1
|
Narula K, Sinha A, Choudhary P, Ghosh S, Elagamey E, Sharma A, Sengupta A, Chakraborty N, Chakraborty S. Combining extracellular matrix proteome and phosphoproteome of chickpea and meta-analysis reveal novel proteoforms and evolutionary significance of clade-specific wall-associated events in plant. PLANT DIRECT 2024; 8:e572. [PMID: 38500675 PMCID: PMC10945595 DOI: 10.1002/pld3.572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2023] [Accepted: 02/10/2024] [Indexed: 03/20/2024]
Abstract
Extracellular matrix (ECM) plays central roles in cell architecture, innate defense and cell wall integrity (CWI) signaling. During transition to multicellularity, modular domain structures of ECM proteins and proteoforms have evolved due to continuous adaptation across taxonomic clades under different ecological niche. Although this incredible diversity has to some extent been investigated at protein level, extracellular phosphorylation events and molecular evolution of ECM proteoform families remains unexplored. We developed matrisome proteoform atlas in a grain legume, chickpea and performed meta-analyses of 74 plant matrisomes. MS/MS analysis identified 1,424 proteins and 315 phosphoproteins involved in diverse functions. Cross-species ECM protein network identified proteoforms associated with CWI maintenance system. Phylogenetic characterization of eighteen matrix protein families highlighted the role of taxon-specific paralogs and orthologs. Novel information was acquired on gene expansion and loss, co-divergence, sub functionalization and neofunctionalization during evolution. Modular networks of matrix protein families and hub proteins showed higher diversity across taxonomic clades than among organs. Furthermore, protein families differ in nonsynonymous to synonymous substitution rates. Our study pointed towards the matrix proteoform functionality, sequence divergence variation, interactions between wall remodelers and molecular evolution using a phylogenetic framework. This is the first report on comprehensive matrisome proteoform network illustrating presence of CWI signaling proteins in land plants.
Collapse
Affiliation(s)
- Kanika Narula
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Arunima Sinha
- National Institute of Plant Genome ResearchNew DelhiIndia
| | | | - Sudip Ghosh
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Eman Elagamey
- National Institute of Plant Genome ResearchNew DelhiIndia
- Plant Pathology Research InstituteAgricultural Research Center (ARC)GizaEgypt
| | - Archana Sharma
- National Institute of Plant Genome ResearchNew DelhiIndia
| | | | | | | |
Collapse
|
2
|
Saffer AM, Baskin TI, Verma A, Stanislas T, Oldenbourg R, Irish VF. Cellulose assembles into helical bundles of uniform handedness in cell walls with abnormal pectin composition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:855-870. [PMID: 37548081 PMCID: PMC10592269 DOI: 10.1111/tpj.16414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/19/2023] [Indexed: 08/08/2023]
Abstract
Plant cells and organs grow into a remarkable diversity of shapes, as directed by cell walls composed primarily of polysaccharides such as cellulose and multiple structurally distinct pectins. The properties of the cell wall that allow for precise control of morphogenesis are distinct from those of the individual polysaccharide components. For example, cellulose, the primary determinant of cell morphology, is a chiral macromolecule that can self-assemble in vitro into larger-scale structures of consistent chirality, and yet most plant cells do not display consistent chirality in their growth. One interesting exception is the Arabidopsis thaliana rhm1 mutant, which has decreased levels of the pectin rhamnogalacturonan-I and causes conical petal epidermal cells to grow with a left-handed helical twist. Here, we show that in rhm1 the cellulose is bundled into large macrofibrils, unlike the evenly distributed microfibrils of the wild type. This cellulose bundling becomes increasingly severe over time, consistent with cellulose being synthesized normally and then self-associating into macrofibrils. We also show that in the wild type, cellulose is oriented transversely, whereas in rhm1 mutants, the cellulose forms right-handed helices that can account for the helical morphology of the petal cells. Our results indicate that when the composition of pectin is altered, cellulose can form cellular-scale chiral structures in vivo, analogous to the helicoids formed in vitro by cellulose nano-crystals. We propose that an important emergent property of the interplay between rhamnogalacturonan-I and cellulose is to permit the assembly of nonbundled cellulose structures, providing plants flexibility to orient cellulose and direct morphogenesis.
Collapse
Affiliation(s)
- Adam M Saffer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, 06520, USA
| | - Tobias I Baskin
- Biology Department, University of Massachusetts, 611 N. Pleasant St, Amherst, Massachusetts, 01003, USA
| | - Amitabh Verma
- Marine Biological Laboratories, 7 MBL Street, Woods Hole, Massachusetts, 02543, USA
| | - Thomas Stanislas
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364, Lyon Cedex 07, France
| | - Rudolf Oldenbourg
- Marine Biological Laboratories, 7 MBL Street, Woods Hole, Massachusetts, 02543, USA
| | - Vivian F Irish
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, 06520, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, 06520, USA
| |
Collapse
|
3
|
Reichelt N, Korte A, Krischke M, Mueller MJ, Maag D. Natural variation of warm temperature-induced raffinose accumulation identifies TREHALOSE-6-PHOSPHATE SYNTHASE 1 as a modulator of thermotolerance. PLANT, CELL & ENVIRONMENT 2023; 46:3392-3404. [PMID: 37427798 DOI: 10.1111/pce.14664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
High-temperature stress limits plant growth and reproduction. Exposure to high temperature, however, also elicits a physiological response, which protects plants from the damage evoked by heat. This response involves a partial reconfiguration of the metabolome including the accumulation of the trisaccharide raffinose. In this study, we explored the intraspecific variation of warm temperature-induced raffinose accumulation as a metabolic marker for temperature responsiveness with the aim to identify genes that contribute to thermotolerance. By combining raffinose measurements in 250 Arabidopsis thaliana accessions following a mild heat treatment with genome-wide association studies, we identified five genomic regions that were associated with the observed trait variation. Subsequent functional analyses confirmed a causal relationship between TREHALOSE-6-PHOSPHATE SYNTHASE 1 (TPS1) and warm temperature-dependent raffinose synthesis. Moreover, complementation of the tps1-1 null mutant with functionally distinct TPS1 isoforms differentially affected carbohydrate metabolism under more severe heat stress. While higher TPS1 activity was associated with reduced endogenous sucrose levels and thermotolerance, disruption of trehalose 6-phosphate signalling resulted in higher accumulation of transitory starch and sucrose and was associated with enhanced heat resistance. Taken together, our findings suggest a role of trehalose 6-phosphate in thermotolerance, most likely through its regulatory function in carbon partitioning and sucrose homoeostasis.
Collapse
Affiliation(s)
- Niklas Reichelt
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, University of Würzburg, Würzburg, Germany
| | - Arthur Korte
- Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany
| | - Markus Krischke
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, University of Würzburg, Würzburg, Germany
| | - Martin J Mueller
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, University of Würzburg, Würzburg, Germany
| | - Daniel Maag
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, University of Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Sang L, Chen G, Cao J, Liu J, Yu Y. PhRHMs play important roles in leaf and flower development and anthocyanin synthesis in petunia. PHYSIOLOGIA PLANTARUM 2022; 174:e13773. [PMID: 36066309 DOI: 10.1111/ppl.13773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Anthocyanins, vital metabolites in plants, are formed by anthocyanidins combined with various monosaccharides, including glucose, rhamnose, and arabinose. Rhamnose contributes greatly to the glycosylation of anthocyanidins. There are two kinds of rhamnose synthase (RS): rhamnose biosynthesis (RHM), and nucleotide-RS/epimerase-reductase (UER1). Nevertheless, no RS isoform was reported to be involved in anthocyanin synthesis. Here, three homologous PhRHM genes, namely PhRHM1, PhRHM2, and PhRHM3, and one PhUER1 gene from petunia were cloned and characterized. Green fluorescent protein fusion protein assays revealed that PhRHMs and PhUER1 are localized in the cytoplasm. We obtained PhRHM1 or/and PhRHM2 or PhUER1 silenced petunia plants and did not attempt to obtain PhRHM3 silenced plants since PhRHM3 mRNA was not detected in petunia organs examined. PhRHM1 and PhRHM2 (PhRHM1-2) silencing induced abnormal plant growth and decreased the contents of l-rhamnose, photosynthetic pigments and total anthocyanins, while PhUER1 silencing did not cause any visible phenotypic changes. Flavonoid metabolome analysis further revealed that PhRHM1-2 silencing reduced the contents of anthocyanins with rhamnose residue. These results revealed that PhRHMs contribute to the biosynthesis of rhamnose and that PhRHMs participate in the anthocyanin rhamnosylation in petunia, while PhUER1 does not.
Collapse
Affiliation(s)
- Lina Sang
- College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Guoju Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jiahao Cao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Juanxu Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yixun Yu
- College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Sowinski EE, Westman BM, Redmond CR, Kong Y, Olek AT, Olek J, McCann MC, Carpita NC. Lack of xyloglucan in the cell walls of the Arabidopsis xxt1/xxt2 mutant results in specific increases in homogalacturonan and glucomannan. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:212-227. [PMID: 35041247 DOI: 10.1111/tpj.15666] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Evan E Sowinski
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Bryce M Westman
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Celeste R Redmond
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Yingzhen Kong
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Anna T Olek
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Jan Olek
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Maureen C McCann
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Nicholas C Carpita
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
6
|
Liu L, Jiang LG, Luo JH, Xia AA, Chen LQ, He Y. Genome-wide association study reveals the genetic architecture of root hair length in maize. BMC Genomics 2021; 22:664. [PMID: 34521344 PMCID: PMC8442424 DOI: 10.1186/s12864-021-07961-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/28/2021] [Indexed: 12/05/2022] Open
Abstract
Background Root hair, a special type of tubular-shaped cell, outgrows from root epidermal cell and plays important roles in the acquisition of nutrients and water, as well as interactions with biotic and abiotic stress. Although many genes involved in root hair development have been identified, genetic basis of natural variation in root hair growth has never been explored. Results Here, we utilized a maize association panel including 281 inbred lines with tropical, subtropical, and temperate origins to decipher the phenotypic diversity and genetic basis of root hair length. We demonstrated significant associations of root hair length with many metabolic pathways and other agronomic traits. Combining root hair phenotypes with 1.25 million single nucleotide polymorphisms (SNPs) via genome-wide association study (GWAS) revealed several candidate genes implicated in cellular signaling, polar growth, disease resistance and various metabolic pathways. Conclusions These results illustrate the genetic basis of root hair length in maize, offering a list of candidate genes predictably contributing to root hair growth, which are invaluable resource for the future functional investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07961-z.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lu-Guang Jiang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Jin-Hong Luo
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Ai-Ai Xia
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Li-Qun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Yan He
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
The placenta of Physcomitrium patens: transfer cell wall polymers compared across the three bryophyte groups. DIVERSITY 2021; 13. [PMID: 35273462 PMCID: PMC8905678 DOI: 10.3390/d13080378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Following similar studies of cell wall constituents in the placenta of Phaeoceros and Marchantia, we conducted immunogold labeling TEM studies of Physcomitrium patens to determine the composition of cell wall polymers in transfer cells on both sides of the placenta. 16 monoclonal antibodies were used to localize cell wall epitopes in the basal walls and wall ingrowths in this moss. In general, placental transfer cell walls of P. patens contain fewer pectins and far fewer AGPs than those of the hornwort and liverwort. P. patens also lacks the differential labeling that is pronounced between generations in the other bryophytes. In contrast, transfer cell walls on either side of the placenta of P. patens are relatively similar in composition with slight variation in HG pectins. Compositional similarities between wall ingrowths and primary cell walls in P. patens suggest that wall ingrowths may simply be extensions of the primary cell wall. Considerable variability in occurrence, abundance, and types of polymers among the three bryophytes and between the two generations suggests that similarity in function and morphology of cell walls does not require a common cell wall composition. We propose that the specific developmental and life history traits of these plants may provide even more important clues in understanding the basis for these differences. This study significantly builds on our knowledge of cell wall composition in bryophytes in general and transfer cells across plants.
