1
|
Zhang M, Zhou X, Wang L, Liang X, Liu X, Jiang C. A SnRK2-HAK regulatory module confers natural variation of salt tolerance in maize. Nat Commun 2025; 16:4026. [PMID: 40301371 DOI: 10.1038/s41467-025-59332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/16/2025] [Indexed: 05/01/2025] Open
Abstract
The exclusion of sodium ions (Na+) from the shoot tissue, termed shoot Na+ exclusion, underlies a core mechanism of crop salt tolerance. Recent studies have shown that the HAK (High-Affinity K+ Transporter) family Na+ transporters play a key role in shoot Na+ exclusion of various crops, however, it is unknown whether and how this type of transporter is post-transcriptionally regulated. Here, we show that two closely related SnRK2 kinases, designated as ZmSnRK2.9 and ZmSnRK2.10, promote shoot Na+ exclusion and salt tolerance by activating the Na+ transporter ZmHAK4 in maize. Under salt conditions, the kinase activity of ZmSnRK2.9 and ZmSnRK2.10 is activated, then they interact with and phosphorylate ZmHAK4 at Ser5, increasing the Na+ transport activity of ZmHAK4, which in turn promotes salt tolerance by improving the exclusion of Na+ from the shoot tissue. Furthermore, we show that a 20-bp deletion that occurred naturally in the ZmSnRK2.10 promoter decreases its transcript level, resulting in an increased shoot Na+ content under salt conditions. Our findings support a breeding program that can utilize the favorable alleles of ZmHAK4 and ZmSnRK2.10 to enhance both the transcriptional and post-transcriptional activation of ZmHAK4, thus advancing the development of salt-tolerant maize.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China.
- The Zhongzhou Laboratory for Integrative Biology, Henan University, Zhengzhou, Henan, China.
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, Henan, China.
| | - Xueyan Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Limin Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaoyan Liang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xin Liu
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Caifu Jiang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China.
- Frontiers Science Center for Molecular Design Breeding, Beijing, China.
| |
Collapse
|
2
|
Wang H, Li H, Li C, Liu S, Zhang P. The Antarctic moss 2-oxoglutarate/Fe(II)-dependent dioxygenases (Pn2-ODD2) enhanced the tolerance to drought and oxidative stress. BMC PLANT BIOLOGY 2025; 25:549. [PMID: 40295947 PMCID: PMC12036268 DOI: 10.1186/s12870-025-06578-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Flavonoid biosynthesis pathway is generally thought unique to land plants and has assisted plants to adapt the terrestrial ecosystems. In this pathway, four 2-oxoglutarate/Fe(II)-dependent dioxygenases (2-ODDs), i.e., flavone synthase I (FNSI), flavanone-3-hydroxylase (F3H), flavonol synthase (FLS) and anthocyanin synthase/leucoanthocyanidin dioxygenase (ANS/LDOX), catalyze the hydroxylation and desaturation reactions. In bryophytes, the earliest land plant group, little is known about the biological functions of these enzymes. RESULTS Here, we cloned a Pn2-ODD2 gene of flavonoid biosynthesis pathway from Antarctic moss Pohlia nutans, which was induced by exogenous NaCl, PEG and abscisic acid (ABA) treatment. Overexpression of Pn2-ODD2 increased the drought resistance in Physcomitrium patens and Arabidopsis thaliana during gametophyte growth and seed germination, respectively. Overexpressed-Pn2-ODD2 Arabidopsis also exhibited the enhanced tolerance to oxidative stress, with the downregulation of ROS generation gene and increased the total flavonoid content. Also, overexpression of Pn2-ODD2 decreased the ABA sensitivity in transgenic P. patens and Arabidopsis. Meanwhile, overexpression of Pn2-ODD2 resulted in an increase in both anthocyanins and flavonols in Arabidopsis, which was correlated with the up-regulated anthocyanin biosynthesis gene. CONCLUSIONS Taken together, Pn2-ODD2 conferred the resistance to drought and oxidative stress by regulating antioxidant defense system in plants.
Collapse
Affiliation(s)
- Huijuan Wang
- National Glycoengineering Research Center, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Han Li
- National Glycoengineering Research Center, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Chaochao Li
- National Glycoengineering Research Center, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Shenghao Liu
- Marine Ecology Research Center, First Institute of Oceanography, Natural Resources Ministry, Qingdao, 266061, China
| | - Pengying Zhang
- National Glycoengineering Research Center, School of Life Science, Shandong University, Qingdao, 266237, China.
- Shandong Key Laboratory of Carbohydrate and Carbohydrate-conjugate Drugs, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
3
|
Jan R, Kim N, Asif S, Asaf S, Lubna, Farooq M, Khan Z, Kim KM. Identification and evaluation of low-pH-tolerant Cheongcheong/Nagdong-double haploid rice lines via QTL analysis. BMC PLANT BIOLOGY 2025; 25:525. [PMID: 40275129 PMCID: PMC12023450 DOI: 10.1186/s12870-025-06538-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/10/2025] [Indexed: 04/26/2025]
Abstract
Low soil pH (acidic soil) is one of the most severe environmental constraints that severely inhibits crop production. Here, we screened 134 lines of the Cheongcheong/Nagdong Double Haploid (CNDH) rice population under low pH conditions to uncover candidate QTLs and identify low pH-resistant lines. A total of 17 QTLs against shoot length, root length and standard evaluation score in response to low pH were identified on 8 chromosomes (1, 2, 6, 7, 8, 9, 10, and 12). A QTL related to shoot length, qSL-6b, on chromosome 6 with an LOD of 5 and a QTL related to the standard evaluation score, qSES-9, on chromosome 6 with an LOD of 3 were further investigated for candidate genes. A total of 24 genes were predicted, i.e., 17 genes on qSL-6b and 7 genes on qSES-9 on the basis of closely related functional annotations via the NCBI and RiceXPro databases. Through qRT‒PCR of the resistant and susceptible lines, we identified four genes (Os06g0211200, Os09g0448200, Os09g0456200, and Os09g0472100) that were significantly expressed in the resistant lines but expressed at lower levels in the susceptible lines under low-pH soil stress. During early germination, ABA levels decreased in all the resistant lines but increased in all the susceptible lines. However, the ABA level at the seedling stage significantly increased in the resistant lines but decreased in all the susceptible lines. Our results suggest that the genes responsible for K+ ion homeostasis and ABA regulation play key roles in resistance to low pH in rice.
Collapse
Affiliation(s)
- Rahmatullah Jan
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, 41566, South Korea
| | - Nari Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea
| | - Saleem Asif
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman.
| | - Lubna
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, 41566, South Korea
| | - Muhammad Farooq
- Department of Agriculture Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Korea
| | - Zakirullah Khan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea
| | - Kyung-Min Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, 41566, South Korea.
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
4
|
Ayub A, Javed T, Nayab A, Nan Y, Xie Y, Hussain S, Shafiq Y, Tian H, Hui J, Gao Y. AREB/ABF/ABI5 transcription factors in plant defense: regulatory cascades and functional diversity. Crit Rev Biotechnol 2025:1-21. [PMID: 40268510 DOI: 10.1080/07388551.2025.2475127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/06/2024] [Accepted: 01/28/2025] [Indexed: 04/25/2025]
Abstract
Basic leucine zipper transcription factors (TFs), also known as ABRE-BINDING PROTEINs/ABRE BINDING FACTORs (AREBs/ABFs), and ABA INSENSITIVE 5 (ABI5), show a great potential for the regulation of gene expressions in different crops under unfavorable conditions. These factors are involved in phytohormone signaling pathways, developmental metabolism, and growth regulation under environmental stresses. ABI5 functions alongside ABREs to regulate gene expression, with their promoter regions composed of the receptors PYR/PYL/RCAR, kinases (sucrose non-fermenting-1-related protein kinase 2) and phosphatases (PROTEIN PHOSPHATASE 2 C). These TFs participate in signaling pathways that regulate key genes and control numerous morphological, physiological, biochemical, and molecular processes under stressful environments. In this review, we studied ABFs/AREBs/ABI5s TFs, the phytohormone signaling pathways and their crosstalk, which play critical roles in regulating responses to abiotic stresses. The key TFs discussed in this work regulate various metabolic pathways and are promising candidates for the development of stress-resilient crops via CRISPR/CRISPR-associated protein technology to address threats to food security and sustainability in agriculture.
Collapse
Affiliation(s)
- Atif Ayub
- College of Natural Resource and Environment, Northwest A&F University, Yangling, China
| | - Talha Javed
- Chinese Academy of Tropical Agricultural Sciences, Institute of Tropical Bioscience and Biotechnology, Haikou, China
- Chinese Academy of Tropical Agricultural Sciences, Sanya Research Institute, Sanya, China
| | - Airish Nayab
- College of Life Science, Northwest A&F University, Yangling, China
| | - Yunyou Nan
- College of Natural Resource and Environment, Northwest A&F University, Yangling, China
| | - Yuyu Xie
- College of Natural Resource and Environment, Northwest A&F University, Yangling, China
| | - Sadam Hussain
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yousuf Shafiq
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Hui Tian
- College of Natural Resource and Environment, Northwest A&F University, Yangling, China
| | - Jing Hui
- College of Natural Resource and Environment, Northwest A&F University, Yangling, China
| | - Yajun Gao
- College of Natural Resource and Environment, Northwest A&F University, Yangling, China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Kumari M, Kumar P, Saini V, Joshi R, Shankar R, Kumar R. Transcriptional landscape illustrates the diversified adaptation of medicinal plants to multifactorial stress combinations linked with high altitude. PLANTA 2025; 261:111. [PMID: 40234266 DOI: 10.1007/s00425-025-04686-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 04/01/2025] [Indexed: 04/17/2025]
Abstract
MAIN CONCLUSION This study at high-altitude alpine environment reveals the molecular signatures associated with stress response and secondary metabolite accumulation, contributing to Picrorhiza kurroa adaptation, which is primarily regulated by a strong interplay of phytohormones. The high-altitude alpine environment is an extreme and variable environment with unique combinations of abiotic/biotic stresses. Despite progress about plant response to individual and combined abiotic stress in controlled conditions, our knowledge of plant adaptations to multifactorial stress combinations that typically occur in alpine environments is limiting. Here, we utilized the high-altitude medicinal herb Picrorhiza kurroa to investigate how multifactorial stress combinations prevailing along the high-altitude gradient at the western Himalayas affect gene expression and cellular pathways. Leaf transcriptional dynamics identified 7,388 differentially expressed unigenes (DEGs), highlighting unique gene expression patterns, specific pathways, and processes that play a crucial role in plant response to the complex micro-environment of high-altitude. Gene regulatory response largely relies on basic helix-loop-helix (bHLH), no apical meristem (NAC), and ethylene responsive factor (ERF) transcription factor families. Further, unigenes associated with secondary metabolism, multiple abiotic/biotic stress responses, and a variety of cellular and reproductive developmental processes were activated through complex cross-talk among plant hormonal signal transduction pathways. The weak correlation between gene expression and corresponding protein accumulation could predict stress-responsive protein abundance largely under different post-transcriptional/translational regulation. These findings recognize an array of new candidate genes for climate resilience, which would contribute to further our research on high-altitude alpine plant adaptations.
Collapse
Affiliation(s)
- Manglesh Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, (H.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prakash Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, (H.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Studio of Computational Biology & Bioinformatics (Biotech Division), The Himalayan Centre for High-throughput Computational Biology, Biotechnology Division, CSIR-IHBT, Palampur, 176061, (H.P.), India
- ICAR-Indian Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India
| | - Vishal Saini
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, (H.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rohit Joshi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, (H.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ravi Shankar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, (H.P.), India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Studio of Computational Biology & Bioinformatics (Biotech Division), The Himalayan Centre for High-throughput Computational Biology, Biotechnology Division, CSIR-IHBT, Palampur, 176061, (H.P.), India.
| | - Rajiv Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, (H.P.), India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Park J, Lee SH, Lee J, Wi SH, Seo TC, Moon JH, Jang S. Growing vegetables in a warming world - a review of crop response to drought stress, and strategies to mitigate adverse effects in vegetable production. FRONTIERS IN PLANT SCIENCE 2025; 16:1561100. [PMID: 40256598 PMCID: PMC12006132 DOI: 10.3389/fpls.2025.1561100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/19/2025] [Indexed: 04/22/2025]
Abstract
Drought stress caused by climate change is increasingly affecting the productivity and quality of vegetable crops worldwide. This review comprehensively analyzes the physiological, biochemical, and molecular mechanisms that vegetable crops employ to cope with drought stress. In particular, it highlights the significance of key hormonal regulation pathways, such as abscisic acid (ABA), jasmonic acid (JA), and ethylene (ET), which play crucial roles in mediating stress responses. Additionally, the role of antioxidant defense systems in mitigating oxidative damage caused by reactive oxygen species (ROS) is discussed. Advances in agricultural technologies, such as the use of smart irrigation systems and biostimulants, have shown promising results in enhancing drought resistance and optimizing crop yields. Integrating these strategies with the development of drought resistant varieties through gene editing and traditional breeding techniques will ensure sustainable agricultural production in drought stressed environments. This review aims to support future research into sustainable agricultural development to enhance drought tolerance in vegetable production and secure global food supply.
Collapse
Affiliation(s)
- Jongwon Park
- World Vegetable Center Korea Office, Wanju-gun, Republic of Korea
| | - Se-Hyoung Lee
- World Vegetable Center Korea Office, Wanju-gun, Republic of Korea
| | - Joowon Lee
- World Vegetable Center Korea Office, Wanju-gun, Republic of Korea
| | - Seung Hwan Wi
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Tae Cheol Seo
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Ji Hye Moon
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Seonghoe Jang
- World Vegetable Center Korea Office, Wanju-gun, Republic of Korea
| |
Collapse
|
7
|
Zhou B, Wang L, Ji Z, Chen X, Sun X, Xu N, Li P, Sang YL, Du Q, Liu LJ. The PagAFP2a-PagAREB1 Module Form a Negative Feedback Loop to Regulate Salt Tolerance in Populus. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40165385 DOI: 10.1111/pce.15495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 04/02/2025]
Abstract
Salt stress is a major abiotic stress restrict plant growth and distribution. In our previous study, we found the ABI5-BINDING PROTEIN 2a (PagAFP2a) gene was rapidly and significantly induced by salt stress in hybrid poplar (Populus alba × Populus glandulosa), however, its function in salt stress responses was unclear. In this study, we further demonstrated that the PagAFP2a gene expression is significantly induced by salt and ABA treatments. Additionally, the ABA-responsive element (ABRE) binding proteins (PagAREB1s) directly bind to PagAFP2a promoter and activate its expression. Physiological analysis showed that PagAFP2a overexpression (PagAFP2aOE) or PagAREB1-3 knockout (PagAREB1-3KO) significantly reduced salt tolerance whereas PagAFP2a knockout (PagAFP2aKO) or PagAREB1-3 overexpression (PagAREB1-3OE) significantly enhanced salt tolerance in poplar. Correspondingly, salt stress responsive genes were significantly upregulated in PagAFP2aKO and PagAREB1-3OE plants while downregulated in PagAFP2aOE and PagAREB1-3KO plants. Furthermore, we demonstrated that PagAFP2a directly interacts with PagAREB1s and represses its transcriptional activity at the target genes. In summary, our results unveil the PagAFP2a-PagAREB1s module form a negative feedback loop in ABA signaling to fine-tune salt stress responses in Populus.
