1
|
Omondi E, Barchi L, Gaccione L, Portis E, Toppino L, Tassone MR, Alonso D, Prohens J, Rotino GL, Schafleitner R, van Zonneveld M, Giuliano G. Association analyses reveal both anthropic and environmental selective events during eggplant domestication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17229. [PMID: 39918113 PMCID: PMC11803709 DOI: 10.1111/tpj.17229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 02/11/2025]
Abstract
Eggplant (Solanum melongena) is one of the four most important Solanaceous crops, widely cultivated and consumed in Asia, the Mediterranean basin, and Southeast Europe. We studied the genome-wide association of historical genebank phenotypic data on a genotyped worldwide collection of 3449 eggplant accessions. Overall, 334 significant associations for key agronomic traits were detected. Significant correlations were obtained between different types of phenotypic data, some of which were not obvious, such as between fruit size/yield and fruit color components, suggesting simultaneous anthropic selection for genetically unrelated traits. Anthropic selection of traits like leaf prickles, fruit color, and yield, acted on distinct genomic regions in the two domestication centers (India and Southeast Asia), further confirming the multiple domestication of eggplant. To discriminate anthropic from environmental selection in domestication centers, we conducted a genotype-environment association (GEA) on a subset of georeferenced accessions from the Indian subcontinent. The population structure in this area revealed four genetic clusters, corresponding to a latitudinal gradient, and environmental factors explained 31% of the population structure when the effect of spatial distances was removed. GEA and outlier association identified 305 candidate regions under environmental selection, containing genes for abiotic stress responses, plant development, and flowering transition. Finally, in the Indian domestication center anthropic and environmental selection acted largely independently, and on different genomic regions. These data allow a better understanding of the different effects of environmental and anthropic selection during domestication of a crop, and the different world regions where some traits were initially selected by humans.
Collapse
Affiliation(s)
| | - Lorenzo Barchi
- DISAFA – Plant GeneticsUniversity of TurinGrugliascoTO10095Italy
| | - Luciana Gaccione
- DISAFA – Plant GeneticsUniversity of TurinGrugliascoTO10095Italy
| | - Ezio Portis
- DISAFA – Plant GeneticsUniversity of TurinGrugliascoTO10095Italy
| | - Laura Toppino
- CREA Research Centre for Genomics and BioinformaticsVia Paullese 28Montanaso LombardoLO26836Italy
| | - Maria Rosaria Tassone
- CREA Research Centre for Genomics and BioinformaticsVia Paullese 28Montanaso LombardoLO26836Italy
| | - David Alonso
- Universitat Politècnica de ValènciaCamino de Vera 1446022ValenciaSpain
| | - Jaime Prohens
- Universitat Politècnica de ValènciaCamino de Vera 1446022ValenciaSpain
| | - Giuseppe Leonardo Rotino
- CREA Research Centre for Genomics and BioinformaticsVia Paullese 28Montanaso LombardoLO26836Italy
| | | | | | | |
Collapse
|
2
|
Mishra S, Spaccarotella K, Gido J, Samanta I, Chowdhary G. Effects of Heat Stress on Plant-Nutrient Relations: An Update on Nutrient Uptake, Transport, and Assimilation. Int J Mol Sci 2023; 24:15670. [PMID: 37958654 PMCID: PMC10649217 DOI: 10.3390/ijms242115670] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
As a consequence of global climate change, the frequency, severity, and duration of heat stress are increasing, impacting plant growth, development, and reproduction. While several studies have focused on the physiological and molecular aspects of heat stress, there is growing concern that crop quality, particularly nutritional content and phytochemicals important for human health, is also negatively impacted. This comprehensive review aims to provide profound insights into the multifaceted effects of heat stress on plant-nutrient relationships, with a particular emphasis on tissue nutrient concentration, the pivotal nutrient-uptake proteins unique to both macro- and micronutrients, and the effects on dietary phytochemicals. Finally, we propose a new approach to investigate the response of plants to heat stress by exploring the possible role of plant peroxisomes in the context of heat stress and nutrient mobilization. Understanding these complex mechanisms is crucial for developing strategies to improve plant nutrition and resilience during heat stress.
Collapse
Affiliation(s)
- Sasmita Mishra
- Department of Biology, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA
| | - Kim Spaccarotella
- Department of Biology, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA
| | - Jaclyn Gido
- Department of Biology, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA
| | - Ishita Samanta
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT—Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India (G.C.)
| | - Gopal Chowdhary
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT—Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India (G.C.)
| |
Collapse
|
3
|
Wang M, Zhang H, Zhao X, Zhou J, Qin G, Liu Y, Kou X, Zhao Z, Wu T, Zhu JK, Feng X, Li L. SYNTAXIN OF PLANTS81 regulates root meristem activity and stem cell niche maintenance via ROS signaling. PLANT PHYSIOLOGY 2023; 191:1365-1382. [PMID: 36427205 PMCID: PMC9922426 DOI: 10.1093/plphys/kiac530] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Root growth and development depend on continuous cell division and differentiation in root tips. In these processes, reactive oxygen species (ROS) play a critical role as signaling molecules. However, few ROS signaling regulators have been identified. In this study, we found knockdown of a syntaxin gene, SYNTAXIN OF PLANTS81 in Arabidopsis thaliana (AtSYP81) resulted in a severe reduction in root meristem activity and disruption of root stem cell niche (SCN) identity. Subsequently, we found AtSYP81 was highly expressed in roots and localized on the endoplasmic reticulum (ER). Interestingly, the reduced expression of AtSYP81 conferred a decreased number of peroxisomes in root meristem cells, raising a possibility that AtSYP81 regulates root development through peroxisome-mediated ROS production. Further transcriptome analysis revealed that class III peroxidases, which are responsible for intracellular ROS homeostasis, showed significantly changed expression in the atsyp81 mutants and AtSYP81 overexpression lines, adding evidence of the regulatory role of AtSYP81 in ROS signaling. Accordingly, rescuing the decreased ROS level via applying ROS donors effectively restored the defects in root meristem activity and SCN identity in the atsyp81 mutants. APETALA2 (AP2) transcription factors PLETHORA1 and 2 (PLT1 and PLT2) were then established as the downstream effectors in this pathway, while potential crosstalk between ROS signaling and auxin signaling was also indicated. Taken together, our findings suggest that AtSYP81 regulates root meristem activity and maintains root SCN identity by controlling peroxisome- and peroxidase-mediated ROS homeostasis, thus both broadening and deepening our understanding of the biological roles of SNARE proteins and ROS signaling.
Collapse
Affiliation(s)
- Mingjing Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Hailong Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xiaonan Zhao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Jingwen Zhou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Guochen Qin
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Yuqi Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xiaoyue Kou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Zhenjie Zhao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Tao Wu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Center for Advanced Bioindustry Technologies, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Lixin Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
4
|
Mahalingam R, Duhan N, Kaundal R, Smertenko A, Nazarov T, Bregitzer P. Heat and drought induced transcriptomic changes in barley varieties with contrasting stress response phenotypes. FRONTIERS IN PLANT SCIENCE 2022; 13:1066421. [PMID: 36570886 PMCID: PMC9772561 DOI: 10.3389/fpls.2022.1066421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/28/2022] [Indexed: 06/01/2023]
Abstract
Drought and heat stress substantially impact plant growth and productivity. When subjected to drought or heat stress, plants exhibit reduction in growth resulting in yield losses. The occurrence of these two stresses together intensifies their negative effects. Unraveling the molecular changes in response to combined abiotic stress is essential to breed climate-resilient crops. In this study, transcriptome profiles were compared between stress-tolerant (Otis), and stress-sensitive (Golden Promise) barley genotypes subjected to drought, heat, and combined heat and drought stress for five days during heading stage. The major differences that emerged from the transcriptome analysis were the overall number of differentially expressed genes was relatively higher in Golden Promise (GP) compared to Otis. The differential expression of more than 900 transcription factors in GP and Otis may aid this transcriptional reprogramming in response to abiotic stress. Secondly, combined heat and water deficit stress results in a unique and massive transcriptomic response that cannot be predicted from individual stress responses. Enrichment analyses of gene ontology terms revealed unique and stress type-specific adjustments of gene expression. Weighted Gene Co-expression Network Analysis identified genes associated with RNA metabolism and Hsp70 chaperone components as hub genes that can be useful for engineering tolerance to multiple abiotic stresses. Comparison of the transcriptomes of unstressed Otis and GP plants identified several genes associated with biosynthesis of antioxidants and osmolytes were higher in the former that maybe providing innate tolerance capabilities to effectively combat hostile conditions. Lines with different repertoire of innate tolerance mechanisms can be effectively leveraged in breeding programs for developing climate-resilient barley varieties with superior end-use traits.
Collapse
Affiliation(s)
| | - Naveen Duhan
- Department of Plant, Soils and Climate, Utah State University, Logan, UT, United States
| | - Rakesh Kaundal
- Department of Plant, Soils and Climate, Utah State University, Logan, UT, United States
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Taras Nazarov
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Phil Bregitzer
- National Small Grains Germplasm Research Facility, USDA-ARS, Aberdeen, ID, United States
| |
Collapse
|
5
|
Johnston C, García Navarrete LT, Ortiz E, Romsdahl TB, Guzha A, Chapman KD, Grotewold E, Alonso AP. Effective Mechanisms for Improving Seed Oil Production in Pennycress ( Thlaspi arvense L.) Highlighted by Integration of Comparative Metabolomics and Transcriptomics. FRONTIERS IN PLANT SCIENCE 2022; 13:943585. [PMID: 35909773 PMCID: PMC9330397 DOI: 10.3389/fpls.2022.943585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Pennycress is a potentially lucrative biofuel crop due to its high content of long-chain unsaturated fatty acids, and because it uses non-conventional pathways to achieve efficient oil production. However, metabolic engineering is required to improve pennycress oilseed content and make it an economically viable source of aviation fuel. Research is warranted to determine if further upregulation of these non-conventional pathways could improve oil production within the species even more, which would indicate these processes serve as promising metabolic engineering targets and could provide the improvement necessary for economic feasibility of this crop. To test this hypothesis, we performed a comparative biomass, metabolomic, and transcriptomic analyses between a high oil accession (HO) and low oil accession (LO) of pennycress to assess potential factors required to optimize oil content. An evident reduction in glycolysis intermediates, improved oxidative pentose phosphate pathway activity, malate accumulation in the tricarboxylic acid cycle, and an anaplerotic pathway upregulation were noted in the HO genotype. Additionally, higher levels of threonine aldolase transcripts imply a pyruvate bypass mechanism for acetyl-CoA production. Nucleotide sugar and ascorbate accumulation also were evident in HO, suggesting differential fate of associated carbon between the two genotypes. An altered transcriptome related to lipid droplet (LD) biosynthesis and stability suggests a contribution to a more tightly-packed LD arrangement in HO cotyledons. In addition to the importance of central carbon metabolism augmentation, alternative routes of carbon entry into fatty acid synthesis and modification, as well as transcriptionally modified changes in LD regulation, are key aspects of metabolism and storage associated with economically favorable phenotypes of the species.
Collapse
Affiliation(s)
- Christopher Johnston
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, United States
| | | | - Emmanuel Ortiz
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, United States
| | - Trevor B. Romsdahl
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, United States
| | - Athanas Guzha
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, United States
| | - Kent D. Chapman
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, United States
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Ana Paula Alonso
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, United States
| |
Collapse
|
6
|
Farre JC, Carolino K, Devanneaux L, Subramani S. OXPHOS deficiencies affect peroxisome proliferation by downregulating genes controlled by the SNF1 signaling pathway. eLife 2022; 11:e75143. [PMID: 35467529 PMCID: PMC9094750 DOI: 10.7554/elife.75143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
How environmental cues influence peroxisome proliferation, particularly through organelles, remains largely unknown. Yeast peroxisomes metabolize fatty acids (FA), and methylotrophic yeasts also metabolize methanol. NADH and acetyl-CoA, produced by these pathways enter mitochondria for ATP production and for anabolic reactions. During the metabolism of FA and/or methanol, the mitochondrial oxidative phosphorylation (OXPHOS) pathway accepts NADH for ATP production and maintains cellular redox balance. Remarkably, peroxisome proliferation in Pichia pastoris was abolished in NADH-shuttling- and OXPHOS mutants affecting complex I or III, or by the mitochondrial uncoupler, 2,4-dinitrophenol (DNP), indicating ATP depletion causes the phenotype. We show that mitochondrial OXPHOS deficiency inhibits expression of several peroxisomal proteins implicated in FA and methanol metabolism, as well as in peroxisome division and proliferation. These genes are regulated by the Snf1 complex (SNF1), a pathway generally activated by a high AMP/ATP ratio. In OXPHOS mutants, Snf1 is activated by phosphorylation, but Gal83, its interacting subunit, fails to translocate to the nucleus. Phenotypic defects in peroxisome proliferation observed in the OXPHOS mutants, and phenocopied by the Δgal83 mutant, were rescued by deletion of three transcriptional repressor genes (MIG1, MIG2, and NRG1) controlled by SNF1 signaling. Our results are interpreted in terms of a mechanism by which peroxisomal and mitochondrial proteins and/or metabolites influence redox and energy metabolism, while also influencing peroxisome biogenesis and proliferation, thereby exemplifying interorganellar communication and interplay involving peroxisomes, mitochondria, cytosol, and the nucleus. We discuss the physiological relevance of this work in the context of human OXPHOS deficiencies.
