1
|
Gu C, Xu Y, Wu L, Wang X, Qi K, Qiao X, Wang Z, Li Q, He M, Zhang S. Long-read genome sequencing reveals the sequence characteristics of pear self-incompatibility locus. MOLECULAR HORTICULTURE 2025; 5:13. [PMID: 40022260 PMCID: PMC11871771 DOI: 10.1186/s43897-024-00132-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 12/02/2024] [Indexed: 03/03/2025]
Abstract
The S-RNase-based self-incompatibility locus (S-locus) in Petunia species contains 16-20 F-box genes, which collaboratively function in the recognition and subsequent degradation of non-self S-RNases, while distinguishing them from self S-RNase. However, the number of S-locus F-box genes (SFBBs) physically interacted with non-self S-RNases remains uncertain in Pyrus species. Utilizing Pacbio long-read sequencing, we successfully assembled the genome of pear cultivar 'Yali' (Pyrus bretschneideri), and identified 19 SFBBs from the Pyrus S17-locus spanning approximately 1.78 Mb. Additionally, we identified 17-21 SFBBs from other Pyrus and Malus S-loci spanning a range of 1.35 to 2.64 Mb. Based on the phylogenetic analysis, it was determined that Pyrus and Malus SFBBs could be classified into 22 groups, denoted as I to XXII. At amino acid level, SFBBs within a given group exhibited average identities ranged from 88.9% to 97.9%. Notably, all 19 SFBBs from the S17-locus co-segregated with S17-RNase, with 18 of them being specifically expressed in pollen. Consequently, these 18 pollen-specifically expressed SFBBs are considered potential candidates for the pollen-S determinant. Intriguingly, out of the 18 pollen-specifically expressed SFBBs, eight demonstrated interactions with at least one non-self S-RNase, while the remaining SFBBs failed to recognize any S-RNase. These findings provide compelling evidence supporting the existence of a collaborative non-self-recognition system governing self-incompatibility in pear species.
Collapse
Affiliation(s)
- Chao Gu
- Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.
| | - Ying Xu
- Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Lei Wu
- Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Xueping Wang
- Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Kaijie Qi
- Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Xin Qiao
- Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Zewen Wang
- Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Qionghou Li
- Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Min He
- Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Shaoling Zhang
- Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.
| |
Collapse
|
2
|
Cao ZH, Song D, Hu Y, Liang M, Xu Q, Wang SH, Ye JL, Xie ZZ, Deng XX, Chai LJ. An S-locus F-box protein as pollen S determinant targets non-self S-RNase underlying self-incompatibility in Citrus. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3891-3902. [PMID: 38486360 DOI: 10.1093/jxb/erae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/14/2024] [Indexed: 07/11/2024]
Abstract
Self-incompatibility (SI) is a crucial mechanism that prevents self-fertilization and inbreeding in flowering plants. Citrus exhibits SI regulated by a polymorphic S-locus containing an S-RNase gene and multiple S-locus F-box (SLF) genes. It has been documented that S-RNase functions as the pistil S determinant, but there is no direct evidence that the SLF genes closely linked with S-RNase function as pollen S determinants in Citrus. This study assembled the genomes of two pummelo (Citrus grandis) plants, obtained three novel complete and well-annotated S-haplotypes, and isolated 36 SLF or SLF-like alleles on the S-loci. Phylogenetic analysis of 138 SLFs revealed that the SLF genes were classified into 12 types, including six types with divergent or missing alleles. Furthermore, transformation experiments verified that the conserved S6-SLF7a protein can lead to the transition of SI to self-compatibility by recognizing non-self S8-RNase in 'Mini-Citrus' plants (S7S8 and S8S29, Fortunella hindsii), a model plant for citrus gene function studies. In vitro assays demonstrated interactions between SLFs of different S haplotypes and the Skp1-Cullin1-F-box subunit CgSSK1 protein. This study provides direct evidence that SLF controls the pollen function in Citrus, demonstrating its role in the 'non-self recognition' SI system.
Collapse
Affiliation(s)
- Zong-Hong Cao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dan Song
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mei Liang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shao-Hua Wang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Kunming, 650000, China
| | - Jun-Li Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zong-Zhou Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiu-Xin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Li-Jun Chai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
3
|
Schröpfer S, Schuster M, Quero-Garcia J, López-Ortega G, Flachowsky H. Synergistic approach of PCR-based fragment length analysis and amplicon deep sequencing reveals rich diversity of S-alleles in sweet cherries from the Caucasian region of origin. FRONTIERS IN PLANT SCIENCE 2024; 15:1355977. [PMID: 38708389 PMCID: PMC11067951 DOI: 10.3389/fpls.2024.1355977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/20/2024] [Indexed: 05/07/2024]
Abstract
Introduction The self-incompatibility system in sweet cherry (Prunus avium L.) prevents fertilization with own or genetically related pollen, and is genetically determined by the multi-allelic S-locus. Therefore, determining S-alleles is crucial for plant breeding and fruit production, as it enables the selection of compatible combinations of S-genotypes for successful pollination. Methods In this study, S-alleles were identified in a total of 260 genotypes from the Caucasian region, the species' center of origin. S-allele genotyping was conducted using PCR fragment length analysis with the standard marker PaConsI-F/R2 and reference genotypes, complemented by sequence analysis through amplicon deep sequencing. Results and discussion The genotypes collected from Azerbaijan and Turkey exhibit a high allelic richness at the S-locus, particularly compared to modern sweet cherry cultivars worldwide. Nine previously undescribed S-alleles were identified and designated as S45, S46, S47, S48, S49, S50, S51, S52 and S53. Given the expected high diversity for other traits, this plant material represents a valuable resource for further breeding research and introgression of new traits in future breeding programs. Furthermore, our results underscore that fragment length alone may not be sufficient for unambiguous assignment of S-alleles due to minimal length differences between different alleles. To address this issue, an S-allele reference ladder was developed using the rich diversity for precise assignment of the S-alleles. This tool can be applied in future experiments as a robust and cost-effective method for accurate S-genotyping across different runs and laboratories. Additionally, several selected S-genotypes were planted in a trial field and will be maintained as an S-allele reference collection.
Collapse
Affiliation(s)
- Susan Schröpfer
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden-Pillnitz, Germany
| | - Mirko Schuster
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden-Pillnitz, Germany
| | | | | | - Henryk Flachowsky
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden-Pillnitz, Germany
| |
Collapse
|
4
|
Bala M, Rehana S, Singh MP. Self-incompatibility: a targeted, unexplored pre-fertilization barrier in flower crops of Asteraceae. JOURNAL OF PLANT RESEARCH 2023; 136:587-612. [PMID: 37452973 DOI: 10.1007/s10265-023-01480-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Asteraceae (synonym as Compositae) is one of the largest angiosperm families among flowering plants comprising one-tenth of all agri-horticultural species grown across various habitats except in Antarctica. These are commercially utilized as cut and loose flowers as well as pot and bedding plants in landscape gardens due to their unique floral traits. Consequently, ineffective seed setting and presence of an intraspecific reproductive barrier known as self-incompatibility (SI) severely reduces the effectiveness of hybridization and self-fertilization by traditional crossing. There have been very few detailed studies of pollen-stigma interactions in this family. Moreover, about 63% of Aster species can barely self-fertilize due to self-incompatibility (SI). The chrysanthemum (Chrysanthemum × morifolium) is one of the most economically important ornamental plants in the Asteraceae family which hugely shows incompatibility. Reasons for the low fertility and reproductive capacity of species are still indefinite or not clear. Hence, the temporal pattern of inheritance of self-incompatibility and its effect on reproductive biology needs to be investigated further to improve the breeding efficiency. This review highlights the self-incompatible (SI) system operating in important Astraceous (ornamental) crops which are adversely affected by this mechanism along with different physiological and molecular techniques involved in breaking down self-incompatibility.
Collapse
Affiliation(s)
- Madhu Bala
- Department of Floriculture and Landscaping, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India.
| | - Shaik Rehana
- Department of Floriculture and Landscaping, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | - Mohini Prabha Singh
- Department of Floriculture and Landscaping, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| |
Collapse
|
5
|
Li S, Jing X, Tan Q, Wen B, Fu X, Li D, Chen X, Xiao W, Li L. The NAC transcription factor MdNAC29 negatively regulates drought tolerance in apple. FRONTIERS IN PLANT SCIENCE 2023; 14:1173107. [PMID: 37484477 PMCID: PMC10359905 DOI: 10.3389/fpls.2023.1173107] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/05/2023] [Indexed: 07/25/2023]
Abstract
Drought stress is an adverse stimulus that affects agricultural production worldwide. NAC transcription factors are involved in plant development and growth but also play different roles in the abiotic stress response. Here, we isolated the apple MdNAC29 gene and investigated its role in regulating drought tolerance. Subcellular localization experiments showed that MdNAC29 was localized to the nucleus and transcription was induced by the PEG treatment. Over-expression of MdNAC29 reduced drought tolerance in apple plants, calli, and tobacco, and exhibited higher relative conductivity, malondialdehyde (MDA) content, and lower chlorophyll content under drought stress. The transcriptomic analyses revealed that MdNAC29 reduced drought resistance by modulating the expression of photosynthesis and leaf senescence-related genes. The qRT-PCR results showed that overexpression of MdNAC29 repressed the expression of drought-resistance genes. Yeast one-hybrid and dual-luciferase assays demonstrated that MdNAC29 directly repressed MdDREB2A expression. Moreover, the yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated that MdNAC29 interacted with the MdPP2-B10 (F-box protein), which responded to drought stress, and MdPP2-B10 enhanced the repressive effect of MdNAC29 on the transcriptional activity of the MdDREB2A. Taken together, our results indicate that MdNAC29 is a negative regulator of drought resistance, and provide a theoretical basis for further molecular mechanism research.
Collapse
Affiliation(s)
- Sen Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiuli Jing
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Qiuping Tan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Binbin Wen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
6
|
Čmejlová J, Paprštein F, Suran P, Zelený L, Čmejla R. A New One-Tube Reaction Assay for the Universal Determination of Sweet Cherry ( Prunus avium L.) Self-(In)Compatible MGST- and S-Alleles Using Capillary Fragment Analysis. Int J Mol Sci 2023; 24:ijms24086931. [PMID: 37108095 PMCID: PMC10139232 DOI: 10.3390/ijms24086931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The sweet cherry plant (Prunus avium L.) is primarily self-incompatible, with so-called S-alleles responsible for the inability of flowers to be pollinated not only by their own pollen grains but also by pollen from other cherries having the same S-alleles. This characteristic has wide-ranging impacts on commercial growing, harvesting, and breeding. However, mutations in S-alleles as well as changes in the expression of M locus-encoded glutathione-S-transferase (MGST) can lead to complete or partial self-compatibility, simplifying orchard management and reducing possible crop losses. Knowledge of S-alleles is important for growers and breeders, but current determination methods are challenging, requiring several PCR runs. Here we present a system for the identification of multiple S-alleles and MGST promoter variants in one-tube PCR, with subsequent fragment analysis on a capillary genetic analyzer. The assay was shown to unequivocally determine three MGST alleles, 14 self-incompatible S-alleles, and all three known self-compatible S-alleles (S3', S4', S5') in 55 combinations tested, and thus it is especially suitable for routine S-allele diagnostics and molecular marker-assisted breeding for self-compatible sweet cherries. In addition, we identified a previously unknown S-allele in the 'Techlovicka´ genotype (S54) and a new variant of the MGST promoter with an 8-bp deletion in the ´Kronio´ cultivar.
Collapse
Affiliation(s)
- Jana Čmejlová
- Research and Breeding Institute of Pomology Holovousy Ltd., Holovousy 129, 508 01 Hořice, Czech Republic
| | - František Paprštein
- Research and Breeding Institute of Pomology Holovousy Ltd., Holovousy 129, 508 01 Hořice, Czech Republic
| | - Pavol Suran
- Research and Breeding Institute of Pomology Holovousy Ltd., Holovousy 129, 508 01 Hořice, Czech Republic
| | - Lubor Zelený
- Research and Breeding Institute of Pomology Holovousy Ltd., Holovousy 129, 508 01 Hořice, Czech Republic
| | - Radek Čmejla
- Research and Breeding Institute of Pomology Holovousy Ltd., Holovousy 129, 508 01 Hořice, Czech Republic
| |
Collapse
|
7
|
Chen W, Wan H, Liu F, Du H, Zhang C, Fan W, Zhu A. Rapid evolution of T2/S-RNase genes in Fragaria linked to multiple transitions from self-incompatibility to self-compatibility. PLANT DIVERSITY 2023; 45:219-228. [PMID: 37069931 PMCID: PMC10105083 DOI: 10.1016/j.pld.2022.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/23/2022] [Indexed: 06/18/2023]
Abstract
The T2/RNase gene family is widespread in eukaryotes, and particular members of this family play critical roles in the gametophytic self-incompatibility (GSI) system in plants. Wild diploid strawberry (Fragaria) species have diversified their sexual systems via self-incompatible and self-compatible traits, yet how these traits evolved in Fragaria remains elusive. By integrating the published and de novo assembled genomes and the newly generated RNA-seq data, members of the RNase T2 gene family were systematically identified in six Fragaria species, including three self-incompatible species (Fragaria nipponica, Fragaria nubicola, and Fragaria viridis) and three self-compatible species (Fragaria nilgerrensis, Fragaria vesca, and Fragaria iinumae). In total, 115 RNase T2 genes were identified in the six Fragaria genomes and can be classified into three classes (I-III) according to phylogenetic analysis. The identified RNase T2 genes could be divided into 22 homologous gene sets according to amino acid sequence similarity and phylogenetic and syntenic relationships. We found that extensive gene loss and pseudogenization coupled with small-scale duplications mainly accounted for variations in the RNase T2 gene numbers in Fragaria. Multiple copies of homologous genes were mainly generated from tandem and segmental duplication events. Furthermore, we newly identified five S-RNase genes in three self-incompatible Fragaria genomes, including two in F. nipponica, two in F. viridis, and one in F. nubicola, which fit for typical features of a pistil determinant, including highly pistil-specific expression, highly polymorphic proteins and alkaline isoelectric point (pI), while no S-RNase genes were found in all three self-compatible Fragaria species. Surprisingly, these T2/S-RNase genes contain at least one large intron (>10 kb). This study revealed that the rapid evolution of T2/S-RNase genes within the Fragaria genus could be associated with its sexual mode, and repeated evolution of the self-compatible traits in Fragaria was convergent via losses of S-RNase.