Collapse
Affiliation(s)
- Bowen Zhou
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Linjing Wang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Zhenyang Ji
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Xiaoman Chen
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Xingkai Sun
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Na Xu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Peng Li
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Ya Lin Sang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Qingzhang Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Li-Jun Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
8
|
Wan Q, Yao R, Zhao Y, Xu L. JA and ABA signaling pathways converge to protect plant regeneration in stress conditions. Cell Rep 2025; 44:115423. [PMID: 40088448 DOI: 10.1016/j.celrep.2025.115423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/02/2025] [Accepted: 02/20/2025] [Indexed: 03/17/2025] Open
Abstract
In cuttings, detached leaves or stems are exposed to many stresses during the root regeneration process. Here, we show that the detached Arabidopsis thaliana leaf can tolerate mild osmotic stress and still regenerate roots. Under stress conditions, wounding and stress upregulate the jasmonate (JA) signaling pathway transcription factor gene MYC2 and the abscisic acid (ABA) signaling pathway transcription factor gene ABA INSENSITIVE5 (ABI5). The MYC2-ABI5 complex upregulates the expression of β-GLUCOSIDASE18 (BGLU18), which releases ABA from ABA glucose ester, resulting in ABA accumulation in the detached leaf. Mutations in MYC2, ABI5, and BGLU18 lead to the loss of stress tolerance and defects in root regeneration under osmotic stress. The successive application of JA and ABA can enhance the root regeneration ability in Arabidopsis and poplar cuttings. Overall, the JA-mediated wound signaling pathway and the ABA-mediated stress signaling pathway collaboratively amplify ABA signals to protect root regeneration under stress conditions.
Collapse
Affiliation(s)
- Qihui Wan
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Ruifeng Yao
- State Key Laboratory of Chemo and Biosensing, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Research Center of the Basic Discipline for Cell Signaling, College of Biology, Hunan University, Changsha 410082, China
| | - Yang Zhao
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lin Xu
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
9
|
Sun L, You X, Gao L, Wen W, Song Y, Shen Z, Xing Q, An Y, Zhou P. Functional analysis of AtDPBF3, encoding a key member of the ABI5 subfamily involved in ABA signaling, in Arabidopsis thaliana under salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109494. [PMID: 39826346 DOI: 10.1016/j.plaphy.2025.109494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/22/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Soil salinization is a major environmental stress limiting plant growth and development, affecting crop yields worldwide. We investigated the role of AtDPBF3, encoding a key member of the ABI5 subfamily, in the response to salt stress. The AtDPBF3 mutant (dpbf3) was significantly more sensitive to salt stress compared with wild type. Compared with leaves of salt-stressed wild type, those of salt-stressed dpbf3 exhibited severe decreases in chlorophyll content and photochemical efficiency (Fv/Fm), and disrupted ion homeostasis (higher Na+ content and lower K+ content). Comparative transcriptome analyses identified 457 genes that were differentially expressed in wild-type plants under salt stress but not in dpbf3 under salt stress. These differentially expressed genes encoded a range of products, including ion channels (e.g., AtCXX5, encoding a high-affinity K⁺ uptake/Na⁺ transporter), regulatory protein [e.g., AtSOS3, encoding Salt Overly Sensitive 3 (SOS3) that regulates SOS1 to reduce cytoplasmic Na⁺ levels through the SOS signaling pathway], sugar transporters [e.g., AtSUT4, encoding sucrose transporter 4 (SUT4)], and proteins involved in the stress response (e.g., AtLEA4-5, encoding LEA family proteins) and hormone signaling. These findings suggest that AtDPBF3 enhances salt tolerance by regulating many genes. qRT-PCR analyses confirmed the reliability of the transcriptome data, supporting the crucial role of AtDPBF3 in the salt stress response. These results lay the foundation for further research on the ABA signaling pathway and stress resistance mechanisms.
Collapse
Affiliation(s)
- Linjie Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiangkai You
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wuwu Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuncheng Song
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiyu Shen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiang Xing
- Urban Horticulture Research and Extension Center, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, 201101, China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
10
|
Choi J, Lim CW, Lee SC. Role of pepper bZIP transcription factor CaADBZ1 in abscisic acid signalling and drought stress response. PHYSIOLOGIA PLANTARUM 2025; 177:e70159. [PMID: 40104962 PMCID: PMC11920937 DOI: 10.1111/ppl.70159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 02/04/2025] [Indexed: 03/20/2025]
Abstract
In plants, basic-region/leucine-zipper (bZIP) transcription factors are key regulators of stress responses mediated by various phytohormone signalling pathways. However, the roles of bZIP transcription factors in pepper, particularly those associated with ABA signalling and drought stress, remain poorly understood. In this study, we isolated the CaADBZ1 (Capsicum annuum ABA and Dehydration-Induced bZIP transcription factor 1) gene, a member of the group A family, and analysed its functions in response to dehydration stress and ABA signalling. The expression of CaADBZ1 was specifically induced by dehydration and exogenous ABA treatment, not salinity and osmotic stress. CaADBZ1 was found to have transactivation activity in yeast cells, which was dependent on the N-terminal of CaADBZ1 (amino acids 1-112), harbouring a highly conserved C1 domain. Notably, a dual-luciferase reporter assay revealed that CaADBZ1 modulated the expression of CaOSR1, a dehydration stress-responsive gene in pepper plants. Functional studies in both pepper and Arabidopsis plants revealed that the modulation of CaADBZ1 expression level affected dehydration stress resistance in pepper and Arabidopsis plants. CaADBZ1-silenced pepper Arabidopsis plants showed dehydration stress-sensitive phenotypes characterized by higher transpiration rates and reduced expression of dehydration-responsive genes compared to control plants. Conversely, overexpression of the CaADBZ1 gene in Arabidopsis plants enhanced dehydration stress resistance. Moreover, CaADBZ1-overexpressing Arabidopsis transgenic plants showed increased ABA sensitivity during the seedling stage. Collectively, our findings suggest that CaADBZ1 plays a crucial role in enhancing dehydration stress tolerance in plants by positively regulating ABA sensitivity and dehydration-responsive gene expression.
Collapse
Affiliation(s)
- Jihye Choi
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, Korea
| |
Collapse
|
11
|
Lamers J, Zhang Y, van Zelm E, Leong CK, Meyer AJ, de Zeeuw T, Verstappen F, Veen M, Deolu-Ajayi AO, Gommers CMM, Testerink C. Abscisic acid signaling gates salt-induced responses of plant roots. Proc Natl Acad Sci U S A 2025; 122:e2406373122. [PMID: 39908104 PMCID: PMC11831169 DOI: 10.1073/pnas.2406373122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/09/2024] [Indexed: 02/07/2025] Open
Abstract
Soil salinity presents a dual challenge for plants, involving both osmotic and ionic stress. In response, plants deploy distinct yet interconnected mechanisms to cope with these facets of salinity stress. In this investigation, we observed a substantial overlap in the salt (NaCl)-induced transcriptional responses of Arabidopsis roots with those triggered by osmotic stress or the plant stress hormone abscisic acid (ABA), as anticipated. Notably, a specific cluster of genes responded uniquely to sodium (Na+) ions and are not regulated by the known monovalent cation sensing mechanism MOCA1. Surprisingly, expression of sodium-induced genes exhibited a negative correlation with the ABA response and preceded the activation of genes induced by the osmotic stress component of salt. Elevated exogenous ABA levels resulted in the complete abolition of sodium-induced responses. Consistently, the ABA insensitive snrk2.2/2.3 double mutant displayed prolonged sodium-induced gene expression, coupled with increased root cell damage and root swelling under high salinity conditions. Moreover, ABA biosynthesis and signaling mutants were unable to redirect root growth to avoid high sodium concentrations and had increased sodium accumulation in the shoot. In summary, our findings unveil an unexpected and pivotal role for ABA signaling in mitigating cellular damage induced by salinity stress and modulating sodium-induced responses in plant roots.
Collapse
Affiliation(s)
- Jasper Lamers
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen6708 PB, The Netherlands
| | - Yanxia Zhang
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen6708 PB, The Netherlands
| | - Eva van Zelm
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen6708 PB, The Netherlands
| | - Cheuk Ka Leong
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen6708 PB, The Netherlands
| | - A. Jessica Meyer
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen6708 PB, The Netherlands
| | - Thijs de Zeeuw
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen6708 PB, The Netherlands
| | - Francel Verstappen
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen6708 PB, The Netherlands
| | - Mark Veen
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen6708 PB, The Netherlands
| | - Ayodeji O. Deolu-Ajayi
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen6708 PB, The Netherlands
| | - Charlotte M. M. Gommers
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen6708 PB, The Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen6708 PB, The Netherlands
| |
Collapse
|
12
|
Feng X, Wang C, Jia S, Wang J, Zhou L, Song Y, Guo Q, Zhang C. Genome-Wide Analysis of bZIP Transcription Factors and Expression Patterns in Response to Salt and Drought Stress in Vaccinium corymbosum. Int J Mol Sci 2025; 26:843. [PMID: 39859558 PMCID: PMC11766362 DOI: 10.3390/ijms26020843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025] Open
Abstract
The basic leucine zipper (bZIP) transcription factors play essential roles in multiple stress responses and have been identified and functionally characterized in many plant species. However, the bZIP family members in blueberry are unclear. In this study, we identified 102 VcbZIP genes in Vaccinium corymbosum. VcbZIPs were divided into 10 groups based on phylogenetic analysis, and each group shared similar motifs, domains, and gene structures. Predictions of cis-regulatory elements in the upstream sequences of VcbZIP genes indicated that VcbZIP proteins are likely involved in phytohormone signaling pathways and abiotic stress responses. Analyses of RNA deep sequencing data showed that 18, 13, and 7 VcbZIP genes were differentially expressed in response to salt, drought, and ABA stress, respectively, for the blueberry cultivar Northland. Ten VcbZIP genes responded to both salt and drought stress, indicating that salt and drought have unique and overlapping signals. Of these genes, VcbZIP1-3 are responsive to salt, drought, and abscisic acid treatments, and their encoded proteins may integrate salt, drought, and ABA signaling. Furthermore, VcbZIP1-3 from group A and VcbZIP83-84 and VcbZIP75 from group S exhibited high or low expression under salt or drought stress and might be important regulators for improving drought or salt tolerance. Pearson correlation analyses revealed that VcbZIP transcription factors may regulate stress-responsive genes to improve drought or salt tolerance in a functionally redundant manner. Our study provides a useful reference for functional analyses of VcbZIP genes and for improving salt and drought stress tolerance in blueberry.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qingxun Guo
- Department of Horticulture, College of Plant Science, Jilin University, Changchun 130062, China
| | - Chunyu Zhang
- Department of Horticulture, College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
13
|
Namuunaa G, Bujin B, Yamagami A, Bolortuya B, Kawabata S, Ogawa H, Kanatani A, Shimizu M, Minami A, Mochida K, Miyakawa T, Davaapurev BO, Asami T, Batkhuu J, Nakano T. Identification and functional analyses of drought stress resistance genes by transcriptomics of the Mongolian grassland plant Chloris virgata. BMC PLANT BIOLOGY 2025; 25:44. [PMID: 39794690 PMCID: PMC11724609 DOI: 10.1186/s12870-025-06046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025]
Abstract
BACKGROUND Mongolian grasslands, including the Gobi Desert, have been exposed to drought conditions with few rains. In such harsh environments, plants with highly resistant abilities against drought stress survive over long periods. We hypothesized that these plants could harbor novel and valuable genes for enhancing drought stress resistance. RESULTS In this study, we identified Chloris virgata, a Mongolian grassland plant with strong drought resistance. RNA-seq-based transcriptome analysis was performed to uncover genes associated with drought stress resistance in C. virgata. De novo transcriptome assembly revealed 25,469 protein-coding transcripts and 1,219 upregulated genes after 3- and 6-hr drought stress treatments. Analysis by homology search and Gene Ontology (GO) enrichment indicated that abscisic acid (ABA)- and drought stress-related GO terms were enriched. Among the highly induced genes, ten candidate cDNAs were selected and overexpressed in Arabidopsis. When subjected to drought stress, three of these genes conferred strong drought resistance in the transgenic plants. We named these genes Mongolian Grassland plant Drought-stress resistance genes 1, 2, and 3 (MGD1, MGD2, and MGD3). Gene expression analyses in the transformants suggested that MGD1, MGD2, and MGD3 may activate drought stress-related signalling pathways. CONCLUSION This study highlighted the drought resistance of C. virgata and identified three novel genes that enhance drought stress resistance.
Collapse
Affiliation(s)
- Ganbayar Namuunaa
- Laboratory of Plant Chemical Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Baldorj Bujin
- Laboratory of Plant Chemical Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Ayumi Yamagami
- Laboratory of Plant Chemical Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Byambajav Bolortuya
- Laboratory of Plant Chemical Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shintaro Kawabata
- Laboratory of Plant Chemical Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hirotaka Ogawa
- Laboratory of Plant Chemical Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Asaka Kanatani
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Minami Shimizu
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Anzu Minami
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Kihara Institute for Biological Research, Yokohama City University, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Keiichi Mochida
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Kihara Institute for Biological Research, Yokohama City University, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
- Baton Zone Program, RIKEN, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- School of Information and Data Sciences, Nagasaki University, Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Takuya Miyakawa
- Laboratory of Plant Chemical Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Bekh-Ochir Davaapurev
- School of Engineering and Technology, National University of Mongolia, Ulaanbaatar, 14201, Mongolia
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Javzan Batkhuu
- School of Engineering and Technology, National University of Mongolia, Ulaanbaatar, 14201, Mongolia
| | - Takeshi Nakano
- Laboratory of Plant Chemical Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
14
|
Wu HC, Yu SY, Vivek S, Wang YD, Jinn TL. ABA-mediated regulation of PME12 influences stomatal density, pore aperture, and heat stress response in Arabidopsis thaliana. PLANTA 2025; 261:29. [PMID: 39786611 DOI: 10.1007/s00425-025-04606-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
MAIN CONCLUSION PME12-mutated plants displayed altered stomatal characteristics and susceptibility to ABA-induced closure. Despite changes in PME activity, the mutant exhibited enhanced thermotolerance. These findings suggest a complex interplay between pectin methylesterification, ABA response, and stomatal function, contributing to plant adaptation to heat stress. Pectin, an essential component of plant cell walls, is synthesized in the Golgi apparatus and deposited into the cell wall in a highly methylesterified form. The degree and distribution of methylesterification within homogalacturonan (HGA) domains are crucial in determining its functional properties. Pectin methylesterase (PME) catalyzes the demethylesterification of HGA, which is pivotal for adjusting cell wall properties in response to environmental cues. Our investigation of PME12, a type-I pectin methylesterase in Arabidopsis, reveals its role in abscisic acid (ABA)-mediated stomatal regulation during heat stress, with the pme12 mutant showing increased stomatal density, reduced size, and heightened sensitivity to ABA-induced closure. Additionally, pme12 plants exhibited altered PME activities under heat stress but displayed enhanced thermotolerance. Moreover, our study identified SCRM as a transcriptional regulator positively influencing PME12 expression, linking stomatal development with PME12-mediated pectin methylesterification. These findings suggest that PME12-mediated pectin modification plays a role in coordinating ABA responses and influencing stomatal behavior under heat stress conditions.