Collapse
Affiliation(s)
- Jean-Claude Farre
- Section of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Krypton Carolino
- Section of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Lou Devanneaux
- Section of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Suresh Subramani
- Section of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
7
|
Kang BH, Anderson CT, Arimura SI, Bayer E, Bezanilla M, Botella MA, Brandizzi F, Burch-Smith TM, Chapman KD, Dünser K, Gu Y, Jaillais Y, Kirchhoff H, Otegui MS, Rosado A, Tang Y, Kleine-Vehn J, Wang P, Zolman BK. A glossary of plant cell structures: Current insights and future questions. THE PLANT CELL 2022; 34:10-52. [PMID: 34633455 PMCID: PMC8846186 DOI: 10.1093/plcell/koab247] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 05/03/2023]
Abstract
In this glossary of plant cell structures, we asked experts to summarize a present-day view of plant organelles and structures, including a discussion of outstanding questions. In the following short reviews, the authors discuss the complexities of the plant cell endomembrane system, exciting connections between organelles, novel insights into peroxisome structure and function, dynamics of mitochondria, and the mysteries that need to be unlocked from the plant cell wall. These discussions are focused through a lens of new microscopy techniques. Advanced imaging has uncovered unexpected shapes, dynamics, and intricate membrane formations. With a continued focus in the next decade, these imaging modalities coupled with functional studies are sure to begin to unravel mysteries of the plant cell.
Collapse
Affiliation(s)
- Byung-Ho Kang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | - Shin-ichi Arimura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Emmanuelle Bayer
- Université de Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, Villenave d'Ornon F-33140, France
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga 29071, Spain
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | - Kai Dünser
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Yangnan Gu
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Abel Rosado
- Department of Botany, University of British Columbia, Vancouver V6T1Z4, Canada
| | - Yu Tang
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Jürgen Kleine-Vehn
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Bethany Karlin Zolman
- Department of Biology, University of Missouri, St. Louis, St. Louis, Missouri 63121, USA
| |
Collapse
|
8
|
Jansen RLM, Santana-Molina C, van den Noort M, Devos DP, van der Klei IJ. Comparative Genomics of Peroxisome Biogenesis Proteins: Making Sense of the PEX Proteins. Front Cell Dev Biol 2021; 9:654163. [PMID: 34095119 PMCID: PMC8172628 DOI: 10.3389/fcell.2021.654163] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/21/2021] [Indexed: 11/29/2022] Open
Abstract
PEX genes encode proteins involved in peroxisome biogenesis and proliferation. Using a comparative genomics approach, we clarify the evolutionary relationships between the 37 known PEX proteins in a representative set of eukaryotes, including all common model organisms, pathogenic unicellular eukaryotes and human. A large number of previously unknown PEX orthologs were identified. We analyzed all PEX proteins, their conservation and domain architecture and defined the core set of PEX proteins that is required to make a peroxisome. The molecular processes in peroxisome biogenesis in different organisms were put into context, showing that peroxisomes are not static organelles in eukaryotic evolution. Organisms that lack peroxisomes still contain a few PEX proteins, which probably play a role in alternative processes. Finally, the relationships between PEX proteins of two large families, the Pex11 and Pex23 families, were analyzed, thereby contributing to the understanding of their complicated and sometimes incorrect nomenclature. We provide an exhaustive overview of this important eukaryotic organelle.
Collapse
Affiliation(s)
- Renate L M Jansen
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Carlos Santana-Molina
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville, Spain
| | - Marco van den Noort
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville, Spain
| | - Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
9
|
Jasieniecka-Gazarkiewicz K, Demski K, Gidda SK, Klińska S, Niedojadło J, Lager I, Carlsson AS, Minina EA, Mullen RT, Bozhkov PV, Stymne S, Banaś A. Subcellular Localization of Acyl-CoA: Lysophosphatidylethanolamine Acyltransferases (LPEATs) and the Effects of Knocking-Out and Overexpression of Their Genes on Autophagy Markers Level and Life Span of A. thaliana. Int J Mol Sci 2021; 22:ijms22063006. [PMID: 33809440 PMCID: PMC8000221 DOI: 10.3390/ijms22063006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
Arabidopsis thaliana possesses two acyl-CoA:lysophosphatidylethanolamine acyltransferases, LPEAT1 and LPEAT2, which are encoded by At1g80950 and At2g45670 genes, respectively. Both single lpeat2 mutant and double lpeat1 lpeat2 mutant plants exhibit a variety of conspicuous phenotypes, including dwarfed growth. Confocal microscopic analysis of tobacco suspension-cultured cells transiently transformed with green fluorescent protein-tagged versions of LPEAT1 or LPEAT2 revealed that LPEAT1 is localized to the endoplasmic reticulum (ER), whereas LPEAT2 is localized to both Golgi and late endosomes. Considering that the primary product of the reaction catalyzed by LPEATs is phosphatidylethanolamine, which is known to be covalently conjugated with autophagy-related protein ATG8 during a key step of the formation of autophagosomes, we investigated the requirements for LPEATs to engage in autophagic activity in Arabidopsis. Knocking out of either or both LPEAT genes led to enhanced accumulation of the autophagic adaptor protein NBR1 and decreased levels of both ATG8a mRNA and total ATG8 protein. Moreover, we detected significantly fewer membrane objects in the vacuoles of lpeat1 lpeat2 double mutant mesophyll cells than in vacuoles of control plants. However, contrary to what has been reported on autophagy deficient plants, the lpeat mutants displayed a prolonged life span compared to wild type, including delayed senescence.
Collapse
Affiliation(s)
- Katarzyna Jasieniecka-Gazarkiewicz
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland; (K.D.); (S.K.); (A.B.)
- Correspondence:
| | - Kamil Demski
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland; (K.D.); (S.K.); (A.B.)
| | - Satinder K. Gidda
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.K.G.); (R.T.M.)
| | - Sylwia Klińska
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland; (K.D.); (S.K.); (A.B.)
| | - Janusz Niedojadło
- Department of Cell Biology, Department of Cellular and Molecular Biology, Nicolaus Copernicus University, 87-100 Torun, Poland;
| | - Ida Lager
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 230-53 Alnarp, Sweden; (I.L.); (A.S.C.); (S.S.)
| | - Anders S. Carlsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 230-53 Alnarp, Sweden; (I.L.); (A.S.C.); (S.S.)
| | - Elena A. Minina
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 750-07 Uppsala, Sweden; (E.A.M.); (P.V.B.)
| | - Robert T. Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.K.G.); (R.T.M.)
| | - Peter V. Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 750-07 Uppsala, Sweden; (E.A.M.); (P.V.B.)
| | - Sten Stymne
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 230-53 Alnarp, Sweden; (I.L.); (A.S.C.); (S.S.)
| | - Antoni Banaś
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland; (K.D.); (S.K.); (A.B.)
| |
Collapse
|
10
|
Grübler B, Cozzi C, Pfannschmidt T. A Core Module of Nuclear Genes Regulated by Biogenic Retrograde Signals from Plastids. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10020296. [PMID: 33557197 PMCID: PMC7913978 DOI: 10.3390/plants10020296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 05/11/2023]
Abstract
Chloroplast biogenesis during seedling development of angiosperms is a rapid and highly dynamic process that parallels the light-dependent photomorphogenic programme. Pre-treatments of dark-grown seedlings with lincomyin or norflurazon prevent chloroplast biogenesis upon illumination yielding albino seedlings. A comparable phenotype was found for the Arabidopsis mutant plastid-encoded polymerase associated protein 7 (pap7) being defective in the prokaryotic-type plastid RNA polymerase. In all three cases the defect in plastid function has a severe impact on the expression of nuclear genes representing the influence of retrograde signaling pathway(s) from the plastid. We performed a meta-analysis of recently published genome-wide expression studies that investigated the impact of the aforementioned chemical and genetic blocking of chloroplast biogenesis on nuclear gene expression profiles. We identified a core module of 152 genes being affected in all three conditions. These genes were classified according to their function and analyzed with respect to their implication in retrograde signaling and chloroplast biogenesis. Our study uncovers novel genes regulated by retrograde biogenic signals and suggests the action of a common signaling pathway that is used by signals originating from plastid transcription, translation and oxidative stress.
Collapse
|
11
|
Brito GC, Schormann W, Gidda SK, Mullen RT, Andrews DW. Genome-wide analysis of Homo sapiens, Arabidopsis thaliana, and Saccharomyces cerevisiae reveals novel attributes of tail-anchored membrane proteins. BMC Genomics 2019; 20:835. [PMID: 31711414 PMCID: PMC6849228 DOI: 10.1186/s12864-019-6232-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/28/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Tail-anchored membrane proteins (TAMPs) differ from other integral membrane proteins, because they contain a single transmembrane domain at the extreme carboxyl-terminus and are therefore obliged to target to membranes post-translationally. Although 3-5% of all transmembrane proteins are predicted to be TAMPs only a small number are well characterized. RESULTS To identify novel putative TAMPs across different species, we used TAMPfinder software to identify 859, 657 and 119 putative TAMPs in human (Homo sapiens), plant (Arabidopsis thaliana), and yeast (Saccharomyces cerevisiae), respectively. Bioinformatics analyses of these putative TAMP sequences suggest that the list is highly enriched for authentic TAMPs. To experimentally validate the software predictions several human and plant proteins identified by TAMPfinder that were previously uncharacterized were expressed in cells and visualized at subcellular membranes by fluorescence microscopy and further analyzed by carbonate extraction or by bimolecular fluorescence complementation. With the exception of the pro-apoptotic protein harakiri, which is, peripherally bound to the membrane this subset of novel proteins behave like genuine TAMPs. Comprehensive bioinformatics analysis of the generated TAMP datasets revealed previously unappreciated common and species-specific features such as the unusual size distribution of and the propensity of TAMP proteins to be part of larger complexes. Additionally, novel features of the amino acid sequences that anchor TAMPs to membranes were also revealed. CONCLUSIONS The findings in this study more than double the number of predicted annotated TAMPs and provide new insights into the common and species-specific features of TAMPs. Furthermore, the list of TAMPs and annotations provide a resource for further investigation.
Collapse
Affiliation(s)
- Glauber Costa Brito
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Wiebke Schormann
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Satinder K Gidda
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - David W Andrews
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada. .,Departments of Biochemistry and Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Hinojosa L, Sanad MNME, Jarvis DE, Steel P, Murphy K, Smertenko A. Impact of heat and drought stress on peroxisome proliferation in quinoa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:1144-1158. [PMID: 31108001 DOI: 10.1111/tpj.14411] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/07/2019] [Accepted: 05/13/2019] [Indexed: 05/21/2023]
Abstract
Although peroxisomes play a key role in plant metabolism under both normal and stressful growth conditions, the impact of drought and heat stress on the peroxisomes remains unknown. Quinoa represents an informative system for dissecting the impact of abiotic stress on peroxisome proliferation because it is adapted to marginal environments. Here we determined the correlation of peroxisome abundance with physiological responses and yield under heat, drought and heat plus drought stresses in eight genotypes of quinoa. We found that all stresses caused a reduction in stomatal conductance and yield. Furthermore, H2 O2 content increased under drought and heat plus drought. Principal component analysis demonstrated that peroxisome abundance correlated positively with H2 O2 content in leaves and correlated negatively with yield. Pearson correlation coefficient for yield and peroxisome abundance (r = -0.59) was higher than for commonly used photosynthetic efficiency (r = 0.23), but comparable to those for classical stress indicators such as soil moisture content (r = 0.51) or stomatal conductance (r = 0.62). Our work established peroxisome abundance as a cellular sensor for measuring responses to heat and drought stress in the genetically diverse populations. As heat waves threaten agricultural productivity in arid climates, our findings will facilitate identification of genetic markers for improving yield of crops under extreme weather patterns.
Collapse
Affiliation(s)
- Leonardo Hinojosa
- Department of Crop and Soil Sciences, Washington State University, PO Box 646340, Pullman, WA, 99164, USA
| | - Marwa N M E Sanad
- Institute of Biological Chemistry, Washington State University, PO Box 646340, Pullman, WA, 99164, USA
- Department of Genetics and Cytology, National Research Centre, Giza, Egypt
| | - David E Jarvis
- Plant & Wildlife Sciences, Brigham Young University, Provo, UT, 84602, USA
| | - Patrick Steel
- Department of Chemistry, Durham University, Durham, UK
| | - Kevin Murphy
- Department of Crop and Soil Sciences, Washington State University, PO Box 646340, Pullman, WA, 99164, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, PO Box 646340, Pullman, WA, 99164, USA
| |
Collapse
|
13
|
Pan R, Liu J, Hu J. Peroxisomes in plant reproduction and seed-related development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:784-802. [PMID: 30578613 DOI: 10.1111/jipb.12765] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/18/2018] [Indexed: 05/21/2023]
Abstract
Peroxisomes are small multi-functional organelles essential for plant development and growth. Plant peroxisomes play various physiological roles, including phytohormone biosynthesis, lipid catabolism, reactive oxygen species metabolism and many others. Mutant analysis demonstrated key roles for peroxisomes in plant reproduction, seed development and germination and post-germinative seedling establishment; however, the underlying mechanisms remain to be fully elucidated. This review summarizes findings that reveal the importance and complexity of the role of peroxisomes in the pertinent processes. The β-oxidation pathway plays a central role, whereas other peroxisomal pathways are also involved. Understanding the biochemical and molecular mechanisms of these peroxisomal functions will be instrumental to the improvement of crop plants.
