1
|
Zhang N, Bitterli P, Oluoch P, Hermann M, Aichinger E, Groot EP, Laux T. Deciphering the molecular logic of WOX5 function in the root stem cell organizer. EMBO J 2025; 44:281-303. [PMID: 39558109 PMCID: PMC11696986 DOI: 10.1038/s44318-024-00302-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 11/20/2024] Open
Abstract
Plant and animal stem cells receive signals from their surrounding cells to stay undifferentiated. In the Arabidopsis root, the quiescent center (QC) acts as a stem cell organizer, signaling to the neighboring stem cells. WOX5 is a central transcription factor regulating QC function. However, due to the scarcity of QC cells, WOX5 functions in the QC are largely unexplored at a genomic scale. Here, we unveil the transcriptional and epigenetic landscapes of the QC and the role of WOX5 within them. We find that WOX5 functions both as a transcriptional repressor and activator, affecting histone modifications and chromatin accessibility. Our data expand on known WOX5 functions, such as the regulation of differentiation, cell division, and auxin biosynthesis. We also uncover unexpected WOX5-regulated pathways involved in nitrate transport and the regulation of basal expression levels of genes associated with mature root tissues. These data suggest a role for QC cells as reserve stem cells and primed cells for prospective progenitor fates. Taken together, these findings offer insights into the role of WOX5 at the QC and provide a basis for further analyses to advance our understanding of the nature of plant stem cell organizers.
Collapse
Affiliation(s)
- Ning Zhang
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, 271018, Tai'an, Shandong, China.
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany.
| | - Pamela Bitterli
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Peter Oluoch
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Marita Hermann
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Ernst Aichinger
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Edwin P Groot
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
- Sino-German Joint Research Center on Agricultural Biology, Shandong Agricultural University, Tai'an, Shandong, China
| | - Thomas Laux
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany.
- Sino-German Joint Research Center on Agricultural Biology, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
2
|
Gregory J, Liu X, Chen Z, Gallardo C, Punskovsky J, Koslow G, Galli M, Gallavotti A. Transcriptional corepressors in maize maintain meristem development. PLANT PHYSIOLOGY 2024; 197:kiae476. [PMID: 39255069 PMCID: PMC11663565 DOI: 10.1093/plphys/kiae476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/25/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024]
Abstract
The formation of the plant body proceeds in a sequential postembryonic manner through the action of meristems. Tightly coordinated meristem regulation is required for development and reproductive success, eventually determining yield in crop species. In maize (Zea mays), the RAMOSA1 ENHANCER LOCUS2 (REL2) family of transcriptional corepressors includes four members, REL2, RELK1 (REL2-LIKE1), RELK2, and RELK3. In a screen for rel2 enhancers, we identified shorter double mutants with enlarged ear inflorescence meristems (IMs) carrying mutations in RELK1. Expression and genetic analysis indicated that REL2 and RELK1 cooperatively regulate ear IM development by controlling genes involved in redox balance, hormone homeostasis, and differentiation, ultimately tipping the meristem toward an environment favorable to expanded expression of the ZmWUSCHEL1 gene, which encodes a key stem-cell promoting transcription factor. We further demonstrated that RELK genes have partially redundant yet diverse functions in the maintenance of various meristem types during development. By exploiting subtle increases in ear IM size in rel2 heterozygous plants, we also showed that extra rows of kernels are formed across a diverse set of F1 hybrids. Our findings reveal that the REL2 family maintains development from embryonic initiation to reproductive growth and can potentially be harnessed for increasing seed yield in a major crop species.
Collapse
Affiliation(s)
- Jason Gregory
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Xue Liu
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Cecilia Gallardo
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Jason Punskovsky
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Gabriel Koslow
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
3
|
Liu L, Hu B, Guo S, Xue Z, Wang T, Zhang C. miR394 and LCR cooperate with TPL to regulate AM initiation. Nat Commun 2024; 15:10156. [PMID: 39578457 PMCID: PMC11584774 DOI: 10.1038/s41467-024-54494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/09/2024] [Indexed: 11/24/2024] Open
Abstract
Plant architecture is a main determinate of crop yield, and lateral branching significantly influences the number of inflorescences and seeds. The mechanism of axillary bud initiation remains unclear. This work aimed to examine how miRNAs regulate axillary bud initiation. By constructing a small RNA library and screening a mutant population, we revealed the initiation of axillary buds is specifically induced by miR394 and repressed by its target, LEAF CURLING RESPONSIVENESS (LCR). Using promoter-driven fluorescent tags and in situ hybridization, we showed that miR394 is localized in the center of the leaf axil where AMs are initiated. Through molecular and genetic research, we revealed that miR394/LCR may regulate REVOLUTA (REV) and SHOOT MERISTEMLESS (STM) to establish the axillary meristem. Immunoprecipitation-mass spectrometry studies revealed that LCR, as an F-box protein, may interact with TOPLESS (TPL) proteins and participate in ubiquitinated protein degradation. Our results reveal an important mechanism by which the miR394-regulated LCR accelerates the degradation of TPL to precisely modulate axillary bud initiation.
Collapse
Affiliation(s)
- Liya Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Binbin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siying Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihui Xue
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Tao Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Cui Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
4
|
Luo L, Liu L, She L, Zhang H, Zhang N, Wang Y, Ni Y, Chen F, Wan F, Dai Y, Zhu G, Zhao Z. DRN facilitates WUS transcriptional regulatory activity by chromatin remodeling to regulate shoot stem cell homeostasis in Arabidopsis. PLoS Biol 2024; 22:e3002878. [PMID: 39514478 PMCID: PMC11548754 DOI: 10.1371/journal.pbio.3002878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Shoot stem cells, harbored in the shoot apical meristem (SAM), play key roles during post-embryonic development of Arabidopsis and function as the origin of plant aerial tissues. Multiple transcription factors are involved in the sophisticated transcriptional regulation of stem cell homeostasis, with the WUSCHEL (WUS)/CLAVATA3 (CLV3) negative feedback loop playing a central role. WUS acts as a master regulator in maintaining stem cells through its transcriptional regulatory activity including repressive and activating abilities. Although the interaction between WUS and TOPLESS confers the repressive activity of WUS in transcriptional control, the mechanism by which WUS activates gene expression remains elusive. Here, we showed that DORNRÖSCHEN competitively interacts with WUS and disturbs the WUS homodimer, which recruits BRAHMA to activate CLV3 expression via nucleosome depletion for maintaining the stem cell pool.
Collapse
Affiliation(s)
- Linjie Luo
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Li Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Lili She
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Haoran Zhang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Nannan Zhang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yaqin Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yuting Ni
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Fugui Chen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Fengying Wan
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yuqiu Dai
- CAS Center for Excellence in Molecular Plant Sciences, MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Zhong Zhao
- CAS Center for Excellence in Molecular Plant Sciences, MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
5
|
Zhang Y, Chen X, Wei G, Tian W, Ling Y, Wang N, Zhang T, Sang X, Zhu X, He G, Li Y. The WOX9-WUS modules are indispensable for the maintenance of stem cell homeostasis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:910-927. [PMID: 39269929 DOI: 10.1111/tpj.17024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/13/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
The dynamic balance between the self-renewal and differentiation of stem cells in plants is precisely regulated by a series of developmental regulated genes that exhibit spatiotemporal-specific expression patterns. Several studies have demonstrated that the WOX family transcription factors play critical roles in maintaining the identity of stem cells in Arabidopsis thaliana. In this study, we obtained amiR-WOX9 transgenic plants, which displayed terminating prematurely of shoot apical meristem (SAM) development, along with alterations in inflorescence meristem and flower development. The phenotype of amiR-WOX9 plants exhibited similarities to that of wus-101 mutant, characterized by a stop-and-go growth pattern. It was also found that the expression of WUS in amiR-WOX9 lines was decreased significantly, while in UBQ10::WOX9-GFP transgenic plants, the WUS expression was increased significantly despite no substantial alteration in meristem size compared to Col. Therefore, these data substantiated the indispensable role of WOX9 in maintaining the proper expression of WUS. Further investigations unveiled the direct binding of WOX9 to the WUS promoter via the TAAT motif, thereby activating its expression. It was also found that WUS recognized identical the same TAAT motif cis-elements in its own promoter, thereby repress self-expression. Next, we successfully identified a physical interaction between WOX9 and WUS, and verified that it was harmful to the expression of WUS. Finally, our experimental findings demonstrate that WOX9 was responsible for the direct activating of WUS, which however was interfered by the ways of WUS binding its own promoter and the interaction of WUS and WOX9, thereby ensuring the appropriate expression pattern of WUS and then the stem cell stability. This study contributes to an enhanced comprehension of the regulatory network of the WOX9-WUS module in maintaining the equilibrium of the SAM.
Collapse
Affiliation(s)
- Yingying Zhang
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xinlong Chen
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Gang Wei
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Weijiang Tian
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yinghua Ling
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Nan Wang
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Ting Zhang
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xianchun Sang
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xiaoyan Zhu
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Guanghua He
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yunfeng Li
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| |
Collapse
|
6
|
Rawandoozi ZJ, Barocco A, Rawandoozi MY, Klein PE, Byrne DH, Riera-Lizarazu O. Genetic dissection of stem and leaf rachis prickles in diploid rose using a pedigree-based QTL analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1356750. [PMID: 39359628 PMCID: PMC11445041 DOI: 10.3389/fpls.2024.1356750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 08/16/2024] [Indexed: 10/04/2024]
Abstract
Introduction Prickles are often deemed undesirable traits in many crops, including roses (Rosa sp.), and there is demand for rose cultivars with no or very few prickles. This study aims to identify new and/or validate reported quantitative trait loci (QTLs) associated with stem and leaf rachis prickle density, characterize the effects of functional haplotypes for major QTLs, and identify the sources of QTL-alleles associated with increased/decreased prickle density in roses. Methods QTL mapping using pedigree-based analysis (PBA), and haplotype analysis were conducted on two multi-parental diploid rose populations (TX2WOB and TX2WSE). Results and discussion Twelve QTLs were identified on linkage groups (LGs) 2, 3, 4, and 6. The major QTLs for the stem prickle density were located between 42.25 and 45.66 Mbp on chromosome 3 of the Rosa chinensis genome assembly, with individual QTLs explaining 18 to 49% of phenotypic variance (PVE). The remaining mapped QTLs were minor. As for the rachis prickle density, several QTLs were detected on LG3, 4, and 6 with PVE 8 to 17%. Also, this study identified that ancestors R. wichurana 'Basye's Thornless', 'Old Blush', and the pollen parent of M4-4 were common sources of favorable alleles (q) associated with decreased prickle density, whereas 'Little Chief' and 'Srche Europy' were the source of unfavorable alleles (Q) in the TX2WOB and TX2WSE populations, respectively. The outcomes of this work complement other studies to locate factors that affect prickle density. These results can also be utilized to develop high-throughput DNA tests and apply parental selection to develop prickle-free rose cultivars.