Collapse
Affiliation(s)
- Wu Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Wan
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650205, China
| | - Fang Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Haiyuan Du
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengjun Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Weishu Fan
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Andan Zhu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
8
|
Prudencio AS, Devin SR, Mahdavi SME, Martínez-García PJ, Salazar JA, Martínez-Gómez P. Spontaneous, Artificial, and Genome Editing-Mediated Mutations in Prunus. Int J Mol Sci 2022; 23:ijms232113273. [PMID: 36362061 PMCID: PMC9653787 DOI: 10.3390/ijms232113273] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Mutation is a source of genetic diversity widely used in breeding programs for the acquisition of agronomically interesting characters in commercial varieties of the Prunus species, as well as in the rest of crop species. Mutation can occur in nature at a very low frequency or can be induced artificially. Spontaneous or bud sport mutations in somatic cells can be vegetatively propagated to get an individual with the mutant phenotype. Unlike animals, plants have unlimited growth and totipotent cells that let somatic mutations to be transmitted to the progeny. On the other hand, in vitro tissue culture makes it possible to induce mutation in plant material and perform large screenings for mutant’s selection and cleaning of chimeras. Finally, targeted mutagenesis has been boosted by the application of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 and Transcription activator-like effector nuclease (TALEN) editing technologies. Over the last few decades, environmental stressors such as global warming have been threatening the supply of global demand for food based on population growth in the near future. For this purpose, the release of new varieties adapted to such changes is a requisite, and selected or generated Prunus mutants by properly regulated mechanisms could be helpful to this task. In this work, we reviewed the most relevant mutations for breeding traits in Prunus species such as flowering time, self-compatibility, fruit quality, and disease tolerance, including new molecular perspectives in the present postgenomic era including CRISPR/Cas9 and TALEN editing technologies.
Collapse
Affiliation(s)
- Angel S. Prudencio
- Department of Plant Breeding, Centro de Edafología y Biología Apliacada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), 30100 Espinardo, Spain
| | - Sama Rahimi Devin
- Department of Horticultural Science, College of Agriculture, Shiraz University, Shiraz 7144165186, Iran
| | | | - Pedro J. Martínez-García
- Department of Plant Breeding, Centro de Edafología y Biología Apliacada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), 30100 Espinardo, Spain
| | - Juan A. Salazar
- Department of Plant Breeding, Centro de Edafología y Biología Apliacada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), 30100 Espinardo, Spain
| | - Pedro Martínez-Gómez
- Department of Plant Breeding, Centro de Edafología y Biología Apliacada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), 30100 Espinardo, Spain
- Correspondence: ; Tel.: +34-968-396-200
| |
Collapse
|
9
|
Xu Y, Zhang Q, Zhang X, Wang J, Ayup M, Yang B, Guo C, Gong P, Dong W. The proteome reveals the involvement of serine/threonine kinase in the recognition of self- incompatibility in almond. J Proteomics 2022; 256:104505. [PMID: 35123051 DOI: 10.1016/j.jprot.2022.104505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/15/2022] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
Abstract
The self-incompatibility recognition mechanism determines whether the gametophyte is successfully fertilized between pollen tube SCF (SKP1-CUL1-F-box-RBX1) protein and pistil S-RNase protein during fertilization is unclear. In this study, the pistils of two almond cultivars 'Wanfeng' and 'Nonpareil' were used as the experimental materials after self- and nonself/cross-pollination, and pistils from the stamen-removed flowers were used as controls. We used fluorescence microscopy to observe the development of pollen tubes after pollination and 4D-LFQ to detect the protein expression profiles of 'Wanfeng' and 'Nonpareil' pistils and in controls. The results showed that it took 24-36 h for the development of the pollen tube to 1/3 of the pistil, and a total of 7684 differentially accumulated proteins (DAPs) were identified in the pistil after pollinating for 36 h, of which 7022 were quantifiable. Bioinformatics analysis based on the function of DAPs, identified RNA polymerases (4 DAPs), autophagy (3 DAPs), oxidative phosphorylation (3 DAPs), and homologous recombination (2 DAPs) pathways associated with the self-incompatibility process. These results were confirmed by parallel reaction monitoring (PRM), protein interaction and bioinformatics analysis. Taken together, these results provide the involvement of serine/threonine kinase protein in the reaction of pollen tube recognition the nonself- and the self-S-RNase protein. SIGNIFICANCE: Gametophytic self-incompatibility (GSI) is controlled by the highly polymorphic S locus or S haplotype, with two linked self-incompatibility genes, one encoding the S-RNase protein of the pistil S-determinant and the other encoding the F-box/SLF/SFB (S haplotype-specific F-box protein) protein of the pollen S-determinant. The recognition mechanism between pollen tube SCF protein and pistil S-RNase protein is divided into nonself- and self-recognition hypothesis mechanisms. At present, two hypothetical mechanisms cannot explain the recognition between pollen and pistil well, so the mechanism of gametophytic self-incompatibility recognition is still not fully revealed. In this experiment, we investigated the molecular mechanism of pollen-pistil recognition in self-incompatibility using self- and nonself-pollinated pistils of almond cultivars 'Wanfeng' and 'Nonpareil'. Based on our results, we proposed a potential involvement of the MARK2 (serine/threonine kinase) protein in the reaction of pollen tube recognition of the nonself- and the self-S-RNase protein. It provides a new way to reveal how almond pollen tubes recognize the self and nonself S-RNase enzyme protein.
Collapse
Affiliation(s)
- Yeting Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang 11086, Liaoning, China; Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China
| | - Qiuping Zhang
- Liaoning Institute of Pomology, Xiongyue 115009, Liaoning, China
| | - Xiao Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 11086, Liaoning, China
| | - Jian Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 11086, Liaoning, China
| | - Mubarek Ayup
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China
| | - Bo Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China
| | - Chunmiao Guo
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China
| | - Peng Gong
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China.
| | - Wenxuan Dong
- College of Horticulture, Shenyang Agricultural University, Shenyang 11086, Liaoning, China.
| |
Collapse
|
10
|
De Cauwer I, Vernet P, Billiard S, Godé C, Bourceaux A, Ponitzki C, Saumitou-Laprade P. Widespread coexistence of self-compatible and self-incompatible phenotypes in a diallelic self-incompatibility system in Ligustrum vulgare (Oleaceae). Heredity (Edinb) 2021; 127:384-392. [PMID: 34482370 PMCID: PMC8479060 DOI: 10.1038/s41437-021-00463-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
The breakdown of self-incompatibility (SI) in angiosperms is one of the most commonly observed evolutionary transitions. While multiple examples of SI breakdown have been documented in natural populations, there is strikingly little evidence of stable within-population polymorphism with both inbreeding (self-compatible) and outcrossing (self-incompatible) individuals. This absence of breeding system polymorphism corroborates theoretical expectations that predict that in/outbreeding polymorphism is possible only under very restricted conditions. However, theory also predicts that a diallelic sporophytic SI system should facilitate the maintenance of such polymorphism. We tested this prediction by studying the breeding system of Ligustrum vulgare L., an insect-pollinated hermaphroditic species of the Oleaceae family. Using stigma tests with controlled pollination and paternity assignment of open-pollinated progenies, we confirmed the existence of two self-incompatibility groups in this species. We also demonstrated the occurrence of self-compatible individuals in different populations of Western Europe arising from a mutation affecting the functioning of the pollen component of SI. Our results show that the observed low frequency of self-compatible individuals in natural populations is compatible with theoretical predictions only if inbreeding depression is very high.
Collapse
Affiliation(s)
- Isabelle De Cauwer
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| | - Philippe Vernet
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| | - Sylvain Billiard
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| | - Cécile Godé
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| | - Angélique Bourceaux
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| | - Chloé Ponitzki
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| | - Pierre Saumitou-Laprade
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| |
Collapse
|
11
|
Du J, Ge C, Li T, Wang S, Gao Z, Sassa H, Qiao Y. Molecular characteristics of S-RNase alleles as the determinant of self-incompatibility in the style of Fragaria viridis. HORTICULTURE RESEARCH 2021; 8:185. [PMID: 34333550 PMCID: PMC8325692 DOI: 10.1038/s41438-021-00623-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 05/11/2023]
Abstract
Strawberry (Fragaria spp.) is a member of the Rosoideae subfamily in the family Rosaceae. The self-incompatibility (SI) of some diploid species is a key agronomic trait that acts as a basic pollination barrier; however, the genetic mechanism underlying SI control in strawberry remains unclear. Two candidate S-RNases (Sa- and Sb-RNase) identified in the transcriptome of the styles of the self-incompatible Fragaria viridis 42 were confirmed to be SI determinants at the S locus following genotype identification and intraspecific hybridization using selfing progenies. Whole-genome collinearity and RNase T2 family analysis revealed that only an S locus exists in Fragaria; however, none of the compatible species contained S-RNase. Although the results of interspecific hybridization experiments showed that F. viridis (SI) styles could accept pollen from F. mandshurica (self-compatible), the reciprocal cross was incompatible. Sa and Sb-RNase contain large introns, and their noncoding sequences (promotors and introns) can be transcribed into long noncoding RNAs (lncRNAs). Overall, the genus Fragaria exhibits S-RNase-based gametophytic SI, and S-RNase loss occurs at the S locus of compatible germplasms. In addition, a type of SI-independent unilateral incompatibility exists between compatible and incompatible Fragaria species. Furthermore, the large introns and neighboring lncRNAs in S-RNase in Fragaria could offer clues about S-RNase expression strategies.
Collapse
Affiliation(s)
- Jianke Du
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Laboratory of Genetics and Plant Breeding, Graduate School of Horticulture, Chiba University, Matsudo, 271-8510, Chiba, Japan
| | - Chunfeng Ge
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu, China
| | - Tingting Li
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Sanhong Wang
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhihong Gao
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Hidenori Sassa
- Laboratory of Genetics and Plant Breeding, Graduate School of Horticulture, Chiba University, Matsudo, 271-8510, Chiba, Japan
| | - Yushan Qiao
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
12
|
Fernandez i Marti A, Castro S, DeJong TM, Dodd RS. Evaluation of the S-locus in Prunus domestica, characterization, phylogeny and 3D modelling. PLoS One 2021; 16:e0251305. [PMID: 33983990 PMCID: PMC8118244 DOI: 10.1371/journal.pone.0251305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/23/2021] [Indexed: 11/18/2022] Open
Abstract
Self-compatibility has become the primary objective of most prune (Prunus domestica) breeding programs in order to avoid the problems related to the gametophytic self-incompatibility (GSI) system present in this crop. GSI is typically under the control of a specific locus., known as the S-locus., which contains at least two genes. The first gene encodes glycoproteins with RNase activity in the pistils., and the second is an SFB gene expressed in the pollen. There is limited information on genetics of SI/SC in prune and in comparison., with other Prunus species, cloning., sequencing and discovery of different S-alleles is very scarce. Clear information about S-alleles can be used for molecular identification and characterization of the S-haplotypes. We determined the S-alleles of 36 cultivars and selections using primers that revealed 17 new alleles. In addition, our study describes for the first time the association and design of a molecular marker for self-compatibility in P. domestica. Our phylogenetic tree showed that the S-alleles are spread across the phylogeny, suggesting that like previous alleles detected in the Rosaceae., they were of trans-specific origin. We provide for the first time 3D models for the P. domestica SI RNase alleles as well as in other Prunus species, including P. salicina (Japanese plum), P. avium (cherry), P. armeniaca (apricot), P. cerasifera and P. spinosa.
Collapse
Affiliation(s)
- Angel Fernandez i Marti
- Environmental Science, Policy and Management, University of California, Berkeley, California, United States of America
- * E-mail:
| | - Sarah Castro
- Plant Science, University of California, Davis, California, United States of America
| | - Theodore M. DeJong
- Plant Science, University of California, Davis, California, United States of America
| | - Richard S. Dodd
- Environmental Science, Policy and Management, University of California, Berkeley, California, United States of America
| |
Collapse
|
13
|
Lénárt J, Gere A, Causon T, Hann S, Dernovics M, Németh O, Hegedűs A, Halász J. LC-MS based metabolic fingerprinting of apricot pistils after self-compatible and self-incompatible pollinations. PLANT MOLECULAR BIOLOGY 2021; 105:435-447. [PMID: 33296063 PMCID: PMC7892686 DOI: 10.1007/s11103-020-01098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE LC-MS based metabolomics approach revealed that putative metabolites other than flavonoids may significantly contribute to the sexual compatibility reactions in Prunus armeniaca. Possible mechanisms on related microtubule-stabilizing effects are provided. Identification of metabolites playing crucial roles in sexual incompatibility reactions in apricot (Prunus armeniaca L.) was the aim of the study. Metabolic fingerprints of self-compatible and self-incompatible apricot pistils were created using liquid chromatography coupled to time-of-flight mass spectrometry followed by untargeted compound search. Multivariate statistical analysis revealed 15 significant differential compounds among the total of 4006 and 1005 aligned metabolites in positive and negative ion modes, respectively. Total explained variance of 89.55% in principal component analysis (PCA) indicated high quality of differential expression analysis. The statistical analysis showed significant differences between genotypes and pollination time as well, which demonstrated high performance of the metabolic fingerprinting and revealed the presence of metabolites with significant influence on the self-incompatibility reactions. Finally, polyketide-based macrolides similar to peloruside A and a hydroxy sphingosine derivative are suggested to be significant differential metabolites in the experiment. These results indicate a strategy of pollen tubes to protect microtubules and avoid growth arrest involved in sexual incompatibility reactions of apricot.