Collapse
Affiliation(s)
- Ronghui Pan
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jun Liu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Plant Biology Department, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
14
|
Ghahremani M, Park J, Anderson EM, Marty-Howard NJ, Mullen RT, Plaxton WC. Lectin AtGAL1 interacts with high-mannose glycoform of the purple acid phosphatase AtPAP26 secreted by phosphate-starved Arabidopsis. PLANT, CELL & ENVIRONMENT 2019; 42:1158-1166. [PMID: 30341950 DOI: 10.1111/pce.13463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/01/2018] [Accepted: 10/07/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Mina Ghahremani
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Joonho Park
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, South Korea
| | - Erin M Anderson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Naomi J Marty-Howard
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - William C Plaxton
- Department of Biology, Queen's University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
15
|
Teresinski HJ, Gidda SK, Nguyen TND, Howard NJM, Porter BK, Grimberg N, Smith MD, Andrews DW, Dyer JM, Mullen RT. An RK/ST C-Terminal Motif is Required for Targeting of OEP7.2 and a Subset of Other Arabidopsis Tail-Anchored Proteins to the Plastid Outer Envelope Membrane. PLANT & CELL PHYSIOLOGY 2019; 60:516-537. [PMID: 30521026 DOI: 10.1093/pcp/pcy234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
Tail-anchored (TA) proteins are a unique class of integral membrane proteins that possess a single C-terminal transmembrane domain and target post-translationally to the specific organelles at which they function. While significant advances have been made in recent years in elucidating the mechanisms and molecular targeting signals involved in the proper sorting of TA proteins, particularly to the endoplasmic reticulum and mitochondria, relatively little is known about the targeting of TA proteins to the plastid outer envelope. Here we show that several known or predicted plastid TA outer envelope proteins (OEPs) in Arabidopsis possess a C-terminal RK/ST sequence motif that serves as a conserved element of their plastid targeting signal. Evidence for this conclusion comes primarily from experiments with OEP7.2, which is a member of the Arabidopsis 7 kDa OEP family. We confirmed that OEP7.2 is localized to the plastid outer envelope and possesses a TA topology, and its C-terminal sequence (CTS), which includes the RK/ST motif, is essential for proper targeting to plastids. The CTS of OEP7.2 is functionally interchangeable with the CTSs of other TA OEPs that possess similar RK/ST motifs, but not with those that lack the motif. Further, a bioinformatics search based on a consensus sequence led to the identification of several new OEP TA proteins. Collectively, this study provides new insight into the mechanisms of TA protein sorting in plant cells, defines a new targeting signal element for a subset of TA OEPs and expands the number and repertoire of TA proteins at the plastid outer envelope.
Collapse
Affiliation(s)
- Howard J Teresinski
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Satinder K Gidda
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Thuy N D Nguyen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Naomi J Marty Howard
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Brittany K Porter
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Nicholas Grimberg
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Matthew D Smith
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - David W Andrews
- Sunnybrook Research Institute and Departments of Biochemistry and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John M Dyer
- United States Department of Agriculture, Agricultural Research Service, US Arid-Land Agricultural Research Center, Maricopa, USA
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
16
|
Aznar-Moreno JA, Sánchez R, Gidda SK, Martínez-Force E, Moreno-Pérez AJ, Venegas Calerón M, Garcés R, Mullen RT, Salas JJ. New Insights Into Sunflower ( Helianthus annuus L.) FatA and FatB Thioesterases, Their Regulation, Structure and Distribution. FRONTIERS IN PLANT SCIENCE 2018; 9:1496. [PMID: 30459777 PMCID: PMC6232763 DOI: 10.3389/fpls.2018.01496] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/25/2018] [Indexed: 05/13/2023]
Abstract
Sunflower seeds (Helianthus annuus L.) accumulate large quantities of triacylglycerols (TAG) between 12 and 28 days after flowering (DAF). This is the period of maximal acyl-acyl carrier protein (acyl-ACP) thioesterase activity in vitro, the enzymes that terminate the process of de novo fatty acid synthesis by catalyzing the hydrolysis of the acyl-ACPs synthesized by fatty acid synthase. Fatty acid thioesterases can be classified into two families with distinct substrate specificities, namely FatA and FatB. Here, some new aspects of these enzymes have been studied, assessing how both enzymes contribute to the acyl composition of sunflower oil, not least through the changes in their expression during the process of seed filling. Moreover, the binding pockets of these enzymes were modeled based on new data from plant thioesterases, revealing important differences in their volume and geometry. Finally, the subcellular location of the two enzymes was evaluated and while both possess an N-terminal plastid transit peptide, only in FatB contains a hydrophobic sequence that could potentially serve as a transmembrane domain. Indeed, using in vivo imaging and organelle fractionation, H. annuus thioesterases, HaFatA and HaFatB, appear to be differentially localized in the plastid stroma and membrane envelope, respectively. The divergent roles fulfilled by HaFatA and HaFatB in oil biosynthesis are discussed in the light of our data.
Collapse
Affiliation(s)
- Jose A. Aznar-Moreno
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Rosario Sánchez
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Seville, Spain
| | - Satinder K. Gidda
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | | | - Mónica Venegas Calerón
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Rafael Garcés
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Seville, Spain
| | - Robert T. Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Joaquín J. Salas
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Seville, Spain
| |
Collapse
|
17
|
Jilly R, Khan NZ, Aronsson H, Schneider D. Dynamin-Like Proteins Are Potentially Involved in Membrane Dynamics within Chloroplasts and Cyanobacteria. FRONTIERS IN PLANT SCIENCE 2018; 9:206. [PMID: 29520287 PMCID: PMC5827413 DOI: 10.3389/fpls.2018.00206] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/02/2018] [Indexed: 05/24/2023]
Abstract
Dynamin-like proteins (DLPs) are a family of membrane-active proteins with low sequence identity. The proteins operate in different organelles in eukaryotic cells, where they trigger vesicle formation, membrane fusion, or organelle division. As discussed here, representatives of this protein family have also been identified in chloroplasts and DLPs are very common in cyanobacteria. Since cyanobacteria and chloroplasts, an organelle of bacterial origin, have similar internal membrane systems, we suggest that DLPs are involved in membrane dynamics in cyanobacteria and chloroplasts. Here, we discuss the features and activities of DLPs with a focus on their potential presence and activity in chloroplasts and cyanobacteria.
Collapse
Affiliation(s)
- Ruven Jilly
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nadir Zaman Khan
- Department of Biotechnology, University of Malakand, Malakand, Pakistan
| | - Henrik Aronsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Dirk Schneider
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
18
|
Kao YT, Gonzalez KL, Bartel B. Peroxisome Function, Biogenesis, and Dynamics in Plants. PLANT PHYSIOLOGY 2018; 176:162-177. [PMID: 29021223 PMCID: PMC5761812 DOI: 10.1104/pp.17.01050] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/09/2017] [Indexed: 05/19/2023]
Abstract
Recent advances highlight understanding of the diversity of peroxisome contributions to plant biology and the mechanisms through which these essential organelles are generated.
Collapse
Affiliation(s)
- Yun-Ting Kao
- Department of Biosciences, Rice University, Houston, Texas 77005
| | - Kim L Gonzalez
- Department of Biosciences, Rice University, Houston, Texas 77005
| | - Bonnie Bartel
- Department of Biosciences, Rice University, Houston, Texas 77005
| |
Collapse
|
19
|
Abstract
Plant peroxisomes are required for a number of fundamental physiological processes, such as primary and secondary metabolism, development and stress response. Indexing the dynamic peroxisome proteome is prerequisite to fully understanding the importance of these organelles. Mass Spectrometry (MS)-based proteome analysis has allowed the identification of novel peroxisomal proteins and pathways in a relatively high-throughput fashion and significantly expanded the list of proteins and biochemical reactions in plant peroxisomes. In this chapter, we summarize the experimental proteomic studies performed in plants, compile a list of ~200 confirmed Arabidopsis peroxisomal proteins, and discuss the diverse plant peroxisome functions with an emphasis on the role of Arabidopsis MS-based proteomics in discovering new peroxisome functions. Many plant peroxisome proteins and biochemical pathways are specific to plants, substantiating the complexity, plasticity and uniqueness of plant peroxisomes. Mapping the full plant peroxisome proteome will provide a knowledge base for the improvement of crop production, quality and stress tolerance.
Collapse
Affiliation(s)
- Ronghui Pan
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
- Plant Biology Department, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
20
|
Liu H, Ravichandran S, Teh OK, McVey S, Lilley C, Teresinski HJ, Gonzalez-Ferrer C, Mullen RT, Hofius D, Prithiviraj B, Stone SL. The RING-Type E3 Ligase XBAT35.2 Is Involved in Cell Death Induction and Pathogen Response. PLANT PHYSIOLOGY 2017; 175:1469-1483. [PMID: 28951488 PMCID: PMC5664480 DOI: 10.1104/pp.17.01071] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/23/2017] [Indexed: 05/08/2023]
Abstract
XBAT35 belongs to a subfamily of Arabidopsis (Arabidopsis thaliana) RING-type E3s that are similar in domain architecture to the rice (Oryza sativa) XA21 Binding Protein3, a defense protein. The XBAT35 transcript undergoes alternative splicing to produce two protein isoforms, XBAT35.1 and XBAT35.2. Here, we demonstrate that XBAT35.2 localizes predominantly to the Golgi and is involved in cell death induction and pathogen response. XBAT35.2, but not XBAT35.1, was found to trigger cell death when overexpressed in tobacco (Nicotiana benthamiana) leaves and does so in a manner that requires its RING domain. Loss of XBAT35 gene function disrupts the plant's ability to defend against pathogen attack, whereas overexpression of XBAT35.2 enhances resistance to pathogens. XBAT35.2 was found to be unstable and promotes its own degradation, suggesting self-regulation. Inoculation with virulent and avirulent strains of the bacterial pathogen Pseudomonas syringae pv tomato DC3000 results in a drastic reduction in the levels of ubiquitinated XBAT35.2 and an increase in the abundance of the E3. This implies that pathogen infection prohibits XBAT35.2 self-regulation and stabilizes the E3. In agreement with a role in defending against pathogens, XBAT35.2 interacts with defense-related Accelerated Cell Death11 (ACD11) in planta and promotes the proteasome-dependent turnover of ACD11 in cell-free degradation assays. In accordance with regulation by a stabilized XBAT35.2, the levels of ubiquitinated ACD11 increased considerably, and the abundance of ACD11 was reduced following pathogen infection. In addition, treatment of transgenic seedlings with a proteasome inhibitor results in the accumulation of ACD11, confirming proteasome-dependent degradation. Collectively, these results highlight a novel role for XBAT35.2 in cell death induction and defense against pathogens.
Collapse
Affiliation(s)
- Hongxia Liu
- Biology Department, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R4
| | - Sridhar Ravichandran
- Department of Plant, Food, and Environmental Sciences, Agricultural Campus, Dalhousie University, Truro, Nova Scotia, Canada B2N 5E3
| | - Ooi-Kock Teh
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences (SLU) and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Sarah McVey
- Biology Department, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R4
| | - Carly Lilley
- Biology Department, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R4
| | - Howard J Teresinski
- Department of Molecular and Cellular Biology, Summerlee Science Complex, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | - Robert T Mullen
- Department of Molecular and Cellular Biology, Summerlee Science Complex, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Daniel Hofius
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences (SLU) and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Balakrishnan Prithiviraj
- Department of Plant, Food, and Environmental Sciences, Agricultural Campus, Dalhousie University, Truro, Nova Scotia, Canada B2N 5E3
| | - Sophia L Stone
- Biology Department, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R4
| |
Collapse
|
21
|
Nagaoka N, Yamashita A, Kurisu R, Watari Y, Ishizuna F, Tsutsumi N, Ishizaki K, Kohchi T, Arimura SI. DRP3 and ELM1 are required for mitochondrial fission in the liverwort Marchantia polymorpha. Sci Rep 2017; 7:4600. [PMID: 28676660 PMCID: PMC5496855 DOI: 10.1038/s41598-017-04886-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/22/2017] [Indexed: 12/12/2022] Open
Abstract
Mitochondria increase in number by the fission of existing mitochondria. Mitochondrial fission is needed to provide mitochondria to daughter cells during cell division. In Arabidopsis thaliana, four kinds of genes have been reported to be involved in mitochondrial fission. Two of them, DRP3 (dynamin-related protein3) and FIS1 (FISSION1), are well conserved in eukaryotes. The other two are plant-specific ELM1 (elongated mitochondria1) and PMD (peroxisomal and mitochondrial division). To better understand the commonality and diversity of mitochondrial fission factors in land plants, we examined mitochondrial fission-related genes in a liverwort, Marchantia polymorpha. As a bryophyte, M. polymorpha has features distinct from those of the other land plant lineages. We found that M. polymorpha has single copies of homologues for DRP3, FIS1 and ELM1, but does not appear to have a homologue of PMD. Citrine-fusion proteins with MpDRP3, MpFIS1 and MpELM1 were localized to mitochondria in M. polymorpha. MpDRP3- and MpELM1-defective mutants grew slowly and had networked mitochondria, indicating that mitochondrial fission was blocked in the mutants, as expected. However, knockout of MpFIS1 did not affect growth or mitochondrial morphology. These results suggest that MpDRP3 and MpELM1 but neither MpFIS1 nor PMD are needed for mitochondrial fission in M. polymorpha.