Collapse
Affiliation(s)
- Zena J. Rawandoozi
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Andrew Barocco
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Maad Y. Rawandoozi
- Norman Borlaug Institute for International Agriculture and Development, Texas A&M AgriLife Research, Texas A&M System, College Station, TX, United States
| | - Patricia E. Klein
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - David H. Byrne
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Oscar Riera-Lizarazu
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
7
|
Shen M, Zhao K, Luo X, Guo L, Ma Z, Wen L, Lin S, Lin Y, Sun H, Ahmad S. Genome mining of WOX-ARF gene linkage in Machilus pauhoi underpinned cambial activity associated with IAA induction. FRONTIERS IN PLANT SCIENCE 2024; 15:1364086. [PMID: 39114465 PMCID: PMC11303294 DOI: 10.3389/fpls.2024.1364086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
As an upright tree with multifunctional economic application, Machilus pauhoi is an excellent choice in modern forestry from Lauraceae. The growth characteristics is of great significance for its molecular breeding and improvement. However, there still lack the information of WUSCHEL-related homeobox (WOX) and Auxin response factor (ARF) gene family, which were reported as specific transcription factors in plant growth as well as auxin signaling. Here, a total of sixteen MpWOX and twenty-one MpARF genes were identified from the genome of M. pauhoi. Though member of WOX conserved in the Lauraceae, MpWOX and MpARF genes were unevenly distributed on 12 chromosomes as a result of region duplication. These genes presented 45 and 142 miRNA editing sites, respectively, reflecting a potential post-transcriptional restrain. Overall, MpWOX4, MpWOX13a, MpWOX13b, MpARF6b, MpARF6c, and MpARF19a were highly co-expressed in the vascular cambium, forming a working mode as WOX-ARF complex. MpWOXs contains typical AuxRR-core and TGA-element cis-acting regulatory elements in this auxin signaling linkage. In addition, under IAA and NPA treatments, MpARF2a and MpWOX1a was highly sensitive to IAA response, showing significant changes after 6 hours of treatment. And MpWOX1a was significantly inhibited by NPA treatment. Through all these solid analysis, our findings provide a genetic foundation to growth mechanism analysis and further molecular designing breeding in Machilus pauhoi.
Collapse
Affiliation(s)
- Mingli Shen
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Plant Eco-physiology, State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Plant Eco-physiology, State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Xianmei Luo
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Plant Eco-physiology, State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Lingling Guo
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zhirui Ma
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Lei Wen
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Siqing Lin
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yingxuan Lin
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Hongyan Sun
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Sagheer Ahmad
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
8
|
Abubakar AS, Wu Y, Chen F, Zhu A, Chen P, Chen K, Qiu X, Huang X, Zhao H, Chen J, Gao G. Comprehensive Analysis of WUSCEL-Related Homeobox Gene Family in Ramie ( Boehmeria nivea) Indicates Its Potential Role in Adventitious Root Development. BIOLOGY 2023; 12:1475. [PMID: 38132301 PMCID: PMC10740585 DOI: 10.3390/biology12121475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
A WUSCHEL-related homeobox (WOX) gene family has been implicated in promoting vegetative organs to embryonic transition and maintaining plant embryonic stem cell identity. Using genome-wide analysis, we identified 17 candidates, WOX genes in ramie (Boehmeria nivea). The genes (BnWOX) showed highly conserved homeodomain regions typical of WOX. Based on phylogenetic analysis, they were classified into three distinct groups: modern, intermediate, and ancient clades. The genes displayed 65% and 35% collinearities with their Arabidopsis thaliana and Oryza sativa ortholog, respectively, and exhibited similar motifs, suggesting similar functions. Furthermore, four segmental duplications (BnWOX10/14, BnWOX13A/13B, BnWOX9A/9B, and BnWOX6A/Maker00021031) and a tandem-duplicated pair (BnWOX5/7) among the putative ramie WOX genes were obtained, suggesting that whole-genome duplication (WGD) played a role in WOX gene expansion. Expression profiling analysis of the genes in the bud, leaf, stem, and root of the stem cuttings revealed higher expression levels of BnWOX10 and BnWOX14 in the stem and root and lower in the leaf consistent with the qRT-PCR analysis, suggesting their direct roles in ramie root formation. Analysis of the rooting characteristics and expression in the stem cuttings of sixty-seven different ramie genetic resources showed a possible involvement of BnWOX14 in the adventitious rooting of ramie. Thus, this study provides valuable information on ramie WOX genes and lays the foundation for further research.
Collapse
Affiliation(s)
- Aminu Shehu Abubakar
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China; (A.S.A.); (F.C.)
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
- Department of Agronomy, Bayero University Kano, PMB 3011, Kano 700241, Nigeria
| | - Yongmei Wu
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China; (A.S.A.); (F.C.)
| | - Fengming Chen
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China; (A.S.A.); (F.C.)
| | - Aiguo Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Ping Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Kunmei Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Xiaojun Qiu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
| | - Xiaoyu Huang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
| | - Haohan Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
| | - Jikang Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
- Key Laboratory of Biological and Processing for Bast Fiber Crops, Changsha 410221, China
| | - Gang Gao
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China; (A.S.A.); (F.C.)
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
9
|
Xu A, Yang J, Wang S, Zheng L, Wang J, Zhang Y, Bi X, Wang H. Characterization and expression profiles of WUSCHEL-related homeobox (WOX) gene family in cultivated alfalfa (Medicago sativa L.). BMC PLANT BIOLOGY 2023; 23:471. [PMID: 37803258 PMCID: PMC10557229 DOI: 10.1186/s12870-023-04476-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/19/2023] [Indexed: 10/08/2023]
Abstract
The WUSCHEL-related homeobox (WOX) family members are plant-specific transcriptional factors, which function in meristem maintenance, embryogenesis, lateral organ development, as well as abiotic stress tolerance. In this study, 14 MsWOX transcription factors were identified and comprehensively analyzed in the cultivated alfalfa cv. Zhongmu No.1. Overall, 14 putative MsWOX members containing conserved structural regions were clustered into three clades according to phylogenetic analysis. Specific expression patterns of MsWOXs in different tissues at different levels indicated that the MsWOX genes play various roles in alfalfa. MsWUS, MsWOX3, MsWOX9, and MsWOX13-1 from the three subclades were localized in the nucleus, among which, MsWUS and MsWOX13-1 exhibited strong self-activations in yeast. In addition, various cis-acting elements related to hormone responses, plant growth, and stress responses were identified in the 3.0 kb promoter regions of MsWOXs. Expression detection of separated shoots and roots under hormones including auxin, cytokinin, GA, and ABA, as well as drought and cold stresses, showed that MsWOX genes respond to different hormones and abiotic stress treatments. Furthermore, transcript abundance of MsWOX3, and MsWOX13-2 were significantly increased after rhizobia inoculation. This study presented comprehensive data on MsWOX transcription factors and provided valuable insights into further studies of their roles in developmental processes and abiotic stress responses in alfalfa.
Collapse
Affiliation(s)
- Aijiao Xu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jiaqi Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Siqi Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lin Zheng
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Jing Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yunwei Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiaojing Bi
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Hui Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
10
|
Hong L, Fletcher JC. Stem Cells: Engines of Plant Growth and Development. Int J Mol Sci 2023; 24:14889. [PMID: 37834339 PMCID: PMC10573764 DOI: 10.3390/ijms241914889] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The development of both animals and plants relies on populations of pluripotent stem cells that provide the cellular raw materials for organ and tissue formation. Plant stem cell reservoirs are housed at the shoot and root tips in structures called meristems, with the shoot apical meristem (SAM) continuously producing aerial leaf, stem, and flower organs throughout the life cycle. Thus, the SAM acts as the engine of plant development and has unique structural and molecular features that allow it to balance self-renewal with differentiation and act as a constant source of new cells for organogenesis while simultaneously maintaining a stem cell reservoir for future organ formation. Studies have identified key roles for intercellular regulatory networks that establish and maintain meristem activity, including the KNOX transcription factor pathway and the CLV-WUS stem cell feedback loop. In addition, the plant hormones cytokinin and auxin act through their downstream signaling pathways in the SAM to integrate stem cell activity and organ initiation. This review discusses how the various regulatory pathways collectively orchestrate SAM function and touches on how their manipulation can alter stem cell activity to improve crop yield.
Collapse
Affiliation(s)
- Liu Hong
- Plant Gene Expression Center, United States Department of Agriculture—Agricultural Research Service, Albany, CA 94710, USA;
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jennifer C. Fletcher
- Plant Gene Expression Center, United States Department of Agriculture—Agricultural Research Service, Albany, CA 94710, USA;
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
11
|
Causier B, McKay M, Hopes T, Lloyd J, Wang D, Harrison CJ, Davies B. The TOPLESS corepressor regulates developmental switches in the bryophyte Physcomitrium patens that were critical for plant terrestrialisation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1331-1344. [PMID: 37243383 PMCID: PMC10953049 DOI: 10.1111/tpj.16322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/27/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
The plant-specific TOPLESS (TPL) family of transcriptional corepressors is integral to multiple angiosperm developmental processes. Despite this, we know little about TPL function in other plants. To address this gap, we investigated the roles TPL plays in the bryophyte Physcomitrium patens, which diverged from angiosperms approximately 0.5 billion years ago. Although complete loss of PpTPL function is lethal, transgenic lines with reduced PpTPL activity revealed that PpTPLs are essential for two fundamental developmental switches in this plant: the transitions from basal photosynthetic filaments (chloronemata) to specialised foraging filaments (caulonemata) and from two-dimensional (2D) to three-dimensional (3D) growth. Using a transcriptomics approach, we integrated PpTPL into the regulatory network governing 3D growth and we propose that PpTPLs represent another important class of regulators that are essential for the 2D-to-3D developmental switch. Transcriptomics also revealed a previously unknown role for PpTPL in the regulation of flavonoids. Intriguingly, 3D growth and the formation of caulonemata were crucial innovations that facilitated the colonisation of land by plants, a major transformative event in the history of life on Earth. We conclude that TPL, which existed before the land plants, was co-opted into new developmental pathways, enabling phytoterrestrialisation and the evolution of land plants.
Collapse
Affiliation(s)
- Barry Causier
- Centre for Plant Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Mary McKay
- Centre for Plant Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Tayah Hopes
- Centre for Plant Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - James Lloyd
- Centre for Plant Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular SciencesThe University of Western AustraliaPerthWA6009Australia
| | - Dapeng Wang
- LeedsOmicsUniversity of LeedsLeedsLS2 9JTUK
- National Heart and Lung Institute, Imperial College LondonLondonSW3 6LYUK
| | - C. Jill Harrison
- School of Biological SciencesUniversity of Bristol24 Tyndall AvenueBristolBS8 1TQUK
| | - Brendan Davies
- Centre for Plant Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| |
Collapse
|
12
|
Riccucci E, Vanni C, Vangelisti A, Fambrini M, Giordani T, Cavallini A, Mascagni F, Pugliesi C. Genome-Wide Analysis of WOX Multigene Family in Sunflower ( Helianthus annuus L.). Int J Mol Sci 2023; 24:3352. [PMID: 36834765 PMCID: PMC9968055 DOI: 10.3390/ijms24043352] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023] Open
Abstract
The WUSCHEL-related homeobox (WOX) is a family of specific transcription factors involved in plant development and response to stress, characterized by the presence of a homeodomain. This study represents the first comprehensive characterization of the WOX family in a member of the Asteraceae family, the sunflower (H. annuus L.). Overall, we identified 18 putative HaWOX genes divided by phylogenetic analysis in three major clades (i.e., ancient, intermediate, and WUS). These genes showed conserved structural and functional motifs. Moreover, HaWOX has homogeneously distributed on H. annuus chromosomes. In particular, 10 genes originated after whole segment duplication events, underpinning a possible evolution of this family along with the sunflower genome. In addition, gene expression analysis evidenced a specific pattern of regulation of the putative 18 HaWOX during embryo growth and in ovule and inflorescence meristem differentiation, suggesting a pivotal role for this multigenic family in sunflower development. The results obtained in this work improved the understanding of the WOX multigenic family, providing a resource for future study on functional analysis in an economically valuable species such as sunflower.
