1
|
Wang Z, Ye X, Huang L, Yuan Y. Modulation of morphogenesis and metabolism by plant cell biomechanics: from model plants to traditional herbs. HORTICULTURE RESEARCH 2025; 12:uhaf011. [PMID: 40093376 PMCID: PMC11908831 DOI: 10.1093/hr/uhaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/05/2025] [Indexed: 03/19/2025]
Abstract
The quality of traditional herbs depends on organ morphogenesis and the accumulation of active pharmaceutical ingredients. While recent research highlights the significance of cell mechanobiology in model plant morphogenesis, our understanding of mechanical signal initiation and transduction in traditional herbs remains incomplete. Recent studies reveal a close correlation between cell wall (CW) biosynthesis and active ingredient production, yet the role of cell mechanics in balancing morphogenesis and secondary metabolism is often overlooked. This review explores how the cell wall, plasma membrane, cytoskeleton, and vacuole collaborate to regulate cell mechanics and respond to mechanical changes. We propose CW biosynthesis as a hub in connecting cell mechanics with secondary metabolism and emphasize that understanding the relationship between mechanical remodeling and secondary metabolism could provide new insights into plant cell mechanobiology and the breeding of high-quality herbs.
Collapse
Affiliation(s)
- Zhengpeng Wang
- Experimental Research Center, China Academy of Chinese Medical Science, Beijing 100700, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaoming Ye
- Peking University Health Science Center, Peking University, Beijing 100700, China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuan Yuan
- Experimental Research Center, China Academy of Chinese Medical Science, Beijing 100700, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
| |
Collapse
|
2
|
Ali S, Mir RA, Haque MA, Danishuddin, Almalki MA, Alfredan M, Khalifa A, Mahmoudi H, Shahid M, Tyagi A, Mir ZA. Exploring physiological and molecular dynamics of drought stress responses in plants: challenges and future directions. FRONTIERS IN PLANT SCIENCE 2025; 16:1565635. [PMID: 40196426 PMCID: PMC11973087 DOI: 10.3389/fpls.2025.1565635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/25/2025] [Indexed: 04/09/2025]
Abstract
Plants face multifactorial environmental stressors mainly due to global warming and climate change which affect their growth, metabolism, and productivity. Among them, is drought stress which alters intracellular water relations, photosynthesis, ion homeostasis and elevates reactive oxygen species which eventually reduce their growth and yields. In addition, drought alters soil physicochemical properties and beneficial microbiota which are critical for plant survival. Recent reports have shown that climate change is increasing the occurrence and intensity of drought in many regions of the world, which has become a primary concern in crop productivity, ecophysiology and food security. To develop ideas and strategies for protecting plants against the harmful effects of drought stress and meeting the future food demand under climatic calamities an in-depth understanding of molecular regulatory pathways governing plant stress responses is imperative. In parallel, more research is needed to understand how drought changes the features of soil, particularly microbiomes, as microorganisms can withstand drought stress faster than plants, which could assist them to recover. In this review we first discuss the effect of drought stress on plants, soil physicochemical properties and microbiomes. How drought stress affects plant microbe interactions and other microbe-driven beneficial traits was also highlighted. Next, we focused on how plants sense drought and undergo biochemical reprogramming from root to shoot to regulate diverse adaptive traits. For instance, the role of calcium (Ca2+), reactive oxygen species (ROS) and abscisic acid (ABA) in modulating different cellular responses like stomata functioning, osmotic adjustment, and other adaptive traits. We also provide an update on the role of different hormones in drought signaling and their crosstalk which allows plants to fine tune their responses during drought stress. Further, we discussed how recurrent drought exposure leads to the development of short-term memory in plants that allows them to survive future drought stresses. Lastly, we discussed the application of omics and biotechnological-based mitigating approaches to combat drought stress in sustainable agriculture. This review offers a deeper understanding of multiple factors that are related to drought stress in plants which can be useful for drought improvement programs.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Danishuddin
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Mohammed A. Almalki
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mohammad Alfredan
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ashraf Khalifa
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Henda Mahmoudi
- Directorate of Programs, International Center for Biosaline Agriculture, Dubai, United Arab Emirates
| | - Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agriculture Sciences, Aligarh Muslim University, Aligarh, India
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Zahoor Ahmad Mir
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
3
|
Tran LH, Ruszkowski M. ARR1 and AHP interactions in the multi-step phosphorelay system. FRONTIERS IN PLANT SCIENCE 2025; 16:1537021. [PMID: 40084109 PMCID: PMC11903765 DOI: 10.3389/fpls.2025.1537021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/07/2025] [Indexed: 03/16/2025]
Abstract
Plants use multi-step phosphorelay (MSP) systems in response to exogenous and endogenous stimuli. Cytokinin and ethylene are among the factors that engage MSP signaling cascades but examples independent of phytohormones also exist. The MSP signaling involves four consecutive phosphorylation events at: (i) the kinase domain of the sensory histidine kinase, (ii) the receiver domain of the latter protein, (iii) the histidine-containing phosphotransfer protein, and (iv) the response regulator. In Arabidopsis thaliana, there are eight canonical histidine kinases, five histidine-containing phosphotransfer proteins (AHPs), one pseudo AHP, and 23 response regulators (ARRs). This redundancy suggests complex interactions between signaling pathways, including those involved in phytohormone cross-talk. To bring new insights at the molecular level, we investigated the structural and biophysical characteristics of the AHP1/ARR1 complex. ARR1, a type-B ARR, contains the GARP domain for DNA binding, in addition to the canonical receiver domain that mediates AHP1 interaction. We compared the ARR1 affinities across all five active AHPs and found a modest, two-fold higher affinity for AHP1. This result suggests that while ARR1 shows a slight preference for AHP1, it can also interact with AHP2-5, which potentially makes ARR1 a central node in signaling and a cross-talk modulator. In addition, we discuss the oligomerization state of AHP and related proteins utilizing all available experimental data to conclude that free AHPs are most likely monomeric.
Collapse
Affiliation(s)
| | - Milosz Ruszkowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
4
|
Hertig CW, Devunuri P, Rutten T, Hensel G, Schippers JHM, Müller B, Thiel J. Genome-wide characterization of two-component system elements in barley enables the identification of grain-specific phosphorelay genes. BMC PLANT BIOLOGY 2025; 25:209. [PMID: 39962384 PMCID: PMC11831784 DOI: 10.1186/s12870-025-06161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/24/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND The two-component system (TCS) serves as a common intracellular signal transduction pathway implicated in various processes of plant development and response to abiotic stress. With regard to the important cereal crop barley, only partial information about the occurrence of TCS signaling elements in the genome and putative functions is available. RESULTS In this study, we identified a total of 67 non-redundant TCS genes from all subgroups of the phosphorelay in the latest barley reference genome. Functional annotation and phylogenetic characterization was combined with a comprehensive gene expression analysis of the signaling components. Expression profiles hint at potential functions in vegetative and reproductive organs and tissue types as well as diverse stress responses. Apparently, a distinct subset of TCS genes revealed a stringent grain-specificity not being expressed elsewhere in the plant. By using laser capture microdissection (LCM)-based transcript analysis of barley grain tissues, we refined expression profiles of selected TCS genes and attributed them to individual cell types within the grain. Distinct TCS elements are exclusively expressed in the different maternal and filial cell types, particularly in the endosperm transfer cell (ETC) region. These genes are deemed to be selected in the domestication process of modern cultivars. Moreover, barley plants transformed with a synthetic sensor (TCSn::GFP) showed a high and specific activity in the ETC region of grains monitoring transcriptional output of the signaling system. CONCLUSIONS The results provide comprehensive insights into the TCS gene family in the temperate cereal crop barley and indicate implications in various agronomic traits. The dataset is valuable for future research in different aspects of plant development and will be indispensable not only for barley, but also for other crops of the Poaceae.
Collapse
Affiliation(s)
- Christian W Hertig
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Pravinya Devunuri
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
- Present address: University of Hohenheim, Schloss Hohenheim 1, Stuttgart, 70599, Germany
| | - Twan Rutten
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Götz Hensel
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
- Present address: Center for Plant Genome Engineering, Heinrich-Heine University, Düsseldorf, Germany
| | - Jos H M Schippers
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Bruno Müller
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
- Present address:, Microsynth AG, Balgach, 9436, Switzerland
| | - Johannes Thiel
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany.
| |
Collapse
|
5
|
Yang X, Shaw RK, Li L, Jiang F, Fan X. Novel candidate genes and genetic basis analysis of kernel starch content in tropical maize. BMC PLANT BIOLOGY 2025; 25:105. [PMID: 39856590 PMCID: PMC11760711 DOI: 10.1186/s12870-025-06125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Starch is the most abundant carbohydrate in maize grains, serving as a primary energy source for both humans and animals, and playing a crucial role in various industrial applications. Increasing the starch content of maize grains is beneficial for improving the grain yield and quality. To gain insight into the genetic basis of starch content in maize kernels, a multiparent population (MPP) was constructed and evaluated for starch content in three different environments. RESULTS The integration of QTL mapping and genome-wide association analysis (GWAS) identified two SNPs, 8_166371888 and 8_178656036, which overlapped the QTL interval of qSC8-1, identified in the tropical maize line YML46. The phenotypic variance explained (PVE) by the QTL qSC8-1 was12.17%, while the SNPs 8_166371888 and 8_178656036 explained 10.19% and 5.72% of the phenotypic variance. Combined GWAS and QTL analyses led to the identification of two candidate genes, Zm00001d012005 and Zm00001d012687 located on chromosome 8. CONCLUSIONS The candidate gene Zm00001d012005 encodes histidine kinase, which is known to play a role in starch accumulation in rice spikes. Related histidine kinases, such as AHK1, are involved in endosperm transfer cell development in barley, which affects grain quality. Zm00001d012687 encodes triacylglycerol lipase, which reduces seed oil content. Since oil content in cereal kernels is negatively correlated with starch content, this gene is likely involved in regulating the starch content in maize kernels. These findings provide insights into the genetic mechanisms underlying kernel starch content and establish a theoretical basis for breeding maize varieties with high starch content.
Collapse
Affiliation(s)
- Xiaoping Yang
- College of Agriculture, Yunnan University, Kunming, 650500, China
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Ranjan K Shaw
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Linzhuo Li
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Fuyan Jiang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China.
| |
Collapse
|
6
|
Wu B, Sun M, Zhong T, Zhang J, Lei T, Yan Y, Chen X, Nan R, Sun F, Zhang C, Xi Y. Genome-wide identification and expression analysis of two-component system genes in switchgrass (Panicum virgatum L.). BMC PLANT BIOLOGY 2024; 24:1014. [PMID: 39465364 PMCID: PMC11520087 DOI: 10.1186/s12870-024-05687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
The two-component system (TCS) consists of histidine kinase (HK), histidine phosphate transfer protein (HP), and response regulatory factor (RR). It is one of the most crucial components of signal transduction in plants, playing a significant role in regulating plant growth, development, and responses to various abiotic stresses. Although TCS genes have been extensively identified in a variety of plants, the genome-wide recognition and examination of TCS in switchgrass remain unreported. Accordingly, this study identified a total of 87 TCS members in the genome of switchgrass, comprising 20 HK(L)s, 10 HPs, and 57 RRs. Detailed analyses were also conducted on their gene structures, conserved domains, and phylogenetic relationships. Moreover, this study analysed the gene expression profiles across diverse organs and investigated their response patterns to adverse environmental stresses. Results revealed that 87 TCS genes were distributed across 18 chromosomes, with uneven distribution. Expansion of these genes in switchgrass was achieved through both fragment and tandem duplication. PvTCS members are relatively conservative in the evolutionary process, but the gene structure varies significantly. Various cis-acting elements, varying in types and amounts, are present in the promoter region of PvTCSs, all related to plant growth, development, and abiotic stress, due to the TCS gene structure. Protein-protein interaction and microRNA prediction suggest complex interactions and transcriptional regulation among TCS members. Additionally, most TCS members are expressed in roots and stems, with some genes showing organ-specific expression at different stages of leaf and inflorescence development. Under conditions of abiotic stress such as drought, low temperature, high temperature, and salt stress, as well as exogenous abscisic acid (ABA), the expression of most TCS genes is either stimulated or inhibited. Our systematic analysis could offer insight into the characterization of the TCS genes, and further the growth of functional studies in switchgrass.
