477-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/04/2023] [Indexed: 08/05/2023]
Abstract
The DELLA genes, also known as 'Green Revolution' genes, encode conserved master growth regulators that control plant development in response to internal and environmental cues. Functioning as nuclear-localized transcription regulators, DELLAs modulate expression of target genes via direct protein-protein interaction of their carboxy-terminal GRAS domain with hundreds of transcription factors (TFs) and epigenetic regulators. However, the molecular mechanism of DELLA-mediated transcription reprogramming remains unclear. Here by characterizing new missense alleles of an Arabidopsis DELLA, repressor of ga1-3 (RGA), and co-immunoprecipitation assays, we show that RGA binds histone H2A via the PFYRE subdomain within its GRAS domain to form a TF-RGA-H2A complex at the target chromatin. Chromatin immunoprecipitation followed by sequencing analysis further shows that this activity is essential for RGA association with its target chromatin globally. Our results indicate that, although DELLAs are recruited to target promoters by binding to TFs via the LHR1 subdomain, DELLA-H2A interaction via the PFYRE subdomain is necessary to stabilize the TF-DELLA-H2A complex at the target chromatin. This study provides insights into the two distinct key modular functions in DELLA for its genome-wide transcription regulation in plants.
Collapse
Affiliation(s)
- Xu Huang
- Department of Biology, Duke University, Durham, NC, USA
| | - Hao Tian
- Department of Biology, Duke University, Durham, NC, USA
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Jeongmoo Park
- Department of Biology, Duke University, Durham, NC, USA
- Syngenta, Research Triangle Park, Raleigh, NC, USA
| | - Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Jianhong Hu
- Department of Biology, Duke University, Durham, NC, USA
| | - Rodolfo Zentella
- Department of Biology, Duke University, Durham, NC, USA
- Agricultural Research Service, Plant Science Research Unit, US Department of Agriculture, Raleigh, NC, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA
| | - Hong Qiao
- Institute for Cellular and Molecular Biology and Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Tai-Ping Sun
- Department of Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
33
|
Varas E, Valladares S, Vielba J, Vidal N, Sánchez C. Expression of CsSCL1 and Rooting Response in Chestnut Leaves Are Dependent on the Auxin Polar Transport and the Ontogenetic Origin of the Tissues. PLANTS (BASEL, SWITZERLAND) 2023; 12:2657. [PMID: 37514273 PMCID: PMC10385970 DOI: 10.3390/plants12142657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
The mechanisms underlying the de novo regeneration of adventitious roots are still poorly understood, particularly in trees. We developed a system for studying adventitious rooting (AR) at physiological and molecular levels using leaves excised from chestnut microshoots of the same genotype but with two distinct ontogenetic origins that differ in rooting competence. Leaves were treated with auxin and N-1-naphthyl-phthalamic acid (NPA), an inhibitor of auxin polar transport (PAT). The physiological effects were investigated by recording rooting rates and the number and quality of the roots. Molecular responses were examined by localizing and monitoring the changes in the expression of CsSCL1, an auxin-inducible gene in juvenile and mature shoots during AR. The rooting response of leaves was ontogenetic-stage dependent and similar to that of the donor microshoots. Initiation of root primordia and root development were inhibited by application of NPA, although its effect depended on the timing of application. CsSCL1 was upregulated by auxin only in rooting-competent leaves during the novo root organogenesis, and the expression was reduced by NPA. The inhibitory effect on gene expression was detected during the reprograming of rooting competent cells towards root initials in response to auxin, indicating that PAT-mediated upregulation of CsSCL1 is required in the initial steps of AR in chestnut leaves. The localized expression of CsSCL1 in the quiescent center (QC) also suggests a role for this gene in the maintenance of meristematic competence and root radial patterning.