Collapse
Affiliation(s)
- Nagisa Nagaoka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Akihiro Yamashita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Rina Kurisu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Yuta Watari
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Fumiko Ishizuna
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Nobuhissro Tsutsumi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | | | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Shin-Ichi Arimura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.
- PRESTO, Japan Science and Technology Agency, Saitama, 332-0012, Japan.
| |
Collapse
|
22
|
Cai Y, McClinchie E, Price A, Nguyen TN, Gidda SK, Watt SC, Yurchenko O, Park S, Sturtevant D, Mullen RT, Dyer JM, Chapman KD. Mouse fat storage-inducing transmembrane protein 2 (FIT2) promotes lipid droplet accumulation in plants. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:824-836. [PMID: 27987528 PMCID: PMC5466434 DOI: 10.1111/pbi.12678] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 05/23/2023]
Abstract
Fat storage-inducing transmembrane protein 2 (FIT2) is an endoplasmic reticulum (ER)-localized protein that plays an important role in lipid droplet (LD) formation in animal cells. However, no obvious homologue of FIT2 is found in plants. Here, we tested the function of FIT2 in plant cells by ectopically expressing mouse (Mus musculus) FIT2 in Nicotiana tabacum suspension-cultured cells, Nicotiana benthamiana leaves and Arabidopsis thaliana plants. Confocal microscopy indicated that the expression of FIT2 dramatically increased the number and size of LDs in leaves of N. benthamiana and Arabidopsis, and lipidomics analysis and mass spectrometry imaging confirmed the accumulation of neutral lipids in leaves. FIT2 also increased seed oil content by ~13% in some stable, overexpressing lines of Arabidopsis. When expressed transiently in leaves of N. benthamiana or suspension cells of N. tabacum, FIT2 localized specifically to the ER and was often concentrated at certain regions of the ER that resembled ER-LD junction sites. FIT2 also colocalized at the ER with other proteins known to be involved in triacylglycerol biosynthesis or LD formation in plants, but not with ER resident proteins involved in electron transfer or ER-vesicle exit sites. Collectively, these results demonstrate that mouse FIT2 promotes LD accumulation in plants, a surprising functional conservation in the context of a plant cell given the apparent lack of FIT2 homologues in higher plants. These results suggest also that FIT2 expression represents an effective synthetic biology strategy for elaborating neutral lipid compartments in plant tissues for potential biofuel or bioproduct purposes.
Collapse
Affiliation(s)
- Yingqi Cai
- Center for Plant Lipid ResearchUniversity of North TexasDentonTXUSA
| | | | - Ann Price
- Center for Plant Lipid ResearchUniversity of North TexasDentonTXUSA
| | - Thuy N. Nguyen
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
- Present address: Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Satinder K. Gidda
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - Samantha C. Watt
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - Olga Yurchenko
- US Arid‐Land Agricultural Research CenterUSDA‐ARSMaricopaAZUSA
| | - Sunjung Park
- US Arid‐Land Agricultural Research CenterUSDA‐ARSMaricopaAZUSA
- Present address: Biology DepartmentCentral Arizona CollegeMaricopaAZ85138USA
| | - Drew Sturtevant
- Center for Plant Lipid ResearchUniversity of North TexasDentonTXUSA
| | - Robert T. Mullen
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - John M. Dyer
- US Arid‐Land Agricultural Research CenterUSDA‐ARSMaricopaAZUSA
| | - Kent D. Chapman
- Center for Plant Lipid ResearchUniversity of North TexasDentonTXUSA
| |
Collapse
|
23
|
Fahy D, Sanad MNME, Duscha K, Lyons M, Liu F, Bozhkov P, Kunz HH, Hu J, Neuhaus HE, Steel PG, Smertenko A. Impact of salt stress, cell death, and autophagy on peroxisomes: quantitative and morphological analyses using small fluorescent probe N-BODIPY. Sci Rep 2017; 7:39069. [PMID: 28145408 PMCID: PMC5286434 DOI: 10.1038/srep39069] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/17/2016] [Indexed: 12/19/2022] Open
Abstract
Plant peroxisomes maintain a plethora of key life processes including fatty acid β-oxidation, photorespiration, synthesis of hormones, and homeostasis of reactive oxygen species (ROS). Abundance of peroxisomes in cells is dynamic; however mechanisms controlling peroxisome proliferation remain poorly understood because measuring peroxisome abundance is technically challenging. Counting peroxisomes in individual cells of complex organs by electron or fluorescence microscopy is expensive and time consuming. Here we present a simple technique for quantifying peroxisome abundance using the small probe Nitro-BODIPY, which in vivo fluoresces selectively inside peroxisomes. The physiological relevance of our technique was demonstrated using salinity as a known inducer of peroxisome proliferation. While significant peroxisome proliferation was observed in wild-type Arabidopsis leaves following 5-hour exposure to NaCl, no proliferation was detected in the salt-susceptible mutants fry1-6, sos1-14, and sos1-15. We also found that N-BODIPY detects aggregation of peroxisomes during final stages of programmed cell death and can be used as a marker of this stage. Furthermore, accumulation of peroxisomes in an autophagy-deficient Arabidopsis mutant atg5 correlated with N-BODIPY labeling. In conclusion, the technique reported here enables quantification of peroxisomes in plant material at various physiological settings. Its potential applications encompass identification of genes controlling peroxisome homeostasis and capturing stress-tolerant genotypes.
Collapse
Affiliation(s)
- Deirdre Fahy
- Institute of Biological Chemistry, Washington State University, Pullman, 99164, WA, USA
| | - Marwa N M E Sanad
- Institute of Biological Chemistry, Washington State University, Pullman, 99164, WA, USA
- Department of Genetics and Cytology, National Research Center, Giza, Egypt
| | - Kerstin Duscha
- Plant Physiology, University of Kaiserslautern, Erwin Schrödinger Straße, Kaiserslautern, D-67653, Germany
| | - Madison Lyons
- Institute of Biological Chemistry, Washington State University, Pullman, 99164, WA, USA
| | - Fuquan Liu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK
| | - Peter Bozhkov
- Department of Chemistry and Biotechnology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7015, Uppsala, SE-75007, Sweden
| | - Hans-Henning Kunz
- School of Biological Sciences, Washington State University, Pullman, 99164, WA, USA
| | - Jianping Hu
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, 48824, MI, USA
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, Erwin Schrödinger Straße, Kaiserslautern, D-67653, Germany
| | - Patrick G Steel
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, 99164, WA, USA.
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK.
| |
Collapse
|
24
|
Li Z, Ding B, Zhou X, Wang GL. The Rice Dynamin-Related Protein OsDRP1E Negatively Regulates Programmed Cell Death by Controlling the Release of Cytochrome c from Mitochondria. PLoS Pathog 2017; 13:e1006157. [PMID: 28081268 PMCID: PMC5266325 DOI: 10.1371/journal.ppat.1006157] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 01/25/2017] [Accepted: 12/29/2016] [Indexed: 11/18/2022] Open
Abstract
Programmed cell death (PCD) mediated by mitochondrial processes has emerged as an important mechanism for plant development and responses to abiotic and biotic stresses. However, the role of translocation of cytochrome c from the mitochondria to the cytosol during PCD remains unclear. Here, we demonstrate that the rice dynamin-related protein 1E (OsDRP1E) negatively regulates PCD by controlling mitochondrial structure and cytochrome c release. We used a map-based cloning strategy to isolate OsDRP1E from the lesion mimic mutant dj-lm and confirmed that the E409V mutation in OsDRP1E causes spontaneous cell death in rice. Pathogen inoculation showed that dj-lm significantly enhances resistance to fungal and bacterial pathogens. Functional analysis of the E409V mutation showed that the mutant protein impairs OsDRP1E self-association and formation of a higher-order complex; this in turn reduces the GTPase activity of OsDRP1E. Furthermore, confocal microscopy showed that the E409V mutation impairs localization of OsDRP1E to the mitochondria. The E409V mutation significantly affects the morphogenesis of cristae in mitochondria and causes the abnormal release of cytochrome c from mitochondria into cytoplasm. Taken together, our results demonstrate that the mitochondria-localized protein OsDRP1E functions as a negative regulator of cytochrome c release and PCD in plants. Plants have developed a hypersensitive response (HR) that shows rapid programed cell death (PCD) around the infection site, which in turn limits pathogen invasion and restricts the spread of pathogens. Although many studies reported the characterization of PCD in different pathosystems in the last decade, the molecular mechanisms on how PCD is initiated and how it regulates host resistance are still unclear. Lesion mimic mutants exhibit spontaneous HR-like cell death without pathogen invasion and are ideal genetic materials for dissecting the PCD pathway. In this study, we characterized the lesion mimic gene OsDRP1E that negatively regulates plant PCD through the control of cytochrome c release from mitochondria. Our results suggest that the E409V point mutation in the dynamin-related protein OsDRP1E affects the morphogenesis of mitochondrial cristae that leads to the cytochrome c release into cytoplasm. This study provides new insights into the function of dynamin-related proteins in plant immunity.
Collapse
Affiliation(s)
- Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China and College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Bo Ding
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (GLW); (BD)
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China and College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (GLW); (BD)
| |
Collapse
|
25
|
Belda-Palazon B, Rodriguez L, Fernandez MA, Castillo MC, Anderson EM, Gao C, Gonzalez-Guzman M, Peirats-Llobet M, Zhao Q, De Winne N, Gevaert K, De Jaeger G, Jiang L, León J, Mullen RT, Rodriguez PL. FYVE1/FREE1 Interacts with the PYL4 ABA Receptor and Mediates Its Delivery to the Vacuolar Degradation Pathway. THE PLANT CELL 2016; 28:2291-2311. [PMID: 27495812 PMCID: PMC5059795 DOI: 10.1105/tpc.16.00178] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/06/2016] [Accepted: 08/04/2016] [Indexed: 05/17/2023]
Abstract
Recently, we described the ubiquitylation of PYL4 and PYR1 by the RING E3 ubiquitin ligase RSL1 at the plasma membrane of Arabidopsis thaliana This suggested that ubiquitylated abscisic acid (ABA) receptors might be targeted to the vacuolar degradation pathway because such ubiquitylation is usually an internalization signal for the endocytic route. Here, we show that FYVE1 (previously termed FREE1), a recently described component of the endosomal sorting complex required for transport (ESCRT) machinery, interacted with RSL1-receptor complexes and recruited PYL4 to endosomal compartments. Although the ESCRT pathway has been assumed to be reserved for integral membrane proteins, we show the involvement of this pathway in the degradation of ABA receptors, which can be associated with membranes but are not integral membrane proteins. Knockdown fyve1 alleles are hypersensitive to ABA, illustrating the biological relevance of the ESCRT pathway for the modulation of ABA signaling. In addition, fyve1 mutants are impaired in the targeting of ABA receptors for vacuolar degradation, leading to increased accumulation of PYL4 and an enhanced response to ABA Pharmacological and genetic approaches revealed a dynamic turnover of ABA receptors from the plasma membrane to the endosomal/vacuolar degradation pathway, which was mediated by FYVE1 and was dependent on RSL1. This process involves clathrin-mediated endocytosis and trafficking of PYL4 through the ESCRT pathway, which helps to regulate the turnover of ABA receptors and attenuate ABA signaling.
Collapse
Affiliation(s)
- Borja Belda-Palazon
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Lesia Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Maria A Fernandez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Mari-Cruz Castillo
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Erin M Anderson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Caiji Gao
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Miguel Gonzalez-Guzman
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Marta Peirats-Llobet
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Qiong Zhao
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Nancy De Winne
- Department of Plant Systems Biology and Department of Plant Biotechnology and Bioinformatics, Vlaams Instituut voor Biotechnologie, Ghent University, B-9052 Ghent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research and Department of Biochemistry, Vlaams Instituut voor Biotechnologie, Ghent University, B-9000 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology and Department of Plant Biotechnology and Bioinformatics, Vlaams Instituut voor Biotechnologie, Ghent University, B-9052 Ghent, Belgium
| | - Liwen Jiang
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - José León
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| |
Collapse
|
26
|
Gidda SK, Park S, Pyc M, Yurchenko O, Cai Y, Wu P, Andrews DW, Chapman KD, Dyer JM, Mullen RT. Lipid Droplet-Associated Proteins (LDAPs) Are Required for the Dynamic Regulation of Neutral Lipid Compartmentation in Plant Cells. PLANT PHYSIOLOGY 2016; 170:2052-71. [PMID: 26896396 PMCID: PMC4825156 DOI: 10.1104/pp.15.01977] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/18/2016] [Indexed: 05/19/2023]
Abstract
Eukaryotic cells compartmentalize neutral lipids into organelles called lipid droplets (LDs), and while much is known about the role of LDs in storing triacylglycerols in seeds, their biogenesis and function in nonseed tissues are poorly understood. Recently, we identified a class of plant-specific, lipid droplet-associated proteins (LDAPs) that are abundant components of LDs in nonseed cell types. Here, we characterized the three LDAPs in Arabidopsis (Arabidopsis thaliana) to gain insight to their targeting, assembly, and influence on LD function and dynamics. While all three LDAPs targeted specifically to the LD surface, truncation analysis of LDAP3 revealed that essentially the entire protein was required for LD localization. The association of LDAP3 with LDs was detergent sensitive, but the protein bound with similar affinity to synthetic liposomes of various phospholipid compositions, suggesting that other factors contributed to targeting specificity. Investigation of LD dynamics in leaves revealed that LD abundance was modulated during the diurnal cycle, and characterization of LDAP misexpression mutants indicated that all three LDAPs were important for this process. LD abundance was increased significantly during abiotic stress, and characterization of mutant lines revealed that LDAP1 and LDAP3 were required for the proper induction of LDs during heat and cold temperature stress, respectively. Furthermore, LDAP1 was required for proper neutral lipid compartmentalization and triacylglycerol degradation during postgerminative growth. Taken together, these studies reveal that LDAPs are required for the maintenance and regulation of LDs in plant cells and perform nonredundant functions in various physiological contexts, including stress response and postgerminative growth.