Collapse
Affiliation(s)
- Ettore Riccucci
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Cosimo Vanni
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Alberto Vangelisti
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Andrea Cavallini
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Flavia Mascagni
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
13
|
Fambrini M, Usai G, Pugliesi C. Induction of Somatic Embryogenesis in Plants: Different Players and Focus on WUSCHEL and WUS-RELATED HOMEOBOX (WOX) Transcription Factors. Int J Mol Sci 2022; 23:15950. [PMID: 36555594 PMCID: PMC9781121 DOI: 10.3390/ijms232415950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
In plants, other cells can express totipotency in addition to the zygote, thus resulting in embryo differentiation; this appears evident in apomictic and epiphyllous plants. According to Haberlandt's theory, all plant cells can regenerate a complete plant if the nucleus and the membrane system are intact. In fact, under in vitro conditions, ectopic embryos and adventitious shoots can develop from many organs of the mature plant body. We are beginning to understand how determination processes are regulated and how cell specialization occurs. However, we still need to unravel the mechanisms whereby a cell interprets its position, decides its fate, and communicates it to others. The induction of somatic embryogenesis might be based on a plant growth regulator signal (auxin) to determine an appropriate cellular environment and other factors, including stress and ectopic expression of embryo or meristem identity transcription factors (TFs). Still, we are far from having a complete view of the regulatory genes, their target genes, and their action hierarchy. As in animals, epigenetic reprogramming also plays an essential role in re-establishing the competence of differentiated cells to undergo somatic embryogenesis. Herein, we describe the functions of WUSCHEL-RELATED HOMEOBOX (WOX) transcription factors in regulating the differentiation-dedifferentiation cell process and in the developmental phase of in vitro regenerated adventitious structures.
Collapse
Affiliation(s)
| | | | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
14
|
Bindics J, Khan M, Uhse S, Kogelmann B, Baggely L, Reumann D, Ingole KD, Stirnberg A, Rybecky A, Darino M, Navarrete F, Doehlemann G, Djamei A. Many ways to TOPLESS - manipulation of plant auxin signalling by a cluster of fungal effectors. THE NEW PHYTOLOGIST 2022; 236:1455-1470. [PMID: 35944559 DOI: 10.1111/nph.18315] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Plant biotrophic pathogens employ secreted molecules, called effectors, to suppress the host immune system and redirect the host's metabolism and development in their favour. Putative effectors of the gall-inducing maize pathogenic fungus Ustilago maydis were analysed for their ability to induce auxin signalling in plants. Using genetic, biochemical, cell-biological, and bioinformatic approaches we functionally elucidate a set of five, genetically linked effectors, called Topless (TPL) interacting protein (Tips) effectors that induce auxin signalling. We show that Tips induce auxin signalling by interfering with central corepressors of the TPL family. CRISPR-Cas9 mutants and deletion strain analysis indicate that the auxin signalling inducing subcluster effectors plays a redundant role in virulence. Although none of the Tips seem to have a conserved interaction motif, four of them bind solely to the N-terminal TPL domain and, for Tip1 and Tip4, we demonstrate direct competition with auxin/indole-3-acetic acid transcriptional repressors for their binding to TPL class of corepressors. Our findings reveal that TPL proteins, key regulators of growth-defence antagonism, are a major target of the U. maydis effectome.
Collapse
Affiliation(s)
- Janos Bindics
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Mamoona Khan
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Nussallee 9, 53115, Bonn, Germany
| | - Simon Uhse
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Benjamin Kogelmann
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Laura Baggely
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Daniel Reumann
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Kishor D Ingole
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Nussallee 9, 53115, Bonn, Germany
| | - Alexandra Stirnberg
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Anna Rybecky
- CEPLAS, Institute for Plant Sciences, University of Cologne, 50674, Cologne, Germany
| | - Martin Darino
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Fernando Navarrete
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Gunther Doehlemann
- CEPLAS, Institute for Plant Sciences, University of Cologne, 50674, Cologne, Germany
| | - Armin Djamei
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Nussallee 9, 53115, Bonn, Germany
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, D-06466, Stadt Seeland, Germany
| |
Collapse
|
15
|
Wang H, Li X, Wolabu T, Wang Z, Liu Y, Tadesse D, Chen N, Xu A, Bi X, Zhang Y, Chen J, Tadege M. WOX family transcriptional regulators modulate cytokinin homeostasis during leaf blade development in Medicago truncatula and Nicotiana sylvestris. THE PLANT CELL 2022; 34:3737-3753. [PMID: 35766878 PMCID: PMC9516142 DOI: 10.1093/plcell/koac188] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The plant-specific family of WUSCHEL (WUS)-related homeobox (WOX) transcription factors is key regulators of embryogenesis, meristem maintenance, and lateral organ development in flowering plants. The modern/WUS clade transcriptional repressor STENOFOLIA/LAMINA1(LAM1), and the intermediate/WOX9 clade transcriptional activator MtWOX9/NsWOX9 antagonistically regulate leaf blade expansion, but the molecular mechanism is unknown. Using transcriptome profiling and biochemical methods, we determined that NsCKX3 is the common target of LAM1 and NsWOX9 in Nicotiana sylvestris. LAM1 and NsWOX9 directly recognize and bind to the same cis-elements in the NsCKX3 promoter to repress and activate its expression, respectively, thus controlling the levels of active cytokinins in vivo. Disruption of NsCKX3 in the lam1 background yielded a phenotype similar to the knockdown of NsWOX9 in lam1, while overexpressing NsCKX3 resulted in narrower and shorter lam1 leaf blades reminiscent of NsWOX9 overexpression in the lam1 mutant. Moreover, we established that LAM1 physically interacts with NsWOX9, and this interaction is required to regulate NsCKX3 transcription. Taken together, our results indicate that repressor and activator WOX members oppositely regulate a common downstream target to function in leaf blade outgrowth, offering a novel insight into the role of local cytokinins in balancing cell proliferation and differentiation during lateral organ development.
Collapse
Affiliation(s)
- Hui Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401, USA
| | - Xue Li
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tezera Wolabu
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401, USA
| | - Ziyao Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ye Liu
- Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Dimiru Tadesse
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401, USA
| | - Naichong Chen
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401, USA
| | - Aijiao Xu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaojing Bi
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yunwei Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianghua Chen
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401, USA
| |
Collapse
|
16
|
Genome-Wide Analysis of the WOX Transcription Factor Genes in Dendrobium catenatum Lindl. Genes (Basel) 2022; 13:genes13081481. [PMID: 36011392 PMCID: PMC9408443 DOI: 10.3390/genes13081481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
The WUSCHEL-related homeobox (WOX) proteins are a class of transcription factors exclusive to plants. They can promote cell division or inhibit stem cell differentiation to regulate plant growth and development. However, the WOX transcription factor genes in the monocotyledon Dendrobium catenatum Lindl. remain relatively uncharacterized. Specifically, the effects of phytohormones on their expression levels are unclear. In this study, we identified and analyzed 10 candidate DcaWOX transcription factor genes in D. catenatum. The DcaWOX family was divided into the modern/WUS, intermediate, and ancient clades. The subcellular localization analysis detected DcaWOX-GFP fusion proteins in the tobacco epidermal leaf cell nucleus. In DcaWOX, members of the WUS clade with the WUS-box motif can significantly activate the expression of TPL in vivo, while members of the intermediate and ancient clades cannot. The expression of the DcaWOX genes varied among the examined tissues. Moreover, the DcaWOX expression patterns were differentially affected by the phytohormone treatments, with differences detected even between homologs of the same gene. Furthermore, the gene expression patterns were consistent with the predicted cis-acting elements in the promoters. The above results suggest that DcaWOX may have an important role in its growth and development and resistance to stress. The results of this comprehensive investigation of the DcaWOX gene family provide the basis for future studies on the roles of WOX genes in D. catenatum.
Collapse
|
17
|
Rodriguez K, Do A, Senay-Aras B, Perales M, Alber M, Chen W, Reddy GV. Concentration-dependent transcriptional switching through a collective action of cis-elements. SCIENCE ADVANCES 2022; 8:eabo6157. [PMID: 35947668 PMCID: PMC9365274 DOI: 10.1126/sciadv.abo6157] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Gene expression specificity of homeobox transcription factors has remained paradoxical. WUSCHEL activates and represses CLAVATA3 transcription at lower and higher concentrations, respectively. We use computational modeling and experimental analysis to investigate the properties of the cis-regulatory module. We find that intrinsically each cis-element can only activate CLAVATA3 at a higher WUSCHEL concentration. However, together, they repress CLAVATA3 at higher WUSCHEL and activate only at lower WUSCHEL, showing that the concentration-dependent interactions among cis-elements regulate both activation and repression. Biochemical experiments show that two adjacent functional cis-elements bind WUSCHEL with higher affinity and dimerize at relatively lower levels. Moreover, increasing the distance between cis-elements prolongs WUSCHEL monomer binding window, resulting in higher CLAVATA3 activation. Our work showing a constellation of optimally spaced cis-elements of defined affinities determining activation and repression thresholds in regulating CLAVATA3 transcription provides a previously unknown mechanism of cofactor-independent regulation of transcription factor binding in mediating gene expression specificity.
Collapse
Affiliation(s)
- Kevin Rodriguez
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Albert Do
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Betul Senay-Aras
- Department of Mathematics, University of California Riverside, Riverside, CA 92521, USA
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Mariano Perales
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Mark Alber
- Department of Mathematics, University of California Riverside, Riverside, CA 92521, USA
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Weitao Chen
- Department of Mathematics, University of California Riverside, Riverside, CA 92521, USA
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA 92521, USA
| | - G. Venugopala Reddy
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
18
|
Zhang Y, Liu Y, Wang X, Wang R, Chen X, Wang S, Wei H, Wei Z. PtrWOX13A Promotes Wood Formation and Bioactive Gibberellins Biosynthesis in Populus trichocarpa. FRONTIERS IN PLANT SCIENCE 2022; 13:835035. [PMID: 35837467 PMCID: PMC9274204 DOI: 10.3389/fpls.2022.835035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
WUSCHEL-related homeobox (WOX) genes are plant-specific transcription factors (TFs) involved in multiple processes of plant development. However, there have hitherto no studies on the WOX TFs involved in secondary cell wall (SCW) formation been reported. In this study, we identified a Populus trichocarpa WOX gene, PtrWOX13A, which was predominantly expressed in SCW, and then characterized its functions through generating PtrWOX13A overexpression poplar transgenic lines; these lines exhibited not only significantly enhanced growth potential, but also remarkably increased SCW thicknesses, fiber lengths, and lignin and hemicellulose contents. However, no obvious change in cellulose content was observed. We revealed that PtrWOX13A directly activated its target genes through binding to two cis-elements, ATTGATTG and TTAATSS, in their promoter regions. The fact that PtrWOX13A responded to the exogenous GAs implies that it is responsive to GA homeostasis caused by GA inactivation and activation genes (e.g., PtrGA20ox4, PtrGA2ox1, and PtrGA3ox1), which were regulated by PtrWOX13A directly or indirectly. Since the master switch gene of SCW formation, PtrWND6A, and lignin biosynthesis regulator, MYB28, significantly increased in PtrWOX13A transgenic lines, we proposed that PtrWOX13A, as a higher hierarchy TF, participated in SCW formation through controlling the genes that are components of the known hierarchical transcription regulation network of poplar SCW formation, and simultaneously triggering a gibberellin-mediated signaling cascade. The discovery of PtrWOX13A predominantly expressed in SCW and its regulatory functions in the poplar wood formation has important implications for improving the wood quality of trees via genetic engineering.
