1
|
Petrich J, Alvarez CE, Gómez Cano L, Dewberry R, Grotewold E, Casati P, Falcone Ferreyra ML. Functional characterization of a maize UDP-glucosyltransferase involved in the biosynthesis of flavonoid 7-O-glucosides and di-O-glucosides. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109583. [PMID: 39923422 DOI: 10.1016/j.plaphy.2025.109583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/11/2025]
Abstract
Flavonoids are glycosylated in the final steps of their synthesis by UDP-dependent glycosyltransferase enzymes. We present the functional characterization of the first maize flavonoid O-glucosyltransferase enzyme from family 85, which exhibits properties not previously described. ZmUGT85W2 catalyzes the O-glucosylation of flavonols, flavones and flavanones, to form primarily 7-O-glucosides, but also flavonol O-glucoside positional isomers, flavones and flavonol di-O-glucosides. ZmUGT85W2 exhibited a differential kinetic behavior depending on the flavonoid acceptor, showing hyperbolic dependence for flavonols and sigmoidal response for flavanones and flavones. Structural and molecular docking analyses predicted conserved residues interacting with the sugar donor, with close contact with the 7-hydroxyl of the flavonoid acceptors, consistent with enzymatic activity results. In addition, ZmUGT85W2 is induced by UV-B radiation, and its expression is controlled by the B and PL1 transcription factors. Consistently, higher levels of flavone and flavonol O-glycosides are accumulated in leaves of plants exposed to solar UV-B compared to control plants, suggesting that ZmUGT85W2 is involved in the biosynthesis of these metabolites in maize leaves, contributing to UV-B tolerance. The activity of ZmUGT85W2, along with its elevated expression in silks and pericarps expressing the R2R3-MYB transcription factor P1, highlights its critical role in the accumulation of flavonoid O-glucosides in these tissues. Together, our findings reveal a key step in maize flavonoid O-glycosides biosynthesis, with the observed positive cooperative behaviors suggesting that ZmUGT85W2 plays a crucial role in finely regulating metabolic flux towards these compounds in planta.
Collapse
Affiliation(s)
- Julieta Petrich
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario, S2002LRK, Argentina
| | - Clarisa Ester Alvarez
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario, S2002LRK, Argentina
| | - Lina Gómez Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Ronnie Dewberry
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario, S2002LRK, Argentina
| | | |
Collapse
|
2
|
Srivastava P, Ghosh S. Insights into functional divergence, catalytic versatility and specificity of small molecule glycosyltransferases. Int J Biol Macromol 2025; 292:138821. [PMID: 39708858 DOI: 10.1016/j.ijbiomac.2024.138821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Glycosylation is one of the most fundamental biochemical processes in cells. It plays crucial roles in diversifying plant natural products for structures, bioavailability and bioactivity, and thus, renders the glycosylated compounds valuable as food additives, nutraceuticals and pharmaceuticals. Moreover, glycosylated compounds impact plant growth, development and stress response. Therefore, understanding the biochemical function of the glycosyltransferases (GTs) is crucial to the elucidation of natural product biosynthetic pathways, improving plant traits and development of processes for industrially-important compounds. UDP-dependent glycosyltransferases (UGTs) that belong to the glycosyltransferase family-1 (GT1) and catalyze the transfer of glycosyl moieties from UDP-sugars to various small molecules, are the key players in natural product glycosylation. Recent studies also found the involvement of non-canonical cellulose synthase-like (CesAs) and glycosyl hydrolase (GH) family enzymes in the glycosylation of plant specialized metabolites. Decades of research on GTs provided critical insights into catalytic mechanism, substrate/product specificity and catalytic promiscuity, but biochemical function and physiological roles of GTs in majority of the natural product biosynthetic pathways remain to be understood. It is also important to redefine high-throughput strategies of GT mining to uncover novel biochemical function, considering that GTs are the large superfamily members in plants and other organisms. This review underscores the roles of GTs in small molecule glycosylation, plant development and stress responses, highlighting the catalytic versatility and substrate/product specificity of GTs in shaping plant metabolic diversity, and discusses the emerging strategies for mining of uncharacterized GTs to unravel biochemical and physiological functions and to elucidate natural product biosynthetic pathways.
Collapse
Affiliation(s)
- Payal Srivastava
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India; Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824, USA(1)
| | - Sumit Ghosh
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
3
|
Cao Y, Han Z, Zhang Z, He L, Huang C, Chen J, Dai F, Xuan L, Yan S, Si Z, Hu Y, Zhang T. UDP-glucosyltransferase 71C4 controls the flux of phenylpropanoid metabolism to shape cotton seed development. PLANT COMMUNICATIONS 2024; 5:100938. [PMID: 38689494 PMCID: PMC11369780 DOI: 10.1016/j.xplc.2024.100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
Seeds play a crucial role in plant reproduction, making it essential to identify genes that affect seed development. In this study, we focused on UDP-glucosyltransferase 71C4 (UGT71C4) in cotton, a member of the glycosyltransferase family that shapes seed width and length, thereby influencing seed index and seed cotton yield. Overexpression of UGT71C4 results in seed enlargement owing to its glycosyltransferase activity on flavonoids, which redirects metabolic flux from lignin to flavonoid metabolism. This shift promotes cell proliferation in the ovule via accumulation of flavonoid glycosides, significantly enhancing seed cotton yield and increasing the seed index from 10.66 g to 11.91 g. By contrast, knockout of UGT71C4 leads to smaller seeds through activation of the lignin metabolism pathway and redirection of metabolic flux back to lignin synthesis. This redirection leads to increased ectopic lignin deposition in the ovule, inhibiting ovule growth and development, and alters yield components, increasing the lint percentage from 41.42% to 43.40% and reducing the seed index from 10.66 g to 8.60 g. Our research sheds new light on seed size development and reveals potential pathways for enhancing seed yield.
