1
|
Powers J, Zhang X, Reyes AV, Zavaliev R, Ochakovski R, Xu SL, Dong X. Next-generation mapping of the salicylic acid signaling hub and transcriptional cascade. MOLECULAR PLANT 2024; 17:1558-1572. [PMID: 39180213 PMCID: PMC11540436 DOI: 10.1016/j.molp.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/27/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
For over 60 years, salicylic acid (SA) has been known as a plant immune signal required for basal and systemic acquired resistance. SA activates these immune responses by reprogramming ∼20% of the transcriptome through NPR1. However, components in the NPR1 signaling hub, which appears as nuclear condensates, and the NPR1 signaling cascade have remained elusive due to difficulties in studying this transcriptional cofactor, whose chromatin association is indirect and likely transient. To overcome this challenge, we applied TurboID to divulge the NPR1 proxiome, which detected almost all known NPR1 interactors as well as new components of transcription-related complexes. Testing of new components showed that chromatin remodeling and histone demethylation contribute to SA-induced resistance. Globally, the NPR1 proxiome has a striking similarity to the proxiome of GBPL3 that is involved in SA synthesis, except for associated transcription factors (TFs), suggesting that common regulatory modules are recruited to reprogram specific transcriptomes by transcriptional cofactors, like NPR1, through binding to unique TFs. Stepwise green fluorescent protein-tagged factor cleavage under target and release using nuclease (greenCUT&RUN) analyses showed that, upon SA induction, NPR1 initiates the transcriptional cascade primarily through association with TGACG-binding TFs to induce expression of secondary TFs, predominantly WRKYs. Further, WRKY54 and WRKY70 were identified to play a major role in inducing immune-output genes without interacting with NPR1 at the chromatin. Moreover, loss of condensate formation function of NPR1 decreases its chromatin association and transcriptional activity, indicating the importance of condensates in organizing the NPR1 signaling hub and initiating the transcriptional cascade. Collectively, this study demonstrates how combinatorial applications of TurboID and stepwise greenCUT&RUN transcend traditional genetic methods to globally map signaling hubs and transcriptional cascades for in-depth explorations.
Collapse
Affiliation(s)
- Jordan Powers
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Xing Zhang
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Andres V Reyes
- Carnegie Institute for Science, Stanford University, Stanford, CA 94305, USA
| | - Raul Zavaliev
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Roni Ochakovski
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Shou-Ling Xu
- Carnegie Institute for Science, Stanford University, Stanford, CA 94305, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
2
|
Oh ES, Park H, Lee K, Shim D, Oh MH. Comparison of Root Transcriptomes against Clubroot Disease Pathogens in a Resistant Chinese Cabbage Cultivar ( Brassica rapa cv. 'Akimeki'). PLANTS (BASEL, SWITZERLAND) 2024; 13:2167. [PMID: 39124284 PMCID: PMC11314269 DOI: 10.3390/plants13152167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Clubroot, caused by Plasmodiophora brassicae, is one of the diseases that causes major economic losses in cruciferous crops worldwide. Although prevention strategies, including soil pH adjustment and crop rotation, have been used, the disease's long persistence and devastating impact continuously remain in the soil. CR varieties were developed for clubroot-resistant (CR) Chinese cabbage, and 'Akimeki' is one of the clubroot disease-resistant cultivars. However, recent studies have reported susceptibility to several Korean pathotypes in Akimeki and the destruction of the resistance to P. brassicae in many Brassica species against CR varieties, requiring the understanding of more fine-tuned plant signaling by fungal pathogens. In this study, we focused on the early molecular responses of Akimeki during infection with two P. brassicae strains, Seosan (SS) and Hoengseong2 (HS2), using RNA sequencing (RNA-seq). Among a total of 2358 DEGs, 2037 DEGs were differentially expressed following SS and HS2 infection. Gene ontology (GO) showed that 1524 and 513 genes were up-regulated following SS and HS2 inoculations, respectively. Notably, the genes of defense response and jasmonic acid regulations were enriched in the SS inoculation condition, and the genes of water transport and light intensity response were enriched in the HS2 inoculation condition. Moreover, KEGG pathways revealed that the gene expression set were related to pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) mechanisms. The results will provide valuable information for developing CR cultivars in Brassica plants.
Collapse
Affiliation(s)
- Eun-Seok Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea; (E.-S.O.); (H.P.)
| | - Hyeonseon Park
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea; (E.-S.O.); (H.P.)
| | - Kwanuk Lee
- Department of Biology, College of Natural Sciences, Jeju National University, Jeju 63243, Republic of Korea;
| | - Donghwan Shim
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea; (E.-S.O.); (H.P.)
| | - Man-Ho Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea; (E.-S.O.); (H.P.)
| |
Collapse
|
3
|
Luo J, Havé M, Soulay F, Balliau T, Clément G, Tellier F, Zivy M, Avice JC, Masclaux-Daubresse C. Multi-omics analyses of sid2 mutant reflect the need of isochorismate synthase ICS1 to cope with sulfur limitation in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1635-1651. [PMID: 38498624 DOI: 10.1111/tpj.16702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
The SID2 (SA INDUCTION-DEFICIENT2) gene that encodes ICS1 (isochorismate synthase), plays a central role in salicylic acid biosynthesis in Arabidopsis. The sid2 and NahG (encoding a bacterial SA hydroxylase) overexpressing mutants (NahG-OE) have currently been shown to outperform wild type, presenting delayed leaf senescence, higher plant biomass and better seed yield. When grown under sulfate-limited conditions (low-S), sid2 mutants exhibited early leaf yellowing compared to the NahG-OE, the npr1 mutant affected in SA signaling pathway, and WT. This indicated that the hypersensitivity of sid2 to sulfate limitation was independent of the canonical npr1 SA-signaling pathway. Transcriptomic and proteomic analyses revealed that major changes occurred in sid2 when cultivated under low-S, changes that were in good accordance with early senescence phenotype and showed the exacerbation of stress responses. The sid2 mutants displayed a lower sulfate uptake capacity when cultivated under low-S and lower S concentrations in their rosettes. Higher glutathione concentrations in sid2 rosettes under low-S were in good accordance with the higher abundance of proteins involved in glutathione and ascorbate redox metabolism. Amino acid and lipid metabolisms were also strongly modified in sid2 under low-S. Depletion of total fatty acids in sid2 under low-S was consistent with the fact that S-metabolism plays a central role in lipid synthesis. Altogether, our results show that functional ICS1 is important for plants to cope with S limiting conditions.
Collapse
Affiliation(s)
- Jie Luo
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Marien Havé
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Fabienne Soulay
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Thierry Balliau
- UMR GQE- le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Gilles Clément
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Frédérique Tellier
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Michel Zivy
- UMR GQE- le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Jean-Christophe Avice
- UMR 950 EVA (Ecophysiologie Végétale & Agronomie), INRAE, Normandie Université (UNICAEN), Federation of Research Normandie Végétal (Fed4277 NORVEGE), 14032, Caen, France
| | - Céline Masclaux-Daubresse
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| |
Collapse
|
4
|
Yun SH, Khan IU, Noh B, Noh YS. Genomic overview of INA-induced NPR1 targeting and transcriptional cascades in Arabidopsis. Nucleic Acids Res 2024; 52:3572-3588. [PMID: 38261978 DOI: 10.1093/nar/gkae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024] Open
Abstract
The phytohormone salicylic acid (SA) triggers transcriptional reprogramming that leads to SA-induced immunity in plants. NPR1 is an SA receptor and master transcriptional regulator in SA-triggered transcriptional reprogramming. Despite the indispensable role of NPR1, genome-wide direct targets of NPR1 specific to SA signaling have not been identified. Here, we report INA (functional SA analog)-specific genome-wide targets of Arabidopsis NPR1 in plants expressing GFP-fused NPR1 under its native promoter. Analyses of NPR1-dependently expressed direct NPR1 targets revealed that NPR1 primarily activates genes encoding transcription factors upon INA treatment, triggering transcriptional cascades required for INA-induced transcriptional reprogramming and immunity. We identified genome-wide targets of a histone acetyltransferase, HAC1, including hundreds of co-targets shared with NPR1, and showed that NPR1 and HAC1 regulate INA-induced histone acetylation and expression of a subset of the co-targets. Genomic NPR1 targeting was principally mediated by TGACG-motif binding protein (TGA) transcription factors. Furthermore, a group of NPR1 targets mostly encoding transcriptional regulators was already bound to NPR1 in the basal state and showed more rapid and robust induction than other NPR1 targets upon SA signaling. Thus, our study unveils genome-wide NPR1 targeting, its role in transcriptional reprogramming, and the cooperativity between NPR1, HAC1, and TGAs in INA-induced immunity.
Collapse
Affiliation(s)
- Se-Hun Yun
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Korea
| | - Irfan Ullah Khan
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Korea
| | - Bosl Noh
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea
| | - Yoo-Sun Noh
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
5
|
Ali J, Tonğa A, Islam T, Mir S, Mukarram M, Konôpková AS, Chen R. Defense strategies and associated phytohormonal regulation in Brassica plants in response to chewing and sap-sucking insects. FRONTIERS IN PLANT SCIENCE 2024; 15:1376917. [PMID: 38645389 PMCID: PMC11026728 DOI: 10.3389/fpls.2024.1376917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024]
Abstract
Plants have evolved distinct defense strategies in response to a diverse range of chewing and sucking insect herbivory. While chewing insect herbivores, exemplified by caterpillars and beetles, cause visible tissue damage and induce jasmonic acid (JA)-mediated defense responses, sucking insects, such as aphids and whiteflies, delicately tap into the phloem sap and elicit salicylic acid (SA)-mediated defense responses. This review aims to highlight the specificity of defense strategies in Brassica plants and associated underlying molecular mechanisms when challenged by herbivorous insects from different feeding guilds (i.e., chewing and sucking insects). To establish such an understanding in Brassica plants, the typical defense responses were categorized into physical, chemical, and metabolic adjustments. Further, the impact of contrasting feeding patterns on Brassica is discussed in context to unique biochemical and molecular modus operandi that governs the resistance against chewing and sucking insect pests. Grasping these interactions is crucial to developing innovative and targeted pest management approaches to ensure ecosystem sustainability and Brassica productivity.
Collapse
Affiliation(s)
- Jamin Ali
- College of Plant Protection, Jilin Agricultural University, Changchun, China
- School of Life Sciences, Keele University, Newcastle-Under-Lyme, United Kingdom
| | - Adil Tonğa
- Entomology Department, Diyarbakır Plant Protection Research Institute, Diyarbakir, Türkiye
| | - Tarikul Islam
- Department of Entomology, Bangladesh Agricultural University, Mymensingh, Bangladesh
- Department of Entomology, Rutgers University, New Brunswick, NJ, United States
| | - Sajad Mir
- Entomology Section, Sher-E-Kashmir University of Agricultural Science and Technology, Kashmir, India
| | - Mohammad Mukarram
- Food and Plant Biology Group, Department of Plant Biology, Universidad de la República, Montevideo, Uruguay
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Alena Sliacka Konôpková
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
| | - Rizhao Chen
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| |
Collapse
|
6
|
Leber R, Heuberger M, Widrig V, Jung E, Paux E, Keller B, Sánchez-Martín J. A diverse panel of 755 bread wheat accessions harbors untapped genetic diversity in landraces and reveals novel genetic regions conferring powdery mildew resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:88. [PMID: 38532180 PMCID: PMC10965746 DOI: 10.1007/s00122-024-04582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
KEY MESSAGE A bread wheat panel reveals rich genetic diversity in Turkish, Pakistani and Iranian landraces and novel resistance loci to diverse powdery mildew isolates via subsetting approaches in association studies. Wheat breeding for disease resistance relies on the availability and use of diverse genetic resources. More than 800,000 wheat accessions are globally conserved in gene banks, but they are mostly uncharacterized for the presence of resistance genes and their potential for agriculture. Based on the selective reduction of previously assembled collections for allele mining for disease resistance, we assembled a trait-customized panel of 755 geographically diverse bread wheat accessions with a focus on landraces, called the LandracePLUS panel. Population structure analysis of this panel based on the TaBW35K SNP array revealed an increased genetic diversity compared to 632 landraces genotyped in an earlier study and 17 high-quality sequenced wheat accessions. The additional genetic diversity found here mostly originated from Turkish, Iranian and Pakistani landraces. We characterized the LandracePLUS panel for resistance to ten diverse isolates of the fungal pathogen powdery mildew. Performing genome-wide association studies and dividing the panel further by a targeted subsetting approach for accessions of distinct geographical origin, we detected several known and already cloned genes, including the Pm2a gene. In addition, we identified 22 putatively novel powdery mildew resistance loci that represent useful sources for resistance breeding and for research on the mildew-wheat pathosystem. Our study shows the value of assembling trait-customized collections and utilizing a diverse range of pathogen races to detect novel loci. It further highlights the importance of integrating landraces of different geographical origins into future diversity studies.