Collapse
Affiliation(s)
- Hui-Chen Wu
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan.
| | - Shih-Yu Yu
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Sandeep Vivek
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Yin-Da Wang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Tsung-Luo Jinn
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
15
|
Liu B, Sun J, Qiu C, Han X, Li Z. Comprehensive Identification of AREB Gene Family in Populus euphratica Oliv. and Functional Analysis of PeAREB04 in Drought Tolerance. Int J Mol Sci 2025; 26:518. [PMID: 39859230 PMCID: PMC11764895 DOI: 10.3390/ijms26020518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
The transcription factors in the ABA Response Element Binding (AREB) protein family were differentially regulated under multiple stress conditions; however, functional analyses of AREB in Populus euphratica Oliv. had not been conducted previously. In the present study, the comprehensive identification of the P. euphratica AREB gene family and the function of PeAREB04 in response to drought stress in P. euphratica were elucidated. A comprehensive analysis of the PeAREB family was first performed, followed by the determination of their expression patterns under drought stress. Bioinformatics analysis revealed that thirteen AREB genes were identified across the P. euphratica genome, with these genes distributed across eight chromosomes in a seemingly random pattern. Phylogenetic analysis indicated that the PeAREB genes could be categorized into four distinct branches. Cis-acting element analysis revealed that most PeAREB genes contained multiple hormone- and stress-responsive elements. Transcriptomic sequencing of P. euphratica seedlings under drought stress showed that most PeAREB genes responded rapidly to drought stress in either the leaves or roots. One gene, PeAREB04, was selected for further functional validation due to its significant upregulation in both leaves and roots under drought stress. Overexpression of PeAREB04 in Arabidopsis thaliana resulted in a high survival rate, reduced water loss in isolated leaves, and a significant reduction in stomatal aperture under natural drought conditions. Drought stress simulations using mannitol further demonstrated that overexpression of PeAREB04 significantly enhanced root elongation. These findings indicate that the identification of the PeAREB gene family and the characterization of PeAREB04's role in drought stress have been largely accomplished. Furthermore, the PeAREB04 gene demonstrates considerable potential as a key target for future genetic engineering strategies aimed at enhancing plant drought resistance.
Collapse
Affiliation(s)
- Binglei Liu
- Xinjiang Production & State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Alar 843300, China; (B.L.); (J.S.); (C.Q.); (X.H.)
- College of Life Science and Technology, Tarim University, Research Center of Populus euphratica, Alar 843300, China
| | - Jianhao Sun
- Xinjiang Production & State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Alar 843300, China; (B.L.); (J.S.); (C.Q.); (X.H.)
- College of Life Science and Technology, Tarim University, Research Center of Populus euphratica, Alar 843300, China
| | - Chen Qiu
- Xinjiang Production & State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Alar 843300, China; (B.L.); (J.S.); (C.Q.); (X.H.)
- College of Life Science and Technology, Tarim University, Research Center of Populus euphratica, Alar 843300, China
| | - Xiaoli Han
- Xinjiang Production & State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Alar 843300, China; (B.L.); (J.S.); (C.Q.); (X.H.)
- College of Life Science and Technology, Tarim University, Research Center of Populus euphratica, Alar 843300, China
| | - Zhijun Li
- Xinjiang Production & State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Alar 843300, China; (B.L.); (J.S.); (C.Q.); (X.H.)
- College of Life Science and Technology, Tarim University, Research Center of Populus euphratica, Alar 843300, China
| |
Collapse
|
16
|
Wang B, Zhou L, Li L, Pang D, Lei Y, Qi H, Chen B, Guo M, Zeng Q, Xie Y, Li X. The transcription factor TaFDL2-1A functions in auxin metabolism mediated by abscisic acid to regulate shoot growth in wheat. PLANT PHYSIOLOGY 2024; 197:kiae569. [PMID: 39447050 DOI: 10.1093/plphys/kiae569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
Genetic strategies can be effective in improving wheat (Triticum aestivum L.) drought stress tolerance, but accumulating evidence suggests that overexpressing drought-resistance genes, especially genes related to the abscisic acid (ABA) signaling pathway, can retard plant growth. We previously characterized the positive roles of the wheat bZIP transcription factor TaFD-Like2-1A (TaFDL2-1A) in drought stress tolerance and ABA biosynthesis and response, whereas a dwarfing shoot exhibited under normal conditions. This study determined the underlying mechanisms that allow TaFDL2-1A to affect shoot growth. Overexpressing TaFDL2-1A decreased cell length, cell width, leaf size, shoot length, and biomass in wheat. The results of RNA-seq showed that multiple differently expressed transcripts are enriched in the auxin signaling pathway. Further analysis indicated higher expression levels of Gretchen Hagen3 (GH3) genes and lower indole-3-acetic acid (IAA) concentrations in the TaFDL2-1A overexpression lines. Exogenous IAA treatment restored the phenotypes of the TaFDL2-1A overexpression lines to wild-type levels. Transcriptional regulation analysis suggested that TaFDL2-1A enhances the expression of auxin metabolism genes, such as TaGH3.2-3A, TaGH3.2-3B, TaGH3.8-2A, and TaGH3.8-2D, by directly binding to ACGT core cis-elements. Furthermore, tafdl2 knockout plants had lower expression levels of these GH3 genes and higher IAA levels than Fielder wheat. These GH3 gene expression and IAA levels were induced and reduced in Fielder wheat and tafdl2 knockout plants treated with exogenous ABA. Our findings elucidate mechanisms underlying the functional redundancy of TaFDL2-1A in the crosstalk between ABA and IAA to affect shoot growth and provide insights into the balance between drought resistance and yield in wheat.
Collapse
Affiliation(s)
- Bingxin Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ling Zhou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liqun Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Daqin Pang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanhong Lei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haodong Qi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Birong Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meirui Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qinghong Zeng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanzhou Xie
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuejun Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
17
|
Zheng X, Wang C, Zhang K, Xu Y, Qu X, Cao P, Zhou T, Chen Q. Revealing critical mechanisms involved in carbon nanosol-mediated tobacco growth using small RNA and mRNA sequencing in silico approach. BMC PLANT BIOLOGY 2024; 24:1233. [PMID: 39710652 DOI: 10.1186/s12870-024-05992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Nanomaterials have been shown to promote crop growth, yield and stress resistance. Carbon nanosol (CNS), a type of nanomaterial, is used to regulate tobacco shoot and root growth. However, information about the application of CNS to crop plants, especially tobacco, is still limited. Based on differential expression analysis and trend analysis, several miRNAs (miRN21-Novel-5p-mature, miR319b-Probable-5p-mature, miR160a-c-Known/Probable-5p-mature and miR156c-e-Known-5p-mature/star) and their target genes, including transcription factors (TFs), are likely responsible for the effect of CNS on promoting the growth of tobacco plants. In addition, we characterized nine TFs [Nitab4.5_00001789g0110 (NbbZIP), Nitab4.5_00001176g0010 (NbMYB), Nitab4.5_0001366g0010 (NbNAC), Nitab4.5_00000895g013 (NbMYB), Nitab4.5_0001225g0120 (NbNAC), Nitab4.5_0000202g0230 (NbDof), Nitab4.5_0002241g0010 (NbMYB-related), Nitab4.5_0000410g0060 (NbTCP), and Nitab4.5_0000159g0180 (NbC2H2)] associated with the response of tobacco to CNS according to the differential expression analysis, TF‒gene interaction network analysis and weighted correlation network analysis (WGCNA). Taken together, the findings of our study help understand CNS-mediated growth promotion in tobacco plants. The identification of candidate miRNAs and genes will provide potential support for the use of CNS in tobacco.
Collapse
Affiliation(s)
- Xueao Zheng
- Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, Henan Province, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Chen Wang
- Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, Henan Province, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Kunlong Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yalong Xu
- Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, Henan Province, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Xiaozhan Qu
- Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, Henan Province, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Peijian Cao
- Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, Henan Province, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Qiansi Chen
- Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, Henan Province, China.
- Beijing Life Science Academy (BLSA), Beijing, 102209, China.
| |
Collapse
|
18
|
Cheng J, Arystanbek Kyzy M, Heide A, Khan A, Lehmann M, Schröder L, Nägele T, Pommerrenig B, Keller I, Neuhaus HE. Senescence-Associated Sugar Transporter1 affects developmental master regulators and controls senescence in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:2749-2767. [PMID: 39158083 DOI: 10.1093/plphys/kiae430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/20/2024]
Abstract
Sugar transport across membranes is critical for plant development and yield. However, an analysis of the role of intracellular sugar transporters in senescence is lacking. Here, we characterized the role of Senescence-Associated Sugar Transporter1 (SAST1) during senescence in Arabidopsis (Arabidopsis thaliana). SAST1 expression was induced in leaves during senescence and after the application of abscisic acid (ABA). SAST1 is a vacuolar protein that pumps glucose out of the cytosol. sast1 mutants exhibited a stay-green phenotype during developmental senescence, after the darkening of single leaves, and after ABA feeding. To explain the stay-green phenotype of sast1 mutants, we analyzed the activity of the glucose-induced master regulator TOR (target of rapamycin), which is responsible for maintaining a high anabolic state. TOR activity was higher in sast1 mutants during senescence compared to wild types, whereas the activity of its antagonist, SNF1-related protein kinase 1 (SnRK1), was reduced in sast1 mutants under senescent conditions. This deregulation of TOR and SnRK1 activities correlated with high cytosolic glucose levels under senescent conditions in sast1 mutants. Although sast1 mutants displayed a functional stay-green phenotype, their seed yield was reduced. These analyses place the activity of SAST1 in the last phase of a leaf's existence in the molecular program required to complete its life cycle.
Collapse
Affiliation(s)
- Jintao Cheng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Meerim Arystanbek Kyzy
- Plant Physiology, University of Kaiserslautern-Landau (RPTU), Kaiserslautern D-67653, Germany
| | - Adrian Heide
- Plant Physiology, University of Kaiserslautern-Landau (RPTU), Kaiserslautern D-67653, Germany
| | - Azkia Khan
- Plant Physiology, University of Kaiserslautern-Landau (RPTU), Kaiserslautern D-67653, Germany
| | - Martin Lehmann
- Plant Biochemistry, Faculty of Biology, Ludwig Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| | - Laura Schröder
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| | - Benjamin Pommerrenig
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Quedlinburg D-06484, Germany
| | - Isabel Keller
- Plant Physiology, University of Kaiserslautern-Landau (RPTU), Kaiserslautern D-67653, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern-Landau (RPTU), Kaiserslautern D-67653, Germany
| |
Collapse
|
19
|
Ding LN, Hu YH, Li T, Li M, Li YT, Wu YZ, Cao J, Tan XL. A GDSL motif-containing lipase modulates Sclerotinia sclerotiorum resistance in Brassica napus. PLANT PHYSIOLOGY 2024; 196:2973-2988. [PMID: 39321167 PMCID: PMC11638095 DOI: 10.1093/plphys/kiae500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum (Lib.) De Bary is a devastating disease infecting hundreds of plant species. It also restricts the yield, quality, and safe production of rapeseed (Brassica napus) worldwide. However, the lack of resistance sources and genes to S. sclerotiorum has greatly restricted rapeseed SSR-resistance breeding. In this study, a previously identified GDSL motif-containing lipase gene, B. napus GDSL LIPASE-LIKE 1 (BnaC07.GLIP1), encoding a protein localized to the intercellular space, was characterized as functioning in plant immunity to S. sclerotiorum. The BnaC07.GLIP1 promoter is S. sclerotiorum-inducible and the expression of BnaC07.GLIP1 is substantially enhanced after S. sclerotiorum infection. Arabidopsis (Arabidopsis thaliana) heterologously expressing and rapeseed lines overexpressing BnaC07.GLIP1 showed enhanced resistance to S. sclerotiorum, whereas RNAi suppression and CRISPR/Cas9 knockout B. napus lines were hyper-susceptible to S. sclerotiorum. Moreover, BnaC07.GLIP1 affected the lipid composition and induced the production of phospholipid molecules, such as phosphatidylethanolamine, phosphatidylcholine, and phosphatidic acid, which were correlated with decreased levels of reactive oxygen species (ROS) and enhanced expression of defense-related genes. A B. napus bZIP44 transcription factor specifically binds the CGTCA motif of the BnaC07.GLIP1 promoter to positively regulate its expression. BnbZIP44 responded to S. sclerotiorum infection, and its heterologous expression inhibited ROS accumulation, thereby enhancing S. sclerotiorum resistance in Arabidopsis. Thus, BnaC07.GLIP1 functions downstream of BnbZIP44 and is involved in S. sclerotiorum resistance by modulating the production of phospholipid molecules and ROS homeostasis in B. napus, providing insights into the potential roles and functional mechanisms of BnaC07.GLIP1 in plant immunity and for improving rapeseed SSR disease-resistance breeding.
Collapse
Affiliation(s)
- Li-Na Ding
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Ying-Hui Hu
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Teng Li
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Ming Li
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yue-Tao Li
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yuan-Zhen Wu
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jun Cao
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xiao-Li Tan
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
20
|
Cao M, Zhang Y, Zou X, Yin H, Yin Y, Li Z, Xiao W, Liu S, Li Y, Guo X. Genome-Wide Identification, Classification, Expression Analysis, and Screening of Drought and Heat Resistance-Related Candidates of the Rboh Gene Family in Wheat. PLANTS (BASEL, SWITZERLAND) 2024; 13:3377. [PMID: 39683170 DOI: 10.3390/plants13233377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024]
Abstract
Plant respiratory burst oxidase homologs (Rbohs) are key enzymes that produce reactive oxygen species (ROS), which serve as signaling molecules regulating plant growth and stress responses. In this study, 39 TaRboh genes (TaRboh01-TaRboh39) were identified. These genes were distributed unevenly among the wheat genome's fourteen chromosomes, with the exception of homoeologous group 2 and 7 and chromosomes 4A, as well as one unidentified linkage group (Un). TaRbohs were classified into ten distinct clades, each sharing similar motif compositions and gene structures. The promoter regions of TaRbohs contained cis-elements related to hormones, growth and development, and stresses. Furthermore, five TaRboh genes (TaRboh26, TaRboh27, TaRboh31, TaRboh32, and TaRboh34) exhibited strong evolutionary conservation. Additionally, a Ka/Ks analysis confirmed that purifying selection was the predominant force driving the evolution of these genes. Expression profiling and qPCR results further indicated differential expression patterns of TaRboh genes between heat and drought stresses. TaRboh11, TaRboh20, TaRboh22, TaRboh24, TaRboh29, and TaRboh34 were significantly upregulated under multiple stress conditions, whereas TaRboh30 was only elevated in response to drought stress. Collectively, our findings provide a systematic analysis of the wheat Rboh gene family and establish a theoretical framework for our future research on the role of Rboh genes in response to heat and drought stress.