Collapse
Affiliation(s)
- József Lénárt
- Department of Applied Chemistry, Faculty of Food Science, Szent István University, Villányi út 29-43, Budapest, 1118, Hungary
- Department of Genetics and Plant Breeding, Faculty of Horticultural Science, Szent István University, Ménesi út 44, Budapest, 1118, Hungary
| | - Attila Gere
- Department of Postharvest Sciences and Sensory Evaluation, Faculty of Food Science, Szent István University, Villányi út 29-43, 1118, Budapest, Hungary
| | - Tim Causon
- Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Stephan Hann
- Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Mihály Dernovics
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Olga Németh
- Department of Applied Chemistry, Faculty of Food Science, Szent István University, Villányi út 29-43, Budapest, 1118, Hungary
| | - Attila Hegedűs
- Department of Genetics and Plant Breeding, Faculty of Horticultural Science, Szent István University, Ménesi út 44, Budapest, 1118, Hungary
| | - Júlia Halász
- Department of Genetics and Plant Breeding, Faculty of Horticultural Science, Szent István University, Ménesi út 44, Budapest, 1118, Hungary.
| |
Collapse
|
14
|
Li Y, Duan X, Wu C, Yu J, Liu C, Wang J, Zhang X, Yan G, Jiang F, Li T, Zhang K, Li W. Ubiquitination of S 4-RNase by S-LOCUS F-BOX LIKE2 Contributes to Self-Compatibility of Sweet Cherry 'Lapins'. PLANT PHYSIOLOGY 2020; 184:1702-1716. [PMID: 33037127 PMCID: PMC7723103 DOI: 10.1104/pp.20.01171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/16/2020] [Indexed: 05/15/2023]
Abstract
Recent studies have shown that loss of pollen-S function in S4' pollen from sweet cherry (Prunus avium) is associated with a mutation in an S haplotype-specific F-box4 (SFB4) gene. However, how this mutation leads to self-compatibility is unclear. Here, we examined this mechanism by analyzing several self-compatible sweet cherry varieties. We determined that mutated SFB4 (SFB4') in S4' pollen (pollen harboring the SFB4' gene) is approximately 6 kD shorter than wild-type SFB4 due to a premature termination caused by a four-nucleotide deletion. SFB4' did not interact with S-RNase. However, a protein in S4' pollen ubiquitinated S-RNase, resulting in its degradation via the 26S proteasome pathway, indicating that factors in S4' pollen other than SFB4 participate in S-RNase recognition and degradation. To identify these factors, we used S4-RNase as a bait to screen S4' pollen proteins. Our screen identified the protein encoded by S 4 -SLFL2, a low-polymorphic gene that is closely linked to the S-locus. Further investigations indicate that SLFL2 ubiquitinates S-RNase, leading to its degradation. Subcellular localization analysis showed that SFB4 is primarily localized to the pollen tube tip, whereas SLFL2 is not. When S 4 -SLFL2 expression was suppressed by antisense oligonucleotide treatment in wild-type pollen tubes, pollen still had the capacity to ubiquitinate S-RNase; however, this ubiquitin-labeled S-RNase was not degraded via the 26S proteasome pathway, suggesting that SFB4 does not participate in the degradation of S-RNase. When SFB4 loses its function, S4-SLFL2 might mediate the ubiquitination and degradation of S-RNase, which is consistent with the self-compatibility of S4' pollen.
Collapse
Affiliation(s)
- Yang Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, 100193 Beijing, China
| | - Xuwei Duan
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, 100097 Beijing, China
| | - Chuanbao Wu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, 100193 Beijing, China
| | - Jie Yu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, 100193 Beijing, China
| | - Chunsheng Liu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, 100193 Beijing, China
| | - Jing Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, 100097 Beijing, China
| | - Xiaoming Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, 100097 Beijing, China
| | - Guohua Yan
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, 100097 Beijing, China
| | - Feng Jiang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, 100193 Beijing, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, 100193 Beijing, China
| | - Kaichun Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, 100097 Beijing, China
| | - Wei Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, 100193 Beijing, China
| |
Collapse
|
15
|
Abd-Hamid NA, Ahmad-Fauzi MI, Zainal Z, Ismail I. Diverse and dynamic roles of F-box proteins in plant biology. PLANTA 2020; 251:68. [PMID: 32072251 DOI: 10.1007/s00425-020-03356-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/05/2020] [Indexed: 05/23/2023]
Abstract
The SCF complex is a widely studied multi-subunit ring E3 ubiquitin ligase that tags targeted proteins with ubiquitin for protein degradation by the ubiquitin 26S-proteasome system (UPS). The UPS is an important system that generally keeps cellular events tightly regulated by purging misfolded or damaged proteins and selectively degrading important regulatory proteins. The specificity of this post-translational regulation is controlled by F-box proteins (FBPs) via selective recognition of a protein-protein interaction motif at the C-terminal domain. Hence, FBPs are pivotal proteins in determining the plant response in multiple scenarios. It is not surprising that the FBP family is one of the largest protein families in the plant kingdom. In this review, the roles of FBPs, specifically in plants, are compiled to provide insights into their involvement in secondary metabolites, plant stresses, phytohormone signalling, plant developmental processes and miRNA biogenesis.
Collapse
Affiliation(s)
- Nur-Athirah Abd-Hamid
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Muhammad-Izzat Ahmad-Fauzi
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Zamri Zainal
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Ismanizan Ismail
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
16
|
Muñoz-Sanz JV, Zuriaga E, Cruz-García F, McClure B, Romero C. Self-(In)compatibility Systems: Target Traits for Crop-Production, Plant Breeding, and Biotechnology. FRONTIERS IN PLANT SCIENCE 2020; 11:195. [PMID: 32265945 PMCID: PMC7098457 DOI: 10.3389/fpls.2020.00195] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/10/2020] [Indexed: 05/13/2023]
Abstract
Self-incompatibility (SI) mechanisms prevent self-fertilization in flowering plants based on specific discrimination between self- and non-self pollen. Since this trait promotes outcrossing and avoids inbreeding it is a widespread mechanism of controlling sexual plant reproduction. Growers and breeders have effectively exploited SI as a tool for manipulating domesticated crops for thousands of years. However, only within the past thirty years have studies begun to elucidate the underlying molecular features of SI. The specific S-determinants and some modifier factors controlling SI have been identified in the sporophytic system exhibited by Brassica species and in the two very distinct gametophytic systems present in Papaveraceae on one side and in Solanaceae, Rosaceae, and Plantaginaceae on the other. Molecular level studies have enabled SI to SC transitions (and vice versa) to be intentionally manipulated using marker assisted breeding and targeted approaches based on transgene integration, silencing, and more recently CRISPR knock-out of SI-related factors. These scientific advances have, in turn, provided a solid basis to implement new crop production and plant breeding practices. Applications of self-(in)compatibility include widely differing objectives such as crop yield and quality improvement, marker-assisted breeding through SI genotyping, and development of hybrids for overcoming intra- and interspecific reproductive barriers. Here, we review scientific progress as well as patented applications of SI, and also highlight future prospects including further elucidation of SI systems, deepening our understanding of SI-environment relationships, and new perspectives on plant self/non-self recognition.
Collapse
Affiliation(s)
| | - Elena Zuriaga
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Felipe Cruz-García
- Departmento de Bioquímica, Facultad de Química, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Bruce McClure
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Carlos Romero
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)—Universitat Politécnica de València (UPV), Valencia, Spain
- *Correspondence: Carlos Romero,
| |
Collapse
|
17
|
Vieira J, Rocha S, Vázquez N, López-Fernández H, Fdez-Riverola F, Reboiro-Jato M, Vieira CP. Predicting Specificities Under the Non-self Gametophytic Self-Incompatibility Recognition Model. FRONTIERS IN PLANT SCIENCE 2019; 10:879. [PMID: 31379893 PMCID: PMC6649718 DOI: 10.3389/fpls.2019.00879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/20/2019] [Indexed: 06/10/2023]
Abstract
Non-self gametophytic self-incompatibility (GSI) recognition system is characterized by the presence of multiple F-box genes tandemly located in the S-locus, that regulate pollen specificity. This reproductive barrier is present in Solanaceae, Plantaginacea and Maleae (Rosaceae), but only in Petunia functional assays have been performed to get insight on how this recognition mechanism works. In this system, each of the encoded S-pollen proteins (called SLFs in Solanaceae and Plantaginaceae /SFBBs in Maleae) recognizes and interacts with a sub-set of non-self S-pistil proteins, called S-RNases, mediating their ubiquitination and degradation. In Petunia there are 17 SLF genes per S-haplotype, making impossible to determine experimentally each SLF specificity. Moreover, domain -swapping experiments are unlikely to be performed in large scale to determine S-pollen and S-pistil specificities. Phylogenetic analyses of the Petunia SLFs and those from two Solanum genomes, suggest that diversification of SLFs predate the two genera separation. Here we first identify putative SLF genes from nine Solanum and 10 Nicotiana genomes to determine how many gene lineages are present in the three genera, and the rate of origin of new SLF gene lineages. The use of multiple genomes per genera precludes the effect of incompleteness of the genome at the S-locus. The similar number of gene lineages in the three genera implies a comparable effective population size for these species, and number of specificities. The rate of origin of new specificities is one per 10 million years. Moreover, here we determine the amino acids positions under positive selection, those involved in SLF specificity recognition, using 10 Petunia S-haplotypes with more than 11 SLF genes. These 16 amino acid positions account for the differences of self-incompatible (SI) behavior described in the literature. When SLF and S-RNase proteins are divided according to the SI behavior, and the positively selected amino acids classified according to hydrophobicity, charge, polarity and size, we identified fixed differences between SI groups. According to the in silico 3D structure of the two proteins these amino acid positions interact. Therefore, this methodology can be used to infer SLF/S-RNase specificity recognition.
Collapse
Affiliation(s)
- Jorge Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sara Rocha
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Noé Vázquez
- Escuela Superior de Ingeniería Informática (ESEI), Edificio Politécnico, Universidad de Vigo, Ourense, Spain
- Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain
| | - Hugo López-Fernández
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Escuela Superior de Ingeniería Informática (ESEI), Edificio Politécnico, Universidad de Vigo, Ourense, Spain
- Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain
- SING Research Group, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Florentino Fdez-Riverola
- Escuela Superior de Ingeniería Informática (ESEI), Edificio Politécnico, Universidad de Vigo, Ourense, Spain
- Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain
- SING Research Group, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Miguel Reboiro-Jato
- Escuela Superior de Ingeniería Informática (ESEI), Edificio Politécnico, Universidad de Vigo, Ourense, Spain
- Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain
- SING Research Group, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Cristina P. Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
18
|
Claessen H, Keulemans W, Van de Poel B, De Storme N. Finding a Compatible Partner: Self-Incompatibility in European Pear ( Pyrus communis); Molecular Control, Genetic Determination, and Impact on Fertilization and Fruit Set. FRONTIERS IN PLANT SCIENCE 2019; 10:407. [PMID: 31057563 PMCID: PMC6477101 DOI: 10.3389/fpls.2019.00407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/18/2019] [Indexed: 05/25/2023]
Abstract
Pyrus species display a gametophytic self-incompatibility (GSI) system that actively prevents fertilization by self-pollen. The GSI mechanism in Pyrus is genetically controlled by a single locus, i.e., the S-locus, which includes at least two polymorphic and strongly linked S-determinant genes: a pistil-expressed S-RNase gene and a number of pollen-expressed SFBB genes (S-locus F-Box Brothers). Both the molecular basis of the SI mechanism and its functional expression have been widely studied in many Rosaceae fruit tree species with a particular focus on the characterization of the elusive SFBB genes and S-RNase alleles of economically important cultivars. Here, we discuss recent advances in the understanding of GSI in Pyrus and provide new insights into the mechanisms of GSI breakdown leading to self-fertilization and fruit set. Molecular analysis of S-genes in several self-compatible Pyrus cultivars has revealed mutations in both pistil- or pollen-specific parts that cause breakdown of self-incompatibility. This has significantly contributed to our understanding of the molecular and genetic mechanisms that underpin self-incompatibility. Moreover, the existence and development of self-compatible mutants open new perspectives for pear production and breeding. In this framework, possible consequences of self-fertilization on fruit set, development, and quality in pear are also reviewed.