Collapse
Affiliation(s)
- Rebecca Leber
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Matthias Heuberger
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Victoria Widrig
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, 37007, Salamanca, Spain
| | - Esther Jung
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Etienne Paux
- Université Clermont Auvergne, INRAE, GDEC, 63000, Clermont-Ferrand, France
- VetAgro Sup Campus Agronomique, 63370, Lempdes, France
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| | - Javier Sánchez-Martín
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
7
|
Palukaitis P, Yoon JY. Defense signaling pathways in resistance to plant viruses: Crosstalk and finger pointing. Adv Virus Res 2024; 118:77-212. [PMID: 38461031 DOI: 10.1016/bs.aivir.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Resistance to infection by plant viruses involves proteins encoded by plant resistance (R) genes, viz., nucleotide-binding leucine-rich repeats (NLRs), immune receptors. These sensor NLRs are activated either directly or indirectly by viral protein effectors, in effector-triggered immunity, leading to induction of defense signaling pathways, resulting in the synthesis of numerous downstream plant effector molecules that inhibit different stages of the infection cycle, as well as the induction of cell death responses mediated by helper NLRs. Early events in this process involve recognition of the activation of the R gene response by various chaperones and the transport of these complexes to the sites of subsequent events. These events include activation of several kinase cascade pathways, and the syntheses of two master transcriptional regulators, EDS1 and NPR1, as well as the phytohormones salicylic acid, jasmonic acid, and ethylene. The phytohormones, which transit from a primed, resting states to active states, regulate the remainder of the defense signaling pathways, both directly and by crosstalk with each other. This regulation results in the turnover of various suppressors of downstream events and the synthesis of various transcription factors that cooperate and/or compete to induce or suppress transcription of either other regulatory proteins, or plant effector molecules. This network of interactions results in the production of defense effectors acting alone or together with cell death in the infected region, with or without the further activation of non-specific, long-distance resistance. Here, we review the current state of knowledge regarding these processes and the components of the local responses, their interactions, regulation, and crosstalk.
Collapse
Affiliation(s)
- Peter Palukaitis
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| | - Ju-Yeon Yoon
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
8
|
Lu C, Liu X, Tang Y, Fu Y, Zhang J, Yang L, Li P, Zhu Z, Dong P. A comprehensive review of TGA transcription factors in plant growth, stress responses, and beyond. Int J Biol Macromol 2024; 258:128880. [PMID: 38141713 DOI: 10.1016/j.ijbiomac.2023.128880] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/17/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
TGA transcription factors (TFs), belonging to the D clade of the basic region leucine zipper (bZIP) family, exhibit a specific ability to recognize and bind to regulatory elements with TGACG as the core recognition sequence, enabling the regulation of target gene expression and participation in various biological regulatory processes. In plant growth and development, TGA TFs influence organ traits and phenotypes, including initial root length and flowering time. They also play a vital role in responding to abiotic stresses like salt, drought, and cadmium exposure. Additionally, TGA TFs are involved in defending against potential biological stresses, such as fungal bacterial diseases and nematodes. Notably, TGA TFs are sensitive to the oxidative-reductive state within plants and participate in pathways that aid in the elimination of reactive oxygen species (ROS) generated during stressful conditions. TGA TFs also participate in multiple phytohormonal signaling pathways (ABA, SA, etc.). This review thoroughly examines the roles of TGA TFs in plant growth, development, and stress response. It also provides detailed insights into the mechanisms underlying their involvement in physiological and pathological processes, and their participation in plant hormone signaling. This multifaceted exploration distinguishes this review from others, offering a comprehensive understanding of TGA TFs.
Collapse
Affiliation(s)
- Chenfei Lu
- School of Life Sciences, Chongqing University, Chongqing 401331, China; College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Xingyu Liu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yuqin Tang
- College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Yingqi Fu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Jiaomei Zhang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Liting Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Peihua Li
- College of Agronomy, Xichang University, Xichang, Sichuan 615013, China
| | - Zhenglin Zhu
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Pan Dong
- School of Life Sciences, Chongqing University, Chongqing 401331, China; Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400716, China.
| |
Collapse
|
9
|
Powers J, Zhang X, Reyes AV, Zavaliev R, Xu SL, Dong X. Next-generation mapping of the salicylic acid signaling hub and transcriptional cascade. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574047. [PMID: 38260692 PMCID: PMC10802274 DOI: 10.1101/2024.01.03.574047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
For over 60 years, salicylic acid (SA) has been known as a plant immune signal required for both basal and systemic acquired resistance (SAR). SA activates these immune responses by reprogramming up to 20% of the transcriptome through the function of NPR1. However, components in the NPR1-signaling hub, which appears as nuclear condensates, and the NPR1- signaling cascade remained elusive due to difficulties in studying transcriptional cofactors whose chromatin associations are often indirect and transient. To overcome this challenge, we applied TurboID to divulge the NPR1-proxiome, which detected almost all known NPR1-interactors as well as new components of transcription-related complexes. Testing of new components showed that chromatin remodeling and histone demethylation contribute to SA-induced resistance. Globally, NPR1-proxiome shares a striking similarity to GBPL3-proxiome involved in SA synthesis, except associated transcription factors (TFs), suggesting that common regulatory modules are recruited to reprogram specific transcriptomes by transcriptional cofactors, like NPR1, through binding to unique TFs. Stepwise greenCUT&RUN analyses showed that, upon SA-induction, NPR1 initiates the transcriptional cascade primarily through association with TGA TFs to induce expression of secondary TFs, predominantly WRKYs. WRKY54 and WRKY70 then play a major role in inducing immune-output genes without interacting with NPR1 at the chromatin. Moreover, a loss of NPR1 condensate formation decreases its chromatin-association and transcriptional activity, indicating the importance of condensates in organizing the NPR1- signaling hub and initiating the transcriptional cascade. This study demonstrates how combinatorial applications of TurboID and stepwise greenCUT&RUN transcend traditional genetic methods to globally map signaling hubs and transcriptional cascades.
Collapse
Affiliation(s)
- Jordan Powers
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Xing Zhang
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Andres V. Reyes
- Carnegie Institute for Science, Stanford University, Stanford, CA 94305, USA
| | - Raul Zavaliev
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Shou-Ling Xu
- Carnegie Institute for Science, Stanford University, Stanford, CA 94305, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| |
Collapse
|
10
|
Backer R, Naidoo S, van den Berg N. The expression of the NPR1-dependent defense response pathway genes in Persea americana (Mill.) following infection with Phytophthora cinnamomi. BMC PLANT BIOLOGY 2023; 23:548. [PMID: 37936068 PMCID: PMC10631175 DOI: 10.1186/s12870-023-04541-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023]
Abstract
A plant's defense against pathogens involves an extensive set of phytohormone regulated defense signaling pathways. The salicylic acid (SA)-signaling pathway is one of the most well-studied in plant defense. The bulk of SA-related defense gene expression and the subsequent establishment of systemic acquired resistance (SAR) is dependent on the nonexpressor of pathogenesis-related genes 1 (NPR1). Therefore, understanding the NPR1 pathway and all its associations has the potential to provide valuable insights into defense against pathogens. The causal agent of Phytophthora root rot (PRR), Phytophthora cinnamomi, is of particular importance to the avocado (Persea americana) industry, which encounters considerable economic losses on account of this pathogen each year. Furthermore, P. cinnamomi is a hemibiotrophic pathogen, suggesting that the SA-signaling pathway plays an essential role in the initial defense response. Therefore, the NPR1 pathway which regulates downstream SA-induced gene expression would be instrumental in defense against P. cinnamomi. Thus, we identified 92 NPR1 pathway-associated orthologs from the P. americana West Indian pure accession genome and interrogated their expression following P. cinnamomi inoculation, using RNA-sequencing data. In total, 64 and 51 NPR1 pathway-associated genes were temporally regulated in the partially resistant (Dusa®) and susceptible (R0.12) P. americana rootstocks, respectively. Furthermore, 42 NPR1 pathway-associated genes were differentially regulated when comparing Dusa® to R0.12. Although this study suggests that SAR was established successfully in both rootstocks, the evidence presented indicated that Dusa® suppressed SA-signaling more effectively following the induction of SAR. Additionally, contrary to Dusa®, data from R0.12 suggested a substantial lack of SA- and NPR1-related defense gene expression during some of the earliest time-points following P. cinnamomi inoculation. This study represents the most comprehensive investigation of the SA-induced, NPR1-dependent pathway in P. americana to date. Lastly, this work provides novel insights into the likely mechanisms governing P. cinnamomi resistance in P. americana.
Collapse
Affiliation(s)
- Robert Backer
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Noëlani van den Berg
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa.
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa.
- Forestry and Agricultural Biotechnology Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
11
|
Li M, Dong X, Long G, Zhang Z, Han C, Wang Y. Genome-Wide Analysis of Q-Type C2H2 ZFP Genes in Response to Biotic and Abiotic Stresses in Sugar Beet. BIOLOGY 2023; 12:1309. [PMID: 37887019 PMCID: PMC10604892 DOI: 10.3390/biology12101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
A plant's Q-type C2H2-type ZFP plays key roles in plant growth and development and responses to biotic and abiotic stresses. Sugar beet (Beta vulgaris L.) is an important crop for sugar production. Salt stress and viral infection significantly reduce the root yield and sugar content of sugar beet. However, there is a lack of comprehensive genome-wide analyses of Q-type C2H2 ZFPs and their expression patterns in sugar beet under stress. In this study, 35 sugar beet Q-type C2H2 ZFPs (BvZFPs) containing at least one conserved "QALGGH" motif were identified via bioinformatics techniques using TBtools software. According to their evolutionary relationship, the BvZFPs were classified into five subclasses. Within each subclass, the physicochemical properties and motif compositions showed strong similarities. A Ka/Ks analysis indicated that the BvZFPs were conserved during evolution. Promoter cis-element analysis revealed that most BvZFPs are associated with elements related to phytohormone, biotic or abiotic stress, and plant development. The expression data showed that the BvZFPs in sugar beet are predominantly expressed in the root. In addition, BvZFPs are involved in the response to abiotic and biotic stresses, including salt stress and viral infection. Overall, these results will extend our understanding of the Q-type C2H2 gene family and provide valuable information for the biological breeding of sugar beet against abiotic and biotic stresses in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.L.); (X.D.); (G.L.); (Z.Z.); (C.H.)
| |
Collapse
|
12
|
Kozyulina PY, Pavlova OA, Kantsurova (Rudaya) ES, Bovin AD, Shirobokova SA, Dolgikh AV, Dymo AM, Dolgikh EA. Transcriptomic analysis of pea plant responses to chitooligosaccharides' treatment revealed stimulation of mitogen-activated protein kinase cascade. FRONTIERS IN PLANT SCIENCE 2023; 14:1092013. [PMID: 36968377 PMCID: PMC10030943 DOI: 10.3389/fpls.2023.1092013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Since chitooligosaccharides (COs) are water-soluble, biodegradable and nontoxic compounds, their application may be considered as a promising plant-protecting agent. However, the molecular and cellular modes of action of COs are not yet understood. In this study, transcriptional changes in pea roots treated with COs were investigated via RNA sequencing. Pea roots treated with the deacetylated CO8-DA at low concentration (10-5 М) were harvested 24 h after treatment and their expression profiles were compared against medium-treated control plants. We observed 886 differentially expressed genes (fold change ≥ 1; p-value < 0.05) 24 h after treatment with CO8-DA. Gene Ontology term over-representation analysis allowed us to identify the molecular functions of the genes activated in response to CO8-DA treatment and their relation to biological processes. Our findings suggest that calcium signaling regulators and MAPK cascade play a key role in pea plant responses to treatment. Here we found two MAPKKKs, the PsMAPKKK5 and PsMAPKKK20, which might function redundantly in the CO8-DA-activated signaling pathway. In accordance with this suggestion, we showed that PsMAPKKK knockdown decreases resistance to pathogenic Fusarium culmorum fungi. Therefore, analysis showed that typical regulators of intracellular signal transduction pathways involved in triggering of plant responses via CERK1 receptors to chitin/COs in Arabidopsis and rice may also be recruited in legume pea plants.