Collapse
|
8
|
Henry JS, Ligrone R, Vaughn KC, Lopez RA, Renzaglia KS. Cell wall polymers in the Phaeoceros placenta reflect developmental and functional differences across generations. BRYOPHYTE DIVERSITY AND EVOLUTION 2021; 43:265-283. [PMID: 34532591 PMCID: PMC8443004 DOI: 10.11646/bde.43.1.19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The placenta of hornworts is unique among bryophytes in the restriction of transfer cells that are characterized by elaborate wall labyrinths to the gametophyte generation. During development, cells around the periphery of the sporophyte foot elongate, forming smooth-walled haustorial cells that interdigitate with gametophyte cells. Using immunogold labeling with 22 antibodies to diverse cell wall polymers, we examined compositional differences in the developmentally and morphologically distinct cell walls of gametophyte transfer cells and sporophyte haustorial cells in the placenta of Phaeoceros. As detected by Calcofluor White fluorescence, cellulose forms the cell wall scaffolding in cells on both sides of the placenta. Homogalacturonan (HG) and rhamnogalacturonan I (RG-I) pectins are abundant in both cell types, and haustrorial cells are further enriched in methyl-esterified HGs. The abundance of pectins in placental cell walls is consistent with the postulated roles of these polymers in cell wall porosity and in maintaining an acidic apoplastic pH favorable to solute transport. Xyloglucan hemicellulose, but not mannans or glucuronoxylans, are present in cell walls at the interface between the two generations with a lower density in gametophytic wall ingrowths. Arabinogalactan proteins (AGPs) are diverse along the plasmalemma of placental cells and are absent in surrounding cells in both generations. AGPs in placental cell walls may play a role in calcium binding and release associated with signal transduction as has been speculated for these glycoproteins in other plants. Callose is restricted to thin areas in cell walls of gametophyte transfer cells. In contrast to studies of transfer cells in other systems, no reaction to the JIM12 antibody against extensin was observed in Phaeoceros.
Collapse
Affiliation(s)
- Jason S Henry
- Department of Plant Biology, MC:6509, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | | | | | - Renee A Lopez
- Department of Plant Biology, MC:6509, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Karen S Renzaglia
- Department of Plant Biology, MC:6509, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| |
Collapse
|
9
|
Defects in Cell Wall Differentiation of the Arabidopsis Mutant rol1-2 Is Dependent on Cyclin-Dependent Kinase CDK8. Cells 2021; 10:cells10030685. [PMID: 33808926 PMCID: PMC8003768 DOI: 10.3390/cells10030685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 01/02/2023] Open
Abstract
Plant cells are encapsulated by cell walls whose properties largely determine cell growth. We have previously identified the rol1-2 mutant, which shows defects in seedling root and shoot development. rol1-2 is affected in the Rhamnose synthase 1 (RHM1) and shows alterations in the structures of Rhamnogalacturonan I (RG I) and RG II, two rhamnose-containing pectins. The data presented here shows that root tissue of the rol1-2 mutant fails to properly differentiate the cell wall in cell corners and accumulates excessive amounts of callose, both of which likely alter the physical properties of cells. A surr (suppressor of the rol1-2 root developmental defect) mutant was identified that alleviates the cell growth defects in rol1-2. The cell wall differentiation defect is re-established in the rol1-2 surr mutant and callose accumulation is reduced compared to rol1-2. The surr mutation is an allele of the cyclin-dependent kinase 8 (CDK8), which encodes a component of the mediator complex that influences processes central to plant growth and development. Together, the identification of the surr mutant suggests that changes in cell wall composition and turnover in the rol1-2 mutant have a significant impact on cell growth and reveals a function of CDK8 in cell wall architecture and composition.
Collapse
|
10
|
Liu X, Cui H, Zhang B, Song M, Chen S, Xiao C, Tang Y, Liesche J. Reduced pectin content of cell walls prevents stress-induced root cell elongation in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1073-1084. [PMID: 33180933 DOI: 10.1093/jxb/eraa533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
The primary cell walls of plants provide mechanical strength while maintaining the flexibility needed for cell extension growth. Cell extension involves loosening the bonds between cellulose microfibrils, hemicelluloses and pectins. Pectins have been implicated in this process, but it remains unclear if this depends on the abundance of certain pectins, their modifications, and/or structure. Here, cell wall-related mutants of the model plant Arabidopsis were characterized by biochemical and immunohistochemical methods and Fourier-transform infrared microspectroscopy. Mutants with reduced pectin or hemicellulose content showed no root cell elongation in response to simulated drought stress, in contrast to wild-type plants or mutants with reduced cellulose content. While no association was found between the degrees of pectin methylesterification and cell elongation, cell wall composition analysis suggested an important role of the pectin rhamnogalacturonan II (RGII), which was corroborated in experiments with the RGII-modifying chemical 2β-deoxy-Kdo. The results were complemented by expression analysis of cell wall synthesis genes and microscopic analysis of cell wall porosity. It is concluded that a certain amount of pectin is necessary for stress-induced root cell elongation, and hypotheses regarding the mechanistic basis of this result are formulated.
Collapse
Affiliation(s)
- Xiaohui Liu
- College of Life Sciences, Northwest A&F University, Yangling, China
- Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, Yangling, China
| | - Huiying Cui
- College of Life Sciences, Northwest A&F University, Yangling, China
- Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, Yangling, China
| | - Bochao Zhang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Min Song
- College of Life Sciences, Northwest A&F University, Yangling, China
- Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, Yangling, China
| | - Shaolin Chen
- College of Life Sciences, Northwest A&F University, Yangling, China
- Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, Yangling, China
| | - Chaowen Xiao
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yunjia Tang
- College of Life Sciences, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Johannes Liesche
- College of Life Sciences, Northwest A&F University, Yangling, China
- Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, Yangling, China
| |
Collapse
|
11
|
Eldridge BM, Larson ER, Weldon L, Smyth KM, Sellin AN, Chenchiah IV, Liverpool TB, Grierson CS. A Centrifuge-Based Method for Identifying Novel Genetic Traits That Affect Root-Substrate Adhesion in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:602486. [PMID: 33732271 PMCID: PMC7959780 DOI: 10.3389/fpls.2021.602486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
The physical presence of roots and the compounds they release affect the cohesion between roots and their environment. However, the plant traits that are important for these interactions are unknown and most methods that quantify the contributions of these traits are time-intensive and require specialist equipment and complex substrates. Our lab developed an inexpensive, high-throughput phenotyping assay that quantifies root-substrate adhesion in Arabidopsis thaliana. We now report that this method has high sensitivity and versatility for identifying different types of traits affecting root-substrate adhesion including root hair morphology, vesicle trafficking pathways, and root exudate composition. We describe a practical protocol for conducting this assay and introduce its use in a forward genetic screen to identify novel genes affecting root-substrate interactions. This assay is a powerful tool for identifying and quantifying genetic contributions to cohesion between roots and their environment.
Collapse
Affiliation(s)
- Bethany M. Eldridge
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Emily R. Larson
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Laura Weldon
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Kevin M. Smyth
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Annabelle N. Sellin
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | | | | | - Claire S. Grierson
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
12
|
Henry JS, Lopez RA, Renzaglia KS. Differential localization of cell wall polymers across generations in the placenta of Marchantia polymorpha. JOURNAL OF PLANT RESEARCH 2020; 133:911-924. [PMID: 33106966 PMCID: PMC8192078 DOI: 10.1007/s10265-020-01232-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
To further knowledge on cell wall composition in early land plants, we localized cell wall constituents in placental cells of the liverwort Marchantia polymorpha L. using monoclonal antibodies (MAbs) in the transmission electron microscope and histochemical staining. The placenta of M. polymorpha is similar to the majority of bryophytes in that both generations contain transfer cells with extensive wall ingrowths. Although the four major cell wall polymers, i.e., cellulose, pectins, hemicelluloses, and arabinogalactan proteins, are present, there are variations in the richness and specificity across generations. An abundance of homogalacturonan pectins in all placental cell walls is consistent with maintaining cell wall permeability and an acidic apoplastic pH necessary for solute transport. Although similar in ultrastructure, transfer cell walls on the sporophyte side in M. polymorpha are enriched with xyloglucans and diverse AGPs not detected on the gametophyte side of the placenta. Gametophyte wall ingrowths are more uniform in polymer composition. Lastly, extensins and callose are not components of transfer cell walls of M. polymorpha, which deviates from studies on transfer cells in other plants. The difference in polymer localizations in transfer cell walls between generations is consistent with directional movement from gametophyte to sporophyte in this liverwort.
Collapse
Affiliation(s)
- Jason S Henry
- Department of Plant Biology, Southern Illinois University Carbondale, MC:6509, Carbondale, IL 62901, USA.
| | - Renee A Lopez
- Department of Plant Biology, Southern Illinois University Carbondale, MC:6509, Carbondale, IL 62901, USA
| | - Karen S Renzaglia
- Department of Plant Biology, Southern Illinois University Carbondale, MC:6509, Carbondale, IL 62901, USA
| |
Collapse
|
13
|
Zhao Z, Ren C, Xie L, Xing M, Zhu C, Jin R, Xu C, Sun C, Li X. Functional analysis of PpRHM1 and PpRHM2 involved in UDP-l-rhamnose biosynthesis in Prunus persica. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:658-666. [PMID: 32861032 DOI: 10.1016/j.plaphy.2020.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 05/27/2023]
Abstract
UDP-l-rhamnose (UDP-Rha) is an important sugar donor for glycosylation of various cell molecules in plant. Rhamnosides are widely present in different plant tissues and play important biological roles under different developmental or environmental conditions. However, enzymes involved in UDP-Rha biosynthesis and their encoding genes have been identified in few plants, which limits the functional analysis of plant rhamnosides. Here, two UDP-Rha biosynthesis genes, named PpRHM1 (2028 bp) and PpRHM2 (2016 bp), were isolated and characterized from Prunus persica, which is rich sources of flavonol rhamnosides. Both recombinant RHM proteins can catalyze the transformation from UDP-d-glucose (UDP-Glc) to UDP-Rha, which was confirmed by LC-MS and formation of flavonol rhamnosides. Biochemical analysis showed that both recombinant RHM proteins preferred alkaline conditions in pH range of 8.0-9.0 and had optimal reaction temperature between 25 and 30 °C. PpRHM1 showed the better UDP-Glc substrate affinity with Km of 360.01 μM. Gene expression analysis showed different transcript levels of both RHMs in all plant tissues tested, indicating the involvement of rhamnosides in various tissues in plant. Such results provide better understanding of UDP-Rha biosynthesis in fruit tree and may be helpful for further investigation of various rhamnose derivatives and their biological functions.
Collapse
Affiliation(s)
- Zhikang Zhao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, China
| | - Chuanhong Ren
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, China
| | - Linfeng Xie
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, China
| | - Mengyun Xing
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, China
| | - Changqing Zhu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, China
| | - Rong Jin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, China
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, China
| | - Chongde Sun
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, China
| | - Xian Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Herger A, Dünser K, Kleine-Vehn J, Ringli C. Leucine-Rich Repeat Extensin Proteins and Their Role in Cell Wall Sensing. Curr Biol 2020; 29:R851-R858. [PMID: 31505187 DOI: 10.1016/j.cub.2019.07.039] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Plant cells are surrounded by a cell wall that provides shape and physically limits cell expansion. To sense the environment and status of cell wall structures, plants have evolved cell wall integrity-sensing mechanisms that involve a number of receptors at the plasma membrane. These receptors can bind cell wall components and/or hormones to coordinate processes in the cell wall and the cytoplasm. This review focuses on the role of leucine-rich repeat extensins (LRXs) during cell wall development. LRXs are chimeric proteins that insolubilize in the cell wall and form protein-protein interaction platforms. LRXs bind RALF peptide hormones that modify cell wall expansion and also directly interact with the transmembrane receptor FERONIA, which is involved in cell growth regulation. LRX proteins, therefore, also represent a link between the cell wall and plasma membrane, perceiving extracellular signals and indirectly relaying this information to the cytoplasm.