Collapse
Affiliation(s)
- Elena Varas
- Misión Biológica de Galicia Sede Santiago de Compostela, Consejo Superior de Investigaciones Científicas, Apdo 122, 15780 Santiago de Compostela, Spain
- Fundación Promiva, Ctra M-501, Km 5.4, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Silvia Valladares
- Misión Biológica de Galicia Sede Santiago de Compostela, Consejo Superior de Investigaciones Científicas, Apdo 122, 15780 Santiago de Compostela, Spain
- Agromillora Iberia, C/El Rebato, s/n, 08379 Barcelona, Spain
| | - Jesús Vielba
- Misión Biológica de Galicia Sede Santiago de Compostela, Consejo Superior de Investigaciones Científicas, Apdo 122, 15780 Santiago de Compostela, Spain
| | - Nieves Vidal
- Misión Biológica de Galicia Sede Santiago de Compostela, Consejo Superior de Investigaciones Científicas, Apdo 122, 15780 Santiago de Compostela, Spain
| | - Conchi Sánchez
- Misión Biológica de Galicia Sede Santiago de Compostela, Consejo Superior de Investigaciones Científicas, Apdo 122, 15780 Santiago de Compostela, Spain
| |
Collapse
|
34
|
Pei LL, Zhang LL, Liu X, Jiang J. Role of microRNA miR171 in plant development. PeerJ 2023; 11:e15632. [PMID: 37456878 PMCID: PMC10340099 DOI: 10.7717/peerj.15632] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/02/2023] [Indexed: 07/18/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous non-coding small RNA with 19-24 nucleotides (nts) in length, which play an essential role in regulating gene expression at the post-transcriptional level. As one of the first miRNAs found in plants, miR171 is a typical class of conserved miRNAs. The miR171 sequences among different species are highly similar, and the vast majority of them have both "GAGCCG" and "CAAUAU" fragments. In addition to being involved in plant growth and development, hormone signaling and stress response, miR171 also plays multiple and important roles in plants through interactions with microbe and other small-RNAs. The miRNA functions by regulating the expression of target genes. Most of miR171's target genes are in the GRAS gene family, but also include some NSP, miRNAs, lncRNAs, and other genes. This review is intended to summarize recent updates on miR171 regarding its function in plant life and hopefully provide new ideas for understanding miR171 function and regulatory mechanisms.
Collapse
Affiliation(s)
- Ling Ling Pei
- College of Horticulture, Shenyang Agricultural University, Shenyang, Shenhe District, China
| | - Ling Ling Zhang
- College of Horticulture, Shenyang Agriculture University, Shenyang, Shenhe District, China
| | - Xin Liu
- Horticulture Department, Shenyang Agricultural University, Shenyang, Shenhe District, China
| | - Jing Jiang
- Horticulture Department, Shenyang Agricultural University, Shenyang, Shenhe District, China
| |
Collapse
|
35
|
Enebe MC, Erasmus M. Susceptibility and plant immune control-a case of mycorrhizal strategy for plant colonization, symbiosis, and plant immune suppression. Front Microbiol 2023; 14:1178258. [PMID: 37476663 PMCID: PMC10355322 DOI: 10.3389/fmicb.2023.1178258] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Plants and microbes (mycorrhizal fungi to be precise) have evolved together over the past millions of years into an association that is mutualist. The plants supply the fungi with photosynthates and shelter, while the fungi reciprocate by enhancing nutrient and water uptake by the plants as well as, in some cases, control of soil-borne pathogens, but this fungi-plant association is not always beneficial. We argue that mycorrhizal fungi, despite contributing to plant nutrition, equally increase plant susceptibility to pathogens and herbivorous pests' infestation. Understanding of mycorrhizal fungi strategies for suppressing plant immunity, the phytohormones involved and the signaling pathways that aid them will enable the harnessing of tripartite (consisting of three biological systems)-plant-mycorrhizal fungi-microbe interactions for promoting sustainable production of crops.
Collapse
Affiliation(s)
- Matthew Chekwube Enebe
- Centre for Mineral Biogeochemistry, University of the Free State, Bloemfontein, South Africa
| | | |
Collapse
|
36
|
Aslam MM, Fritschi FB, Di Z, Wang G, Li H, Lam HM, Waseem M, Weifeng X, Zhang J. Overexpression of LaGRAS enhances phosphorus acquisition via increased root growth of phosphorus-deficient white lupin. PHYSIOLOGIA PLANTARUM 2023; 175:e13962. [PMID: 37343119 DOI: 10.1111/ppl.13962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/01/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
The GRAS transcription factors play an indispensable role in plant growth and responses to environmental stresses. The GRAS gene family has extensively been explored in various plant species; however, the comprehensive investigation of GRAS genes in white lupin remains insufficient. In this study, bioinformatics analysis of white lupin genome revealed 51 LaGRAS genes distributed into 10 distinct phylogenetic clades. Gene structure analyses revealed that LaGRAS proteins were considerably conserved among the same subfamilies. Notably, 25 segmental duplications and a single tandem duplication showed that segmental duplication was the major driving force for the expansion of GRAS genes in white lupin. Moreover, LaGRAS genes exhibited preferential expression in young cluster root and mature cluster roots and may play key roles in nutrient acquisition, particularly phosphorus (P). To validate this, RT-qPCR analysis of white lupin plants grown under +P (normal P) and -P (P deficiency) conditions elucidated significant differences in the transcript level of GRAS genes. Among them, LaGRAS38 and LaGRAS39 were identified as potential candidates with induced expression in MCR under -P. Additionally, white lupin transgenic hairy root overexpressing OE-LaGRAS38 and OE-LaGRAS39 showed increased root growth, and P concentration in root and leaf compared to those with empty vector control, suggesting their role in P acquisition. We believe this comprehensive analysis of GRAS members in white lupin is a first step in exploring their role in the regulation of root growth, tissue development, and ultimately improving P use efficiency in legume crops under natural environments.