Collapse
|
13
|
Kim TJ, Lim GH. Salicylic Acid and Mobile Regulators of Systemic Immunity in Plants: Transport and Metabolism. PLANTS (BASEL, SWITZERLAND) 2023; 12:1013. [PMID: 36903874 PMCID: PMC10005269 DOI: 10.3390/plants12051013] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Systemic acquired resistance (SAR) occurs when primary infected leaves produce several SAR-inducing chemical or mobile signals that are transported to uninfected distal parts via apoplastic or symplastic compartments and activate systemic immunity. The transport route of many chemicals associated with SAR is unknown. Recently, it was demonstrated that pathogen-infected cells preferentially transport salicylic acid (SA) through the apoplasts to uninfected areas. The pH gradient and deprotonation of SA may lead to apoplastic accumulation of SA before it accumulates in the cytosol following pathogen infection. Additionally, SA mobility over a long distance is essential for SAR, and transpiration controls the partitioning of SA into apoplasts and cuticles. On the other hand, glycerol-3-phosphate (G3P) and azelaic acid (AzA) travel via the plasmodesmata (PD) channel in the symplastic route. In this review, we discuss the role of SA as a mobile signal and the regulation of SA transport in SAR.
Collapse
Affiliation(s)
- Tae-Jin Kim
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Gah-Hyun Lim
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
14
|
Wang D, Chai G, Xu L, Yang K, Zhuang Y, Yang A, Liu S, Kong Y, Zhou G. Phosphorylation-mediated inactivation of C3H14 by MPK4 enhances bacterial-triggered immunity in Arabidopsis. PLANT PHYSIOLOGY 2022; 190:1941-1959. [PMID: 35736512 PMCID: PMC9614498 DOI: 10.1093/plphys/kiac300] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Perception of pathogen-associated molecular patterns (PAMPs) triggers mitogen-activated protein (MAP) kinase 4 (MPK4)-mediated phosphorylation and induces downstream transcriptional reprogramming, but the mechanisms of the MPK4 defense pathway are poorly understood. Here, we showed that phosphorylation-mediated inactivation of the CCCH protein C3H14 by MPK4 positively regulates the immune response in Arabidopsis (Arabidopsis thaliana). Compared with wild-type plants, loss-of-function mutations in C3H14 and its paralog C3H15 resulted in enhanced defense against Pst DC3000 in infected leaves and the development of systemic acquired resistance (SAR), whereas C3H14 or C3H15 overexpression enhanced susceptibility to this pathogen and failed to induce SAR. The functions of C3H14 in PAMP-triggered immunity (PTI) and SAR were dependent on MPK4-mediated phosphorylation. Challenge with Pst DC3000 or the flagellin peptide flg22 enhanced the phosphorylation of C3H14 by MPK4 in the cytoplasm, relieving C3H14-inhibited expression of PTI-related genes and attenuating C3H14-activated expression of its targets NIM1-INTERACTING1 (NIMIN1) and NIMIN2, two negative regulators of SAR. Salicylic acid (SA) affected the MPK4-C3H14-NIMIN1/2 cascades in immunity, but SA signaling mediated by the C3H14-NIMIN1/2 cascades was independent of MPK4 phosphorylation. Our study suggests that C3H14 might be a negative component of the MPK4 defense signaling pathway.
Collapse
Affiliation(s)
| | | | - Li Xu
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Kangkang Yang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Yamei Zhuang
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Science, Qingdao 266101, China
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | | | | |
Collapse
|
15
|
Microscopic and Transcriptomic Comparison of Powdery Mildew Resistance in the Progenies of Brassica carinata × B. napus. Int J Mol Sci 2022; 23:ijms23179961. [PMID: 36077359 PMCID: PMC9456427 DOI: 10.3390/ijms23179961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Powdery mildew is a widespread disease in rapeseed due to a lack of resistant germplasm. We compared the foliar epidermal features and transcriptomic responses between the resistant (R) and susceptible (S) plants among the two parents and progenies of Brassica carinata × B. napus. The amount of cuticular wax and callose deposition on the R plants was much lower than that on the S plants; hence, these chemicals are not all essential to pre-penetration resistance, although the cuticular wax on the R plants had more needle-like crystals. A total of 1049 genes involved in various defense responses were expressed differentially among the R/S plants. The expression levels of two well-known susceptibility genes, MLO6 and MLO12, were much lower in the R plant, indicating an important role in PM resistance. A set of genes related to wax biosynthesis (KCS6, LACS2, CER and MAH1), cell wall modification (PMR5, PMEI9, RWA2, PDCB1 and C/VIF2), chloroplast function (Chlorophyllase-1, OEP161, PSBO1, CP29B and CSP41b), receptor kinase activity (ERECTA, BAK1, BAM2, LYM1, LYM3, RLK902, RLP11, ERL1 and ERL2), IPCS2, GF14 lambda, RPS4 and RPS6 were highly expressed in the R plants. In the S plants, most highly expressed genes were involved in later defense responses, including CERK1, LYK4, LIK1, NIMIN-1, CHITINASE 10, PECTINESTERASE, CYP81F2 and RBOHF and the genes involved in salicylic acid-dependent systemic acquired resistance and hypersensitive responses, indicating the occurrence of severe fungal infection. The results indicate that some uncertain pre-penetration defenses are pivotal for high resistance, while post-penetration defenses are more important for the S plant survival.
Collapse
|
16
|
GhENODL6 Isoforms from the Phytocyanin Gene Family Regulated Verticillium Wilt Resistance in Cotton. Int J Mol Sci 2022; 23:ijms23062913. [PMID: 35328334 PMCID: PMC8955391 DOI: 10.3390/ijms23062913] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 12/28/2022] Open
Abstract
Verticillium wilt (VW), a fungal disease caused by Verticillium dahliae, currently devastates cotton fiber yield and quality seriously, yet few resistance germplasm resources have been discovered in Gossypium hirsutum. The cotton variety Nongda601 with suitable VW resistance and high yield was developed in our lab, which supplied elite resources for discovering resistant genes. Early nodulin-like protein (ENODL) is mainly related to nodule formation, and its role in regulating defense response has been seldom studied. Here, 41 conserved ENODLs in G. hirsutum were identified and characterized, which could divide into four subgroups. We found that GhENODL6 was upregulated under V. dahliae stress and hormonal signal and displayed higher transcript levels in resistant cottons than the susceptible. The GhENODL6 was proved to positively regulate VW resistance via overexpression and gene silencing experiments. Overexpression of GhENODL6 significantly enhanced the expressions of salicylic acid (SA) hormone-related transcription factors and pathogenicity-related (PR) protein genes, as well as hydrogen peroxide (H2O2) and SA contents, resulting in improved VW resistance in transgenic Arabidopsis. Correspondingly, in the GhENODL6 silenced cotton, the expression levels of both phenylalanine ammonia lyase (PAL) and 4-coumarate-CoA ligase (4CL) genes significantly decreased, leading to the reduced SA content mediating by the phenylalanine ammonia lyase pathway. Taken together, GhENODL6 played a crucial role in VW resistance by inducing SA signaling pathway and regulating the production of reactive oxygen species (ROS). These findings broaden our understanding of the biological roles of GhENODL and the molecular mechanisms underlying cotton disease resistance.
Collapse
|
17
|
CabZIP23 Integrates in CabZIP63-CaWRKY40 Cascade and Turns CabZIP63 on Mounting Pepper Immunity against Ralstonia solanacearum via Physical Interaction. Int J Mol Sci 2022; 23:ijms23052656. [PMID: 35269798 PMCID: PMC8910381 DOI: 10.3390/ijms23052656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 01/25/2023] Open
Abstract
CabZIP63 and CaWRKY40 were previously found to be shared in the pepper defense response to high temperature stress (HTS) and to Ralstonia solanacearum inoculation (RSI), forming a transcriptional cascade. However, how they activate the two distinct defense responses is not fully understood. Herein, using a revised genetic approach, we functionally characterized CabZIP23 in the CabZIP63-CaWRKY40 cascade and its context specific pepper immunity activation against RSI by interaction with CabZIP63. CabZIP23 was originally found by immunoprecipitation-mass spectrometry to be an interacting protein of CabZIP63-GFP; it was upregulated by RSI and acted positively in pepper immunity against RSI by virus induced gene silencing in pepper plants, and transient overexpression in Nicotiana benthamiana plants. By chromatin immunoprecipitation (ChIP)-qPCR and electrophoresis mobility shift assay (EMSA), CabZIP23 was found to be directly regulated by CaWRKY40, and CabZIP63 was directly regulated by CabZIP23, forming a positive feedback loop. CabZIP23-CabZIP63 interaction was confirmed by co-immunoprecipitation (CoIP) and bimolecular fluorescent complimentary (BiFC) assays, which promoted CabZIP63 binding immunity related target genes, including CaPR1, CaNPR1 and CaWRKY40, thereby enhancing pepper immunity against RSI, but not affecting the expression of thermotolerance related CaHSP24. All these data appear to show that CabZIP23 integrates in the CabZIP63-CaWRKY40 cascade and the context specifically turns it on mounting pepper immunity against RSI.
Collapse
|
18
|
Wei X, Zhang Y, Zhao Y, Xie Z, Hossain MR, Yang S, Shi G, Lv Y, Wang Z, Tian B, Su H, Wei F, Zhang X, Yuan Y. Root Transcriptome and Metabolome Profiling Reveal Key Phytohormone-Related Genes and Pathways Involved Clubroot Resistance in Brassica rapa L. FRONTIERS IN PLANT SCIENCE 2021; 12:759623. [PMID: 34975941 PMCID: PMC8715091 DOI: 10.3389/fpls.2021.759623] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/01/2021] [Indexed: 05/14/2023]
Abstract
Plasmodiophora brassicae, an obligate biotrophic pathogen-causing clubroot disease, can seriously affect Brassica crops worldwide, especially Chinese cabbage. Understanding the transcriptome and metabolome profiling changes during the infection of P. brassicae will provide key insights in understanding the defense mechanism in Brassica crops. In this study, we estimated the phytohormones using targeted metabolome assays and transcriptomic changes using RNA sequencing (RNA-seq) in the roots of resistant (BrT24) and susceptible (Y510-9) plants at 0, 3, 9, and 20 days after inoculation (DAI) with P. brassicae. Differentially expressed genes (DEGs) in resistant vs. susceptible lines across different time points were identified. The weighted gene co-expression network analysis of the DEGs revealed six pathways including "Plant-pathogen interaction" and "Plant hormone signal transduction" and 15 hub genes including pathogenic type III effector avirulence factor gene (RIN4) and auxin-responsive protein (IAA16) to be involved in plants immune response. Inhibition of Indoleacetic acid, cytokinin, jasmonate acid, and salicylic acid contents and changes in related gene expression in R-line may play important roles in regulation of clubroot resistance (CR). Based on the combined metabolome profiling and hormone-related transcriptomic responses, we propose a general model of hormone-mediated defense mechanism. This study definitely enhances our current understanding and paves the way for improving CR in Brassica rapa.
Collapse
Affiliation(s)
- Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yingying Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Zhengqing Xie
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Mohammad Rashed Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Gongyao Shi
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanyan Lv
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Baoming Tian
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Henan Su
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Fang Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Beyer SF, Bel PS, Flors V, Schultheiss H, Conrath U, Langenbach CJG. Disclosure of salicylic acid and jasmonic acid-responsive genes provides a molecular tool for deciphering stress responses in soybean. Sci Rep 2021; 11:20600. [PMID: 34663865 PMCID: PMC8523552 DOI: 10.1038/s41598-021-00209-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/07/2021] [Indexed: 11/09/2022] Open
Abstract
Hormones orchestrate the physiology of organisms. Measuring the activity of defense hormone-responsive genes can help understanding immune signaling and facilitate breeding for plant health. However, different from model species like Arabidopsis, genes that respond to defense hormones salicylic acid (SA) and jasmonic acid (JA) have not been disclosed in the soybean crop. We performed global transcriptome analyses to fill this knowledge gap. Upon exogenous application, endogenous levels of SA and JA increased in leaves. SA predominantly activated genes linked to systemic acquired resistance and defense signaling whereas JA mainly activated wound response-associated genes. In general, SA-responsive genes were activated earlier than those responding to JA. Consistent with the paradigm of biotrophic pathogens predominantly activating SA responses, free SA and here identified most robust SA marker genes GmNIMIN1, GmNIMIN1.2 and GmWRK40 were induced upon inoculation with Phakopsora pachyrhizi, whereas JA marker genes did not respond to infection with the biotrophic fungus. Spodoptera exigua larvae caused a strong accumulation of JA-Ile and JA-specific mRNA transcripts of GmBPI1, GmKTI1 and GmAAT whereas neither free SA nor SA-marker gene transcripts accumulated upon insect feeding. Our study provides molecular tools for monitoring the dynamic accumulation of SA and JA, e.g. in a given stress condition.