Collapse
Affiliation(s)
- Aline Herger
- Institute of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Kai Dünser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Christoph Ringli
- Institute of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland.
| |
Collapse
|
15
|
Blein T, Balzergue C, Roulé T, Gabriel M, Scalisi L, François T, Sorin C, Christ A, Godon C, Delannoy E, Martin-Magniette ML, Nussaume L, Hartmann C, Gautheret D, Desnos T, Crespi M. Landscape of the Noncoding Transcriptome Response of Two Arabidopsis Ecotypes to Phosphate Starvation. PLANT PHYSIOLOGY 2020; 183:1058-1072. [PMID: 32404413 PMCID: PMC7333710 DOI: 10.1104/pp.20.00446] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/30/2020] [Indexed: 05/22/2023]
Abstract
Root architecture varies widely between species; it even varies between ecotypes of the same species, despite strong conservation of the coding portion of their genomes. By contrast, noncoding RNAs evolve rapidly between ecotypes and may control their differential responses to the environment, since several long noncoding RNAs (lncRNAs) are known to quantitatively regulate gene expression. Roots from ecotypes Columbia and Landsberg erecta of Arabidopsis (Arabidopsis thaliana) respond differently to phosphate starvation. Here, we compared transcriptomes (mRNAs, lncRNAs, and small RNAs) of root tips from these two ecotypes during early phosphate starvation. We identified thousands of lncRNAs that were largely conserved at the DNA level in these ecotypes. In contrast to coding genes, many lncRNAs were specifically transcribed in one ecotype and/or differentially expressed between ecotypes independent of phosphate availability. We further characterized these ecotype-related lncRNAs and studied their link with small interfering RNAs. Our analysis identified 675 lncRNAs differentially expressed between the two ecotypes, including antisense RNAs targeting key regulators of root-growth responses. Misregulation of several lincRNAs showed that at least two ecotype-related lncRNAs regulate primary root growth in ecotype Columbia. RNA-sequencing analysis following deregulation of lncRNA NPC48 revealed a potential link with root growth and transport functions. This exploration of the noncoding transcriptome identified ecotype-specific lncRNA-mediated regulation in root apexes. The noncoding genome may harbor further mechanisms involved in ecotype adaptation of roots to different soil environments.
Collapse
Affiliation(s)
- Thomas Blein
- Institute of Plant Sciences Paris-Saclay, Centre Nationale de la Recherche, Institut National de la Recherche Agronomique, Université Evry, Université Paris-Saclay, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay, Université de Paris, 91405 Orsay, France
| | - Coline Balzergue
- Aix Marseille University, Commisariat à l'Énergie Atomique, Centre Nationale de la Recherche, Bioscience and Biotechnology Institute of Aix-Marseilles, Unité Mixte de Recherche 7265 Signalisation pour l'Adaptation des Végétaux à leur Environnement (UMR7265 SAVE), 13108 Saint Paul-Lez-Durance, France
| | - Thomas Roulé
- Institute of Plant Sciences Paris-Saclay, Centre Nationale de la Recherche, Institut National de la Recherche Agronomique, Université Evry, Université Paris-Saclay, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay, Université de Paris, 91405 Orsay, France
| | - Marc Gabriel
- Institute for Integrative Biology of the Cell, Commisariat à l'Énergie Atomique, Centre Nationale de la Recherche, Université Paris Sud, 91198 Gif sur Yvette, France
| | - Laetitia Scalisi
- Institute of Plant Sciences Paris-Saclay, Centre Nationale de la Recherche, Institut National de la Recherche Agronomique, Université Evry, Université Paris-Saclay, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay, Université de Paris, 91405 Orsay, France
| | - Tracy François
- Institute of Plant Sciences Paris-Saclay, Centre Nationale de la Recherche, Institut National de la Recherche Agronomique, Université Evry, Université Paris-Saclay, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay, Université de Paris, 91405 Orsay, France
| | - Céline Sorin
- Institute of Plant Sciences Paris-Saclay, Centre Nationale de la Recherche, Institut National de la Recherche Agronomique, Université Evry, Université Paris-Saclay, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay, Université de Paris, 91405 Orsay, France
| | - Aurélie Christ
- Institute of Plant Sciences Paris-Saclay, Centre Nationale de la Recherche, Institut National de la Recherche Agronomique, Université Evry, Université Paris-Saclay, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay, Université de Paris, 91405 Orsay, France
| | - Christian Godon
- Aix Marseille University, Commisariat à l'Énergie Atomique, Centre Nationale de la Recherche, Bioscience and Biotechnology Institute of Aix-Marseilles, Unité Mixte de Recherche 7265 Signalisation pour l'Adaptation des Végétaux à leur Environnement (UMR7265 SAVE), 13108 Saint Paul-Lez-Durance, France
| | - Etienne Delannoy
- Institute of Plant Sciences Paris-Saclay, Centre Nationale de la Recherche, Institut National de la Recherche Agronomique, Université Evry, Université Paris-Saclay, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay, Université de Paris, 91405 Orsay, France
| | - Marie-Laure Martin-Magniette
- Institute of Plant Sciences Paris-Saclay, Centre Nationale de la Recherche, Institut National de la Recherche Agronomique, Université Evry, Université Paris-Saclay, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay, Université de Paris, 91405 Orsay, France
- Unité Mixte de Recherche MIA-Paris (UMR MIA-Paris), AgroParisTech, Institut National de la Recherche Agronomique, Université Paris-Saclay, 75005 Paris, France
| | - Laurent Nussaume
- Aix Marseille University, Commisariat à l'Énergie Atomique, Centre Nationale de la Recherche, Bioscience and Biotechnology Institute of Aix-Marseilles, Unité Mixte de Recherche 7265 Signalisation pour l'Adaptation des Végétaux à leur Environnement (UMR7265 SAVE), 13108 Saint Paul-Lez-Durance, France
| | - Caroline Hartmann
- Institute of Plant Sciences Paris-Saclay, Centre Nationale de la Recherche, Institut National de la Recherche Agronomique, Université Evry, Université Paris-Saclay, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay, Université de Paris, 91405 Orsay, France
| | - Daniel Gautheret
- Institute for Integrative Biology of the Cell, Commisariat à l'Énergie Atomique, Centre Nationale de la Recherche, Université Paris Sud, 91198 Gif sur Yvette, France
| | - Thierry Desnos
- Aix Marseille University, Commisariat à l'Énergie Atomique, Centre Nationale de la Recherche, Bioscience and Biotechnology Institute of Aix-Marseilles, Unité Mixte de Recherche 7265 Signalisation pour l'Adaptation des Végétaux à leur Environnement (UMR7265 SAVE), 13108 Saint Paul-Lez-Durance, France
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay, Centre Nationale de la Recherche, Institut National de la Recherche Agronomique, Université Evry, Université Paris-Saclay, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay, Université de Paris, 91405 Orsay, France
| |
Collapse
|
16
|
Herger A, Gupta S, Kadler G, Franck CM, Boisson-Dernier A, Ringli C. Overlapping functions and protein-protein interactions of LRR-extensins in Arabidopsis. PLoS Genet 2020; 16:e1008847. [PMID: 32559234 PMCID: PMC7357788 DOI: 10.1371/journal.pgen.1008847] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 07/13/2020] [Accepted: 05/11/2020] [Indexed: 02/01/2023] Open
Abstract
Plant cell growth requires the coordinated expansion of the protoplast and the cell wall, which is controlled by an elaborate system of cell wall integrity (CWI) sensors linking the different cellular compartments. LRR-eXtensins (LRXs) are cell wall-attached extracellular regulators of cell wall formation and high-affinity binding sites for RALF (Rapid ALkalinization Factor) peptide hormones that trigger diverse physiological processes related to cell growth. LRXs function in CWI sensing and in the case of LRX4 of Arabidopsis thaliana, this activity was shown to involve interaction with the transmembrane CatharanthusroseusReceptor-Like Kinase1-Like (CrRLK1L) protein FERONIA (FER). Here, we demonstrate that binding of RALF1 and FER is common to most tested LRXs of vegetative tissue, including LRX1, the main LRX protein of root hairs. Consequently, an lrx1-lrx5 quintuple mutant line develops shoot and root phenotypes reminiscent of the fer-4 knock-out mutant. The previously observed membrane-association of LRXs, however, is FER-independent, suggesting that LRXs bind not only FER but also other membrane-localized proteins to establish a physical link between intra- and extracellular compartments. Despite evolutionary diversification of various LRX proteins, overexpression of several chimeric LRX constructs causes cross-complementation of lrx mutants, indicative of comparable functions among members of this protein family. Suppressors of the pollen-growth defects induced by mutations in the CrRLK1Ls ANXUR1/2 also alleviate lrx1 lrx2-induced mutant root hair phenotypes. This suggests functional similarity of LRX-CrRLK1L signaling processes in very different cell types and indicates that LRX proteins are components of conserved processes regulating cell growth. Cell growth in plants requires the coordinated enlargement of the cell and the surrounding cell wall, which is regulated by an elaborate system of cell wall integrity sensors, proteins involved in the exchange of information between the cell and the cell wall. In Arabidopsis thaliana, LRR-extensins (LRXs) are localized in the cell wall and bind RALF peptides, hormones that regulate cell growth-related processes. LRX4 also binds the plasma membrane-localized protein FERONIA (FER), thereby establishing a link between the cell and the cell wall. Here, we show that membrane association of LRX4 is not dependent on FER, suggesting that LRX4 binds other, so far unknown proteins. The LRR domain of several LRXs can bind to FER, consistent with the observation that mutations in multiple LRX genes are required to recapitulate a fer knock-out phenotype. Our results support the notion that LRX-FER interactions are key to proper cell growth.
Collapse
Affiliation(s)
- Aline Herger
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Shibu Gupta
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gabor Kadler
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Christina Maria Franck
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Biocenter, Botanical Institute, University of Cologne, Cologne, Germany
| | | | - Christoph Ringli
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
17
|
Tierney ML, Sun L, Domozych DS. Rapid Assessment of Cell Wall Polymer Distribution and Surface Topology of Arabidopsis Seedlings. Methods Mol Biol 2020; 2149:315-325. [PMID: 32617942 DOI: 10.1007/978-1-0716-0621-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The deposition and modulation of constituent polymers of plant cell walls are profoundly important events during plant development. Identification of specific polymers within assembled walls during morphogenesis and in response to stress conditions represents a major goal of plant cell biologists. Arabidopsis thaliana is a model organism that has become central to research focused on fundamental plant processes including those related to plant wall dynamics. Its fast life cycle and easy access to a variety of mutants and ecotypes of Arabidopsis have stimulated the need for rapid assessment tools to probe its wall organization at the cellular and subcellular levels. We describe two rapid assessment techniques that allow for elucidation of the cell wall polymers of root hairs and high-resolution analysis of surface features of various vegetative organs. Live organism immunolabeling of cell wall polymers employing light microscopy and confocal laser scanning microscopy can be effectively performed using a large microplate-based screening strategy (see Figs. 1 and 2). Rapid cryofixation and imaging of variable pressure scanning electron microscopy also allows for imaging of surface features of all portions of the plant as clearly seen in Fig. 3.
Collapse
Affiliation(s)
- Mary L Tierney
- Department of Plant Biology, University of Vermont, Burlington, VT, USA
| | - Li Sun
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY, USA
| | - David S Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY, USA.
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Dana Science Center, Saratoga Springs, NY, USA.
| |
Collapse
|
18
|
Kumar M, Kim I, Kim YK, Heo JB, Suh MC, Kim HU. Strigolactone Signaling Genes Showing Differential Expression Patterns in Arabidopsis max Mutants. PLANTS 2019; 8:plants8090352. [PMID: 31546850 PMCID: PMC6784243 DOI: 10.3390/plants8090352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 11/16/2022]
Abstract
Strigolactone (SL) is a recently discovered class of phytohormone that inhibits shoot branching. The molecular mechanism underlying SL biosynthesis, perception, and signal transduction is vital to the plant branching phenotype. Some aspects of their biosynthesis, perception, and signaling include the role of four MORE AXILLARY GROWTH genes, MAX3, MAX4, MAX1, and MAX2. It is important to identify downstream genes that are involved in SL signaling. To achieve this, we studied the genomic aspects of the strigolactone biosynthesis pathway using microarray analysis of four max mutants. We identified SL signaling candidate genes that showed differential expression patterns in max mutants. More specifically, 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE 4 (ACC4) and PROTEIN KINASE 3 (PKS3) displayed contrasting expression patterns, indicating a regulatory mechanism in SL signaling pathway to control different phenotypes apart from branching phenotype.
Collapse
Affiliation(s)
- Manu Kumar
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea.
| | - Inyoung Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea.
| | - Yeon-Ki Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin 17058, Korea.
| | - Jae Bok Heo
- Department of Molecular Genetic Biotechnology, Dong-A University, Busan 49315, Korea.
| | - Mi Chung Suh
- Department of Life Sciences, Sogang University, Seoul 04107, Korea.