Collapse
Affiliation(s)
- Satinder K Gidda
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., M.P., R.T.M.);United States Department of Agriculture, Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (S.P., O.Y., J.M.D.);Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (Y.C., K.D.C.); andSunnybrook Research Institute and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M4N 3M5 (P.W., D.W.A.)
| | - Sunjung Park
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., M.P., R.T.M.);United States Department of Agriculture, Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (S.P., O.Y., J.M.D.);Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (Y.C., K.D.C.); andSunnybrook Research Institute and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M4N 3M5 (P.W., D.W.A.)
| | - Michal Pyc
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., M.P., R.T.M.);United States Department of Agriculture, Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (S.P., O.Y., J.M.D.);Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (Y.C., K.D.C.); andSunnybrook Research Institute and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M4N 3M5 (P.W., D.W.A.)
| | - Olga Yurchenko
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., M.P., R.T.M.);United States Department of Agriculture, Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (S.P., O.Y., J.M.D.);Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (Y.C., K.D.C.); andSunnybrook Research Institute and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M4N 3M5 (P.W., D.W.A.)
| | - Yingqi Cai
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., M.P., R.T.M.);United States Department of Agriculture, Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (S.P., O.Y., J.M.D.);Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (Y.C., K.D.C.); andSunnybrook Research Institute and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M4N 3M5 (P.W., D.W.A.)
| | - Peng Wu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., M.P., R.T.M.);United States Department of Agriculture, Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (S.P., O.Y., J.M.D.);Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (Y.C., K.D.C.); andSunnybrook Research Institute and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M4N 3M5 (P.W., D.W.A.)
| | - David W Andrews
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., M.P., R.T.M.);United States Department of Agriculture, Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (S.P., O.Y., J.M.D.);Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (Y.C., K.D.C.); andSunnybrook Research Institute and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M4N 3M5 (P.W., D.W.A.)
| | - Kent D Chapman
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., M.P., R.T.M.);United States Department of Agriculture, Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (S.P., O.Y., J.M.D.);Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (Y.C., K.D.C.); andSunnybrook Research Institute and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M4N 3M5 (P.W., D.W.A.)
| | - John M Dyer
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., M.P., R.T.M.);United States Department of Agriculture, Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (S.P., O.Y., J.M.D.);Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (Y.C., K.D.C.); andSunnybrook Research Institute and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M4N 3M5 (P.W., D.W.A.)
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., M.P., R.T.M.);United States Department of Agriculture, Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (S.P., O.Y., J.M.D.);Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (Y.C., K.D.C.); andSunnybrook Research Institute and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M4N 3M5 (P.W., D.W.A.)
| |
Collapse
|
27
|
Jaipargas EA, Mathur N, Bou Daher F, Wasteneys GO, Mathur J. High Light Intensity Leads to Increased Peroxule-Mitochondria Interactions in Plants. Front Cell Dev Biol 2016; 4:6. [PMID: 26870732 PMCID: PMC4740372 DOI: 10.3389/fcell.2016.00006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 01/18/2016] [Indexed: 11/28/2022] Open
Abstract
Peroxules are thin protrusions from spherical peroxisomes produced under low levels of reactive oxygen species (ROS) stress. Whereas, stress mitigation favors peroxule retraction, prolongation of the ROS stress leads to the elongation of the peroxisome into a tubular form. Subsequently, the elongated form becomes constricted through the binding of proteins such as dynamin related proteins 3A and 3B and eventually undergoes fission to increase the peroxisomal population within a cell. The events that occur in the short time window between peroxule initiation and the tubulation of the entire peroxisome have not been observed in living plant cells. Here, using fluorescent protein aided live-imaging, we show that peroxules are formed after only 4 min of high light (HL) irradiation during which there is a perceptible increase in the cytosolic levels of hydrogen peroxide. Using a stable, double transgenic line of Arabidopsis thaliana expressing a peroxisome targeted YFP and a mitochondrial targeted GFP probe, we observed sustained interactions between peroxules and small, spherical mitochondria. Further, it was observed that the frequency of HL-induced interactions between peroxules and mitochondria increased in the Arabidopsis anisotropy1 mutant that has reduced cell wall crystallinity and where we show accumulation of higher H2O2 levels than wild type plants. Our observations suggest a testable model whereby peroxules act as interaction platforms for ROS-distressed mitochondria that may release membrane proteins and fission factors. These proteins might thus become easily available to peroxisomes and facilitate their proliferation for enhancing the ROS-combating capability of a plant cell.
Collapse
Affiliation(s)
- Erica-Ashley Jaipargas
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | - Neeta Mathur
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | - Firas Bou Daher
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | | | - Jaideep Mathur
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| |
Collapse
|
28
|
Kamisugi Y, Mitsuya S, El‐Shami M, Knight CD, Cuming AC, Baker A. Giant peroxisomes in a moss (Physcomitrella patens) peroxisomal biogenesis factor 11 mutant. THE NEW PHYTOLOGIST 2016; 209:576-89. [PMID: 26542980 PMCID: PMC4738463 DOI: 10.1111/nph.13739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/01/2015] [Indexed: 05/22/2023]
Abstract
Peroxisomal biogenesis factor 11 (PEX11) proteins are found in yeasts, mammals and plants, and play a role in peroxisome morphology and regulation of peroxisome division. The moss Physcomitrella patens has six PEX11 isoforms which fall into two subfamilies, similar to those found in monocots and dicots. We carried out targeted gene disruption of the Phypa_PEX11-1 gene and compared the morphological and cellular phenotypes of the wild-type and mutant strains. The mutant grew more slowly and the development of gametophores was retarded. Mutant chloronemal filaments contained large cellular structures which excluded all other cellular organelles. Expression of fluorescent reporter proteins revealed that the mutant strain had greatly enlarged peroxisomes up to 10 μm in diameter. Expression of a vacuolar membrane marker confirmed that the enlarged structures were not vacuoles, or peroxisomes sequestered within vacuoles as a result of pexophagy. Phypa_PEX11 targeted to peroxisome membranes could rescue the knock out phenotype and interacted with Fission1 on the peroxisome membrane. Moss PEX11 functions in peroxisome division similar to PEX11 in other organisms but the mutant phenotype is more extreme and environmentally determined, making P. patens a powerful system in which to address mechanisms of peroxisome proliferation and division.
Collapse
Affiliation(s)
- Yasuko Kamisugi
- Centre for Plant SciencesFaculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Shiro Mitsuya
- Centre for Plant SciencesFaculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Mahmoud El‐Shami
- Centre for Plant SciencesFaculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Celia D. Knight
- Centre for Plant SciencesFaculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Andrew C. Cuming
- Centre for Plant SciencesFaculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Alison Baker
- Centre for Plant SciencesFaculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| |
Collapse
|
29
|
Mindthoff S, Grunau S, Steinfort LL, Girzalsky W, Hiltunen JK, Erdmann R, Antonenkov VD. Peroxisomal Pex11 is a pore-forming protein homologous to TRPM channels. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:271-83. [PMID: 26597702 DOI: 10.1016/j.bbamcr.2015.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/16/2015] [Accepted: 11/16/2015] [Indexed: 01/16/2023]
Abstract
More than 30 proteins (Pex proteins) are known to participate in the biogenesis of peroxisomes-ubiquitous oxidative organelles involved in lipid and ROS metabolism. The Pex11 family of homologous proteins is responsible for division and proliferation of peroxisomes. We show that yeast Pex11 is a pore-forming protein sharing sequence similarity with TRPM cation-selective channels. The Pex11 channel with a conductance of Λ=4.1 nS in 1.0M KCl is moderately cation-selective (PK(+)/PCl(-)=1.85) and resistant to voltage-dependent closing. The estimated size of the channel's pore (r~0.6 nm) supports the notion that Pex11 conducts solutes with molecular mass below 300-400 Da. We localized the channel's selectivity determining sequence. Overexpression of Pex11 resulted in acceleration of fatty acids β-oxidation in intact cells but not in the corresponding lysates. The β-oxidation was affected in cells by expression of the Pex11 protein carrying point mutations in the selectivity determining sequence. These data suggest that the Pex11-dependent transmembrane traffic of metabolites may be a rate-limiting step in the β-oxidation of fatty acids. This conclusion was corroborated by analysis of the rate of β-oxidation in yeast strains expressing Pex11 with mutations mimicking constitutively phosphorylated (S165D, S167D) or unphosphorylated (S165A, S167A) protein. The results suggest that phosphorylation of Pex11 is a mechanism that can control the peroxisomal β-oxidation rate. Our results disclose an unexpected function of Pex11 as a non-selective channel responsible for transfer of metabolites across peroxisomal membrane. The data indicate that peroxins may be involved in peroxisomal metabolic processes in addition to their role in peroxisome biogenesis.
Collapse
Affiliation(s)
- Sabrina Mindthoff
- Institut für Biochemie und Pathobiochemie, Abt. Systembiochemie, Ruhr-Universität, Bochum, Germany
| | - Silke Grunau
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Laura L Steinfort
- Institut für Biochemie und Pathobiochemie, Abt. Systembiochemie, Ruhr-Universität, Bochum, Germany
| | - Wolfgang Girzalsky
- Institut für Biochemie und Pathobiochemie, Abt. Systembiochemie, Ruhr-Universität, Bochum, Germany
| | - J Kalervo Hiltunen
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ralf Erdmann
- Institut für Biochemie und Pathobiochemie, Abt. Systembiochemie, Ruhr-Universität, Bochum, Germany.
| | - Vasily D Antonenkov
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
30
|
Hua R, Gidda SK, Aranovich A, Mullen RT, Kim PK. Multiple Domains in PEX16 Mediate Its Trafficking and Recruitment of Peroxisomal Proteins to the ER. Traffic 2015; 16:832-52. [PMID: 25903784 DOI: 10.1111/tra.12292] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/09/2015] [Accepted: 04/09/2015] [Indexed: 12/27/2022]
Abstract
Peroxisomes rely on a diverse array of mechanisms to ensure the specific targeting of their protein constituents. Peroxisomal membrane proteins (PMPs), for instance, are targeted by at least two distinct pathways: directly to peroxisomes from their sites of synthesis in the cytosol or indirectly via the endoplasmic reticulum (ER). However, the extent to which each PMP targeting pathway is involved in the maintenance of pre-existing peroxisomes is unclear. Recently, we showed that human PEX16 plays a critical role in the ER-dependent targeting of PMPs by mediating the recruitment of two other PMPs, PEX3 and PMP34, to the ER. Here, we extend these results by carrying out a comprehensive mutational analysis of PEX16 aimed at gaining insights into the molecular targeting signals responsible for its ER-to-peroxisome trafficking and the domain(s) involved in PMP recruitment function at the ER. We also show that the recruitment of PMPs to the ER by PEX16 is conserved in plants. The implications of these results in terms of the function of PEX16 and the role of the ER in peroxisome maintenance in general are discussed.
Collapse
Affiliation(s)
- Rong Hua
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5G 1A8
| | - Satinder K Gidda
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Alexander Aranovich
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Peter K Kim
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5G 1A8
| |
Collapse
|
31
|
Ellens KW, Richardson LGL, Frelin O, Collins J, Ribeiro CL, Hsieh YF, Mullen RT, Hanson AD. Evidence that glutamine transaminase and omega-amidase potentially act in tandem to close the methionine salvage cycle in bacteria and plants. PHYTOCHEMISTRY 2015; 113:160-169. [PMID: 24837359 DOI: 10.1016/j.phytochem.2014.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/07/2014] [Accepted: 04/12/2014] [Indexed: 06/03/2023]
Abstract
S-Adenosylmethionine is converted enzymatically and non-enzymatically to methylthioadenosine, which is recycled to methionine (Met) via a salvage pathway. In plants and bacteria, enzymes for all steps in this pathway are known except the last: transamination of α-ketomethylthiobutyrate to give Met. In mammals, glutamine transaminase K (GTK) and ω-amidase (ω-Am) are thought to act in tandem to execute this step, with GTK forming α-ketoglutaramate, which ω-Am hydrolyzes. Comparative genomics indicated that GTK and ω-Am could function likewise in plants and bacteria because genes encoding GTK and ω-Am homologs (i) co-express with the Met salvage gene 5-methylthioribose kinase in Arabidopsis, and (ii) cluster on the chromosome with each other and with Met salvage genes in diverse bacteria. Consistent with this possibility, tomato, maize, and Bacillus subtilis GTK and ω-Am homologs had the predicted activities: GTK was specific for glutamine as amino donor and strongly preferred α-ketomethylthiobutyrate as amino acceptor, and ω-Am strongly preferred α-ketoglutaramate. Also consistent with this possibility, plant GTK and ω-Am were localized to the cytosol, where the Met salvage pathway resides, as well as to organelles. This multiple targeting was shown to result from use of alternative start codons. In B. subtilis, ablating GTK or ω-Am had a modest but significant inhibitory effect on growth on 5-methylthioribose as sole sulfur source. Collectively, these data indicate that while GTK, coupled with ω-Am, is positioned to support significant Met salvage flux in plants and bacteria, it can probably be replaced by other aminotransferases.