Collapse
Grants
- 32372124, 32300456, 82304652 National Natural Science Foundation of China
- 2022M721101, 2021M701160, 2023M731065 China Postdoctoral Science Foundation
- 2023JJ40132, 2022JJ40051, 2023JJ40199 Hunan Provincial Department of Science and Technology
- kq2202149 Changsha Natural Science Foundation
- CSTB2023NSCQ-MSX0542, CSTB2023NSCQ-MSX1031, CSTB2022NSCQ-MSX0517, CSTB2022NSCQ-MSX1138 Natural Science Foundation of Chongqing, China
Collapse
Affiliation(s)
- Miyuan Cao
- College of Biology, Hunan University, Changsha 410082, China
| | - Yue Zhang
- College of Biology, Hunan University, Changsha 410082, China
| | - Xiaoxiao Zou
- College of Biology, Hunan University, Changsha 410082, China
| | - Huangping Yin
- College of Biology, Hunan University, Changsha 410082, China
| | - Yan Yin
- College of Biology, Hunan University, Changsha 410082, China
| | - Zeqi Li
- College of Biology, Hunan University, Changsha 410082, China
| | - Wenjun Xiao
- College of Biology, Hunan University, Changsha 410082, China
- Chongqing Research Institute, Hunan University, Chongqing 401120, China
| | - Shucan Liu
- College of Biology, Hunan University, Changsha 410082, China
- Chongqing Research Institute, Hunan University, Chongqing 401120, China
| | - Yongliang Li
- College of Biology, Hunan University, Changsha 410082, China
- Chongqing Research Institute, Hunan University, Chongqing 401120, China
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xinhong Guo
- College of Biology, Hunan University, Changsha 410082, China
- Chongqing Research Institute, Hunan University, Chongqing 401120, China
| |
Collapse
|
21
|
Bortolami G, de Werk TA, Larter M, Thonglim A, Mueller-Roeber B, Balazadeh S, Lens F. Integrating gene expression analysis and ecophysiological responses to water deficit in leaves of tomato plants. Sci Rep 2024; 14:29024. [PMID: 39578554 PMCID: PMC11584733 DOI: 10.1038/s41598-024-80261-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024] Open
Abstract
Soil water deficit (WD) significantly impacts plant survival and crop yields. Many gaps remain in our understanding of the synergistic coordination between molecular and ecophysiological responses delaying substantial drought-induced effects on plant growth. To investigate this synergism in tomato leaves, we combined molecular, ecophysiological, and anatomical methods to examine gene expression patterns and physio-anatomical characteristics during a progressing WD experiment. Four sampling points were selected for transcriptomic analysis based on the key ecophysiological responses of the tomato leaves: 4 and 5 days after WD (d-WD), corresponding to 10% and 90% decrease in leaf stomatal conductance; 8 d-WD, the leaf wilting point; and 10 d-WD, when air embolism blocks 12% of the leaf xylem water transport. At 4 d-WD, upregulated genes were mostly linked to ABA-independent responses, with larger-scale ABA-dependent responses occurring at 5 d-WD. At 8 d-WD, we observed an upregulation of heat shock transcription factors, and two days later (10 d-WD), we found a strong upregulation of oxidative stress transcription factors. Finally, we found that young leaves present a stronger dehydration tolerance than mature leaves at the same drought intensity level, presumably because young leaves upregulate genes related to increased callose deposition resulting in limiting water loss to the phloem, and related to increased cell rigidity by modifying cell wall structures. This combined dataset will serve as a framework for future studies that aim to obtain a more holistic WD plant response at the molecular, ecophysiological and anatomical level.
Collapse
Affiliation(s)
- G Bortolami
- Naturalis Biodiversity Center, Research Group Functional Traits, PO Box 9517, 2300 RA, Leiden, The Netherlands
- Plant Ecology Research Laboratory, School of Architecture, Civil and Environmental Engineering, 1015, Lausanne, Switzerland
| | - T A de Werk
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476, Potsdam, Germany
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - M Larter
- Naturalis Biodiversity Center, Research Group Functional Traits, PO Box 9517, 2300 RA, Leiden, The Netherlands
- BIOGECO, INRAE, Université de Bordeaux, 33615, Pessac, France
| | - A Thonglim
- Naturalis Biodiversity Center, Research Group Functional Traits, PO Box 9517, 2300 RA, Leiden, The Netherlands
| | - B Mueller-Roeber
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476, Potsdam, Germany
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - S Balazadeh
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany.
- Institute Biology Leiden, Sylvius Laboratory, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| | - F Lens
- Naturalis Biodiversity Center, Research Group Functional Traits, PO Box 9517, 2300 RA, Leiden, The Netherlands.
- Institute Biology Leiden, Sylvius Laboratory, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| |
Collapse
|
22
|
Mo W, Zheng X, Shi Q, Zhao X, Chen X, Yang Z, Zuo Z. Unveiling the crucial roles of abscisic acid in plant physiology: implications for enhancing stress tolerance and productivity. FRONTIERS IN PLANT SCIENCE 2024; 15:1437184. [PMID: 39640997 PMCID: PMC11617201 DOI: 10.3389/fpls.2024.1437184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024]
Abstract
Abscisic acid (ABA), one of the six major plant hormones, plays an essential and irreplaceable role in numerous physiological and biochemical processes during normal plant growth and in response to abiotic stresses. It is a key factor in balancing endogenous hormones and regulating growth metabolism in plants. The level of ABA is intricately regulated through complex mechanisms involving biosynthesis, catabolism, and transport. The functionality of ABA is mediated through a series of signal transduction pathways, primarily involving core components such as the ABA receptors PYR/PYL/RCAR, PP2C, and SnRK2. Over the past 50 years since its discovery, most of the genes involved in ABA biosynthesis, catabolism, and transport have been characterized, and the network of signaling pathways has gradually become clearer. Extensive research indicates that externally increasing ABA levels and activating the ABA signaling pathway through molecular biology techniques significantly enhance plant tolerance to abiotic stresses and improve plant productivity under adverse environmental conditions. Therefore, elucidating the roles of ABA in various physiological processes of plants and deciphering the signaling regulatory network of ABA can provide a theoretical basis and guidance for addressing key issues such as improving crop quality, yield, and stress resistance.
Collapse
Affiliation(s)
- Weiliang Mo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Xunan Zheng
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Qingchi Shi
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Xuelai Zhao
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Xiaoyu Chen
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
| | - Zhenming Yang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Zecheng Zuo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
23
|
Zheng X, Mo W, Zuo Z, Shi Q, Chen X, Zhao X, Han J. From Regulation to Application: The Role of Abscisic Acid in Seed and Fruit Development and Agronomic Production Strategies. Int J Mol Sci 2024; 25:12024. [PMID: 39596092 PMCID: PMC11593364 DOI: 10.3390/ijms252212024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Abscisic acid (ABA) is a crucial plant hormone that plays a decisive role in regulating seed and fruit development and is becoming increasingly important in agricultural applications. This article delves into ABA's regulatory functions in plant growth, particularly during the stages of seed and fruit development. In the seed phase, elevated ABA levels help maintain seed dormancy, aiding seed survival under unfavorable conditions. During fruit development, ABA regulates pigment synthesis and sugar accumulation, influencing the nutritional value and market quality of the fruit. This article highlights three main strategies for applying ABA in agricultural production: the use of ABA analogs, the development of ABA signal modulators, and breeding techniques based on ABA signaling. ABA analogs can mimic the natural functions of ABA, while ABA signal modulators, including enhancers and inhibitors, are used to finely tune plant responses to ABA, optimizing crop performance under specific growth conditions. Furthermore, breeding strategies based on ABA signaling aim to select crop varieties that effectively utilize ABA pathways through genetic engineering and other technologies. ABA is not only a key regulator of plant growth and development but also holds great potential for modern agricultural practices.
Collapse
Affiliation(s)
- Xunan Zheng
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (X.Z.); (W.M.); (Z.Z.); (Q.S.); (X.Z.)
| | - Weiliang Mo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (X.Z.); (W.M.); (Z.Z.); (Q.S.); (X.Z.)
| | - Zecheng Zuo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (X.Z.); (W.M.); (Z.Z.); (Q.S.); (X.Z.)
| | - Qingchi Shi
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (X.Z.); (W.M.); (Z.Z.); (Q.S.); (X.Z.)
| | - Xiaoyu Chen
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China;
| | - Xuelai Zhao
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (X.Z.); (W.M.); (Z.Z.); (Q.S.); (X.Z.)
| | - Junyou Han
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (X.Z.); (W.M.); (Z.Z.); (Q.S.); (X.Z.)
| |
Collapse
|
24
|
Guo FX, Yang RX, Yang X, Liu J, Wang YZ. Application of an Efficient Enhancer in Gene Function Research. PLANTS (BASEL, SWITZERLAND) 2024; 13:3120. [PMID: 39599329 PMCID: PMC11597595 DOI: 10.3390/plants13223120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/25/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024]
Abstract
Although great progress has been made in transgenic technology, increasing the expression level and thus promising the expected phenotypes of exogenous genes in transgenic plants is still a crucial task for genetic transformation and crop engineering. Here, we conducted a comparative study of the enhancing efficiency of three putative translational enhancers, including Ω (natural leader from a plant virus), OsADH 5' (natural leader from a plant gene), and ARC (active ribosomal RNA complementary), using the transient gene expression systems of Nicotiana benthamiana and Chirita pumila. We demonstrate that three tandem repeats of ARC (3 × ARC) are more efficient than other enhancers in expression. The enhancing efficiency of 6 × ARC is further increased, up to 130 times the expression level without the insertion of enhancers. We further evaluated the enhancing efficiency of 6 × ARC under agrobacterium-mediated transformation systems. In C. pumila, 6 × ARC significantly amplifies the phenotypic effect of CpCYC1 and CpCYC2 in repressing stamen development and yellow pigmentation. In Arabidopsis thaliana, 6 × ARC and the AtAP1 promoter work together to promote the accumulation of anthocyanin pigments in vegetative and reproductive organs. Most significantly, the fusion of 6 × ARC in a CpCYC1/2 transgenic system in C. pumila fully reveals that these genes have the complete function of repressing the yellow spots, displaying an advantage in manifesting the function of exogenous genes. This study highlights the application potential of the enhancer 6 × ARC in gene function research in plants.
Collapse
Affiliation(s)
- Feng-Xian Guo
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (F.-X.G.); (R.-X.Y.); (X.Y.); (J.L.)
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui-Xue Yang
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (F.-X.G.); (R.-X.Y.); (X.Y.); (J.L.)
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Yang
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (F.-X.G.); (R.-X.Y.); (X.Y.); (J.L.)
- China National Botanical Garden, Beijing 100093, China
| | - Jing Liu
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (F.-X.G.); (R.-X.Y.); (X.Y.); (J.L.)
- China National Botanical Garden, Beijing 100093, China
| | - Yin-Zheng Wang
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (F.-X.G.); (R.-X.Y.); (X.Y.); (J.L.)
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Al-Sayaydeh R, Ayad J, Harwood W, Al-Abdallat AM. Stress-Inducible Expression of HvABF2 Transcription Factor Improves Water Deficit Tolerance in Transgenic Barley Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:3113. [PMID: 39599322 PMCID: PMC11597383 DOI: 10.3390/plants13223113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024]
Abstract
Barley (Hordeum vulgare L.), a major cereal crop grown in arid and semi-arid regions, faces significant yield variability due to drought and heat stresses. In this study, the HvABF2 gene, encoding an ABA-dependent transcription factor, was cloned using specific primers from water deficit-stressed barley seedlings. Gene expression analysis revealed high HvABF2 expression in developing caryopses and inflorescences, with significant induction under stress conditions. The HvABF2 coding sequence was utilized to generate transgenic barley plants with both stress-inducible and constitutive expression, driven by the rice SNAC1 and maize Ubiquitin promoters, respectively. Selected transgenic barley lines, along with control lines, were subjected to water deficit-stress experiments at seedling and flag leaf stages under controlled and greenhouse conditions. The transgenic lines exhibited higher relative water content and stomatal resistance under stress compared to control plants. However, constitutive overexpression of HvABF2 led to growth retardation under well-watered conditions, resulting in reduced plant height, grain weight, and grain number. In contrast, stress-inducible expression mitigated these effects, demonstrating improved drought tolerance without adverse growth impacts. This study highlights that the stress-inducible expression of HvABF2, using the SNAC1 promoter, effectively improves drought tolerance while avoiding the negative pleiotropic effects observed with constitutive expression.
Collapse
Affiliation(s)
- Rabea Al-Sayaydeh
- Department of Agriculture Sciences, Faculty of Shoubak College, Al-Balqa Applied University, Al-Salt 19117, Jordan;
| | - Jamal Ayad
- Department of Horticulture and Crop Science, School of Agriculture, The University of Jordan, Amman 11942, Jordan;
| | - Wendy Harwood
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK;
| | - Ayed M. Al-Abdallat
- Department of Horticulture and Crop Science, School of Agriculture, The University of Jordan, Amman 11942, Jordan;
| |
Collapse
|
26
|
Bu Y, Yu Y, Song T, Zhang D, Shi C, Zhang S, Zhang W, Chen D, Xiang J, Zhang X. The transcription factor TabZIP156 acts as a positive regulator in response to drought tolerance in Arabidopsis and wheat (Triticum aestivum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109086. [PMID: 39241627 DOI: 10.1016/j.plaphy.2024.109086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/25/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Drought stress strongly restricts the growth, development, and yield of wheat worldwide. Among the various transcription factors (TFs) involved in the wheat drought response, the specific functions of many basic leucine zipper (bZIP) TFs related to drought tolerance are still not well understood. In this study, we focused on the bZIP TF TabZIP156 in wheat. Our analysis showed that TabZIP156 was highly expressed in both roots and leaves, and it responded to drought and abscisic acid (ABA) stress. Through subcellular localization and transactivation assays, we confirmed that TabZIP156 was located to the nucleus and functioned as a transcriptional activator. Overexpression of TabZIP156 in Arabidopsis enhanced drought tolerance, as evidenced by higher germination rate, longer root length, lower water loss rate, reduced ion leakage, increased proline accumulation, decreased levels of H2O2, O2- and MDA, and improved activities of POD, SOD, and CAT enzymes. Additionally, the expression of drought- and antioxidant-related genes were significantly upregulated in TabZIP156 transgenic Arabidopsis under drought stress. However, silencing TabZIP156 in wheat led to decreased proline content, increased accumulation of H2O2, O2- and MDA, reduced activities of antioxidant enzymes, and downregulation of many drought- and antioxidant-related genes under drought stress. Furthermore, the dual-luciferase assay demonstrated that TabZIP156 could activate the expression of TaP5CS, TaDREB1A, and TaPOD by binding to their promoters. Taken together, this study highlights the significant role of TabZIP156 in drought stress and provides valuable insights for its potential application in breeding drought-resistant wheat.