Collapse
Affiliation(s)
- Yiwen Cao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute, Zhejiang University, Sanya, China
| | - Zegang Han
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | | | - Lu He
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chujun Huang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jinwen Chen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fan Dai
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lisha Xuan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Sunyi Yan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhanfeng Si
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute, Zhejiang University, Sanya, China
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute, Zhejiang University, Sanya, China.
| |
Collapse
|
4
|
Zhu X, Chen Y, Jiao J, Zhao S, Yan Y, Ma F, Yao JL, Li P. Four glycosyltransferase genes are responsible for synthesis and accumulation of different flavonol glycosides in apple tissues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1937-1952. [PMID: 38923617 DOI: 10.1111/tpj.16898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/21/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Flavonols are widely synthesized throughout the plant kingdom, playing essential roles in plant physiology and providing unique health benefits for humans. Their glycosylation plays significant role in improving their stability and solubility, thus their accumulation and function. However, the genes encoding the enzymes catalyze this glycosylation remain largely unknown in apple. This study utilized a combination of methods to identify genes encoding such enzymes. Initially, candidate genes were selected based on their potential to encode UDP-dependent glycosyltransferases (UGTs) and their expression patterns in response to light induction. Subsequently, through testing the in vitro enzyme activity of the proteins produced in Escherichia coli cells, four candidates were confirmed to encode a flavonol 3-O-galactosyltransferase (UGT78T6), flavonol 3-O-glucosyltransferase (UGT78S1), flavonol 3-O-xylosyltransferase/arabinosyltransferase (UGT78T5), and flavonol 3-O-rhamnosyltransferase (UGT76AE22), respectively. Further validation of these genes' functions was conducted by modulating their expression levels in stably transformed apple plants. As anticipated, a positive correlation was observed between the expression levels of these genes and the content of specific flavonol glycosides corresponding to each gene. Moreover, overexpression of a flavonol synthase gene, MdFLS, resulted in increased flavonol glycoside content in apple roots and leaves. These findings provide valuable insights for breeding programs aimed at enriching apple flesh with flavonols and for identifying flavonol 3-O-glycosyltransferases of other plant species.
Collapse
Affiliation(s)
- Xiaoping Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ying Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ju Jiao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shanshan Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanfang Yan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jia-Long Yao
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, 1142, New Zealand
| | - Pengmin Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
5
|
Umezawa A, Matsumoto M, Handa H, Nakazawa K, Miyagawa M, Seifert GJ, Takahashi D, Fushinobu S, Kotake T. Cytosolic UDP-L-arabinose synthesis by bifunctional UDP-glucose 4-epimerases in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:508-524. [PMID: 38678521 DOI: 10.1111/tpj.16779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 05/01/2024]
Abstract
L-Arabinose (L-Ara) is a plant-specific sugar found in cell wall polysaccharides, proteoglycans, glycoproteins, and small glycoconjugates, which play physiologically important roles in cell proliferation and other essential cellular processes. L-Ara is synthesized as UDP-L-arabinose (UDP-L-Ara) from UDP-xylose (UDP-Xyl) by UDP-Xyl 4-epimerases (UXEs), a type of de novo synthesis of L-Ara unique to plants. In Arabidopsis, the Golgi-localized UXE AtMUR4 is the main contributor to UDP-L-Ara synthesis. However, cytosolic bifunctional UDP-glucose 4-epimerases (UGEs) with UXE activity, AtUGE1, and AtUGE3 also catalyze this reaction. For the present study, we first examined the physiological importance of bifunctional UGEs in Arabidopsis. The uge1 and uge3 mutants enhanced the dwarf phenotype of mur4 and further reduced the L-Ara content in cell walls, suggesting that bifunctional UGEs contribute to UDP-L-Ara synthesis. Through the introduction of point mutations exchanging corresponding amino acid residues between AtUGE1 with high UXE activity and AtUGE2 with low UXE activity, two mutations that increase relative UXE activity of AtUGE2 were identified. The crystal structures of AtUGE2 in complex forms with NAD+ and NAD+/UDP revealed that the UDP-binding domain of AtUGE2 has a more closed conformation and smaller sugar-binding site than bacterial and mammalian UGEs, suggesting that plant UGEs have the appropriate size and shape for binding UDP-Xyl and UDP-L-Ara to exhibit UXE activity. The presented results suggest that the capacity for cytosolic synthesis of UDP-L-Ara was acquired by the small sugar-binding site and several mutations of UGEs, enabling diversified utilization of L-Ara in seed plants.