Collapse
Affiliation(s)
- Kenneth W Ellens
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA.
| | - Lynn G L Richardson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Océane Frelin
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Joseph Collins
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | - Cintia Leite Ribeiro
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | - Yih-Feng Hsieh
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
32
|
Tiew TWY, Sheahan MB, Rose RJ. Peroxisomes contribute to reactive oxygen species homeostasis and cell division induction in Arabidopsis protoplasts. FRONTIERS IN PLANT SCIENCE 2015; 6:658. [PMID: 26379686 PMCID: PMC4549554 DOI: 10.3389/fpls.2015.00658] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/10/2015] [Indexed: 05/18/2023]
Abstract
The ability to induce Arabidopsis protoplasts to dedifferentiate and divide provides a convenient system to analyze organelle dynamics in plant cells acquiring totipotency. Using peroxisome-targeted fluorescent proteins, we show that during protoplast culture, peroxisomes undergo massive proliferation and disperse uniformly around the cell before cell division. Peroxisome dispersion is influenced by the cytoskeleton, ensuring unbiased segregation during cell division. Considering their role in oxidative metabolism, we also investigated how peroxisomes influence homeostasis of reactive oxygen species (ROS). Protoplast isolation induces an oxidative burst, with mitochondria the likely major ROS producers. Subsequently ROS levels in protoplast cultures decline, correlating with the increase in peroxisomes, suggesting that peroxisome proliferation may also aid restoration of ROS homeostasis. Transcriptional profiling showed up-regulation of several peroxisome-localized antioxidant enzymes, most notably catalase (CAT). Analysis of antioxidant levels, CAT activity and CAT isoform 3 mutants (cat3) indicate that peroxisome-localized CAT plays a major role in restoring ROS homeostasis. Furthermore, protoplast cultures of pex11a, a peroxisome division mutant, and cat3 mutants show reduced induction of cell division. Taken together, the data indicate that peroxisome proliferation and CAT contribute to ROS homeostasis and subsequent protoplast division induction.
Collapse
Affiliation(s)
| | | | - Ray J. Rose
- *Correspondence: Ray J. Rose, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australi,
| |
Collapse
|
33
|
Missirian V, Conklin PA, Culligan KM, Huefner ND, Britt AB. High atomic weight, high-energy radiation (HZE) induces transcriptional responses shared with conventional stresses in addition to a core "DSB" response specific to clastogenic treatments. FRONTIERS IN PLANT SCIENCE 2014; 5:364. [PMID: 25136344 PMCID: PMC4117989 DOI: 10.3389/fpls.2014.00364] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 07/08/2014] [Indexed: 05/19/2023]
Abstract
Plants exhibit a robust transcriptional response to gamma radiation which includes the induction of transcripts required for homologous recombination and the suppression of transcripts that promote cell cycle progression. Various DNA damaging agents induce different spectra of DNA damage as well as "collateral" damage to other cellular components and therefore are not expected to provoke identical responses by the cell. Here we study the effects of two different types of ionizing radiation (IR) treatment, HZE (1 GeV Fe(26+) high mass, high charge, and high energy relativistic particles) and gamma photons, on the transcriptome of Arabidopsis thaliana seedlings. Both types of IR induce small clusters of radicals that can result in the formation of double strand breaks (DSBs), but HZE also produces linear arrays of extremely clustered damage. We performed these experiments across a range of time points (1.5-24 h after irradiation) in both wild-type plants and in mutants defective in the DSB-sensing protein kinase ATM. The two types of IR exhibit a shared double strand break-repair-related damage response, although they differ slightly in the timing, degree, and ATM-dependence of the response. The ATM-dependent, DNA metabolism-related transcripts of the "DSB response" were also induced by other DNA damaging agents, but were not induced by conventional stresses. Both Gamma and HZE irradiation induced, at 24 h post-irradiation, ATM-dependent transcripts associated with a variety of conventional stresses; these were overrepresented for pathogen response, rather than DNA metabolism. In contrast, only HZE-irradiated plants, at 1.5 h after irradiation, exhibited an additional and very extensive transcriptional response, shared with plants experiencing "extended night." This response was not apparent in gamma-irradiated plants.
Collapse
Affiliation(s)
- Victor Missirian
- Department of Plant Biology, University of California DavisDavis, CA, USA
| | - Phillip A. Conklin
- Department of Plant Biology, University of California DavisDavis, CA, USA
| | - Kevin M. Culligan
- Department of Molecular, Cellular, and Biomedical Sciences, University of New HampshireDurham, NH, USA
| | - Neil D. Huefner
- Department of Plant Biology, University of California DavisDavis, CA, USA
| | - Anne B. Britt
- Department of Plant Biology, University of California DavisDavis, CA, USA
| |
Collapse
|
34
|
Yurchenko O, Singer SD, Nykiforuk CL, Gidda S, Mullen RT, Moloney MM, Weselake RJ. Production of a Brassica napus Low-Molecular Mass Acyl-Coenzyme A-Binding Protein in Arabidopsis Alters the Acyl-Coenzyme A Pool and Acyl Composition of Oil in Seeds. PLANT PHYSIOLOGY 2014; 165:550-560. [PMID: 24740000 PMCID: PMC4044837 DOI: 10.1104/pp.114.238071] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/14/2014] [Indexed: 05/18/2023]
Abstract
Low-molecular mass (10 kD) cytosolic acyl-coenzyme A-binding protein (ACBP) has a substantial influence over fatty acid (FA) composition in oilseeds, possibly via an effect on the partitioning of acyl groups between elongation and desaturation pathways. Previously, we demonstrated that the expression of a Brassica napus ACBP (BnACBP) complementary DNA in the developing seeds of Arabidopsis (Arabidopsis thaliana) resulted in increased levels of polyunsaturated FAs at the expense of eicosenoic acid (20:1cisΔ11) and saturated FAs in seed oil. In this study, we investigated whether alterations in the FA composition of seed oil at maturity were correlated with changes in the acyl-coenzyme A (CoA) pool in developing seeds of transgenic Arabidopsis expressing BnACBP. Our results indicated that both the acyl-CoA pool and seed oil of transgenic Arabidopsis lines expressing cytosolic BnACBP exhibited relative increases in linoleic acid (18:2cisΔ9,12; 17.9%-44.4% and 7%-13.2%, respectively) and decreases in 20:1cisΔ11 (38.7%-60.7% and 13.8%-16.3%, respectively). However, alterations in the FA composition of the acyl-CoA pool did not always correlate with those seen in the seed oil. In addition, we found that targeting of BnACBP to the endoplasmic reticulum resulted in FA compositional changes that were similar to those seen in lines expressing cytosolic BnACBP, with the most prominent exception being a relative reduction in α-linolenic acid (18:3cisΔ9,12,15) in both the acyl-CoA pool and seed oil of the former (48.4%-48.9% and 5.3%-10.4%, respectively). Overall, these data support the role of ACBP in acyl trafficking in developing seeds and validate its use as a biotechnological tool for modifying the FA composition of seed oil.
Collapse
Affiliation(s)
- Olga Yurchenko
- Agricultural Lipid Biotechnology Program, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5 (O.Y., S.D.S., R.J.W.);SemBioSys Genetics, Calgary, Alberta, Canada T1Y 7L3 (C.L.N., M.M.M.); andDepartment of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.G., R.T.M.)
| | - Stacy D Singer
- Agricultural Lipid Biotechnology Program, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5 (O.Y., S.D.S., R.J.W.);SemBioSys Genetics, Calgary, Alberta, Canada T1Y 7L3 (C.L.N., M.M.M.); andDepartment of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.G., R.T.M.)
| | - Cory L Nykiforuk
- Agricultural Lipid Biotechnology Program, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5 (O.Y., S.D.S., R.J.W.);SemBioSys Genetics, Calgary, Alberta, Canada T1Y 7L3 (C.L.N., M.M.M.); andDepartment of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.G., R.T.M.)
| | - Satinder Gidda
- Agricultural Lipid Biotechnology Program, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5 (O.Y., S.D.S., R.J.W.);SemBioSys Genetics, Calgary, Alberta, Canada T1Y 7L3 (C.L.N., M.M.M.); andDepartment of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.G., R.T.M.)
| | - Robert T Mullen
- Agricultural Lipid Biotechnology Program, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5 (O.Y., S.D.S., R.J.W.);SemBioSys Genetics, Calgary, Alberta, Canada T1Y 7L3 (C.L.N., M.M.M.); andDepartment of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.G., R.T.M.)
| | - Maurice M Moloney
- Agricultural Lipid Biotechnology Program, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5 (O.Y., S.D.S., R.J.W.);SemBioSys Genetics, Calgary, Alberta, Canada T1Y 7L3 (C.L.N., M.M.M.); andDepartment of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.G., R.T.M.)
| | - Randall J Weselake
- Agricultural Lipid Biotechnology Program, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5 (O.Y., S.D.S., R.J.W.);SemBioSys Genetics, Calgary, Alberta, Canada T1Y 7L3 (C.L.N., M.M.M.); andDepartment of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.G., R.T.M.)
| |
Collapse
|
35
|
Richardson LGL, Clendening EA, Sheen H, Gidda SK, White KA, Mullen RT. A unique N-terminal sequence in the Carnation Italian ringspot virus p36 replicase-associated protein interacts with the host cell ESCRT-I component Vps23. J Virol 2014; 88:6329-44. [PMID: 24672030 PMCID: PMC4093892 DOI: 10.1128/jvi.03840-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/18/2014] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED Like most positive-strand RNA viruses, infection by plant tombusviruses results in extensive rearrangement of specific host cell organelle membranes that serve as the sites of viral replication. The tombusvirus Tomato bushy stunt virus (TBSV) replicates within spherules derived from the peroxisomal boundary membrane, a process that involves the coordinated action of various viral and cellular factors, including constituents of the endosomal sorting complex required for transport (ESCRT). ESCRT is comprised of a series of protein subcomplexes (i.e., ESCRT-0 -I, -II, and -III) that normally participate in late endosome biogenesis and some of which are also hijacked by certain enveloped retroviruses (e.g., HIV) for viral budding from the plasma membrane. Here we show that the replication of Carnation Italian ringspot virus (CIRV), a tombusvirus that replicates at mitochondrial membranes also relies on ESCRT. In plant cells, CIRV recruits the ESCRT-I protein, Vps23, to mitochondria through an interaction that involves a unique region in the N terminus of the p36 replicase-associated protein that is not conserved in TBSV or other peroxisome-targeted tombusviruses. The interaction between p36 and Vps23 also involves the Vps23 C-terminal steadiness box domain and not its N-terminal ubiquitin E2 variant domain, which in the case of TBSV (and enveloped retroviruses) mediates the interaction with ESCRT. Overall, these results provide evidence that CIRV uses a unique N-terminal sequence for the recruitment of Vps23 that is distinct from those used by TBSV and certain mammalian viruses for ESCRT recruitment. Characterization of this novel interaction with Vps23 contributes to our understanding of how CIRV may have evolved to exploit key differences in the plant ESCRT machinery. IMPORTANCE Positive-strand RNA viruses replicate their genomes in association with specific host cell membranes. To accomplish this, cellular components responsible for membrane biogenesis and modeling are appropriated by viral proteins and redirected to assemble membrane-bound viral replicase complexes. The diverse pathways leading to the formation of these replication structures are poorly understood. We have determined that the cellular ESCRT system that is normally responsible for mediating late endosome biogenesis is also involved in the replication of the tombusvirus Carnation Italian ringspot virus (CIRV) at mitochondria. Notably, CIRV recruits ESCRT to the mitochondrial outer membrane via an interaction between a unique motif in the viral protein p36 and the ESCRT component Vps23. Our findings provide new insights into tombusvirus replication and the virus-induced remodeling of plant intracellular membranes, as well as normal ESCRT assembly in plants.
Collapse
Affiliation(s)
- Lynn G. L. Richardson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Eric A. Clendening
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Hyukho Sheen
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Satinder K. Gidda
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - K. Andrew White
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Robert T. Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
36
|
Kianian PMA, Kianian SF. Mitochondrial dynamics and the cell cycle. FRONTIERS IN PLANT SCIENCE 2014; 5:222. [PMID: 24904617 PMCID: PMC4035010 DOI: 10.3389/fpls.2014.00222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/04/2014] [Indexed: 05/25/2023]
Abstract
Nuclear-mitochondrial (NM) communication impacts many aspects of plant development including vigor, sterility, and viability. Dynamic changes in mitochondrial number, shape, size, and cellular location takes place during the cell cycle possibly impacting the process itself and leading to distribution of this organelle into daughter cells. The genes that underlie these changes are beginning to be identified in model plants such as Arabidopsis. In animals disruption of the drp1 gene, a homolog to the plant drp3A and drp3B, delays mitochondrial division. This mutation results in increased aneuploidy due to chromosome mis-segregation. It remains to be discovered if a similar outcome is observed in plants. Alloplasmic lines provide an opportunity to understand the communication between the cytoplasmic organelles and the nucleus. Examples of studies in these lines, especially from the extensive collection in wheat, point to the role of mitochondria in chromosome movement, pollen fertility and other aspects of development.