Collapse
Affiliation(s)
- Yang Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xueying Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Ruiqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xuebing Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Shuang Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States
| | - Zhigang Wei
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
19
|
Shimotohno A. Illuminating the molecular mechanisms underlying shoot apical meristem homeostasis in plants. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:19-28. [PMID: 35800970 PMCID: PMC9200092 DOI: 10.5511/plantbiotechnology.22.0213a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/13/2022] [Indexed: 05/15/2023]
Abstract
Unlike animals, terrestrial plants are sessile and able to give rise to new organs throughout their lifetime. In the most extreme cases, they can survive for over a thousand years. With such protracted life cycles, plants have evolved sophisticated strategies to adapt to variable environments by coordinating their morphology as well as their growth, and have consequently acquired a high degree of developmental plasticity, which is supported by small groups of long-lived stem cells found in proliferative centers called meristems. Shoot apical meristems (SAMs) contain multipotent stem cells and provide a microenvironment that ensures both a self-renewable reservoir, to produce primordia and sustain growth, and a differentiating population that develops into all of the above-ground organs of land plants. The homeodomain transcription factor WUSCHEL (WUS) is expressed in the organizing center and acts as a master regulator to govern shoot stem cell homeostasis. In this review, I highlight recent advances in our understanding of the molecular mechanisms and signaling networks that underlie SAM maintenance, and discuss how plants utilize WUS to integrate intrinsic and extrinsic cues.
Collapse
Affiliation(s)
- Akie Shimotohno
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
- E-mail: Tel: +81-52-789-2841 Fax: +81-52-789-3240
| |
Collapse
|
20
|
Zhou J, Wu JT. Nitrate/ammonium-responsive microRNA-mRNA regulatory networks affect root system architecture in Populus × canescens. BMC PLANT BIOLOGY 2022; 22:96. [PMID: 35246022 PMCID: PMC8895855 DOI: 10.1186/s12870-022-03482-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/14/2022] [Indexed: 05/15/2023]
Abstract
BACKGROUND Nitrate (NO3-) and ammonium (NH4+) are the primary forms of inorganic nitrogen (N) taken up by plant roots, and a lack of these N sources commonly limits plant growth. To better understand how NO3- and NH4+ differentially affect root system architecture, we analyzed the expression profiles of microRNAs and their targets in poplar roots treated with three forms of nitrogen S1 (NO3-), S2 (NH4NO3, normal), and S3 (NH4+) via RNA sequencing. RESULTS The results revealed a total of 709 miRNAs. Among them, 57 significantly differentially expressed miRNAs and 28 differentially expressed miRNA-target pairs showed correlated expression profiles in S1 vs. S2. Thirty-six significantly differentially expressed miRNAs and 12 differentially expressed miRNA-target pairs showed correlated expression profiles in S3 vs. S2. In particular, NFYA3, a target of upregulated ptc-miR169i and ptc-miR169b, was downregulated in S1 vs. S2, while NFYA1, a target of upregulated ptc-miR169b, was downregulated in S3 vs. S2 and probably played an important role in the changes in root morphology observed when the poplar plants were treated with different N forms. Furthermore, the miRNA-target pairs ptc-miR169i/b-D6PKL2, ptc-miR393a-5p-AFB2, ptc-miR6445a-NAC14, ptc-miR172d-AP2, csi-miR396a-5p_R + 1_1ss21GA-EBP1, ath-miR396b-5p_R + 1-TPR4, and ptc-miR166a/b/c-ATHB-8 probably contributed to the changes in root morphology observed when poplar plants were treated with different N forms. CONCLUSIONS These results demonstrate that differentially expressed miRNAs and their targets play an important role in the regulation of the poplar root system architecture by different N forms.
Collapse
Affiliation(s)
- Jing Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Jiang-Ting Wu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|
21
|
Hawar A, Xiong S, Yang Z, Sun B. Histone Acetyltransferase SlGCN5 Regulates Shoot Meristem and Flower Development in Solanum lycopersicum. FRONTIERS IN PLANT SCIENCE 2022; 12:805879. [PMID: 35126431 PMCID: PMC8814577 DOI: 10.3389/fpls.2021.805879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/21/2021] [Indexed: 06/02/2023]
Abstract
The histone acetyltransferase (HAT) general control non-repressed protein 5 (GCN5) plays important roles in plant development via epigenetic regulation of its target genes. However, the role of GCN5 in tomato, especially in the regulation of tomato shoot meristem and flower development, has not been well-understood. In this study, we found that silencing of Solanum lycopersicum GCN5 (SlGCN5, Solyc10g045400.1.1) by virus-induced gene silencing (VIGS) and RNA interference (RNAi) resulted in the loss of shoot apical dominance, reduced shoot apical meristem (SAM) size, and dwarf and bushy plant phenotype. Besides, we occasionally observed extra carpelloid stamens and carpels fused with stamens at the late stages of flower development. Through gene expression analysis, we noticed that SlGCN5 could enhance SlWUS transcript levels in both SAM and floral meristem (FM). Similar to the known function of GCN5 in Arabidopsis, we demonstrated that SIGCN5 may form a HAT unit with S. lycopersicum alteration/deficiency in activation 2a (SlADA2a) and SlADA2b proteins in tomato. Therefore, our results provide insights in the SlGCN5-mediated regulation of SAM maintenance and floral development in tomato.
Collapse
|
22
|
Zumajo-Cardona C, Little DP, Stevenson D, Ambrose BA. Expression analyses in Ginkgo biloba provide new insights into the evolution and development of the seed. Sci Rep 2021; 11:21995. [PMID: 34754044 PMCID: PMC8578549 DOI: 10.1038/s41598-021-01483-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Although the seed is a key morphological innovation, its origin remains unknown and molecular data outside angiosperms is still limited. Ginkgo biloba, with a unique place in plant evolution, being one of the first extant gymnosperms where seeds evolved, can testify to the evolution and development of the seed. Initially, to better understand the development of the ovules in Ginkgo biloba ovules, we performed spatio-temporal expression analyses in seeds at early developing stages, of six candidate gene homologues known in angiosperms: WUSCHEL, AINTEGUMENTA, BELL1, KANADI, UNICORN, and C3HDZip. Surprisingly, the expression patterns of most these ovule homologues indicate that they are not wholly conserved between angiosperms and Ginkgo biloba. Consistent with previous studies on early diverging seedless plant lineages, ferns, lycophytes, and bryophytes, many of these candidate genes are mainly expressed in mega- and micro-sporangia. Through in-depth comparative transcriptome analyses of Ginkgo biloba developing ovules, pollen cones, and megagametophytes we have been able to identify novel genes, likely involved in ovule development. Finally, our expression analyses support the synangial or neo-synangial hypotheses for the origin of the seed, where the sporangium developmental network was likely co-opted and restricted during integument evolution.
Collapse
Affiliation(s)
- Cecilia Zumajo-Cardona
- New York Botanical Garden, Bronx, NY, USA.,The Graduate Center, City University of New York, New York, NY, USA
| | - Damon P Little
- New York Botanical Garden, Bronx, NY, USA.,The Graduate Center, City University of New York, New York, NY, USA
| | - Dennis Stevenson
- New York Botanical Garden, Bronx, NY, USA.,The Graduate Center, City University of New York, New York, NY, USA
| | - Barbara A Ambrose
- New York Botanical Garden, Bronx, NY, USA. .,The Graduate Center, City University of New York, New York, NY, USA.
| |
Collapse
|
23
|
Müllender M, Varrelmann M, Savenkov EI, Liebe S. Manipulation of auxin signalling by plant viruses. MOLECULAR PLANT PATHOLOGY 2021; 22:1449-1458. [PMID: 34420252 PMCID: PMC8518663 DOI: 10.1111/mpp.13122] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 05/03/2023]
Abstract
Compatible plant-virus interactions result in dramatic changes of the plant transcriptome and morphogenesis, and are often associated with rapid alterations in plant hormone homeostasis and signalling. Auxin controls many aspects of plant organogenesis, development, and growth; therefore, plants can rapidly perceive and respond to changes in the cellular auxin levels. Auxin signalling is a tightly controlled process and, hence, is highly vulnerable to changes in the mRNA and protein levels of its components. There are several core nuclear components of auxin signalling. In the nucleus, the interaction of auxin response factors (ARFs) and auxin/indole acetic acid (Aux/IAA) proteins is essential for the control of auxin-regulated pathways. Aux/IAA proteins are negative regulators, whereas ARFs are positive regulators of the auxin response. The interplay between both is essential for the transcriptional regulation of auxin-responsive genes, which primarily regulate developmental processes but also modulate the plant immune system. Recent studies suggest that plant viruses belonging to different families have developed various strategies to disrupt auxin signalling, namely by (a) changing the subcellular localization of Aux/IAAs, (b) preventing degradation of Aux/IAAs by stabilization, or (c) inhibiting the transcriptional activity of ARFs. These interactions perturb auxin signalling and experimental evidence from various studies highlights their importance for virus replication, systemic movement, interaction with vectors for efficient transmission, and symptom development. In this microreview, we summarize and discuss the current knowledge on the interaction of plant viruses with auxin signalling components of their hosts.
Collapse
Affiliation(s)
| | - Mark Varrelmann
- Department of PhytopathologyInstitute of Sugar Beet ResearchGöttingenGermany
| | - Eugene I. Savenkov
- Department of Plant BiologyUppsala BioCenter SLU, Swedish University of Agricultural Sciences, Linnean Center for Plant BiologyUppsalaSweden
| | - Sebastian Liebe
- Department of PhytopathologyInstitute of Sugar Beet ResearchGöttingenGermany
| |
Collapse
|
24
|
Strotmann VI, Stahl Y. At the root of quiescence: function and regulation of the quiescent center. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6716-6726. [PMID: 34111273 DOI: 10.1093/jxb/erab275] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
The quiescent center (QC) of roots consists of a rarely dividing pool of stem cells within the root apical meristem (RAM). The QC maintains the surrounding more frequently dividing initials, together constituting the stem cell niche of the RAM. The initials, after several rounds of division and differentiation, give rise to nearly all tissues necessary for root function. Hence, QC establishment, maintenance, and function are key for producing the whole plant root system and are therefore at the foundation of plant growth and productivity. Although the concept of the QC has been known since the 1950s, much of its molecular regulations and their intricate interconnections, especially in more complex root systems such as cereal RAMs, remain elusive. In Arabidopsis, molecular factors such as phytohormones, small signaling peptides and their receptors, and key transcription factors play important roles in a complex and intertwined regulatory network. In cereals, homologs of these factors are present; however, QC maintenance in the larger RAMs of cereals might also require more complex control of QC cell regulation by a combination of asymmetric and symmetric divisions. Here, we summarize current knowledge on QC maintenance in Arabidopsis and compare it with that of agriculturally relevant cereal crops.