Collapse
Affiliation(s)
- Yaning Bu
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yang Yu
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Tianqi Song
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Dingguo Zhang
- College of Biological Sciences and Technology, Yili Normal University, Yili, 830500, Xinjiang, China.
| | - Caiyin Shi
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Shuangxing Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Weijun Zhang
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, 750002, Ningxia, China.
| | - Dongsheng Chen
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, 750002, Ningxia, China.
| | - Jishan Xiang
- College of Biological Sciences and Technology, Yili Normal University, Yili, 830500, Xinjiang, China.
| | - Xiaoke Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
27
|
Hou X, Zhang Y, Shi X, Duan W, Fu X, Liu J, Xiao K. TaCDPK1-5A positively regulates drought response through modulating osmotic stress responsive-associated processes in wheat (Triticum aestivum). PLANT CELL REPORTS 2024; 43:256. [PMID: 39375249 DOI: 10.1007/s00299-024-03344-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
KEY MESSAGE Wheat TaCDPK1-5A plays critical roles in mediating drought tolerance through regulating osmotic stress-associated physiological processes. Calcium (Ca2+) acts as an essential second messenger in plant signaling pathways and impacts plant abiotic stress responses. This study reported the function of TaCDPK1-5A, a calcium-dependent protein kinase (CDPK) gene in T. aestivum, in mediating drought tolerance. TaCDPK1-5A sensitively responded to drought and exogenous abscisic acid (ABA) signaling, displaying induced transcripts in plants under drought and ABA treatments. Yeast two-hybrid and co-immunoprecipitation assays revealed that TaCDPK1-5A interacts with the mitogen-activated protein kinase TaMAPK4-7D whereas the latter with ABF transcription factor TaABF1-3A, suggesting that TaCDPK1-5A constitutes a signaling module with above partners to transduce signals initiated by drought/ABA stressors. Overexpression of TaCDPK1-5A, TaMAPK4-7D and TaABF1-3A enhanced plant drought adaptation by modulating the osmotic stress-related physiological indices, including increased osmolyte contents, enlarged root morphology, and promoted stomata closure. Yeast one-hybrid assays indicated the binding ability of TaABF1-3A with promoters of TaP5CS1-1B, TaPIN3-5A, and TaSLAC1-3-2A, the genes encoding P5CS enzyme, PIN-FORMED protein, and slow anion channel, respectively. ChIP-PCR and transcriptional activation assays confirmed that TaABF1-3A regulates these genes at transcriptional level. Moreover, transgene analysis indicated that these stress-responsive genes positively regulated proline biosynthesis (TaP5CS1-1B), root morphology (TaPIN3-5A), and stomata closing (TaSLAC1-3-2A) upon drought signaling. Positive correlations were observed between yield and the transcripts of TaCDPK1-5A signaling partners in wheat cultivars under drought condition, with haplotype TaCDPK1-5A-Hap1 contributing to improved drought tolerance. Our study concluded that TaCDPK1-5A positively regulates drought adaptation and is a valuable target for molecular breeding the drought-tolerant cultivars in T. aestivum.
Collapse
Affiliation(s)
- Xiaoyang Hou
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, People's Republic of China
- College of Agronomy, Hebei Agricultural University, Baoding, People's Republic of China
| | - Yongli Zhang
- National Key Laboratory of Wheat Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xinxin Shi
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, People's Republic of China
- College of Agronomy, Hebei Agricultural University, Baoding, People's Republic of China
| | - Wanrong Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, People's Republic of China
- College of Agronomy, Hebei Agricultural University, Baoding, People's Republic of China
| | - Xiaojin Fu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, People's Republic of China
- College of Agronomy, Hebei Agricultural University, Baoding, People's Republic of China
| | - Jinzhi Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, People's Republic of China
- College of Agronomy, Hebei Agricultural University, Baoding, People's Republic of China
| | - Kai Xiao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, People's Republic of China.
- College of Agronomy, Hebei Agricultural University, Baoding, People's Republic of China.
| |
Collapse
|
28
|
Thongsima N, Khunsanit P, Navapiphat S, Henry IM, Comai L, Buaboocha T. Sequence-based analysis of the rice CAMTA family: haplotype and network analyses. Sci Rep 2024; 14:23156. [PMID: 39367004 PMCID: PMC11452383 DOI: 10.1038/s41598-024-73668-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
The calmodulin-binding transcription activator (CAMTA) family contributes to stress responses in many plant species. The Oryza sativa ssp. japonica genome harbors seven CAMTA genes; however, intraspecific variation and functional roles of this gene family have not been determined. Here, we comprehensively evaluated the structure and characteristics of the CAMTA genes in japonica rice using bioinformatics approaches and RT-qPCR. Within the CAMTA gene and promoter sequences, 527 single nucleotide polymorphisms were retrieved from 3,024 rice accessions. The CAMTA genes could be subdivided into 5-14 haplotypes. Association analyses between haplotypes and phenotypic traits, such as grain weight and salt stress parameters, identified phenotypic differences between rice subpopulations harboring different CAMTA haplotypes. Co-expression analyses and the identification of CAMTA-specific binding motifs revealed candidate genes regulated by CAMTA. A Gene Ontology functional enrichment analysis of 690 co-expressed genes revealed that CAMTA genes have key roles in defense responses. An interaction analysis identified 30 putative CAMTA interactors. Three genes were identified in co-expression and interaction network analyses, suggesting that they are potentially regulated by CAMTAs. Based on all information obtained together with the phenotypes of the CRISPR-Cas9 knockout mutant lines of three OskCAMTA genes generated, CAMTA1 likely plays important roles in the response to salt stress in rice. Overall, our findings suggest that the CAMTA gene family is involved in development and the salt stress response and reveal candidate target genes, providing a basis for further functional characterization.
Collapse
Affiliation(s)
- Nattana Thongsima
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prasit Khunsanit
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sarunkorn Navapiphat
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Isabelle M Henry
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, 95616, USA
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, 95616, USA
| | - Teerapong Buaboocha
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
29
|
Wang X, Yamaguchi N. Cause or effect: Probing the roles of epigenetics in plant development and environmental responses. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102569. [PMID: 38833828 DOI: 10.1016/j.pbi.2024.102569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
Epigenetic modifications are inheritable, reversible changes that control gene expression without altering the DNA sequence itself. Recent advances in epigenetic and sequencing technologies have revealed key regulatory regions in genes with multiple epigenetic changes. However, causal associations between epigenetic changes and physiological events have rarely been examined. Epigenome editing enables alterations to the epigenome without changing the underlying DNA sequence. Modifying epigenetic information in plants has important implications for causality assessment of the epigenome. Here, we briefly review tools for selectively interrogating the epigenome. We highlight promising research on site-specific DNA methylation and histone modifications and propose future research directions to more deeply investigate epigenetic regulation, including cause-and-effect relationships between epigenetic modifications and the development/environmental responses of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Xuejing Wang
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
30
|
Zhu C, Zhao L, Zhao S, Niu X, Li L, Gao H, Liu J, Wang L, Zhang T, Cheng R, Shi Z, Zhang H, Wang G. Utilizing machine learning and bioinformatics analysis to identify drought-responsive genes affecting yield in foxtail millet. Int J Biol Macromol 2024; 277:134288. [PMID: 39079238 DOI: 10.1016/j.ijbiomac.2024.134288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024]
Abstract
Drought stress is a major constraint on crop development, potentially causing huge yield losses and threatening global food security. Improving Crop's stress tolerance is usually associated with a yield penalty. One way to balance yield and stress tolerance is modification specific gene by emerging precision genome editing technology. However, our knowledge of yield-related drought-tolerant genes is still limited. Foxtail millet (Setaria italica) has a remarkable tolerance to drought and is considered to be a model C4 crop that is easy to engineer. Here, we have identified 46 drought-responsive candidate genes by performing a machine learning-based transcriptome study on two drought-tolerant and two drought-sensitive foxtail millet cultivars. A total of 12 important drought-responsive genes were screened out by principal component analysis and confirmed experimentally by qPCR. Significantly, by investigating the haplotype of these genes based on 1844 germplasm resources, we found two genes (Seita.5G251300 and Seita.8G036300) exhibiting drought-tolerant haplotypes that possess an apparent advantage in 1000 grain weight and main panicle grain weight without penalty in grain weight per plant. These results demonstrate the potential of Seita.5G251300 and Seita.8G036300 for breeding drought-tolerant high-yielding foxtail millet. It provides important insights for the breeding of drought-tolerant high-yielding crop cultivars through genetic manipulation technology.
Collapse
Affiliation(s)
- Chunhui Zhu
- College of Physics, Hebei Normal University, Shijiazhuang 050024, China.
| | - Ling Zhao
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Shaoxing Zhao
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Xingfang Niu
- College of Physics, Hebei Normal University, Shijiazhuang 050024, China; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Lin Li
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Hui Gao
- Hebei Key Laboratory of Crop Stress Biology, Department of Life Science and Technology, College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Jiaxin Liu
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China; Hebei Key Laboratory of Crop Stress Biology, Department of Life Science and Technology, College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Litao Wang
- College of Physics, Hebei Normal University, Shijiazhuang 050024, China; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Ting Zhang
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Ruhong Cheng
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Zhigang Shi
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Haoshan Zhang
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China.
| | - Genping Wang
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China.
| |
Collapse
|
31
|
Chu CY, Lin LF, Lai SC, Yang JH, Chou ML. FaTEDT1L of Octoploid Cultivated Strawberry Functions as a Transcriptional Activator and Enhances Abiotic Stress Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2024; 25:10091. [PMID: 39337577 PMCID: PMC11432484 DOI: 10.3390/ijms251810091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Plants may encounter abiotic stresses, such as drought, flooding, salinity, and extreme temperatures, thereby negatively affecting their growth, development, and reproduction. In order to enhance their tolerance to such stresses, plants have developed intricate signaling networks that regulate stress-responsive gene expression. For example, Arabidopsis Enhanced Drought Tolerance1/HOMEODOMAIN GLABROUS 11 (AtEDT1/HDG11), one of the transcription factor genes from the group IV of homeodomain-leucine zipper (HD-ZIP) gene family, has been shown to increase drought tolerance in various transgenic plants. However, the underlying molecular mechanisms of enhanced stress tolerance remain unclear. In this study, we identified a homologous gene related to AtEDT1/HDG11, named FaTEDT1L, from the transcriptome sequencing database of cultivated strawberry. Phylogenetic analysis revealed the close relationship of FaTEDT1L with AtEDT1/HDG11, which is one of the group IV members of the HD-ZIP gene family. Yeast one-hybrid analysis showed that FaTEDT1L functions as a transcriptional activator. Transgenic Arabidopsis plants overexpressing FaTEDT1L under the control of the cauliflower mosaic virus (CaMV) 35S promoter exhibited significantly enhanced tolerance to osmotic stress (both drought and salinity) when compared to the wild-type (WT) plants. Under osmotic stress, the average root length was 3.63 ± 0.83 cm, 4.20 ± 1.03 cm, and 4.60 ± 1.14 cm for WT, 35S::FaTEDT1L T2 #3, and 35S:: FaTEDT1L T2 #5, respectively. Substantially increased root length in 35S::FaTEDT1L T2 #3 and 35S::FaTEDT1L T2 #5 was noted when compared to the WT. In addition, the average water loss rates were 64%, 57.1%, and 55.6% for WT, 35S::FaTEDT1L T2 #3, and 35S::FaTEDT1L T2 #5, respectively, after drought treatment, indicating a significant decrease in water loss rate of 35S:: FaTEDT1L T2 #3 and 35S::FaTEDT1L T2 #5 is a critical factor in enhancing plant drought resistance. These findings thus highlight the crucial role of FaTEDT1L in mitigating drought and salt stresses and regulating plant osmotic stress tolerance. Altogether, FaTEDT1L shows its potential usage as a candidate gene for strawberry breeding in improving crop resilience and increasing agricultural productivity under adverse environmental conditions.
Collapse
Affiliation(s)
- Ching-Ying Chu
- Department of Life Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Lee-Fong Lin
- Department of Life Sciences, Tzu Chi University, Hualien 97004, Taiwan
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien 97004, Taiwan
| | - Shang-Chih Lai
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Jui-Hung Yang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 30011, Taiwan
| | - Ming-Lun Chou
- Department of Life Sciences, Tzu Chi University, Hualien 97004, Taiwan
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
32
|
An Y, Wang Q, Cui Y, Liu X, Wang P, Zhou Y, Kang P, Chen Y, Wang Z, Zhou Q, Wang P. Comparative physiological and transcriptomic analyses reveal genotype specific response to drought stress in Siberian wildrye (Elymus sibiricus). Sci Rep 2024; 14:21060. [PMID: 39256456 PMCID: PMC11387644 DOI: 10.1038/s41598-024-71847-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024] Open
Abstract
Siberian wildrye (Elymus sibiricus) is a xero-mesophytic forage grass with high nutritional quality and stress tolerance. Among its numerous germplasm resources, some possess superior drought resistance. In this study, we firstly investigated the physiological differences between the leaves of drought-tolerant (DT) and drought-sensitive (DS) genotypes under different field water contents (FWC) in soil culture. The results showed that, under drought stress, DT maintained a lower leaf water potential for water absorption, sustained higher photosynthetic efficiency, and reduced oxidative damage in leaves by efficiently maintaining the ascorbic acid-glutathione (ASA-GSH) cycle to scavenge reactive oxygen species (ROS) compared to DS. Secondly, using RNA sequencing (RNA-seq), we analyzed the gene expression profiles of DT and DS leaves under osmotic stress of hydroponics induced by PEG-6000. Through differential analysis, we identified 1226 candidate unigenes, from which we subsequently screened out 115/212 differentially expressed genes (DEGs) that were more quickly induced/reduced in DT than in DS under osmotic stress. Among them, Unigene0005863 (EsSnRK2), Unigene0053902 (EsLRK10) and Unigene0031985 (EsCIPK5) may be involved in stomatal closure induced by abscisic acid (ABA) signaling pathway. Unigene0047636 (EsCER1) may positively regulates the synthesis of very-long-chain (VLC) alkanes in cuticular wax biosynthesis, influencing plant responses to abiotic stresses. Finally, the contents of wax and cutin were measured by GC-MS under osmotic stress of hydroponics induced by PEG-6000. Corresponding to RNA-seq, contents of wax monomers, especially alkanes and alcohols, showed significant induction by osmotic stress in DT but not in DS. It is suggested that limiting stomatal and cuticle transpiration under drought stress to maintain higher photosynthetic efficiency and water use efficiency (WUE) is one of the critical mechanisms that confer stronger drought resistance to DT. This study provides some insights into the molecular mechanisms underlying drought tolerance in E. sibiricus. The identified genes may provide a foundation for the selection and breeding of drought-tolerant crops.