Collapse
Affiliation(s)
- Baolin Wu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Mengyu Sun
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Tao Zhong
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Jiawei Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Tingshu Lei
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Yuming Yan
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Xiaohong Chen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Rui Nan
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Fengli Sun
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Chao Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Yajun Xi
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
7
|
Lu J, Chen YN, Yin TM. Expression and functional divergence of a type-A response regulator paralog pair formed by dispersed duplication during Populus deltoides evolution. Commun Biol 2024; 7:1367. [PMID: 39438601 PMCID: PMC11496517 DOI: 10.1038/s42003-024-07091-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
Gene duplication and divergence are essential to plant evolution. The Arabidopsis type-A response regulator (ARR) family, negative regulators in cytokinin signaling, exemplifies gene expansion and differential retention. Despite extensive research, the understanding of type-A RR homologs in woody plants remains limited. In this study, the evolution history of type-A RR gene families across four rosids and one monocot has been comprehensively investigated. Focusing on Populus deltoides, a unique pair of dispersed duplicates, PdRR8 and PdFERR, is identified, and their duplication is estimated to have occurred in the common ancestor of the four rosids. The duplication remnants corresponding to PdRR8 have been retained in all rosids but the counterpart of PdFERR has been lost. In poplar, PdRR8 shows the highest expression levels in leaves, while PdFERR is specifically expressed in female floral buds. Among various external stimuli, cold strongly represses PdRR8 promoter activity, whereas 6-BA markedly inhibits that of PdFERR. Overexpression of PdRR8 in the Arabidopsis arr16arr17 double-mutant fully complements the reduced hydrotropic response. In contrast, PdFERR fails to rescue the hydrotropic defects of the mutant. Results of evolutionary, expression and functional analyses indicate that PdRR8, rather than PdFERR, is the true ortholog of the ARR16-ARR17 paralogs. Though PdRR8 and PdFERR originate from a common ancestral gene and evolve under strong negative selection, these two dispersed duplicates have exhibited differential expression and some degree of functional divergence.
Collapse
Affiliation(s)
- Jing Lu
- State Key Laboratory for Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China
| | - Ying-Nan Chen
- State Key Laboratory for Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China.
| | - Tong-Ming Yin
- State Key Laboratory for Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
8
|
Batelli G, Ruggiero A, Esposito S, Venezia A, Lupini A, Nurcato R, Costa A, Palombieri S, Vitiello A, Mauceri A, Cammareri M, Sunseri F, Grandillo S, Granell A, Abenavoli MR, Grillo S. Combined salt and low nitrate stress conditions lead to morphophysiological changes and tissue-specific transcriptome reprogramming in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108976. [PMID: 39094482 DOI: 10.1016/j.plaphy.2024.108976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
Despite intense research towards the understanding of abiotic stress adaptation in tomato, the physiological adjustments and transcriptome modulation induced by combined salt and low nitrate (low N) conditions remain largely unknown. Here, three traditional tomato genotypes were grown under long-term single and combined stresses throughout a complete growth cycle. Physiological, molecular, and growth measurements showed extensive morphophysiological modifications under combined stress compared to the control, and single stress conditions, resulting in the highest penalty in yield and fruit size. The mRNA sequencing performed on both roots and leaves of genotype TRPO0040 indicated that the transcriptomic signature in leaves under combined stress conditions largely overlapped that of the low N treatment, whereas root transcriptomes were highly sensitive to salt stress. Differentially expressed genes were functionally interpreted using GO and KEGG enrichment analysis, which confirmed the stress and the tissue-specific changes. We also disclosed a set of genes underlying the specific response to combined conditions, including ribosome components and nitrate transporters, in leaves, and several genes involved in transport and response to stress in roots. Altogether, our results provide a comprehensive understanding of above- and below-ground physiological and molecular responses of tomato to salt stress and low N treatment, alone or in combination.
Collapse
Affiliation(s)
- Giorgia Batelli
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici (CNR-IBBR), Portici, 80055, Italy
| | - Alessandra Ruggiero
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici (CNR-IBBR), Portici, 80055, Italy
| | - Salvatore Esposito
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici (CNR-IBBR), Portici, 80055, Italy
| | - Accursio Venezia
- Research Centre for Vegetable and Ornamental Crops, Council for Agricultural Research and Economics (CREA-OF), 84098, Pontecagnano Faiano, Italy
| | - Antonio Lupini
- Department of Agraria, University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
| | - Roberta Nurcato
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici (CNR-IBBR), Portici, 80055, Italy
| | - Antonello Costa
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici (CNR-IBBR), Portici, 80055, Italy
| | - Samuela Palombieri
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici (CNR-IBBR), Portici, 80055, Italy
| | - Antonella Vitiello
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici (CNR-IBBR), Portici, 80055, Italy
| | - Antonio Mauceri
- Department of Agraria, University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
| | - Maria Cammareri
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici (CNR-IBBR), Portici, 80055, Italy
| | - Francesco Sunseri
- Department of Agraria, University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
| | - Silvana Grandillo
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici (CNR-IBBR), Portici, 80055, Italy
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| | - Maria Rosa Abenavoli
- Department of Agraria, University Mediterranea of Reggio Calabria, Reggio Calabria, Italy.
| | - Stefania Grillo
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici (CNR-IBBR), Portici, 80055, Italy.
| |
Collapse
|
9
|
Sainz MM, Filippi CV, Eastman G, Sotelo-Silveira M, Zardo S, Martínez-Moré M, Sotelo-Silveira J, Borsani O. Water deficit response in nodulated soybean roots: a comprehensive transcriptome and translatome network analysis. BMC PLANT BIOLOGY 2024; 24:585. [PMID: 38902623 PMCID: PMC11191192 DOI: 10.1186/s12870-024-05280-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Soybean establishes a mutualistic interaction with nitrogen-fixing rhizobacteria, acquiring most of its nitrogen requirements through symbiotic nitrogen fixation. This crop is susceptible to water deficit; evidence suggests that its nodulation status-whether it is nodulated or not-can influence how it responds to water deficit. The translational control step of gene expression has proven relevant in plants subjected to water deficit. RESULTS Here, we analyzed soybean roots' differential responses to water deficit at transcriptional, translational, and mixed (transcriptional + translational) levels. Thus, the transcriptome and translatome of four combined-treated soybean roots were analyzed. We found hormone metabolism-related genes among the differentially expressed genes (DEGs) at the translatome level in nodulated and water-restricted plants. Also, weighted gene co-expression network analysis followed by differential expression analysis identified gene modules associated with nodulation and water deficit conditions. Protein-protein interaction network analysis was performed for subsets of mixed DEGs of the modules associated with the plant responses to nodulation, water deficit, or their combination. CONCLUSIONS Our research reveals that the stand-out processes and pathways in the before-mentioned plant responses partially differ; terms related to glutathione metabolism and hormone signal transduction (2 C protein phosphatases) were associated with the response to water deficit, terms related to transmembrane transport, response to abscisic acid, pigment metabolic process were associated with the response to nodulation plus water deficit. Still, two processes were common: galactose metabolism and branched-chain amino acid catabolism. A comprehensive analysis of these processes could lead to identifying new sources of tolerance to drought in soybean.
Collapse
Affiliation(s)
- María Martha Sainz
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Avenida Garzón 780, Montevideo, CP 12900, Uruguay.
| | - Carla V Filippi
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Avenida Garzón 780, Montevideo, CP 12900, Uruguay
| | - Guillermo Eastman
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay
- Department of Biology, University of Virginia, 485 McCormick Rd, Charlottesville, VA, 22904, USA
| | - Mariana Sotelo-Silveira
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Avenida Garzón 780, Montevideo, CP 12900, Uruguay
| | - Sofía Zardo
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Avenida Garzón 780, Montevideo, CP 12900, Uruguay
| | - Mauro Martínez-Moré
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Avenida Garzón 780, Montevideo, CP 12900, Uruguay
| | - José Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay.
- Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Iguá, Montevideo, 4225, CP 11400, Uruguay.
| | - Omar Borsani
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Avenida Garzón 780, Montevideo, CP 12900, Uruguay.
| |
Collapse
|
10
|
Kim JS, Kidokoro S, Yamaguchi-Shinozaki K, Shinozaki K. Regulatory networks in plant responses to drought and cold stress. PLANT PHYSIOLOGY 2024; 195:170-189. [PMID: 38514098 PMCID: PMC11060690 DOI: 10.1093/plphys/kiae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
Drought and cold represent distinct types of abiotic stress, each initiating unique primary signaling pathways in response to dehydration and temperature changes, respectively. However, a convergence at the gene regulatory level is observed where a common set of stress-responsive genes is activated to mitigate the impacts of both stresses. In this review, we explore these intricate regulatory networks, illustrating how plants coordinate distinct stress signals into a collective transcriptional strategy. We delve into the molecular mechanisms of stress perception, stress signaling, and the activation of gene regulatory pathways, with a focus on insights gained from model species. By elucidating both the shared and distinct aspects of plant responses to drought and cold, we provide insight into the adaptive strategies of plants, paving the way for the engineering of stress-resilient crop varieties that can withstand a changing climate.
Collapse
Affiliation(s)
- June-Sik Kim
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045Japan
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046Japan
| | - Satoshi Kidokoro
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502Japan
| | - Kazuko Yamaguchi-Shinozaki
- Research Institute for Agriculture and Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502Japan
- Graduate School of Agriculture and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045Japan
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601Japan
| |
Collapse
|
11
|
Sato H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. Complex plant responses to drought and heat stress under climate change. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1873-1892. [PMID: 38168757 DOI: 10.1111/tpj.16612] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
Global climate change is predicted to result in increased yield losses of agricultural crops caused by environmental conditions. In particular, heat and drought stress are major factors that negatively affect plant development and reproduction, and previous studies have revealed how these stresses induce plant responses at physiological and molecular levels. Here, we provide a comprehensive overview of current knowledge concerning how drought, heat, and combinations of these stress conditions affect the status of plants, including crops, by affecting factors such as stomatal conductance, photosynthetic activity, cellular oxidative conditions, metabolomic profiles, and molecular signaling mechanisms. We further discuss stress-responsive regulatory factors such as transcription factors and signaling factors, which play critical roles in adaptation to both drought and heat stress conditions and potentially function as 'hubs' in drought and/or heat stress responses. Additionally, we present recent findings based on forward genetic approaches that reveal natural variations in agricultural crops that play critical roles in agricultural traits under drought and/or heat conditions. Finally, we provide an overview of the application of decades of study results to actual agricultural fields as a strategy to increase drought and/or heat stress tolerance. This review summarizes our current understanding of plant responses to drought, heat, and combinations of these stress conditions.
Collapse
Affiliation(s)
- Hikaru Sato
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Junya Mizoi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuraoka, Setagara-ku, Tokyo, 156-8502, Japan
| |
Collapse
|
12
|
Bae Y, Song SJ, Lim CW, Kim CM, Lee SC. Tomato salt-responsive pseudo-response regulator 1, SlSRP1, negatively regulates the high-salt and dehydration stress responses. PHYSIOLOGIA PLANTARUM 2023; 175:e14082. [PMID: 38148202 DOI: 10.1111/ppl.14082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 12/28/2023]
Abstract
Under severe environmental stress conditions, plants inhibit their growth and development and initiate various defense mechanisms to survive. The pseudo-response regulator (PRRs) genes have been known to be involved in fruit ripening and plant immunity in various plant species, but their role in responses to environmental stresses, especially high salinity and dehydration, remains unclear. Here, we focused on PRRs in tomato plants and identified two PRR2-like genes, SlSRP1 and SlSRP1H, from the leaves of salt-treated tomato plants. After exposure to dehydration and high-salt stresses, expression of SISRP1, but not SlSRP1H, was significantly induced in tomato leaves. Subcellular localization analysis showed that SlSRP1 was predominantly located in the nucleus, while SlSRP1H was equally distributed in the nucleus and cytoplasm. To further investigate the potential role of SlSRP1 in the osmotic stress response, we generated SISRP1-silenced tomato plants. Compared to control plants, SISRP1-silenced tomato plants exhibited enhanced tolerance to high salinity, as evidenced by a high accumulation of proline and reduced chlorosis, ion leakage, and lipid peroxidation. Moreover, SISRP1-silenced tomato plants showed dehydration-tolerant phenotypes with enhanced abscisic acid sensitivity and increased expression of stress-related genes, including SlRD29, SlAREB, and SlDREB2. Overall, our findings suggest that SlSRP1 negatively regulates the osmotic stress response.
Collapse
Affiliation(s)
- Yeongil Bae
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, Korea
| | - Se Jin Song
- Department of Horticulture Industry, Wonkwang University, Iksan, Jeonbuk, Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, Korea
| | - Chul Min Kim
- Department of Horticulture Industry, Wonkwang University, Iksan, Jeonbuk, Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, Korea
| |
Collapse
|
13
|
Kasapoglu AG, Ilhan E, Aydin M, Yigider E, Inal B, Buyuk I, Taspinar MS, Ciltas A, Agar G. Characterization of Two-Component System gene ( TCS) in melatonin-treated common bean under salt and drought stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1733-1754. [PMID: 38162914 PMCID: PMC10754802 DOI: 10.1007/s12298-023-01406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/21/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
The two-component system (TCS) generally consists of three elements, namely the histidine kinase (HK), response regulator (RR), and histidine phosphotransfer (HP) gene families. This study aimed to assess the expression of TCS genes in P. vulgaris leaf tissue under salt and drought stress and perform a genome-wide analysis of TCS gene family members using bioinformatics methods. This study identified 67 PvTCS genes, including 10 PvHP, 38 PvRR, and 19 PvHK, in the bean genome. PvHK2 had the maximum number of amino acids with 1261, whilst PvHP8 had the lowest number with 87. In addition, their theoretical isoelectric points were between 4.56 (PvHP8) and 9.15 (PvPRR10). The majority of PvTCS genes are unstable. Phylogenetic analysis of TCS genes in A. thaliana, G. max, and bean found that PvTCS genes had close phylogenetic relationships with the genes of other plants. Segmental and tandem duplicate gene pairs were detected among the TCS genes and TCS genes have been subjected to purifying selection pressure in the evolutionary process. Furthermore, the TCS gene family, which has an important role in abiotic stress and hormonal responses in plants, was characterized for the first time in beans, and its expression of TCS genes in bean leaves under salt and drought stress was established using RNAseq and qRT-PCR analyses. The findings of this study will aid future functional and genomic studies by providing essential information about the members of the TCS gene family in beans. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01406-5.