Collapse
Affiliation(s)
- Penny M. A. Kianian
- Department of Horticultural Science, University of MinnesotaSt. Paul, MN, USA
| | - Shahryar F. Kianian
- Cereal Disease Laboratory, United States Department of Agriculture – Agricultural Research ServiceSt. Paul, MN, USA
| |
Collapse
|
37
|
Aznar-Moreno JA, Venegas Calerón M, Martínez-Force E, Garcés R, Mullen R, Gidda SK, Salas JJ. Sunflower (Helianthus annuus) long-chain acyl-coenzyme A synthetases expressed at high levels in developing seeds. PHYSIOLOGIA PLANTARUM 2014; 150:363-73. [PMID: 24102504 DOI: 10.1111/ppl.12107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 08/27/2013] [Accepted: 08/29/2013] [Indexed: 05/18/2023]
Abstract
Long chain fatty acid synthetases (LACSs) activate the fatty acid chains produced by plastidial de novo biosynthesis to generate acyl-CoA derivatives, important intermediates in lipid metabolism. Oilseeds, like sunflower, accumulate high levels of triacylglycerols (TAGs) in their seeds to nourish the embryo during germination. This requires that sunflower seed endosperm supports very active glycerolipid synthesis during development. Sunflower seed plastids produce large amounts of fatty acids, which must be activated through the action of LACSs, in order to be incorporated into TAGs. We cloned two different LACS genes from developing sunflower endosperm, HaLACS1 and HaLACS2, which displayed sequence homology with Arabidopsis LACS9 and LACS8 genes, respectively. These genes were expressed at high levels in developing seeds and exhibited distinct subcellular distributions. We generated constructs in which these proteins were fused to green fluorescent protein and performed transient expression experiments in tobacco cells. The HaLACS1 protein associated with the external envelope of tobacco chloroplasts, whereas HaLACS2 was strongly bound to the endoplasmic reticulum. Finally, both proteins were overexpressed in Escherichia coli and recovered as active enzymes in the bacterial membranes. Both enzymes displayed similar substrate specificities, with a very high preference for oleic acid and weaker activity toward stearic acid. On the basis of our findings, we discuss the role of these enzymes in sunflower oil synthesis.
Collapse
Affiliation(s)
- Jose A Aznar-Moreno
- Instituto de la Grasa (CSIC), Department of Biochemistry and Molecular Biology of Plant Products, 41012, Sevilla, Spain
| | | | | | | | | | | | | |
Collapse
|
38
|
Pan R, Jones AD, Hu J. Cardiolipin-mediated mitochondrial dynamics and stress response in Arabidopsis. THE PLANT CELL 2014; 26:391-409. [PMID: 24443516 PMCID: PMC3963584 DOI: 10.1105/tpc.113.121095] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/19/2013] [Accepted: 12/27/2013] [Indexed: 05/19/2023]
Abstract
Mitochondria are essential and dynamic organelles in eukaryotes. Cardiolipin (CL) is a key phospholipid in mitochondrial membranes, playing important roles in maintaining the functional integrity and dynamics of mitochondria in animals and yeasts. However, CL's role in plants is just beginning to be elucidated. In this study, we used Arabidopsis thaliana to examine the subcellular distribution of CL and CARDIOLIPIN SYNTHASE (CLS) and analyzed loss-of-function cls mutants for defects in mitochondrial morphogenesis and stress response. We show that CL localizes to mitochondria and is enriched at specific domains, and CLS targets to the inner membrane of mitochondria with its C terminus in the intermembrane space. Furthermore, cls mutants exhibit significantly impaired growth as well as altered structural integrity and morphogenesis of mitochondria. In contrast to animals and yeasts, in which CL's effect on mitochondrial fusion is more profound, Arabidopsis CL plays a dominant role in mitochondrial fission and exerts this function, at least in part, through stabilizing the protein complex of the major mitochondrial fission factor, DYNAMIN-RELATED PROTEIN3. CL also plays a role in plant responses to heat and extended darkness, stresses that induce programmed cell death. Our study has uncovered conserved and plant-specific aspects of CL biology in mitochondrial dynamics and the organism response to environmental stresses.
Collapse
Affiliation(s)
- Ronghui Pan
- Michigan State University–Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - A. Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| | - Jianping Hu
- Michigan State University–Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Plant Biology Department, Michigan State University, East Lansing, Michigan 48824
- Address correspondence to
| |
Collapse
|
39
|
Marty NJ, Teresinski HJ, Hwang YT, Clendening EA, Gidda SK, Sliwinska E, Zhang D, Miernyk JA, Brito GC, Andrews DW, Dyer JM, Mullen RT. New insights into the targeting of a subset of tail-anchored proteins to the outer mitochondrial membrane. FRONTIERS IN PLANT SCIENCE 2014; 5:426. [PMID: 25237314 PMCID: PMC4154396 DOI: 10.3389/fpls.2014.00426] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/12/2014] [Indexed: 05/21/2023]
Abstract
Tail-anchored (TA) proteins are a unique class of functionally diverse membrane proteins defined by their single C-terminal membrane-spanning domain and their ability to insert post-translationally into specific organelles with an Ncytoplasm-Corganelle interior orientation. The molecular mechanisms by which TA proteins are sorted to the proper organelles are not well-understood. Herein we present results indicating that a dibasic targeting motif (i.e., -R-R/K/H-X({X≠E})) identified previously in the C terminus of the mitochondrial isoform of the TA protein cytochrome b 5, also exists in many other A. thaliana outer mitochondrial membrane (OMM)-TA proteins. This motif is conspicuously absent, however, in all but one of the TA protein subunits of the translocon at the outer membrane of mitochondria (TOM), suggesting that these two groups of proteins utilize distinct biogenetic pathways. Consistent with this premise, we show that the TA sequences of the dibasic-containing proteins are both necessary and sufficient for targeting to mitochondria, and are interchangeable, while the TA regions of TOM proteins lacking a dibasic motif are necessary, but not sufficient for localization, and cannot be functionally exchanged. We also present results from a comprehensive mutational analysis of the dibasic motif and surrounding sequences that not only greatly expands the functional definition and context-dependent properties of this targeting signal, but also led to the identification of other novel putative OMM-TA proteins. Collectively, these results provide important insight to the complexity of the targeting pathways involved in the biogenesis of OMM-TA proteins and help define a consensus targeting motif that is utilized by at least a subset of these proteins.
Collapse
Affiliation(s)
- Naomi J. Marty
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Howard J. Teresinski
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Yeen Ting Hwang
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Eric A. Clendening
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Satinder K. Gidda
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Elwira Sliwinska
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
- Department of Plant Genetics, Physiology and Biotechnology, University of Technology and Life Sciences in BydgoszczBydgoszcz, Poland
| | - Daiyuan Zhang
- United States Department of Agriculture, Agricultural Research Service, US Arid-Land Agricultural Research CenterMaricopa, AZ, USA
| | - Ján A. Miernyk
- United States Department of Agriculture, Agricultural Research Service, Plant Genetics Research Unit, University of MissouriColumbia, MO, USA
| | - Glauber C. Brito
- Instituto do Cancer do Estado de Sao Paulo, Fundacao Faculdade de Medicina, Universidade de Sao PauloSao Paulo, Brazil
| | - David W. Andrews
- Sunnybrook Research Institute and Department of Biochemistry, University of TorontoToronto, ON, Canada
| | - John M. Dyer
- United States Department of Agriculture, Agricultural Research Service, US Arid-Land Agricultural Research CenterMaricopa, AZ, USA
| | - Robert T. Mullen
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
- *Correspondence: Robert T. Mullen, Department of Molecular and Cellular, Biology, University of Guelph, Room 4470 Science Complex, 488 Gordon Street, Guelph, ON N1G 2W1, Canada e-mail:
| |
Collapse
|
40
|
Farmer LM, Rinaldi MA, Young PG, Danan CH, Burkhart SE, Bartel B. Disrupting autophagy restores peroxisome function to an Arabidopsis lon2 mutant and reveals a role for the LON2 protease in peroxisomal matrix protein degradation. THE PLANT CELL 2013; 25:4085-100. [PMID: 24179123 PMCID: PMC3877801 DOI: 10.1105/tpc.113.113407] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 09/09/2013] [Accepted: 10/08/2013] [Indexed: 05/18/2023]
Abstract
Peroxisomes house critical metabolic reactions that are essential for seedling development. As seedlings mature, metabolic requirements change, and peroxisomal contents are remodeled. The resident peroxisomal protease LON2 is positioned to degrade obsolete or damaged peroxisomal proteins, but data supporting such a role in plants have remained elusive. Arabidopsis thaliana lon2 mutants display defects in peroxisomal metabolism and matrix protein import but appear to degrade matrix proteins normally. To elucidate LON2 functions, we executed a forward-genetic screen for lon2 suppressors, which revealed multiple mutations in key autophagy genes. Disabling core autophagy-related gene (ATG) products prevents autophagy, a process through which cytosolic constituents, including organelles, can be targeted for vacuolar degradation. We found that atg2, atg3, and atg7 mutations suppressed lon2 defects in auxin metabolism and matrix protein processing and rescued the abnormally large size and small number of lon2 peroxisomes. Moreover, analysis of lon2 atg mutants uncovered an apparent role for LON2 in matrix protein turnover. Our data suggest that LON2 facilitates matrix protein degradation during peroxisome content remodeling, provide evidence for the existence of pexophagy in plants, and indicate that peroxisome destruction via autophagy is enhanced when LON2 is absent.
Collapse
|
41
|
Horn PJ, James CN, Gidda SK, Kilaru A, Dyer JM, Mullen RT, Ohlrogge JB, Chapman KD. Identification of a new class of lipid droplet-associated proteins in plants. PLANT PHYSIOLOGY 2013; 162:1926-36. [PMID: 23821652 PMCID: PMC3729771 DOI: 10.1104/pp.113.222455] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/01/2013] [Indexed: 05/12/2023]
Abstract
Lipid droplets in plants (also known as oil bodies, lipid bodies, or oleosomes) are well characterized in seeds, and oleosins, the major proteins associated with their surface, were shown to be important for stabilizing lipid droplets during seed desiccation and rehydration. However, lipid droplets occur in essentially all plant cell types, many of which may not require oleosin-mediated stabilization. The proteins associated with the surface of nonseed lipid droplets, which are likely to influence the formation, stability, and turnover of this compartment, remain to be elucidated. Here, we have combined lipidomic, proteomic, and transcriptomic studies of avocado (Persea americana) mesocarp to identify two new lipid droplet-associated proteins, which we named LDAP1 and LDAP2. These proteins are highly similar to each other and also to the small rubber particle proteins that accumulate in rubber-producing plants. An Arabidopsis (Arabidopsis thaliana) homolog to LDAP1 and LDAP2, At3g05500, was localized to the surface of lipid droplets after transient expression in tobacco (Nicotiana tabacum) cells that were induced to accumulate triacylglycerols. We propose that small rubber particle protein-like proteins are involved in the general process of binding and perhaps the stabilization of lipid-rich particles in the cytosol of plant cells and that the avocado and Arabidopsis protein members reveal a new aspect of the cellular machinery that is involved in the packaging of triacylglycerols in plant tissues.
Collapse
Affiliation(s)
- Patrick J. Horn
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (P.J.H., C.N.J., K.D.C.)
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., R.T.M.)
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee 37614 (A.K.)
- United States Department of Agriculture-Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (J.M.D.); and
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (A.K., J.B.O.)
| | - Christopher N. James
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (P.J.H., C.N.J., K.D.C.)
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., R.T.M.)
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee 37614 (A.K.)
- United States Department of Agriculture-Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (J.M.D.); and
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (A.K., J.B.O.)
| | - Satinder K. Gidda
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (P.J.H., C.N.J., K.D.C.)
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., R.T.M.)
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee 37614 (A.K.)
- United States Department of Agriculture-Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (J.M.D.); and
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (A.K., J.B.O.)
| | - Aruna Kilaru
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (P.J.H., C.N.J., K.D.C.)
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., R.T.M.)
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee 37614 (A.K.)
- United States Department of Agriculture-Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (J.M.D.); and
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (A.K., J.B.O.)
| | - John M. Dyer
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (P.J.H., C.N.J., K.D.C.)
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., R.T.M.)
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee 37614 (A.K.)
- United States Department of Agriculture-Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (J.M.D.); and
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (A.K., J.B.O.)
| | - Robert T. Mullen
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (P.J.H., C.N.J., K.D.C.)
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., R.T.M.)
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee 37614 (A.K.)
- United States Department of Agriculture-Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (J.M.D.); and
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (A.K., J.B.O.)
| | - John B. Ohlrogge
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203 (P.J.H., C.N.J., K.D.C.)
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (S.K.G., R.T.M.)
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee 37614 (A.K.)