Collapse
Affiliation(s)
- Akira Umezawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Mayuko Matsumoto
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Hiroto Handa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Konatsu Nakazawa
- Department of Biochemistry and Molecular Biology, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Megumi Miyagawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Georg J Seifert
- Institute of Plant Biotechnology and Cell biology, University of Natural Resources and Life Science, Muthgasse 18, A-1190, Vienna, Austria
| | - Daisuke Takahashi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
- Green Bioscience Research Center, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| |
Collapse
|
6
|
Banerjee S, Agarwal P, Choudhury SR, Roy S. MYB4, a member of R2R3-subfamily of MYB transcription factor functions as a repressor of key genes involved in flavonoid biosynthesis and repair of UV-B induced DNA double strand breaks in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108698. [PMID: 38714132 DOI: 10.1016/j.plaphy.2024.108698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/31/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Plants accumulate flavonoids as part of UV-B acclimation, while a high level of UV-B irradiation induces DNA damage and leads to genome instability. Here, we show that MYB4, a member of the R2R3-subfamily of MYB transcription factor plays important role in regulating plant response to UV-B exposure through the direct repression of the key genes involved in flavonoids biosynthesis and repair of DNA double-strand breaks (DSBs). Our results demonstrate that MYB4 inhibits seed germination and seedling establishment in Arabidopsis following UV-B exposure. Phenotype analyses of atmyb4-1 single mutant line along with uvr8-6/atmyb4-1, cop1-6/atmyb4-1, and hy5-215/atmyb4-1 double mutants indicate that MYB4 functions downstream of UVR8 mediated signaling pathway and negatively affects UV-B acclimation and cotyledon expansion. Our results indicate that MYB4 acts as transcriptional repressor of two key flavonoid biosynthesis genes, including 4CL and FLS, via directly binding to their promoter, thus reducing flavonoid accumulation. On the other hand, AtMYB4 overexpression leads to higher accumulation level of DSBs along with repressed expression of several key DSB repair genes, including AtATM, AtKU70, AtLIG4, AtXRCC4, AtBRCA1, AtSOG1, AtRAD51, and AtRAD54, respectively. Our results further suggest that MYB4 protein represses the expression of two crucial DSB repair genes, AtKU70 and AtXRCC4 through direct binding with their promoters. Together, our results indicate that MYB4 functions as an important coordinator to regulate plant response to UV-B through transcriptional regulation of key genes involved in flavonoids biosynthesis and repair of UV-B induced DNA damage.
Collapse
Affiliation(s)
- Samrat Banerjee
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, West Bengal, 713104, India
| | - Puja Agarwal
- Constituent College in Purnea University, Purnia, 854301, Bihar, India
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Sujit Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
7
|
Barreda L, Brosse C, Boutet S, Perreau F, Rajjou L, Lepiniec L, Corso M. Specialized metabolite modifications in Brassicaceae seeds and plants: diversity, functions and related enzymes. Nat Prod Rep 2024; 41:834-859. [PMID: 38323463 DOI: 10.1039/d3np00043e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Covering: up to 2023Specialized metabolite (SM) modifications and/or decorations, corresponding to the addition or removal of functional groups (e.g. hydroxyl, methyl, glycosyl or acyl group) to SM structures, contribute to the huge diversity of structures, activities and functions of seed and plant SMs. This review summarizes available knowledge (up to 2023) on SM modifications in Brassicaceae and their contribution to SM plasticity. We give a comprehensive overview on enzymes involved in the addition or removal of these functional groups. Brassicaceae, including model (Arabidopsis thaliana) and crop (Brassica napus, Camelina sativa) plant species, present a large diversity of plant and seed SMs, which makes them valuable models to study SM modifications. In this review, particular attention is given to the environmental plasticity of SM and relative modification and/or decoration enzymes. Furthermore, a spotlight is given to SMs and related modification enzymes in seeds of Brassicaceae species. Seeds constitute a large reservoir of beneficial SMs and are one of the most important dietary sources, providing more than half of the world's intake of dietary proteins, oil and starch. The seed tissue- and stage-specific expressions of A. thaliana genes involved in SM modification are presented and discussed in the context of available literature. Given the major role in plant phytochemistry, biology and ecology, SM modifications constitute a subject of study contributing to the research and development in agroecology, pharmaceutical, cosmetics and food industrial sectors.
Collapse
Affiliation(s)
- Léa Barreda
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France.
| | - Céline Brosse
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France.
| | - Stéphanie Boutet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France.
| | - François Perreau
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France.
| | - Loïc Rajjou
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France.
| | - Loïc Lepiniec
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France.
| | - Massimiliano Corso
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France.
| |
Collapse
|
8
|
Yang F, Zhang L, Zhang X, Guan J, Wang B, Wu X, Song M, Wei A, Liu Z, Huo D. Genome-wide investigation of UDP-Glycosyltransferase family in Tartary buckwheat (Fagopyrum tataricum). BMC PLANT BIOLOGY 2024; 24:249. [PMID: 38580941 PMCID: PMC10998406 DOI: 10.1186/s12870-024-04926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Tartary buckwheat (Fagopyrum tataricum) belongs to Polygonaceae family and has attracted increasing attention owing to its high nutritional value. UDP-glycosyltransferases (UGTs) glycosylate a variety of plant secondary metabolites to control many metabolic processes during plant growth and development. However, there have been no systematic reports of UGT superfamily in F. tataricum. RESULTS We identified 173 FtUGTs in F. tataricum based on their conserved UDPGT domain. Phylogenetic analysis of FtUGTs with 73 Arabidopsis UGTs clustered them into 21 families. FtUGTs from the same family usually had similar gene structure and motif compositions. Most of FtUGTs did not contain introns or had only one intron. Tandem repeats contributed more to FtUGTs amplification than segmental duplications. Expression analysis indicates that FtUGTs are widely expressed in various tissues and likely play important roles in plant growth and development. The gene expression analysis response to different abiotic stresses showed that some FtUGTs were involved in response to drought and cadmium stress. Our study provides useful information on the UGTs in F. tataricum, and will facilitate their further study to better understand their function. CONCLUSIONS Our results provide a theoretical basis for further exploration of the functional characteristics of FtUGTs and for understanding the growth, development, and metabolic model in F. tataricum.