Collapse
Affiliation(s)
- Ayse Gul Kasapoglu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25050 Erzurum, Turkey
| | - Emre Ilhan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25050 Erzurum, Turkey
| | - Murat Aydin
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, 25050 Erzurum, Turkey
| | - Esma Yigider
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, 25050 Erzurum, Turkey
| | - Behcet Inal
- Department of Agricultural Biotechnology, Faculty of Agriculture, Siirt University, 56100 Siirt, Turkey
| | - Ilker Buyuk
- Department of Biology, Faculty of Science, Ankara University, 06100 Ankara, Turkey
| | - Mahmut Sinan Taspinar
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, 25050 Erzurum, Turkey
| | - Abdulkadir Ciltas
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, 25050 Erzurum, Turkey
| | - Guleray Agar
- Department of Biology, Faculty of Science, Ataturk University, 25050 Erzurum, Turkey
| |
Collapse
|
14
|
Zhang K, He Y, Lu X, Shi Y, Zhao H, Li X, Li J, Liu Y, Ouyang Y, Tang Y, Ren X, Zhang X, Yang W, Sun Z, Zhang C, Quinet M, Luthar Z, Germ M, Kreft I, Janovská D, Meglič V, Pipan B, Georgiev MI, Studer B, Chapman MA, Zhou M. Comparative and population genomics of buckwheat species reveal key determinants of flavor and fertility. MOLECULAR PLANT 2023; 16:1427-1444. [PMID: 37649255 PMCID: PMC10512774 DOI: 10.1016/j.molp.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/01/2023]
Abstract
Common buckwheat (Fagopyrum esculentum) is an ancient crop with a world-wide distribution. Due to its excellent nutritional quality and high economic and ecological value, common buckwheat is becoming increasingly important throughout the world. The availability of a high-quality reference genome sequence and population genomic data will accelerate the breeding of common buckwheat, but the high heterozygosity due to the outcrossing nature has greatly hindered the genome assembly. Here we report the assembly of a chromosome-scale high-quality reference genome of F. esculentum var. homotropicum, a homozygous self-pollinating variant of common buckwheat. Comparative genomics revealed that two cultivated buckwheat species, common buckwheat (F. esculentum) and Tartary buckwheat (F. tataricum), underwent metabolomic divergence and ecotype differentiation. The expansion of several gene families in common buckwheat, including FhFAR genes, is associated with its wider distribution than Tartary buckwheat. Copy number variation of genes involved in the metabolism of flavonoids is associated with the difference of rutin content between common and Tartary buckwheat. Furthermore, we present a comprehensive atlas of genomic variation based on whole-genome resequencing of 572 accessions of common buckwheat. Population and evolutionary genomics reveal genetic variation associated with environmental adaptability and floral development between Chinese and non-Chinese cultivated groups. Genome-wide association analyses of multi-year agronomic traits with the content of flavonoids revealed that Fh05G014970 is a potential major regulator of flowering period, a key agronomic trait controlling the yield of outcrossing crops, and that Fh06G015130 is a crucial gene underlying flavor-associated flavonoids. Intriguingly, we found that the gene translocation and sequence variation of FhS-ELF3 contribute to the homomorphic self-compatibility of common buckwheat. Collectively, our results elucidate the genetic basis of speciation, ecological adaptation, fertility, and unique flavor of common buckwheat, and provide new resources for future genomics-assisted breeding of this economically important crop.
Collapse
Affiliation(s)
- Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China
| | - Yuqi He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China
| | - Xiang Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China
| | - Yaliang Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China
| | - Hui Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China; College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaobo Li
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100176, China
| | - Jinlong Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China
| | - Yang Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China
| | - Yinan Ouyang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China
| | - Yu Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China
| | - Xue Ren
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100176, China
| | - Xuemei Zhang
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100176, China
| | - Weifei Yang
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100176, China
| | - Zhaoxia Sun
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Chunhua Zhang
- Tongliao Institute Agricultural and Animal Husbandry Sciences, Tongliao 028015, Inner Mongolia, China
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université Catholique de Louvain, Croix du Sud 4-5, boîte L7.07.13, B-1348, Louvain-la-Neuve, Belgium
| | - Zlata Luthar
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Ivan Kreft
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; Nutrition Institute, Tržaška 40, 1000 Ljubljana, Slovenia
| | - Dagmar Janovská
- Gene Bank, Crop Research Institute, Drnovská 507, Prague 6, Czech Republic
| | - Vladimir Meglič
- Agricultural Institute of Slovenia, Hacquetova ulica, Ljubljana, Slovenia
| | - Barbara Pipan
- Agricultural Institute of Slovenia, Hacquetova ulica, Ljubljana, Slovenia
| | - Milen I Georgiev
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria; Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton SO17 1BJ, UK
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China.
| |
Collapse
|
15
|
Zhao L, Wang Y, Cui R, Cui Y, Lu X, Chen X, Wang J, Wang D, Yin Z, Wang S, Peng F, Guo L, Chen C, Ye W. Analysis of the histidine kinase gene family and the role of GhHK8 in response to drought tolerance in cotton. PHYSIOLOGIA PLANTARUM 2023; 175:e14022. [PMID: 37882310 DOI: 10.1111/ppl.14022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/27/2023] [Accepted: 08/29/2023] [Indexed: 10/27/2023]
Abstract
As an important member of the two-component system (TCS), histidine kinases (HKs) play important roles in various plant developmental processes and signal transduction in response to a wide range of biotic and abiotic stresses. So far, the HK gene family has not been investigated in Gossypium. In this study, a total of 177 HK gene family members were identified in cotton. They were further divided into seven groups, and the protein characteristics, genetic relationship, gene structure, chromosome location, collinearity, and cis-elements identification were comprehensively analyzed. Whole genome duplication (WGD) / segmental duplication may be the reason why the number of HK genes doubled in tetraploid Gossypium species. Expression analysis revealed that most cotton HK genes were mainly expressed in the reproductive organs and the fiber at initial stage. Gene expression analysis revealed that HK family genes are involved in cotton abiotic stress, especially drought stress and salt stress. In addition, gene interaction networks showed that HKs were involved in the regulation of cotton abiotic stress, especially drought stress. VIGS experiments have shown that GhHK8 is a negative regulatory factor in response to drought stress. Our systematic analysis provided insights into the characteristics of the HK genes in cotton and laid a foundation for further exploring their potential in drought stress resistance in cotton.
Collapse
Affiliation(s)
- Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Yongbo Wang
- Hunan Institute of Cotton Science, Changde, China
| | - Ruifeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Yupeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Zujun Yin
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Fanjia Peng
- Hunan Institute of Cotton Science, Changde, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Chao Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| |
Collapse
|
16
|
Sadaqat M, Umer B, Attia KA, Abdelkhalik AF, Azeem F, Javed MR, Fatima K, Zameer R, Nadeem M, Tanveer MH, Sun S, Ercisli S, Nawaz MA. Genome-wide identification and expression profiling of two-component system (TCS) genes in Brassica oleracea in response to shade stress. Front Genet 2023; 14:1142544. [PMID: 37323660 PMCID: PMC10267837 DOI: 10.3389/fgene.2023.1142544] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/26/2023] [Indexed: 06/17/2023] Open
Abstract
The Two-component system (TCS) consists of Histidine kinases (HKs), Phosphotransfers (HPs), and response regulator (RR) proteins. It has an important role in signal transduction to respond to a wide variety of abiotic stresses and hence in plant development. Brassica oleracea (cabbage) is a leafy vegetable, which is used for food and medicinal purposes. Although this system was identified in several plants, it had not been identified in Brassica oleracea yet. This genome-wide study identified 80 BoTCS genes consisting of 21 HKs, 8 HPs, 39 RRs, and 12 PRRs. This classification was done based on conserved domains and motif structure. Phylogenetic relationships of BoTCS genes with Arabidopsis thaliana, Oryza sativa, Glycine max, and Cicer arietinum showed conservation in TCS genes. Gene structure analysis revealed that each subfamily had conserved introns and exons. Both tandem and segmental duplication led to the expansion of this gene family. Almost all of the HPs and RRs were expanded through segmental duplication. Chromosomal analysis showed that BoTCS genes were dispersed across all nine chromosomes. The promoter regions of these genes were found to contain a variety of cis-regulatory elements. The 3D structure prediction of proteins also confirmed the conservation of structure within subfamilies. MicroRNAs (miRNAs) involved in the regulation of BoTCSs were also predicted and their regulatory roles were also evaluated. Moreover, BoTCSs were docked with abscisic acid to evaluate their binding. RNA-seq-based expression analysis and validation by qRT-PCR showed significant variation of expression for BoPHYs, BoERS1.1, BoERS2.1, BoERS2.2, BoRR10.2, and BoRR7.1 suggesting their importance in stress response. These genes showing unique expression can be further used in manipulating the plant's genome to make the plant more resistant the environmental stresses which will ultimately help in the increase of plant's yield. More specifically, these genes have altered expression in shade stress which clearly indicates their importance in biological functions. These findings are important for future functional characterization of TCS genes in generating stress-responsive cultivars.
Collapse
Affiliation(s)
- Muhammad Sadaqat
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Basit Umer
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Kotb A. Attia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Amr F. Abdelkhalik
- Biotechnology School, Nile University, Giza, Egypt
- Rice Biotechnology Lab, Rice Research and Training Center, Field Crops Research Institute, ARC, Kafrelshikh, Egypt
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Muhammad Rizwan Javed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Kinza Fatima
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Roshan Zameer
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Majid Nadeem
- Wheat Research Institute, Ayub Agriculture Research Institute, Faisalabad, Pakistan
| | | | - Sangmi Sun
- Department of Biotechnology, Chonnam National University, Yesosu Campus, Yesosu Si, Republic of Korea
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Türkiye
- HGF Agro, Ata Teknokent, Erzurum, Türkiye
| | - Muhammad Amjad Nawaz
- Advanced Engineering School (Agrobiotek), Tomsk State University, Tomsk, Russia
- Center for Research in the Field of Materials and Technologies, Tomsk State University, Tomsk, Russia
| |
Collapse
|
17
|
Ma W, Lu S, Li W, Nai G, Ma Z, Li Y, Chen B, Mao J. Transcriptome and metabolites analysis of water-stressed grape berries at different growth stages. PHYSIOLOGIA PLANTARUM 2023; 175:e13910. [PMID: 37042463 DOI: 10.1111/ppl.13910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/08/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Drought is one of the main abiotic factors affecting grape quality. However, the impacts of drought stress on sugar and related gene expression during grape berry ripening remain unclear. In this experiment, the grapes were subjected to different levels of continuous water stress from 45 to 120 days after flowering (DAA) to study the changes in berry sugar content and the expression of genes related to sugar metabolism under different water stresses. Data supported that glucose, fructose, sucrose, and soluble sugars increased from 45 DAA. Combined with previous research results, T1, T2, and Ct grape berries with 60 ~ 75 DAA and large differences in sucrose, fructose, glucose and soluble sugars compared with the Ct were selected for RNA sequencing (RNA-seq). Through transcriptome analysis, 4471 differentially expressed genes (DEGs) were screened, and 65 genes in photosynthesis, ABA signaling pathway and photosynthetic carbon metabolism pathway were analyzed further by qRT-PCR. At 60 DAA, the relative expression levels of CAB1R, PsbP, SNRK2, and PYL9 were significantly upregulated in response to water stress, while AHK1, At4g02290 were down-regulated. At 75 DAA, the relative expression levels of ELIP1, GoLS2, At4g02290, Chi5, SAPK, MAPKKK17, NHL6, KINB2, and AHK1 were upregulated. And CAB1R, PsbA, GoLS1, SnRK2, PYL9, and KINGL were significantly downregulated under moderate water stress. In addition, PsbA expression was down-regulated in response to water stress. These results will help us to fully understand the potential connections between glucose metabolism and gene expression in grapes under drought stress.