Collapse
Affiliation(s)
- Vivien I Strotmann
- Institute for Developmental Genetics, Heinrich-Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Yvonne Stahl
- Institute for Developmental Genetics, Heinrich-Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
25
|
Zeng J, Li X, Ge Q, Dong Z, Luo L, Tian Z, Zhao Z. Endogenous stress-related signal directs shoot stem cell fate in Arabidopsis thaliana. NATURE PLANTS 2021; 7:1276-1287. [PMID: 34354259 DOI: 10.1038/s41477-021-00985-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Stem cell populations in all multicellular organisms are situated in a niche, which is a special microenvironment that defines stem cell fate. The interplay between stem cells and their niches is crucial for stem cell maintenance. Here, we show that an endogenous stress-related signal (ESS) is overrepresented in the shoot stem cell niche under natural growth conditions, and the vast majority of known stem-cell-specific and niche-specific genes responded to stress signals. Interference with the ESS in the stem cell niche by blocking ethylene signalling impaired stem cell maintenance. Ethylene-insensitive 3 (EIN3), the key transcription factor in ethylene signalling, directly actives the expression of the stress hub transcription factor AGAMOUS-LIKE 22 (AGL22) in the stem cell niche and relays ESS signals to the WUSCHEL/CLAVATA network. Our results provide a mechanistic framework for ESS signalling control of the stem cell niche and demonstrate that plant stem cells are maintained by a native stress microenvironment in vivo.
Collapse
Affiliation(s)
- Jian Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiang Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiang Ge
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhicheng Dong
- School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Linjie Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhaoxia Tian
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Zhong Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
26
|
Yuan Y, Yang X, Feng M, Ding H, Khan MT, Zhang J, Zhang M. Genome-wide analysis of R2R3-MYB transcription factors family in the autopolyploid Saccharum spontaneum: an exploration of dominance expression and stress response. BMC Genomics 2021; 22:622. [PMID: 34404342 PMCID: PMC8371785 DOI: 10.1186/s12864-021-07689-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sugarcane (Saccharum) is the most critical sugar crop worldwide. As one of the most enriched transcription factor families in plants, MYB genes display a great potential to contribute to sugarcane improvement by trait modification. We have identified the sugarcane MYB gene family at a whole-genome level through systematic evolution analyses and expression profiling. R2R3-MYB is a large subfamily involved in many plant-specific processes. RESULTS A total of 202 R2R3-MYB genes (356 alleles) were identified in the polyploid Saccharum spontaneum genomic sequence and classified into 15 subgroups by phylogenetic analysis. The sugarcane MYB family had more members by a comparative analysis in sorghum and significant advantages among most plants, especially grasses. Collinearity analysis revealed that 70% of the SsR2R3-MYB genes had experienced duplication events, logically suggesting the contributors to the MYB gene family expansion. Functional characterization was performed to identify 56 SsR2R3-MYB genes involved in various plant bioprocesses with expression profiling analysis on 60 RNA-seq databases. We identified 22 MYB genes specifically expressed in the stem, of which RT-qPCR validated MYB43, MYB53, MYB65, MYB78, and MYB99. Allelic expression dominance analysis implied the differential expression of alleles might be responsible for the high expression of MYB in the stem. MYB169, MYB181, MYB192 were identified as candidate C4 photosynthetic regulators by C4 expression pattern and robust circadian oscillations. Furthermore, stress expression analysis showed that MYB36, MYB48, MYB54, MYB61 actively responded to drought treatment; 19 and 10 MYB genes were involved in response to the sugarcane pokkah boeng and mosaic disease, respectively. CONCLUSIONS This is the first report on genome-wide analysis of the MYB gene family in sugarcane. SsMYBs probably played an essential role in stem development and the adaptation of various stress conditions. The results will provide detailed insights and rich resources to understand the functional diversity of MYB transcription factors and facilitate the breeding of essential traits in sugarcane.
Collapse
Affiliation(s)
- Yuan Yuan
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, China
| | - Xiping Yang
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, China
| | - Mengfan Feng
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, China
| | - Hongyan Ding
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, China
| | | | - Jisen Zhang
- Fujian Agricultural and Forestry University, Fuzhou, 350002, China
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
27
|
Plant AR, Larrieu A, Causier B. Repressor for hire! The vital roles of TOPLESS-mediated transcriptional repression in plants. THE NEW PHYTOLOGIST 2021; 231:963-973. [PMID: 33909309 DOI: 10.1111/nph.17428] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/16/2021] [Indexed: 05/15/2023]
Abstract
Transcriptional corepressors play important roles in establishing the appropriate levels of gene expression during growth and development. The TOPLESS (TPL) family of corepressors are critical for all plant life. TPLs are involved in numerous developmental processes and in the response to extrinsic challenges. As such these proteins have been the focus of intense study since Long and colleagues first described the TPL corepressor in 2006. In this review we will explore the evolutionary history of these essential plant-specific proteins, their mechanism of action based on recent structural analyses, and the myriad of pathways in which they function. We speculate how relatively minor changes in the peptide sequence of transcriptional regulators allowed them to recruit TPL into new processes, driving innovation and resulting in TPL becoming vital for plant development.
Collapse
Affiliation(s)
- Alastair Robert Plant
- Faculty of Biological Sciences, Centre for Plant Science, University of Leeds, Leeds, LS2 9JT, UK
| | - Antoine Larrieu
- Faculty of Biological Sciences, Centre for Plant Science, University of Leeds, Leeds, LS2 9JT, UK
| | - Barry Causier
- Faculty of Biological Sciences, Centre for Plant Science, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
28
|
Pathak PK, Zhang F, Peng S, Niu L, Chaturvedi J, Elliott J, Xiang Y, Tadege M, Deng J. Structure of the unique tetrameric STENOFOLIA homeodomain bound with target promoter DNA. Acta Crystallogr D Struct Biol 2021; 77:1050-1063. [PMID: 34342278 PMCID: PMC8329861 DOI: 10.1107/s205979832100632x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/18/2021] [Indexed: 12/21/2022] Open
Abstract
Homeobox transcription factors are key regulators of morphogenesis and development in both animals and plants. In plants, the WUSCHEL-related homeobox (WOX) family of transcription factors function as central organizers of several developmental programs ranging from embryo patterning to meristematic stem-cell maintenance through transcriptional activation and repression mechanisms. The Medicago truncatula STENOFOLIA (STF) gene is a master regulator of leaf-blade lateral development. Here, the crystal structure of the homeodomain (HD) of STF (STF-HD) in complex with its promoter DNA is reported at 2.1 Å resolution. STF-HD binds DNA as a tetramer, enclosing nearly the entire bound DNA surface. The STF-HD tetramer is partially stabilized by docking of the C-terminal tail of one protomer onto a conserved hydrophobic surface on the head of another protomer in a head-to-tail manner. STF-HD specifically binds TGA motifs, although the promoter sequence also contains TAAT motifs. Helix α3 not only serves a canonical role as a base reader in the major groove, but also provides DNA binding in the minor groove through basic residues located at its C-terminus. The structural and functional data in planta reported here provide new insights into the DNA-binding mechanisms of plant-specific HDs from the WOX family of transcription factors.
Collapse
Affiliation(s)
- Prabhat Kumar Pathak
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Fei Zhang
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA
| | - Shuxia Peng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Lifang Niu
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA
| | - Juhi Chaturvedi
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Justin Elliott
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yan Xiang
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA
| | - Junpeng Deng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
29
|
Li G, Tan M, Ma J, Cheng F, Li K, Liu X, Zhao C, Zhang D, Xing L, Ren X, Han M, An N. Molecular mechanism of MdWUS2-MdTCP12 interaction in mediating cytokinin signaling to control axillary bud outgrowth. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4822-4838. [PMID: 34113976 DOI: 10.1093/jxb/erab163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/08/2021] [Indexed: 05/25/2023]
Abstract
Shoot branching is an important factor that influences the architecture of apple trees and cytokinin is known to promote axillary bud outgrowth. The cultivar 'Fuji', which is grown on ~75% of the apple-producing area in China, exhibits poor natural branching. The TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) family genes BRANCHED1/2 (BRC1/2) are involved in integrating diverse factors that function locally to inhibit shoot branching; however, the molecular mechanism underlying the cytokinin-mediated promotion of branching that involves the repression of BRC1/2 remains unclear. In this study, we found that apple WUSCHEL2 (MdWUS2), which interacts with the co-repressor TOPLESS-RELATED9 (MdTPR9), is activated by cytokinin and regulates branching by inhibiting the activity of MdTCP12 (a BRC2 homolog). Overexpressing MdWUS2 in Arabidopsis or Nicotiana benthamiana resulted in enhanced branching. Overexpression of MdTCP12 inhibited axillary bud outgrowth in Arabidopsis, indicating that it contributes to the regulation of branching. In addition, we found that MdWUS2 interacted with MdTCP12 in vivo and in vitro and suppressed the ability of MdTCP12 to activate the transcription of its target gene, HOMEOBOX PROTEIN 53b (MdHB53b). Our results therefore suggest that MdWUS2 is involved in the cytokinin-mediated inhibition of MdTCP12 that controls bud outgrowth, and hence provide new insights into the regulation of shoot branching by cytokinin.
Collapse
Affiliation(s)
- Guofang Li
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Ming Tan
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Juanjuan Ma
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Fang Cheng
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Ke Li
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiaojie Liu
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Caiping Zhao
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Dong Zhang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Libo Xing
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiaolin Ren
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Mingyu Han
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Na An
- College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
30
|
Shafique Khan F, Zeng RF, Gan ZM, Zhang JZ, Hu CG. Genome-Wide Identification and Expression Profiling of the WOX Gene Family in Citrus sinensis and Functional Analysis of a CsWUS Member. Int J Mol Sci 2021; 22:4919. [PMID: 34066408 PMCID: PMC8124563 DOI: 10.3390/ijms22094919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/23/2023] Open
Abstract
WUSCHEL-related homeobox (WOX) transcription factors (TFs) are well known for their role in plant development but are rarely studied in citrus. In this study, we identified 11 putative genes from the sweet orange genome and divided the citrus WOX genes into three clades (modern/WUSCHEL(WUS), intermediate, and ancient). Subsequently, we performed syntenic relationship, intron-exon organization, motif composition, and cis-element analysis. Co-expression analysis based on RNA-seq and tissue-specific expression patterns revealed that CsWOX gene expression has multiple intrinsic functions. CsWUS homolog of AtWUS functions as a transcriptional activator and binds to specific DNA. Overexpression of CsWUS in tobacco revealed dramatic phenotypic changes, including malformed leaves and reduced gynoecia with no seed development. Silencing of CsWUS in lemon using the virus-induced gene silencing (VIGS) system implied the involvement of CsWUS in cells of the plant stem. In addition, CsWUS was found to interact with CsCYCD3, an ortholog in Arabidopsis (AtCYCD3,1). Yeast one-hybrid screening and dual luciferase activity revealed that two TFs (CsRAP2.12 and CsHB22) bind to the promoter of CsWUS and regulate its expression. Altogether, these results extend our knowledge of the WOX gene family along with CsWUS function and provide valuable findings for future study on development regulation and comprehensive data of WOX members in citrus.