Collapse
Affiliation(s)
- Mehtab Muhammad Aslam
- College of Agriculture, Yangzhou University, Yangzhou, China
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences & Technology, University of Missouri, Columbia, Missouri, USA
| | - Felix B Fritschi
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences & Technology, University of Missouri, Columbia, Missouri, USA
| | - Zhang Di
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Guanqun Wang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Haoxuan Li
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hon-Ming Lam
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Muhammad Waseem
- College of Horticulture, Hainan University, Haikou, China
- Department of Botany, University of Narowal, Narowal, Pakistan
| | - Xu Weifeng
- College of Agriculture, Yangzhou University, Yangzhou, China
- Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
37
|
Du T, Qin Z, Zhou Y, Zhang L, Wang Q, Li Z, Hou F. Comparative Transcriptome Analysis Reveals the Effect of Lignin on Storage Roots Formation in Two Sweetpotato ( Ipomoea batatas (L.) Lam.) Cultivars. Genes (Basel) 2023; 14:1263. [PMID: 37372443 DOI: 10.3390/genes14061263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Sweet potato (Ipomoea batatas (L.) Lam.) is one of the most important crops with high storage roots yield. The formation and expansion rate of storage root (SR) plays a crucial role in the production of sweet potato. Lignin affects the SR formation; however, the molecular mechanisms of lignin in SR development have been lacking. To reveal the problem, we performed transcriptome sequencing of SR harvested at 32, 46, and 67 days after planting (DAP) to analyze two sweet potato lines, Jishu25 and Jishu29, in which SR expansion of Jishu29 was early and had a higher yield. A total of 52,137 transcripts and 21,148 unigenes were obtained after corrected with Hiseq2500 sequencing. Through the comparative analysis, 9577 unigenes were found to be differently expressed in the different stages in two cultivars. In addition, phenotypic analysis of two cultivars, combined with analysis of GO, KEGG, and WGCNA showed the regulation of lignin synthesis and related transcription factors play a crucial role in the early expansion of SR. The four key genes swbp1, swpa7, IbERF061, and IbERF109 were proved as potential candidates for regulating lignin synthesis and SR expansion in sweet potato. The data from this study provides new insights into the molecular mechanisms underlying the impact of lignin synthesis on the formation and expansion of SR in sweet potatoes and proposes several candidate genes that may affect sweet potato yield.
Collapse
Affiliation(s)
- Taifeng Du
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Key Laboratory of Phylogeny and Comparative Genomics of the Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Zhen Qin
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Yuanyuan Zhou
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Lei Zhang
- Key Laboratory of Phylogeny and Comparative Genomics of the Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Qingmei Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Zongyun Li
- Key Laboratory of Phylogeny and Comparative Genomics of the Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Fuyun Hou
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Key Laboratory of Phylogeny and Comparative Genomics of the Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
38
|
Zhang Z, Chen L, Yu J. Maize WRKY28 interacts with the DELLA protein D8 to affect skotomorphogenesis and participates in the regulation of shade avoidance and plant architecture. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3122-3141. [PMID: 36884355 DOI: 10.1093/jxb/erad094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 05/21/2023]
Abstract
Competition for light from neighboring vegetation can trigger the shade-avoidance response (SAR) in plants, which is detrimental to their yield. The molecular mechanisms regulating SAR are well established in Arabidopsis, and some regulators of skotomorphogenesis have been found to be involved in the regulation of the SAR and plant architecture. However, the role of WRKY transcription factors in this process has rarely been reported, especially in maize (Zea mays). Here, we report that maize Zmwrky28 mutants exhibit shorter mesocotyls in etiolated seedlings. Molecular and biochemical analyses demonstrate that ZmWRKY28 directly binds to the promoter regions of the Small Auxin Up RNA (SAUR) gene ZmSAUR54 and the Phytochrome-Interacting Factor (PIF) gene ZmPIF4.1 to activate their expression. In addition, the maize DELLA protein Dwarf Plant8 (D8) interacts with ZmWRKY28 in the nucleus to inhibit its transcriptional activation activity. We also show that ZmWRKY28 participates in the regulation of the SAR, plant height, and leaf rolling and erectness in maize. Taken together, our results reveal that ZmWRKY28 is involved in GA-mediated skotomorphogenic development and can be used as a potential target to regulate SAR for breeding of high-density-tolerant cultivars.