Collapse
Affiliation(s)
- Fan Yang
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, 030619, China
| | - Lei Zhang
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, 030619, China
| | - Xiao Zhang
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, 030619, China
| | - Jingru Guan
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, 030619, China
| | - Bo Wang
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoying Wu
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, 030619, China
| | - Minli Song
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, 030619, China
| | - Aili Wei
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, 030619, China
| | - Zhang Liu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Dongao Huo
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, 030619, China.
| |
Collapse
|
9
|
Li L, Liu M, Bi H, Liu T. High-level production of Rhodiola rosea characteristic component rosavin from D-glucose and L-arabinose in engineered Escherichia coli. Metab Eng 2024; 82:274-285. [PMID: 38428730 DOI: 10.1016/j.ymben.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/04/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Rosavin is the characteristic component of Rhodiola rosea L., an important medicinal plant used widely in the world that has been reported to possess multiple biological activities. However, the endangered status of wild Rhodiola has limited the supply of rosavin. In this work, we successfully engineered an Escherichia coli strain to efficiently produce rosavin as an alternative production method. Firstly, cinnamate: CoA ligase from Hypericum calycinum, cinnamoyl-CoA reductase from Lolium perenne, and uridine diphosphate (UDP)-glycosyltransferase (UGT) from Bacillus subtilis (Bs-YjiC) were selected to improve the titer of rosin in E. coli. Subsequently, four UGTs from the UGT91R subfamily were identified to catalyze the formation of rosavin from rosin, with SlUGT91R1 from Solanum lycopersicum showing the highest activity level. Secondly, production of rosavin was achieved for the first time in E. coli by incorporating the SlUGT91R1 and UDP-arabinose pathway, including UDP-glucose dehydrogenase, UDP-xylose synthase, and UDP-xylose 4-epimerase, into the rosin-producing stain, and the titer reached 430.5 ± 91.4 mg/L. Thirdly, a two-step pathway derived from L-arabinose, composed of L-arabinokinase and UDP-sugar pyrophosphorylase, was developed in E. coli to further optimize the supply of the precursor UDP-arabinose. Furthermore, 1203.7 ± 32.1 mg/L of rosavin was produced from D-glucose and L-arabinose using shake-flask fermentation. Finally, the production of rosavin reached 7539.1 ± 228.7 mg/L by fed-batch fermentation in a 5-L bioreactor. Thus, the microbe-based production of rosavin shows great potential for commercialization. This work provides an effective strategy for the biosynthesis of other valuable natural products with arabinose-containing units from D-glucose and L-arabinose.
Collapse
Affiliation(s)
- Lijun Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Moshi Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; University of Chinese Academy of Sciences, Beijing, China
| | - Huiping Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| | - Tao Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|
10
|
Naake T, Zhu F, Alseekh S, Scossa F, Perez de Souza L, Borghi M, Brotman Y, Mori T, Nakabayashi R, Tohge T, Fernie AR. Genome-wide association studies identify loci controlling specialized seed metabolites in Arabidopsis. PLANT PHYSIOLOGY 2024; 194:1705-1721. [PMID: 37758174 PMCID: PMC10904349 DOI: 10.1093/plphys/kiad511] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023]
Abstract
Plants synthesize specialized metabolites to facilitate environmental and ecological interactions. During evolution, plants diversified in their potential to synthesize these metabolites. Quantitative differences in metabolite levels of natural Arabidopsis (Arabidopsis thaliana) accessions can be employed to unravel the genetic basis for metabolic traits using genome-wide association studies (GWAS). Here, we performed metabolic GWAS on seeds of a panel of 315 A. thaliana natural accessions, including the reference genotypes C24 and Col-0, for polar and semi-polar seed metabolites using untargeted ultra-performance liquid chromatography-mass spectrometry. As a complementary approach, we performed quantitative trait locus (QTL) mapping of near-isogenic introgression lines between C24 and Col-0 for specific seed specialized metabolites. Besides common QTL between seeds and leaves, GWAS revealed seed-specific QTL for specialized metabolites, indicating differences in the genetic architecture of seeds and leaves. In seeds, aliphatic methylsulfinylalkyl and methylthioalkyl glucosinolates associated with the ALKENYL HYDROXYALKYL PRODUCING loci (GS-ALK and GS-OHP) on chromosome 4 containing alkenyl hydroxyalkyl producing 2 (AOP2) and 3 (AOP3) or with the GS-ELONG locus on chromosome 5 containing methylthioalkyl malate synthase (MAM1) and MAM3. We detected two unknown sulfur-containing compounds that were also mapped to these loci. In GWAS, some of the annotated flavonoids (kaempferol 3-O-rhamnoside-7-O-rhamnoside, quercetin 3-O-rhamnoside-7-O-rhamnoside) were mapped to transparent testa 7 (AT5G07990), encoding a cytochrome P450 75B1 monooxygenase. Three additional mass signals corresponding to quercetin-containing flavonols were mapped to UGT78D2 (AT5G17050). The association of the loci and associating metabolic features were functionally verified in knockdown mutant lines. By performing GWAS and QTL mapping, we were able to leverage variation of natural populations and parental lines to study seed specialized metabolism. The GWAS data set generated here is a high-quality resource that can be investigated in further studies.
Collapse
Affiliation(s)
- Thomas Naake
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Feng Zhu
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Saleh Alseekh
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Federico Scossa
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
- Research Center for Genomics and Bioinformatics (CREA-GB), Council for Agricultural Research and Economics, Via Ardeatina 546, 00178 Rome, Italy
| | - Leonardo Perez de Souza
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Monica Borghi
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84321-5305, USA
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Be’er Sheva, Israel
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, Tsurumi, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Takayuki Tohge
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Alisdair R Fernie
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| |
Collapse
|
11
|
Deng Y, Yang P, Zhang Q, Wu Q, Feng L, Shi W, Peng Q, Ding L, Tan X, Zhan R, Ma D. Genomic insights into the evolution of flavonoid biosynthesis and O-methyltransferase and glucosyltransferase in Chrysanthemum indicum. Cell Rep 2024; 43:113725. [PMID: 38300800 DOI: 10.1016/j.celrep.2024.113725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 11/17/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
Flavonoids are a class of secondary metabolites widely distributed in plants. Regiospecific modification by methylation and glycosylation determines flavonoid diversity. A rare flavone glycoside, diosmin (luteolin-4'-methoxyl-7-O-glucosyl-rhamnoside), occurs in Chrysanthemum indicum. How Chrysanthemum plants evolve new biosynthetic capacities remains elusive. Here, we assemble a 3.11-Gb high-quality C. indicum genome with a contig N50 value of 4.39 Mb and annotate 50,606 protein-coding genes. One (CiCOMT10) of the tandemly repeated O-methyltransferase genes undergoes neofunctionalization, preferentially transferring the methyl group to the 4'-hydroxyl group of luteolin with ortho-substituents to form diosmetin. In addition, CiUGT11 (UGT88B3) specifically glucosylates 7-OH group of diosmetin. Next, we construct a one-pot cascade biocatalyst system by combining CiCOMT10, CiUGT11, and our previously identified rhamnosyltransferase, effectively producing diosmin with over 80% conversion from luteolin. This study clarifies the role of transferases in flavonoid diversity and provides important gene elements essential for producing rare flavone.