Collapse
Affiliation(s)
- Yongping An
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Qian Wang
- Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Yannong Cui
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Xin Liu
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ping Wang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Yue Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Peng Kang
- College of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, China
| | - Youjun Chen
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Zhiwei Wang
- Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Qingping Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Pei Wang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China.
| |
Collapse
|
33
|
Du C, Liu M, Yan Y, Guo X, Cao X, Jiao Y, Zheng J, Ma Y, Xie Y, Li H, Yang C, Gao C, Zhao Q, Zhang Z. The U-box E3 ubiquitin ligase PUB35 negatively regulates ABA signaling through AFP1-mediated degradation of ABI5. THE PLANT CELL 2024; 36:3277-3297. [PMID: 38924024 PMCID: PMC11371175 DOI: 10.1093/plcell/koae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Abscisic acid (ABA) signaling is crucial for plant responses to various abiotic stresses. The Arabidopsis (Arabidopsis thaliana) transcription factor ABA INSENSITIVE 5 (ABI5) is a central regulator of ABA signaling. ABI5 BINDING PROTEIN 1 (AFP1) interacts with ABI5 and facilitates its 26S-proteasome-mediated degradation, although the detailed mechanism has remained unclear. Here, we report that an ABA-responsive U-box E3 ubiquitin ligase, PLANT U-BOX 35 (PUB35), physically interacts with AFP1 and ABI5. PUB35 directly ubiquitinated ABI5 in a bacterially reconstituted ubiquitination system and promoted ABI5 protein degradation in vivo. ABI5 degradation was enhanced by AFP1 in response to ABA treatment. Phosphorylation of the T201 and T206 residues in ABI5 disrupted the ABI5-AFP1 interaction and affected the ABI5-PUB35 interaction and PUB35-mediated degradation of ABI5 in vivo. Genetic analysis of seed germination and seedling growth showed that pub35 mutants were hypersensitive to ABA as well as to salinity and osmotic stresses, whereas PUB35 overexpression lines were hyposensitive. Moreover, abi5 was epistatic to pub35, whereas the pub35-2 afp1-1 double mutant showed a similar ABA response to the two single mutants. Together, our results reveal a PUB35-AFP1 module involved in fine-tuning ABA signaling through ubiquitination and 26S-proteasome-mediated degradation of ABI5 during seed germination and seedling growth.
Collapse
Affiliation(s)
- Chang Du
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Meng Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yujie Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Xiaoyu Guo
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Xiuping Cao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yuzhe Jiao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jiexuan Zheng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yanchun Ma
- College of Life Sciences, Liaocheng University, Liaocheng, 252000, Shandong, China
| | - Yuting Xie
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Hongbo Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Qingzhen Zhao
- College of Life Sciences, Liaocheng University, Liaocheng, 252000, Shandong, China
| | - Zhonghui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
34
|
Zhang D, Ma S, Liu Z, Yang Y, Yang W, Zeng H, Su H, Yang Y, Zhang W, Zhang J, Ku L, Ren Z, Chen Y. ZmABF4-ZmVIL2/ZmFIP37 module enhances drought tolerance in maize seedlings. PLANT, CELL & ENVIRONMENT 2024; 47:3605-3618. [PMID: 38747469 DOI: 10.1111/pce.14954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/14/2024] [Accepted: 05/05/2024] [Indexed: 08/16/2024]
Abstract
Drought, as a primary environmental factor, imposes significant constraints on developmental processes and productivity of plants. PHDs were identified as stress-responsive genes in a wide range of eukaryotes. However, the regulatory mechanisms governing PHD genes in maize under abiotic stress conditions are still largely unknown and require further investigation. Here, we identified a mutant, zmvil2, in the EMS mutant library with a C to T mutation in the exon of the Zm00001d053875 (VIN3-like protein 2, ZmVIL2), resulting in premature termination of protein coding. ZmVIL2 belongs to PHD protein family. Compared to WT, zmvil2 mutant exhibited increased sensitivity to drought stress. Consistently, overexpression of ZmVIL2 enhances drought resistance in maize. Y2H, BiFC, and Co-IP experiments revealed that ZmVIL2 directly interacts with ZmFIP37 (FKBP12-interacting protein of 37). zmfip37 knockout mutants also exhibit decreased drought tolerance. Interestingly, we demonstrated that ZmABF4 directly binds to the ZmVIL2 promoter to enhance its activity in yeast one hybrid (Y1H), electrophoretic mobility shift assay (EMSA) and dual luciferase reporter assays. Therefore, we uncovered a novel model ZmABF4-ZmVIL2/ZmFIP37 that promotes drought tolerance in maize. Overall, these findings have enriched the knowledge of the functions of PHD genes in maize and provides genetic resources for breeding stress-tolerant maize varieties.
Collapse
Affiliation(s)
- Dongling Zhang
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Shixiang Ma
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhixue Liu
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yuwei Yang
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Wenjing Yang
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Haixia Zeng
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Huihui Su
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yang Yang
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Wanjun Zhang
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jing Zhang
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Lixia Ku
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhenzhen Ren
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yanhui Chen
- National Key Laboratory of Wheat and Maize Crop Science and Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
35
|
Cui Y, Wu K, Yao X. The CDPK-related protein kinase HvCRK2 and HvCRK4 interact with HvCML32 to negatively regulate drought tolerance in transgenic Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108909. [PMID: 38971089 DOI: 10.1016/j.plaphy.2024.108909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Calcium-dependent protein kinase (CDPK) as one of calcium sensors were play important roles in stress responses. CDPK-related protein kinase (CRK) was identified as subgroup III of CDPK has been characterized in many plants, but the members and functions of CRK genes in hulless barley (Hordeum vulgare L.) has not been clarified. Here, we identified four HvCRK genes and named HvCRK1-4 according to chromosomes localization. Moreover, the physiological function of highly induced genes of HvCRK2 and HvCRK4 were investigated in drought stress tolerance by examining their overexpression transgenic lines functions generated in Arabidopsis thaliana. Under drought stress, both overexpression HvCRK2 and HvCRK4 displayed reduced drought resistance, and accompanied by higher accumulation levels of ROS. Notably, overexpression of HvCRK2 and HvCRK4 reduced sensitivity to exogenous ABA, meanwhile the expression of ABA-responsive genes in transgenic plants were down-regulated compared to the wild type in response to drought stress. Furthermore, the physically interaction of HvCRK2 and HvCRK4 with calmodulin (CaM) and calmodulin-like (CML) proteins were determined in vivo, the further results showed that HvCML32 binds to HvCRK2/4 S_TKC structural domains and negatively regulates drought tolerance. In summary, this study identified HvCRK members and indicated that HvCRK2 and HvCRK4 genes play negative roles in drought tolerance, and provide insight into potential molecular mechanism of HvCRK2 and HvCRK4 in response to drought stress.
Collapse
Affiliation(s)
- Yongmei Cui
- Academy of Agricultural and Forestry Sciences, Qinghai University, 810016, Xining, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, 810016, Xining, China; Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, 810016, Xining, China; Oinghai Hulless Barley Subcenter of National Triticeae Improvement Center, 810016, Xining, China
| | - Kunlun Wu
- Academy of Agricultural and Forestry Sciences, Qinghai University, 810016, Xining, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, 810016, Xining, China; Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, 810016, Xining, China; Oinghai Hulless Barley Subcenter of National Triticeae Improvement Center, 810016, Xining, China.
| | - Xiaohua Yao
- Academy of Agricultural and Forestry Sciences, Qinghai University, 810016, Xining, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, 810016, Xining, China; Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, 810016, Xining, China; Oinghai Hulless Barley Subcenter of National Triticeae Improvement Center, 810016, Xining, China.
| |
Collapse
|
36
|
Dong H, Chen Q, Fu Y, Xie H, Li T, Li D, Yang Y, Xie Z, Qi K, Zhang S, Huang X. PbGBF3 enhances salt response in pear by upregulating PbAPL2 and PbSDH1 and reducing ABA-mediated salt sensitivity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2837-2853. [PMID: 39073914 DOI: 10.1111/tpj.16953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/18/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
Pear is a widely cultivated fruit crop, but its distribution and sustainable production are significantly limited by salt stress. This study used RNA-Seq time-course analysis, WGCNA, and functional enrichment analysis to uncover the molecular mechanisms underlying salt stress tolerance in Pyrus ussuriensis. We identified an ABA-related regulatory module, PbGBF3-PbAPL2-PbSDH1, as crucial in this response. PbGBF3, a bZIP transcription factor, enhances salt tolerance by upregulating PbAPL2 and PbSDH1. Overexpression of PbGBF3 improved salt tolerance in Pyrus communis calli and Arabidopsis, while silencing it reduced tolerance in Pyrus betulifolia. Functional assays showed that PbGBF3 binds to the promoters of PbAPL2 and PbSDH1, increasing their expression. PbAPL2 and PbSDH1, key enzymes in starch synthesis and the sorbitol pathway, respectively, enhance salt tolerance by increasing AGPase activity, soluble sugar content, and SDH activity, improving ROS scavenging and ion balance. Our findings suggest that the PbGBF3-PbAPL2 and PbGBF3-PbSDH1 modules positively regulate salt tolerance by enhancing ABA signaling and reducing ABA-mediated growth inhibition. These insights provide a foundation for developing salt-tolerant pear cultivars.
Collapse
Affiliation(s)
- Huizhen Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Qiming Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Yifei Fu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Haoyang Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Tinghan Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Dingli Li
- Centre of Pear Engineering Technology Research, Qingdao Agricultural University, Qingdao, China
| | - Yingjie Yang
- Centre of Pear Engineering Technology Research, Qingdao Agricultural University, Qingdao, China
| | - Zhihua Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Kaijie Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Xiaosan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
37
|
Yang X, Gao C, Hu Y, Ma Q, Li Z, Wang J, Li Z, Zhang L, Li D. Identification and expression analysis of bZIP transcription factors in Setaria italica in response to dehydration stress. Front Genet 2024; 15:1466486. [PMID: 39280094 PMCID: PMC11392892 DOI: 10.3389/fgene.2024.1466486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Among the largest transcription factor families in plants, bZIPs are crucial for various developmental and physiological processes, particularly abiotic stress resistance. Setaria italica has become a model for understanding stress resistance mechanisms. In this study, we identified 90 bZIP transcription factors in the Setaria italica genome. SibZIPs were classified into 13 groups based on references to Arabidopsis bZIPs. Members in the same group shared similar motifs and gene structure pattern. In addition, gene duplication analysis indenfied 37 pairs of segmental duplicated genes and none tandem duplicated genes in S. italica suggesting segmental duplication contributed to the expansion of the S. italica bZIP gene family. Moreover, the number of SibZIPs genes (39) exhibiting higher expression in roots was significantly more than that in other organs. Twelve SibZIP genes were upregulated in response to dehydration stress. In conclusion, our study advances the current understanding of SibZIP genes and provide a number of candidates for functional analysis of drought tolerance in S. italica.
Collapse
Affiliation(s)
- Xuefei Yang
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia Normal University, Hohhot, China
| | - Changyong Gao
- College of Agriculture and Bioengineering, Heze University, Heze, China
| | - Yaqian Hu
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia Normal University, Hohhot, China
| | - Qianru Ma
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia Normal University, Hohhot, China
| | - Zejun Li
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia Normal University, Hohhot, China
| | - Jing Wang
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia Normal University, Hohhot, China
| | - Zhaoqun Li
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia Normal University, Hohhot, China
| | - Li Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Dongming Li
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia Normal University, Hohhot, China
| |
Collapse
|
38
|
Tuong HM, Méndez SG, Vandecasteele M, Willems A, Iancheva A, Ngoc PB, Phat DT, Ha CH, Goormachtig S. A novel Microbacterium strain SRS2 promotes the growth of Arabidopsis and MicroTom (S. lycopersicum) under normal and salt stress conditions. PLANTA 2024; 260:79. [PMID: 39182196 DOI: 10.1007/s00425-024-04510-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
MAIN CONCLUSION Microbacterium strain SRS2 promotes growth and induces salt stress resistance in Arabidopsis and MicroTom in various growth substrates via the induction of the ABA pathway. Soil salinity reduces plant growth and development and thereby decreases the value and productivity of soils. Plant growth-promoting rhizobacteria (PGPR) have been shown to support plant growth such as in salt stress conditions. Here, Microbacterium strain SRS2, isolated from the root endosphere of tomato, was tested for its capability to help plants cope with salt stress. In a salt tolerance assay, SRS2 grew well up to medium levels of NaCl, but the growth was inhibited at high salt concentrations. SRS2 inoculation led to increased biomass of Arabidopsis and MicroTom tomato in various growth substrates, in the presence and in the absence of high NaCl concentrations. Whole-genome analysis revealed that the strain contains several genes involved in osmoregulation and reactive oxygen species (ROS) scavenging, which could potentially explain the observed growth promotion. Additionally, we also investigated via qRT-PCR, promoter::GUS and mutant analyses whether the abscisic acid (ABA)-dependent or -independent pathways for tolerance against salt stress were involved in the model plant, Arabidopsis. Especially in salt stress conditions, the plant growth-promotion effect of SRS2 was lost in aba1, abi4-102, abi3, and abi5-1 mutant lines. Furthermore, ABA genes related to salt stress in SRS2-inoculated plants were transiently upregulated compared to mock under salt stress conditions. Additionally, SRS2-inoculated ABI4::GUS and ABI5::GUS plants were slightly more activated compared to the uninoculated control under salt stress conditions. Together, these assays show that SRS2 promotes growth in normal and in salt stress conditions, the latter possibly via the induction of ABA-dependent and -independent pathways.
Collapse
Affiliation(s)
- Ho Manh Tuong
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, 100000, Vietnam
| | - Sonia García Méndez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Michiel Vandecasteele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Anne Willems
- Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Anelia Iancheva
- AgroBioInstitute, Agricultural Academy, 1164, Sofia, Bulgaria
| | - Pham Bich Ngoc
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, 100000, Vietnam
| | - Do Tien Phat
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, 100000, Vietnam
| | - Chu Hoang Ha
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, 100000, Vietnam
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium.
| |
Collapse
|
39
|
He S, Xu S, He Z, Hao X. Genome-wide identification, characterization and expression analysis of the bZIP transcription factors in garlic ( Allium sativum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1391248. [PMID: 39148621 PMCID: PMC11324451 DOI: 10.3389/fpls.2024.1391248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
Introduction The bZIP genes (bZIPs) are essential in numerous biological processes, including development and stress responses. Despite extensive research on bZIPs in many plants, a comprehensive genome-wide analysis of bZIPs in garlic has yet to be undertaken. Methods In this study, we identified and classified 64 AsbZIP genes (AsbZIPs) into 10 subfamilies. A systematic analysis of the evolutionary characteristics of these AsbZIPs, including chromosome location, gene structure, conserved motifs, and gene duplication, was conducted. Furthermore, we also examined the nucleotide diversity, cis-acting elements, and expression profiles of AsbZIPs in various tissues and under different abiotic stresses and hormone treatments. Results and Discussion Our findings revealed that gene replication plays a crucial role in the expansion of AsbZIPs, with a minor genetic bottleneck observed during domestication. Moreover, the identification of cis-acting elements suggested potential associations of AsbZIPs with garlic development, hormone, and stress responses. Several AsbZIPs exhibited tissue-preferential and stress/hormone-responsive expression patterns. Additionally, Asa7G01972 and Asa7G01379 were notably differentially expressed under various stresses and hormone treatments. Subsequent yeast two-hybridization and yeast induction experiments validated their interactions with Asa1G01577, a homologue of ABI5, reinforcing their importance in hormone and abiotic stress responses. This study unveiled the characteristics of the AsbZIP superfamily and lays a solid foundation for further functional analysis of AsbZIP in garlic.