Collapse
Affiliation(s)
- Ze Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Limei Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jingjuan Yu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
39
|
Nelson SK, Kanno Y, Seo M, Steber CM. Seed dormancy loss from dry after-ripening is associated with increasing gibberellin hormone levels in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1145414. [PMID: 37275251 PMCID: PMC10232786 DOI: 10.3389/fpls.2023.1145414] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/20/2023] [Indexed: 06/07/2023]
Abstract
Introduction The seeds of many plants are dormant and unable to germinate at maturity, but gain the ability to germinate through after-ripening during dry storage. The hormone abscisic acid (ABA) stimulates seed dormancy, whereas gibberellin A (GA) stimulates dormancy loss and germination. Methods To determine whether dry after-ripening alters the potential to accumulate ABA and GA, hormone levels were measured during an after-ripening time course in dry and imbibing ungerminated seeds of wildtype Landsberg erecta (Ler) and of the highly dormant GA-insensitive mutant sleepy1-2 (sly1-2). Results The elevated sly1-2 dormancy was associated with lower rather than higher ABA levels. Ler germination increased with 2-4 weeks of after-ripening whereas sly1-2 required 21 months to after-ripen. Increasing germination capacity with after-ripening was associated with increasing GA4 levels in imbibing sly1-2 and wild-type Ler seeds. During the same 12 hr imbibition period, after-ripening also resulted in increased ABA levels. Discussion The decreased ABA levels with after-ripening in other studies occurred later in imbibition, just before germination. This suggests a model where GA acts first, stimulating germination before ABA levels decline, and ABA acts as the final checkpoint preventing germination until processes essential to survival, like DNA repair and activation of respiration, are completed. Overexpression of the GA receptor GID1b (GA INSENSITIVE DWARF1b) was associated with increased germination of sly1-2 but decreased germination of wildtype Ler. This reduction of Ler germination was not associated with increased ABA levels. Apparently, GID1b is a positive regulator of germination in one context, but a negative regulator in the other.
Collapse
Affiliation(s)
- Sven K. Nelson
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, United States
- Plant and Data Science, Heliponix, LLC, Evansville, IN, United States
| | - Yuri Kanno
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Japan
| | - Mitsunori Seo
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Japan
| | - Camille M. Steber
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics, and Quality Research Unit, USDA-ARS, Pullman, WA, United States
- Department of Crop and Soil Science, Washington State University, Pullman, WA, United States
| |
Collapse
|
40
|
Gao L, Niu D, Chi T, Yuan Y, Liu C, Gai S, Zhang Y. PsRGL1 negatively regulates chilling- and gibberellin-induced dormancy release by PsF-box1-mediated targeting for proteolytic degradation in tree peony. HORTICULTURE RESEARCH 2023; 10:uhad044. [PMID: 37786434 PMCID: PMC10541556 DOI: 10.1093/hr/uhad044] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/05/2023] [Indexed: 10/04/2023]
Abstract
Tree peony bud endodormancy is a common survival strategy similar to many perennial woody plants in winter, and the activation of the GA signaling pathway is the key to breaking endodormancy. GA signal transduction is involved in many physiological processes. Although the GA-GID1-DELLA regulatory module is conserved in many plants, it has a set of specific components that add complexity to the GA response mechanism. DELLA proteins are key switches in GA signaling. Therefore, there is an urgent need to identify the key DELLA proteins involved in tree peony bud dormancy release. In this study, the prolonged chilling increased the content of endogenously active gibberellins. PsRGL1 among three DELLA proteins was significantly downregulated during chilling- and exogenous GA3-induced bud dormancy release by cell-free degradation assay, and a high level of polyubiquitination was detected. Silencing PsRGL1 accelerated bud dormancy release by increasing the expression of the genes associated with dormancy release, including PsCYCD, PsEBB1, PsEBB3, PsBG6, and PsBG9. Three F-box protein family members responded to chilling and GA3 treatments, resulting in PsF-box1 induction. Yeast two-hybrid and BiFC assays indicated that only PsF-box1 could bind to PsRGL1, and the binding site was in the C-terminal domain. PsF-box1 overexpression promoted dormancy release and upregulated the expression of the dormancy-related genes. In addition, yeast two-hybrid and pull-down assays showed that PsF-box1 also interacted with PsSKP1 to form an E3 ubiquitin ligase. These findings enriched the molecular mechanism of the GA signaling pathway during dormancy release, and enhanced the understanding of tree peony bud endodormancy.