Collapse
Affiliation(s)
- Weifeng Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Wenfang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Guojie Nai
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yanmei Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
18
|
Makhokh H, Lafite P, Larcher M, Lamblin F, Chefdor F, Depierreux C, Tanigawa M, Maeda T, Carpin S, Héricourt F. Searching for Osmosensing Determinants in Poplar Histidine-Aspartate Kinases. Int J Mol Sci 2023; 24:ijms24076318. [PMID: 37047295 PMCID: PMC10093795 DOI: 10.3390/ijms24076318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Previous works have shown the existence of protein partnership, belonging to a MultiStep Phosphorelay (MSP), potentially involved in osmosensing in Populus. The first actor of this signalling pathway belongs to the histidine-aspartate kinase (HK) family, which also includes the yeast osmosensor Sln1, as well as the Arabidopsis putative osmosensor AHK1. In poplar, the homologous AHK1 protein corresponds to a pair of paralogous proteins, HK1a and HK1b, exhibiting an extracellular domain (ECD), as in Sln1 and AHK1. An ECD alignment of AHK1-like proteins, from different plant species, showed a particularly well conserved ECD and revealed the presence of a cache domain. This level of conservation suggested a functional role of this domain in osmosensing. Thus, we tested this possibility by modelling assisted mutational analysis of the cache domain of the Populus HK1 proteins. The mutants were assessed for their ability to respond to different osmotic stress and the results point to an involvement of this domain in HK1 functionality. Furthermore, since HK1b was shown to respond better to stress than HK1a, these two receptors constituted a good system to search for osmosensing determinants responsible for this difference in efficiency. With domain swapping experiments, we finally demonstrated that the cache domain, as well as the second transmembrane domain, are involved in the osmosensing efficiency of these receptors.
Collapse
Affiliation(s)
- Hanae Makhokh
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d’Orléans, INRAE USC1328, 45067 Orléans Cedex 2, France
| | - Pierre Lafite
- Institut de Chimie Organique et Analytique (ICOA), UMR CNRS-Université d’Orléans 7311, Université d’Orléans, BP 6759, 45067 Orléans Cedex 2, France
| | - Mélanie Larcher
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d’Orléans, INRAE USC1328, 45067 Orléans Cedex 2, France
| | - Frédéric Lamblin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d’Orléans, INRAE USC1328, 45067 Orléans Cedex 2, France
| | - Françoise Chefdor
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d’Orléans, INRAE USC1328, 45067 Orléans Cedex 2, France
| | - Christiane Depierreux
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d’Orléans, INRAE USC1328, 45067 Orléans Cedex 2, France
| | - Mirai Tanigawa
- Department of Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Shizuoka 431-3192, Japan
| | - Tatsuya Maeda
- Department of Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Shizuoka 431-3192, Japan
| | - Sabine Carpin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d’Orléans, INRAE USC1328, 45067 Orléans Cedex 2, France
- Correspondence: authors: (S.C.); (F.H.); Tel.: +33-2-3849-4804 (S.C.); +33-2-38-49-4806 (F.H.)
| | - François Héricourt
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d’Orléans, INRAE USC1328, 45067 Orléans Cedex 2, France
- Correspondence: authors: (S.C.); (F.H.); Tel.: +33-2-3849-4804 (S.C.); +33-2-38-49-4806 (F.H.)
| |
Collapse
|
19
|
Liu H, Chen R, Li H, Lin J, Wang Y, Han M, Wang T, Wang H, Chen Q, Chen F, Chu P, Liang C, Ren C, Zhang Y, Yang F, Sheng Y, Wei J, Wu X, Yu G. Genome-wide identification and expression analysis of SlRR genes in response to abiotic stress in tomato. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:322-333. [PMID: 36457231 DOI: 10.1111/plb.13494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
The cytokinin two-component signal transduction system (TCS) is involved in many biological processes, including hormone signal transduction and plant growth regulation. Although cytokinin TCS has been well characterized in Arabidopsis thaliana, its role in tomato remains elusive. In this study, we characterized the diversity and function of response regulator (RR) genes, a critical component of TCS, in tomato. In total, we identified 31 RR genes in the tomato genome. These SlRR genes were classified into three subgroups (type-A, type-B and type-C). Various stress-responsive cis-elements were present in the tomato RR gene promoters. Their expression responses under pesticide treatment were evaluated by transcriptome analysis. Their expression under heat, cold, ABA, salinity and NaHCO3 treatments was further investigated by qRT-PCR and complemented with the available transcription data under these treatments. Specifically, SlRR13 expression was significantly upregulated under salinity, drought, cold and pesticide stress and was downregulated under ABA treatment. SlRR23 expression was induced under salt treatment, while the transcription level of SlRR1 was increased under cold and decreased under salt stress. We also found that GATA transcription factors played a significant role in the regulation of SlRR genes. Based on our results, tomato SlRR genes are involved in responses to abiotic stress in tomato and could be implemented in molecular breeding approaches to increase resistance of tomato to environmental stresses.
Collapse
Affiliation(s)
- H Liu
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - R Chen
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - H Li
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - J Lin
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - Y Wang
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - M Han
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - T Wang
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - H Wang
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - Q Chen
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - F Chen
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - P Chu
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - C Liang
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - C Ren
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - Y Zhang
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - F Yang
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - Y Sheng
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - J Wei
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - X Wu
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - G Yu
- Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
20
|
Huo R, Zhao Y, Liu T, Xu M, Wang X, Xu P, Dai S, Cui X, Han Y, Liu Z, Li Z. Genome-wide identification and expression analysis of two-component system genes in sweet potato ( Ipomoea batatas L.). FRONTIERS IN PLANT SCIENCE 2023; 13:1091620. [PMID: 36714734 PMCID: PMC9878860 DOI: 10.3389/fpls.2022.1091620] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Two-component system (TCS), which comprises histidine kinases (HKs), histidine phosphotransfer proteins (HPs), and response regulators (RRs), plays essential roles in regulating plant growth, development, and response to various environmental stimuli. TCS genes have been comprehensively identified in various plants, while studies on the genome-wide identification and analysis of TCS in sweet potato were still not reported. Therefore, in this study, a total of 90 TCS members consisting of 20 HK(L)s, 11 HPs, and 59 RRs were identified in the genome of Ipomoea batatas. Furthermore, their gene structures, conserved domains, and phylogenetic relationships were analyzed in detail. Additionally, the gene expression profiles in various organs were analyzed, and response patterns to adverse environmental stresses were investigated. The results showed that these 90 TCS genes were mapped on 15 chromosomes with a notably uneven distribution, and the expansion of TCS genes in sweet potato was attributed to both segmental and tandem duplications. The majority of the TCS genes showed distinct organ-specific expression profiles, especially in three types of roots (stem roots, fibrous roots, tuberous roots). Moreover, most of the TCS genes were either induced or suppressed upon treatment with abiotic stresses (drought, salinity, cold, heat) and exogenous phytohormone abscisic acid (ABA). In addition, the yeast-two hybrid system was used to reveal the HK-HP-RR protein-protein interactions. IbHP1, IbHP2, IbHP4, and IbHP5 could interact with three HKs (IbHK1a, IbHK1b, and IbHK5), and also interact with majority of the type-B RRs (IbRR20-IbRR28), while no interaction affinity was detected for IbHP3. Our systematic analyses could provide insights into the characterization of the TCS genes, and further the development of functional studies in sweet potato.
Collapse
Affiliation(s)
- Ruxue Huo
- Jiangsu Key Laboratory of Phylogeny and Comparative Genomics, School of Life Sciences, Institute of Integrative Plant Biology, Jiangsu Normal University, Xuzhou, China
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Yanshu Zhao
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Tianxu Liu
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Meng Xu
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Xiaohua Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Ping Xu
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Shengjie Dai
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Xiaoyu Cui
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Yonghua Han
- Jiangsu Key Laboratory of Phylogeny and Comparative Genomics, School of Life Sciences, Institute of Integrative Plant Biology, Jiangsu Normal University, Xuzhou, China
| | - Zhenning Liu
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Zongyun Li
- Jiangsu Key Laboratory of Phylogeny and Comparative Genomics, School of Life Sciences, Institute of Integrative Plant Biology, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
21
|
Zhao L, Sun L, Guo L, Lu X, Malik WA, Chen X, Wang D, Wang J, Wang S, Chen C, Nie T, Ye W. Systematic analysis of Histidine photosphoto transfer gene family in cotton and functional characterization in response to salt and around tolerance. BMC PLANT BIOLOGY 2022; 22:548. [PMID: 36443680 PMCID: PMC9703675 DOI: 10.1186/s12870-022-03947-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Phosphorylation regulated by the two-component system (TCS) is a very important approach signal transduction in most of living organisms. Histidine phosphotransfer (HP) is one of the important members of the TCS system. Members of the HP gene family have implications in plant stresses tolerance and have been deeply studied in several crops. However, upland cotton is still lacking with complete systematic examination of the HP gene family. RESULTS A total of 103 HP gene family members were identified. Multiple sequence alignment and phylogeny of HPs distributed them into 7 clades that contain the highly conserved amino acid residue "XHQXKGSSXS", similar to the Arabidopsis HP protein. Gene duplication relationship showed the expansion of HP gene family being subjected with whole-genome duplication (WGD) in cotton. Varying expression profiles of HPs illustrates their multiple roles under altering environments particularly the abiotic stresses. Analysis is of transcriptome data signifies the important roles played by HP genes against abiotic stresses. Moreover, protein regulatory network analysis and VIGS mediated functional approaches of two HP genes (GhHP23 and GhHP27) supports their predictor roles in salt and drought stress tolerance. CONCLUSIONS This study provides new bases for systematic examination of HP genes in upland cotton, which formulated the genetic makeup for their future survey and examination of their potential use in cotton production.
Collapse
Affiliation(s)
- Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Liangqing Sun
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
- Cotton Research Institute of Jiangxi Province, Jiujiang, Jiangxi, 332105, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Waqar Afzal Malik
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Chao Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Taili Nie
- Cotton Research Institute of Jiangxi Province, Jiujiang, Jiangxi, 332105, China.
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China.
| |
Collapse
|
22
|
Zhao X, Wang H, Zhang B, Cheng Y, Ma X. Overexpression of histone deacetylase gene 84KHDA909 from poplar confers enhanced tolerance to drought and salt stresses in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111434. [PMID: 36029898 DOI: 10.1016/j.plantsci.2022.111434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Histone deacetylases (HDACs) are important enzymes participating in histone modification and epigenetic regulation of gene transcription. HDACs play an essential role in plant development and stress responses. To date, the role of HDACs is largely uninvestigated in woody plants. In this study, we identified a RPD3/HDA1-type HDAC, named 84KHDA909, from 84 K poplar (Populus alba × Populus glandulosa). The protein encoded by 84KHDA909 contained an HDAC domain. The 84KHDA909 was responsive to drought, salt, and cold stresses, but displayed different expression patterns. Overexpression of 84KHDA909 improved root growth, and conferred enhanced tolerance to drought and salt stresses in Arabidopsis. The transgenic plants displayed greater fresh weight, higher proline content and lower malondialdehyde (MDA) accumulation than the wild type. In the transgenic plants, transcript levels of several genes related to abscisic acid (ABA) biosynthesis and response were altered upon exposure to drought and salt stresses. Our results suggested that 84KHDA909 positively regulates drought and salt stress tolerance through ABA pathway.
Collapse
Affiliation(s)
- Xiao Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Hanbin Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Bing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yuxiang Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xujun Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
23
|
Gorgues L, Li X, Maurel C, Martinière A, Nacry P. Root osmotic sensing from local perception to systemic responses. STRESS BIOLOGY 2022; 2:36. [PMID: 37676549 PMCID: PMC10442022 DOI: 10.1007/s44154-022-00054-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/28/2022] [Indexed: 09/08/2023]
Abstract
Plants face a constantly changing environment, requiring fine tuning of their growth and development. Plants have therefore developed numerous mechanisms to cope with environmental stress conditions. One striking example is root response to water deficit. Upon drought (which causes osmotic stress to cells), plants can among other responses alter locally their root system architecture (hydropatterning) or orientate their root growth to optimize water uptake (hydrotropism). They can also modify their hydraulic properties, metabolism and development coordinately at the whole root and plant levels. Upstream of these developmental and physiological changes, plant roots must perceive and transduce signals for water availability. Here, we review current knowledge on plant osmotic perception and discuss how long distance signaling can play a role in signal integration, leading to the great phenotypic plasticity of roots and plant development.