Collapse
Affiliation(s)
- Sebastian F Beyer
- Plant Biochemistry & Molecular Biology Unit, Department of Plant Physiology, RWTH Aachen University, 52074, Aachen, Germany
| | - Paloma Sánchez Bel
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Department of CAMN, Universitat Jaume I, 12071, Castellón, Spain
| | - Victor Flors
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Department of CAMN, Universitat Jaume I, 12071, Castellón, Spain
| | - Holger Schultheiss
- Agricultural Center, BASF Plant Science Company GmbH, 67117, Limburgerhof, Germany
| | - Uwe Conrath
- Plant Biochemistry & Molecular Biology Unit, Department of Plant Physiology, RWTH Aachen University, 52074, Aachen, Germany
| | - Caspar J G Langenbach
- Plant Biochemistry & Molecular Biology Unit, Department of Plant Physiology, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
20
|
Abstract
Salicylic acid (SA) is an essential plant defense hormone that promotes immunity against biotrophic and semibiotrophic pathogens. It plays crucial roles in basal defense and the amplification of local immune responses, as well as the establishment of systemic acquired resistance. During the past three decades, immense progress has been made in understanding the biosynthesis, homeostasis, perception, and functions of SA. This review summarizes the current knowledge regarding SA in plant immunity and other biological processes. We highlight recent breakthroughs that substantially advanced our understanding of how SA is biosynthesized from isochorismate, how it is perceived, and how SA receptors regulate different aspects of plant immunity. Some key questions in SA biosynthesis and signaling, such as how SA is produced via another intermediate, benzoic acid, and how SA affects the activities of its receptors in the transcriptional regulation of defense genes, remain to be addressed.
Collapse
Affiliation(s)
- Yujun Peng
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; , , ,
| | - Jianfei Yang
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; , , ,
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; , , ,
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; , , ,
| |
Collapse
|
21
|
Li S, Xu B, Niu X, Lu X, Cheng J, Zhou M, Hooykaas PJJ. JAZ8 Interacts With VirE3 Attenuating Agrobacterium Mediated Root Tumorigenesis. FRONTIERS IN PLANT SCIENCE 2021; 12:685533. [PMID: 34868098 PMCID: PMC8639510 DOI: 10.3389/fpls.2021.685533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/11/2021] [Indexed: 05/22/2023]
Abstract
Agrobacterium tumefaciens can cause crown gall tumors by transferring both an oncogenic piece of DNA (T-DNA) and several effector proteins into a wide range of host plants. For the translocated effector VirE3 multiple functions have been reported. It acts as a transcription factor in the nucleus binding to the Arabidopsis thaliana pBrp TFIIB-like protein to activate the expression of VBF, an F-box protein involved in degradation of the VirE2 and VIP1 proteins, facilitating Agrobacterium-mediated transformation. Also VirE3 has been found at the plasma membrane, where it could interact with VirE2. Here, we identified AtJAZ8 in a yeast two-hybrid screening with VirE3 as a bait and confirmed the interaction by pull-down and bimolecular fluorescence complementation assays. We also found that the deletion of virE3 reduced Agrobacterium virulence in a root tumor assay. Overexpression of virE3 in Arabidopsis enhanced tumorigenesis, whereas overexpression of AtJAZ8 in Arabidopsis significantly decreased the numbers of tumors formed. Further experiments demonstrated that AtJAZ8 inhibited the activity of VirE3 as a plant transcriptional regulator, and overexpression of AtJAZ8 in Arabidopsis activated AtPR1 gene expression while it repressed the expression of AtPDF1.2. Conversely, overexpression of virE3 in Arabidopsis suppressed the expression of AtPR1 whereas activated the expression of AtPDF1.2. Our results proposed a novel mechanism of counter defense signaling pathways used by Agrobacterium, suggesting that VirE3 and JAZ8 may antagonistically modulate the salicylic acid/jasmonic acid (SA/JA)-mediated plant defense signaling response during Agrobacterium infection.
Collapse
Affiliation(s)
- Shijuan Li
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Bingliang Xu
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Bingliang Xu,
| | - Xiaolei Niu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Xiaolei Niu,
| | - Xiang Lu
- College of Agriculture, Guizhou University, Guiyang, China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Guiyang, China
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Meiliang Zhou,
| | - Paul J. J. Hooykaas
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Leiden, Netherlands
| |
Collapse
|
22
|
Yan S, Ning K, Wang Z, Liu X, Zhong Y, Ding L, Zi H, Cheng Z, Li X, Shan H, Lv Q, Luo L, Liu R, Yan L, Zhou Z, Lucas WJ, Zhang X. CsIVP functions in vasculature development and downy mildew resistance in cucumber. PLoS Biol 2020; 18:e3000671. [PMID: 32203514 PMCID: PMC7117775 DOI: 10.1371/journal.pbio.3000671] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 04/02/2020] [Accepted: 03/04/2020] [Indexed: 01/01/2023] Open
Abstract
Domesticated crops with high yield and quality are frequently susceptible to pathogen attack, whereas enhancement of disease resistance generally compromises crop yield. The underlying mechanisms of how plant development and disease resistance are coordinately programed remain elusive. Here, we showed that the basic Helix-Loop-Helix (bHLH) transcription factor Cucumis sativus Irregular Vasculature Patterning (CsIVP) was highly expressed in cucumber vascular tissues. Knockdown of CsIVP caused severe vasculature disorganization and abnormal organ morphogenesis. CsIVP directly binds to vascular-related regulators YABBY5 (CsYAB5), BREVIPEDICELLUS (CsBP), and AUXIN/INDOLEACETIC ACIDS4 (CsAUX4) and promotes their expression. Knockdown of CsYAB5 resulted in similar phenotypes as CsIVP-RNA interference (RNAi) plants, including disturbed vascular configuration and abnormal organ morphology. Meanwhile, CsIVP-RNAi plants were more resistant to downy mildew and accumulated more salicylic acid (SA). CsIVP physically interacts with NIM1-INTERACTING1 (CsNIMIN1), a negative regulator in the SA signaling pathway. Thus, CsIVP is a novel vasculature regulator functioning in CsYAB5-mediated organ morphogenesis and SA-mediated downy mildew resistance in cucumber.
Collapse
Affiliation(s)
- Shuangshuang Yan
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Kang Ning
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China
| | - Zhongyi Wang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China
| | - Xiaofeng Liu
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China
| | - Yanting Zhong
- Department of Plant Nutrition, the Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing, China
| | - Lian Ding
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China
| | - Hailing Zi
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhihua Cheng
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China
| | - Xuexian Li
- Department of Plant Nutrition, the Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing, China
| | - Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Qingyang Lv
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Laixin Luo
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Renyi Liu
- College of Horticulture, and FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liying Yan
- College of Horticulture Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, China
| | - Zhaoyang Zhou
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China
| | - William John Lucas
- Department of Plant Biology, University of California, Davis, California, United States of America
| | - Xiaolan Zhang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
Huang P, Dong Z, Guo P, Zhang X, Qiu Y, Li B, Wang Y, Guo H. Salicylic Acid Suppresses Apical Hook Formation via NPR1-Mediated Repression of EIN3 and EIL1 in Arabidopsis. THE PLANT CELL 2020; 32:612-629. [PMID: 31888966 PMCID: PMC7054027 DOI: 10.1105/tpc.19.00658] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/15/2019] [Accepted: 12/25/2019] [Indexed: 05/06/2023]
Abstract
Salicylic acid (SA) and ethylene (ET) are important phytohormones that regulate numerous plant growth, development, and stress response processes. Previous studies have suggested functional interplay of SA and ET in defense responses, but precisely how these two hormones coregulate plant growth and development processes remains unclear. Our present work reveals antagonism between SA and ET in apical hook formation, which ensures successful soil emergence of etiolated dicotyledonous seedlings. Exogenous SA inhibited ET-induced expression of HOOKLESS1 (HLS1) in Arabidopsis (Arabidopsis thaliana) in a manner dependent on ETHYLENE INSENSITIVE3 (EIN3) and EIN3-LIKE1 (EIL1), the core transcription factors in the ET signaling pathway. SA-activated NONEXPRESSER OF PR GENES1 (NPR1) physically interacted with EIN3 and interfered with the binding of EIN3 to target gene promoters, including the HLS1 promoter. Transcriptomic analysis revealed that NPR1 and EIN3/EIL1 coordinately regulated subsets of genes that mediate plant growth and stress responses, suggesting that the interaction between NPR1 and EIN3/EIL1 is an important mechanism for integrating the SA and ET signaling pathways in multiple physiological processes. Taken together, our findings illuminate the molecular mechanism underlying SA regulation of apical hook formation as well as the antagonism between SA and ET in early seedling establishment and possibly other physiological processes.
Collapse
Affiliation(s)
- Peixin Huang
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhi Dong
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Pengru Guo
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xing Zhang
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yuping Qiu
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Bosheng Li
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Yichuan Wang
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| |
Collapse
|
24
|
Seasonality of interactions between a plant virus and its host during persistent infection in a natural environment. ISME JOURNAL 2019; 14:506-518. [PMID: 31664159 PMCID: PMC6976672 DOI: 10.1038/s41396-019-0519-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/17/2019] [Accepted: 08/25/2019] [Indexed: 11/08/2022]
Abstract
Persistent infection, wherein a pathogen is continually present in a host individual, is widespread in virus–host systems. However, little is known regarding how seasonal environments alter virus–host interaction during such metastability. We observed a lineage-to-lineage infection of the host plant Arabidopsis halleri with Turnip mosaic virus for 3 years without severe damage. Virus dynamics and virus–host interactions within hosts were highly season dependent. Virus accumulation in the newly formed leaves was temperature dependent and was suppressed during winter. Transcriptome analyses suggested that distinct defence mechanisms, i.e. salicylic acid (SA)-dependent resistance and RNA silencing, were predominant during spring and autumn, respectively. Transcriptomic difference between infected and uninfected plants other than defence genes appeared transiently only during autumn in upper leaves. However, the virus preserved in the lower leaves is transferred to the clonal offspring of the host plants during spring. In the linage-to-linage infection of the A. halleri–TuMV system, both host clonal reproduction and virus transmission into new clonal rosettes are secured during the winter–spring transition. How virus and host overwinter turned out to be critical for understanding a long-term virus–host interaction within hosts under temperate climates, and more generally, understanding seasonality provides new insight into ecology of plant viruses.
Collapse
|
25
|
Li N, Han X, Feng D, Yuan D, Huang LJ. Signaling Crosstalk between Salicylic Acid and Ethylene/Jasmonate in Plant Defense: Do We Understand What They Are Whispering? Int J Mol Sci 2019; 20:ijms20030671. [PMID: 30720746 PMCID: PMC6387439 DOI: 10.3390/ijms20030671] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/30/2019] [Accepted: 02/02/2019] [Indexed: 12/11/2022] Open
Abstract
During their lifetime, plants encounter numerous biotic and abiotic stresses with diverse modes of attack. Phytohormones, including salicylic acid (SA), ethylene (ET), jasmonate (JA), abscisic acid (ABA), auxin (AUX), brassinosteroid (BR), gibberellic acid (GA), cytokinin (CK) and the recently identified strigolactones (SLs), orchestrate effective defense responses by activating defense gene expression. Genetic analysis of the model plant Arabidopsis thaliana has advanced our understanding of the function of these hormones. The SA- and ET/JA-mediated signaling pathways were thought to be the backbone of plant immune responses against biotic invaders, whereas ABA, auxin, BR, GA, CK and SL were considered to be involved in the plant immune response through modulating the SA-ET/JA signaling pathways. In general, the SA-mediated defense response plays a central role in local and systemic-acquired resistance (SAR) against biotrophic pathogens, such as Pseudomonas syringae, which colonize between the host cells by producing nutrient-absorbing structures while keeping the host alive. The ET/JA-mediated response contributes to the defense against necrotrophic pathogens, such as Botrytis cinerea, which invade and kill hosts to extract their nutrients. Increasing evidence indicates that the SA- and ET/JA-mediated defense response pathways are mutually antagonistic.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China.