Collapse
Affiliation(s)
- Linqiang Gao
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao 266109, China
| | - Demei Niu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao 266109, China
| | - Tianyu Chi
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao 266109, China
| | - Yanchao Yuan
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao 266109, China
| | - Chunying Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao 266109, China
| | - Shupeng Gai
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao 266109, China
| | - Yuxi Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao 266109, China
| |
Collapse
|
41
|
Du G, Zhao Y, Xiao C, Ren D, Ding Y, Xu J, Jin H, Jiao H. Mechanism analysis of calcium nitrate application to induce gibberellin biosynthesis and signal transduction promoting stem elongation of Dendrobium officinale. INDUSTRIAL CROPS AND PRODUCTS 2023; 195:116495. [DOI: 10.1016/j.indcrop.2023.116495] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
|
42
|
Zeng D, Si C, Teixeira da Silva JA, Shi H, Chen J, Huang L, Duan J, He C. Uncovering the involvement of DoDELLA1-interacting proteins in development by characterizing the DoDELLA gene family in Dendrobium officinale. BMC PLANT BIOLOGY 2023; 23:93. [PMID: 36782128 PMCID: PMC9926750 DOI: 10.1186/s12870-023-04099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Gibberellins (GAs) are widely involved in plant growth and development. DELLA proteins are key regulators of plant development and a negative regulatory factor of GA. Dendrobium officinale is a valuable traditional Chinese medicine, but little is known about D. officinale DELLA proteins. Assessing the function of D. officinale DELLA proteins would provide an understanding of their roles in this orchid's development. RESULTS In this study, the D. officinale DELLA gene family was identified. The function of DoDELLA1 was analyzed in detail. qRT-PCR analysis showed that the expression levels of all DoDELLA genes were significantly up-regulated in multiple shoots and GA3-treated leaves. DoDELLA1 and DoDELLA3 were significantly up-regulated in response to salt stress but were significantly down-regulated under drought stress. DoDELLA1 was localized in the nucleus. A strong interaction was observed between DoDELLA1 and DoMYB39 or DoMYB308, but a weak interaction with DoWAT1. CONCLUSIONS In D. officinale, a developmental regulatory network involves a close link between DELLA and other key proteins in this orchid's life cycle. DELLA plays a crucial role in D. officinale development.
Collapse
Affiliation(s)
- Danqi Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Can Si
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | | | - Hongyu Shi
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Huang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
| |
Collapse
|
43
|
Yu L, Hui C, Huang R, Wang D, Fei C, Guo C, Zhang J. Genome-wide identification, evolution and transcriptome analysis of GRAS gene family in Chinese chestnut ( Castanea mollissima). Front Genet 2023; 13:1080759. [PMID: 36685835 PMCID: PMC9845266 DOI: 10.3389/fgene.2022.1080759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
GRAS transcription factors play an important role in regulating various biological processes in plant growth and development. However, their characterization and potential function are still vague in Chinese chestnut (Castanea mollissima), an important nut with rich nutrition and high economic value. In this study, 48 CmGRAS genes were identified in Chinese chestnut genome and phylogenetic analysis divided CmGRAS genes into nine subfamilies, and each of them has distinct conserved structure domain and features. Genomic organization revealed that CmGRAS tend to have a representative GRAS domain and fewer introns. Tandem duplication had the greatest contribution for the CmGRAS expansion based on the comparative genome analysis, and CmGRAS genes experienced strong purifying selection pressure based on the Ka/Ks. Gene expression analysis revealed some CmGRAS members with potential functions in bud development and ovule fertility. CmGRAS genes with more homologous relationships with reference species had more cis-acting elements and higher expression levels. Notably, the lack of DELLA domain in members of the DELLA subfamily may cause de functionalization, and the differences between the three-dimensional structures of them were exhibited. This comprehensive study provides theoretical and practical basis for future research on the evolution and function of GRAS gene family.