Collapse
Affiliation(s)
| | | | | | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (F.S.K.); (R.-F.Z.); (Z.-M.G.)
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (F.S.K.); (R.-F.Z.); (Z.-M.G.)
| |
Collapse
|
31
|
Tvorogova VE, Krasnoperova EY, Potsenkovskaia EA, Kudriashov AA, Dodueva IE, Lutova LA. What Does the WOX Say? Review of Regulators, Targets, Partners. Mol Biol 2021. [DOI: 10.1134/s002689332102031x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Chen Z, Gallavotti A. Improving architectural traits of maize inflorescences. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:21. [PMID: 37309422 PMCID: PMC10236070 DOI: 10.1007/s11032-021-01212-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/02/2021] [Indexed: 06/13/2023]
Abstract
The domestication and improvement of maize resulted in radical changes in shoot architecture relative to its wild progenitor teosinte. In particular, critical modifications involved a reduction of branching and an increase in inflorescence size to meet the needs for human consumption and modern agricultural practices. Maize is a major contributor to global agricultural production by providing large and inexpensive quantities of food, animal feed, and ethanol. Maize is also a classic system for studying the genetic regulation of inflorescence formation and its enlarged female inflorescences directly influence seed production and yield. Studies on the molecular and genetic networks regulating meristem proliferation and maintenance, including receptor-ligand interactions, transcription factor regulation, and hormonal control, provide important insights into maize inflorescence development and reveal potential avenues for the targeted modification of specific architectural traits. In this review, we summarize recent findings on the molecular mechanisms controlling inflorescence formation and discuss how this knowledge can be applied to improve maize productivity in the face of present and future environmental challenges.
Collapse
Affiliation(s)
- Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020 USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020 USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901 USA
| |
Collapse
|
33
|
Probing the floral developmental stages, bisexuality and sex reversions in castor (Ricinus communis L.). Sci Rep 2021; 11:4246. [PMID: 33608605 PMCID: PMC7895920 DOI: 10.1038/s41598-021-81781-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 01/06/2021] [Indexed: 11/08/2022] Open
Abstract
Castor (Ricinus communis L) is an ideal model species for sex mechanism studies in monoecious angiosperms, due to wide variations in sex expression. Sex reversion to monoecy in pistillate lines, along with labile sex expression, negatively influences hybrid seed purity. The study focuses on understanding the mechanisms of unisexual flower development, sex reversions and sex variations in castor, using various genotypes with distinct sex expression pattern. Male and female flowers had 8 and 12 developmental stages respectively, were morphologically similar till stage 4, with an intermediate bisexual state and were intermediate between type 1 and type 2 flowers. Pistil abortion was earlier than stamen inhibition. Sex alterations occurred at floral and inflorescence level. While sex-reversion was unidirectional towards maleness via bisexual stage, at high day temperatures (Tmax > 38 °C), femaleness was restored with subsequent drop in temperatures. Temperature existing for 2–3 weeks during floral meristem development, influences sexuality of the flower. We report for first time that unisexuality is preceded by bisexuality in castor flowers which alters with genotype and temperature, and sex reversions as well as high sexual polymorphisms in castor are due to alterations in floral developmental pathways. Differentially expressed (male-abundant or male-specific) genes Short chain dehydrogenase reductase 2a (SDR) and WUSCHEL are possibly involved in sex determination of castor.
Collapse
|
34
|
Wolabu TW, Wang H, Tadesse D, Zhang F, Behzadirad M, Tvorogova VE, Abdelmageed H, Liu Y, Chen N, Chen J, Allen RD, Tadege M. WOX9 functions antagonistic to STF and LAM1 to regulate leaf blade expansion in Medicago truncatula and Nicotiana sylvestris. THE NEW PHYTOLOGIST 2021; 229:1582-1597. [PMID: 32964420 DOI: 10.1111/nph.16934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
WOX family transcription factors regulate multiple developmental programs. The intermediate clade transcriptional activator WOX9 functions together with the modern clade transcriptional repressor WOX genes in embryogenesis and meristems maintenance, but the mechanism of this interaction is unclear. STF and LAM1 are WOX1 orthologs required for leaf blade outgrowth in Medicago truncatula and Nicotiana sylvestris, respectively. Using biochemical methods and genome editing technology, here we show that WOX9 is an abaxial factor and functions antagonistically to STF and LAM1 to regulate leaf blade development. While NsWOX9 ectopic expression enhances the lam1 mutant phenotype, and antisense expression partially rescues the lam1 mutant, both overexpression and knockout of NsWOX9 in N. sylvestris resulted in a range of severe leaf blade distortions, indicating important role in blade development. Our results indicate that direct repression of WOX9 by WUS clade repressor STF/LAM1 is required for correct blade architecture and patterning in M. truncatula and N. sylvestris. These findings suggest that controlling transcriptional activation and repression mechanisms by direct interaction of activator and repressor WOX genes may be required for cell proliferation and differentiation homeostasis, and could be an evolutionarily conserved mechanism for the development of complex and diverse morphology in flowering plants.
Collapse
Affiliation(s)
- Tezera W Wolabu
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Hui Wang
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dimiru Tadesse
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Fei Zhang
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06520-8104, USA
| | - Marjan Behzadirad
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Varvara E Tvorogova
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, 199034, Russia
| | - Haggag Abdelmageed
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Department of Agricultural Botany, Faculty of Agriculture, Cairo University, Giza,, 12613, Egypt
| | - Ye Liu
- School of Life Science, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Naichong Chen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jianghua Chen
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Randy D Allen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Million Tadege
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
35
|
Nalapalli S, Tunc-Ozdemir M, Sun Y, Elumalai S, Que Q. Morphogenic Regulators and Their Application in Improving Plant Transformation. Methods Mol Biol 2021; 2238:37-61. [PMID: 33471323 DOI: 10.1007/978-1-0716-1068-8_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Generation of plant lines with transgene or edited gene variants is the desired outcome of transformation technology. Conventional DNA-based plant transformation methods are the most commonly used technology but these approaches are limited to a small number of plant species with efficient transformation systems. The ideal transformation technologies are those that allow biotechnology applications across wide genetic background, especially within elite germplasm of major crop species. This chapter will briefly review key regulatory genes involved in plant morphogenesis with a focus on in vitro somatic embryogenesis and their application in improving plant transformation.
Collapse
Affiliation(s)
- Samson Nalapalli
- Seeds Research, Syngenta Crop Protection LLC, Research Triangle Park, NC, USA.
| | | | - Yuejin Sun
- Seeds Research, Syngenta Crop Protection LLC, Research Triangle Park, NC, USA
| | - Sivamani Elumalai
- Seeds Research, Syngenta Crop Protection LLC, Research Triangle Park, NC, USA
| | - Qiudeng Que
- Seeds Research, Syngenta Crop Protection LLC, Research Triangle Park, NC, USA
| |
Collapse
|
36
|
Li ZX, Lan JB, Liu YQ, Qi LW, Tang JM. Investigation of the role of AcTPR2 in kiwifruit and its response to Botrytis cinerea infection. BMC PLANT BIOLOGY 2020; 20:557. [PMID: 33302873 PMCID: PMC7731759 DOI: 10.1186/s12870-020-02773-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Elucidation of the regulatory mechanism of kiwifruit response to gray mold disease caused by Botrytis cinerea can provide the basis for its molecular breeding to impart resistance against this disease. In this study, 'Hongyang' kiwifruit served as the experimental material; the TOPLESS/TOPLESS-RELATED (TPL/TPR) co-repressor gene AcTPR2 was cloned into a pTRV2 vector (AcTPR2-TRV) and the virus-induced gene silencing technique was used to establish the functions of the AcTPR2 gene in kiwifruit resistance to Botrytis cinerea. RESULTS Virus-induced silencing of AcTPR2 enhanced the susceptibility of kiwifruit to Botrytis cinerea. Defensive enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and phenylalanine ammonia-lyase (PAL) and endogenous phytohormones such as indole acetic acid (IAA), gibberellin (GA3), abscisic acid (ABA), and salicylic acid (SA) were detected. Kiwifruit activated these enzymes and endogenous phytohormones in response to pathogen-induced stress and injury. The expression levels of the IAA signaling genes-AcNIT, AcARF1, and AcARF2-were higher in the AcTPR2-TRV treatment group than in the control. The IAA levels were higher and the rot phenotype was more severe in AcTPR2-TRV kiwifruits than that in the control. These results suggested that AcTPR2 downregulation promotes expression of IAA and IAA signaling genes and accelerates postharvest kiwifruit senescence. Further, Botrytis cinerea dramatically upregulated AcTPR2, indicating that AcTPR2 augments kiwifruit defense against pathogens by downregulating the IAA and IAA signaling genes. CONCLUSIONS The results of the present study could help clarify the regulatory mechanisms of disease resistance in kiwifruit and furnish genetic resources for molecular breeding of kiwifruit disease resistance.
Collapse
Affiliation(s)
- Zhe-Xin Li
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/ Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, P.R. China
| | - Jian-Bin Lan
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/ Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, P.R. China
| | - Yi-Qing Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/ Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, P.R. China
| | - Li-Wang Qi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, P.R. China.
| | - Jian-Min Tang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/ Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, P.R. China.
| |
Collapse
|
37
|
Chong X, Guan Y, Jiang J, Zhang F, Wang H, Song A, Chen S, Ding L, Chen F. Heterologous expression of chrysanthemum TOPLESS corepressor CmTPL1-1 alters meristem maintenance and organ development in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:256-263. [PMID: 33152644 DOI: 10.1016/j.plaphy.2020.10.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
TOPLESS (TPL)/TOPLESS-related (TPR) corepressors are important regulators of plant growth and development, but their functions in chrysanthemum (Chrysanthemum morifolium) are currently unclear. In this study, a chrysanthemum TPL/TPR family gene, designated CmTPL1-1, was characterized. This gene encodes an 1135-amino-acid polypeptide harboring a conserved N-terminal domain and two C-terminal WD40 domains. CmTPL1-1 showed no transcriptional activity in yeast, and a localization experiment indicated that it localized to the nuclei in onion epidermal cells. Transcript profiling established that the gene was most highly expressed in the stem apex. The heterologous expression of CmTPL1-1 in Arabidopsis thaliana produced a pleiotropic phenotype, including smaller leaves, shorter siliques, increased meristem number, asymmetrical petal distribution and reduced stamen number. In transgenic plants, four AtARFs were downregulated, while six AtIAAs and two AtGH3s were upregulated at the transcript level; moreover, the expression of three key class I KNOTTED-like homeobox (KNOX) genes was upregulated. In addition, by yeast two-hybrid screening of a chrysanthemum cDNA library, we found that CmTPL1-1 could interact with CmWOX4, CmLBD38 and CmLBD36, and these interactions were confirmed by bimolecular fluorescence complementation (BiFC) assays. Overall, we speculated that heterologous expression of CmTPL1-1 regulates plant growth and development by interacting with auxin signaling in Arabidopsis.