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea.
| |
Collapse
|
19
|
Denyer T, Ma X, Klesen S, Scacchi E, Nieselt K, Timmermans MCP. Spatiotemporal Developmental Trajectories in the Arabidopsis Root Revealed Using High-Throughput Single-Cell RNA Sequencing. Dev Cell 2019; 48:840-852.e5. [PMID: 30913408 DOI: 10.1016/j.devcel.2019.02.022] [Citation(s) in RCA: 306] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/30/2019] [Accepted: 02/22/2019] [Indexed: 12/11/2022]
Abstract
High-throughput single-cell RNA sequencing (scRNA-seq) is becoming a cornerstone of developmental research, providing unprecedented power in understanding dynamic processes. Here, we present a high-resolution scRNA-seq expression atlas of the Arabidopsis root composed of thousands of independently profiled cells. This atlas provides detailed spatiotemporal information, identifying defining expression features for all major cell types, including the scarce cells of the quiescent center. These reveal key developmental regulators and downstream genes that translate cell fate into distinctive cell shapes and functions. Developmental trajectories derived from pseudotime analysis depict a finely resolved cascade of cell progressions from the niche through differentiation that are supported by mirroring expression waves of highly interconnected transcription factors. This study demonstrates the power of applying scRNA-seq to plants and provides an unparalleled spatiotemporal perspective of root cell differentiation.
Collapse
Affiliation(s)
- Tom Denyer
- Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, Tübingen 72076, Germany
| | - Xiaoli Ma
- Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, Tübingen 72076, Germany
| | - Simon Klesen
- Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, Tübingen 72076, Germany
| | - Emanuele Scacchi
- Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, Tübingen 72076, Germany
| | - Kay Nieselt
- Center for Bioinformatics, University of Tübingen, Sand 14, Tübingen 72076, Germany
| | - Marja C P Timmermans
- Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, Tübingen 72076, Germany.
| |
Collapse
|
20
|
Abstract
In plants, one of the most understated developmental phenomena is that of straightness - a root will grow down, a petal will grow flat. A new mutant in Arabidopsis thaliana that displays twisting in petals and roots, at the organ and cell level, has been investigated. Strikingly, the twisting is always left-handed and is not due to underlying cytoskeletal skewing, as is the case in other known, phenotypically similar, mutants.
Collapse
|
21
|
Okekeogbu IO, Pattathil S, González Fernández-Niño SM, Aryal UK, Penning BW, Lao J, Heazlewood JL, Hahn MG, McCann MC, Carpita NC. Glycome and Proteome Components of Golgi Membranes Are Common between Two Angiosperms with Distinct Cell-Wall Structures. THE PLANT CELL 2019; 31:1094-1112. [PMID: 30914498 PMCID: PMC6533026 DOI: 10.1105/tpc.18.00755] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/28/2019] [Accepted: 03/24/2019] [Indexed: 05/20/2023]
Abstract
The plant endoplasmic reticulum-Golgi apparatus is the site of synthesis, assembly, and trafficking of all noncellulosic polysaccharides, proteoglycans, and proteins destined for the cell wall. As grass species make cell walls distinct from those of dicots and noncommelinid monocots, it has been assumed that the differences in cell-wall composition stem from differences in biosynthetic capacities of their respective Golgi. However, immunosorbence-based screens and carbohydrate linkage analysis of polysaccharides in Golgi membranes, enriched by flotation centrifugation from etiolated coleoptiles of maize (Zea mays) and leaves of Arabidopsis (Arabidopsis thaliana), showed that arabinogalactan-proteins and arabinans represent substantial portions of the Golgi-resident polysaccharides not typically found in high abundance in cell walls of either species. Further, hemicelluloses accumulated in Golgi at levels that contrasted with those found in their respective cell walls, with xyloglucans enriched in maize Golgi, and xylans enriched in Arabidopsis. Consistent with this finding, maize Golgi membranes isolated by flotation centrifugation and enriched further by free-flow electrophoresis, yielded >200 proteins known to function in the biosynthesis and metabolism of cell-wall polysaccharides common to all angiosperms, and not just those specific to cell-wall type. We propose that the distinctive compositions of grass primary cell walls compared with other angiosperms result from differential gating or metabolism of secreted polysaccharides post-Golgi by an as-yet unknown mechanism, and not necessarily by differential expression of genes encoding specific synthase complexes.
Collapse
Affiliation(s)
- Ikenna O Okekeogbu
- Department of Botany & Plant Pathology, Purdue University, West Lafayette, Indiana 47907
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | | | | | - Bryan W Penning
- U.S. Department of Agriculture, Agricultural Research Service, Corn, Soybean and Wheat Quality Research, Wooster, Ohio 44691
| | - Jeemeng Lao
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Joshua L Heazlewood
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Michael G Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | - Maureen C McCann
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907
| | - Nicholas C Carpita
- Department of Botany & Plant Pathology, Purdue University, West Lafayette, Indiana 47907
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
22
|
Schaufelberger M, Galbier F, Herger A, de Brito Francisco R, Roffler S, Clement G, Diet A, Hörtensteiner S, Wicker T, Ringli C. Mutations in the Arabidopsis ROL17/isopropylmalate synthase 1 locus alter amino acid content, modify the TOR network, and suppress the root hair cell development mutant lrx1. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2313-2323. [PMID: 30753668 PMCID: PMC6463047 DOI: 10.1093/jxb/ery463] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/19/2018] [Indexed: 05/22/2023]
Abstract
The growth and development of organisms must be tightly controlled and adjusted to nutrient availability and metabolic activities. The Target of Rapamycin (TOR) network is a major control mechanism in eukaryotes and influences processes such as translation, mitochondrial activity, production of reactive oxygen species, and the cytoskeleton. In Arabidopsis thaliana, inhibition of the TOR kinase causes changes in cell wall architecture and suppression of phenotypic defects of the cell wall formation mutant lrx1 (leucine-rich repeat extensin 1). The rol17 (repressor of lrx1 17) mutant was identified as a new suppressor of lrx1 that induces also a short root phenotype. The ROL17 locus encodes isopropylmalate synthase 1, a protein involved in leucine biosynthesis. Dependent on growth conditions, mutations in ROL17 do not necessarily alter the level of leucine, but always cause development of the rol17 mutant phenotypes, suggesting that the mutation does not only influence leucine biosynthesis. Changes in the metabolome of rol17 mutants are also found in plants with inhibited TOR kinase activity. Furthermore, rol17 mutants show reduced sensitivity to the TOR kinase inhibitor AZD-8055, indicating a modified TOR network. Together, these data suggest that suppression of lrx1 by rol17 is the result of an alteration of the TOR network.
Collapse
Affiliation(s)
- Myriam Schaufelberger
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Florian Galbier
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
- Institute of Molecular Plant Biology, Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Aline Herger
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Rita de Brito Francisco
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Stefan Roffler
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Gilles Clement
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Anouck Diet
- Institute of Plant Sciences Paris-Saclay, CNRS, Université Paris Diderot, INRA, Université Paris Sud, Université d’Evry, Université Paris-Saclay, Rue de Noetzlin, Gif-sur-Yvette, France
| | - Stefan Hörtensteiner
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Thomas Wicker
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Christoph Ringli
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
- Correspondence:
| |
Collapse
|
23
|
Chen H, Wang JP, Liu H, Li H, Lin YCJ, Shi R, Yang C, Gao J, Zhou C, Li Q, Sederoff RR, Li W, Chiang VL. Hierarchical Transcription Factor and Chromatin Binding Network for Wood Formation in Black Cottonwood ( Populus trichocarpa). THE PLANT CELL 2019; 31:602-626. [PMID: 30755461 PMCID: PMC6482634 DOI: 10.1105/tpc.18.00620] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/15/2019] [Accepted: 02/07/2019] [Indexed: 05/18/2023]
Abstract
Wood remains the world's most abundant and renewable resource for timber and pulp and is an alternative to fossil fuels. Understanding the molecular regulation of wood formation can advance the engineering of wood for more efficient material and energy productions. We integrated a black cottonwood (Populus trichocarpa) wood-forming cell system with quantitative transcriptomics and chromatin binding assays to construct a transcriptional regulatory network (TRN) directed by a key transcription factor (TF), PtrSND1-B1 (secondary wall-associated NAC-domain protein). The network consists of four layers of TF-target gene interactions with quantitative regulatory effects, describing the specificity of how the regulation is transduced through these interactions to activate cell wall genes (effector genes) for wood formation. PtrSND1-B1 directs 57 TF-DNA interactions through 17 TFs transregulating 27 effector genes. Of the 57 interactions, 55 are novel. We tested 42 of these 57 interactions in 30 genotypes of transgenic P. trichocarpa and verified that ∼90% of the tested interactions function in vivo. The TRN reveals common transregulatory targets for distinct TFs, leading to the discovery of nine TF protein complexes (dimers and trimers) implicated in regulating the biosynthesis of specific types of lignin. Our work suggests that wood formation may involve regulatory homeostasis determined by combinations of TF-DNA and TF-TF (protein-protein) regulations.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695
| | - Jack P. Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695
| | - Huizi Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Huiyu Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Ying-Chung Jimmy Lin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- Department of Life Sciences, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Rui Shi
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695
| | - Chenmin Yang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695
| | - Jinghui Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Ronald R. Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695
- Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
24
|
Liu X, Li J, Zhao H, Liu B, Günther-Pomorski T, Chen S, Liesche J. Novel tool to quantify cell wall porosity relates wall structure to cell growth and drug uptake. J Cell Biol 2019; 218:1408-1421. [PMID: 30782779 PMCID: PMC6446840 DOI: 10.1083/jcb.201810121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/08/2019] [Accepted: 02/04/2019] [Indexed: 12/11/2022] Open
Abstract
Even though cell walls have essential functions for bacteria, fungi, and plants, tools to investigate their dynamic structure in living cells have been missing. Here, it is shown that changes in the intensity of the plasma membrane dye FM4-64 in response to extracellular quenchers depend on the nano-scale porosity of cell walls. The correlation of quenching efficiency and cell wall porosity is supported by tests on various cell types, application of differently sized quenchers, and comparison of results with confocal, electron, and atomic force microscopy images. The quenching assay was used to investigate how changes in cell wall porosity affect the capability for extension growth in the model plant Arabidopsis thaliana Results suggest that increased porosity is not a precondition but a result of cell extension, thereby providing new insight on the mechanism plant organ growth. Furthermore, it was shown that higher cell wall porosity can facilitate the action of antifungal drugs in Saccharomyces cerevisiae, presumably by facilitating uptake.
Collapse
Affiliation(s)
- Xiaohui Liu
- College of Life Sciences, Northwest A&F University, Yangling, China.,Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, China
| | - Jiazhou Li
- College of Life Sciences, Northwest A&F University, Yangling, China.,Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, China
| | - Heyu Zhao
- College of Life Sciences, Northwest A&F University, Yangling, China.,Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, China
| | - Boyang Liu
- College of Life Sciences, Northwest A&F University, Yangling, China.,Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, China
| | - Thomas Günther-Pomorski
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.,Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Shaolin Chen
- College of Life Sciences, Northwest A&F University, Yangling, China.,Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, China
| | - Johannes Liesche
- College of Life Sciences, Northwest A&F University, Yangling, China .,Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, China
| |
Collapse
|
25
|
Mahboubi A, Niittylä T. Sucrose transport and carbon fluxes during wood formation. PHYSIOLOGIA PLANTARUM 2018; 164:67-81. [PMID: 29572842 DOI: 10.1111/ppl.12729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/05/2018] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
Wood biosynthesis defines the chemical and structural properties of wood. The metabolic pathways that produce the precursors of wood cell wall polymers have a central role in defining wood properties. To make rational design of wood properties feasible, we need not only to understand the cell wall biosynthetic machinery, but also how sucrose transport and metabolism in developing wood connect to cell wall biosynthesis and how they respond to genetic and environmental cues. Here, we review the current understanding of the sucrose transport and primary metabolism pathways leading to the precursors of cell wall biosynthesis in woody plant tissues. We present both old, persistent questions and new emerging themes with a focus on wood formation in trees and draw upon evidence from the xylem tissues of herbaceous plants when it is relevant.