Collapse
Affiliation(s)
- Hanne Claessen
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Wannes Keulemans
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Bram Van de Poel
- Laboratory for Molecular Plant Hormone Physiology, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Nico De Storme
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Baraket G, Abdallah D, Ben Mustapha S, Ben Tamarzizt H, Salhi-Hannachi A. Combination of Simple Sequence Repeat, S-Locus Polymorphism and Phenotypic Data for Identification of Tunisian Plum Species (Prunus spp.). Biochem Genet 2019; 57:673-694. [PMID: 30980219 DOI: 10.1007/s10528-019-09922-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 04/05/2019] [Indexed: 11/28/2022]
Abstract
Plums (Prunus spp.) are among the first fruit tree species that attracted human interest. Artificial crosses between wild and domesticated species of plums are still paving the way for creation of new phenotypic variability. In Tunisia, despite a considerable varietal richness of plum as well as a high economic value, the plum sector is experiencing a significant regression. The main reason of this regression is the absence of a national program of plum conservation. Hence, this work was aimed to phenotypically and genetically characterize 23 Tunisian plum accessions to preserve this patrimony. Closely related Prunus species from the same subgenus may be differing at two characteristics: ploidy level and phenotypic traits. In this study, single sequence repeat (SSR) markers allowed distinguishing between eighteen diploid accessions and five polyploid accessions, but SSR data alone precluded unambiguous ploidy estimation due to homozygosity. In contrast, S-allele markers were useful to identify the ploidy level between polyploid species, but they did not distinguish species with the same ploidy level. Seven out of 12 phenotypic traits were shown to be discriminant traits for plum species identification. Molecular and phenotypic traits were significantly correlated and revealed a powerful tool to draw taxonomic and genotypic keys. The results obtained in this work are of great importance for local Tunisian plum germplasm management.
Collapse
Affiliation(s)
- Ghada Baraket
- Laboratory of Molecular Genetics, Immunology & Biotechnology LR99ES12, Faculty of Sciences of Tunis, University of Tunis El Manar, Campus University, El Manar, 2092, Tunis, Tunisia.
| | - Donia Abdallah
- Laboratory of Molecular Genetics, Immunology & Biotechnology LR99ES12, Faculty of Sciences of Tunis, University of Tunis El Manar, Campus University, El Manar, 2092, Tunis, Tunisia
| | - Sana Ben Mustapha
- Laboratory of Molecular Genetics, Immunology & Biotechnology LR99ES12, Faculty of Sciences of Tunis, University of Tunis El Manar, Campus University, El Manar, 2092, Tunis, Tunisia
| | - Hend Ben Tamarzizt
- Laboratory of Molecular Genetics, Immunology & Biotechnology LR99ES12, Faculty of Sciences of Tunis, University of Tunis El Manar, Campus University, El Manar, 2092, Tunis, Tunisia
| | - Amel Salhi-Hannachi
- Laboratory of Molecular Genetics, Immunology & Biotechnology LR99ES12, Faculty of Sciences of Tunis, University of Tunis El Manar, Campus University, El Manar, 2092, Tunis, Tunisia
| |
Collapse
|
20
|
Vázquez N, López-Fernández H, Vieira CP, Fdez-Riverola F, Vieira J, Reboiro-Jato M. BDBM 1.0: A Desktop Application for Efficient Retrieval and Processing of High-Quality Sequence Data and Application to the Identification of the Putative Coffea S-Locus. Interdiscip Sci 2019; 11:57-67. [PMID: 30712176 DOI: 10.1007/s12539-019-00320-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 11/25/2022]
Abstract
Nowadays, bioinformatics is one of the most important areas in modern biology and the creation of high-quality scientific software supporting this recent research area is one of the core activities of many researchers. In this context, high-quality sequence datasets are needed to perform inferences on the evolution of species, genes, and gene families, or to get evidence for adaptive amino acid evolution, among others. Nevertheless, sequence data are very often spread over several databases, many useful genomes and transcriptomes are non-annotated, the available annotation is not for the desired coding sequence isoform, and/or is unlikely to be accurate. Moreover, although the FASTA text-based format is quite simple and usable by most software applications, there are a number of issues that may be critical depending on the software used to analyse such files. Therefore, researchers without training in informatics often use a fraction of all available data. The above issues can be addressed using already available software applications, but there is no easy-to-use single piece of software that allows performing all these tasks within the same graphical interface, such as the one here presented, named BDBM (Blast DataBase Manager). BDBM can be used to efficiently get gene sequences from annotated and non-annotated genomes and transcriptomes. Moreover, it can be used to look for alternatives to existing annotations and to easily create reliable custom databases. Such databases are essential to prepare high-quality datasets. The analyses that we have performed on the Coffea canephora genome using BDBM aimed at the identification of the S-locus region (that harbours the genes involved in gametophytic self-incompatibility) led to the conclusion that there are two likely regions, one on chromosome 2 (around region 6600000-6650000), and another on chromosome 5 (around 15830000-15930000). Such findings are discussed in the context of the Rubiaceae gametophytic self-incompatibility evolution.
Collapse
Affiliation(s)
- Noé Vázquez
- ESEI-Escuela Superior de Ingeniería Informática, Universidade de Vigo, Edificio Politécnico, Campus Universitario As Lagoas s/n, 32004, Ourense, Spain
- CINBIO-Centro de Investigaciones Biomédicas, University of Vigo, Campus Universitario Lagoas-Marcosende, 36310, Vigo, Spain
| | - Hugo López-Fernández
- ESEI-Escuela Superior de Ingeniería Informática, Universidade de Vigo, Edificio Politécnico, Campus Universitario As Lagoas s/n, 32004, Ourense, Spain.
- CINBIO-Centro de Investigaciones Biomédicas, University of Vigo, Campus Universitario Lagoas-Marcosende, 36310, Vigo, Spain.
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain.
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
| | - Cristina P Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Florentino Fdez-Riverola
- ESEI-Escuela Superior de Ingeniería Informática, Universidade de Vigo, Edificio Politécnico, Campus Universitario As Lagoas s/n, 32004, Ourense, Spain
- CINBIO-Centro de Investigaciones Biomédicas, University of Vigo, Campus Universitario Lagoas-Marcosende, 36310, Vigo, Spain
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Jorge Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Miguel Reboiro-Jato
- ESEI-Escuela Superior de Ingeniería Informática, Universidade de Vigo, Edificio Politécnico, Campus Universitario As Lagoas s/n, 32004, Ourense, Spain
- CINBIO-Centro de Investigaciones Biomédicas, University of Vigo, Campus Universitario Lagoas-Marcosende, 36310, Vigo, Spain
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| |
Collapse
|
21
|
Zhang S, Liang M, Wang N, Xu Q, Deng X, Chai L. Reproduction in woody perennial Citrus: an update on nucellar embryony and self-incompatibility. PLANT REPRODUCTION 2018; 31:43-57. [PMID: 29457194 DOI: 10.1007/s00497-018-0327-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 02/14/2018] [Indexed: 05/22/2023]
Abstract
Review on citrus reproduction. Citrus is one of the most important and widely grown fruit crops. It possesses several special reproductive characteristics, such as nucellar embryony and self-incompatibility. The special phenomenon of nucellar embryony in citrus, also known as the polyembryony, is a kind of sporophytic apomixis. During the past decade, the emergence of novel technologies and the construction of multiple citrus reference genomes have facilitated rapid advances to our understanding of nucellar embryony. Indeed, several research teams have preliminarily determined the genetic basis of citrus apomixis. On the other hand, the phenomenon of self-incompatibility that promotes genetic diversity by rejecting self-pollen and accepting non-self-pollen is difficult to study in citrus because the long juvenile period of citrus presents challenges to identifying candidate genes that control this phenomenon. In this review, we focus on advances to our understanding of reproduction in citrus from the last decade and discuss priorities for the coming decade.
Collapse
Affiliation(s)
- Siqi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Mei Liang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Nan Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lijun Chai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
22
|
Chen Q, Meng D, Gu Z, Li W, Yuan H, Duan X, Yang Q, Li Y, Li T. SLFL Genes Participate in the Ubiquitination and Degradation Reaction of S-RNase in Self-compatible Peach. FRONTIERS IN PLANT SCIENCE 2018; 9:227. [PMID: 29520292 PMCID: PMC5826962 DOI: 10.3389/fpls.2018.00227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 02/07/2018] [Indexed: 05/23/2023]
Abstract
It has been proved that the gametophytic self-incompatibility (GSI), mainly exists in Rosaceae and Solanaceae, is controlled by S genes, which are two tightly linked genes located at highly polymorphic S-locus: the S-RNase for pistil specificity and the F-box gene (SFB/SLF) for pollen specificity, respectively. However, the roles of those genes in SI of peach are still a subject of extensive debate. In our study, we selected 37 representative varieties according to the evolution route of peach and identified their S genotypes. We cloned pollen determinant genes mutated PperSFB1m, PperSFB2m, PperSFB4m, and normal PperSFB2, and style determinant genes PperS1-RNase, PperS2-RNase, PperS2m-RNase, and PperS4-RNase. The mutated PperSFBs encode truncated SFB proteins due to a fragment insertion. The truncated PperSFBs and normal PperSFB2 interacted with PperS-RNases demonstrated by Y2H. Normal PperSFB2 was divided into four parts: box, box-V1, V1-V2, and HVa-HVb. The box domain of PperSFB2 did not interact with PperS-RNases, both of the box-V1 and V1-V2 had interactions with PperS-RNases, while the hypervariable region of PperSFB2 HVa-HVb only interacted with PperS2-RNase showed by Y2H and BiFC assay. Bioinformatics analysis of peach genome revealed that there were other F-box genes located at S-locus, and of which three F-box genes were specifically expressed in pollen, named as PperSLFL1, PperSLFL2, and PperSLFL3, respectively. In phylogenetic analysis PperSLFLs clustered with Maloideae SFBB genes, and PperSFB genes were clustered into the other group with other SFB genes of Prunus. Protein interaction analysis revealed that the three PperSLFLs interacted with PperSSK1 and PperS-RNases with no allelic specificity. In vitro ubiquitination assay showed that PperSLFLs could tag ubiquitin molecules onto PperS-RNases. The above results suggest that three PperSLFLs are the appropriate candidates for the "general inhibitor," which would inactivate the S-RNases in pollen tubes, involved in the self-incompatibility of peach.
Collapse
|
23
|
Pratas MI, Aguiar B, Vieira J, Nunes V, Teixeira V, Fonseca NA, Iezzoni A, van Nocker S, Vieira CP. Inferences on specificity recognition at the Malus×domestica gametophytic self-incompatibility system. Sci Rep 2018; 8:1717. [PMID: 29379047 PMCID: PMC5788982 DOI: 10.1038/s41598-018-19820-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/09/2018] [Indexed: 01/01/2023] Open
Abstract
In Malus × domestica (Rosaceae) the product of each SFBB gene (the pollen component of the gametophytic self-incompatibility (GSI) system) of a S-haplotype (the combination of pistil and pollen genes that are linked) interacts with a sub-set of non-self S-RNases (the pistil component), but not with the self S-RNase. To understand how the Malus GSI system works, we identified 24 SFBB genes expressed in anthers, and determined their gene sequence in nine M. domestica cultivars. Expression of these SFBBs was not detected in the petal, sepal, filament, receptacle, style, stigma, ovary or young leaf. For all SFBBs (except SFBB15), identical sequences were obtained only in cultivars having the same S-RNase. Linkage with a particular S-RNase was further established using the progeny of three crosses. Such data is needed to understand how other genes not involved in GSI are affected by the S-locus region. To classify SFBBs specificity, the amino acids under positive selection obtained when performing intra-haplotypic analyses were used. Using this information and the previously identified S-RNase positively selected amino acid sites, inferences are made on the S-RNase amino acid properties (hydrophobicity, aromatic, aliphatic, polarity, and size), at these positions, that are critical features for GSI specificity determination.
Collapse
Affiliation(s)
- Maria I Pratas
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Bruno Aguiar
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Jorge Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Vanessa Nunes
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Vanessa Teixeira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Nuno A Fonseca
- European Bioinformatics Institute (EMBL-EBI,) Welcome Trust Genome Campus, CB10 1SD, Cambridge, United Kingdom
| | - Amy Iezzoni
- Michigan State University, East Lansing, MI, 48824-1325, USA
| | | | - Cristina P Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
| |
Collapse
|
24
|
Swamy BPM, Shamsudin NAA, Rahman SNA, Mauleon R, Ratnam W, Sta. Cruz MT, Kumar A. Association Mapping of Yield and Yield-related Traits Under Reproductive Stage Drought Stress in Rice (Oryza sativa L.). RICE (NEW YORK, N.Y.) 2017; 10:21. [PMID: 28523639 PMCID: PMC5436998 DOI: 10.1186/s12284-017-0161-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 05/09/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND The identification and introgression of major-effect QTLs for grain yield under drought are some of the best and well-proven approaches for improving the drought tolerance of rice varieties. In the present study, we characterized Malaysian rice germplasm for yield and yield-related traits and identified significant trait marker associations by structured association mapping. RESULTS The drought screening was successful in screening germplasm with a yield reduction of up to 60% and heritability for grain yield under drought was up to 78%. There was a wider phenotypic and molecular diversity within the panel, indicating the suitability of the population for quantitative trait loci (QTL) mapping. Structure analyses clearly grouped the accessions into three subgroups with admixtures. Linkage disequilibrium (LD) analysis revealed that LD decreased with an increase in distance between marker pairs and the LD decay varied from 5-20 cM. The Mixed Linear model-based structured association mapping identified 80 marker trait associations (MTA) for grain yield (GY), plant height (PH) and days to flowering (DTF). Seven MTA were identified for GY under drought stress, four of these MTA were consistently identified in at least two of the three analyses. Most of these MTA identified were on chromosomes 2, 5, 10, 11 and 12, and their phenotypic variance (PV) varied from 5% to 19%. The in silico analysis of drought QTL regions revealed the association of several drought-responsive genes conferring drought tolerance. The major-effect QTLs are useful in marker-assisted QTL pyramiding to improve drought tolerance. CONCLUSION The results have clearly shown that structured association mapping is one of the feasible options to identify major-effect QTLs for drought tolerance-related traits in rice.