Collapse
Affiliation(s)
- Xinran Chong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yunxiao Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Fei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Haibin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Lian Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
38
|
Zhang F, Rossignol P, Huang T, Wang Y, May A, Dupont C, Orbovic V, Irish VF. Reprogramming of Stem Cell Activity to Convert Thorns into Branches. Curr Biol 2020; 30:2951-2961.e5. [DOI: 10.1016/j.cub.2020.05.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/16/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022]
|
39
|
Zhang C, Wang J, Wang X, Li C, Ye Z, Zhang J. UF, a WOX gene, regulates a novel phenotype of un-fused flower in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110523. [PMID: 32563463 DOI: 10.1016/j.plantsci.2020.110523] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Flower formation is a basic condition for fruit set in all flowering plants. The normal stamen of tomato flower fused together to form a yellow cylinder surrounding the carpels. In this study, we identified an un-fused flower (uf) tomato mutant that is defective in petal, carpal and stamen fusion and lateral outgrowth. After RNA-seq-based BSA (BSR), the candidate region location was identified in the long arm of chromosome 3. Using map-based cloning with InDel and CAPS markers, the UF candidate gene was mapped in a 104 kb region. In this region, a WOX (WUSCHEL-related homeobox) transcription factor SlWOX1 was considered as a candidate of UF as there is a 72bp deletion in its second exon in uf mutant. The mutations of SlWOX1 generated by CRISPR/CAS9 approach under wild-type background reproduced the phenotypes of uf mutant, indicating that the SlWOX1 gene is indeed UF. Interestingly, expression analysis of organ lateral polarity determinant genes showed that abaxial genes (SlYABBY5 and SlARF4) and adaxial genes (AS and HD-ZIPIII) were significantly down-regulated in the uf mutant, which is different to that in Arabidopsis and petunia. In conclusion, this work revealed a novel function of SlWOX1 in the regulation of flower development in tomato.
Collapse
Affiliation(s)
- Chunli Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan430070, PR China.
| | - Jiafa Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan430070, PR China.
| | - Xin Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan430070, PR China.
| | - Changxing Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan430070, PR China.
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan430070, PR China.
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan430070, PR China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, Wuhan430070, PR China.
| |
Collapse
|
40
|
Stem cell ageing of the root apical meristem of Arabidopsis thaliana. Mech Ageing Dev 2020; 190:111313. [PMID: 32721407 DOI: 10.1016/j.mad.2020.111313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/16/2020] [Accepted: 07/02/2020] [Indexed: 11/21/2022]
Abstract
Plants form new organs from pluripotent stem cells throughout their lives and under changing environmental conditions. In the Arabidopsis root meristem, a pool of stem cells surrounding a stem cell organizer, named Quiescent Center (QC), gives rise to the specific root tissues. Among them, the columella stem cell niche that gives rise to the gravity-sensing columella cells has been used as a model system to study stem cell regulation at the young seedling stage. However, little is known about the changes of the stem cell niche during later development. Here, we report that the columella stem cell niche undergoes pronounced histological and molecular reorganization as the plant progresses towards the adult stage. Commonly-used reporters for cellular states undergo re-patterning after an initial juvenile meristem phase. Furthermore, the responsiveness to the plant hormone abscisic acid, an integrator of stress response, strongly decreases. Many ageing effects are reminiscent of the loss-of-function phenotype of the central stem cell regulator WOX5 and can be explained by gradually decreasing WOX5 expression levels during ageing. Our results show that the architecture and central regulatory components of the root stem cell niche are already highly dynamic within the first weeks of development.
Collapse
|
41
|
González AD, Pabón-Mora N, Alzate JF, González F. Meristem Genes in the Highly Reduced Endoparasitic Pilostyles boyacensis (Apodanthaceae). Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
42
|
Fuchs M, Lohmann JU. Aiming for the top: non-cell autonomous control of shoot stem cells in Arabidopsis. JOURNAL OF PLANT RESEARCH 2020; 133:297-309. [PMID: 32146616 PMCID: PMC7214502 DOI: 10.1007/s10265-020-01174-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/27/2020] [Indexed: 05/13/2023]
Abstract
In multicellular organisms, not all cells are created equal. Instead, organismal complexity is achieved by specialisation and division of labour between distinct cell types. Therefore, the organism depends on the presence, correct proportion and function of all cell types. It follows that early development is geared towards setting up the basic body plan and to specify cell lineages. Since plants employ a post-embryonic mode of development, the continuous growth and addition of new organs require a source of new cells, as well as a strict regulation of cellular composition throughout the entire life-cycle. To meet these demands, evolution has brought about complex regulatory systems to maintain and control continuously active stem cell systems. Here, we review recent work on the mechanisms of non cell-autonomous control of shoot stem cells in the model plant Arabidopsis thaliana with a strong focus on the cell-to-cell mobility and function of the WUSCHEL homeodomain transcription factor.
Collapse
Affiliation(s)
- Michael Fuchs
- Department of Stem Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Jan U Lohmann
- Department of Stem Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany.
| |
Collapse
|
43
|
Che G, Gu R, Zhao J, Liu X, Song X, Zi H, Cheng Z, Shen J, Wang Z, Liu R, Yan L, Weng Y, Zhang X. Gene regulatory network controlling carpel number variation in cucumber. Development 2020; 147:dev.184788. [PMID: 32165491 DOI: 10.1242/dev.184788] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/26/2020] [Indexed: 01/09/2023]
Abstract
The WUSCHEL-CLAVATA3 pathway genes play an essential role in shoot apical meristem maintenance and floral organ development, and under intense selection during crop domestication. The carpel number is an important fruit trait that affects fruit shape, size and internal quality in cucumber, but the molecular mechanism remains elusive. Here, we found that CsCLV3 expression was negatively correlated with carpel number in cucumber cultivars. CsCLV3-RNAi led to increased number of petals and carpels, whereas overexpression of CsWUS resulted in more sepals, petals and carpels, suggesting that CsCLV3 and CsWUS function as a negative and a positive regulator for carpel number variation, respectively. Biochemical analyses indicated that CsWUS directly bound to the promoter of CsCLV3 and activated its expression. Overexpression of CsFUL1A , a FRUITFULL-like MADS-box gene, resulted in more petals and carpels. CsFUL1A can directly bind to the CsWUS promoter to stimulate its expression. Furthermore, we found that auxin participated in carpel number variation in cucumber through interaction of CsARF14 with CsWUS. Therefore, we have identified a gene regulatory pathway involving CsCLV3, CsWUS, CsFUL1A and CsARF14 in determining carpel number variation in an important vegetable crop - cucumber.
Collapse
Affiliation(s)
- Gen Che
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Ran Gu
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Jianyu Zhao
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaofeng Liu
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaofei Song
- Analysis and Testing Centre, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Hailing Zi
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Zhihua Cheng
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Junjun Shen
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Zhongyi Wang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Renyi Liu
- Center for Agroforestry Mega Data Science and FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liying Yan
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Yiqun Weng
- USDA-ARS, Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706, USA
| | - Xiaolan Zhang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
44
|
Jha P, Ochatt SJ, Kumar V. WUSCHEL: a master regulator in plant growth signaling. PLANT CELL REPORTS 2020; 39:431-444. [PMID: 31984435 DOI: 10.1007/s00299-020-02511-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/13/2020] [Indexed: 05/24/2023]
Abstract
This review summarizes recent knowledge on functions of WUS and WUS-related homeobox (WOX) transcription factors in diverse signaling pathways governing shoot meristem biology and several other aspects of plant dynamics. Transcription factors (TFs) are master regulators involved in controlling different cellular and biological functions as well as diverse signaling pathways in plant growth and development. WUSCHEL (WUS) is a homeodomain transcription factor necessary for the maintenance of the stem cell niche in the shoot apical meristem, the differentiation of lateral primordia, plant cell totipotency and other diverse cellular processes. Recent research about WUS has uncovered several unique features including the complex signaling pathways that further improve the understanding of vital network for meristem biology and crop productivity. In addition, several reports bridge the gap between WUS expression and plant signaling pathway by identifying different WUS and WUS-related homeobox (WOX) genes during the formation of shoot (apical and axillary) meristems, vegetative-to-embryo transition, genetic transformation, and other aspects of plant growth and development. In this respect, the WOX family of TFs comprises multiple members involved in diverse signaling pathways, but how these pathways are regulated remains to be elucidated. Here, we review the current status and recent discoveries on the functions of WUS and newly identified WOX family members in the regulatory network of various aspects of plant dynamics.
Collapse
Affiliation(s)
- Priyanka Jha
- Amity Institute of Biotechnology, Amity University, Major Arterial Road, Action Area II, Kolkata, West Bengal, India
| | - Sergio J Ochatt
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Vijay Kumar
- Plant Biotechnology Lab, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144411, India.
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
45
|
Zumajo-Cardona C, Ambrose BA. Phylogenetic analyses of key developmental genes provide insight into the complex evolution of seeds. Mol Phylogenet Evol 2020; 147:106778. [PMID: 32165160 DOI: 10.1016/j.ympev.2020.106778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/06/2020] [Accepted: 02/26/2020] [Indexed: 11/30/2022]
Abstract
Gene duplication plays a decisive role in organismal diversification and in the appearance of novel structures. In plants the megagametophyte covered by the integuments, which after fertilization becomes the seed constitutes a novel structure: the ovule. In Arabidopsis thaliana, genetic mechanisms regulating ovule development, including the genetics underlying ovule initiation, ovule patterning and integument development, have been identified. Among seed plants, integuments are not only a novelty in evolution, but integuments also present an enormous morphological variation. This study is focused on the evolution of gene families that play a role in the proper morphological development of the integuments, BELL1 (BEL1), KANADIs (KAN1, KAN2, and KAN4/ATS), UNICORN (UCN) and SHORT INTEGUMENTS1 (SIN1). In Arabidopsis, BEL1 establishes the initiation of integument development. KAN1 and 2 act in the proper development of the outer integument. While ABERRANT TESTA SHAPE (ATS), is involved in the correct separation of both integuments. UCN acts in planar growth of the outer integument repressing ATS. SIN1 is involved in cell elongation in the integuments. The results of our analyses show that each of these genes has a different evolutionary history and that while gymnosperms appear to have a simpler ovule morphology, they have more homologues of these candidate genes than angiosperms. In addition, we present the conserved and novel motifs for each of these genes among seed plants and their selection constraints, which may be related to functional changes and to the diversity of ovule morphologies.