Collapse
Affiliation(s)
- Amir Mahboubi
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Totte Niittylä
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
26
|
Cole RA, Peremyslov VV, Van Why S, Moussaoui I, Ketter A, Cool R, Moreno MA, Vejlupkova Z, Dolja VV, Fowler JE. A broadly conserved NERD genetically interacts with the exocyst to affect root growth and cell expansion. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3625-3637. [PMID: 29722827 PMCID: PMC6022600 DOI: 10.1093/jxb/ery162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/24/2018] [Indexed: 05/10/2023]
Abstract
The exocyst, a conserved, octameric protein complex, helps mediate secretion at the plasma membrane, facilitating specific developmental processes that include control of root meristem size, cell elongation, and tip growth. A genetic screen for second-site enhancers in Arabidopsis identified NEW ENHANCER of ROOT DWARFISM1 (NERD1) as an exocyst interactor. Mutations in NERD1 combined with weak exocyst mutations in SEC8 and EXO70A1 result in a synergistic reduction in root growth. Alone, nerd1 alleles modestly reduce primary root growth, both by shortening the root meristem and by reducing cell elongation, but also result in a slight increase in root hair length, bulging, and rupture. NERD1 was identified molecularly as At3g51050, which encodes a transmembrane protein of unknown function that is broadly conserved throughout the Archaeplastida. A functional NERD1-GFP fusion localizes to the Golgi, in a pattern distinct from the plasma membrane-localized exocyst, arguing against a direct NERD1-exocyst interaction. Structural modeling suggests the majority of the protein is positioned in the lumen, in a β-propeller-like structure that has some similarity to proteins that bind polysaccharides. We suggest that NERD1 interacts with the exocyst indirectly, possibly affecting polysaccharides destined for the cell wall, and influencing cell wall characteristics in a developmentally distinct manner.
Collapse
Affiliation(s)
- Rex A Cole
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Valera V Peremyslov
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Savannah Van Why
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Ibrahim Moussaoui
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Ann Ketter
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Renee Cool
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Matthew Andres Moreno
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Zuzana Vejlupkova
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Valerian V Dolja
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - John E Fowler
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
- Correspondence:
| |
Collapse
|
27
|
Sanagi M, Lu Y, Aoyama S, Morita Y, Mitsuda N, Ikeda M, Ohme-Takagi M, Sato T, Yamaguchi J. Sugar-responsive transcription factor bZIP3 affects leaf shape in Arabidopsis plants. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2018; 35:167-170. [PMID: 31819719 PMCID: PMC6879397 DOI: 10.5511/plantbiotechnology.18.0410a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/10/2018] [Indexed: 05/20/2023]
Abstract
Sugars are essential for plant metabolism, growth and development. Plants must therefore manage their growth and developmental processes in response to sugar availability. Sugar signaling pathways constitute a complicated molecular network and are associated with global transcriptional regulation. However, the molecular mechanisms underlying sugar signaling remain largely unclear. This study reports that the protein basic-region leucine zipper 3 (bZIP3) is a novel sugar-responsive transcription factor in Arabidopsis plants. The expression of bZIP3 was rapidly repressed by sugar. Genetic analysis indicated that bZIP3 expression was modulated by the SNF1-RELATED KINASE 1 (SnRK1) pathway. Moreover, transgenic plants overexpressing bZIP3 and dominant repressor form bZIP3-SRDX showed aberrant shaped cotyledons with hyponastic bending. These findings suggest that bZIP3 plays a role in plant responses to sugars and is also associated with leaf development.
Collapse
Affiliation(s)
- Miho Sanagi
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yu Lu
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Shoki Aoyama
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yoshie Morita
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Miho Ikeda
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Masaru Ohme-Takagi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Takeo Sato
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Junji Yamaguchi
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- E-mail: Tel & Fax: +81-11-706-2737
| |
Collapse
|
28
|
Saffer AM, Irish VF. Flavonol rhamnosylation indirectly modifies the cell wall defects of RHAMNOSE BIOSYNTHESIS1 mutants by altering rhamnose flux. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:649-660. [PMID: 29505161 DOI: 10.1111/tpj.13885] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 06/08/2023]
Abstract
Rhamnose is required in Arabidopsis thaliana for synthesizing pectic polysaccharides and glycosylating flavonols. RHAMNOSE BIOSYNTHESIS1 (RHM1) encodes a UDP-l-rhamnose synthase, and rhm1 mutants exhibit many developmental defects, including short root hairs, hyponastic cotyledons, and left-handed helically twisted petals and roots. It has been proposed that the hyponastic cotyledons observed in rhm1 mutants are a consequence of abnormal flavonol glycosylation, while the root hair defect is flavonol-independent. We have recently shown that the helical twisting of rhm1 petals results from decreased levels of rhamnose-containing cell wall polymers. In this study, we found that flavonols indirectly modify the rhm1 helical petal phenotype by altering rhamnose flux to the cell wall. Given this finding, we further investigated the relationship between flavonols and the cell wall in rhm1 cotyledons. We show that decreased flavonol rhamnosylation is not responsible for the cotyledon phenotype of rhm1 mutants. Instead, blocking flavonol synthesis or rhamnosylation can suppress rhm1 defects by diverting UDP-l-rhamnose to the synthesis of cell wall polysaccharides. Therefore, rhamnose is required in the cell wall for normal expansion of cotyledon epidermal cells. Our findings suggest a broad role for rhamnose-containing cell wall polysaccharides in the morphogenesis of epidermal cells.
Collapse
Affiliation(s)
- Adam M Saffer
- Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Ave, New Haven, CT, 06520-8104, USA
| | - Vivian F Irish
- Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Ave, New Haven, CT, 06520-8104, USA
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect St, New Haven, CT, 06520-8016, USA
| |
Collapse
|
29
|
Wang X, Wang K, Yin G, Liu X, Liu M, Cao N, Duan Y, Gao H, Wang W, Ge W, Wang J, Li R, Guo Y. Pollen-Expressed Leucine-Rich Repeat Extensins Are Essential for Pollen Germination and Growth. PLANT PHYSIOLOGY 2018; 176:1993-2006. [PMID: 29269573 PMCID: PMC5841703 DOI: 10.1104/pp.17.01241] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/18/2017] [Indexed: 05/18/2023]
Abstract
During pollen tube growth, the walls of the tube provide the mechanical strength resisting turgor pressure to protect two sperm cells. Cell wall proteins may play an important role in this process. Pollen tube cell wall proteins known as leucine-rich repeat extensins (LRXs) harbor a leucine-rich repeat domain and an extensin domain. In this study, the functions of four pollen-expressed LRXs, LRX8, LRX9, LRX10, and LRX11 (LRX8-11), were characterized in Arabidopsis (Arabidopsis thaliana). LRX8-11 displayed a consistent expression pattern in mature pollen grains and pollen tubes. In a phenotypic analysis of four single mutants, six double mutants, four triple mutants, and a quadruple mutant, the triple and quadruple mutant plants displayed markedly reduced seed set and decreased male transmission efficiency accompanied by compromised pollen germination and pollen tube growth. GFP-fused LRX8, LRX10, and LRX11 were found to be localized to pollen tube cell walls. An immunohistochemical analysis of pollen tube cell wall polysaccharides showed an increase in the amount of rhamnogalacturonan I in the subapical walls of pollen tubes of the lrx9 lrx10 lrx11 and lrx8 lrx9 lrx11 mutants and a decrease in the content of fucosylated xyloglucans in lrx8 lrx9 lrx11 compared with wild-type plants. Moreover, the callose content in the apical walls of pollen tubes increased in the lrx8 lrx9 lrx11 mutant. In conclusion, we propose that LRX8-11 function synergistically to maintain pollen tube cell wall integrity; thus, they play critical roles in pollen germination and pollen tube growth.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China
| | - Kaiyue Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China
| | - Guimin Yin
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China
| | - Xiaoyu Liu
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China
| | - Mei Liu
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China
| | - Nana Cao
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China
| | - Yazhou Duan
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China
| | - Hui Gao
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China
| | - Wanlei Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China
| | - Weina Ge
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China
| | - Jing Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China
| | - Rui Li
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China
| | - Yi Guo
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China
| |
Collapse
|
30
|
Schoenaers S, Balcerowicz D, Breen G, Hill K, Zdanio M, Mouille G, Holman TJ, Oh J, Wilson MH, Nikonorova N, Vu LD, De Smet I, Swarup R, De Vos WH, Pintelon I, Adriaensen D, Grierson C, Bennett MJ, Vissenberg K. The Auxin-Regulated CrRLK1L Kinase ERULUS Controls Cell Wall Composition during Root Hair Tip Growth. Curr Biol 2018; 28:722-732.e6. [PMID: 29478854 DOI: 10.1016/j.cub.2018.01.050] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/10/2017] [Accepted: 01/18/2018] [Indexed: 01/07/2023]
Abstract
Root hairs facilitate a plant's ability to acquire soil anchorage and nutrients. Root hair growth is regulated by the plant hormone auxin and dependent on localized synthesis, secretion, and modification of the root hair tip cell wall. However, the exact cell wall regulators in root hairs controlled by auxin have yet to be determined. In this study, we describe the characterization of ERULUS (ERU), an auxin-induced Arabidopsis receptor-like kinase, whose expression is directly regulated by ARF7 and ARF19 transcription factors. ERU belongs to the Catharanthus roseus RECEPTOR-LIKE KINASE 1-LIKE (CrRLK1L) subfamily of putative cell wall sensor proteins. Imaging of a fluorescent fusion protein revealed that ERU is localized to the apical root hair plasma membrane. ERU regulates cell wall composition in root hairs and modulates pectin dynamics through negative control of pectin methylesterase (PME) activity. Mutant eru (-/-) root hairs accumulate de-esterified homogalacturonan and exhibit aberrant pectin Ca2+-binding site oscillations and increased PME activity. Up to 80% of the eru root hair phenotype is rescued by pharmacological supplementation with a PME-inhibiting catechin extract. ERU transcription is altered in specific cell wall-related root hair mutants, suggesting that it is a target for feedback regulation. Loss of ERU alters the phosphorylation status of FERONIA and H+-ATPases 1/2, regulators of apoplastic pH. Furthermore, H+-ATPases 1/2 and ERU are differentially phosphorylated in response to auxin. We conclude that ERULUS is a key auxin-controlled regulator of cell wall composition and pectin dynamics during root hair tip growth.
Collapse
Affiliation(s)
- Sébastjen Schoenaers
- Integrated Molecular Plant Physiology Research, Biology Department, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Daria Balcerowicz
- Integrated Molecular Plant Physiology Research, Biology Department, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Gordon Breen
- School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
| | - Kristine Hill
- Centre for Plant Integrative Biology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Malgorzata Zdanio
- Integrated Molecular Plant Physiology Research, Biology Department, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, UMR1318 INRA/AgroParisTech, ERL3559 CNRS, Saclay Plant Sciences, Route de St Cyr, 78026 Versailles, France
| | - Tara J Holman
- Centre for Plant Integrative Biology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Jaesung Oh
- Centre for Plant Integrative Biology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Michael H Wilson
- Centre for Plant Integrative Biology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Natalia Nikonorova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Ranjan Swarup
- Centre for Plant Integrative Biology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Cell Systems Group, Department of Molecular Biotechnology, University of Ghent, Coupure Links 653, 9000 Ghent, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Claire Grierson
- School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Kris Vissenberg
- Integrated Molecular Plant Physiology Research, Biology Department, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; Plant Biochemistry & Biotechnology Lab, Department of Agriculture, Technological Educational Institute of Crete, Stavromenos PC 71410, Heraklion, Crete, Greece.
| |
Collapse
|
31
|
Sede AR, Borassi C, Wengier DL, Mecchia MA, Estevez JM, Muschietti JP. Arabidopsis pollen extensins LRX are required for cell wall integrity during pollen tube growth. FEBS Lett 2018; 592:233-243. [PMID: 29265366 DOI: 10.1002/1873-3468.12947] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/22/2017] [Accepted: 11/06/2017] [Indexed: 11/07/2022]
Abstract
Proper cell wall assembly is crucial during pollen tube growth. Leucine-rich repeat extensins (LRXs) are extracellular glycoproteins which belong to the hydroxyproline-rich glycoprotein (HRGP) family. They contain a conserved N-terminal leucine-rich repeat (LRR) domain and a highly variable C-terminal extensin domain. Here, we characterized four LRX proteins (LRX8 through LRX11) from pollen of Arabidopsis thaliana. To investigate the role of LRX8-LRX11 in pollen germination and pollen tube growth, multiple T-DNA lrx mutants were obtained. The lrx mutants display abnormal pollen tubes with an irregular deposition of callose and pectin. They also show serious alterations in pollen germination and segregation ratio. Our results suggest that LRXs are involved in ensuring proper cell wall assembly during pollen tube growth.