Collapse
Affiliation(s)
- Yinai Deng
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Peng Yang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Qianle Zhang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qingwen Wu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lingfang Feng
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Wenjing Shi
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qian Peng
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Li Ding
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xukai Tan
- Grandomics Biosciences, Beijing 102200, China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Dongming Ma
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
12
|
Han H, Zhao R, Li S, Zhang L, Wang F, Zhang N, Wang X. A chromosome-scale genome sequence of Aeonium(Aeonium arboreum 'Velour') provides novel insights into the evolution of anthocyanin synthesis. Gene 2024; 896:148031. [PMID: 38008272 DOI: 10.1016/j.gene.2023.148031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
Anthocyanin glycoside is a water-soluble flavonoid compound that colors plants and aids in stress resistance. The mechanism driving the evolution of the anthocyanin synthesis pathway in plants remains unclear. Aeonium plants are highly regarded as model organisms for studying adaptive evolution. These plants can be categorized into various types, each distinguished by the content and distribution of anthocyanins in their leaves. The categories include red leaves, green leaves, black leaves, yellow leaves, and a classification known as the 'spot brocade series. In this study, we successfully assembled and annotated the genome of cultivar 'Aeonium arboreum 'Velour'' at chromosomal level. The genome size is 1,334.85 Mb containing 18 chromosomes in a single set, with a contig N50 of 23.47 Mb and a Scaffold N50 of 25.07 Mb. Through homology prediction, de novo prediction, and transcriptome prediction, we identified 166,228 coding genes, 161,656 of which were successfully annotated in the database. Comparative genomic analysis revealed that Aeonium arboreum 'Velour' underwent an independent genome-wide replication event after differentiating from Sedum album, Kalanchoe laxiflora, and Kalanchoe fedtschenkoi. It also shared a genome-wide replication event with Sedum album and Kalanchoe laxiflora. Aeonium arboreum 'Velour' exhibits a higher number of multi-copy gene families compared to other species. A total of 5,129 gene families unique to Aeonium arboreum 'Velour' were identified, primarily enriched in various metabolic pathways, including monoterpenoid biosynthesis, sesquiterpene and triterpene biosynthesis, cyanamide acid metabolism, flavonoid and flavonol biosynthesis, phosphonate and phosphinate metabolism, fatty acid degradation, biosynthesis of unsaturated fatty acid, ether lipid metabolism, tyrosine metabolism, and isoflavone biosynthesis according to the KEGG pathway analysis. Aeonium arboreum 'Velour' and Sedum album diversion dates back to approximately 43.11 million years ago during the Paleogene period, marked by the expansion of 2,807 gene families. In contrast, the divergence from Kalanchoe laxiflora and Kalanchoe fedtschenkoi began around 57.28 million years ago, with 219 gene families expanding. GO analysis highlighted that most of the expansion or contraction gene families were predominantly enriched in flower organs, leaf organ development, anthocyanin metabolism regulation, and light energy absorption and utilization. Remarkably, anthocyanin metabolism regulation is enriched to 80 expanded genes, including 36 bHLH transcription factors, possibly functioning as photosensitive pigment interaction factors (PIFs). We speculate that flavonoids play a pivotal role in the adaptation of Aeonium arboreum 'Velour' to environmental stress. Moreover, the evolution of the anthocyanin synthesis pathway is potentially driven by the plant's capability to absorb and utilize light energy, especially in high CO2 and high-temperature settings characteristic of the early Paleogene.
Collapse
Affiliation(s)
- Haozhang Han
- School of Architectural Engineering, Suqian University, Suqian, Jiangsu 223800, China.