Collapse
Affiliation(s)
- B. P. Mallikarjuna Swamy
- Plant Breeding Division, International Rice Research Institute (IRRI), DAPO Box 7777 Metro Manila, Philippines
| | - Noraziyah Abd Aziz Shamsudin
- Plant Breeding Division, International Rice Research Institute (IRRI), DAPO Box 7777 Metro Manila, Philippines
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Site Noorzuraini Abd Rahman
- Plant Breeding Division, International Rice Research Institute (IRRI), DAPO Box 7777 Metro Manila, Philippines
- MARDI, Seberang Perai, P.O. Box No. 203, 13200 Kepala Batas, Pulau Pinang Malaysia
| | - Ramil Mauleon
- Plant Breeding Division, International Rice Research Institute (IRRI), DAPO Box 7777 Metro Manila, Philippines
| | - Wickneswari Ratnam
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Ma. Teressa Sta. Cruz
- Plant Breeding Division, International Rice Research Institute (IRRI), DAPO Box 7777 Metro Manila, Philippines
| | - Arvind Kumar
- Plant Breeding Division, International Rice Research Institute (IRRI), DAPO Box 7777 Metro Manila, Philippines
| |
Collapse
|
25
|
Swamy BPM, Shamsudin NAA, Rahman SNA, Mauleon R, Ratnam W, Sta Cruz MT, Kumar A. Association Mapping of Yield and Yield-related Traits Under Reproductive Stage Drought Stress in Rice (Oryza sativa L.). RICE (NEW YORK, N.Y.) 2017. [PMID: 28523639 DOI: 10.1186/s12284-017-0161-6©] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND The identification and introgression of major-effect QTLs for grain yield under drought are some of the best and well-proven approaches for improving the drought tolerance of rice varieties. In the present study, we characterized Malaysian rice germplasm for yield and yield-related traits and identified significant trait marker associations by structured association mapping. RESULTS The drought screening was successful in screening germplasm with a yield reduction of up to 60% and heritability for grain yield under drought was up to 78%. There was a wider phenotypic and molecular diversity within the panel, indicating the suitability of the population for quantitative trait loci (QTL) mapping. Structure analyses clearly grouped the accessions into three subgroups with admixtures. Linkage disequilibrium (LD) analysis revealed that LD decreased with an increase in distance between marker pairs and the LD decay varied from 5-20 cM. The Mixed Linear model-based structured association mapping identified 80 marker trait associations (MTA) for grain yield (GY), plant height (PH) and days to flowering (DTF). Seven MTA were identified for GY under drought stress, four of these MTA were consistently identified in at least two of the three analyses. Most of these MTA identified were on chromosomes 2, 5, 10, 11 and 12, and their phenotypic variance (PV) varied from 5% to 19%. The in silico analysis of drought QTL regions revealed the association of several drought-responsive genes conferring drought tolerance. The major-effect QTLs are useful in marker-assisted QTL pyramiding to improve drought tolerance. CONCLUSION The results have clearly shown that structured association mapping is one of the feasible options to identify major-effect QTLs for drought tolerance-related traits in rice.
Collapse
Affiliation(s)
- B P Mallikarjuna Swamy
- Plant Breeding Division, International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines
| | - Noraziyah Abd Aziz Shamsudin
- Plant Breeding Division, International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Site Noorzuraini Abd Rahman
- Plant Breeding Division, International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines
- MARDI, Seberang Perai, P.O. Box No. 203, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Ramil Mauleon
- Plant Breeding Division, International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines
| | - Wickneswari Ratnam
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Ma Teressa Sta Cruz
- Plant Breeding Division, International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines
| | - Arvind Kumar
- Plant Breeding Division, International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines.
| |
Collapse
|
26
|
Niu SC, Huang J, Zhang YQ, Li PX, Zhang GQ, Xu Q, Chen LJ, Wang JY, Luo YB, Liu ZJ. Lack of S-RNase-Based Gametophytic Self-Incompatibility in Orchids Suggests That This System Evolved after the Monocot-Eudicot Split. FRONTIERS IN PLANT SCIENCE 2017; 8:1106. [PMID: 28690630 PMCID: PMC5479900 DOI: 10.3389/fpls.2017.01106] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/07/2017] [Indexed: 05/25/2023]
Abstract
Self-incompatibility (SI) is found in approximately 40% of flowering plant species and at least 100 families. Although orchids belong to the largest angiosperm family, only 10% of orchid species present SI and have gametophytic SI (GSI). Furthermore, a majority (72%) of Dendrobium species, which constitute one of the largest Orchidaceae genera, show SI and have GSI. However, nothing is known about the molecular mechanism of GSI. The S-determinants of GSI have been well characterized at the molecular level in Solanaceae, Rosaceae, and Plantaginaceae, which use an S-ribonuclease (S-RNase)-based system. Here, we investigate the hypothesis that Orchidaceae uses a similar S-RNase to those described in Rosaceae, Solanaceae, and Plantaginaceae SI species. In this study, two SI species (Dendrobium longicornu and D. chrysanthum) were identified using fluorescence microscopy. Then, the S-RNase- and SLF-interacting SKP1-like1 (SSK1)-like genes present in their transcriptomes and the genomes of Phalaenopsis equestris, D. catenatum, Vanilla shenzhenica, and Apostasia shenzhenica were investigated. Sequence, phylogenetic, and tissue-specific expression analyses revealed that none of the genes identified was an S-determinant, suggesting that Orchidaceae might have a novel SI mechanism. The results also suggested that RNase-based GSI might have evolved after the split of monocotyledons (monocots) and dicotyledons (dicots) but before the split of Asteridae and Rosidae. This is also the first study to investigate S-RNase-based GSI in monocots. However, studies on gene identification, differential expression, and segregation analyses in controlled crosses are needed to further evaluate the genes with high expression levels in GSI tissues.
Collapse
Affiliation(s)
- Shan-Ce Niu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Graduate University of the Chinese Academy of SciencesBeijing, China
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Centre of China and The Orchid Conservation and Research Centre of ShenzhenShenzhen, China
| | - Jie Huang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Centre of China and The Orchid Conservation and Research Centre of ShenzhenShenzhen, China
| | - Yong-Qiang Zhang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Centre of China and The Orchid Conservation and Research Centre of ShenzhenShenzhen, China
| | - Pei-Xing Li
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Centre of China and The Orchid Conservation and Research Centre of ShenzhenShenzhen, China
| | - Guo-Qiang Zhang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Centre of China and The Orchid Conservation and Research Centre of ShenzhenShenzhen, China
| | - Qing Xu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Centre of China and The Orchid Conservation and Research Centre of ShenzhenShenzhen, China
| | - Li-Jun Chen
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Centre of China and The Orchid Conservation and Research Centre of ShenzhenShenzhen, China
| | - Jie-Yu Wang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Centre of China and The Orchid Conservation and Research Centre of ShenzhenShenzhen, China
| | - Yi-Bo Luo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Zhong-Jian Liu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Centre of China and The Orchid Conservation and Research Centre of ShenzhenShenzhen, China
- The Centre for Biotechnology and BioMedicine, Graduate School at Shenzhen, Tsinghua UniversityShenzhen, China
- College of Forestry and Landscape Architecture, South China Agricultural UniversityGuangzhou, China
- College of Arts, College of Landscape Architecture, Fujian Agriculture and Forestry UniversityFuzhou, China
| |
Collapse
|
27
|
Ma Y, Li Q, Hu G, Qin Y. Comparative transcriptional survey between self-incompatibility and self-compatibility in Citrus reticulata Blanco. Gene 2017; 609:52-61. [PMID: 28137595 DOI: 10.1016/j.gene.2017.01.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/23/2017] [Accepted: 01/26/2017] [Indexed: 11/27/2022]
Abstract
Seedlessness is an excellent economical trait, and self-incompatibility (SI) is one of important factors resulting in seedless fruit in Citrus. However, SI molecular mechanism in Citrus is still unclear. In this study, RNA-Seq technology was used to identify differentially expressed genes related to SI reaction of 'Wuzishatangju' (Citrus reticulata Blanco). A total of 35.67GB raw RNA-Seq data was generated and was de novo assembled into 50,364 unigenes with an average length of 897bp and N50 value of 1549. Twenty-three candidate unigenes related to SI were analyzed using qPCR at different tissues and stages after self- and cross-pollination. Seven pollen S genes (Unigene0050323, Unigene0001060, Unigene0004230, Unigene0004222, Unigene0012037, Unigene0048889 and Unigene0004272), three pistil S genes (Unigene0019191, Unigene0040115, Unigene0036542) and three genes (Unigene0038751, Unigene0031435 and Unigene0029897) associated with the pathway of ubiquitin-mediated proteolysis were identified. Unigene0031435, Unigene0038751 and Unigene0029897 are probably involved in SI reaction of 'Wuzishatangju' based on expression analyses. The present study provides a new insight into the molecular mechanism of SI in Citrus at the transcriptional level.
Collapse
Affiliation(s)
- Yuewen Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Qiulei Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yonghua Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
28
|
Wang GM, Yin H, Qiao X, Tan X, Gu C, Wang BH, Cheng R, Wang YZ, Zhang SL. F-box genes: Genome-wide expansion, evolution and their contribution to pollen growth in pear (Pyrus bretschneideri). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 253:164-175. [PMID: 27968985 DOI: 10.1016/j.plantsci.2016.09.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 06/06/2023]
Abstract
F-box gene family, as one of the largest gene families in plants, plays crucial roles in regulating plant development, reproduction, cellular protein degradation and responses to biotic and abiotic stresses. However, comprehensive analysis of the F-box gene family in pear (Pyrus bretschneideri Rehd.) and other Rosaceae species has not been reported yet. Herein, we identified a total of 226 full-length F-box genes in pear for the first time. And these genes were further divided into various subgroups based on specific domains and phylogenetic analysis. Intriguingly, we observed that whole-genome duplication and dispersed duplication have a major contribution to F-box family expansion. Furthermore, the dynamic evolution for different modes of gene duplication was dissected. Interestingly, we found that dispersed and tandem duplicate have been evolving at a high rate. In addition, we found that F-box genes exhibited functional specificity based on GO analysis, and most of the F-box genes were significantly enriched in the protein binding (GO: 0005515) term, supporting that F-box genes might play a critical role for gene regulation in pear. Transcriptome and digital expression profiles revealed that F-box genes are involved in the development of multiple pear tissues. Overall, these results will set stage for elaborating the biological role of F-box genes in pear and other plants.
Collapse
Affiliation(s)
- Guo-Ming Wang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Yin
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Qiao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Xu Tan
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Chao Gu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Bao-Hua Wang
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Rui Cheng
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying-Zhen Wang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Ling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
29
|
Li W, Yang Q, Gu Z, Wu C, Meng D, Yu J, Chen Q, Li Y, Yuan H, Wang D, Li T. Molecular and genetic characterization of a self-compatible apple cultivar, 'CAU-1'. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:162-175. [PMID: 27717452 DOI: 10.1016/j.plantsci.2016.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
In this study, we characterized a naturally occurring self-compatible apple cultivar, 'CAU-1' (S1S9), and studied the underlying mechanism that causes its compatibility. Analyses of both fruit set rate and seed number after self-pollination or cross-pollination with 'Fuji' (S1S9), and of pollen tube growth, demonstrated that 'CAU-1' is self-compatible. Genetic analysis by S-RNase PCR-typing of selfed progeny of 'CAU-1' revealed the presence of all progeny classes (S1S1, S1S9, and S9S9). Moreover, no evidence of S-allele duplication was found. These findings support the hypothesis that loss of function of an S-locus unlinked pollen-part mutation (PPM) expressed in pollen, rather than a natural mutation in the pollen-S gene (S1- and S9- haplotype), leads to SI breakdown in 'CAU-1'. In addition, there were no significant differences in pollen morphology or fertility between 'Fuji' and 'CAU-1'. However, we found that the effect of S1- and S9-RNase on the SI behavior of pollen could not be addressed better in 'CAU-1' than in 'Fuji'. Furthermore, we found that a pollen-expressed hexose transporter, MdHT1, interacted with S-RNases and showed significantly less expression in 'CAU-1' than in 'Fuji' pollen tubes. These findings support the hypothesis that MdHT1 may participate in S-RNase internalization during the SI process, and decrease of MdHT1 expression in 'CAU-1' hindered the release of self S-RNase into the cytoplasm of pollen tubes, thereby protecting pollen from the cytotoxicity of S-RNase, finally probably resulting in self-compatibility. Together, these findings indicate that S-locus external factors are required for gametophytic SI in the Rosaceae subtribe Pyrinae.
Collapse
Affiliation(s)
- Wei Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Qing Yang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Zhaoyu Gu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chuanbao Wu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Dong Meng
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jie Yu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Qiuju Chen
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yang Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Hui Yuan
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Dongmei Wang
- Institute of Pomology, Liaoning Academy of Agricultural Sciences, Yingkou 115009, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
30
|
Fujii S, Kubo KI, Takayama S. Non-self- and self-recognition models in plant self-incompatibility. NATURE PLANTS 2016; 2:16130. [PMID: 27595657 DOI: 10.1038/nplants.2016.130] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 07/22/2016] [Indexed: 05/25/2023]
Abstract
The mechanisms by which flowering plants choose their mating partners have interested researchers for a long time. Recent findings on the molecular mechanisms of non-self-recognition in some plant species have provided new insights into self-incompatibility (SI), the trait used by a wide range of plant species to avoid self-fertilization and promote outcrossing. In this Review, we compare the known SI systems, which can be largely classified into non-self- or self-recognition systems with respect to their molecular mechanisms, their evolutionary histories and their modes of evolution. We review previous controversies on haplotype evolution in the gametophytic SI system of Solanaceae species in light of a recently elucidated non-self-recognition model. In non-self-recognition SI systems, the transition from self-compatibility (SC) to SI may be more common than previously thought. Reversible transition between SI and SC in plants may have contributed to their adaptation to diverse and fluctuating environments.