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Dan Feng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China.
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Deyi Yuan
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Li-Jun Huang
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
26
|
Backer R, Naidoo S, van den Berg N. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and Related Family: Mechanistic Insights in Plant Disease Resistance. FRONTIERS IN PLANT SCIENCE 2019; 10:102. [PMID: 30815005 PMCID: PMC6381062 DOI: 10.3389/fpls.2019.00102] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/22/2019] [Indexed: 05/04/2023]
Abstract
The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and related NPR1-like proteins are a functionally similar, yet surprisingly diverse family of transcription co-factors. Initially, NPR1 in Arabidopsis was identified as a positive regulator of systemic acquired resistance (SAR), paralogs NPR3 and NPR4 were later shown to be negative SAR regulators. The mechanisms involved have been the subject of extensive research and debate over the years, during which time a lot has been uncovered. The known roles of this protein family have extended to include influences over a broad range of systems including circadian rhythm, endoplasmic reticulum (ER) resident proteins and the development of lateral organs. Recently, important advances have been made in understanding the regulatory relationship between members of the NPR1-like protein family, providing new insight regarding their interactions, both with each other and other defense-related proteins. Most importantly the influence of salicylic acid (SA) on these interactions has become clearer with NPR1, NPR3, and NPR4 being considered bone fide SA receptors. Additionally, post-translational modification of NPR1 has garnered attention during the past years, adding to the growing regulatory complexity of this protein. Furthermore, growing interest in NPR1 overexpressing crops has provided new insights regarding the role of NPR1 in both biotic and abiotic stresses in several plant species. Given the wealth of information, this review aims to highlight and consolidate the most relevant and influential research in the field to date. In so doing, we attempt to provide insight into the mechanisms and interactions which underly the roles of the NPR1-like proteins in plant disease responses.
Collapse
Affiliation(s)
- Robert Backer
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Sanushka Naidoo
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Noëlani van den Berg
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- *Correspondence: Noëlani van den Berg,
| |
Collapse
|
27
|
Castelló MJ, Medina-Puche L, Lamilla J, Tornero P. NPR1 paralogs of Arabidopsis and their role in salicylic acid perception. PLoS One 2018; 13:e0209835. [PMID: 30592744 PMCID: PMC6310259 DOI: 10.1371/journal.pone.0209835] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 12/12/2018] [Indexed: 01/01/2023] Open
Abstract
Salicylic acid (SA) is responsible for certain plant defence responses and NON EXPRESSER OF PATHOGENESIS RELATED 1 (NPR1) is the master regulator of SA perception. In Arabidopsis thaliana there are five paralogs of NPR1. In this work we tested the role of these paralogs in SA perception by generating combinations of mutants and transgenics. NPR2 was the only paralog able to partially complement an npr1 mutant. The null npr2 reduces SA perception in combination with npr1 or other paralogs. NPR2 and NPR1 interacted in all the conditions tested, and NPR2 also interacted with other SA-related proteins as NPR1 does. The remaining paralogs behaved differently in SA perception, depending on the genetic background, and the expression of some of the genes induced by SA in an npr1 background was affected by the presence of the paralogs. NPR2 fits all the requirements of an SA receptor while the remaining paralogs also work as SA receptors with a strong hierarchy. According to the data presented here, the closer the gene is to NPR1, the more relevant its role in SA perception.
Collapse
Affiliation(s)
- María José Castelló
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València -Consejo Superior de Investigaciones Científicas, Valencia, SPAIN
| | - Laura Medina-Puche
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València -Consejo Superior de Investigaciones Científicas, Valencia, SPAIN
| | - Julián Lamilla
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València -Consejo Superior de Investigaciones Científicas, Valencia, SPAIN
| | - Pablo Tornero
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València -Consejo Superior de Investigaciones Científicas, Valencia, SPAIN
- * E-mail:
| |
Collapse
|
28
|
Ramšak Ž, Coll A, Stare T, Tzfadia O, Baebler Š, Van de Peer Y, Gruden K. Network Modeling Unravels Mechanisms of Crosstalk between Ethylene and Salicylate Signaling in Potato. PLANT PHYSIOLOGY 2018; 178:488-499. [PMID: 29934298 PMCID: PMC6130022 DOI: 10.1104/pp.18.00450] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/09/2018] [Indexed: 05/25/2023]
Abstract
To develop novel crop breeding strategies, it is crucial to understand the mechanisms underlying the interaction between plants and their pathogens. Network modeling represents a powerful tool that can unravel properties of complex biological systems. In this study, we aimed to use network modeling to better understand immune signaling in potato (Solanum tuberosum). For this, we first built on a reliable Arabidopsis (Arabidopsis thaliana) immune signaling model, extending it with the information from diverse publicly available resources. Next, we translated the resulting prior knowledge network (20,012 nodes and 70,091 connections) to potato and superimposed it with an ensemble network inferred from time-resolved transcriptomics data for potato. We used different network modeling approaches to generate specific hypotheses of potato immune signaling mechanisms. An interesting finding was the identification of a string of molecular events illuminating the ethylene pathway modulation of the salicylic acid pathway through Nonexpressor of PR Genes1 gene expression. Functional validations confirmed this modulation, thus supporting the potential of our integrative network modeling approach for unraveling molecular mechanisms in complex systems. In addition, this approach can ultimately result in improved breeding strategies for potato and other sensitive crops.
Collapse
Affiliation(s)
- Živa Ramšak
- National Institute of Biology, Department of Biotechnology and Systems Biology, 1000 Ljubljana, Slovenia
| | - Anna Coll
- National Institute of Biology, Department of Biotechnology and Systems Biology, 1000 Ljubljana, Slovenia
| | - Tjaša Stare
- National Institute of Biology, Department of Biotechnology and Systems Biology, 1000 Ljubljana, Slovenia
| | - Oren Tzfadia
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Špela Baebler
- National Institute of Biology, Department of Biotechnology and Systems Biology, 1000 Ljubljana, Slovenia
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Genomics Research Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Kristina Gruden
- National Institute of Biology, Department of Biotechnology and Systems Biology, 1000 Ljubljana, Slovenia
| |
Collapse
|
29
|
Michelotti V, Lamontanara A, Buriani G, Orrù L, Cellini A, Donati I, Vanneste JL, Cattivelli L, Tacconi G, Spinelli F. Comparative transcriptome analysis of the interaction between Actinidia chinensis var. chinensis and Pseudomonas syringae pv. actinidiae in absence and presence of acibenzolar-S-methyl. BMC Genomics 2018; 19:585. [PMID: 30081820 PMCID: PMC6090863 DOI: 10.1186/s12864-018-4967-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/30/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since 2007, bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa) has become a pandemic disease leading to important economic losses in every country where kiwifruit is widely cultivated. Options for controlling this disease are very limited and rely primarily on the use of bactericidal compounds, such as copper, and resistance inducers. Among the latter, the most widely studied is acibenzolar-S-methyl. To elucidate the early molecular reaction of kiwifruit plants (Actinidia chinensis var. chinensis) to Psa infection and acibenzolar-S-methyl treatment, a RNA seq analysis was performed at different phases of the infection process, from the epiphytic phase to the endophytic invasion on acibenzolar-S-methyl treated and on non-treated plants. The infection process was monitored in vivo by confocal laser scanning microscopy. RESULTS De novo assembly of kiwifruit transcriptome revealed a total of 39,607 transcripts, of which 3360 were differentially expressed during the infection process, primarily 3 h post inoculation. The study revealed the coordinated changes of important gene functional categories such as signaling, hormonal balance and transcriptional regulation. Among the transcription factor families, AP2/ERF, MYB, Myc, bHLH, GATA, NAC, WRKY and GRAS were found differentially expressed in response to Psa infection and acibenzolar-S-methyl treatment. Finally, in plants treated with acibenzolar-S-methyl, a number of gene functions related to plant resistance, such as PR proteins, were modulated, suggesting the set-up of a more effective defense response against the pathogen. Weighted-gene coexpression network analysis confirmed these results. CONCLUSIONS Our work provides an in-depth description of the plant molecular reactions to Psa, it highlights the metabolic pathway related to acibenzolar-S-methyl-induced resistance and it contributes to the development of effective control strategies in open field.
Collapse
Affiliation(s)
- Vania Michelotti
- Council for agriculture research and economics (CREA), Research Centre for Genomics and Bioinformatics, via S. Protaso, 302, CAP, 29017 Fiorenzuola d’Arda, Piacenza Italy
| | - Antonella Lamontanara
- Council for agriculture research and economics (CREA), Research Centre for Genomics and Bioinformatics, via S. Protaso, 302, CAP, 29017 Fiorenzuola d’Arda, Piacenza Italy
| | - Giampaolo Buriani
- Department of Agricultural Sciences Alma Mater Studiorum, University of Bologna, viale Fanin 46, 40127 Bologna, Italy
| | - Luigi Orrù
- Council for agriculture research and economics (CREA), Research Centre for Genomics and Bioinformatics, via S. Protaso, 302, CAP, 29017 Fiorenzuola d’Arda, Piacenza Italy
| | - Antonio Cellini
- Department of Agricultural Sciences Alma Mater Studiorum, University of Bologna, viale Fanin 46, 40127 Bologna, Italy
| | - Irene Donati
- Department of Agricultural Sciences Alma Mater Studiorum, University of Bologna, viale Fanin 46, 40127 Bologna, Italy
| | - Joel L. Vanneste
- The New Zealand Institute for Plant & Food Research Ltd, Ruakura Research Centre, Bisley Road, Ruakura, Private Bag 3123, Hamilton, 3240 New Zealand
| | - Luigi Cattivelli
- Council for agriculture research and economics (CREA), Research Centre for Genomics and Bioinformatics, via S. Protaso, 302, CAP, 29017 Fiorenzuola d’Arda, Piacenza Italy
| | - Gianni Tacconi
- Council for agriculture research and economics (CREA), Research Centre for Genomics and Bioinformatics, via S. Protaso, 302, CAP, 29017 Fiorenzuola d’Arda, Piacenza Italy
| | - Francesco Spinelli
- Department of Agricultural Sciences Alma Mater Studiorum, University of Bologna, viale Fanin 46, 40127 Bologna, Italy
| |
Collapse
|
30
|
Biofilm formation and regulation of salicylic acid-inducible genes expression in Arabidopsis by Algerian indigenous bacteria from wheat and potatoes rhizospheres in semi-arid Sétif region. Arch Microbiol 2018; 200:1395-1405. [PMID: 30032398 DOI: 10.1007/s00203-018-1556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 10/28/2022]
Abstract
45 bacterial isolates from potatoes and wheat rhizospheres near Sétif (Algeria) pre-selected for their antagonistic activity against three fungal plant pathogens, two necrotrophic Fusarium solani var. coeruleum and Phytophtora infestans, and a systemic F. oxysporum f. sp. albedinis. Molecular typing of the isolates showed abundance of Bacillus compared to Pseudomonas. Some of the tested strains have shown very high biofilm formation. Among the 24 Gram-positive bacilli screened for four cyclic lipopeptides genes, some isolates harbor two or more genes, while others have a single gene or have none. Four selected isolates were able to regulate the expression of six defense-related genes in Arabidopsis and produce salicylic acid. Upon the features assessed in this study, strain B. amyloliquefaciens A16 was selected for a subsequent use as seed treatment and biocontrol agent in semi-arid region fields. This strain showed important biofilm formation, regulation of Arabidopsis defenses, and harbored three cLPs genes.