| | - Rong Zhao
- School of Architectural Engineering, Suqian University, Suqian, Jiangsu 223800, China
| | - Suhua Li
- School of Architectural Engineering, Suqian University, Suqian, Jiangsu 223800, China
| | - Lihua Zhang
- School of Architectural Engineering, Suqian University, Suqian, Jiangsu 223800, China
| | - Fang Wang
- School of Architectural Engineering, Suqian University, Suqian, Jiangsu 223800, China
| | - Nan Zhang
- School of Architectural Engineering, Suqian University, Suqian, Jiangsu 223800, China
| | - Xiaoli Wang
- School of Architectural Engineering, Suqian University, Suqian, Jiangsu 223800, China
| |
Collapse
|
13
|
Wu L, Chen X, Zhang P, Yan S, Zhang T, Li Y. TON1 recruiting motif 21 positively regulates the flavonoid metabolic pathway at the translational level in Arabidopsis thaliana. PLANTA 2024; 259:65. [PMID: 38329545 PMCID: PMC10853083 DOI: 10.1007/s00425-024-04337-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024]
Abstract
MAIN CONCLUSION This study reveals that TRM21 acts as a positive regulator of flavonoid biosynthesis at the translational level in Arabidopsis, impacting both secondary metabolites and genes associated with root hair growth. TRM (TONNEAU1-recruiting motif) superfamily proteins are reported to be involved in microtubule assembly. However, the functions of this protein family are just beginning to be uncovered. Here, we provide metabolomic and genetic evidence that 1 of the 34 TRM members, TRM21, positively regulates the biosynthesis of flavonoids at the translational level in Arabidopsis thaliana. A loss-of-function mutation in TRM21 led to root hair growth defects and stunted plant growth, accompanied by significant alterations in secondary metabolites, particularly a marked reduction in flavonoid content. Interestingly, our study revealed that the transcription levels of genes involved in the flavonoid biosynthesis pathway remained unchanged in the trm21 mutants, but there was a significant downregulation in the translation levels of certain genes [flavanone 3-hydroxylase (F3H), dihydroflavonol-4-reductase (DFR), anthocyanidin reductase (ANR), flavanone 3'-hydroxylase (F3'H), flavonol synthase (FLS), chalcone synthase (CHS)]. Additionally, the translation levels of some genes related to root hair growth [RHO-related GTPases of plant 2 (ROP2), root hair defective 6 (RHD6), root hair defective 2 (RHD2)] were also reduced in the trm21 mutants. Taken together, these results indicate that TRM21 functions as a positive regulator of flavonoid biosynthesis at the translational level in Arabidopsis.
Collapse
Affiliation(s)
- Ling Wu
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan Province, China
- Syoung Cosmetics Manufacturing Co., Ltd., Changsha, 410000, Hunan Province, China
| | - Xuan Chen
- Changsha Yuelu Experimental High School, Changsha, 410000, Hunan Province, China
| | - Ping Zhang
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan Province, China
| | - Shaowei Yan
- Syoung Cosmetics Manufacturing Co., Ltd., Changsha, 410000, Hunan Province, China
| | - Tingzhi Zhang
- Syoung Cosmetics Manufacturing Co., Ltd., Changsha, 410000, Hunan Province, China
| | - Yuanyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, Hunan Province, China.
| |
Collapse
|
14
|
Ercoli MF, Shigenaga AM, de Araujo AT, Jain R, Ronald PC. Tyrosine-sulfated peptide hormone induces flavonol biosynthesis to control elongation and differentiation in Arabidopsis primary root. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578681. [PMID: 38352507 PMCID: PMC10862922 DOI: 10.1101/2024.02.02.578681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
In Arabidopsis roots, growth initiation and cessation are organized into distinct zones. How regulatory mechanisms are integrated to coordinate these processes and maintain proper growth progression over time is not well understood. Here, we demonstrate that the peptide hormone PLANT PEPTIDE CONTAINING SULFATED TYROSINE 1 (PSY1) promotes root growth by controlling cell elongation. Higher levels of PSY1 lead to longer differentiated cells with a shootward displacement of characteristics common to mature cells. PSY1 activates genes involved in the biosynthesis of flavonols, a group of plant-specific secondary metabolites. Using genetic and chemical approaches, we show that flavonols are required for PSY1 function. Flavonol accumulation downstream of PSY1 occurs in the differentiation zone, where PSY1 also reduces auxin and reactive oxygen species (ROS) activity. These findings support a model where PSY1 signals the developmental-specific accumulation of secondary metabolites to regulate the extent of cell elongation and the overall progression to maturation.
Collapse
Affiliation(s)
- Maria Florencia Ercoli
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
- The Innovative Genomics Institute, University of California, Berkeley 94720
| | - Alexandra M Shigenaga
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
| | - Artur Teixeira de Araujo
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
- The Joint Bioenergy Institute, Emeryville, California
| | - Rashmi Jain
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
| | - Pamela C Ronald
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
- The Innovative Genomics Institute, University of California, Berkeley 94720
- The Joint Bioenergy Institute, Emeryville, California
| |
Collapse
|
15
|
Saffer AM, Baskin TI, Verma A, Stanislas T, Oldenbourg R, Irish VF. Cellulose assembles into helical bundles of uniform handedness in cell walls with abnormal pectin composition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:855-870. [PMID: 37548081 PMCID: PMC10592269 DOI: 10.1111/tpj.16414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/19/2023] [Indexed: 08/08/2023]
Abstract
Plant cells and organs grow into a remarkable diversity of shapes, as directed by cell walls composed primarily of polysaccharides such as cellulose and multiple structurally distinct pectins. The properties of the cell wall that allow for precise control of morphogenesis are distinct from those of the individual polysaccharide components. For example, cellulose, the primary determinant of cell morphology, is a chiral macromolecule that can self-assemble in vitro into larger-scale structures of consistent chirality, and yet most plant cells do not display consistent chirality in their growth. One interesting exception is the Arabidopsis thaliana rhm1 mutant, which has decreased levels of the pectin rhamnogalacturonan-I and causes conical petal epidermal cells to grow with a left-handed helical twist. Here, we show that in rhm1 the cellulose is bundled into large macrofibrils, unlike the evenly distributed microfibrils of the wild type. This cellulose bundling becomes increasingly severe over time, consistent with cellulose being synthesized normally and then self-associating into macrofibrils. We also show that in the wild type, cellulose is oriented transversely, whereas in rhm1 mutants, the cellulose forms right-handed helices that can account for the helical morphology of the petal cells. Our results indicate that when the composition of pectin is altered, cellulose can form cellular-scale chiral structures in vivo, analogous to the helicoids formed in vitro by cellulose nano-crystals. We propose that an important emergent property of the interplay between rhamnogalacturonan-I and cellulose is to permit the assembly of nonbundled cellulose structures, providing plants flexibility to orient cellulose and direct morphogenesis.