Collapse
Affiliation(s)
- Liyang Yu
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China,Hebei Collaborative Innovation Center of Chestnut Industry, Qinhuangdao, Hebei, China
| | - Cai Hui
- The Office of Scientific Research, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Ruimin Huang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China,Hebei Collaborative Innovation Center of Chestnut Industry, Qinhuangdao, Hebei, China
| | - Dongsheng Wang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China,Hebei Collaborative Innovation Center of Chestnut Industry, Qinhuangdao, Hebei, China
| | - Cao Fei
- Hebei Collaborative Innovation Center of Chestnut Industry, Qinhuangdao, Hebei, China,Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, Hebei, China
| | - Chunlei Guo
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China,Hebei Collaborative Innovation Center of Chestnut Industry, Qinhuangdao, Hebei, China
| | - Jingzheng Zhang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China,Hebei Collaborative Innovation Center of Chestnut Industry, Qinhuangdao, Hebei, China,Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, Hebei, China,*Correspondence: Jingzheng Zhang,
| |
Collapse
|
44
|
Pan J, Zhou Q, Wang H, Chen Y, Wang Z, Zhang J. Genome-wide identification and characterization of abiotic stress responsive GRAS family genes in oat ( Avena sativa). PeerJ 2023; 11:e15370. [PMID: 37187518 PMCID: PMC10178225 DOI: 10.7717/peerj.15370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Background GRAS transcription factors play a variety of functions in plant growth and development and are named after the first three transcription factors GAI (GIBBERRELLICACIDINSENSITIVE), RGA (REPRESSOROFGAI), and SCR (SCARECROW) found in this family. Oat (Avena sativa) is one of the most important forage grasses in the world. However, there are few reports on the GRAS gene family in oat. Methods In order to understand the information and expression pattern of oat GRAS family members, we identified the GRAS members and analyzed their phylogenetic relationship, gene structure, and expression pattern in oat by bioinformatics technology. Results The results showed that the oat GRAS family consists of 30 members, and most of the AsGRAS proteins were neutral or acidic proteins. The phylogenetic tree divided the oat GRAS members into four subfamilies, and each subfamily has different conservative domains and functions. Chromosome location analysis suggested that 30 GRAS genes were unevenly distributed on five chromosomes of oat. The results of real-time quantitative reverse transcription-PCR (qRT-PCR) showed that some AsGRAS genes (AsGRAS12, AsGRAS14, AsGRAS21, and AsGRAS24) were all up-regulated with increasing stress treatment time.The results of this study provide a theoretical basis for further research into the corresponding stress of oat. Therefore, further studies concentrating on these AsGRAS genes might reveal the many roles played by GRAS genes in oat.
Collapse
Affiliation(s)
- Jing Pan
- Southwest Minzu University, Institute of Qinghai-Tibetan Plateau, Chengdu, Sichuan Province, China
- Southwest Minzu University, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Chengdu, Sichuan Province, China
| | - Qingping Zhou
- Southwest Minzu University, Institute of Qinghai-Tibetan Plateau, Chengdu, Sichuan Province, China
- Southwest Minzu University, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Chengdu, Sichuan Province, China
| | - Hui Wang
- Southwest Minzu University, Institute of Qinghai-Tibetan Plateau, Chengdu, Sichuan Province, China
- Southwest Minzu University, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Chengdu, Sichuan Province, China
| | - Youjun Chen
- Southwest Minzu University, Institute of Qinghai-Tibetan Plateau, Chengdu, Sichuan Province, China
- Southwest Minzu University, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Chengdu, Sichuan Province, China
| | - Zhiqiang Wang
- Southwest Minzu University, Institute of Qinghai-Tibetan Plateau, Chengdu, Sichuan Province, China
- Southwest Minzu University, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Chengdu, Sichuan Province, China
| | - Junchao Zhang
- Southwest Minzu University, Institute of Qinghai-Tibetan Plateau, Chengdu, Sichuan Province, China
- Southwest Minzu University, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Chengdu, Sichuan Province, China
| |
Collapse
|
45
|
Revalska M, Radkova M, Iantcheva A. Functional characterization of Medicago truncatula GRAS7, a member of the GRAS family transcription factors, in response to abiotic stress. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2074893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Miglena Revalska
- Department of Functional Genetics, Abiotic and Biotic Stress, AgroBioInstitute, Agricultural Academy, Sofia, Bulgaria
| | - Mariana Radkova
- Department of Functional Genetics, Abiotic and Biotic Stress, AgroBioInstitute, Agricultural Academy, Sofia, Bulgaria
| | - Anelia Iantcheva
- Department of Functional Genetics, Abiotic and Biotic Stress, AgroBioInstitute, Agricultural Academy, Sofia, Bulgaria
| |
Collapse
|
46
|
Tian S, Wan Y, Jiang D, Gong M, Lin J, Xia M, Shi C, Xing H, Li HL. Genome-Wide Identification, Characterization, and Expression Analysis of GRAS Gene Family in Ginger ( Zingiber officinale Roscoe). Genes (Basel) 2022; 14:96. [PMID: 36672837 PMCID: PMC9859583 DOI: 10.3390/genes14010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022] Open
Abstract
GRAS family proteins are one of the most abundant transcription factors in plants; they play crucial roles in plant development, metabolism, and biotic- and abiotic-stress responses. The GRAS family has been identified and functionally characterized in some plant species. However, this family in ginger (Zingiber officinale Roscoe), a medicinal crop and non-prescription drug, remains unknown to date. In the present study, 66 GRAS genes were identified by searching the complete genome sequence of ginger. The GRAS family is divided into nine subfamilies based on the phylogenetic analyses. The GRAS genes are distributed unevenly across 11 chromosomes. By analyzing the gene structure and motif distribution of GRAS members in ginger, we found that the GRAS genes have more than one cis-acting element. Chromosomal location and duplication analysis indicated that whole-genome duplication, tandem duplication, and segmental duplication may be responsible for the expansion of the GRAS family in ginger. The expression levels of GRAS family genes are different in ginger roots and stems, indicating that these genes may have an impact on ginger development. In addition, the GRAS genes in ginger showed extensive expression patterns under different abiotic stresses, suggesting that they may play important roles in the stress response. Our study provides a comprehensive analysis of GRAS members in ginger for the first time, which will help to better explore the function of GRAS genes in the regulation of tissue development and response to stress in ginger.