Collapse
Affiliation(s)
- Shutao He
- Institute of Neurobiology, Jining Medical University, Jining, China
- Institute of Biotechnology and Health, Beijing Academy of Science and Technology, Beijing, China
| | - Sen Xu
- Institute of Neurobiology, Jining Medical University, Jining, China
| | - Zhengjie He
- Rehabilitation Department, Traditional Chinese Medicine Hospital of Yanzhou District of Jining City, Jining, China
| | - Xiaomeng Hao
- Institute of Neurobiology, Jining Medical University, Jining, China
| |
Collapse
|
40
|
Yu X, Wang L, Xie Y, Zhu Y, Xie H, Wei L, Xiao Y, Cai Q, Chen L, Xie H, Zhang J. OsBBP1, a newly identified protein containing DUF630 and DUF632 domains confers drought tolerance in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 345:112119. [PMID: 38759757 DOI: 10.1016/j.plantsci.2024.112119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
Domain of unknown function (DUF) protein families, which are uncharacterized and numerous within the Pfam database. Recently, studies have demonstrated that DUFs played crucial roles in plant development, but whether, or how, they function in drought resistance remain unclear. In this study, we identified the Os03g0321500 gene, encoding OsbZIP72 binding protein 1 (OsBBP1), as a target of OsbZIP72 using chromatin immunoprecipitation sequencing in rice. OsBBP1 is a novel member of DUFs, which localize both in the nuclei and cytoplasm of rice protoplasts. Furthermore, yeast one-hybrid and electrophoretic mobility shift assays confirmed the specific binding between OsbZIP72 and OsBBP1. Additionally, a luciferase reporter analysis illustrated that OsbZIP72 activated the expression of OsBBP1. Drought tolerance experiments demonstrate that the OsBBP1 CRISPER-CAS9 transgenic mutants were sensitive to drought stress, but the transgenic OsBBP1 over-expressing rice plants showed enhanced drought resistance. Moreover, drought tolerance experiments in a paddy field suggested that OsBBP1 contributed to less yield or yield-related losses under drought conditions. Mechanistically, OsBBP1 might confer drought resistance by inducing more efficient reactive oxygen species (ROS) scavenging. Several ROS scavenging-related genes showed increased expression levels in OsBBP1 overexpression lines and decreased expression levels in OsBBP1 CRISPER-CAS9 mutants under drought conditions. Thus, OsBBP1, acting downstream of OsbZIP72, contributes to drought resistance and causes less yield or yield-related losses under drought conditions.
Collapse
Affiliation(s)
- Xiangzhen Yu
- College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Lanning Wang
- College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Yunjie Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Yongsheng Zhu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Hongguang Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Linyan Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Yanjia Xiao
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Liping Chen
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Huaan Xie
- College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China.
| | - Jianfu Zhang
- College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China.
| |
Collapse
|
41
|
Liu L, Qu J, Wang C, Liu M, Zhang C, Zhang X, Guo C, Wu C, Yang G, Huang J, Yan K, Shu H, Zheng C, Zhang S. An efficient genetic transformation system mediated by Rhizobium rhizogenes in fruit trees based on the transgenic hairy root to shoot conversion. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2093-2103. [PMID: 38491985 PMCID: PMC11258974 DOI: 10.1111/pbi.14328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/18/2024]
Abstract
Genetic transformation is a critical tool for gene editing and genetic improvement of plants. Although many model plants and crops can be genetically manipulated, genetic transformation systems for fruit trees are either lacking or perform poorly. We used Rhizobium rhizogenes to transfer the target gene into the hairy roots of Malus domestica and Actinidia chinensis. Transgenic roots were generated within 3 weeks, with a transgenic efficiency of 78.8%. Root to shoot conversion of transgenic hairy roots was achieved within 11 weeks, with a regeneration efficiency of 3.3%. Finally, the regulatory genes involved in stem cell activity were used to improve shoot regeneration efficiency. MdWOX5 exhibited the most significant effects, as it led to an improved regeneration efficiency of 20.6% and a reduced regeneration time of 9 weeks. Phenotypes of the overexpression of RUBY system mediated red roots and overexpression of MdRGF5 mediated longer root hairs were observed within 3 weeks, suggesting that the method can be used to quickly screen genes that influence root phenotype scores through root performance, such as root colour, root hair, and lateral root. Obtaining whole plants of the RUBY system and MdRGF5 overexpression lines highlights the convenience of this technology for studying gene functions in whole plants. Overall, we developed an optimized method to improve the transformation efficiency and stability of transformants in fruit trees.
Collapse
Affiliation(s)
- Lin Liu
- College of Life SciencesShandong Agricultural UniversityTai'anChina
- National Engineering Research Center for Apple and Technology Innovation Alliance of Apple IndustryShandong Agricultural UniversityTai'anChina
| | - Jinghua Qu
- College of Life SciencesShandong Agricultural UniversityTai'anChina
| | - Chunyan Wang
- College of Life SciencesShandong Agricultural UniversityTai'anChina
| | - Miao Liu
- College of Life SciencesShandong Agricultural UniversityTai'anChina
| | - Chunmeng Zhang
- College of Life SciencesShandong Agricultural UniversityTai'anChina
| | - Xinyue Zhang
- College of Life SciencesShandong Agricultural UniversityTai'anChina
| | - Cheng Guo
- College of Life SciencesShandong Agricultural UniversityTai'anChina
| | - Changai Wu
- College of Life SciencesShandong Agricultural UniversityTai'anChina
| | - Guodong Yang
- College of Life SciencesShandong Agricultural UniversityTai'anChina
| | - Jinguang Huang
- College of Life SciencesShandong Agricultural UniversityTai'anChina
| | - Kang Yan
- College of Life SciencesShandong Agricultural UniversityTai'anChina
| | - Huairui Shu
- National Engineering Research Center for Apple and Technology Innovation Alliance of Apple IndustryShandong Agricultural UniversityTai'anChina
- College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'anChina
| | - Chengchao Zheng
- College of Life SciencesShandong Agricultural UniversityTai'anChina
| | - Shizhong Zhang
- College of Life SciencesShandong Agricultural UniversityTai'anChina
- National Engineering Research Center for Apple and Technology Innovation Alliance of Apple IndustryShandong Agricultural UniversityTai'anChina
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
42
|
Yin X, Liu Y, Gong Y, Ding G, Zhao C, Li Y. Genomic characterization of bZIP gene family and patterns of gene regulation on Cercospora beticola Sacc resistance in sugar beet ( Beta vulgaris L.). Front Genet 2024; 15:1430589. [PMID: 39139817 PMCID: PMC11319121 DOI: 10.3389/fgene.2024.1430589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
Sugar beet (Beta vulgaris L.) is one of the most important sugar crops, accounting for nearly 30% of the world's annual sugar production. And it is mainly distributed in the northwestern, northern, and northeastern regions of China. However, Cercospora leaf spot (CLS) is the most serious and destructive foliar disease during the cultivation of sugar beet. In plants, the bZIP gene family is one of important family of transcription factors that regulate many biological processes, including cell and tissue differentiation, pathogen defense, light response, and abiotic stress signaling. Although the bZIP gene family has been mentioned in previous studies as playing a crucial role in plant defense against diseases, there has been no comprehensive study or functional analysis of the bZIP gene family in sugar beet with respect to biotic stresses. In this study, we performed a genome-wide analysis of bZIP family genes (BvbZIPs) in sugar beet to investigate their phylogenetic relationships, gene structure and chromosomal localization. At the same time, we observed the stomatal and cell ultrastructure of sugar beet leaf surface during the period of infestation by Cercospora beticola Sacc (C. beticola). And identified the genes with significant differential expression in the bZIP gene family of sugar beet by qRT-PCR. Finally we determined the concentrations of SA and JA and verified the associated genes by qRT-PCR. The results showed that 48 genes were identified and gene expression analysis indicated that 6 BvbZIPs were significantly differential expressed in C. beticola infection. It is speculated that these BvbZIPs are candidate genes for regulating the response of sugar beet to CLS infection. Meanwhile, the observation stomata of sugar beet leaves infected with C. beticola revealed that there were also differences in the surface stomata of the leaves at different periods of infection. In addition, we further confirmed that the protein encoded by the SA signaling pathway-related gene BVRB_9g222570 in high-resistant varieties was PR1, which is closely related to systemic acquired resistance. One of the protein interaction modes of JA signal transduction pathway is the response of MYC2 transcription factor caused by JAZ protein degradation, and there is a molecular interaction between JA signal transduction pathway and auxin. Despite previous reports on abiotic stresses in sugar beet, this study provides very useful information for further research on the role of the sugar beet bZIP gene family in sugar beet through experiments. The above research findings can promote the development of sugar beet disease resistance breeding.
Collapse
Affiliation(s)
- Xiao Yin
- College of Modern Agriculture and Ecologcial Environment, Heilongjiang University, Harbin, China
| | - Yu Liu
- College of Modern Agriculture and Ecologcial Environment, Heilongjiang University, Harbin, China
| | - Yunhe Gong
- College of Modern Agriculture and Ecologcial Environment, Heilongjiang University, Harbin, China
| | - Guangzhou Ding
- College of Modern Agriculture and Ecologcial Environment, Heilongjiang University, Harbin, China
- Sugar Beet Engineering Research Center of Heilongjiang, Harbin, China
| | - Chunlei Zhao
- College of Modern Agriculture and Ecologcial Environment, Heilongjiang University, Harbin, China
| | - Yanli Li
- College of Modern Agriculture and Ecologcial Environment, Heilongjiang University, Harbin, China
| |
Collapse
|
43
|
Coutinho ID, Facchinatto WM, Mertz-Henning LM, Viana AC, Marin SR, Santagneli SH, Nepomuceno AL, Colnago LA. NMR Fingerprinting of Conventional and Genetically Modified Soybean Plants with AtAREB1 Transcription Factors. ACS OMEGA 2024; 9:32651-32661. [PMID: 39100338 PMCID: PMC11292650 DOI: 10.1021/acsomega.4c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 08/06/2024]
Abstract
Drought stress impacts soybean yields and physiological processes. However, the insertion of the activated form of the AtAREB1 gene in the soybean cultivar BR16, which is sensitive to water deficit, improved the drought response of the genetically modified plants. Thus, in this study, we used 1H NMR in solution and solid-state NMR to investigate the response of genetically modified soybean overexpressing AtAREB1 under water deficiency conditions. We achieved that drought-tolerant soybean yields high content of amino acids isoleucine, leucine, threonine, valine, proline, glutamate, aspartate, asparagine, tyrosine, and phenylalanine after 12 days of drought stress conditions, as compared to drought-sensitive soybean under the same conditions. Specific target compounds, including sugars, organic acids, and phenolic compounds, were identified as involved in controlling sensitive soybean during the vegetative stage. Solid-state NMR was used to study the impact of drought stress on starch and cellulose contents in different soybean genotypes. The findings provide insights into the metabolic adjustments of soybean overexpressing AREB transcription factors in adapting to dry climates. This study presents NMR techniques for investigating the metabolome of transgenic soybean plants in response to the water deficit. The approach allowed for the identification of physiological and morphological changes in drought-resistant and drought-tolerant soybean tissues. The findings indicate that drought stress significantly alters micro- and macromolecular metabolism in soybean plants. Differential responses were observed among roots and leaves as well as drought-tolerant and drought-sensitive cultivars, highlighting the complex interplay between overexpressed transcription factors and drought stress in soybean plants.
Collapse
Affiliation(s)
- Isabel Duarte Coutinho
- Embrapa
Instrumentation, Brazilian Agricultural
Research Corporation, St. XV de Novembro 1452, P.O. Box 741, 13560-970 São Carlos, São Paulo, Brazil
| | - William Marcondes Facchinatto
- Embrapa
Instrumentation, Brazilian Agricultural
Research Corporation, St. XV de Novembro 1452, P.O. Box 741, 13560-970 São Carlos, São Paulo, Brazil
| | - Liliane Marcia Mertz-Henning
- Embrapa
Soybean, Brazilian Agricultural Research
Corporation, HWY Carlos João Strass, Warta District, P.O.
Box 4006, 86085-981 Londrina, Paraná, Brazil
| | - Américo
José Carvalho Viana
- Embrapa
Soybean, Brazilian Agricultural Research
Corporation, HWY Carlos João Strass, Warta District, P.O.
Box 4006, 86085-981 Londrina, Paraná, Brazil
| | - Silvana Regina
Rockenbach Marin
- Embrapa
Soybean, Brazilian Agricultural Research
Corporation, HWY Carlos João Strass, Warta District, P.O.
Box 4006, 86085-981 Londrina, Paraná, Brazil
| | - Silvia Helena Santagneli
- Institute
of Chemistry, São Paulo State University
(UNESP), Avenue Francisco Degni 55, CEP 14800-060 Araraquara, São Paulo, Brazil
| | - Alexandre Lima Nepomuceno
- Embrapa
Soybean, Brazilian Agricultural Research
Corporation, HWY Carlos João Strass, Warta District, P.O.
Box 4006, 86085-981 Londrina, Paraná, Brazil
| | - Luiz Alberto Colnago
- Embrapa
Instrumentation, Brazilian Agricultural
Research Corporation, St. XV de Novembro 1452, P.O. Box 741, 13560-970 São Carlos, São Paulo, Brazil
| |
Collapse
|
44
|
Wang XT, Tang XN, Zhang YW, Guo YQ, Yao Y, Li RM, Wang YJ, Liu J, Guo JC. Promoter of Cassava MeAHL31 Responds to Diverse Abiotic Stresses and Hormone Signals in Transgenic Arabidopsis. Int J Mol Sci 2024; 25:7714. [PMID: 39062957 PMCID: PMC11276720 DOI: 10.3390/ijms25147714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
The AT-hook motif nuclear-localized (AHL) family is pivotal for the abiotic stress response in plants. However, the function of the cassava AHL genes has not been elucidated. Promoters, as important regulatory elements of gene expression, play a crucial role in stress resistance. In this study, the promoter of the cassava MeAHL31 gene was cloned. The MeAHL31 protein was localized to the cytoplasm and the nucleus. qRT-PCR analysis revealed that the MeAHL31 gene was expressed in almost all tissues tested, and the expression in tuber roots was 321.3 times higher than that in petioles. Promoter analysis showed that the MeAHL31 promoter contains drought, methyl jasmonate (MeJA), abscisic acid (ABA), and gibberellin (GA) cis-acting elements. Expression analysis indicated that the MeAHL31 gene is dramatically affected by treatments with salt, drought, MeJA, ABA, and GA3. Histochemical staining in the proMeAHL31-GUS transgenic Arabidopsis corroborated that the GUS staining was found in most tissues and organs, excluding seeds. Beta-glucuronidase (GUS) activity assays showed that the activities in the proMeAHL31-GUS transgenic Arabidopsis were enhanced by different concentrations of NaCl, mannitol (for simulating drought), and MeJA treatments. The integrated findings suggest that the MeAHL31 promoter responds to the abiotic stresses of salt and drought, and its activity is regulated by the MeJA hormone signal.