Collapse
Affiliation(s)
- Cecilia Zumajo-Cardona
- New York Botanical Garden, Bronx, NY 10458, USA; The Graduate Center, City University of New York, New York, NY 10016, USA
| | | |
Collapse
|
46
|
Ma Y, Miotk A, Šutiković Z, Ermakova O, Wenzl C, Medzihradszky A, Gaillochet C, Forner J, Utan G, Brackmann K, Galván-Ampudia CS, Vernoux T, Greb T, Lohmann JU. WUSCHEL acts as an auxin response rheostat to maintain apical stem cells in Arabidopsis. Nat Commun 2019; 10:5093. [PMID: 31704928 PMCID: PMC6841675 DOI: 10.1038/s41467-019-13074-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/14/2019] [Indexed: 12/14/2022] Open
Abstract
To maintain the balance between long-term stem cell self-renewal and differentiation, dynamic signals need to be translated into spatially precise and temporally stable gene expression states. In the apical plant stem cell system, local accumulation of the small, highly mobile phytohormone auxin triggers differentiation while at the same time, pluripotent stem cells are maintained throughout the entire life-cycle. We find that stem cells are resistant to auxin mediated differentiation, but require low levels of signaling for their maintenance. We demonstrate that the WUSCHEL transcription factor confers this behavior by rheostatically controlling the auxin signaling and response pathway. Finally, we show that WUSCHEL acts via regulation of histone acetylation at target loci, including those with functions in the auxin pathway. Our results reveal an important mechanism that allows cells to differentially translate a potent and highly dynamic developmental signal into stable cell behavior with high spatial precision and temporal robustness. Spatial control of auxin signaling maintains a balance between stem-cell self-renewal and differentiation at the plant shoot apex. Here Ma et al. show that rheostatic control of auxin response by the WUSCHEL transcription factor maintains stem cells by conferring resistance to auxin mediated differentiation.
Collapse
Affiliation(s)
- Yanfei Ma
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, D-69120, Heidelberg, Germany
| | - Andrej Miotk
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, D-69120, Heidelberg, Germany
| | - Zoran Šutiković
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, D-69120, Heidelberg, Germany
| | - Olga Ermakova
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, D-69120, Heidelberg, Germany
| | - Christian Wenzl
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, D-69120, Heidelberg, Germany
| | - Anna Medzihradszky
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, D-69120, Heidelberg, Germany
| | - Christophe Gaillochet
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, D-69120, Heidelberg, Germany
| | - Joachim Forner
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, D-69120, Heidelberg, Germany
| | - Gözde Utan
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, D-69120, Heidelberg, Germany
| | - Klaus Brackmann
- Vienna Biocenter (VBC), Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Carlos S Galván-Ampudia
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Thomas Greb
- Department of Developmental Physiology, Centre for Organismal Studies, Heidelberg University, D-69120, Heidelberg, Germany
| | - Jan U Lohmann
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, D-69120, Heidelberg, Germany.
| |
Collapse
|
47
|
Zhao W, Chao H, Zhang L, Ta N, Zhao Y, Li B, Zhang K, Guan Z, Hou D, Chen K, Li H, Zhang L, Wang H, Li M. Integration of QTL Mapping and Gene Fishing Techniques to Dissect the Multi-Main Stem Trait in Rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2019; 10:1152. [PMID: 31616451 PMCID: PMC6764107 DOI: 10.3389/fpls.2019.01152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 08/23/2019] [Indexed: 05/31/2023]
Abstract
Rapeseed is one of the most important oilseed crops in the world. Improving the production of rapeseed is beneficial to relieve the shortage of edible vegetable oil. As the organ of support and transport, the main stem of rapeseed controls the plant architecture, transports the water and nutrients, and determines the number of inflorescence. Increasing the number of main stems would be helpful for the yield improvement in Brassica napus (B. napus). This attractive multi-main stem (MMS) trait was observed in the KN DH population. We investigated not only the frequency of MMS traits but also dissected the genetic basis with QTL mapping analysis and Gene-Fishing technique. A total of 43 QTLs were identified for MMS based on high-density linkage map, which explained 2.95-14.9% of the phenotypic variation, among which two environmental stable QTLs (cqMMS.A3-2 and cqMMS.C3-5) were identified in winter and semi-winter environments. Epistatic interaction analysis indicated cqMMS.C3-5 was an important loci for MMS. According to the functional annotation, 159 candidate genes within QTL confidence intervals, corresponding to 148 Arabidopsis thaliana (A. thaliana) homologous genes, were identified, which regulated lateral bud development and tiller of stem, such as shoot meristemless (STM), WUSCHEL-regulated-related genes, cytokinin response factors (CRF5), cytokinin oxidase (CKX4), gibberellin-regulated (RDK1), auxin-regulated gene (ARL, IAR4), and auxin-mediated signaling gene (STV1). Based on Gene-Fishing analysis between the natural plants and the double-main stem (DMS) plant, 31 differentially expressed genes (DEGs) were also obtained, which were related to differentiation and formation of lateral buds, biotic stimulus, defense response, drought and salt-stress responses, as well as cold-response functional genes. In addition, by combining the candidate genes in QTL regions with the DEGs that were obtained by Gene-Fishing technique, six common candidate genes (RPT2A, HLR, CRK, LRR-RLK, AGL79, and TCTP) were identified, which might probably be related to the formation of MMS phenotype. The present results not only would give a new insight into the genetic basis underlying the regulation of MMS but also would provide clues for plant architecture breeding in rapeseed.
Collapse
Affiliation(s)
- Weiguo Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hybrid Rape Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, China
| | - Hongbo Chao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Na Ta
- Hybrid Rape Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, China
| | - Yajun Zhao
- Hybrid Rape Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, China
| | - Baojun Li
- Hybrid Rape Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, China
| | - Kai Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhoubo Guan
- Hybrid Rape Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, China
| | - Dalin Hou
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Huaixin Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Libin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Wang
- Hybrid Rape Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
48
|
Zhang F, Wang H, Kalve S, Wolabu TW, Nakashima J, Golz JF, Tadege M. Control of leaf blade outgrowth and floral organ development by LEUNIG, ANGUSTIFOLIA3 and WOX transcriptional regulators. THE NEW PHYTOLOGIST 2019; 223:2024-2038. [PMID: 31087654 DOI: 10.1111/nph.15921] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/06/2019] [Indexed: 05/27/2023]
Abstract
Plant lateral organ development is a complex process involving both transcriptional activation and repression mechanisms. The WOX transcriptional repressor WOX1/STF, the LEUNIG (LUG) transcriptional corepressor and the ANGUSTIFOLIA3 (AN3) transcriptional coactivator play important roles in leaf blade outgrowth and flower development, but how these factors coordinate their activities remains unclear. Here we report physical and genetic interactions among these key regulators of leaf and flower development. We developed a novel in planta transcriptional activation/repression assay and suggest that LUG could function as a transcriptional coactivator during leaf blade development. MtLUG physically interacts with MtAN3, and this interaction appears to be required for leaf and flower development. A single amino acid substitution at position 61 in the SNH domain of MtAN3 protein abolishes its interaction with MtLUG, and its transactivation activity and biological function. Mutations in lug and an3 enhanced each other's mutant phenotypes. Both the lug and the an3 mutations enhanced the wox1 prs leaf and flower phenotypes in Arabidopsis. Our findings together suggest that transcriptional repression and activation mediated by the WOX, LUG and AN3 regulators function in concert to promote leaf and flower development, providing novel mechanistic insights into the complex regulation of plant lateral organ development.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Hui Wang
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Shweta Kalve
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Tezera W Wolabu
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Jin Nakashima
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - John F Golz
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, Vic, 3010, Australia
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| |
Collapse
|
49
|
Wang H, Xu Y, Hong L, Zhang X, Wang X, Zhang J, Ding Z, Meng Z, Wang ZY, Long R, Yang Q, Kong F, Han L, Zhou C. HEADLESS Regulates Auxin Response and Compound Leaf Morphogenesis in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2019; 10:1024. [PMID: 31475021 PMCID: PMC6707262 DOI: 10.3389/fpls.2019.01024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/22/2019] [Indexed: 05/28/2023]
Abstract
WUSCHEL (WUS) is thought to be required for the establishment of the shoot stem cell niche in Arabidopsis thaliana. HEADLESS (HDL), a gene that encodes a WUS-related homeobox family transcription factor, is thought to be the Medicago truncatula ortholog of the WUS gene. HDL plays conserved roles in shoot apical meristem (SAM) and axillary meristem (AM) maintenance. HDL is also involved in compound leaf morphogenesis in M. truncatula; however, its regulatory mechanism has not yet been explored. Here, the significance of HDL in leaf development was investigated. Unlike WUS in A. thaliana, HDL was transcribed not only in the SAM and AM but also in the leaf. Both the patterning of the compound leaves and the shape of the leaf margin in hdl mutant were abnormal. The transcriptional profile of the gene SLM1, which encodes an auxin efflux carrier, was impaired and the plants' auxin response was compromised. Further investigations revealed that HDL positively regulated auxin response likely through the recruitment of MtTPL/MtTPRs into the HDL repressor complex. Its participation in auxin-dependent compound leaf morphogenesis is of interest in the context of the functional conservation and neo-functionalization of the products of WUS orthologs.
Collapse
Affiliation(s)
- Hongfeng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
- School of Life Science, Guangzhou University, Guangzhou, China
| | - Yiteng Xu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Limei Hong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Xue Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Xiao Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Jing Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Zhe Meng
- Shandong Provincial Key Laboratory of Plant Stress, Shandong Normal University, Ji’nan, China
| | - Zeng-Yu Wang
- Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao, China
| | - Ruicai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fanjiang Kong
- School of Life Science, Guangzhou University, Guangzhou, China
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| |
Collapse
|
50
|
Suzuki C, Tanaka W, Hirano HY. Transcriptional Corepressor ASP1 and CLV-Like Signaling Regulate Meristem Maintenance in Rice. PLANT PHYSIOLOGY 2019; 180:1520-1534. [PMID: 31079034 PMCID: PMC6752933 DOI: 10.1104/pp.19.00432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/29/2019] [Indexed: 05/22/2023]
Abstract
Stem cell homeostasis is maintained by the WUSCHEL-CLAVATA (WUS-CLV) negative feedback loop in Arabidopsis (Arabidopsis thaliana). In rice (Oryza sativa), FLORAL ORGAN NUMBER2 (FON2) functions in the negative regulation of stem cell proliferation, similar to Arabidopsis CLV3 In this study, through genetic enhancer analysis, we found that loss of function of ABERRANT SPIKELET AND PANICLE1 (ASP1), encoding an Arabidopsis TOPLESS (TPL)-like transcriptional corepressor, enhances the fon2 flower phenotype, which displayed an increase in floral organ number. In the fon2 asp1 double mutant, the inflorescence was severely affected, resulting in bifurcation of the main axis (rachis), a phenotype that has not previously been reported. The stem cells showed marked overproliferation in fon2 asp1, resulting in extreme enlargement and splitting of the inflorescence meristem. These results suggest that ASP1 and FON2 synergistically regulate stem cell maintenance in rice. Unexpectedly, genetic analysis indicated that TILLERS ABSENT1, the rice ortholog of WUS, is not involved in promoting stem cell proliferation in this meristem. Transcriptome analysis suggested that ASP1 and FON signaling negatively regulate a set of genes with similar functions, and they act on these genes in concert. Taken together, our results suggest that TPL-like corepressor activity plays a crucial role in meristem maintenance, and that stem cell proliferation is properly maintained via the cooperation of ASP1 and FON2.
Collapse
Affiliation(s)
- Chie Suzuki
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Wakana Tanaka
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiro-Yuki Hirano
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|