Collapse
Affiliation(s)
- Lucille Gorgues
- IPSiM, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060 Montpellier, France
| | - Xuelian Li
- IPSiM, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060 Montpellier, France
| | - Christophe Maurel
- IPSiM, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060 Montpellier, France
| | | | - Philippe Nacry
- IPSiM, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060 Montpellier, France
| |
Collapse
|
24
|
Mandal S, Ghorai M, Anand U, Samanta D, Kant N, Mishra T, Rahman MH, Jha NK, Jha SK, Lal MK, Tiwari RK, Kumar M, Radha, Prasanth DA, Mane AB, Gopalakrishnan AV, Biswas P, Proćków J, Dey A. Cytokinin and abiotic stress tolerance -What has been accomplished and the way forward? Front Genet 2022; 13:943025. [PMID: 36017502 PMCID: PMC9395584 DOI: 10.3389/fgene.2022.943025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/30/2022] [Indexed: 11/27/2022] Open
Abstract
More than a half-century has passed since it was discovered that phytohormone cytokinin (CK) is essential to drive cytokinesis and proliferation in plant tissue culture. Thereafter, cytokinin has emerged as the primary regulator of the plant cell cycle and numerous developmental processes. Lately, a growing body of evidence suggests that cytokinin has a role in mitigating both abiotic and biotic stress. Cytokinin is essential to defend plants against excessive light exposure and a unique kind of abiotic stress generated by an altered photoperiod. Secondly, cytokinin also exhibits multi-stress resilience under changing environments. Furthermore, cytokinin homeostasis is also affected by several forms of stress. Therefore, the diverse roles of cytokinin in reaction to stress, as well as its interactions with other hormones, are discussed in detail. When it comes to agriculture, understanding the functioning processes of cytokinins under changing environmental conditions can assist in utilizing the phytohormone, to increase productivity. Through this review, we briefly describe the biological role of cytokinin in enhancing the performance of plants growth under abiotic challenges as well as the probable mechanisms underpinning cytokinin-induced stress tolerance. In addition, the article lays forth a strategy for using biotechnological tools to modify genes in the cytokinin pathway to engineer abiotic stress tolerance in plants. The information presented here will assist in better understanding the function of cytokinin in plants and their effective investigation in the cropping system.
Collapse
Affiliation(s)
- Sayanti Mandal
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Uttpal Anand
- CytoGene Research & Development LLP, Barabanki, Uttar Pradesh, India
| | - Dipu Samanta
- Department of Botany, Dr. Kanailal Bhattacharyya College, Howrah, West Bengal, India
| | - Nishi Kant
- School of Health and Allied Science, ARKA Jain University, Jamshedpur, Jharkhand, India
| | - Tulika Mishra
- Department of Botany, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, South Korea
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
| | - Milan Kumar Lal
- Division of Crop Physiology, Biochemistry and Post Harvest Technology, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Rahul Kumar Tiwari
- Division of Crop Physiology, Biochemistry and Post Harvest Technology, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | | | - Abhijit Bhagwan Mane
- Department of Zoology, Dr. Patangrao Kadam Mahavidhyalaya (affiliated to Shivaji University Kolhapur), Ramanandnagar (Burli), Sangli, Maharashtra, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Protha Biswas
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
25
|
Ma L, Liu X, Lv W, Yang Y. Molecular Mechanisms of Plant Responses to Salt Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:934877. [PMID: 35832230 PMCID: PMC9271918 DOI: 10.3389/fpls.2022.934877] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/23/2022] [Indexed: 06/12/2023]
Abstract
Saline-alkali soils pose an increasingly serious global threat to plant growth and productivity. Much progress has been made in elucidating how plants adapt to salt stress by modulating ion homeostasis. Understanding the molecular mechanisms that affect salt tolerance and devising strategies to develop/breed salt-resilient crops have been the primary goals of plant salt stress signaling research over the past few decades. In this review, we reflect on recent major advances in our understanding of the cellular and physiological mechanisms underlying plant responses to salt stress, especially those involving temporally and spatially defined changes in signal perception, decoding, and transduction in specific organelles or cells.
Collapse
Affiliation(s)
- Liang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaohong Liu
- Department of Art and Design, Taiyuan University, Taiyuan, China
| | - Wanjia Lv
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Tang D, Quan C, Lin Y, Wei K, Qin S, Liang Y, Wei F, Miao J. Physio-Morphological, Biochemical and Transcriptomic Analyses Provide Insights Into Drought Stress Responses in Mesona chinensis Benth. FRONTIERS IN PLANT SCIENCE 2022; 13:809723. [PMID: 35222473 PMCID: PMC8866654 DOI: 10.3389/fpls.2022.809723] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/18/2022] [Indexed: 05/04/2023]
Abstract
Drought stress affects the normal growth and development of Mesona chinensis Benth (MCB), which is an important medicinal and edible plant in China. To investigate the physiological and molecular mechanisms of drought resistance in MCB, different concentrations of polyethylene glycol 6000 (PEG6000) (0, 5, 10, and 15%) were used to simulate drought conditions in this study. Results showed that the growth of MCB was significantly limited under drought stress conditions. Drought stress induced the increases in the contents of Chla, Chlb, Chla + b, soluble protein, soluble sugar, and soluble pectin and the activities of superoxide dismutase (SOD), catalase (CAT), total antioxidant capacity (TAC), hydrogen peroxide (H2O2), and malondialdehyde (MDA). Transcriptome analysis revealed 3,494 differentially expressed genes (DEGs) (1,961 up-regulated and 1,533 down-regulated) between the control and 15% PEG6000 treatments. These DEGs were identified to be involved in the 10 metabolic pathways, including "plant hormone signal transduction," "brassinosteroid biosynthesis," "plant-pathogen interaction," "MAPK signaling pathway-plant," "starch and sucrose metabolism," "pentose and glucuronate interconversions," "phenylpropanoid biosynthesis," "galactose metabolism," "monoterpenoid biosynthesis," and "ribosome." In addition, transcription factors (TFs) analysis showed 8 out of 204 TFs, TRINITY_DN3232_c0_g1 [ABA-responsive element (ABRE)-binding transcription factor1, AREB1], TRINITY_DN4161_c0_g1 (auxin response factor, ARF), TRINITY_DN3183_c0_g2 (abscisic acid-insensitive 5-like protein, ABI5), TRINITY_DN28414_c0_g2 (ethylene-responsive transcription factor ERF1b, ERF1b), TRINITY_DN9557_c0_g1 (phytochrome-interacting factor, PIF3), TRINITY_DN11435_c1_g1, TRINITY_DN2608_c0_g1, and TRINITY_DN6742_c0_g1, were closely related to the "plant hormone signal transduction" pathway. Taken together, it was inferred that these pathways and TFs might play important roles in response to drought stress in MCB. The current study provided important information for MCB drought resistance breeding in the future.
Collapse
Affiliation(s)
- Danfeng Tang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Changqian Quan
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yang Lin
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Kunhua Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Shuangshuang Qin
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Ying Liang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Fan Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Jianhua Miao
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| |
Collapse
|
27
|
SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Functional genomics in plant abiotic stress responses and tolerance: From gene discovery to complex regulatory networks and their application in breeding. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:470-492. [PMID: 36216536 PMCID: PMC9614206 DOI: 10.2183/pjab.98.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/08/2022] [Indexed: 06/16/2023]
Abstract
Land plants have developed sophisticated systems to cope with severe stressful environmental conditions during evolution. Plants have complex molecular systems to respond and adapt to abiotic stress, including drought, cold, and heat stress. Since 1989, we have been working to understand the complex molecular mechanisms of plant responses to severe environmental stress conditions based on functional genomics approaches with Arabidopsis thaliana as a model plant. We focused on the function of drought-inducible genes and the regulation of their stress-inducible transcription, perception and cellular signal transduction of stress signals to describe plant stress responses and adaptation at the molecular and cellular levels. We have identified key genes and factors in the regulation of complex responses and tolerance of plants in response to dehydration and temperature stresses. In this review article, we describe our 30-year experience in research and development based on functional genomics to understand sophisticated systems in plant response and adaptation to environmental stress conditions.
Collapse
Affiliation(s)
- Kazuo SHINOZAKI
- RIKEN Center for Sustainable Resource Science, Tsukuba, Ibaraki, Japan
| | - Kazuko YAMAGUCHI-SHINOZAKI
- Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Kuromori T, Fujita M, Takahashi F, Yamaguchi‐Shinozaki K, Shinozaki K. Inter-tissue and inter-organ signaling in drought stress response and phenotyping of drought tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:342-358. [PMID: 34863007 PMCID: PMC9300012 DOI: 10.1111/tpj.15619] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 05/10/2023]
Abstract
Plant response to drought stress includes systems for intracellular regulation of gene expression and signaling, as well as inter-tissue and inter-organ signaling, which helps entire plants acquire stress resistance. Plants sense water-deficit conditions both via the stomata of leaves and roots, and transfer water-deficit signals from roots to shoots via inter-organ signaling. Abscisic acid is an important phytohormone involved in the drought stress response and adaptation, and is synthesized mainly in vascular tissues and guard cells of leaves. In leaves, stress-induced abscisic acid is distributed to various tissues by transporters, which activates stomatal closure and expression of stress-related genes to acquire drought stress resistance. Moreover, the stepwise stress response at the whole-plant level is important for proper understanding of the physiological response to drought conditions. Drought stress is sensed by multiple types of sensors as molecular patterns of abiotic stress signals, which are transmitted via separate parallel signaling networks to induce downstream responses, including stomatal closure and synthesis of stress-related proteins and metabolites. Peptide molecules play important roles in the inter-organ signaling of dehydration from roots to shoots, as well as signaling of osmotic changes and reactive oxygen species/Ca2+ . In this review, we have summarized recent advances in research on complex plant drought stress responses, focusing on inter-tissue signaling in leaves and inter-organ signaling from roots to shoots. We have discussed the mechanisms via which drought stress adaptations and resistance are acquired at the whole-plant level, and have proposed the importance of quantitative phenotyping for measuring plant growth under drought conditions.
Collapse
Affiliation(s)
- Takashi Kuromori
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science2‐1 HirosawaWakoSaitama351‐0198Japan
| | - Miki Fujita
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science3‐1‐1 KoyadaiTsukubaIbaraki305‐0074Japan
| | - Fuminori Takahashi
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science3‐1‐1 KoyadaiTsukubaIbaraki305‐0074Japan
- Department of Biological Science and TechnologyGraduate School of Advanced EngineeringTokyo University of Science6‐3‐1 Niijyuku, Katsushika‐kuTokyo125‐8585Japan
| | - Kazuko Yamaguchi‐Shinozaki
- Laboratory of Plant Molecular PhysiologyGraduate School of Agricultural and Life SciencesThe University of Tokyo1‐1‐1 Yayoi, Bunkyo‐kuTokyo113‐8657Japan
- Research Institute for Agricultural and Life SciencesTokyo University of Agriculture1‐1‐1 Sakuragaoka, Setagaya‐kuTokyo156‐8502Japan
| | - Kazuo Shinozaki
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science2‐1 HirosawaWakoSaitama351‐0198Japan
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science3‐1‐1 KoyadaiTsukubaIbaraki305‐0074Japan
- Biotechonology CenterNational Chung Hsing University (NCHU)Taichung402Taiwan
| |
Collapse
|
29
|
Singh D, Singla-Pareek SL, Pareek A. Two-component signaling system in plants: interaction network and specificity in response to stress and hormones. PLANT CELL REPORTS 2021; 40:2037-2046. [PMID: 34109469 DOI: 10.1007/s00299-021-02727-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Plants are exposed to various environmental challenges that can hamper their growth, development, and productivity. Being sedentary, plants cannot escape from these unfavorable environmental conditions and have evolved various signaling cascades to endure them. The two-component signaling (TCS) system is one such essential signaling circuitry present in plants regulating responses against multiple abiotic and biotic stresses. It is among the most ancient and evolutionary conserved signaling pathways in plants, which include membrane-bound histidine kinases (HKs), cytoplasmic histidine phosphotransfer proteins (Hpts), and nuclear or cytoplasmic response regulators (RRs). At the same time, TCS also involved in many signaling circuitries operative in plants in response to diverse hormones. These plant growth hormones play a significant role in diverse physiological and developmental processes, and their contribution to plant stress responses is coming up in a big way. Therefore, it is intriguing to know how TCS and various plant growth regulators, along with the key transcription factors, directly or indirectly control the responses of plants towards diverse stresses. The present review attempts to explore this relationship, hoping that this knowledge will contribute towards developing crop plants with enhanced climate resilience.
Collapse
Affiliation(s)
- Deepti Singh
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, Delhi, India.