Collapse
Affiliation(s)
- Ana R Sede
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Buenos Aires, Argentina
| | - Cecilia Borassi
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias, IFIByNE-CONICET, Universidad de Buenos Aires, Argentina
| | - Diego L Wengier
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Buenos Aires, Argentina
| | - Martín A Mecchia
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - José M Estevez
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias, IFIByNE-CONICET, Universidad de Buenos Aires, Argentina
| | - Jorge P Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| |
Collapse
|
32
|
Li J, Zhang J, Jia H, Liu B, Sun P, Hu J, Wang L, Lu M. The WUSCHEL-related homeobox 5a (PtoWOX5a) is involved in adventitious root development in poplar. TREE PHYSIOLOGY 2018; 38:139-153. [PMID: 29036435 DOI: 10.1093/treephys/tpx118] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/31/2017] [Indexed: 05/24/2023]
Abstract
Adventitious rooting is an essential step in vegetative propagation. Currently, the mechanism that regulates adventitious root (AR) development in woody plants is poorly understood. This work demonstrates that Populus tomentosa WUSCHEL-related homeobox 5a (PtoWOX5a) transcription factor is involved in AR development in poplar. PtoWOX5a was specifically expressed in the AR tip and lateral root tip during AR and lateral root regeneration from the stem segment. Phenotypic complementation experiments indicated that the PtoWOX5a can functionally complement AtWOX5 in quiescent center (QC) cells. Overexpression of PtoWOX5a introduces significant developmental phenotypes in roots and leaves, such as increased AR number, decreased AR length, swollen AR tip and lateral root tip, and decreased leaf number and area. The conserved mechanism of D-type cyclins (CYCD) repression mediated by WOX5 was confirmed in poplar. The co-expression network of PtWOX5a was constructed, which provided clues to reveal the molecular mechanism of PtoWOX5a in AR development in poplar. Taken together, our results suggest that the PtoWOX5a is involved in AR development though cooperating with a series of functional genes.
Collapse
Affiliation(s)
- Jianbo Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100091, China
| | - Jin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Huixia Jia
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Bobin Liu
- Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Pei Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Lijuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
33
|
Rhamnose-Containing Cell Wall Polymers Suppress Helical Plant Growth Independently of Microtubule Orientation. Curr Biol 2017; 27:2248-2259.e4. [DOI: 10.1016/j.cub.2017.06.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/01/2017] [Accepted: 06/12/2017] [Indexed: 11/18/2022]
|
34
|
Plant cell wall signalling and receptor-like kinases. Biochem J 2017; 474:471-492. [PMID: 28159895 DOI: 10.1042/bcj20160238] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022]
Abstract
Communication between the extracellular matrix and the cell interior is essential for all organisms as intrinsic and extrinsic cues have to be integrated to co-ordinate development, growth, and behaviour. This applies in particular to plants, the growth and shape of which is governed by deposition and remodelling of the cell wall, a rigid, yet dynamic, extracellular network. It is thus generally assumed that cell wall surveillance pathways exist to monitor the state of the wall and, if needed, elicit compensatory responses such as altered expression of cell wall remodelling and biosynthesis genes. Here, I highlight recent advances in the field of cell wall signalling in plants, with emphasis on the role of plasma membrane receptor-like kinase complexes. In addition, possible roles for cell wall-mediated signalling beyond the maintenance of cell wall integrity are discussed.
Collapse
|
35
|
Kang E, Zheng M, Zhang Y, Yuan M, Yalovsky S, Zhu L, Fu Y. The Microtubule-Associated Protein MAP18 Affects ROP2 GTPase Activity during Root Hair Growth. PLANT PHYSIOLOGY 2017; 174:202-222. [PMID: 28314794 PMCID: PMC5411128 DOI: 10.1104/pp.16.01243] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/14/2017] [Indexed: 05/24/2023]
Abstract
Establishment and maintenance of the polar site are important for root hair tip growth. We previously reported that Arabidopsis (Arabidopsis thaliana) MICROTUBULE-ASSOCIATED PROTEIN18 (MAP18) functions in controlling the direction of pollen tube growth and root hair elongation. Additionally, the Rop GTPase ROP2 was reported as a positive regulator of both root hair initiation and tip growth in Arabidopsis. Both loss of function of ROP2 and knockdown of MAP18 lead to a decrease in root hair length, whereas overexpression of either MAP18 or ROP2 causes multiple tips or a branching hair phenotype. However, it is unclear whether MAP18 and ROP2 coordinately regulate root hair growth. In this study, we demonstrate that MAP18 and ROP2 interact genetically and functionally. MAP18 interacts physically with ROP2 in vitro and in vivo and preferentially binds to the inactive form of the ROP2 protein. MAP18 promotes ROP2 activity during root hair tip growth. Further investigation revealed that MAP18 competes with RhoGTPase GDP DISSOCIATION INHIBITOR1/SUPERCENTIPEDE1 for binding to ROP2, in turn affecting the localization of active ROP2 in the plasma membrane of the root hair tip. These results reveal a novel function of MAP18 in the regulation of ROP2 activation during root hair growth.
Collapse
Affiliation(s)
- Erfang Kang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (E.K., M.Z., Y.Z., L.Z., Y.F.); and
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel (S.Y.)
| | - Mingzhi Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (E.K., M.Z., Y.Z., L.Z., Y.F.); and
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel (S.Y.)
| | - Yan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (E.K., M.Z., Y.Z., L.Z., Y.F.); and
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel (S.Y.)
| | - Ming Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (E.K., M.Z., Y.Z., L.Z., Y.F.); and
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel (S.Y.)
| | - Shaul Yalovsky
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (E.K., M.Z., Y.Z., L.Z., Y.F.); and
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel (S.Y.)
| | - Lei Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (E.K., M.Z., Y.Z., L.Z., Y.F.); and
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel (S.Y.)
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (E.K., M.Z., Y.Z., L.Z., Y.F.); and
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel (S.Y.)
| |
Collapse
|
36
|
Ihsan MZ, Ahmad SJN, Shah ZH, Rehman HM, Aslam Z, Ahuja I, Bones AM, Ahmad JN. Gene Mining for Proline Based Signaling Proteins in Cell Wall of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2017; 8:233. [PMID: 28289422 PMCID: PMC5326801 DOI: 10.3389/fpls.2017.00233] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/07/2017] [Indexed: 05/29/2023]
Abstract
The cell wall (CW) as a first line of defense against biotic and abiotic stresses is of primary importance in plant biology. The proteins associated with cell walls play a significant role in determining a plant's sustainability to adverse environmental conditions. In this work, the genes encoding cell wall proteins (CWPs) in Arabidopsis were identified and functionally classified using geneMANIA and GENEVESTIGATOR with published microarrays data. This yielded 1605 genes, out of which 58 genes encoded proline-rich proteins (PRPs) and glycine-rich proteins (GRPs). Here, we have focused on the cellular compartmentalization, biological processes, and molecular functioning of proline-rich CWPs along with their expression at different plant developmental stages. The mined genes were categorized into five classes on the basis of the type of PRPs encoded in the cell wall of Arabidopsis thaliana. We review the domain structure and function of each class of protein, many with respect to the developmental stages of the plant. We have then used networks, hierarchical clustering and correlations to analyze co-expression, co-localization, genetic, and physical interactions and shared protein domains of these PRPs. This has given us further insight into these functionally important CWPs and identified a number of potentially new cell-wall related proteins in A. thaliana.
Collapse
Affiliation(s)
- Muhammad Z. Ihsan
- Cholistan Institute of Desert Studies, The Islamia University BahawalpurBahawalpur, Pakistan
| | - Samina J. N. Ahmad
- Plant Stress Physiology and Molecular Biology Lab, Department of Botany, University of Agriculture FaisalabadFaisalabad, Pakistan
- Integrated Genomics Cellular Developmental and Biotechnology Lab, Department of Entomology, University of Agriculture FaisalabadFaisalabad, Pakistan
| | - Zahid Hussain Shah
- Department of Arid Land Agriculture, Faculty of Meteorology, King Abdulaziz UniversityJeddah, Saudi Arabia
| | - Hafiz M. Rehman
- Department of Electronic and Biomedical Engineering, Chonnam National UniversityGwangju, South Korea
| | - Zubair Aslam
- Department of Agronomy, University of Agriculture FaisalabadFaisalabad, Pakistan
| | - Ishita Ahuja
- Department of Biology, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Atle M. Bones
- Department of Biology, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Jam N. Ahmad
- Plant Stress Physiology and Molecular Biology Lab, Department of Botany, University of Agriculture FaisalabadFaisalabad, Pakistan
- Integrated Genomics Cellular Developmental and Biotechnology Lab, Department of Entomology, University of Agriculture FaisalabadFaisalabad, Pakistan
| |
Collapse
|
37
|
Kuhn BM, Nodzyński T, Errafi S, Bucher R, Gupta S, Aryal B, Dobrev P, Bigler L, Geisler M, Zažímalová E, Friml J, Ringli C. Flavonol-induced changes in PIN2 polarity and auxin transport in the Arabidopsis thaliana rol1-2 mutant require phosphatase activity. Sci Rep 2017; 7:41906. [PMID: 28165500 PMCID: PMC5292950 DOI: 10.1038/srep41906] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 01/04/2017] [Indexed: 01/15/2023] Open
Abstract
The phytohormone auxin is a major determinant and regulatory component important for plant development. Auxin transport between cells is mediated by a complex system of transporters such as AUX1/LAX, PIN, and ABCB proteins, and their localization and activity is thought to be influenced by phosphatases and kinases. Flavonols have been shown to alter auxin transport activity and changes in flavonol accumulation in the Arabidopsis thaliana rol1-2 mutant cause defects in auxin transport and seedling development. A new mutation in ROOTS CURL IN NPA 1 (RCN1), encoding a regulatory subunit of the phosphatase PP2A, was found to suppress the growth defects of rol1-2 without changing the flavonol content. rol1-2 rcn1-3 double mutants show wild type-like auxin transport activity while levels of free auxin are not affected by rcn1-3. In the rol1-2 mutant, PIN2 shows a flavonol-induced basal-to-apical shift in polar localization which is reversed in the rol1-2 rcn1-3 to basal localization. In vivo analysis of PINOID action, a kinase known to influence PIN protein localization in a PP2A-antagonistic manner, revealed a negative impact of flavonols on PINOID activity. Together, these data suggest that flavonols affect auxin transport by modifying the antagonistic kinase/phosphatase equilibrium.