Collapse
Affiliation(s)
- Sota Fujii
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Ken-Ichi Kubo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Seiji Takayama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| |
Collapse
|
31
|
Matsumoto D, Tao R. Recognition of a wide-range of S-RNases by S locus F-box like 2, a general-inhibitor candidate in the Prunus-specific S-RNase-based self-incompatibility system. PLANT MOLECULAR BIOLOGY 2016; 91:459-69. [PMID: 27071402 DOI: 10.1007/s11103-016-0479-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/04/2016] [Indexed: 05/27/2023]
Abstract
Many species in the Rosaceae, the Solanaceae, and the Plantaginaceae exhibit S-RNase-based gametophytic self-incompatibility (GSI). This system comprises S-ribonucleases (S-RNases) as the pistil S determinant and a single or multiple F-box proteins as the pollen S determinants. In Prunus, pollen specificity is determined by a single S haplotype-specific F-box protein (SFB). The results of several studies suggested that SFB exerts cognate S-RNase cytotoxicity, and a hypothetical general inhibitor (GI) is assumed to detoxify S-RNases in non-specific manner unless it is affected by SFB. Although the identity of the GI is unknown, phylogenetic and evolutionary analyses have indicated that S locus F-box like 1-3 (or S locus F-box with low allelic sequence polymorphism 1-3; SLFL1-3), which are encoded by a region of the Prunus genome linked to the S locus, are good GI candidates. Here, we examined the biochemical characteristics of SLFL1-3 to determine whether they have appropriate GI characteristics. Pull-down assays and quantitative expression analyses indicated that Prunus avium SLFL1-3 mainly formed a canonical SCF complex with PavSSK1 and PavCul1A. Binding assays with PavS(1,3,4,6)-RNases showed that PavSLFL1, PavSLFL2, and PavSLFL3 bound to PavS(3)-RNase, all PavS-RNases tested, and none of the PavS-RNases tested, respectively. Together, these results suggested that SLFL2 has the appropriate characteristics to be the GI in sweet cherry pollen, while SLFL1 may redundantly work with SLFL2 to detoxify all S-RNases. We discuss the possible roles of SLFL1-3 as the GI in the Prunus-specific S-RNase-based GSI mechanism.
Collapse
Affiliation(s)
- Daiki Matsumoto
- Faculty of Agriculture, Yamagata University, Tsuruoka, 997-8555, Japan
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
32
|
Akagi T, Henry IM, Morimoto T, Tao R. Insights into the Prunus-Specific S-RNase-Based Self-Incompatibility System from a Genome-Wide Analysis of the Evolutionary Radiation of S Locus-Related F-box Genes. PLANT & CELL PHYSIOLOGY 2016; 57:1281-1294. [PMID: 27081098 DOI: 10.1093/pcp/pcw077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/06/2016] [Indexed: 06/05/2023]
Abstract
Self-incompatibility (SI) is an important plant reproduction mechanism that facilitates the maintenance of genetic diversity within species. Three plant families, the Solanaceae, Rosaceae and Plantaginaceae, share an S-RNase-based gametophytic SI (GSI) system that involves a single S-RNase as the pistil S determinant and several F-box genes as pollen S determinants that act via non-self-recognition. Previous evidence has suggested a specific self-recognition mechanism in Prunus (Rosaceae), raising questions about the generality of the S-RNase-based GSI system. We investigated the evolution of the pollen S determinant by comparing the sequences of the Prunus S haplotype-specific F-box gene (SFB) with those of its orthologs in other angiosperm genomes. Our results indicate that the Prunus SFB does not cluster with the pollen S of other plants and diverged early after the establishment of the Eudicots. Our results further indicate multiple F-box gene duplication events, specifically in the Rosaceae family, and suggest that the Prunus SFB gene originated in a recent Prunus-specific gene duplication event. Transcriptomic and evolutionary analyses of the Prunus S paralogs are consistent with the establishment of a Prunus-specific SI system, and the possibility of subfunctionalization differentiating the newly generated SFB from the original pollen S determinant.
Collapse
Affiliation(s)
- Takashi Akagi
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan Department of Plant Biology and Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Isabelle M Henry
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Takuya Morimoto
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Ryutaro Tao
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
33
|
Sassa H. Molecular mechanism of the S-RNase-based gametophytic self-incompatibility in fruit trees of Rosaceae. BREEDING SCIENCE 2016; 66:116-21. [PMID: 27069396 PMCID: PMC4780795 DOI: 10.1270/jsbbs.66.116] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/11/2015] [Indexed: 05/07/2023]
Abstract
Self-incompatibility (SI) is a major obstacle for stable fruit production in fruit trees of Rosaceae. SI of Rosaceae is controlled by the S locus on which at least two genes, pistil S and pollen S, are located. The product of the pistil S gene is a polymorphic and extracellular ribonuclease, called S-RNase, while that of the pollen S gene is a protein containing the F-box motif, SFB (S haplotype-specific F-box protein)/SFBB (S locus F-box brothers). Recent studies suggested that SI of Rosaceae includes two different systems, i.e., Prunus of tribe Amygdaleae exhibits a self-recognition system in which its SFB recognizes self-S-RNase, while tribe Pyreae (Pyrus and Malus) shows a non-self-recognition system in which many SFBB proteins are involved in SI, each recognizing subset of non-self-S-RNases. Further biochemical and biological characterization of the S locus genes, as well as other genes required for SI not located at the S locus, will help our understanding of the molecular mechanisms, origin, and evolution of SI of Rosaceae, and may provide the basis for breeding of self-compatible fruit tree cultivars.
Collapse
|
34
|
Manzanares C, Barth S, Thorogood D, Byrne SL, Yates S, Czaban A, Asp T, Yang B, Studer B. A Gene Encoding a DUF247 Domain Protein Cosegregates with the S Self-Incompatibility Locus in Perennial Ryegrass. Mol Biol Evol 2015; 33:870-84. [PMID: 26659250 DOI: 10.1093/molbev/msv335] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The grass family (Poaceae), the fourth largest family of flowering plants, encompasses the most economically important cereal, forage, and energy crops, and exhibits a unique gametophytic self-incompatibility (SI) mechanism that is controlled by at least two multiallelic and independent loci, S and Z. Despite intense research efforts over the last six decades, the genes underlying S and Z remain uncharacterized. Here, we report a fine-mapping approach to identify the male component of the S-locus in perennial ryegrass (Lolium perenne L.) and provide multiple evidence that a domain of unknown function 247 (DUF247) gene is involved in its determination. Using a total of 10,177 individuals from seven different mapping populations segregating for S, we narrowed the S-locus to a genomic region containing eight genes, the closest recombinant marker mapping at a distance of 0.016 cM. Of the eight genes cosegregating with the S-locus, a highly polymorphic gene encoding for a protein containing a DUF247 was fully predictive of known S-locus genotypes at the amino acid level in the seven mapping populations. Strikingly, this gene showed a frameshift mutation in self-compatible darnel (Lolium temulentum L.), whereas all of the self-incompatible species of the Festuca-Lolium complex were predicted to encode functional proteins. Our results represent a major step forward toward understanding the gametophytic SI system in one of the most important plant families and will enable the identification of additional components interacting with the S-locus.
Collapse
Affiliation(s)
- Chloé Manzanares
- Forage Crop Genetics, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland Teagasc Crops, Environment and Land Use Programme, Oak Park Research Centre, Carlow, Ireland Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, United Kingdom
| | - Susanne Barth
- Teagasc Crops, Environment and Land Use Programme, Oak Park Research Centre, Carlow, Ireland
| | - Daniel Thorogood
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, United Kingdom
| | - Stephen L Byrne
- Department of Molecular Biology and Genetics, Research Centre Flakkebjerg, Aarhus University, Slagelse, Denmark
| | - Steven Yates
- Forage Crop Genetics, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Adrian Czaban
- Department of Molecular Biology and Genetics, Research Centre Flakkebjerg, Aarhus University, Slagelse, Denmark
| | - Torben Asp
- Department of Molecular Biology and Genetics, Research Centre Flakkebjerg, Aarhus University, Slagelse, Denmark
| | - Bicheng Yang
- BGI-Shenzhen, Building 1, Beishan Industrial Zone, Yantian District, Shenzhen, China
| | - Bruno Studer
- Forage Crop Genetics, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Jia F, Wang C, Huang J, Yang G, Wu C, Zheng C. SCF E3 ligase PP2-B11 plays a positive role in response to salt stress in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4683-97. [PMID: 26041321 PMCID: PMC4507775 DOI: 10.1093/jxb/erv245] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Skp1-Cullin-F-box (SCF) E3 ligases are essential to the post-translational regulation of many important factors involved in cellular signal transduction. In this study, we identified an F-box protein from Arabidopsis thaliana, AtPP2-B11, which was remarkably induced with increased duration of salt treatment in terms of both transcript and protein levels. Transgenic Arabidopsis plants overexpressing AtPP2-B11 exhibited obvious tolerance to high salinity, whereas the RNA interference line was more sensitive to salt stress than wild-type plants. Isobaric tag for relative and absolute quantification analysis revealed that 4311 differentially expressed proteins were regulated by AtPP2-B11 under salt stress. AtPP2-B11 could upregulate the expression of annexin1 (AnnAt1) and function as a molecular link between salt stress and reactive oxygen species accumulation in Arabidopsis. Moreover, AtPP2-B11 influenced the expression of Na(+) homeostasis genes under salt stress, and the AtPP2-B11 overexpressing lines exhibited lower Na(+) accumulation. These results suggest that AtPP2-B11 functions as a positive regulator in response to salt stress in Arabidopsis.
Collapse
Affiliation(s)
- Fengjuan Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Chunyan Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Guodong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Changai Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| |
Collapse
|
36
|
Aguiar B, Vieira J, Cunha AE, Vieira CP. No evidence for Fabaceae Gametophytic self-incompatibility being determined by Rosaceae, Solanaceae, and Plantaginaceae S-RNase lineage genes. BMC PLANT BIOLOGY 2015; 15:129. [PMID: 26032621 PMCID: PMC4451870 DOI: 10.1186/s12870-015-0497-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 04/20/2015] [Indexed: 05/30/2023]
Abstract
BACKGROUND Fabaceae species are important in agronomy and livestock nourishment. They have a long breeding history, and most cultivars have lost self-incompatibility (SI), a genetic barrier to self-fertilization. Nevertheless, to improve legume crop breeding, crosses with wild SI relatives of the cultivated varieties are often performed. Therefore, it is fundamental to characterize Fabaceae SI system(s). We address the hypothesis of Fabaceae gametophytic (G)SI being RNase based, by recruiting the same S-RNase lineage gene of Rosaceae, Solanaceae or Plantaginaceae SI species. RESULTS We first identify SSK1 like genes (described only in species having RNase based GSI), in the Trifolium pratense, Medicago truncatula, Cicer arietinum, Glycine max, and Lupinus angustifolius genomes. Then, we characterize the S-lineage T2-RNase genes in these genomes. In T. pratense, M. truncatula, and C. arietinum we identify S-RNase lineage genes that in phylogenetic analyses cluster with Pyrinae S-RNases. In M. truncatula and C. arietinum genomes, where large scaffolds are available, these sequences are surrounded by F-box genes that in phylogenetic analyses also cluster with S-pollen genes. In T. pratense the S-RNase lineage genes show, however, expression in tissues not involved in GSI. Moreover, levels of diversity are lower than those observed for other S-RNase genes. The M. truncatula and C. arietinum S-RNase and S-pollen like genes phylogenetically related to Pyrinae S-genes, are also expressed in tissues other than those involved in GSI. To address if other T2-RNases could be determining Fabaceae GSI, here we obtained a style with stigma transcriptome of Cytisus striatus, a species that shows significant difference on the percentage of pollen growth in self and cross-pollinations. Expression and polymorphism analyses of the C. striatus S-RNase like genes revealed that none of these genes, is the S-pistil gene. CONCLUSION We find no evidence for Fabaceae GSI being determined by Rosaceae, Solanaceae, and Plantaginaceae S-RNase lineage genes. There is no evidence that T2-RNase lineage genes could be determining GSI in C. striatus. Therefore, to characterize the Fabaceae S-pistil gene(s), expression analyses, levels of diversity, and segregation analyses in controlled crosses are needed for those genes showing high expression levels in the tissues where GSI occurs.
Collapse
Affiliation(s)
- Bruno Aguiar
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho 245, Porto, Portugal.
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, Porto, 4150-180, Portugal.
| | - Jorge Vieira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho 245, Porto, Portugal.
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, Porto, 4150-180, Portugal.
| | - Ana E Cunha
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho 245, Porto, Portugal.
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, Porto, 4150-180, Portugal.
| | - Cristina P Vieira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho 245, Porto, Portugal.