Collapse
Affiliation(s)
- Adam M Saffer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, 06520, USA
| | - Tobias I Baskin
- Biology Department, University of Massachusetts, 611 N. Pleasant St, Amherst, Massachusetts, 01003, USA
| | - Amitabh Verma
- Marine Biological Laboratories, 7 MBL Street, Woods Hole, Massachusetts, 02543, USA
| | - Thomas Stanislas
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364, Lyon Cedex 07, France
| | - Rudolf Oldenbourg
- Marine Biological Laboratories, 7 MBL Street, Woods Hole, Massachusetts, 02543, USA
| | - Vivian F Irish
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, 06520, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, 06520, USA
| |
Collapse
|
16
|
Thakur K, Kumari C, Zadokar A, Sharma P, Sharma R. Physiological and omics-based insights for underpinning the molecular regulation of secondary metabolite production in medicinal plants: UV stress resilience. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108060. [PMID: 37897892 DOI: 10.1016/j.plaphy.2023.108060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/30/2023]
Abstract
Despite complex phytoconstituents, the commercial potential of medicinal plants under ultraviolet (UV) stress environment hasn't been fully comprehended. Due to sessile nature, these plants are constantly exposed to damaging radiation, which disturbs their natural physiological and biochemical processes. To combat with UV stress, plants synthesized several small organic molecules (natural products of low molecular mass like alkaloids, terpenoids, flavonoids and phenolics, etc.) known as plant secondary metabolites (PSMs) that come into play to counteract the adverse effect of stress. Plants adapted a stress response by organizing the expression of several genes, enzymes, transcription factors, and proteins involved in the synthesis of chemical substances and by making the signaling cascade (a series of chemical reactions induced by a stimulus within a biological cell) flexible to boost the defensive response. To neutralize UV exposure, secondary metabolites and their signaling network regulate cellular processes at the molecular level. Conventional breeding methods are time-consuming and difficult to reveal the molecular pattern of the stress tolerance medicinal plants. Acquiring in-depth knowledge of the molecular drivers behind the defensive mechanism of medicinal plants against UV radiation would yield advantages (economical and biological) that will bring prosperity to the burgeoning world's population. Thus, this review article emphasized the comprehensive information and clues to identify several potential genes, transcription factors (TFs), proteins, biosynthetic pathways, and biological networks which are involved in resilience mechanism under UV stress in medicinal plants of high-altitudes.
Collapse
Affiliation(s)
- Kamal Thakur
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP, 173 230, India
| | - Chanchal Kumari
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP, 173 230, India
| | - Ashwini Zadokar
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP, 173 230, India
| | - Parul Sharma
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP, 173 230, India
| | - Rajnish Sharma
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP, 173 230, India.
| |
Collapse
|
17
|
Watanabe M, Tohge T. Species-specific 'specialized' genomic region provides the new insights into the functional genomics characterizing metabolic polymorphisms in plants. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102427. [PMID: 37517136 DOI: 10.1016/j.pbi.2023.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Functional genomics approaches with comparative omics analyses of wild-accessions and cultivars/wild species, as well as comparative genomic analyses in plant species focusing on gene clusters, have successfully detected key metabolic polymorphisms in plant specialized metabolism. In recent decades, (i) intra-species specific metabolic polymorphisms, (ii) new functionalization of tandem duplicated genes, and (iii) metabolic gene clusters were found as the main factors creating metabolic diversity of specialized metabolites in plants. However, given findings aware us that the identification of genes in plant specialized metabolism requires strategic approaches depending on the target metabolic pathways. The increasing availability of plant genome sequences and transcriptome data has facilitated inter-specific comparative analyses, including genomic analysis and gene co-expression network analysis. Here, we introduce functional genomics approaches with the integration of inter-/intra-species comparative metabolomics, their key roles in providing genomic signatures of metabolic evolution, and discuss future prospects of functional genomics on plant specialized metabolism.
Collapse
Affiliation(s)
- Mutsumi Watanabe
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Takayama-cho 8916-5, Ikoma, Nara 630-0192, Japan
| | - Takayuki Tohge
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Takayama-cho 8916-5, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
18
|
Wang J, Wang X, Zhao S, Xi X, Feng J, Han R. Brachypodium BdCHS is a homolog of Arabidopsis AtCHS involved in the synthesis of flavonoids and lateral root development. PROTOPLASMA 2023; 260:999-1003. [PMID: 36342530 DOI: 10.1007/s00709-022-01819-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Flavonoids are a kind of plant-specific secondary metabolites, which play an important role in regulating plant growth and development, stress response, and also have medicinal value. Chalcone synthase is the key enzyme in the synthesis of flavonoids. The function of chalcone synthase in Arabidopsis thaliana has been well studied, but its homologous protein in Brachypodium distachyon has not been reported. In this study, we identified a homolog of AtCHS in B. distachyon, named BdCHS, and described its function. Phylogenetic tree analysis showed that BdCHS was most closely related to CHS in Triticum aestivum. Transgene analysis revealed that BdCHS protein was localized in the cytoplasm of Arabidopsis root cells. BdCHS protein can complement the phenotype of AtCHS mutants with lighter seed coat color and increased lateral root density. The content of superoxide anion in the cortical cells above the lateral root primordium in AtCHS mutants was higher than that in the wild-type, and BdCHS protein could restore the content of superoxide anion in AtCHS mutant to the level of that in the wild-type. The results showed that BdCHS was a functional homolog of AtCHS, which laid a foundation for the subsequent application of BdCHS in genetic breeding and crop improvement.