- National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| |
Collapse
|
30
|
Molitor C, Kurowski TJ, Fidalgo de Almeida PM, Eerolla P, Spindlow DJ, Kashyap SP, Singh B, Prasanna HC, Thompson AJ, Mohareb FR. De Novo Genome Assembly Of Solanum Sitiens Reveals Structural Variation Associated With Drought And Salinity Tolerance. Bioinformatics 2021; 37:1941–1945. [PMID: 33515237 PMCID: PMC8496510 DOI: 10.1093/bioinformatics/btab048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 11/23/2022] Open
Abstract
MOTIVATION Solanum sitiens is a self-incompatible wild relative of tomato, characterised by salt and drought resistance traits, with the potential to contribute through breeding programmes to crop improvement in cultivated tomato. This species has a distinct morphology, classification and ecotype compared to other stress resistant wild tomato relatives such as S. pennellii and S. chilense. Therefore, the availability of a reference genome for S. sitiens will facilitate the genetic and molecular understanding of salt and drought resistance. RESULTS A high-quality de novo genome and transcriptome assembly for S. sitiens (Accession LA1974) has been developed. A hybrid assembly strategy was followed using Illumina short reads (∼159X coverage) and PacBio long reads (∼44X coverage), generating a total of ∼262 Gbp of DNA sequence. A reference genome of 1,245 Mbp, arranged in 1,483 scaffolds with a N50 of 1.826 Mbp was generated. Genome completeness was estimated at 95% using the Benchmarking Universal Single-Copy Orthologs (BUSCO) and the K-mer Analysis Tool (KAT). In addition, ∼63 Gbp of RNA-Seq were generated to support the prediction of 31,164 genes from the assembly, and to perform a de novo transcriptome. Lastly, we identified three large inversions compared to S. lycopersicum, containing several drought resistance related genes, such as beta-amylase 1 and YUCCA7. AVAILABILITY S. sitiens (LA1974) raw sequencing, transcriptome and genome assembly have been deposited at the NCBI's Sequence Read Archive, under the BioProject number "PRJNA633104".All the commands and scripts necessary to generate the assembly are available at the following github repository: https://github.com/MCorentin/Solanum_sitiens_assembly. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Corentin Molitor
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Bedford MK43 0AL, UK
| | - Tomasz J Kurowski
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Bedford MK43 0AL, UK
| | - Pedro M Fidalgo de Almeida
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Bedford MK43 0AL, UK
| | - Pramod Eerolla
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Bedford MK43 0AL, UK
| | - Daniel J Spindlow
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Bedford MK43 0AL, UK
| | - Sarvesh P Kashyap
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, India
| | - Bijendra Singh
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, India
| | - H C Prasanna
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, India
- Division of Vegetable Crops, ICAR-Indian Institute of Horticultural Research, Bangalore, India
| | - Andrew J Thompson
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Bedford MK43 0AL, UK
| | - Fady R Mohareb
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Bedford MK43 0AL, UK
| |
Collapse
|
31
|
Hoang XLT, Prerostova S, Thu NBA, Thao NP, Vankova R, Tran LSP. Histidine Kinases: Diverse Functions in Plant Development and Responses to Environmental Conditions. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:297-323. [PMID: 34143645 DOI: 10.1146/annurev-arplant-080720-093057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The two-component system (TCS), which is one of the most evolutionarily conserved signaling pathway systems, has been known to regulate multiple biological activities and environmental responses in plants. Significant progress has been made in characterizing the biological functions of the TCS components, including signal receptor histidine kinase (HK) proteins, signal transducer histidine-containing phosphotransfer proteins, and effector response regulator proteins. In this review, our scope is focused on the diverse structure, subcellular localization, and interactions of the HK proteins, as well as their signaling functions during development and environmental responses across different plant species. Based on data collected from scientific studies, knowledge about acting mechanisms and regulatory roles of HK proteins is presented. This comprehensive summary ofthe HK-related network provides a panorama of sophisticated modulating activities of HK members and gaps in understanding these activities, as well as the basis for developing biotechnological strategies to enhance the quality of crop plants.
Collapse
Affiliation(s)
- Xuan Lan Thi Hoang
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; , ,
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Sylva Prerostova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| | - Nguyen Binh Anh Thu
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; , ,
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Phuong Thao
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; , ,
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79409, USA;
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
32
|
Osmotic stress-induced somatic embryo maturation of coffee Coffea arabica L., shoot and root apical meristems development and robustness. Sci Rep 2021; 11:9661. [PMID: 33958620 PMCID: PMC8102543 DOI: 10.1038/s41598-021-88834-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 04/16/2021] [Indexed: 11/30/2022] Open
Abstract
Somatic embryogenesis (SE) is the most important plant biotechnology process for plant regeneration, propagation, genetic transformation and genome editing of coffee, Coffea arabica L. Somatic embryo (SEs) conversion to plantlets is the principal bottleneck for basic and applied use of this process. In this study we focus on the maturation of SEs of C. arabica var. Typica. SEs conversion to plantlet up to 95.9% was achieved under osmotic stress, using 9 g/L gelrite, as compared with only 39.34% in non-osmotic stress. Mature SEs induced in osmotic stress developed shoot and root apical meristems, while untreated SEs were unable to do it. C. arabica regenerated plants from osmotic stress were robust, with higher leaf and root area and internode length. To understand a possible regulatory mechanism, gene expression of key genes of C. arabica, homologous to sequences in the Arabidopsis thaliana genome, were analyzed. A set of two component system and cytokinin signaling-related coding genes (AHK1, AHK3, AHP4 and ARR1) which interact with WUSCHEL and WOX5 homedomains and morphogenic genes, BABY-BOOM, LEC1, FUS3 and AGL15, underwent significant changes during maturation of SEs of C. arabica var. Typica. This protocol is currently being applied in genetic transformation with high rate of success.
Collapse
|
33
|
Gene Expression Analysis of Microtubers of Potato Solanum tuberosum L. Induced in Cytokinin Containing Medium and Osmotic Stress. PLANTS 2021; 10:plants10050876. [PMID: 33925316 PMCID: PMC8146008 DOI: 10.3390/plants10050876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 11/17/2022]
Abstract
Potato microtuber productions through in vitro techniques are ideal propagules for producing high quality seed potatoes. Microtuber development is influenced by several factors, i.e., high content sucrose and cytokinins are among them. To understand a molecular mechanism of microtuberization using osmotic stress and cytokinin signaling will help us to elucidate this process. We demonstrate in this work a rapid and efficient protocol for microtuber development and gene expression analysis. Medium with high content of sucrose and gelrite supplemented with 2iP as cytokinin under darkness condition produced the higher quantity and quality of microtubers. Gene expression analysis of genes involved in the two-component signaling system (StHK1), cytokinin signaling, (StHK3, StHP4, StRR1) homeodomains (WUSCHEL, POTH1, BEL5), auxin signaling, ARF5, carbon metabolism (TPI, TIM), protein synthesis, NAC5 and a morphogenetic regulator of tuberization (POTH15) was performed by qPCR real time. Differential gene expression was observed during microtuber development. Gene regulation of two component and cytokinin signaling is taking place during this developmental process, yielding more microtubers. Further analysis of each component is required to elucidate it.
Collapse
|
34
|
Bhaskar A, Paul LK, Sharma E, Jha S, Jain M, Khurana JP. OsRR6, a type-A response regulator in rice, mediates cytokinin, light and stress responses when over-expressed in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:98-112. [PMID: 33581623 DOI: 10.1016/j.plaphy.2021.01.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/28/2021] [Indexed: 05/27/2023]
Abstract
Plants have evolved a complex network of components that sense and respond to diverse signals. In the present study, we have characterized OsRR6, a type-A response regulator, which is part of the two-component sensor-regulator machinery in rice. The expression of OsRR6 is induced by exogenous cytokinin and various abiotic stress treatments, including drought, cold and salinity stress. Organ-specific expression analysis revealed that its expression is high in anther and low in shoot apical meristem. The Arabidopsis plants constitutively expressing OsRR6 (OsRR6OX) exhibited reduced cytokinin sensitivity, adventitious root formation and enhanced anthocyanin accumulation in seeds. OsRR6OX plants were more tolerant to drought and salinity conditions when compared to wild-type. The hypocotyl growth in OsRR6OX seedlings was significantly inhibited under red, far-red and blue-light conditions and also a decline in transcript levels of OsRR6 was observed in rice under the above monochromatic as well as white light treatments. Transcriptome profiling revealed that the genes associated with defense responses and anthocyanin metabolism are up-regulated in OsRR6OX seedlings. Comparative transcriptome analysis showed that the genes associated with phenylpropanoid and triterpenoid biosynthesis are enriched among differentially expressed genes in OsRR6OX seedlings of Arabidopsis, which is in conformity with reanalysis of the transcriptome data performed in rice transgenics for OsRR6. Further, genes like DREB1A/CBF3, COR15A, KIN1, ERD10 and RD29A are significantly upregulated in OsRR6OX seedlings when subjected to ABA and abiotic stress treatments. Thus, a negative regulator of cytokinin signaling, OsRR6, plays a positive role in imparting abiotic stress tolerance.
Collapse
Affiliation(s)
- Avantika Bhaskar
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Laju K Paul
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Eshan Sharma
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Sampoornananda Jha
- Central Department of Biotechnology, Institute of Science and Technology, Tribhuvan University, Kathmandu, Nepal
| | - Mukesh Jain
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India; School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
35
|
Jiang L, Yoshida T, Stiegert S, Jing Y, Alseekh S, Lenhard M, Pérez-Alfocea F, Fernie AR. Multi-omics approach reveals the contribution of KLU to leaf longevity and drought tolerance. PLANT PHYSIOLOGY 2021; 185:352-368. [PMID: 33721894 PMCID: PMC8133585 DOI: 10.1093/plphys/kiaa034] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/05/2020] [Indexed: 05/05/2023]
Abstract
KLU, encoded by a cytochrome P450 CYP78A family gene, generates an important-albeit unknown-mobile signal that is distinct from the classical phytohormones. Multiple lines of evidence suggest that KLU/KLU-dependent signaling functions in several vital developmental programs, including leaf initiation, leaf/floral organ growth, and megasporocyte cell fate. However, the interactions between KLU/KLU-dependent signaling and the other classical phytohormones, as well as how KLU influences plant physiological responses, remain poorly understood. Here, we applied in-depth, multi-omics analysis to monitor transcriptome and metabolome dynamics in klu-mutant and KLU-overexpressing Arabidopsis plants. By integrating transcriptome sequencing data and primary metabolite profiling alongside phytohormone measurements, our results showed that cytokinin signaling, with its well-established function in delaying leaf senescence, was activated in KLU-overexpressing plants. Consistently, KLU-overexpressing plants exhibited significantly delayed leaf senescence and increased leaf longevity, whereas the klu-mutant plants showed early leaf senescence. In addition, proline biosynthesis and catabolism were enhanced following KLU overexpression owing to increased expression of genes associated with proline metabolism. Furthermore, KLU-overexpressing plants showed enhanced drought-stress tolerance and reduced water loss. Collectively, our work illustrates a role for KLU in positively regulating leaf longevity and drought tolerance by synergistically activating cytokinin signaling and promoting proline metabolism. These data promote KLU as a potential ideal genetic target to improve plant fitness.
Collapse
Affiliation(s)
- Liang Jiang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Takuya Yoshida
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Sofia Stiegert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Genetics, University of Potsdam, 14469 Potsdam, Germany
| | - Yue Jing
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Michael Lenhard
- Department of Genetics, University of Potsdam, 14469 Potsdam, Germany
| | - Francisco Pérez-Alfocea
- Department of Plant Nutrition, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Genetics, University of Potsdam, 14469 Potsdam, Germany
- Author for communication:
| |
Collapse
|
36
|
Yang Y, Saand MA, Huang L, Abdelaal WB, Zhang J, Wu Y, Li J, Sirohi MH, Wang F. Applications of Multi-Omics Technologies for Crop Improvement. FRONTIERS IN PLANT SCIENCE 2021; 12:563953. [PMID: 34539683 PMCID: PMC8446515 DOI: 10.3389/fpls.2021.563953] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/06/2021] [Indexed: 05/19/2023]
Abstract
Multiple "omics" approaches have emerged as successful technologies for plant systems over the last few decades. Advances in next-generation sequencing (NGS) have paved a way for a new generation of different omics, such as genomics, transcriptomics, and proteomics. However, metabolomics, ionomics, and phenomics have also been well-documented in crop science. Multi-omics approaches with high throughput techniques have played an important role in elucidating growth, senescence, yield, and the responses to biotic and abiotic stress in numerous crops. These omics approaches have been implemented in some important crops including wheat (Triticum aestivum L.), soybean (Glycine max), tomato (Solanum lycopersicum), barley (Hordeum vulgare L.), maize (Zea mays L.), millet (Setaria italica L.), cotton (Gossypium hirsutum L.), Medicago truncatula, and rice (Oryza sativa L.). The integration of functional genomics with other omics highlights the relationships between crop genomes and phenotypes under specific physiological and environmental conditions. The purpose of this review is to dissect the role and integration of multi-omics technologies for crop breeding science. We highlight the applications of various omics approaches, such as genomics, transcriptomics, proteomics, metabolomics, phenomics, and ionomics, and the implementation of robust methods to improve crop genetics and breeding science. Potential challenges that confront the integration of multi-omics with regard to the functional analysis of genes and their networks as well as the development of potential traits for crop improvement are discussed. The panomics platform allows for the integration of complex omics to construct models that can be used to predict complex traits. Systems biology integration with multi-omics datasets can enhance our understanding of molecular regulator networks for crop improvement. In this context, we suggest the integration of entire omics by employing the "phenotype to genotype" and "genotype to phenotype" concept. Hence, top-down (phenotype to genotype) and bottom-up (genotype to phenotype) model through integration of multi-omics with systems biology may be beneficial for crop breeding improvement under conditions of environmental stresses.