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, Porto, 4150-180, Portugal.
| |
Collapse
|
37
|
Nashima K, Terakami S, Nishio S, Kunihisa M, Nishitani C, Saito T, Yamamoto T. S-genotype identification based on allele-specific PCR in Japanese pear. BREEDING SCIENCE 2015; 65:208-15. [PMID: 26175617 PMCID: PMC4482170 DOI: 10.1270/jsbbs.65.208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/27/2015] [Indexed: 05/20/2023]
Abstract
Gametophytic self-incompatibility in Japanese pear (Pyrus pyrifolia Nakai) is controlled by the single, multi-allelic S-locus. Information about the S-genotypes is important for breeding and the selection of pollen donors for fruit production. Rapid and reliable S-genotype identification system is necessary for efficient breeding of new cultivars in Japanese pear. We designed S allele-specific PCR primer pairs for ten previously reported S-RNase alleles (S (1)-S (9) and S (k)) as simple and reliable method. Specific nucleotide sequences were chosen to design the primers to amplify fragments of only the corresponding S alleles. The developed primer pairs were evaluated by using homozygous S-genotypes (S (1)/S (1)-S (9)/S (9) and S (4sm)/S (4sm)) and 14 major Japanese pear cultivars, and found that S allele-specific primer pairs can identify S-genotypes effectively. The S allele-specific primer pairs developed in this study will be useful for efficient S-genotyping and for marker-assisted selection in Japanese pear breeding programs.
Collapse
|
38
|
Aguiar B, Vieira J, Cunha AE, Fonseca NA, Iezzoni A, van Nocker S, Vieira CP. Convergent evolution at the gametophytic self-incompatibility system in Malus and Prunus. PLoS One 2015; 10:e0126138. [PMID: 25993016 PMCID: PMC4438004 DOI: 10.1371/journal.pone.0126138] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/30/2015] [Indexed: 12/24/2022] Open
Abstract
S-RNase-based gametophytic self-incompatibility (GSI) has evolved once before the split of the Asteridae and Rosidae. This conclusion is based on the phylogenetic history of the S-RNase that determines pistil specificity. In Rosaceae, molecular characterizations of Prunus species, and species from the tribe Pyreae (i.e., Malus, Pyrus, Sorbus) revealed different numbers of genes determining S-pollen specificity. In Prunus only one pistil and pollen gene determine GSI, while in Pyreae there is one pistil but multiple pollen genes, implying different specificity recognition mechanisms. It is thus conceivable that within Rosaceae the genes involved in GSI in the two lineages are not orthologous but possibly paralogous. To address this hypothesis we characterised the S-RNase lineage and S-pollen lineage genes present in the genomes of five Rosaceae species from three genera: M. × domestica (apple, self-incompatible (SI); tribe Pyreae), P. persica (peach, self-compatible (SC); Amygdaleae), P. mume (mei, SI; Amygdaleae), Fragaria vesca (strawberry, SC; Potentilleae), and F. nipponica (mori-ichigo, SI; Potentilleae). Phylogenetic analyses revealed that the Malus and Prunus S-RNase and S-pollen genes belong to distinct gene lineages, and that only Prunus S-RNase and SFB-lineage genes are present in Fragaria. Thus, S-RNase based GSI system of Malus evolved independently from the ancestral system of Rosaceae. Using expression patterns based on RNA-seq data, the ancestral S-RNase lineage gene is inferred to be expressed in pistils only, while the ancestral S-pollen lineage gene is inferred to be expressed in tissues other than pollen.
Collapse
Affiliation(s)
- Bruno Aguiar
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Jorge Vieira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana E. Cunha
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Nuno A. Fonseca
- CRACS-INESC Porto, Rua do Campo Alegre 1021/1055, 4169–007, Porto, Portugal
- European Bioinformatics Institute (EMBL-EBI), Welcome Trust Genome Campus, CB10 1SD, Cambridge, United Kingdom
| | - Amy Iezzoni
- Michigan State University, East Lansing, Michigan, United States of America
| | - Steve van Nocker
- Michigan State University, East Lansing, Michigan, United States of America
| | - Cristina P. Vieira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
39
|
Minamikawa MF, Koyano R, Kikuchi S, Koba T, Sassa H. Identification of SFBB-containing canonical and noncanonical SCF complexes in pollen of apple (Malus × domestica). PLoS One 2014; 9:e97642. [PMID: 24847858 PMCID: PMC4029751 DOI: 10.1371/journal.pone.0097642] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/22/2014] [Indexed: 12/04/2022] Open
Abstract
Gametophytic self-incompatibility (GSI) of Rosaceae, Solanaceae and Plantaginaceae is controlled by a single polymorphic S locus. The S locus contains at least two genes, S-RNase and F-box protein encoding gene SLF/SFB/SFBB that control pistil and pollen specificity, respectively. Generally, the F-box protein forms an E3 ligase complex, SCF complex with Skp1, Cullin1 (CUL1) and Rbx1, however, in Petunia inflata, SBP1 (S-RNase binding protein1) was reported to play the role of Skp1 and Rbx1, and form an SCFSLF-like complex for ubiquitination of non-self S-RNases. On the other hand, in Petunia hybrida and Petunia inflata of Solanaceae, Prunus avium and Pyrus bretschneideri of Rosaceae, SSK1 (SLF-interacting Skp1-like protein1) is considered to form the SCFSLF/SFB complex. Here, we isolated pollen-expressed apple homologs of SSK1 and CUL1, and named MdSSK1, MdCUL1A and MdCUL1B. MdSSK1 was preferentially expressed in pollen, but weakly in other organs analyzed, while, MdCUL1A and MdCUL1B were almost equally expressed in all the organs analyzed. MdSSK1 transcript abundance was significantly (>100 times) higher than that of MdSBP1. In vitro binding assays showed that MdSSK1 and MdSBP1 interacted with MdSFBB1-S9 and MdCUL1, and MdSFBB1-S9 interacted more strongly with MdSSK1 than with MdSBP1. The results suggest that both MdSSK1-containing SCFSFBB1 and MdSBP1-containing SCFSFBB1-like complexes function in pollen of apple, and the former plays a major role.
Collapse
Affiliation(s)
- Mai F. Minamikawa
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Ruriko Koyano
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Shinji Kikuchi
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Takato Koba
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Hidenori Sassa
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| |
Collapse
|
40
|
Mase N, Sawamura Y, Yamamoto T, Takada N, Nishio S, Saito T, Iketani H. A segmental duplication encompassing S-haplotype triggers pollen-part self-compatibility in Japanese pear ( Pyrus pyrifolia). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2014; 33:117-128. [PMID: 24482602 PMCID: PMC3890579 DOI: 10.1007/s11032-013-9938-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 08/02/2013] [Indexed: 05/13/2023]
Abstract
Self-compatible mutants of self-incompatible crops have been extensively studied for research and agricultural purposes. Until now, the only known pollen-part self-compatible mutants in Rosaceae subtribe Pyrinae, which contains many important fruit trees, were polyploid. This study revealed that the pollen-part self-compatibility of breeding selection 415-1, a recently discovered mutant of Japanese pear (Pyrus pyrifolia) derived from γ-irradiated pollen, is caused by a duplication of an S-haplotype. In the progeny of 415-1, some plants had three S-haplotypes, two of which were from the pollen parent. Thus, 415-1 was able to produce pollen with two S-haplotypes, even though it was found to be diploid: the relative nuclear DNA content measured by flow cytometry showed no significant difference from that of a diploid cultivar. Inheritance patterns of simple sequence repeat (SSR) alleles in the same linkage group as the S-locus (LG 17) showed that some SSRs closely linked to S-haplotypes were duplicated in progeny containing the duplicated S-haplotype. These results indicate that the pollen-part self-compatibility of 415-1 is not caused by a mutation of pollen S factors in either one of the S-haplotypes, but by a segmental duplication encompassing the S-haplotype. Consequently, 415-1 can produce S-heteroallelic pollen grains that are capable of breaking down self-incompatibility (SI) by competitive interaction between the two different S factors in the pollen grain. 415-1 is the first diploid pollen-part self-compatible mutant with a duplicated S-haplotype to be discovered in the Pyrinae. The fact that 415-1 is not polyploid makes it particularly valuable for further studies of SI mechanisms.
Collapse
Affiliation(s)
- Nobuko Mase
- NARO Institute of Fruit Tree Science, National Agriculture and Food Research Organization, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605 Japan
- Graduate School of Life and Environmental Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572 Japan
| | - Yutaka Sawamura
- NARO Institute of Fruit Tree Science, National Agriculture and Food Research Organization, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605 Japan
| | - Toshiya Yamamoto
- NARO Institute of Fruit Tree Science, National Agriculture and Food Research Organization, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605 Japan
- Graduate School of Life and Environmental Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572 Japan
| | - Norio Takada
- NARO Institute of Fruit Tree Science, National Agriculture and Food Research Organization, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605 Japan
| | - Sogo Nishio
- NARO Institute of Fruit Tree Science, National Agriculture and Food Research Organization, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605 Japan
| | - Toshihiro Saito
- NARO Institute of Fruit Tree Science, National Agriculture and Food Research Organization, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605 Japan
| | - Hiroyuki Iketani
- NARO Institute of Fruit Tree Science, National Agriculture and Food Research Organization, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605 Japan
- Graduate School of Life and Environmental Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572 Japan
| |
Collapse
|
41
|
Hanada T, Watari A, Kibe T, Yamane H, Wünsch A, Gradziel TM, Sasabe Y, Yaegaki H, Yamaguchi M, Tao R. Two Novel Self-compatible S Haplotypes in Peach (Prunus persica). ACTA ACUST UNITED AC 2014. [DOI: 10.2503/jjshs1.ch-099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Wu J, Li M, Li T. Genetic features of the spontaneous self-compatible mutant, 'Jin Zhui' (Pyrus bretschneideri Rehd.). PLoS One 2013; 8:e76509. [PMID: 24116113 PMCID: PMC3792025 DOI: 10.1371/journal.pone.0076509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 08/26/2013] [Indexed: 11/18/2022] Open
Abstract
‘Jin Zhui’ is a spontaneous self-compatible mutant of ‘Ya Li’ (Pyrus bretschneideri Rehd. S21S34), the latter displaying a typical S-RNase-based gametophytic self-incompatibility (GSI). The pollen-part mutation (PPM) of ‘Jin Zhui’ might be due to a natural mutation in the pollen-S gene (S34 haplotype). However, the molecular mechanisms behind these phenotypic changes are still unclear. In this study, we identified five SLF (S-Locus F-box) genes in ‘Ya Li’, while no nucleotide differences were found in the SLF genes of ‘Jin Zhui’. Further genetic analysis by S-RNase PCR-typing of selfed progeny of ‘Jin Zhui’ and ‘Ya Li’ × ‘Jin Zhui’ progeny showed three progeny classes (S21S21, S21S34 and S34S34) as opposed to the two classes reported previously (S21S34 and S34S34), indicating that the pollen gametes of ‘Jin Zhui’, bearing either the S21- or S34-haplotype, were able to overcome self-incompatibility (SI) barriers. Moreover, no evidence of pollen-S duplication was found. These findings support the hypothesis that loss of function of S-locus unlinked PPM expressed in pollen leads to SI breakdown in ‘Jin Zhui’, rather than natural mutation in the pollen-S gene (S34 haplotype). Furthermore, abnormal meiosis was observed in a number of pollen mother cells (PMCs) in ‘Jin Zhui’, but not in ‘Ya Li’. These and other interesting findings are discussed.
Collapse
Affiliation(s)
- Junkai Wu
- Laboratory of Fruit Tree Cell and Molecular Breeding, China Agricultural University, Beijing, China
| | - Maofu Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- * E-mail: (MFL); (TZL)
| | - Tianzhong Li
- Laboratory of Fruit Tree Cell and Molecular Breeding, China Agricultural University, Beijing, China
- * E-mail: (MFL); (TZL)
| |
Collapse
|
43
|
Wang PP, Gao ZH, Ni ZJ, Zhang Z, Cai BH. Self-compatibility in 'Zaohong' Japanese apricot is associated with the loss of function of pollen S genes. Mol Biol Rep 2013; 40:6485-93. [PMID: 24062077 PMCID: PMC3824209 DOI: 10.1007/s11033-013-2765-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 09/14/2013] [Indexed: 11/02/2022]
Abstract
While most Japanese apricot (Prunus mume Sieb. et Zucc.) cultivars display typical S-RNase-based gametophytic self-incompatibility, some self-compatible (SC) cultivars have also been identified. In this study, we confirmed SC of 'Zaohong' through replicated self-pollination tests. Cross-pollination tests showed that SC of 'Zaohong' was caused by a loss of pollen function, so we determined that the S-genotype of 'Zaohong' was S 2 S 15 . Sequence analysis of the S-haplotypes of 'Zaohong' showed no mutations which were likely to alter gene function. Furthermore, expression analysis based on RT-PCR of S-locus genes revealed no differences at the transcript level when compared with 'Xiyeqing', a self-incompatible cultivar with the same S haplotypes. In addition, except for S-locus genes, a new type of F-box gene encoding a previously uncharacterised protein with high sequence similarity (61.03-64.65 %) to Prunus SFB genes was identified. Putative structural regions of PmF-box genes have been described, corresponding to regions in PmSFB alleles, but with some sequence variations. These results suggest that SC in 'Zaohong' occurs in pollen, and that other factors outside the S-locus, including PmF-box genes, might be associated with the loss of function of pollen S genes.
Collapse
Affiliation(s)
- Pei-Pei Wang
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing City, 210095, Jiangsu Province, People's Republic of China
| | | | | | | | | |
Collapse
|
44
|
Tsuchimatsu T, Shimizu KK. Effects of pollen availability and the mutation bias on the fixation of mutations disabling the male specificity of self-incompatibility. J Evol Biol 2013; 26:2221-32. [PMID: 23980527 DOI: 10.1111/jeb.12219] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 01/19/2023]
Abstract
The evolution of self-compatibility (SC) by the loss of self-incompatibility (SI) is regarded as one of the most frequent transitions in flowering plants. SI systems are generally characterized by specific interactions between the male and female specificity genes encoded at the S-locus. Recent empirical studies have revealed that the evolution of SC is often driven by male SC-conferring mutations at the S-locus rather than by female mutations. In this study, using a forward simulation model, we compared the fixation probabilities of male vs. female SC-conferring mutations at the S-locus. We explicitly considered the effects of pollen availability in the population and bias in the occurrence of SC-conferring mutations on the male and female specificity genes. We found that male SC-conferring mutations were indeed more likely to be fixed than were female SC-conferring mutations in a wide range of parameters. This pattern was particularly strong when pollen availability was relatively high. Under such a condition, even if the occurrence of mutations was biased strongly towards the female specificity gene, male SC-conferring mutations were much more often fixed. Our study demonstrates that fixation probabilities of those two types of mutation vary strongly depending on ecological and genetic conditions, although both types result in the same evolutionary consequence-the loss of SI.