Collapse
|
31
|
Madroñero J, Rodrigues SP, Antunes TFS, Abreu PMV, Ventura JA, Fernandes AAR, Fernandes PMB. Transcriptome analysis provides insights into the delayed sticky disease symptoms in Carica papaya. PLANT CELL REPORTS 2018; 37:967-980. [PMID: 29564545 DOI: 10.1007/s00299-018-2281-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/16/2018] [Indexed: 05/25/2023]
Abstract
Global gene expression analysis indicates host stress responses, mainly those mediated by SA, associated to the tolerance to sticky disease symptoms at pre-flowering stage in Carica papaya. Carica papaya plants develop the papaya sticky disease (PSD) as a result of the combined infection of papaya meleira virus (PMeV) and papaya meleira virus 2 (PMeV2), or PMeV complex. PSD symptoms appear only after C. papaya flowers. To understand the mechanisms involved in this phenomenon, the global gene expression patterns of PMeV complex-infected C. papaya at pre-and post-flowering stages were assessed by RNA-Seq. The result was 633 and 88 differentially expressed genes at pre- and post-flowering stages, respectively. At pre-flowering stage, genes related to stress and transport were up-regulated while metabolism-related genes were down-regulated. It was observed that induction of several salicylic acid (SA)-activated genes, including PR1, PR2, PR5, WRKY transcription factors, ROS and callose genes, suggesting SA signaling involvement in the delayed symptoms. In fact, pre-flowering C. papaya treated with exogenous SA showed a tendency to decrease the PMeV and PMeV2 loads when compared to control plants. However, pre-flowering C. papaya also accumulated transcripts encoding a NPR1-inhibitor (NPR1-I/NIM1-I) candidate, genes coding for UDP-glucosyltransferases (UGTs) and several genes involved with ethylene pathway, known to be negative regulators of SA signaling. At post-flowering, when PSD symptoms appeared, the down-regulation of PR-1 encoding gene and the induction of BSMT1 and JA metabolism-related genes were observed. Hence, SA signaling likely operates at the pre-flowering stage of PMeV complex-infected C. papaya inhibiting the development of PSD symptoms, but the induction of its negative regulators prevents the full-scale and long-lasting tolerance.
Collapse
Affiliation(s)
- Johana Madroñero
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, Vitória, ES, 29040-090, Brazil
| | - Silas P Rodrigues
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, Vitória, ES, 29040-090, Brazil
- Núcleo Multidisciplinar de Pesquisa-Polo de Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tathiana F S Antunes
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, Vitória, ES, 29040-090, Brazil
| | - Paolla M V Abreu
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, Vitória, ES, 29040-090, Brazil
| | - José A Ventura
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, Vitória, ES, 29040-090, Brazil
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, Vitória, ES, Brazil
| | - A Alberto R Fernandes
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, Vitória, ES, 29040-090, Brazil
| | | |
Collapse
|
32
|
Yuan P, Du L, Poovaiah BW. Ca 2+/Calmodulin-Dependent AtSR1/CAMTA3 Plays Critical Roles in Balancing Plant Growth and Immunity. Int J Mol Sci 2018; 19:ijms19061764. [PMID: 29899210 PMCID: PMC6032152 DOI: 10.3390/ijms19061764] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 02/07/2023] Open
Abstract
During plant-pathogen interactions, plants have to relocate their resources including energy to defend invading organisms; as a result, plant growth and development are usually reduced. Arabidopsis signal responsive1 (AtSR1) has been documented as a negative regulator of plant immune responses and could serve as a positive regulator of plant growth and development. However, the mechanism by which AtSR1 balances plant growth and immunity is poorly understood. Here, we performed a global gene expression profiling using Affymetrix microarrays to study how AtSR1 regulates defense- and growth-related genes in plants with and without bacterial pathogen infection. Results revealed that AtSR1 negatively regulates most of the immune-related genes involved in molecular pattern-triggered immunity (PTI), effector-triggered immunity (ETI), and in salicylic acid (SA)- and jasmonate (JA)-mediated signaling pathways. AtSR1 may rigidly regulate several steps of the SA-mediated pathway, from the activation of SA synthesis to the perception of SA signal. Furthermore, AtSR1 may also regulate plant growth through its involvement in regulating auxin- and BRs-related pathways. Although microarray data revealed that expression levels of defense-related genes induced by pathogens are higher in wild-type (WT) plants than that in atsr1 mutant plants, WT plants are more susceptible to the infection of virulent pathogen as compared to atsr1 mutant plants. These observations indicate that the AtSR1 functions in suppressing the expression of genes induced by pathogen attack and contributes to the rapid establishment of resistance in WT background. Results of electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP)-PCR assays suggest that AtSR1 acts as transcription factor in balancing plant growth and immunity, through interaction with the “CGCG” containing CG-box in the promotors of its target genes.
Collapse
Affiliation(s)
- Peiguo Yuan
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA.
| | - Liqun Du
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA.
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| | - B W Poovaiah
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA.
| |
Collapse
|
33
|
Salicylic acid-independent role of NPR1 is required for protection from proteotoxic stress in the plant endoplasmic reticulum. Proc Natl Acad Sci U S A 2018; 115:E5203-E5212. [PMID: 29760094 DOI: 10.1073/pnas.1802254115] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The unfolded protein response (UPR) is an ancient signaling pathway designed to protect cells from the accumulation of unfolded and misfolded proteins in the endoplasmic reticulum (ER). Because misregulation of the UPR is potentially lethal, a stringent surveillance signaling system must be in place to modulate the UPR. The major signaling arms of the plant UPR have been discovered and rely on the transcriptional activity of the transcription factors bZIP60 and bZIP28 and on the kinase and ribonuclease activity of IRE1, which splices mRNA to activate bZIP60. Both bZIP28 and bZIP60 modulate UPR gene expression to overcome ER stress. In this study, we demonstrate at a genetic level that the transcriptional role of bZIP28 and bZIP60 in ER-stress responses is antagonized by nonexpressor of PR1 genes 1 (NPR1), a critical redox-regulated master regulator of salicylic acid (SA)-dependent responses to pathogens, independently of its role in SA defense. We also establish that the function of NPR1 in the UPR is concomitant with ER stress-induced reduction of the cytosol and translocation of NPR1 to the nucleus where it interacts with bZIP28 and bZIP60. Our results support a cellular role for NPR1 as well as a model for plant UPR regulation whereby SA-independent ER stress-induced redox activation of NPR1 suppresses the transcriptional role of bZIP28 and bZIP60 in the UPR.
Collapse
|
34
|
Serrano I, Campos L, Rivas S. Roles of E3 Ubiquitin-Ligases in Nuclear Protein Homeostasis during Plant Stress Responses. FRONTIERS IN PLANT SCIENCE 2018; 9:139. [PMID: 29472944 PMCID: PMC5809434 DOI: 10.3389/fpls.2018.00139] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 01/24/2018] [Indexed: 05/23/2023]
Abstract
Ubiquitination, the reversible protein conjugation with ubiquitin (Ub), is a post-translational modification that enables rapid and specific cellular responses to stimuli without requirement of de novo protein synthesis. Although ubiquitination also displays non-proteolytic functions, it often acts as a signal for selective protein degradation through the ubiquitin-proteasome system (UPS). In plants, it has become increasingly apparent that the UPS is a central regulator of many key cellular and physiological processes, including responses to biotic and abiotic stresses. In the nucleus, protein regulation via the UPS orchestrates gene expression, genome maintenance, and signal transduction. Here, we focus on E3 Ub-ligase proteins as major components of the ubiquitination cascade that confer specificity of substrate recognition. We provide an overview on how they contribute to nuclear proteome plasticity during plant responses to environmental stress signals.
Collapse
|
35
|
Willig CJ, Duan K, Zhang ZJ. Transcriptome Profiling of Plant Genes in Response to Agrobacterium tumefaciens-Mediated Transformation. Curr Top Microbiol Immunol 2018; 418:319-348. [PMID: 30062593 DOI: 10.1007/82_2018_115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Agrobacterium tumefaciens is a plant pathogen that causes crown gall disease. During infection of the host plant, Agrobacterium transfers T-DNA from its Ti plasmid into the host cell, which can then be integrated into the host genome. This unique genetic transformation capability has been employed as the dominant technology for producing genetically modified plants for both basic research and biotechnological applications. Agrobacterium has been well studied as a disease-causing agent. The Agrobacterium-mediated transformation process involves early attachment of the bacterium to the host's surface, followed by transfer of T-DNA and virulence proteins into the plant cell. Throughout this process, the host plants exhibit dynamic gene expression patterns at each infection stage or in response to Agrobacterium strains with varying pathogenic capabilities. Shifting host gene expression patterns throughout the transformation process have effects on transformation frequency, host morphology, and metabolism. Thus, gene expression profiling during the Agrobacterium infection process can be an important approach to help elucidate the interaction between Agrobacterium and plants. This review highlights recent findings on host plant differential gene expression patterns in response to A. tumefaciens or related elicitor molecules.
Collapse
Affiliation(s)
| | - Kaixuan Duan
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Zhanyuan J Zhang
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
36
|
Yocgo RE, Geza E, Chimusa ER, Mazandu GK. A post-gene silencing bioinformatics protocol for plant-defence gene validation and underlying process identification: case study of the Arabidopsis thaliana NPR1. BMC PLANT BIOLOGY 2017; 17:218. [PMID: 29169324 PMCID: PMC5701366 DOI: 10.1186/s12870-017-1151-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Advances in forward and reverse genetic techniques have enabled the discovery and identification of several plant defence genes based on quantifiable disease phenotypes in mutant populations. Existing models for testing the effect of gene inactivation or genes causing these phenotypes do not take into account eventual uncertainty of these datasets and potential noise inherent in the biological experiment used, which may mask downstream analysis and limit the use of these datasets. Moreover, elucidating biological mechanisms driving the induced disease resistance and influencing these observable disease phenotypes has never been systematically tackled, eliciting the need for an efficient model to characterize completely the gene target under consideration. RESULTS We developed a post-gene silencing bioinformatics (post-GSB) protocol which accounts for potential biases related to the disease phenotype datasets in assessing the contribution of the gene target to the plant defence response. The post-GSB protocol uses Gene Ontology semantic similarity and pathway dataset to generate enriched process regulatory network based on the functional degeneracy of the plant proteome to help understand the induced plant defence response. We applied this protocol to investigate the effect of the NPR1 gene silencing to changes in Arabidopsis thaliana plants following Pseudomonas syringae pathovar tomato strain DC3000 infection. Results indicated that the presence of a functionally active NPR1 reduced the plant's susceptibility to the infection, with about 99% of variability in Pseudomonas spore growth between npr1 mutant and wild-type samples. Moreover, the post-GSB protocol has revealed the coordinate action of target-associated genes and pathways through an enriched process regulatory network, summarizing the potential target-based induced disease resistance mechanism. CONCLUSIONS This protocol can improve the characterization of the gene target and, potentially, elucidate induced defence response by more effectively utilizing available phenotype information and plant proteome functional knowledge.
Collapse
Affiliation(s)
- Rosita E. Yocgo
- African Institute for Mathematical Sciences (AIMS), AIMS South Africa and AIMS Ghana, Cape Town, South Africa
- Biomathematics Division, Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Ephifania Geza
- African Institute for Mathematical Sciences (AIMS), AIMS South Africa and AIMS Ghana, Cape Town, South Africa
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Medical School, Anzio Road, Observatory, Cape Town, 7925 South Africa
| | - Emile R. Chimusa
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Medical School, Anzio Road, Observatory, Cape Town, 7925 South Africa
| | - Gaston K. Mazandu
- African Institute for Mathematical Sciences (AIMS), AIMS South Africa and AIMS Ghana, Cape Town, South Africa
- Biomathematics Division, Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Medical School, Anzio Road, Observatory, Cape Town, 7925 South Africa
| |
Collapse
|
37
|
Guo T, Mao X, Zhang H, Zhang Y, Fu M, Sun Z, Kuai P, Lou Y, Fang Y. Lamin-like Proteins Negatively Regulate Plant Immunity through NAC WITH TRANSMEMBRANE MOTIF1-LIKE9 and NONEXPRESSOR OF PR GENES1 in Arabidopsis thaliana. MOLECULAR PLANT 2017; 10:1334-1348. [PMID: 28943325 DOI: 10.1016/j.molp.2017.09.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 05/22/2023]
Abstract
Nuclear lamins are involved in multiple biological processes in metazoan cells. The proteins of the CROWDED NUCLEI (CRWN) family are considered lamin-like candidates in Arabidopsis, although the functions of these proteins are largely unknown. In this article we show that crwn1 crwn2 double mutant displays an enhanced resistance against virulent bacterial pathogens, and both virulent bacteria and salicylic acid (SA) induce transcription of CRWN1 gene as well as proteasome-mediated degradation of CRWN1 protein. We also show that CRWN1 interacts with NAC WITH TRANSMEMBRANE MOTIF1-LIKE9 (NTL9), a NAC transcription factor involved in plant immunity. The interaction between CRWN1 and NTL9 enhances the binding of NTL9 to the promoter of the PATHOGENESIS-RELATED1 (PR1) gene, and inhibits PR1 expression. Further genetic experiments indicated that the defense-related phenotypes of crwn1 crwn2 double mutant are dependent on NONEXPRESSOR OF PR GENES1 (NPR1), a transcriptional cofactor of PR1. These findings revealed a regulatory network composed of lamin-like protein CRWN1, NTL9, and NPR1 for the regulation of PR1 expression.