Collapse
Affiliation(s)
- Yaodong Yang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- *Correspondence: Yaodong Yang
| | - Mumtaz Ali Saand
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- Department of Botany, Shah Abdul Latif University, Khairpur, Pakistan
| | - Liyun Huang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Walid Badawy Abdelaal
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Jun Zhang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Yi Wu
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Jing Li
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | | | - Fuyou Wang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| |
Collapse
|
37
|
Takahashi F, Kuromori T, Urano K, Yamaguchi-Shinozaki K, Shinozaki K. Drought Stress Responses and Resistance in Plants: From Cellular Responses to Long-Distance Intercellular Communication. FRONTIERS IN PLANT SCIENCE 2020; 11:556972. [PMID: 33013974 DOI: 10.3389/fpls.2020.556972/bibtex] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/25/2020] [Indexed: 05/27/2023]
Abstract
The drought stress responses of vascular plants are complex regulatory mechanisms because they include various physiological responses from signal perception under water deficit conditions to the acquisition of drought stress resistance at the whole-plant level. It is thought that plants first recognize water deficit conditions in roots and that several molecular signals then move from roots to shoots. Finally, a phytohormone, abscisic acid (ABA) is synthesized mainly in leaves. However, the detailed molecular mechanisms of stress sensors and the regulators that initiate ABA biosynthesis in response to drought stress conditions are still unclear. Another important issue is how plants adjust ABA propagation, stress-mediated gene expression and metabolite composition to acquire drought stress resistance in different tissues throughout the whole plant. In this review, we summarize recent advances in research on drought stress responses, focusing on long-distance signaling from roots to shoots, ABA synthesis and transport, and metabolic regulation in both cellular and whole-plant levels of Arabidopsis and crops. We also discuss coordinated mechanisms for acquiring drought stress adaptations and resistance via tissue-to-tissue communication and long-distance signaling.
Collapse
Affiliation(s)
- Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| | - Takashi Kuromori
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Kaoru Urano
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| |
Collapse
|
38
|
Hertig C, Melzer M, Rutten T, Erbe S, Hensel G, Kumlehn J, Weschke W, Weber H, Thiel J. Barley HISTIDINE KINASE 1 (HvHK1) coordinates transfer cell specification in the young endosperm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1869-1884. [PMID: 32530511 DOI: 10.1111/tpj.14875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Cereal endosperm represents the most important source of the world's food; nevertheless, the molecular mechanisms underlying cell and tissue differentiation in cereal grains remain poorly understood. Endosperm cellularization commences at the maternal-filial intersection of grains and generates endosperm transfer cells (ETCs), a cell type with a prominent anatomy optimized for efficient nutrient transport. Barley HISTIDINE KINASE1 (HvHK1) was identified as a receptor component with spatially restricted expression in the syncytial endosperm where ETCs emerge. Here, we demonstrate its function in ETC fate acquisition using RNA interference-mediated downregulation of HvHK1. Repression of HvHK1 impairs cell specification in the central ETC region and the development of transfer cell morphology, and consecutively defects differentiation of adjacent endosperm tissues. Coinciding with reduced expression of HvHK1, disturbed cell plate formation and fusion were observed at the initiation of endosperm cellularization, revealing that HvHK1 triggers initial cytokinesis of ETCs. Cell-type-specific RNA sequencing confirmed loss of transfer cell identity, compromised cell wall biogenesis and reduced transport capacities in aberrant cells and elucidated two-component signaling and hormone pathways that are mediated by HvHK1. Gene regulatory network modeling was used to specify the direct targets of HvHK1; this predicted non-canonical auxin signaling elements as the main regulatory links governing cellularization of ETCs, potentially through interaction with type-B response regulators. This work provides clues to previously unknown molecular mechanisms directing ETC specification, a process with fundamental impact on grain yield in cereals.
Collapse
Affiliation(s)
- Christian Hertig
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Michael Melzer
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Twan Rutten
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Stephan Erbe
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Götz Hensel
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Jochen Kumlehn
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Winfriede Weschke
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Hans Weber
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Johannes Thiel
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| |
Collapse
|
39
|
Huo R, Liu Z, Yu X, Li Z. The Interaction Network and Signaling Specificity of Two-Component System in Arabidopsis. Int J Mol Sci 2020; 21:ijms21144898. [PMID: 32664520 PMCID: PMC7402358 DOI: 10.3390/ijms21144898] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 01/25/2023] Open
Abstract
Two-component systems (TCS) in plants have evolved into a more complicated multi-step phosphorelay (MSP) pathway, which employs histidine kinases (HKs), histidine-containing phosphotransfer proteins (HPts), and response regulators (RRs) to regulate various aspects of plant growth and development. How plants perceive the external signals, then integrate and transduce the secondary signals specifically to the desired destination, is a fundamental characteristic of the MSP signaling network. The TCS elements involved in the MSP pathway and molecular mechanisms of signal transduction have been best understood in the model plant Arabidopsis thaliana. In this review, we focus on updated knowledge on TCS signal transduction in Arabidopsis. We first present a brief description of the TCS elements; then, the protein–protein interaction network is established. Finally, we discuss the possible molecular mechanisms involved in the specificity of the MSP signaling at the mRNA and protein levels.
Collapse
Affiliation(s)
- Ruxue Huo
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China;
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China
| | - Zhenning Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China
- Correspondence: (Z.L.); (Z.L.)
| | - Xiaolin Yu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Zongyun Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China;
- Correspondence: (Z.L.); (Z.L.)
| |
Collapse
|
40
|
Nghia DHT, Chuong NN, Hoang XLT, Nguyen NC, Tu NHC, Huy NVG, Ha BTT, Nam TNH, Thu NBA, Tran LSP, Thao NP. Heterologous Expression of a Soybean Gene RR34 Conferred Improved Drought Resistance of Transgenic Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E494. [PMID: 32290594 PMCID: PMC7238260 DOI: 10.3390/plants9040494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022]
Abstract
Two-component systems (TCSs) have been identified as participants in mediating plant response to water deficit. Nevertheless, insights of their contribution to plant drought responses and associated regulatory mechanisms remain limited. Herein, a soybean response regulator (RR) gene RR34, which is the potential drought-responsive downstream member of a TCS, was ectopically expressed in the model plant Arabidopsis for the analysis of its biological roles in drought stress response. Results from the survival test revealed outstanding recovery ratios of 52%-53% in the examined transgenic lines compared with 28% of the wild-type plants. Additionally, remarkedly lower water loss rates in detached leaves as well as enhanced antioxidant enzyme activities of catalase and superoxide dismutase were observed in the transgenic group. Further transcriptional analysis of a subset of drought-responsive genes demonstrated higher expression in GmRR34-transgenic plants upon exposure to drought, including abscisic acid (ABA)-related genes NCED3, OST1, ABI5, and RAB18. These ectopic expression lines also displayed hypersensitivity to ABA treatment at germination and post-germination stages. Collectively, these findings indicated the ABA-associated mode of action of GmRR34 in conferring better plant performance under the adverse drought conditions.
Collapse
Affiliation(s)
- Duong Hoang Trong Nghia
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; (D.H.T.N.); (N.N.C.); (X.L.T.H.); (N.C.N.); (N.H.C.T.); (N.V.G.H.); (B.T.T.H.); (T.N.H.N.); (N.B.A.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Nguyen Chuong
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; (D.H.T.N.); (N.N.C.); (X.L.T.H.); (N.C.N.); (N.H.C.T.); (N.V.G.H.); (B.T.T.H.); (T.N.H.N.); (N.B.A.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Xuan Lan Thi Hoang
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; (D.H.T.N.); (N.N.C.); (X.L.T.H.); (N.C.N.); (N.H.C.T.); (N.V.G.H.); (B.T.T.H.); (T.N.H.N.); (N.B.A.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Cao Nguyen
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; (D.H.T.N.); (N.N.C.); (X.L.T.H.); (N.C.N.); (N.H.C.T.); (N.V.G.H.); (B.T.T.H.); (T.N.H.N.); (N.B.A.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Huu Cam Tu
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; (D.H.T.N.); (N.N.C.); (X.L.T.H.); (N.C.N.); (N.H.C.T.); (N.V.G.H.); (B.T.T.H.); (T.N.H.N.); (N.B.A.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Van Gia Huy
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; (D.H.T.N.); (N.N.C.); (X.L.T.H.); (N.C.N.); (N.H.C.T.); (N.V.G.H.); (B.T.T.H.); (T.N.H.N.); (N.B.A.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Bui Thi Thanh Ha
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; (D.H.T.N.); (N.N.C.); (X.L.T.H.); (N.C.N.); (N.H.C.T.); (N.V.G.H.); (B.T.T.H.); (T.N.H.N.); (N.B.A.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thai Nguyen Hoang Nam
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; (D.H.T.N.); (N.N.C.); (X.L.T.H.); (N.C.N.); (N.H.C.T.); (N.V.G.H.); (B.T.T.H.); (T.N.H.N.); (N.B.A.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Binh Anh Thu
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; (D.H.T.N.); (N.N.C.); (X.L.T.H.); (N.C.N.); (N.H.C.T.); (N.V.G.H.); (B.T.T.H.); (T.N.H.N.); (N.B.A.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam;
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Nguyen Phuong Thao
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; (D.H.T.N.); (N.N.C.); (X.L.T.H.); (N.C.N.); (N.H.C.T.); (N.V.G.H.); (B.T.T.H.); (T.N.H.N.); (N.B.A.T.)
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
41
|
Plant Raf-like kinases regulate the mRNA population upstream of ABA-unresponsive SnRK2 kinases under drought stress. Nat Commun 2020; 11:1373. [PMID: 32170072 PMCID: PMC7069986 DOI: 10.1038/s41467-020-15239-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/18/2020] [Indexed: 01/20/2023] Open
Abstract
SNF1-related protein kinases 2 (SnRK2s) are key regulators governing the plant adaptive responses to osmotic stresses, such as drought and high salinity. Subclass III SnRK2s function as central regulators of abscisic acid (ABA) signalling and orchestrate ABA-regulated adaptive responses to osmotic stresses. Seed plants have acquired other types of osmotic stress-activated but ABA-unresponsive subclass I SnRK2s that regulate mRNA decay and promote plant growth under osmotic stresses. In contrast to subclass III SnRK2s, the regulatory mechanisms underlying the rapid activation of subclass I SnRK2s in response to osmotic stress remain elusive. Here, we report that three B4 Raf-like MAP kinase kinase kinases (MAPKKKs) phosphorylate and activate subclass I SnRK2s under osmotic stress. Transcriptome analyses reveal that genes downstream of these MAPKKKs largely overlap with subclass I SnRK2-regulated genes under osmotic stress, which indicates that these MAPKKKs are upstream factors of subclass I SnRK2 and are directly activated by osmotic stress.
Collapse
|
42
|
Dubois M, Inzé D. Plant growth under suboptimal water conditions: early responses and methods to study them. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1706-1722. [PMID: 31967643 DOI: 10.1093/jxb/eraa037] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 05/03/2023]
Abstract
Drought stress forms a major environmental constraint during the life cycle of plants, often decreasing plant yield and in extreme cases threatening survival. The molecular and physiological responses induced by drought have been the topic of extensive research during the past decades. Because soil-based approaches to studying drought responses are often challenging due to low throughput and insufficient control of the conditions, osmotic stress assays in plates were developed to mimic drought. Addition of compounds such as polyethylene glycol, mannitol, sorbitol, or NaCl to controlled growth media has become increasingly popular since it offers the advantage of accurate control of stress level and onset. These osmotic stress assays enabled the discovery of very early stress responses, occurring within seconds or minutes following osmotic stress exposure. In this review, we construct a detailed timeline of early responses to osmotic stress, with a focus on how they initiate plant growth arrest. We further discuss the specific responses triggered by different types and severities of osmotic stress. Finally, we compare short-term plant responses under osmotic stress versus in-soil drought and discuss the advantages, disadvantages, and future of these plate-based proxies for drought.
Collapse
Affiliation(s)
- Marieke Dubois
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
43
|
Ahmad B, Azeem F, Ali MA, Nawaz MA, Nadeem H, Abbas A, Batool R, Atif RM, Ijaz U, Nieves-Cordones M, Chung G. Genome-wide identification and expression analysis of two component system genes in Cicer arietinum. Genomics 2020; 112:1371-1383. [DOI: 10.1016/j.ygeno.2019.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/19/2019] [Accepted: 08/11/2019] [Indexed: 10/26/2022]
|
44
|
Nongpiur RC, Singla-Pareek SL, Pareek A. The quest for osmosensors in plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:595-607. [PMID: 31145792 DOI: 10.1093/jxb/erz263] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/22/2019] [Indexed: 05/20/2023]
Abstract
Osmotic stress has severe effects on crop productivity. Since climate change is predicted to exacerbate this problem, the development of new crops that are tolerant to osmotic stresses, especially drought and salinity stress, is required. However, only limited success has been achieved to date, primarily because of the lack of a clear understanding of the mechanisms that facilitate osmosensing. Here, we discuss the potential mechanisms of osmosensing in plants. We highlight the roles of proteins such as receptor-like kinases, which sense stress-induced cell wall damage, mechanosensitive calcium channels, which initiate a calcium-induced stress response, and phospholipase C, a membrane-bound enzyme that is integral to osmotic stress perception. We also discuss the roles of aquaporins and membrane-bound histidine kinases, which could potentially detect changes in extracellular osmolarity in plants, as they do in prokaryotes and lower eukaryotes. These putative osmosensors have the potential to serve as master regulators of the osmotic stress response in plants and could prove to be useful targets for the selection of osmotic stress-tolerant crops.