Collapse
Affiliation(s)
- T Tsuchimatsu
- Institute of Evolutionary Biology and Environmental Studies, Institute of Plant Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland; Gregor Mendel Institute, Austrian Academy of Sciences, Vienna, Austria
| | | |
Collapse
|
45
|
Genome-wide identification and characterisation of F-box family in maize. Mol Genet Genomics 2013; 288:559-77. [PMID: 23928825 DOI: 10.1007/s00438-013-0769-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
Abstract
F-box-containing proteins, as the key components of the protein degradation machinery, are widely distributed in higher plants and are considered as one of the largest known families of regulatory proteins. The F-box protein family plays a crucial role in plant growth and development and in response to biotic and abiotic stresses. However, systematic analysis of the F-box family in maize (Zea mays) has not been reported yet. In this paper, we identified and characterised the maize F-box genes in a genome-wide scale, including phylogenetic analysis, chromosome distribution, gene structure, promoter analysis and gene expression profiles. A total of 359 F-box genes were identified and divided into 15 subgroups by phylogenetic analysis. The F-box domain was relatively conserved, whereas additional motifs outside the F-box domain may indicate the functional diversification of maize F-box genes. These genes were unevenly distributed in ten maize chromosomes, suggesting that they expanded in the maize genome because of tandem and segmental duplication events. The expression profiles suggested that the maize F-box genes had temporal and spatial expression patterns. Putative cis-acting regulatory DNA elements involved in abiotic stresses were observed in maize F-box gene promoters. The gene expression profiles under abiotic stresses also suggested that some genes participated in stress responsive pathways. Furthermore, ten genes were chosen for quantitative real-time PCR analysis under drought stress and the results were consistent with the microarray data. This study has produced a comparative genomics analysis of the maize ZmFBX gene family that can be used in further studies to uncover their roles in maize growth and development.
Collapse
|
46
|
Okada K, Moriya S, Haji T, Abe K. Isolation and characterization of multiple F-box genes linked to the S9- and S10-RNase in apple (Malus × domestica Borkh.). PLANT REPRODUCTION 2013; 26:101-111. [PMID: 23686223 DOI: 10.1007/s00497-013-0212-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/28/2013] [Indexed: 06/02/2023]
Abstract
Using 11 consensus primer pairs designed from S-linked F-box genes of apple and Japanese pear, 10 new F-box genes (MdFBX21 to 30) were isolated from the apple cultivar 'Spartan' (S(9)S(10)). MdFBX21 to 23 and MdFBX24 to 30 were completely linked to the S(9) -RNase and S(10-)RNase, respectively, and showed pollen-specific expression and S-haplotype-specific polymorphisms. Therefore, these 10 F-box genes are good candidates for the pollen determinant of self-incompatibility in apple. Phylogenetic analysis and comparison of deduced amino acid sequences of MdFBX21 to 30 with those of 25 S-linked F-box genes previously isolated from apple showed that a deduced amino acid identity of greater than 88.0 % can be used as the tentative criterion to classify F-box genes into one type. Using this criterion, 31 of 35 F-box genes of apple were classified into 11 types (SFBB1-11). All types included F-box genes derived from S(3-) and S(9-)haplotypes, and seven types included F-box genes derived from S(3-), S(9-), and S(10-)haplotypes. Moreover, comparison of nucleotide sequences of S-RNases and multiple F-box genes among S(3-), S(9-), and S(10-)haplotypes suggested that F-box genes within each type showed high nucleotide identity regardless of the identity of the S-RNase. The large number of F-box genes as candidates for the pollen determinant and the high degree of conservation within each type are consistent with the collaborative non-self-recognition model reported for Petunia. These findings support that the collaborative non-self-recognition system also exists in apple.
Collapse
Affiliation(s)
- Kazuma Okada
- Apple Research Station, NARO Institute of Fruit Tree Science, Morioka, Iwate, 020-0123, Japan.
| | | | | | | |
Collapse
|
47
|
Aguiar B, Vieira J, Cunha AE, Fonseca NA, Reboiro-Jato D, Reboiro-Jato M, Fdez-Riverola F, Raspé O, Vieira CP. Patterns of evolution at the gametophytic self-incompatibility Sorbus aucuparia (Pyrinae) S pollen genes support the non-self recognition by multiple factors model. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2423-34. [PMID: 23606363 PMCID: PMC3654429 DOI: 10.1093/jxb/ert098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
S-RNase-based gametophytic self-incompatibility evolved once before the split of the Asteridae and Rosidae. In Prunus (tribe Amygdaloideae of Rosaceae), the self-incompatibility S-pollen is a single F-box gene that presents the expected evolutionary signatures. In Malus and Pyrus (subtribe Pyrinae of Rosaceae), however, clusters of F-box genes (called SFBBs) have been described that are expressed in pollen only and are linked to the S-RNase gene. Although polymorphic, SFBB genes present levels of diversity lower than those of the S-RNase gene. They have been suggested as putative S-pollen genes, in a system of non-self recognition by multiple factors. Subsets of allelic products of the different SFBB genes interact with non-self S-RNases, marking them for degradation, and allowing compatible pollinations. This study performed a detailed characterization of SFBB genes in Sorbus aucuparia (Pyrinae) to address three predictions of the non-self recognition by multiple factors model. As predicted, the number of SFBB genes was large to account for the many S-RNase specificities. Secondly, like the S-RNase gene, the SFBB genes were old. Thirdly, amino acids under positive selection-those that could be involved in specificity determination-were identified when intra-haplotype SFBB genes were analysed using codon models. Overall, the findings reported here support the non-self recognition by multiple factors model.
Collapse
Affiliation(s)
- Bruno Aguiar
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Rua do Campo Alegre 823, 4150–180 Porto, Portugal
| | - Jorge Vieira
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Rua do Campo Alegre 823, 4150–180 Porto, Portugal
| | - Ana E. Cunha
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Rua do Campo Alegre 823, 4150–180 Porto, Portugal
| | - Nuno A. Fonseca
- CRACS-INESC Porto, Rua do Campo Alegre 1021/1055, 4169-007 Porto, Portugal
| | - David Reboiro-Jato
- Escuela Superior de Ingeniería Informática, Edificio Politécnico, Campus Universitario As Lagoas s/n, University of Vigo, 32004 Ourense, Spain
| | - Miguel Reboiro-Jato
- Escuela Superior de Ingeniería Informática, Edificio Politécnico, Campus Universitario As Lagoas s/n, University of Vigo, 32004 Ourense, Spain
| | - Florentino Fdez-Riverola
- Escuela Superior de Ingeniería Informática, Edificio Politécnico, Campus Universitario As Lagoas s/n, University of Vigo, 32004 Ourense, Spain
| | - Olivier Raspé
- National Botanic Garden of Belgium, Domein van Bouchout, B-1860 Meise, Belgium
| | - Cristina P. Vieira
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Rua do Campo Alegre 823, 4150–180 Porto, Portugal
| |
Collapse
|
48
|
Miao H, Ye Z, Teixeira da Silva JA, Qin Y, Hu G. Identifying differentially expressed genes in pollen from self-incompatible "Wuzishatangju" and self-compatible "Shatangju" mandarins. Int J Mol Sci 2013; 14:8538-55. [PMID: 23595002 PMCID: PMC3645760 DOI: 10.3390/ijms14048538] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/02/2013] [Accepted: 04/07/2013] [Indexed: 02/05/2023] Open
Abstract
Self-incompatibility (SI) is one of the important factors that can result in seedless fruit in Citrus. However, the molecular mechanism of SI in Citrus is not yet clear. In this study, two suppression subtractive hybridization (SSH) libraries (forward, F and reverse, R) were constructed to isolate differentially expressed genes in pollen from "Wuzishatangju" (SI) and "Shatangju" (self-compatibility, SC) mandarins. Four hundred and sixty-eight differentially expressed cDNA clones from 2077 positive clones were sequenced and identified. Differentially expressed ESTs are possibly involved in the SI reaction of "Wuzishatangju" by regulating pollen development, kinase activity, ubiquitin pathway, pollen-pistil interaction, and calcium ion binding. Twenty five SI candidate genes were obtained, six of which displayed specific expression patterns in various organs and stages after self- and cross-pollination. The expression level of the F-box gene (H304) and S1 (F78) in the pollen of "Wuzishatangju" was 5-fold higher than that in "Shatangju" pollen. The F-box gene, S1, UBE2, UBE3, RNaseHII, and PCP were obviously up-regulated in pistils at 3 d after self-pollination of "Wuzishatangju", approximately 3-, 2-, 10-, 5-, 5-, and 2-fold higher, respectively than that at the same stage after cross-pollination of "Wuzishatangju" × "Shatangju" pistils. The potential involvement of these genes in the pollen SI reaction of "Wuzishatangju" is discussed.
Collapse
Affiliation(s)
- Hongxia Miao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; E-Mail:
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China of Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; E-Mail:
| | - Zixing Ye
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China of Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; E-Mail:
| | - Jaime A. Teixeira da Silva
- Faculty of Agriculture and Graduate School of Agriculture, Kagawa University, Ikenobe, Kagawa 761-0795, Japan; E-Mail:
| | - Yonghua Qin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China of Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; E-Mail:
| | - Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; E-Mail:
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China of Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; E-Mail:
| |
Collapse
|
49
|
Inheritance of hetero-diploid pollen S-haplotype in self-compatible tetraploid Chinese cherry (Prunus pseudocerasus Lindl). PLoS One 2013; 8:e61219. [PMID: 23596519 PMCID: PMC3626605 DOI: 10.1371/journal.pone.0061219] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/08/2013] [Indexed: 11/19/2022] Open
Abstract
The breakdown of self-incompatibility, which could result from the accumulation of non-functional S-haplotypes or competitive interaction between two different functional S-haplotypes, has been studied extensively at the molecular level in tetraploid Rosaceae species. In this study, two tetraploid Chinese cherry (Prunus pseudocerasus) cultivars and one diploid sweet cherry (Prunus avium) cultivar were used to investigate the ploidy of pollen grains and inheritance of pollen-S alleles. Genetic analysis of the S-genotypes of two intercross-pollinated progenies showed that the pollen grains derived from Chinese cherry cultivars were hetero-diploid, and that the two S-haplotypes were made up of every combination of two of the four possible S-haplotypes. Moreover, the distributions of single S-haplotypes expressed in self- and intercross-pollinated progenies were in disequilibrium. The number of individuals of the two different S-haplotypes was unequal in two self-pollinated and two intercross-pollinated progenies. Notably, the number of individuals containing two different S-haplotypes (S1- and S5-, S5- and S8-, S1- and S4-haplotype) was larger than that of other individuals in the two self-pollinated progenies, indicating that some of these hetero-diploid pollen grains may have the capability to inactivate stylar S-RNase inside the pollen tube and grow better into the ovaries.
Collapse
|
50
|
Wang CL, Zhang ZP, Tonosaki K, Kitashiba H, Nishio T. S genotyping in Japanese plum and sweet cherry by allele-specific hybridization using streptavidin-coated magnetic beads. PLANT CELL REPORTS 2013; 32:567-576. [PMID: 23338476 DOI: 10.1007/s00299-013-1388-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/07/2013] [Accepted: 01/07/2013] [Indexed: 06/01/2023]
Abstract
We report a rapid and reliable method for S genotyping of Rosaceae fruit trees, which would to be useful for successful planting of cross-compatible cultivars in orchards. Japanese plum (Prunus salicina) and sweet cherry (Prunus avium), belonging to the family Rosaceae, possess gametophytic self-incompatibility controlled by a single polymorphic locus containing at least two linked genes, S-RNase and SFB (S-haplotype-specific F-box gene). For successful planting of cross-compatible cultivars of Rosaceae fruit trees in commercial orchards, it is necessary to obtain information on S genotypes of cultivars. Recently, a method of dot-blot analysis utilizing allele-specific oligonucleotides having sequences of SFB-HVa region has been developed for identification of S haplotypes in Japanese plum and sweet cherry. However, dot-blot hybridization requires considerable time and skill for analysis even of a small number of plant samples. Thus, a quick and efficient method for S genotyping was developed in this study. In this method, instead of a nylon membrane used for dot-blot hybridization, streptavidin-coated magnetic beads are used to immobilize PCR products, which are hybridized with allele-specific oligonucleotide probes. Our improved method allowed us to identify 10 S haplotypes (S-a, S-b, S-c, S-d, S-e, S-f, S-h, S-k, S-7 and S-10) of 13 Japanese plum cultivars and 10 S haplotypes (S-1, S-2, S-3, S-4, S-4', S-5, S-6, S-7, S-9 and S-16) of 13 sweet cherry cultivars utilizing SFB or S-RNase gene polymorphism. This method would be suitable for identification of S genotypes of a small number of plant samples.
Collapse
Affiliation(s)
- Chun-Lei Wang
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, Miyagi, 981-8555, Japan
| | | | | | | | | |
Collapse
|