- United States Department of Agriculture-Agricultural Research Service, United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85138 (J.M.D.); and
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (A.K., J.B.O.)
| | | |
Collapse
|
42
|
Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat--store 'em up or burn 'em down. Genetics 2013; 193:1-50. [PMID: 23275493 PMCID: PMC3527239 DOI: 10.1534/genetics.112.143362] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Lipid droplets (LDs) and peroxisomes are central players in cellular lipid homeostasis: some of their main functions are to control the metabolic flux and availability of fatty acids (LDs and peroxisomes) as well as of sterols (LDs). Both fatty acids and sterols serve multiple functions in the cell—as membrane stabilizers affecting membrane fluidity, as crucial structural elements of membrane-forming phospholipids and sphingolipids, as protein modifiers and signaling molecules, and last but not least, as a rich carbon and energy source. In addition, peroxisomes harbor enzymes of the malic acid shunt, which is indispensable to regenerate oxaloacetate for gluconeogenesis, thus allowing yeast cells to generate sugars from fatty acids or nonfermentable carbon sources. Therefore, failure of LD and peroxisome biogenesis and function are likely to lead to deregulated lipid fluxes and disrupted energy homeostasis with detrimental consequences for the cell. These pathological consequences of LD and peroxisome failure have indeed sparked great biomedical interest in understanding the biogenesis of these organelles, their functional roles in lipid homeostasis, interaction with cellular metabolism and other organelles, as well as their regulation, turnover, and inheritance. These questions are particularly burning in view of the pandemic development of lipid-associated disorders worldwide.
Collapse
|
43
|
Pastor S, Sethumadhavan K, Ullah AHJ, Gidda S, Cao H, Mason C, Chapital D, Scheffler B, Mullen R, Dyer J, Shockey J. Molecular properties of the class III subfamily of acyl-coenyzme A binding proteins from tung tree (Vernicia fordii). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 203-204:79-88. [PMID: 23415331 DOI: 10.1016/j.plantsci.2012.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/14/2012] [Accepted: 12/20/2012] [Indexed: 06/01/2023]
Abstract
Acyl-CoA binding proteins (ACBPs) have been identified in most branches of life, and play various roles in lipid metabolism, among other functions. Plants contain multiple classes of ACBP genes. The most diverse group is the class III proteins. Tung tree (Vernicia fordii) contains two such genes, designated VfACBP3A and VfACBP3B. The two proteins are significantly different in length and sequence. Analysis of tung ACBP3 genes revealed significant evolution, suggesting relatively ancient divergence of the two genes from a common ancestor. Phylogenetic comparisons of multiple plant class III proteins suggest that this group is the most evolutionarily dynamic class of ACBP. Both tung ACBP3 genes are expressed at similar levels in most tissues tested, but ACBP3A is stronger in leaves. Three-dimensional modeling predictions confirmed the presence of the conserved four α-helix bundle acyl-CoA binding (ACB); however, other regions of these proteins likely fold much differently. Acyl-CoA binding assays revealed different affinities for different acyl-CoAs, possibly contradicting the redundancy of function suggested by the gene expression studies. Subcellular targeting of transiently-expressed plant ACBP3 proteins contradicted earlier studies, and suggested that at least some class III ACBPs may be predominantly targeted to endoplasmic reticulum membranes, with little or no targeting to the apoplast.
Collapse
Affiliation(s)
- Steven Pastor
- Southern Regional Research Center, United States Department of Agriculture-Agricultural Research Service, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Carrie C, Murcha MW, Giraud E, Ng S, Zhang MF, Narsai R, Whelan J. How do plants make mitochondria? PLANTA 2013; 237:429-439. [PMID: 22976451 DOI: 10.1007/s00425-012-1762-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 09/04/2012] [Indexed: 05/28/2023]
Abstract
Plant mitochondria can differ in size, shape, number and protein content across different tissue types and over development. These differences are a result of signaling and regulatory processes that ensure mitochondrial function is tuned in a cell-specific manner to support proper plant growth and development. In the last decade, the processes involved in mitochondrial biogenesis are becoming clearer, including; how dormant seeds transition from empty promitochondria to fully functional mitochondria with extensive cristae structures and various biochemical activities, the regulation of nuclear genes encoding mitochondrial proteins via regulators of the diurnal cycle in plants, the mitochondrial stress response, the targeting of proteins to mitochondria and other organelles and connections between the respiratory chain and protein import complexes. All these findings indicate that mitochondrial function is a part of an integrated cellular network, and communication between mitochondria and other cellular processes extends beyond the known exchange or transport of metabolites. Our current knowledge now needs to be used to gain more insight into the molecular components at various levels of this hierarchical and complex regulatory and communication network, so that mitochondrial function can be predicted and modified in a rational manner.
Collapse
Affiliation(s)
- Chris Carrie
- Department of Biology I, Botany, Ludwig-Maximilians Universität München, Großhaderner Strasse 2-4, Planegg-Martinsried, Germany.
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
In higher plants, light-grown seedlings exhibit photomorphogenesis, a developmental program controlled by a complex web of interactions between photoreceptors, central repressors, and downstream effectors that leads to changes in gene expression and physiological changes. Light induces peroxisomal proliferation through a phytochrome A-mediated pathway, in which the transcription factor HYH activates the peroxisomal proliferation factor gene PEX11b. Microarray analysis revealed that light activates the expression of a number of peroxisomal genes, especially those involved in photorespiration, a process intimately associated with photosynthesis. In contrast, light represses the expression of genes involved in β-oxidation and the glyoxylate cycle, peroxisomal pathways essential for seedling establishment before photosynthesis begins. Furthermore, the peroxisome is a source of signaling molecules, notably nitric oxide, which promotes photomorphogenesis. Lastly, a gain-of-function mutant of the peroxisomal membrane-tethered RING-type E3 ubiquitin ligase PEX2 partially suppresses the phenotype of the photomorphogenic mutant det1. Possible mechanisms underlying this phenomenon are discussed.
Collapse
Affiliation(s)
- Navneet Kaur
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | | | | |
Collapse
|
46
|
Bussell JD, Behrens C, Ecke W, Eubel H. Arabidopsis peroxisome proteomics. FRONTIERS IN PLANT SCIENCE 2013; 4:101. [PMID: 23630535 PMCID: PMC3633942 DOI: 10.3389/fpls.2013.00101] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 04/02/2013] [Indexed: 05/08/2023]
Abstract
The analytical depth of investigation of the peroxisomal proteome of the model plant Arabidopsis thaliana has not yet reached that of other major cellular organelles such as chloroplasts or mitochondria. This is primarily due to the difficulties associated with isolating and obtaining purified samples of peroxisomes from Arabidopsis. So far only a handful of research groups have been successful in obtaining such fractions. To make things worse, enriched peroxisome fractions frequently suffer from significant organellar contamination, lowering confidence in localization assignment of the identified proteins. As with other cellular compartments, identification of peroxisomal proteins forms the basis for investigations of the dynamics of the peroxisomal proteome. It is therefore not surprising that, in terms of functional analyses by proteomic means, peroxisomes are lagging considerably behind chloroplasts or mitochondria. Alternative strategies are needed to overcome the obstacle of hard-to-obtain organellar fractions. This will help to close the knowledge gap between peroxisomes and other organelles and provide a full picture of the physiological pathways shared between organelles. In this review, we briefly summarize the status quo and discuss some of the methodological alternatives to classic organelle proteomic approaches.
Collapse
Affiliation(s)
- John D. Bussell
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western AustraliaCrawley, WA, Australia
- *Correspondence: John D. Bussell, Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia. e-mail: ; Holger Eubel, Institute for Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany. e-mail:
| | - Christof Behrens
- Institute for Plant Genetics, Leibniz Universität HannoverHannover, Germany
| | - Wiebke Ecke
- Institute for Plant Genetics, Leibniz Universität HannoverHannover, Germany
| | - Holger Eubel
- Institute for Plant Genetics, Leibniz Universität HannoverHannover, Germany
- *Correspondence: John D. Bussell, Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia. e-mail: ; Holger Eubel, Institute for Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany. e-mail:
| |
Collapse
|
47
|
Abstract
Peroxisomes are remarkably versatile cell organelles whose size, shape, number, and protein content can vary greatly depending on the organism, the developmental stage of the organism’s life cycle, and the environment in which the organism lives. The main functions usually associated with peroxisomes include the metabolism of lipids and reactive oxygen species. However, in recent years, it has become clear that these organelles may also act as intracellular signaling platforms that mediate developmental decisions by modulating extraperoxisomal concentrations of several second messengers. To fulfill their functions, peroxisomes physically and functionally interact with other cell organelles, including mitochondria and the endoplasmic reticulum. Defects in peroxisome dynamics can lead to organelle dysfunction and have been associated with various human disorders. The purpose of this paper is to thoroughly summarize and discuss the current concepts underlying peroxisome formation, multiplication, and degradation. In addition, this paper will briefly highlight what is known about the interplay between peroxisomes and other cell organelles and explore the physiological and pathological implications of this interorganellar crosstalk.
Collapse
Affiliation(s)
- Marc Fransen
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, P.O. Box 601, 3000 Leuven, Belgium
| |
Collapse
|
48
|
Park J, Khuu N, Howard ASM, Mullen RT, Plaxton WC. Bacterial- and plant-type phosphoenolpyruvate carboxylase isozymes from developing castor oil seeds interact in vivo and associate with the surface of mitochondria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:251-62. [PMID: 22404138 DOI: 10.1111/j.1365-313x.2012.04985.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) from developing castor oil seeds (COS) exists as two distinct oligomeric isoforms. The typical class-1 PEPC homotetramer consists of 107-kDa plant-type PEPC (PTPC) subunits, whereas the allosterically desensitized 910-kDa class-2 PEPC hetero-octamer arises from the association of class-1 PEPC with 118-kDa bacterial-type PEPC (BTPC) subunits. The in vivo interaction and subcellular location of COS BTPC and PTPC were assessed by imaging fluorescent protein (FP)-tagged PEPCs in tobacco suspension-cultured cells. The BTPC-FP mainly localized to cytoplasmic punctate/globular structures, identified as mitochondria by co-immunostaining of endogenous cytochrome oxidase. Inhibition of respiration with KCN resulted in proportional decreases and increases in mitochondrial versus cytosolic BTPC-FP, respectively. The FP-PTPC and NLS-FP-PTPC (containing an appended nuclear localization signal, NLS) localized to the cytosol and nucleus, respectively, but both co-localized with mitochondrial-associated BTPC when co-expressed with BTPC-FP. Transmission electron microscopy of immunogold-labeled developing COS revealed that BTPC and PTPC are localized at the mitochondrial (outer) envelope, as well as the cytosol. Moreover, thermolysin-sensitive BTPC and PTPC polypeptides were detected on immunoblots of purified COS mitochondria. Overall, our results demonstrate that: (i) COS BTPC and PTPC interact in vivo as a class-2 PEPC complex that associates with the surface of mitochondria, (ii) BTPC's unique and divergent intrinsically disordered region mediates its interaction with PTPC, whereas (iii) the PTPC-containing class-1 PEPC is entirely cytosolic. We hypothesize that mitochondrial-associated class-2 PEPC facilitates rapid refixation of respiratory CO(2) while sustaining a large anaplerotic flux to replenish tricarboxylic acid cycle C-skeletons withdrawn for biosynthesis.
Collapse
Affiliation(s)
- Joonho Park
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | |
Collapse
|
49
|
Hu J, Baker A, Bartel B, Linka N, Mullen RT, Reumann S, Zolman BK. Plant peroxisomes: biogenesis and function. THE PLANT CELL 2012; 24:2279-303. [PMID: 22669882 PMCID: PMC3406917 DOI: 10.1105/tpc.112.096586] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Peroxisomes are eukaryotic organelles that are highly dynamic both in morphology and metabolism. Plant peroxisomes are involved in numerous processes, including primary and secondary metabolism, development, and responses to abiotic and biotic stresses. Considerable progress has been made in the identification of factors involved in peroxisomal biogenesis, revealing mechanisms that are both shared with and diverged from non-plant systems. Furthermore, recent advances have begun to reveal an unexpectedly large plant peroxisomal proteome and have increased our understanding of metabolic pathways in peroxisomes. Coordination of the biosynthesis, import, biochemical activity, and degradation of peroxisomal proteins allows for highly dynamic responses of peroxisomal metabolism to meet the needs of a plant. Knowledge gained from plant peroxisomal research will be instrumental to fully understanding the organelle's dynamic behavior and defining peroxisomal metabolic networks, thus allowing the development of molecular strategies for rational engineering of plant metabolism, biomass production, stress tolerance, and pathogen defense.
Collapse
Affiliation(s)
- Jianping Hu
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Elgass K, Pakay J, Ryan MT, Palmer CS. Recent advances into the understanding of mitochondrial fission. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:150-61. [PMID: 22580041 DOI: 10.1016/j.bbamcr.2012.05.002] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/24/2012] [Accepted: 05/02/2012] [Indexed: 12/20/2022]
Abstract
Mitochondria exist as a highly dynamic tubular network, and their morphology is governed by the delicate balance between frequent fusion and fission events, as well as by interactions with the cytoskeleton. Alterations in mitochondrial morphology are associated with changes in metabolism, cell development and cell death, whilst several human pathologies have been associated with perturbations in the cellular machinery that coordinate these processes. Mitochondrial fission also contributes to ensuring the proper distribution of mitochondria in response to the energetic requirements of the cell. The master mediator of fission is Dynamin related protein 1 (Drp1), which polymerises and constricts mitochondria to facilitate organelle division. The activity of Drp1 at the mitochondrial outer membrane is regulated through post-translational modifications and interactions with mitochondrial receptor and accessory proteins. This review will concentrate on recent advances made in delineating the mechanism of mitochondrial fission, and will highlight the importance of mitochondrial fission in health and disease. This article is part of a Special Issue entitled: Mitochondrial dynamics and physiology.
Collapse
Affiliation(s)
- Kirstin Elgass
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | | | | | | |
Collapse
|