Collapse
Affiliation(s)
- Ramsong Chantre Nongpiur
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh Lata Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
45
|
Kroll CK, Brenner WG. Cytokinin Signaling Downstream of the His-Asp Phosphorelay Network: Cytokinin-Regulated Genes and Their Functions. FRONTIERS IN PLANT SCIENCE 2020; 11:604489. [PMID: 33329676 PMCID: PMC7718014 DOI: 10.3389/fpls.2020.604489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/26/2020] [Indexed: 05/17/2023]
Abstract
The plant hormone cytokinin, existing in several molecular forms, is perceived by membrane-localized histidine kinases. The signal is transduced to transcription factors of the type-B response regulator family localized in the nucleus by a multi-step histidine-aspartate phosphorelay network employing histidine phosphotransmitters as shuttle proteins across the nuclear envelope. The type-B response regulators activate a number of primary response genes, some of which trigger in turn further signaling events and the expression of secondary response genes. Most genes activated in both rounds of transcription were identified with high confidence using different transcriptomic toolkits and meta analyses of multiple individual published datasets. In this review, we attempt to summarize the existing knowledge about the primary and secondary cytokinin response genes in order to try connecting gene expression with the multitude of effects that cytokinin exerts within the plant body and throughout the lifespan of a plant.
Collapse
|
46
|
Takahashi F, Kuromori T, Urano K, Yamaguchi-Shinozaki K, Shinozaki K. Drought Stress Responses and Resistance in Plants: From Cellular Responses to Long-Distance Intercellular Communication. FRONTIERS IN PLANT SCIENCE 2020; 11:556972. [PMID: 33013974 PMCID: PMC7511591 DOI: 10.3389/fpls.2020.556972] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/25/2020] [Indexed: 05/17/2023]
Abstract
The drought stress responses of vascular plants are complex regulatory mechanisms because they include various physiological responses from signal perception under water deficit conditions to the acquisition of drought stress resistance at the whole-plant level. It is thought that plants first recognize water deficit conditions in roots and that several molecular signals then move from roots to shoots. Finally, a phytohormone, abscisic acid (ABA) is synthesized mainly in leaves. However, the detailed molecular mechanisms of stress sensors and the regulators that initiate ABA biosynthesis in response to drought stress conditions are still unclear. Another important issue is how plants adjust ABA propagation, stress-mediated gene expression and metabolite composition to acquire drought stress resistance in different tissues throughout the whole plant. In this review, we summarize recent advances in research on drought stress responses, focusing on long-distance signaling from roots to shoots, ABA synthesis and transport, and metabolic regulation in both cellular and whole-plant levels of Arabidopsis and crops. We also discuss coordinated mechanisms for acquiring drought stress adaptations and resistance via tissue-to-tissue communication and long-distance signaling.
Collapse
Affiliation(s)
- Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
- *Correspondence: Fuminori Takahashi,
| | - Takashi Kuromori
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Kaoru Urano
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| |
Collapse
|
47
|
Abstract
Signal transduction systems configured around a core phosphotransfer step between a histidine kinase and a cognate response regulator protein occur in organisms from all domains of life. These systems, termed two-component systems, constitute the majority of multi-component signaling pathways in Bacteria but are less prevalent in Archaea and Eukarya. The core signaling domains are modular, allowing versatility in configuration of components into single-step phosphotransfer and multi-step phosphorelay pathways, the former being predominant in bacteria and the latter in eukaryotes. Two-component systems regulate key cellular regulatory processes that provide adaptive responses to environmental stimuli and are of interest for the development of antimicrobial therapeutics, biotechnology applications, and biosensor engineering. In bacteria, two-component systems have been found to mediate responses to an extremely broad array of extracellular and intracellular chemical and physical stimuli, whereas in archaea and eukaryotes, the use of two-component systems is more limited. This review summarizes recent advances in exploring the repertoire of sensor histidine kinases in the Archaea and Eukarya domains of life.
Collapse
Affiliation(s)
- Nicolas Papon
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Angers, France
| | - Ann M Stock
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| |
Collapse
|
48
|
New Insights into Multistep-Phosphorelay (MSP)/ Two-Component System (TCS) Regulation: Are Plants and Bacteria that Different? PLANTS 2019; 8:plants8120590. [PMID: 31835810 PMCID: PMC6963811 DOI: 10.3390/plants8120590] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/27/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022]
Abstract
The Arabidopsis multistep-phosphorelay (MSP) is a signaling mechanism based on a phosphorelay that involves three different types of proteins: Histidine kinases, phosphotransfer proteins, and response regulators. Its bacterial equivalent, the two-component system (TCS), is the most predominant device for signal transduction in prokaryotes. The TCS has been extensively studied and is thus generally well-understood. In contrast, the MSP in plants was first described in 1993. Although great advances have been made, MSP is far from being completely comprehended. Focusing on the model organism Arabidopsis thaliana, this review summarized recent studies that have revealed many similarities with bacterial TCSs regarding how TCS/MSP signaling is regulated by protein phosphorylation and dephosphorylation, protein degradation, and dimerization. Thus, comparison with better-understood bacterial systems might be relevant for an improved study of the Arabidopsis MSP.
Collapse
|
49
|
Héricourt F, Larcher M, Chefdor F, Koudounas K, Carqueijeiro I, Lemos Cruz P, Courdavault V, Tanigawa M, Maeda T, Depierreux C, Lamblin F, Glévarec G, Carpin S. New Insight into HPts as Hubs in Poplar Cytokinin and Osmosensing Multistep Phosphorelays: Cytokinin Pathway Uses Specific HPts. PLANTS 2019; 8:plants8120591. [PMID: 31835814 PMCID: PMC6963366 DOI: 10.3390/plants8120591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 02/02/2023]
Abstract
We have previously identified proteins in poplar which belong to an osmosensing (OS) signaling pathway, called a multistep phosphorelay (MSP). The MSP comprises histidine-aspartate kinases (HK), which act as membrane receptors; histidine phosphotransfer (HPt) proteins, which act as phosphorelay proteins; and response regulators (RR), some of which act as transcription factors. In this study, we identified the HK proteins homologous to the Arabidopsis cytokinin (CK) receptors, which are first partners in the poplar cytokinin MSP, and focused on specificity of these two MSPs (CK and OS), which seem to share the same pool of HPt proteins. Firstly, we isolated five CK HKs from poplar which are homologous to Arabidopsis AHK2, AHK3, and AHK4, namely, HK2, HK3a, HK3b, HK4a, HK4b. These HKs were shown to be functional kinases, as observed in a functional complementation of a yeast HK deleted strain. Moreover, one of these HKs, HK4a, was shown to have kinase activity dependent on the presence of CK. Exhaustive interaction tests between these five CK HKs and the 10 HPts characterized in poplar were performed using two-hybrid and BiFC experiments. The resulting partnership was compared to that previously identified between putative osmosensors HK1a/1b and HPt proteins. Finally, in planta coexpression analysis of genes encoding these potential partners revealed that almost all HPts are coexpressed with CK HKs in four different poplar organs. Overall, these results allowed us to unravel the common and specific partnerships existing between OS and CK MSP in Populus.
Collapse
Affiliation(s)
- François Héricourt
- LBLGC, University of Orléans, EA1207, INRA, USC1328, rue de Chartres, CEDEX 2, 45067 Orléans, France; (F.H.); (M.L.); (F.C.); (C.D.); (F.L.)
| | - Mélanie Larcher
- LBLGC, University of Orléans, EA1207, INRA, USC1328, rue de Chartres, CEDEX 2, 45067 Orléans, France; (F.H.); (M.L.); (F.C.); (C.D.); (F.L.)
| | - Françoise Chefdor
- LBLGC, University of Orléans, EA1207, INRA, USC1328, rue de Chartres, CEDEX 2, 45067 Orléans, France; (F.H.); (M.L.); (F.C.); (C.D.); (F.L.)
| | - Konstantinos Koudounas
- BBV, University of Tours, EA 2106, 31 Avenue Monge, 37200 Tours, France; (K.K.); (I.C.); (P.L.C.); (V.C.); (G.G.)
| | - Inês Carqueijeiro
- BBV, University of Tours, EA 2106, 31 Avenue Monge, 37200 Tours, France; (K.K.); (I.C.); (P.L.C.); (V.C.); (G.G.)
| | - Pamela Lemos Cruz
- BBV, University of Tours, EA 2106, 31 Avenue Monge, 37200 Tours, France; (K.K.); (I.C.); (P.L.C.); (V.C.); (G.G.)
| | - Vincent Courdavault
- BBV, University of Tours, EA 2106, 31 Avenue Monge, 37200 Tours, France; (K.K.); (I.C.); (P.L.C.); (V.C.); (G.G.)
| | - Mirai Tanigawa
- Department of Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (M.T.); (T.M.)
| | - Tatsuya Maeda
- Department of Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (M.T.); (T.M.)
| | - Christiane Depierreux
- LBLGC, University of Orléans, EA1207, INRA, USC1328, rue de Chartres, CEDEX 2, 45067 Orléans, France; (F.H.); (M.L.); (F.C.); (C.D.); (F.L.)
| | - Frédéric Lamblin
- LBLGC, University of Orléans, EA1207, INRA, USC1328, rue de Chartres, CEDEX 2, 45067 Orléans, France; (F.H.); (M.L.); (F.C.); (C.D.); (F.L.)
| | - Gaëlle Glévarec
- BBV, University of Tours, EA 2106, 31 Avenue Monge, 37200 Tours, France; (K.K.); (I.C.); (P.L.C.); (V.C.); (G.G.)
| | - Sabine Carpin
- LBLGC, University of Orléans, EA1207, INRA, USC1328, rue de Chartres, CEDEX 2, 45067 Orléans, France; (F.H.); (M.L.); (F.C.); (C.D.); (F.L.)
- Correspondence: ; Tel.: +33-2-3849-4804
| |
Collapse
|
50
|
Assefa T, Otyama PI, Brown AV, Kalberer SR, Kulkarni RS, Cannon SB. Genome-wide associations and epistatic interactions for internode number, plant height, seed weight and seed yield in soybean. BMC Genomics 2019; 20:527. [PMID: 31242867 PMCID: PMC6595607 DOI: 10.1186/s12864-019-5907-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/17/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Breeding programs benefit from information about marker-trait associations for many traits, whether the goal is to place those traits under active selection or to maintain them through background selection. Association studies are also important for identifying accessions bearing potentially useful alleles by characterizing marker-trait associations and allelic states across germplasm collections. This study reports the results of a genome-wide association study and evaluation of epistatic interactions for four agronomic and seed-related traits in soybean. RESULTS Using 419 diverse soybean accessions, together with genotyping data from the SoySNP50K Illumina Infinium BeadChip, we identified marker-trait associations for internode number (IN), plant height (PH), seed weight (SW), and seed yield per plant (SYP). We conducted a genome-wide epistatic study (GWES), identifying candidate genes that show evidence of SNP-SNP interactions. Although these candidate genes will require further experimental validation, several appear to be involved in developmental processes related to the respective traits. For IN and PH, these include the Dt1 determinacy locus (a soybean meristematic transcription factor), as well as a pectinesterase gene and a squamosa promoter binding gene that in other plants are involved in cell elongation and the vegetative-to-reproductive transition, respectively. For SW, candidate genes include an ortholog of the AP2 gene, which in other species is involved in maintaining seed size, embryo size, seed weight and seed yield. Another SW candidate gene is a histidine phosphotransfer protein - orthologs of which are involved in cytokinin-mediated seed weight regulating pathways. The SYP association loci overlap with regions reported in previous QTL studies to be involved in seed yield. CONCLUSIONS This study further confirms the utility of GWAS and GWES approaches for identifying marker-trait associations and interactions within a diverse germplasm collection.
Collapse
Affiliation(s)
- Teshale Assefa
- ORISE Fellow, USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, Iowa USA
| | - Paul I. Otyama
- Agronomy Department, Iowa State University, Ames, IA USA
| | - Anne V. Brown
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, Iowa USA
| | - Scott R. Kalberer
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, Iowa USA
| | | | - Steven B. Cannon
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, Iowa USA
| |
Collapse
|