Collapse
Affiliation(s)
- Shuming Tian
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing 402168, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404020, China
| | - Yuepeng Wan
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing 402168, China
| | - Dongzhu Jiang
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing 402168, China
| | - Min Gong
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing 402168, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404020, China
| | - Junyao Lin
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing 402168, China
| | - Maoqin Xia
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing 402168, China
| | - Cuiping Shi
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing 402168, China
| | - Haitao Xing
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Hong-Lei Li
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing 402168, China
| |
Collapse
|
47
|
Hou S, Zhang Q, Chen J, Meng J, Wang C, Du J, Guo Y. Genome-Wide Identification and Analysis of the GRAS Transcription Factor Gene Family in Theobroma cacao. Genes (Basel) 2022; 14:57. [PMID: 36672798 PMCID: PMC9858872 DOI: 10.3390/genes14010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/28/2022] Open
Abstract
GRAS genes exist widely and play vital roles in various physiological processes in plants. In this study, to identify Theobroma cacao (T. cacao) GRAS genes involved in environmental stress and phytohormones, we conducted a genome-wide analysis of the GRAS gene family in T. cacao. A total of 46 GRAS genes of T. cacao were identified. Chromosomal distribution analysis showed that all the TcGRAS genes were evenly distributed on ten chromosomes. Phylogenetic relationships revealed that GRAS proteins could be divided into twelve subfamilies (HAM: 6, LISCL: 10, LAS: 1, SCL4/7: 1, SCR: 4, DLT: 1, SCL3: 3, DELLA: 4, SHR: 5, PAT1: 6, UN1: 1, UN2: 4). Of the T. cacao GRAS genes, all contained the GRAS domain or GRAS superfamily domain. Subcellular localization analysis predicted that TcGRAS proteins were located in the nucleus, chloroplast, and endomembrane system. Gene duplication analysis showed that there were two pairs of tandem repeats and six pairs of fragment duplications, which may account for the rapid expansion in T. cacao. In addition, we also predicted the physicochemical properties and cis-acting elements. The analysis of GO annotation predicted that the TcGRAS genes were involved in many biological processes. This study highlights the evolution, diversity, and characterization of the GRAS genes in T. cacao and provides the first comprehensive analysis of this gene family in the cacao genome.
Collapse
Affiliation(s)
- Sijia Hou
- Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qianqian Zhang
- Chinese Institute for Brain Research, Beijing 102206, China
- College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Jing Chen
- Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jianqiao Meng
- Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Cong Wang
- Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Junhong Du
- Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yunqian Guo
- Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
48
|
Genome-Wide Identification and Expression Pattern of the GRAS Gene Family in Pitaya ( Selenicereus undatus L.). BIOLOGY 2022; 12:biology12010011. [PMID: 36671704 PMCID: PMC9854919 DOI: 10.3390/biology12010011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
The GRAS gene family is one of the most important families of transcriptional factors that have diverse functions in plant growth and developmental processes including axillary meristem patterning, signal-transduction, cell maintenance, phytohormone and light signaling. Despite their importance, the function of GRAS genes in pitaya fruit (Selenicereus undatus L.) remains unknown. Here, 45 members of the HuGRAS gene family were identified in the pitaya genome, which was distributed on 11 chromosomes. All 45 members of HuGRAS were grouped into nine subfamilies using phylogenetic analysis with six other species: maize, rice, soybeans, tomatoes, Medicago truncatula and Arabidopsis. Among the 45 genes, 12 genes were selected from RNA-Seq data due to their higher expression in different plant tissues of pitaya. In order to verify the RNA-Seq data, these 12 HuGRAS genes were subjected for qRT-PCR validation. Nine HuGRAS genes exhibited higher relative expression in different tissues of the plant. These nine genes which were categorized into six subfamilies inlcuding DELLA (HuGRAS-1), SCL-3 (HuGRAS-7), PAT1 (HuGRAS-34, HuGRAS-35, HuGRAS-41), HAM (HuGRAS-37), SCR (HuGRAS-12) and LISCL (HuGRAS-18, HuGRAS-25) might regulate growth and development in the pitaya plant. The results of the present study provide valuable information to improve tropical pitaya through a molecular and conventional breeding program.