Collapse
Affiliation(s)
- Tongtong Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xuegao Mao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Mengdi Fu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenfei Sun
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Kuai
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuda Fang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
38
|
Zhang H, Kjemtrup-Lovelace S, Li C, Luo Y, Chen LP, Song BH. Comparative RNA-Seq Analysis Uncovers a Complex Regulatory Network for Soybean Cyst Nematode Resistance in Wild Soybean (Glycine soja). Sci Rep 2017; 7:9699. [PMID: 28852059 PMCID: PMC5575055 DOI: 10.1038/s41598-017-09945-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/01/2017] [Indexed: 01/28/2023] Open
Abstract
Soybean cyst nematode (SCN) is the most damaging pest of soybean worldwide. The molecular mechanism of SCN resistance remains largely unknown. We conducted a global RNA-seq comparison between a resistant genotype (S54) and a susceptible genotype (S67) of Glycine soja, the wild progenitor of soybean, to understand its regulatory network in SCN defense. The number of differentially expressed genes (DEGs) in S54 (2,290) was much larger than that in S67 (555). A number of defense-related genes/pathways were significantly induced only in S54, while photosynthesis and several metabolic pathways were affected in both genotypes with SCN infection. These defense-associated DEGs were involved in pathogen recognition, calcium/calmodulin-mediated defense signaling, jasmonic acid (JA)/ethylene (ET) and sialic acid (SA)-involved signaling, the MAPK signaling cascade, and WRKY-involved transcriptional regulation. Our results revealed a comprehensive regulatory network involved in SCN resistance and provided insights into the complex molecular mechanisms of SCN resistance in wild soybean.
Collapse
Affiliation(s)
- Hengyou Zhang
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | | | - Changbao Li
- Double Haploid Optimization Group, Monsanto Company, St. Louis, MO 63167, USA
| | - Yan Luo
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 650221, China
| | - Lars P Chen
- Biology Department, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
39
|
β-carbonic anhydrases play a role in salicylic acid perception in Arabidopsis. PLoS One 2017; 12:e0181820. [PMID: 28753666 PMCID: PMC5533460 DOI: 10.1371/journal.pone.0181820] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/07/2017] [Indexed: 11/19/2022] Open
Abstract
The plant hormone salicylic acid (SA) is required for defense responses. NON EXPRESSER OFPATHOGENESISRELATED1 (NPR1) and NONRECOGNITION OFBTH-4 (NRB4) are required for the response to SA in Arabidopsis (Arabidopsis thaliana). Here, we isolated several interactors of NRB4 using yeast two-hybrid assays. Two of these interactors, βCA1 and βCA2, are β-carbonic anhydrase family proteins. Since double mutant βca1 βca2 plants did not show any obvious phenotype, we investigated other βCAs and found that NRB4 also interacts with βCA3 and βCA4. Moreover, several βCAs interacted with NPR1 in yeast, including one that interacted in a SA-dependent manner. This interaction was abolished in loss-of-function alleles of NPR1. Interactions between βCAs and both NRB4 and NPR1 were also detected in planta, with evidence for a triple interaction, NRB4-βCA1-NPR1. The quintuple mutant βca1 βca2 βca3 βca4 βca6 showed partial insensitivity to SA. These findings suggest that one of the functions of carbonic anhydrases is to modulate the perception of SA in plants.
Collapse
|
40
|
Wang L, Wu SM, Zhu Y, Fan Q, Zhang ZN, Hu G, Peng QZ, Wu JH. Functional characterization of a novel jasmonate ZIM-domain interactor (NINJA) from upland cotton (Gossypium hirsutum). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 112:152-160. [PMID: 28086169 DOI: 10.1016/j.plaphy.2017.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 05/08/2023]
Abstract
The jasmonic acid (JA) signalling pathway plays roles in plant development and defence against biotic and abiotic stresses. We isolated a cotton NINJA (novel interactor of JA ZIM-domain) gene, designated GhNINJA, which contains a 1305 bp open read frame. The GhNINJA gene encodes a 434 amino acid peptide. According to quantitative real-time PCR analysis, GhNINJA is preferentially expressed in roots, and its expression level is greatly induced by Verticillium dahliae infection. Through a virus-induced gene silencing technique, we developed GhNINJA-silenced cotton plants, which had significantly decreased expression of the target gene with an average expression of 6% of the control. The regenerating lateral root growth of silenced plants was largely inhibited compared to the control. Analysis by microscopy demonstrated that the cell length of the root differentiation zone in GhNINJA-silenced plants is significantly shorter than those of the control. Moreover, the silenced plants exhibited higher tolerance to V. dahliae infection compared to the control, which was linked to the increased expression of the defence marker genes PDF1.2 and PR4. Together, these data indicated that knockdown of GhNINJA represses the root growth and enhances the tolerance to V. dahliae. Therefore, GhNINJA gene can be used as a candidate gene to breed the new cultivars for improving cotton yield and disease resistance.
Collapse
Affiliation(s)
- Le Wang
- Hunan Provincial Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China; State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100010, China
| | - Shu-Ming Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100010, China
| | - Yue Zhu
- Hunan Provincial Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China; State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100010, China
| | - Qiang Fan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100010, China
| | - Zhen-Nan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100010, China
| | - Guang Hu
- Hunan Provincial Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China; State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100010, China
| | - Qing-Zhong Peng
- Hunan Provincial Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China
| | - Jia-He Wu
- Hunan Provincial Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China; State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100010, China.
| |
Collapse
|
41
|
Uhrig JF, Huang LJ, Barghahn S, Willmer M, Thurow C, Gatz C. CC-type glutaredoxins recruit the transcriptional co-repressor TOPLESS to TGA-dependent target promoters in Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:218-226. [DOI: 10.1016/j.bbagrm.2016.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/28/2016] [Accepted: 11/08/2016] [Indexed: 01/13/2023]
|
42
|
Shubchynskyy V, Boniecka J, Schweighofer A, Simulis J, Kvederaviciute K, Stumpe M, Mauch F, Balazadeh S, Mueller-Roeber B, Boutrot F, Zipfel C, Meskiene I. Protein phosphatase AP2C1 negatively regulates basal resistance and defense responses to Pseudomonas syringae. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1169-1183. [PMID: 28062592 PMCID: PMC5444444 DOI: 10.1093/jxb/erw485] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) mediate plant immune responses to pathogenic bacteria. However, less is known about the cell autonomous negative regulatory mechanism controlling basal plant immunity. We report the biological role of Arabidopsis thaliana MAPK phosphatase AP2C1 as a negative regulator of plant basal resistance and defense responses to Pseudomonas syringae. AP2C2, a closely related MAPK phosphatase, also negatively controls plant resistance. Loss of AP2C1 leads to enhanced pathogen-induced MAPK activities, increased callose deposition in response to pathogen-associated molecular patterns or to P. syringae pv. tomato (Pto) DC3000, and enhanced resistance to bacterial infection with Pto. We also reveal the impact of AP2C1 on the global transcriptional reprogramming of transcription factors during Pto infection. Importantly, ap2c1 plants show salicylic acid-independent transcriptional reprogramming of several defense genes and enhanced ethylene production in response to Pto. This study pinpoints the specificity of MAPK regulation by the different MAPK phosphatases AP2C1 and MKP1, which control the same MAPK substrates, nevertheless leading to different downstream events. We suggest that precise and specific control of defined MAPKs by MAPK phosphatases during plant challenge with pathogenic bacteria can strongly influence plant resistance.
Collapse
Affiliation(s)
- Volodymyr Shubchynskyy
- Max F. Perutz Laboratories, University and Medical University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Justyna Boniecka
- Max F. Perutz Laboratories, University and Medical University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Alois Schweighofer
- Max F. Perutz Laboratories, University and Medical University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
- Institute of Biotechnology (IBT), University of Vilnius, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Justinas Simulis
- Institute of Biotechnology (IBT), University of Vilnius, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Kotryna Kvederaviciute
- Institute of Biotechnology (IBT), University of Vilnius, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Michael Stumpe
- Department of Biology, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Felix Mauch
- Department of Biology, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Salma Balazadeh
- Max-Planck-Institute for Molecular Plant Physiology, Golm and University of Potsdam, D-14476, Germany
| | - Bernd Mueller-Roeber
- Max-Planck-Institute for Molecular Plant Physiology, Golm and University of Potsdam, D-14476, Germany
| | - Freddy Boutrot
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Irute Meskiene
- Max F. Perutz Laboratories, University and Medical University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
- Institute of Biotechnology (IBT), University of Vilnius, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| |
Collapse
|
43
|
Birkenbihl RP, Kracher B, Roccaro M, Somssich IE. Induced Genome-Wide Binding of Three Arabidopsis WRKY Transcription Factors during Early MAMP-Triggered Immunity. THE PLANT CELL 2017; 29:20-38. [PMID: 28011690 PMCID: PMC5304350 DOI: 10.1105/tpc.16.00681] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/28/2016] [Accepted: 12/16/2016] [Indexed: 05/19/2023]
Abstract
During microbial-associated molecular pattern-triggered immunity (MTI), molecules derived from microbes are perceived by cell surface receptors and upon signaling to the nucleus initiate a massive transcriptional reprogramming critical to mount an appropriate host defense response. WRKY transcription factors play an important role in regulating these transcriptional processes. Here, we determined on a genome-wide scale the flg22-induced in vivo DNA binding dynamics of three of the most prominent WRKY factors, WRKY18, WRKY40, and WRKY33. The three WRKY factors each bound to more than 1000 gene loci predominantly at W-box elements, the known WRKY binding motif. Binding occurred mainly in the 500-bp promoter regions of these genes. Many of the targeted genes are involved in signal perception and transduction not only during MTI but also upon damage-associated molecular pattern-triggered immunity, providing a mechanistic link between these functionally interconnected basal defense pathways. Among the additional targets were genes involved in the production of indolic secondary metabolites and in modulating distinct plant hormone pathways. Importantly, among the targeted genes were numerous transcription factors, encoding predominantly ethylene response factors, active during early MTI, and WRKY factors, supporting the previously hypothesized existence of a WRKY subregulatory network. Transcriptional analysis revealed that WRKY18 and WRKY40 function redundantly as negative regulators of flg22-induced genes often to prevent exaggerated defense responses.
Collapse
Affiliation(s)
- Rainer P Birkenbihl
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Koeln, Germany
| | - Barbara Kracher
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Koeln, Germany
| | | | - Imre E Somssich
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Koeln, Germany
| |
Collapse
|
44
|
Landi L, De Miccolis Angelini RM, Pollastro S, Feliziani E, Faretra F, Romanazzi G. Global Transcriptome Analysis and Identification of Differentially Expressed Genes in Strawberry after Preharvest Application of Benzothiadiazole and Chitosan. FRONTIERS IN PLANT SCIENCE 2017; 8:235. [PMID: 28286508 PMCID: PMC5323413 DOI: 10.3389/fpls.2017.00235] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/07/2017] [Indexed: 05/07/2023]
Abstract
The use of resistance inducers is a novel strategy to elicit defense responses in strawberry fruit to protect against preharvest and postharvest decay. However, the mechanisms behind the specific resistance inducers are not completely understood. Here, global transcriptional changes in strawberry fruit were investigated using RNA-Seq technology. Preharvest, benzothiadiazole (BTH) and chitosan were applied to the plant canopy, and the fruit were harvested at 6, 12, and 24 h post-treatment. Overall, 5,062 and 5,210 differentially expressed genes (fold change ≥ 2) were identified in these fruits under the BTH and chitosan treatments, respectively, as compared to the control expression. About 80% of these genes were differentially expressed by both elicitors. Comprehensive functional enrichment analysis highlighted different gene modulation over time for transcripts associated with photosynthesis and heat-shock proteins, according to elicitor. Up-regulation of genes associated with reprogramming of protein metabolism was observed in fruit treated with both elicitors, which led to increased storage proteins. Several genes associated with the plant immune system, hormone metabolism, systemic acquired resistance, and biotic and abiotic stresses were differentially expressed in treated versus untreated plants. The RNA-Seq output was confirmed using RT-qPCR for 12 selected genes. This study demonstrates that these two elicitors affect cell networks associated with plant defenses in different ways, and suggests a role for chloroplasts as the primary target in this modulation of the plant defense responses, which actively communicate these signals through changes in redox status. The genes identified in this study represent markers to better elucidate plant/pathogen/resistance-inducer interactions, and to plan novel sustainable disease management strategies.