Collapse
Affiliation(s)
- Benjamin M Kuhn
- Institute of Plant and Microbial Biology, University of Zurich, Zurich Switzerland
| | - Tomasz Nodzyński
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Sanae Errafi
- Institute of Plant and Microbial Biology, University of Zurich, Zurich Switzerland
| | - Rahel Bucher
- Institute of Chemistry, University of Zurich, Zurich, Switzerland
| | - Shibu Gupta
- Institute of Plant and Microbial Biology, University of Zurich, Zurich Switzerland
| | - Bibek Aryal
- Department of Biology - geislerLab, University of Fribourg, Fribourg, Switzerland
| | - Petre Dobrev
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Laurent Bigler
- Institute of Chemistry, University of Zurich, Zurich, Switzerland
| | - Markus Geisler
- Department of Biology - geislerLab, University of Fribourg, Fribourg, Switzerland
| | - Eva Zažímalová
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Christoph Ringli
- Institute of Plant and Microbial Biology, University of Zurich, Zurich Switzerland
| |
Collapse
|
38
|
Huang JH, Kortstee A, Dees DC, Trindade LM, Visser RG, Gruppen H, Schols HA. Evaluation of both targeted and non-targeted cell wall polysaccharides in transgenic potatoes. Carbohydr Polym 2017; 156:312-321. [DOI: 10.1016/j.carbpol.2016.09.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 09/01/2016] [Accepted: 09/14/2016] [Indexed: 01/09/2023]
|
39
|
Honkanen S, Jones VAS, Morieri G, Champion C, Hetherington AJ, Kelly S, Proust H, Saint-Marcoux D, Prescott H, Dolan L. The Mechanism Forming the Cell Surface of Tip-Growing Rooting Cells Is Conserved among Land Plants. Curr Biol 2016; 26:3238-3244. [PMID: 27866889 PMCID: PMC5154754 DOI: 10.1016/j.cub.2016.09.062] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/26/2016] [Accepted: 09/29/2016] [Indexed: 12/01/2022]
Abstract
To discover mechanisms that controlled the growth of the rooting system in the earliest land plants, we identified genes that control the development of rhizoids in the liverwort Marchantia polymorpha. 336,000 T-DNA transformed lines were screened for mutants with defects in rhizoid growth, and a de novo genome assembly was generated to identify the mutant genes. We report the identification of 33 genes required for rhizoid growth, of which 6 had not previously been functionally characterized in green plants. We demonstrate that members of the same orthogroup are active in cell wall synthesis, cell wall integrity sensing, and vesicle trafficking during M. polymorpha rhizoid and Arabidopsis thaliana root hair growth. This indicates that the mechanism for constructing the cell surface of tip-growing rooting cells is conserved among land plants and was active in the earliest land plants that existed sometime more than 470 million years ago [1, 2]. 336,000 T-DNA lines and a genome assembly were generated in Marchantia polymorpha 33 genes required for rhizoid growth were identified Six of the 33 genes were functionally characterized in plants for the first time Genes belonging to these orthogroups were active in the first land plant roots
Collapse
Affiliation(s)
- Suvi Honkanen
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Victor A S Jones
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Giulia Morieri
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Clement Champion
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | | | - Steve Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Hélène Proust
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Denis Saint-Marcoux
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Helen Prescott
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
40
|
Zhang M, Wei F, Guo K, Hu Z, Li Y, Xie G, Wang Y, Cai X, Peng L, Wang L. A Novel FC116/ BC10 Mutation Distinctively Causes Alteration in the Expression of the Genes for Cell Wall Polymer Synthesis in Rice. FRONTIERS IN PLANT SCIENCE 2016; 7:1366. [PMID: 27708650 PMCID: PMC5030303 DOI: 10.3389/fpls.2016.01366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/29/2016] [Indexed: 05/11/2023]
Abstract
We report isolation and characterization of a fragile culm mutant fc116 that displays reduced mechanical strength caused by decreased cellulose content and altered cell wall structure in rice. Map-based cloning revealed that fc116 was a base substitution mutant (G to A) in a putative beta-1,6-N-acetylglucosaminyltransferase (C2GnT) gene (LOC_Os05g07790, allelic to BC10). This mutation resulted in one amino acid missing within a newly-identified protein motif "R, RXG, RA." The FC116/BC10 gene was lowly but ubiquitously expressed in the all tissues examined across the whole life cycle of rice, and slightly down-regulated during secondary growth. This mutant also exhibited a significant increase in the content of hemicelluloses and lignins, as well as the content of pentoses (xylose and arabinose). But the content of hexoses (glucose, mannose, and galactose) was decreased in both cellulosic and non-cellulosic (pectins and hemicelluloses) fractions of the mutant. Transcriptomic analysis indicated that the typical genes in the fc116 mutant were up-regulated corresponding to xylan biosynthesis, as well as lignin biosynthesis including p-hydroxyphenyl (H), syringyl (S), and guaiacyl (G). Our results indicate that FC116 has universal function in regulation of the cell wall polymers in rice.
Collapse
Affiliation(s)
- Mingliang Zhang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Feng Wei
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Kai Guo
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Zhen Hu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yuyang Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Guosheng Xie
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yanting Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Xiwen Cai
- Department of Plant Science, North Dakota State UniversityFargo, ND, USA
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Lingqiang Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
41
|
Kotake T, Yamanashi Y, Imaizumi C, Tsumuraya Y. Metabolism of L-arabinose in plants. JOURNAL OF PLANT RESEARCH 2016; 129:781-792. [PMID: 27220955 PMCID: PMC5897480 DOI: 10.1007/s10265-016-0834-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/31/2016] [Indexed: 05/07/2023]
Abstract
L-Arabinose (L-Ara) is a plant-specific sugar accounting for 5-10 % of cell wall saccharides in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). L-Ara occurs in pectic arabinan, rhamnogalacturonan II, arabinoxylan, arabinogalactan-protein (AGP), and extensin in the cell walls, as well as in glycosylated signaling peptides like CLAVATA3 and small glycoconjugates such as quercetin 3-O-arabinoside. This review focuses on recent advances towards understanding the generation of L-Ara and the metabolism of L-Ara-containing molecules in plants.
Collapse
Affiliation(s)
- Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan.
| | - Yukiko Yamanashi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Chiemi Imaizumi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Yoichi Tsumuraya
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| |
Collapse
|
42
|
Sinharoy S, Liu C, Breakspear A, Guan D, Shailes S, Nakashima J, Zhang S, Wen J, Torres-Jerez I, Oldroyd G, Murray JD, Udvardi MK. A Medicago truncatula Cystathionine-β-Synthase-like Domain-Containing Protein Is Required for Rhizobial Infection and Symbiotic Nitrogen Fixation. PLANT PHYSIOLOGY 2016; 170:2204-17. [PMID: 26884486 PMCID: PMC4825145 DOI: 10.1104/pp.15.01853] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/03/2016] [Indexed: 05/19/2023]
Abstract
The symbiosis between leguminous plants and soil rhizobia culminates in the formation of nitrogen-fixing organs called nodules that support plant growth. Two Medicago truncatula Tnt1-insertion mutants were identified that produced small nodules, which were unable to fix nitrogen effectively due to ineffective rhizobial colonization. The gene underlying this phenotype was found to encode a protein containing a putative membrane-localized domain of unknown function (DUF21) and a cystathionine-β-synthase domain. The cbs1 mutants had defective infection threads that were sometimes devoid of rhizobia and formed small nodules with greatly reduced numbers of symbiosomes. We studied the expression of the gene, designated M truncatula Cystathionine-β-Synthase-like1 (MtCBS1), using a promoter-β-glucuronidase gene fusion, which revealed expression in infected root hair cells, developing nodules, and in the invasion zone of mature nodules. An MtCBS1-GFP fusion protein localized itself to the infection thread and symbiosomes. Nodulation factor-induced Ca(2+) responses were observed in the cbs1 mutant, indicating that MtCBS1 acts downstream of nodulation factor signaling. MtCBS1 expression occurred exclusively during Medicago-rhizobium symbiosis. Induction of MtCBS1 expression during symbiosis was found to be dependent on Nodule Inception (NIN), a key transcription factor that controls both rhizobial infection and nodule organogenesis. Interestingly, the closest homolog of MtCBS1, MtCBS2, was specifically induced in mycorrhizal roots, suggesting common infection mechanisms in nodulation and mycorrhization. Related proteins in Arabidopsis have been implicated in cell wall maturation, suggesting a potential role for CBS1 in the formation of the infection thread wall.
Collapse
Affiliation(s)
- Senjuti Sinharoy
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (S.S., J.N., S.Z., J.W., I.T.-J., M.K.U.); and John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK (C.L., A.B., D.G., S.S., I.T.-J., G.O., J.D.M.)
| | - Chengwu Liu
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (S.S., J.N., S.Z., J.W., I.T.-J., M.K.U.); and John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK (C.L., A.B., D.G., S.S., I.T.-J., G.O., J.D.M.)
| | - Andrew Breakspear
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (S.S., J.N., S.Z., J.W., I.T.-J., M.K.U.); and John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK (C.L., A.B., D.G., S.S., I.T.-J., G.O., J.D.M.)
| | - Dian Guan
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (S.S., J.N., S.Z., J.W., I.T.-J., M.K.U.); and John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK (C.L., A.B., D.G., S.S., I.T.-J., G.O., J.D.M.)
| | - Sarah Shailes
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (S.S., J.N., S.Z., J.W., I.T.-J., M.K.U.); and John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK (C.L., A.B., D.G., S.S., I.T.-J., G.O., J.D.M.)
| | - Jin Nakashima
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (S.S., J.N., S.Z., J.W., I.T.-J., M.K.U.); and John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK (C.L., A.B., D.G., S.S., I.T.-J., G.O., J.D.M.)
| | - Shulan Zhang
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (S.S., J.N., S.Z., J.W., I.T.-J., M.K.U.); and John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK (C.L., A.B., D.G., S.S., I.T.-J., G.O., J.D.M.)
| | - Jiangqi Wen
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (S.S., J.N., S.Z., J.W., I.T.-J., M.K.U.); and John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK (C.L., A.B., D.G., S.S., I.T.-J., G.O., J.D.M.)
| | - Ivone Torres-Jerez
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (S.S., J.N., S.Z., J.W., I.T.-J., M.K.U.); and John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK (C.L., A.B., D.G., S.S., I.T.-J., G.O., J.D.M.)
| | - Giles Oldroyd
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (S.S., J.N., S.Z., J.W., I.T.-J., M.K.U.); and John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK (C.L., A.B., D.G., S.S., I.T.-J., G.O., J.D.M.)
| | - Jeremy D Murray
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (S.S., J.N., S.Z., J.W., I.T.-J., M.K.U.); and John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK (C.L., A.B., D.G., S.S., I.T.-J., G.O., J.D.M.)
| | - Michael K Udvardi
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (S.S., J.N., S.Z., J.W., I.T.-J., M.K.U.); and John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK (C.L., A.B., D.G., S.S., I.T.-J., G.O., J.D.M.)
| |
Collapse
|
43
|
Hwang Y, Lee H, Lee YS, Cho HT. Cell wall-associated ROOT HAIR SPECIFIC 10, a proline-rich receptor-like kinase, is a negative modulator of Arabidopsis root hair growth. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2007-22. [PMID: 26884603 PMCID: PMC4783376 DOI: 10.1093/jxb/erw031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Plant cell growth is restricted by the cell wall, and cell wall dynamics act as signals for the cytoplasmic and nuclear events of cell growth. Among various receptor kinases, ROOT HAIR SPECIFIC 10 (RHS10) belongs to a poorly known receptor kinase subfamily with a proline-rich extracellular domain. Here, we report that RHS10 defines the root hair length of Arabidopsis thaliana by negatively regulating hair growth. RHS10 modulates the duration of root hair growth rather than the growth rate. As poplar and rice RHS10 orthologs also showed a root hair-inhibitory function, this receptor kinase-mediated function appears to be conserved in angiosperms. RHS10 showed a strong association with the cell wall, most probably through its extracellular proline-rich domain (ECD). Deletion analysis of the ECD demonstrated that a minimal extracellular part, which includes a few proline residues, is required for RHS10-mediated root hair inhibition. RHS10 suppressed the accumulation of reactive oxygen species (ROS) in the root, which are necessary for root hair growth. A yeast two-hybrid screening identified an RNase (RNS2) as a putative downstream target of RHS10. Accordingly, RHS10 overexpression decreased and RHS10 loss increased RNA levels in the hair-growing root region. Our results suggest that RHS10 mediates cell wall-associated signals to maintain proper root hair length, at least in part by regulating RNA catabolism and ROS accumulation.
Collapse
Affiliation(s)
- Youra Hwang
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Hyodong Lee
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Young-Sook Lee
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Hyung-Taeg Cho
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
44
|
Antisense expression of Gossypium barbadense UGD6 in Arabidopsis thaliana significantly alters cell wall composition. SCIENCE CHINA-LIFE SCIENCES 2016; 59:213-8. [PMID: 26810898 DOI: 10.1007/s11427-016-5004-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/20/2015] [Indexed: 12/11/2022]
Abstract
Uridine diphosphate-glucose dehydrogenase (UGD, EC1.1.1.22 oxidizes UDP-Glc (UDP-D-glucose) to UDP-GlcA (UDP-D-glucuronate), a critical precursor of cell wall polysaccharides. GbUGD6 from Gossypium barbadense is more highly expressed late in the elongation of cotton fibers (15 d post-anthesis (DPA)) and during the stage of secondary cell wall thickening (30 DPA). Subcellular localization analysis in onion epidermis revealed that fluorescently labeled GbUGD6 protein was distributed throughout the cell membrane, as well as the nucleus and vacuoles. Examination of UGD function in Arabidopsis revealed that the antisense GbUGD6 lines had shorter roots, deferred blossoming, compared to wild-type plants. Activities of associated enzymes were also affected by UGD reduction, and biochemical analysis of cell wall samples showed an increase in cellulose levels and a decrease in UGP-GlcA contents. The results of the present study as well as previous studies on UGD support the conclusion that UGD plays a major role in synthesizing polysaccharides synthesis in the cell wall.