Collapse
|
49
|
Bai Y, Liu H, Zhu K, Cheng ZM. Evolution and functional analysis of the GRAS family genes in six Rosaceae species. BMC PLANT BIOLOGY 2022; 22:569. [PMID: 36471247 PMCID: PMC9724429 DOI: 10.1186/s12870-022-03925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND GRAS genes formed one of the important transcription factor gene families in plants, had been identified in several plant species. The family genes were involved in plant growth, development, and stress resistance. However, the comparative analysis of GRAS genes in Rosaceae species was insufficient. RESULTS In this study, a total of 333 GRAS genes were identified in six Rosaceae species, including 51 in strawberry (Fragaria vesca), 78 in apple (Malus domestica), 41 in black raspberry (Rubus occidentalis), 59 in European pear (Pyrus communis), 56 in Chinese rose (Rosa chinensis), and 48 in peach (Prunus persica). Motif analysis showed the VHIID domain, SAW motif, LR I region, and PFYRE motif were considerably conserved in the six Rosaceae species. All GRAS genes were divided into 10 subgroups according to phylogenetic analysis. A total of 15 species-specific duplicated clades and 3 lineage-specific duplicated clades were identified in six Rosaceae species. Chromosomal localization presented the uneven distribution of GRAS genes in six Rosaceae species. Duplication events contributed to the expression of the GRAS genes, and Ka/Ks analysis suggested the purification selection as a major force during the evolution process in six Rosaceae species. Cis-acting elements and GO analysis revealed that most of the GRAS genes were associated with various environmental stress in six Rosaceae species. Coexpression network analysis showed the mutual regulatory relationship between GRAS and bZIP genes, suggesting the ability of the GRAS gene to regulate abiotic stress in woodland strawberry. The expression pattern elucidated the transcriptional levels of FvGRAS genes in various tissues and the drought and salt stress in woodland strawberry, which were verified by RT-qPCR analysis. CONCLUSIONS The evolution and functional analysis of GRAS genes provided insights into the further understanding of GRAS genes on the abiotic stress of Rosaceae species.
Collapse
Affiliation(s)
- Yibo Bai
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Hui Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Kaikai Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Zong-Ming Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
50
|
Zhao X, Liu DK, Wang QQ, Ke S, Li Y, Zhang D, Zheng Q, Zhang C, Liu ZJ, Lan S. Genome-wide identification and expression analysis of the GRAS gene family in Dendrobium chrysotoxum. FRONTIERS IN PLANT SCIENCE 2022; 13:1058287. [PMID: 36518517 PMCID: PMC9742484 DOI: 10.3389/fpls.2022.1058287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
The GRAS gene family encodes transcription factors that participate in plant growth and development phases. They are crucial in regulating light signal transduction, plant hormone (e.g. gibberellin) signaling, meristem growth, root radial development, response to abiotic stress, etc. However, little is known about the features and functions of GRAS genes in Orchidaceae, the largest and most diverse angiosperm lineage. In this study, genome-wide analysis of the GRAS gene family was conducted in Dendrobium chrysotoxum (Epidendroideae, Orchidaceae) to investigate its physicochemical properties, phylogenetic relationships, gene structure, and expression patterns under abiotic stress in orchids. Forty-six DchGRAS genes were identified from the D. chrysotoxum genome and divided into ten subfamilies according to their phylogenetic relationships. Sequence analysis showed that most DchGRAS proteins contained conserved VHIID and SAW domains. Gene structure analysis showed that intronless genes accounted for approximately 70% of the DchGRAS genes, the gene structures of the same subfamily were the same, and the conserved motifs were also similar. The Ka/Ks ratios of 12 pairs of DchGRAS genes were all less than 1, indicating that DchGRAS genes underwent negative selection. The results of cis-acting element analysis showed that the 46 DchGRAS genes contained a large number of hormone-regulated and light-responsive elements as well as environmental stress-related elements. In addition, the real-time reverse transcription quantitative PCR (RT-qPCR) experimental results showed significant differences in the expression levels of 12 genes under high temperature, drought and salt treatment, among which two members of the LISCL subfamily (DchGRAS13 and DchGRAS15) were most sensitive to stress. Taken together, this paper provides insights into the regulatory roles of the GRAS gene family in orchids.
Collapse
Affiliation(s)
- Xuewei Zhao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ding-Kun Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian-Qian Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shijie Ke
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qinyao Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Cuili Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhong-Jian Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siren Lan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|