Collapse
Affiliation(s)
- Lucia Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic UniversityAncona, Italy
| | | | - Stefania Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari ‘Aldo Moro’Bari, Italy
| | - Erica Feliziani
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic UniversityAncona, Italy
| | - Franco Faretra
- Department of Soil, Plant and Food Sciences, University of Bari ‘Aldo Moro’Bari, Italy
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic UniversityAncona, Italy
- *Correspondence: Gianfranco Romanazzi,
| |
Collapse
|
45
|
Mohan R, Tai T, Chen A, Arnoff T, Fu ZQ. Overexpression of Arabidopsis NIMIN1 results in salicylate intolerance. PLANT SIGNALING & BEHAVIOR 2016; 11:e1211222. [PMID: 27429420 PMCID: PMC5117087 DOI: 10.1080/15592324.2016.1211222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The transcriptional regulator NPR1 mediates salicylic acid (SA)-induced plant immunity. NPR1 is also required for tolerance to high concentrations of SA. NPR1-interacting protein, NIMIN1, represses immune response by interacting with and negating NPR1. We tested the salicylic acid tolerance of transgenic plants overexpressing NIMIN1 and found that these plants displayed SA intolerance, similar to the npr1 mutant, due to sequestration of NPR1 by NIMIN1. Plants overexpressing mutated NIMIN1 that cannot interact with NPR1 showed no SA tolerance defect. Gene expression analysis showed that NPR1 is required for SA-stress induced as well as pathogen-induced NIMIN1 expression. These results indicate that over-accumulation of a negative regulator renders plants hypersensitive to SA by limiting NPR1 function. Furthermore, NPR1 activates negative regulators such as NIMIN1 for feedback inhibition of SA signaling to maintain immune homeostasis.
Collapse
Affiliation(s)
- Rajinikanth Mohan
- Department of Biology, Hamilton College, Clinton, NY, USA
- CONTACT Rajinikanth Mohan Department of Biology, Hamilton College, Clinton, NY 13323 USA
| | - Thomson Tai
- Department of Biology, Hamilton College, Clinton, NY, USA
| | - Andy Chen
- Department of Biology, Hamilton College, Clinton, NY, USA
| | - Taylor Arnoff
- Department of Biology, Hamilton College, Clinton, NY, USA
| | - Zheng-Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
46
|
Allu AD, Brotman Y, Xue GP, Balazadeh S. Transcription factor ANAC032 modulates JA/SA signalling in response to Pseudomonas syringae infection. EMBO Rep 2016; 17:1578-1589. [PMID: 27632992 DOI: 10.15252/embr.201642197] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 08/23/2016] [Indexed: 11/09/2022] Open
Abstract
Responses to pathogens, including host transcriptional reprogramming, require partially antagonistic signalling pathways dependent on the phytohormones salicylic (SA) and jasmonic (JA) acids. However, upstream factors modulating the interplay of these pathways are not well characterized. Here, we identify the transcription factor ANAC032 from Arabidopsis thaliana as one such regulator in response to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst). ANAC032 directly represses MYC2 activation upon Pst attack, resulting in blockage of coronatine-mediated stomatal reopening which restricts entry of bacteria into plant tissue. Furthermore, ANAC032 activates SA signalling by repressing NIMIN1, a key negative regulator of SA-dependent defence. Finally, ANAC032 reduces expression of JA-responsive genes, including PDF1.2A Thus, ANAC032 enhances resistance to Pst by generating an orchestrated transcriptional output towards key SA- and JA-signalling genes coordinated through direct binding of ANAC032 to the MYC2, NIMIN1 and PDF1.2A promoters.
Collapse
Affiliation(s)
- Annapurna Devi Allu
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany.,Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Yariv Brotman
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Gang-Ping Xue
- CSIRO Agriculture Flagship, St. Lucia, QLD, Australia
| | - Salma Balazadeh
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany .,Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| |
Collapse
|
47
|
Tang N, Ma S, Zong W, Yang N, Lv Y, Yan C, Guo Z, Li J, Li X, Xiang Y, Song H, Xiao J, Li X, Xiong L. MODD Mediates Deactivation and Degradation of OsbZIP46 to Negatively Regulate ABA Signaling and Drought Resistance in Rice. THE PLANT CELL 2016; 28:2161-2177. [PMID: 27468891 PMCID: PMC5059794 DOI: 10.1105/tpc.16.00171] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/06/2016] [Accepted: 07/22/2016] [Indexed: 05/18/2023]
Abstract
Plants have evolved complicated protective mechanisms to survive adverse conditions. Previously, we reported that the transcription factor OsbZIP46 regulates abscisic acid (ABA) signaling-mediated drought tolerance in rice (Oryza sativa) by modulating stress-related genes. An intrinsic D domain represses OsbZIP46 activity, but the detailed mechanism for the repression of OsbZIP46 activation remains unknown. Here, we report an OsbZIP46-interacting protein, MODD (Mediator of OsbZIP46 deactivation and degradation), which is homologous to the Arabidopsis thaliana ABSCISIC ACID-INSENSITIVE5 binding protein AFP. MODD was induced by ABA and drought stress, but the induction was much slower than that of OsbZIP46 In contrast to OsbZIP46, MODD negatively regulates ABA signaling and drought tolerance, and inhibits the expression of OsbZIP46 target genes. We found that MODD negatively regulates OsbZIP46 activity and stability. MODD represses OsbZIP46 activity via interaction with the OsTPR3-HDA702 corepressor complex and downregulation of the histone acetylation level at OsbZIP46 target genes. MODD promotes OsbZIP46 degradation via interaction with the U-box type ubiquitin E3 ligase OsPUB70. Interestingly, the D domain is required for both deactivation and degradation of OsbZIP46 via its interaction with MODD. These findings show that plants fine-tune their drought responses by elaborate regulatory mechanisms, including the coordination of activity and stability of key transcription factors.
Collapse
Affiliation(s)
- Ning Tang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Siqi Ma
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Zong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Ning Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Lv
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Chun Yan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Zilong Guo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Xiang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Huazhi Song
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
48
|
Toth Z, Winterhagen P, Kalapos B, Su Y, Kovacs L, Kiss E. Expression of a Grapevine NAC Transcription Factor Gene Is Induced in Response to Powdery Mildew Colonization in Salicylic Acid-Independent Manner. Sci Rep 2016; 6:30825. [PMID: 27488171 PMCID: PMC4973223 DOI: 10.1038/srep30825] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/07/2016] [Indexed: 02/07/2023] Open
Abstract
Tissue colonization by grape powdery mildew (PM) pathogen Erysiphe necator (Schw.) Burr triggers a major remodeling of the transcriptome in the susceptible grapevine Vitis vinifera L. While changes in the expression of many genes bear the signature of salicylic acid (SA) mediated regulation, the breadth of PM-induced changes suggests the involvement of additional regulatory networks. To explore PM-associated gene regulation mediated by other SA-independent systems, we designed a microarray experiment to distinguish between transcriptome changes induced by E. necator colonization and those triggered by elevated SA levels. We found that the majority of genes responded to both SA and PM, but certain genes were responsive to PM infection alone. Among them, we identified genes of stilbene synthases, PR-10 proteins, and several transcription factors. The microarray results demonstrated that the regulation of these genes is either independent of SA, or dependent, but SA alone is insufficient to bring about their regulation. We inserted the promoter-reporter fusion of a PM-responsive transcription factor gene into a wild-type and two SA-signaling deficient Arabidopsis lines and challenged the resulting transgenic plants with an Arabidopsis-adapted PM pathogen. Our results provide experimental evidence that this grape gene promoter is activated by the pathogen in a SA-independent manner.
Collapse
Affiliation(s)
- Zsofia Toth
- Institute of Genetics and Biotechnology, Szent Istvan University, 2100-Godollo, Hungary
| | - Patrick Winterhagen
- Institute of Crop Science, University of Hohenheim, 70599-Stuttgart, Germany
| | - Balazs Kalapos
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462-Martonvasar, Hungary
| | - Yingcai Su
- Department of Mathematics, Missouri State University, 65897-Springfield, USA
| | - Laszlo Kovacs
- Department of Biology, Missouri State University, 65897-Springfield, USA
| | - Erzsebet Kiss
- Institute of Genetics and Biotechnology, Szent Istvan University, 2100-Godollo, Hungary
| |
Collapse
|
49
|
Shigenaga AM, Argueso CT. No hormone to rule them all: Interactions of plant hormones during the responses of plants to pathogens. Semin Cell Dev Biol 2016; 56:174-189. [PMID: 27312082 DOI: 10.1016/j.semcdb.2016.06.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/01/2016] [Accepted: 06/07/2016] [Indexed: 11/17/2022]
Abstract
Plant hormones are essential regulators of plant growth and immunity. In the last few decades, a vast amount of information has been obtained detailing the role of different plant hormones in immunity, and how they work together to ultimately shape the outcomes of plant pathogen interactions. Here we provide an overview on the roles of the main classes of plant hormones in the regulation of plant immunity, highlighting their metabolic and signaling pathways and how plants and pathogens utilize these pathways to activate or suppress defence.
Collapse
Affiliation(s)
- Alexandra M Shigenaga
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Cristiana T Argueso
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
50
|
Chern M, Xu Q, Bart RS, Bai W, Ruan D, Sze-To WH, Canlas PE, Jain R, Chen X, Ronald PC. A Genetic Screen Identifies a Requirement for Cysteine-Rich-Receptor-Like Kinases in Rice NH1 (OsNPR1)-Mediated Immunity. PLoS Genet 2016; 12:e1006049. [PMID: 27176732 PMCID: PMC4866720 DOI: 10.1371/journal.pgen.1006049] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 04/21/2016] [Indexed: 12/03/2022] Open
Abstract
Systemic acquired resistance, mediated by the Arabidopsis NPR1 gene and the rice NH1 gene, confers broad-spectrum immunity to diverse pathogens. NPR1 and NH1 interact with TGA transcription factors to activate downstream defense genes. Despite the importance of this defense response, the signaling components downstream of NPR1/NH1 and TGA proteins are poorly defined. Here we report the identification of a rice mutant, snim1, which suppresses NH1-mediated immunity and demonstrate that two genes encoding previously uncharacterized cysteine-rich-receptor-like kinases (CRK6 and CRK10), complement the snim1 mutant phenotype. Silencing of CRK6 and CRK10 genes individually in the parental genetic background recreates the snim1 phenotype. We identified a rice mutant in the Kitaake genetic background with a frameshift mutation in crk10; this mutant also displays a compromised immune response highlighting the important role of crk10. We also show that elevated levels of NH1 expression lead to enhanced CRK10 expression and that the rice TGA2.1 protein binds to the CRK10 promoter. These experiments demonstrate a requirement for CRKs in NH1-mediated immunity and establish a molecular link between NH1 and induction of CRK10 expression. To survive, plants and animals must resist microbial infection. Plants employ an immune response called systemic acquired resistance that confers long-lasting resistance to a broad-spectrum of pathogens. Researchers have previously identified two key proteins (NPR1/NH1 and TGA) that control this immune response. Despite these advances, there remain many gaps in our knowledge and understanding of this important immune response. We have identified a new gene (CRK10) required for this immune response; without it, plants are more susceptible to infection. These findings advance basic knowledge of systemic acquired resistance and open the door to a new avenue of research on this exciting and important resistance mechanism.
Collapse
Affiliation(s)
- Mawsheng Chern
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America
- Joint Bioenergy Institute, Emeryville, California, United States of America
| | - Qiufang Xu
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America
- Joint Bioenergy Institute, Emeryville, California, United States of America
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rebecca S. Bart
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America
- Joint Bioenergy Institute, Emeryville, California, United States of America
| | - Wei Bai
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America
- College of Life Sciences, Inner Mongolia Agricultural University, Huhhot, China
| | - Deling Ruan
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America
- Joint Bioenergy Institute, Emeryville, California, United States of America
| | - Wing Hoi Sze-To
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America
- Joint Bioenergy Institute, Emeryville, California, United States of America
| | - Patrick E. Canlas
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America
- Joint Bioenergy Institute, Emeryville, California, United States of America
| | - Rashmi Jain
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America
- Joint Bioenergy Institute, Emeryville, California, United States of America
| | - Xuewei Chen
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America
- Joint Bioenergy Institute, Emeryville, California, United States of America
- Rice Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Chengdu, Sichuan, China
| | - Pamela C. Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America
- Joint Bioenergy Institute, Emeryville, California, United States of America
- * E-mail:
| |
Collapse
|