Collapse
|
45
|
Kuhn BM, Errafi S, Bucher R, Dobrev P, Geisler M, Bigler L, Zažímalová E, Ringli C. 7-Rhamnosylated Flavonols Modulate Homeostasis of the Plant Hormone Auxin and Affect Plant Development. J Biol Chem 2016; 291:5385-95. [PMID: 26742840 DOI: 10.1074/jbc.m115.701565] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Indexed: 11/06/2022] Open
Abstract
Flavonols are a group of secondary metabolites that affect diverse cellular processes. They are considered putative negative regulators of the transport of the phytohormone auxin, by which they influence auxin distribution and concomitantly take part in the control of plant organ development. Flavonols are accumulating in a large number of glycosidic forms. Whether these have distinct functions and diverse cellular targets is not well understood. The rol1-2 mutant of Arabidopsis thaliana is characterized by a modified flavonol glycosylation profile that is inducing changes in auxin transport and growth defects in shoot tissues. To determine whether specific flavonol glycosides are responsible for these phenotypes, a suppressor screen was performed on the rol1-2 mutant, resulting in the identification of an allelic series of UGT89C1, a gene encoding a flavonol 7-O-rhamnosyltransferase. A detailed analysis revealed that interfering with flavonol rhamnosylation increases the concentration of auxin precursors and auxin metabolites, whereas auxin transport is not affected. This finding provides an additional level of complexity to the possible ways by which flavonols influence auxin distribution and suggests that flavonol glycosides play an important role in regulating plant development.
Collapse
Affiliation(s)
- Benjamin M Kuhn
- From the Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Sanae Errafi
- From the Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Rahel Bucher
- the Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Petre Dobrev
- the Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic, and
| | - Markus Geisler
- the Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Laurent Bigler
- the Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Eva Zažímalová
- the Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic, and
| | - Christoph Ringli
- From the Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland,
| |
Collapse
|
46
|
Borassi C, Sede AR, Mecchia MA, Salgado Salter JD, Marzol E, Muschietti JP, Estevez JM. An update on cell surface proteins containing extensin-motifs. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:477-87. [PMID: 26475923 DOI: 10.1093/jxb/erv455] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In recent years it has become clear that there are several molecular links that interconnect the plant cell surface continuum, which is highly important in many biological processes such as plant growth, development, and interaction with the environment. The plant cell surface continuum can be defined as the space that contains and interlinks the cell wall, plasma membrane and cytoskeleton compartments. In this review, we provide an updated view of cell surface proteins that include modular domains with an extensin (EXT)-motif followed by a cytoplasmic kinase-like domain, known as PERKs (for proline-rich extensin-like receptor kinases); with an EXT-motif and an actin binding domain, known as formins; and with extracellular hybrid-EXTs. We focus our attention on the EXT-motifs with the short sequence Ser-Pro(3-5), which is found in several different protein contexts within the same extracellular space, highlighting a putative conserved structural and functional role. A closer understanding of the dynamic regulation of plant cell surface continuum and its relationship with the downstream signalling cascade is a crucial forthcoming challenge.
Collapse
Affiliation(s)
- Cecilia Borassi
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Ana R Sede
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
| | - Martin A Mecchia
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
| | - Juan D Salgado Salter
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Eliana Marzol
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Jorge P Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina. Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, C1428EGA Buenos Aires, Argentina.
| | - Jose M Estevez
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina.
| |
Collapse
|
47
|
Zhang Y, Kang E, Yuan M, Fu Y, Zhu L. PCaP2 regulates nuclear positioning in growing Arabidopsis thaliana root hairs by modulating filamentous actin organization. PLANT CELL REPORTS 2015; 34:1317-30. [PMID: 25929794 DOI: 10.1007/s00299-015-1789-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 03/23/2015] [Accepted: 03/31/2015] [Indexed: 05/10/2023]
Abstract
PCaP2 plays a key role in maintaining the nucleus at a relatively fixed distance from the apex during root hair growth by modulating actin filaments. During root hair growth, the nucleus localizes at a relatively fixed distance from the apex. In Arabidopsis thaliana, the position of the nucleus is mainly dependent on the configuration of microfilaments (filamentous actin). However, the mechanisms underlying the regulation of actin dynamics and organization for nuclear positioning are largely unknown. In the present study, we demonstrated that plasma membrane-associated Ca(2+) binding protein 2 (PCaP2) influences the position of the nucleus during root hair growth. Abnormal expression of PCaP2 in pcap2 and PCaP2 over-expression plants led to the disorganization of actin filaments, rather than microtubules, in the apex and sub-apical regions of root hairs, which resulted in aberrant root hair growth patterns and misplaced nuclei. Analyses using a PCaP2 mutant protein revealed that actin-severing activity is essential for the function of PCaP2 in root hairs. We demonstrated that PCaP2 plays a key role in maintaining nuclear position in growing root hairs by modulating actin filaments.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | | | | | | | | |
Collapse
|
48
|
Draeger C, Ndinyanka Fabrice T, Gineau E, Mouille G, Kuhn BM, Moller I, Abdou MT, Frey B, Pauly M, Bacic A, Ringli C. Arabidopsis leucine-rich repeat extensin (LRX) proteins modify cell wall composition and influence plant growth. BMC PLANT BIOLOGY 2015; 15:155. [PMID: 26099801 PMCID: PMC4477543 DOI: 10.1186/s12870-015-0548-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 06/11/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Leucine-rich repeat extensins (LRXs) are extracellular proteins consisting of an N-terminal leucine-rich repeat (LRR) domain and a C-terminal extensin domain containing the typical features of this class of structural hydroxyproline-rich glycoproteins (HRGPs). The LRR domain is likely to bind an interaction partner, whereas the extensin domain has an anchoring function to insolubilize the protein in the cell wall. Based on the analysis of the root hair-expressed LRX1 and LRX2 of Arabidopsis thaliana, LRX proteins are important for cell wall development. The importance of LRX proteins in non-root hair cells and on the structural changes induced by mutations in LRX genes remains elusive. RESULTS The LRX gene family of Arabidopsis consists of eleven members, of which LRX3, LRX4, and LRX5 are expressed in aerial organs, such as leaves and stem. The importance of these LRX genes for plant development and particularly cell wall formation was investigated. Synergistic effects of mutations with gradually more severe growth retardation phenotypes in double and triple mutants suggest a similar function of the three genes. Analysis of cell wall composition revealed a number of changes to cell wall polysaccharides in the mutants. CONCLUSIONS LRX3, LRX4, and LRX5, and most likely LRX proteins in general, are important for cell wall development. Due to the complexity of changes in cell wall structures in the lrx mutants, the exact function of LRX proteins remains to be determined. The increasingly strong growth-defect phenotypes in double and triple mutants suggests that the LRX proteins have similar functions and that they are important for proper plant development.
Collapse
Affiliation(s)
- Christian Draeger
- Institute of Plant Biology, University of Zürich, Zollikerstr. 107, Zürich, 8008, Switzerland.
- Current address: Thermo Fisher Scientific, Neuhofstrasse 11, 4153, Reinach, Switzerland.
| | | | - Emilie Gineau
- INRA, Institut Jean-Pierre Bourgin, UMR1318 Saclay Plant Sciences, Versailles, 78026, France.
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR1318 Saclay Plant Sciences, Versailles, 78026, France.
| | - Grégory Mouille
- INRA, Institut Jean-Pierre Bourgin, UMR1318 Saclay Plant Sciences, Versailles, 78026, France.
| | - Benjamin M Kuhn
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, 94720, USA.
| | - Isabel Moller
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, the University of Melbourne, Parkville, Victoria, 3010, Australia.
- Current address: The New Zealand Institute for Plant & Food Research Limited, Auckland, 1142, New Zealand.
| | - Marie-Therese Abdou
- Institute of Plant Biology, University of Zürich, Zollikerstr. 107, Zürich, 8008, Switzerland.
| | - Beat Frey
- Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland.
| | - Markus Pauly
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, 94720, USA.
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, the University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Christoph Ringli
- Institute of Plant Biology, University of Zürich, Zollikerstr. 107, Zürich, 8008, Switzerland.
| |
Collapse
|
49
|
Kavi Kishor PB, Hima Kumari P, Sunita MSL, Sreenivasulu N. Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny. FRONTIERS IN PLANT SCIENCE 2015; 6:544. [PMID: 26257754 PMCID: PMC4507145 DOI: 10.3389/fpls.2015.00544] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/06/2015] [Indexed: 05/21/2023]
Abstract
Proline is a proteogenic amino acid and accumulates both under stress and non-stress conditions as a beneficial solute in plants. Recent discoveries point out that proline plays an important role in plant growth and differentiation across life cycle. It is a key determinant of many cell wall proteins that plays important roles in plant development. The role of extensins, arabinogalactan proteins and hydroxyproline- and proline-rich proteins as important components of cell wall proteins that play pivotal roles in cell wall signal transduction cascades, plant development and stress tolerance is discussed in this review. Molecular insights are also provided here into the plausible roles of proline transporters modulating key events in plant development. In addition, the roles of proline during seed developmental transitions including storage protein synthesis are discussed.
Collapse
Affiliation(s)
- Polavarapu B. Kavi Kishor
- Department of Genetics, Osmania University, HyderabadIndia
- *Correspondence: Polavarapu B. Kavi Kishor, Department of Genetics, Osmania University, Hyderabad 500007, India,
| | - P. Hima Kumari
- Department of Genetics, Osmania University, HyderabadIndia
| | | | - Nese Sreenivasulu
- Leibniz Institute of Plant Genetics and Crop Plant Research, GaterslebenGermany
- Grain Quality and Nutrition Center, International Rice Research Institute, Metro ManilaPhilippines
| |
Collapse
|
50
|
Yue X, Gao XQ, Wang F, Dong Y, Li X, Zhang XS. Transcriptional evidence for inferred pattern of pollen tube-stigma metabolic coupling during pollination. PLoS One 2014; 9:e107046. [PMID: 25215523 PMCID: PMC4162560 DOI: 10.1371/journal.pone.0107046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/07/2014] [Indexed: 01/08/2023] Open
Abstract
It is difficult to derive all qualitative proteomic and metabolomic experimental data in male (pollen tube) and female (pistil) reproductive tissues during pollination because of the limited sensitivity of current technology. In this study, genome-scale enzyme correlation network models for plants (Arabidopsis/maize) were constructed by analyzing the enzymes and metabolic routes from a global perspective. Then, we developed a data-driven computational pipeline using the "guilt by association" principle to analyze the transcriptional coexpression profiles of enzymatic genes in the consecutive steps for metabolic routes in the fast-growing pollen tube and stigma during pollination. The analysis identified an inferred pattern of pollen tube-stigma ethanol coupling. When the pollen tube elongates in the transmitting tissue (TT) of the pistil, this elongation triggers the mobilization of energy from glycolysis in the TT cells of the pistil. Energy-rich metabolites (ethanol) are secreted that can be taken up by the pollen tube, where these metabolites are incorporated into the pollen tube's tricarboxylic acid (TCA) cycle, which leads to enhanced ATP production for facilitating pollen tube growth. In addition, our analysis also provided evidence for the cooperation of kaempferol, dTDP-alpha-L-rhamnose and cell-wall-related proteins; phosphatidic-acid-mediated Ca2+ oscillations and cytoskeleton; and glutamate degradation IV for γ-aminobutyric acid (GABA) signaling activation in Arabidopsis and maize stigmas to provide the signals and materials required for pollen tube tip growth. In particular, the "guilt by association" computational pipeline and the genome-scale enzyme correlation network models (GECN) developed in this study was initiated with experimental "omics" data, followed by data analysis and data integration to determine correlations, and could provide a new platform to assist inachieving a deeper understanding of the co-regulation and inter-regulation model in plant research.
Collapse
Affiliation(s)
- Xun Yue
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
- College of Information Sciences and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Xin-Qi Gao
- College of Information Sciences and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Fang Wang
- College of Information Sciences and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - YuXiu Dong
- College of Information Sciences and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - XingGuo Li
- College of Information Sciences and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Xian Sheng Zhang
- College of Information Sciences and Engineering, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|