Collapse
Affiliation(s)
- Xiao-Tong Wang
- National Key Laboratory for Tropical Crop Breeding, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (X.-T.W.); (X.-N.T.); (Y.-W.Z.); (Y.-Q.G.)
| | - Xiang-Ning Tang
- National Key Laboratory for Tropical Crop Breeding, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (X.-T.W.); (X.-N.T.); (Y.-W.Z.); (Y.-Q.G.)
| | - Ya-Wen Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (X.-T.W.); (X.-N.T.); (Y.-W.Z.); (Y.-Q.G.)
| | - Yu-Qiang Guo
- National Key Laboratory for Tropical Crop Breeding, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (X.-T.W.); (X.-N.T.); (Y.-W.Z.); (Y.-Q.G.)
| | - Yuan Yao
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Y.); (R.-M.L.); (Y.-J.W.)
| | - Rui-Mei Li
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Y.); (R.-M.L.); (Y.-J.W.)
| | - Ya-Jie Wang
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Y.); (R.-M.L.); (Y.-J.W.)
| | - Jiao Liu
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Y.); (R.-M.L.); (Y.-J.W.)
| | - Jian-Chun Guo
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.Y.); (R.-M.L.); (Y.-J.W.)
| |
Collapse
|
45
|
Li Z, Zhang D, Liang X, Liang J. Receptor for Activated C Kinase 1 counteracts ABSCISIC ACID INSENSITIVE5-mediated inhibition of seed germination and post-germinative growth in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3932-3945. [PMID: 38602261 DOI: 10.1093/jxb/erae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
ABSCISIC ACID INSENSITIVE5 (ABI5), a key regulator of the abscisic acid (ABA) signalling pathway, plays a fundamental role in seed germination and post-germinative development. However, the molecular mechanism underlying the repression function of ABI5 remains to be elucidated. In this study, we demonstrate that the conserved eukaryotic WD40 repeat protein Receptor for Activated C Kinase 1 (RACK1) is a novel negative regulator of ABI5 in Arabidopsis. The RACK1 loss-of-function mutant is hypersensitive to ABA, while this phenotype is rescued by a mutation in ABI5. Moreover, overexpression of RACK1 suppresses ABI5 transcriptional activation activity for ABI5-targeted genes. RACK1 may also physically interact with ABI5 and facilitate its degradation. Furthermore, we found that RACK1 and the two substrate receptors CUL4-based E3 ligases (DWA1 and DWA2) function together to mediate the turnover of ABI5, thereby efficiently reducing ABA signalling in seed germination and post-germinative growth. In addition, molecular analyses demonstrated that ABI5 may bind to the promoter of RACK1 to repress its expression. Collectively, our findings suggest that RACK1 and ABI5 might form a feedback loop to regulate the homeostasis of ABA signalling in acute seed germination and early plant development.
Collapse
Affiliation(s)
- Zhiyong Li
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dayan Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoju Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- College of Life Sciences, Fujian Agriculture and Forest University, Fuzhou 350002, China
| | - Jiansheng Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
46
|
Okay A, Kırlıoğlu T, Durdu YŞ, Akdeniz SŞ, Büyük İ, Aras ES. Omics approaches to understand the MADS-box gene family in common bean (Phaseolus vulgaris L.) against drought stress. PROTOPLASMA 2024; 261:709-724. [PMID: 38240857 PMCID: PMC11196313 DOI: 10.1007/s00709-024-01928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/09/2024] [Indexed: 06/25/2024]
Abstract
MADS-box genes are known to play important roles in diverse aspects of growth/devolopment and stress response in several plant species. However, no study has yet examined about MADS-box genes in P. vulgaris. In this study, a total of 79 PvMADS genes were identified and classified as type I and type II according to the phylogenetic analysis. While both type I and type II PvMADS classes were found to contain the MADS domain, the K domain was found to be present only in type II PvMADS proteins, in agreement with the literature. All chromosomes of the common bean were discovered to contain PvMADS genes and 17 paralogous gene pairs were identified. Only two of them were tandemly duplicated gene pairs (PvMADS-19/PvMADS-23 and PvMADS-20/PvMADS-24), and the remaining 15 paralogous gene pairs were segmentally duplicated genes. These duplications were found to play an important role in the expansion of type II PvMADS genes. Moreover, the RNAseq and RT-qPCR analyses showed the importance of PvMADS genes in response to drought stress in P. vulgaris.
Collapse
Affiliation(s)
- Aybüke Okay
- Department of Biology, Faculty of Science, Ankara University, Ankara, 06100, Turkey
| | - Tarık Kırlıoğlu
- Department of Biology, Faculty of Science, Ankara University, Ankara, 06100, Turkey
| | - Yasin Şamil Durdu
- Department of Biology, Faculty of Science, Ankara University, Ankara, 06100, Turkey
| | - Sanem Şafak Akdeniz
- Kalecik Vocational School Plant Protection Program, Ankara University, Ankara, 06100, Turkey
| | - İlker Büyük
- Department of Biology, Faculty of Science, Ankara University, Ankara, 06100, Turkey.
- Department of Biology, Faculty of Science, Ankara University, Block A, Emniyet, Dögol Cd. 6A, Yenimahalle, Ankara, 06560, Turkey.
| | - E Sümer Aras
- Department of Biology, Faculty of Science, Ankara University, Ankara, 06100, Turkey.
- Department of Biology, Faculty of Science, Ankara University, Block A, Emniyet, Dögol Cd. 6A, Yenimahalle, Ankara, 06560, Turkey.
| |
Collapse
|
47
|
Singh S, Praveen A, Bhadrecha P. Genome-wide identification and analysis of SPL gene family in chickpea (Cicer arietinum L.). PROTOPLASMA 2024; 261:799-818. [PMID: 38378886 DOI: 10.1007/s00709-024-01936-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
A transcription factor in plants encodes SQUAMOSA promoter binding protein-like (SPL) serves a broad spectrum of important roles for the plant, like, growth, flowering, and signal transduction. A gene family that encodes SPL proteins is documented in various model plant species, including Arabidopsis thaliana and Oryza sativa. Chickpea (Cicer arietinum), a leguminous crop, has not been thoroughly explored with regard to the SPL protein-encoding gene family. Chickpea SPL family genes were located and characterized computationally using a genomic database. Gene data of chickpea were obtained from the phytozome repository and was examined using bioinformatics methods. For investigating the possible roles of SPLs in chickpea, genome-wide characterization, expression, as well as structural analyses of this SPL gene family were performed. Cicer arietinum genome had 19 SPL genes, whereas, according to phylogenetic analysis, the SPLs in chickpea are segregated among four categories: Group-I has 2 introns, Group-II and IV have 1-2 introns (except CaSPL13 and CaSPL15 having 3 introns), and Group-III has 9 introns (except CaSPL1 and CaSPL11 with 1 and 8 introns, respectively). The SBP domain revealed that SPL proteins featured two zinc-binding sites, i.e., C3H and C2HC and one nuclear localization signal. All CaSPL proteins are found to contain highly conserved motifs, i.e., Motifs 1, 2, and 4, except CaSPL10 in which Motifs 1 and 4 were absent. Following analysis, it was found that Motifs 1 and 2 of the chickpea SBP domain are Zinc finger motifs, and Motif 4 includes a nuclear localization signal. All pairs of CaSPL paralogs developed by purifying selection. The CaSPL promoter investigation discovered cis-elements that are responsive to stress, light, and phytohormones. Examination of their expression patterns highlighted major CaSPLs to be evinced primarily among younger pods and flowers. Indicating their involvement in the plant's growth as well as development, along with their capacity to react as per different situations by handling the regulation of target gene's expression, several CaSPL genes are also expressed under certain stress conditions, namely, cold, salt, and drought. The majority of the CaSPL genes are widely expressed and play crucial roles in terms of the plant's growth, development, and responses to the environmental-stress conditions. Our work provides extensive insight into the gene family CaSPL, which might facilitate further studies related to the evolution and functions of the SPL genes for chickpea and other plant species.
Collapse
Affiliation(s)
- Shilpy Singh
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, 203201, U.P., India.
| | - Afsana Praveen
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 67, India
| | - Pooja Bhadrecha
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
48
|
Luo G, Li L, Yang X, Yu Y, Gao L, Mo B, Chen X, Liu L. MicroRNA1432 regulates rice drought stress tolerance by targeting the CALMODULIN-LIKE2 gene. PLANT PHYSIOLOGY 2024; 195:1954-1968. [PMID: 38466155 DOI: 10.1093/plphys/kiae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 03/12/2024]
Abstract
Due to climate change, drought has become a major threat to rice (Oryza sativa L.) growth and yield worldwide. Understanding the genetic basis of drought tolerance in rice is therefore of great importance. Here, we identified a microRNA, miR1432, which regulates rice drought tolerance by targeting the CALMODULIN-LIKE2 (OsCaML2) gene. Mutation of MIR1432 or suppression of miR1432 expression significantly impaired seed germination and seedling growth under drought-stress conditions. Molecular analysis demonstrated that miR1432 affected rice drought tolerance by directly targeting OsCaML2, which encodes an EF-hand chiral calcium-binding protein. Overexpression of a miR1432-resistant form of OsCaML2 (OEmCaML2) phenocopied the mir1432 mutant and miR1432 suppression plants. Furthermore, the suppression of miR1432 severely affected the expression of genes involved in responses to stimulation, metabolism and signal transduction, especially the mitogen-activated protein kinase (MAPK) pathway and hormone transduction pathway in rice under drought stress. Thus, our findings show that the miR1432-OsCaML2 module plays an important role in the regulation of rice drought tolerance, suggesting its potential utilization in developing molecular breeding strategies that improve crop drought tolerance.
Collapse
Affiliation(s)
- Guangyu Luo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Lin Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiaoyu Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yu Yu
- School of Life Sciences, Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing 100871, China
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xuemei Chen
- School of Life Sciences, Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing 100871, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
49
|
Jia D, Li Y, Jia K, Huang B, Dang Q, Wang H, Wang X, Li C, Zhang Y, Nie J, Yuan Y. Abscisic acid activates transcription factor module MdABI5-MdMYBS1 during carotenoid-derived apple fruit coloration. PLANT PHYSIOLOGY 2024; 195:2053-2072. [PMID: 38536032 DOI: 10.1093/plphys/kiae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/11/2024] [Indexed: 06/30/2024]
Abstract
Carotenoids are major pigments contributing to fruit coloration. We previously reported that the apple (Malus domestica Borkh.) mutant fruits of "Beni Shogun" and "Yanfu 3" show a marked difference in fruit coloration. However, the regulatory mechanism underlying this phenomenon remains unclear. In this study, we determined that carotenoid is the main factor influencing fruit flesh color. We identified an R1-type MYB transcription factor (TF), MdMYBS1, which was found to be highly associated with carotenoids and abscisic acid (ABA) contents of apple fruits. Overexpression of MdMYBS1 promoted, and silencing of MdMYBS1 repressed, β-branch carotenoids synthesis and ABA accumulation. MdMYBS1 regulates carotenoid biosynthesis by directly activating the major carotenoid biosynthetic genes encoding phytoene synthase (MdPSY2-1) and lycopene β-cyclase (MdLCYb). 9-cis-epoxycarotenoid dioxygenase 1 (MdNCED1) contributes to ABA biosynthesis, and MdMYBS1 enhances endogenous ABA accumulation by activating the MdNCED1 promoter. In addition, the basic leucine zipper domain TF ABSCISIC ACID-INSENSITIVE5 (MdABI5) was identified as an upstream activator of MdMYBS1, which promotes carotenoid and ABA accumulation. Furthermore, ABA promotes carotenoid biosynthesis and enhances MdMYBS1 and MdABI5 promoter activities. Our findings demonstrate that the MdABI5-MdMYBS1 cascade activated by ABA regulates carotenoid-derived fruit coloration and ABA accumulation in apple, providing avenues in breeding and planting for improvement of fruit coloration and quality.
Collapse
Affiliation(s)
- Dongjie Jia
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Yuchen Li
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Kun Jia
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Benchang Huang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Qingyuan Dang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Huimin Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Xinyuan Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Chunyu Li
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Yugang Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Yongbing Yuan
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| |
Collapse
|
50
|
Han H, Wu W, Hou H, Zhang M, Guo A, Zhou Y, Liu J, Li K, Bai S, Li B, Li Z, Guo S, Wang P. Function analysis of transcription factor OSR1 regulating osmotic stress resistance in maize. Biochem Biophys Res Commun 2024; 714:149956. [PMID: 38663095 DOI: 10.1016/j.bbrc.2024.149956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Maize is a major cereal crop world widely, however, the yield of maize is frequently limited by dehydration and even death of plants, which resulted from osmotic stress such as drought and salinity. Dissection of molecular mechanisms controlling stress tolerance will enable plant scientists and breeders to increase crops yield by manipulating key regulatory components. METHODS The candidate OSR1 gene was identified by map-based cloning. The expression level of OSR1 was verified by qRT-PCR and digital PCR in WT and osr1 mutant. Electrophoretic mobility shift assay, transactivation activity assay, subcellular localization, transcriptome analysis and physiological characters measurements were conducted to analyze the function of OSR1 in osmotic stress resistance in maize. RESULTS The osr1 mutant was significantly less sensitive to osmotic stress than the WT plants and displayed stronger water-holding capacity, and the OSR1 homologous mutant in Arabidopsis showed a phenotype similar with maize osr1 mutant. Differentially expressed genes (DEGs) were identified between WT and osr1 under osmotic stress by transcriptome analysis, the expression levels of many genes, such as LEA, auxin-related factors, PPR family members, and TPR family members, changed notably, which may primarily involve in osmotic stress or promote root development. CONCLUSIONS OSR1 may serve as a negative regulatory factor in response to osmotic stress in maize. The present study sheds new light on the molecular mechanisms of osmotic stress in maize.
Collapse
Affiliation(s)
- Hongpeng Han
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, PR China; School of Physical Education and Health Management, Henan Finance University, Zhengzhou, 450046, Henan, PR China
| | - Wenqiang Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, PR China
| | - Huijiao Hou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, PR China
| | - Mingli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, PR China
| | - Aiyu Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, PR China
| | - Yusen Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, PR China
| | - Jiong Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, PR China
| | - Kaiwen Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, PR China
| | - Shenglong Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, PR China
| | - Baozhu Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, PR China
| | - Zhi Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, PR China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, PR China
| | - Pengtao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, PR China.
| |
Collapse
|