Collapse
Affiliation(s)
- Jin Wang
- Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response, Shanxi Normal University, Taiyuan, Shanxi, 031002, China
| | - Xiaolei Wang
- Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response, Shanxi Normal University, Taiyuan, Shanxi, 031002, China
- College of Life Sciences, Shanxi Normal University, Taiyuan, Shanxi, 031002, China
| | - Shifeng Zhao
- Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response, Shanxi Normal University, Taiyuan, Shanxi, 031002, China
- College of Life Sciences, Shanxi Normal University, Taiyuan, Shanxi, 031002, China
| | - Xiaoyu Xi
- Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response, Shanxi Normal University, Taiyuan, Shanxi, 031002, China
- College of Life Sciences, Shanxi Normal University, Taiyuan, Shanxi, 031002, China
| | - Jinlin Feng
- Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response, Shanxi Normal University, Taiyuan, Shanxi, 031002, China.
- College of Life Sciences, Shanxi Normal University, Taiyuan, Shanxi, 031002, China.
| | - Rong Han
- Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response, Shanxi Normal University, Taiyuan, Shanxi, 031002, China.
- College of Life Sciences, Shanxi Normal University, Taiyuan, Shanxi, 031002, China.
| |
Collapse
|
19
|
Zhu F, Wen W, Cheng Y, Alseekh S, Fernie AR. Integrating multiomics data accelerates elucidation of plant primary and secondary metabolic pathways. ABIOTECH 2023; 4:47-56. [PMID: 37220537 PMCID: PMC10199974 DOI: 10.1007/s42994-022-00091-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/24/2022] [Indexed: 05/25/2023]
Abstract
Plants are the most important sources of food for humans, as well as supplying many ingredients that are of great importance for human health. Developing an understanding of the functional components of plant metabolism has attracted considerable attention. The rapid development of liquid chromatography and gas chromatography, coupled with mass spectrometry, has allowed the detection and characterization of many thousands of metabolites of plant origin. Nowadays, elucidating the detailed biosynthesis and degradation pathways of these metabolites represents a major bottleneck in our understanding. Recently, the decreased cost of genome and transcriptome sequencing rendered it possible to identify the genes involving in metabolic pathways. Here, we review the recent research which integrates metabolomic with different omics methods, to comprehensively identify structural and regulatory genes of the primary and secondary metabolic pathways. Finally, we discuss other novel methods that can accelerate the process of identification of metabolic pathways and, ultimately, identify metabolite function(s).
Collapse
Affiliation(s)
- Feng Zhu
- National R&D Center for Citrus Preservation, Hubei Hongshan Laboratory, National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476 Germany
| | - Weiwei Wen
- National R&D Center for Citrus Preservation, Hubei Hongshan Laboratory, National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yunjiang Cheng
- National R&D Center for Citrus Preservation, Hubei Hongshan Laboratory, National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476 Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000 Bulgaria
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476 Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000 Bulgaria
| |
Collapse
|
20
|
Comparative Transcriptome Analysis Provides Insights into the Molecular Mechanism Underlying the Effect of MeJA Treatment on the Biosynthesis of Saikosaponins in Bupleurum chinense DC. Life (Basel) 2023; 13:life13020563. [PMID: 36836920 PMCID: PMC9960380 DOI: 10.3390/life13020563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Bupleurum chinense DC. is a well-known traditional Chinese medicinal plant that produces saikosaponins (SSs), which possess hepatoprotective, antipyretic, and anti-inflammatory activities. Methyl jasmonate (MeJA) is a signalling phytohormone that can increase the accumulation of SSs in the root of Bupleurum plants. However, the molecular understanding of MeJA-mediated SS biosynthesis is not clear. Therefore, it is necessary to explore the molecular mechanism underlying the response of B. chinense DC. to MeJA in roots. In this study, we performed comparative transcriptome analysis of B. chinense DC. roots with different MeJA treatment times. In total, 104,057 unigenes were identified, of which 4053 were differentially expressed genes (DEGs). Most of the DEGs were downregulated after MeJA treatment, and GO enrichment analysis showed that they were mainly related to biological processes involved in stress responses and development. A total of 88 DEGs encoding enzymes known to be involved in the SS synthesis pathway were found, and most were significantly downregulated within 24 h. Based on the DEGs, 99 transcription factors (TFs) belonging to the AP2/ERF, WRKY, bZIP, ZFP, and bHLH families with different expression patterns were also identified. Further integrated analysis indicated that 20 DEGs involved in the SS synthesis pathway and 12 DEGs encoding TFs presented strong correlations with the SS contents, and these DEGs may be critical for the biosynthesis and regulation of SSs. These findings will be critical for further study of the response of B. chinense DC. to MeJA for SS biosynthesis.
Collapse
|
21
|
Sreeja S, Shylaja MR, Nazeem PA, Mathew D. Peroxisomal KAT2 (3-ketoacyl-CoA thiolase 2) gene has a key role in gingerol biosynthesis in ginger ( Zingiber officinale Rosc.). JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY 2023; 32:1-16. [PMID: 36685987 PMCID: PMC9838548 DOI: 10.1007/s13562-022-00825-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Ginger is an important spice crop with medicinal values and gingerols are the most abundant pungent polyphenols present in ginger, responsible for most of its pharmacological properties. The present study focuses on the molecular mechanism of gingerol biosynthesis in ginger using transcriptome analysis. Suppression Subtractive Hybridization (SSH) was done in leaf and rhizome tissues using high gingerol-producing ginger somaclone B3 as the tester and parent cultivar Maran as the driver and generated high-quality leaf and rhizome Expressed Sequence Tags (ESTs). The Blast2GO annotations of the ESTs revealed the involvement of leaf ESTs in secondary metabolite production, identifying the peroxisomal KAT2 gene (Leaf EST 9) for the high gingerol production in ginger. Rhizome ESTs mostly coded for DNA metabolic processes and differential genes for high gingerol production were not observed in rhizomes. In the qRT-PCR analysis, somaclone B3 had shown high chalcone synthase (CHS: rate-limiting gene in gingerol biosynthetic pathway) activity (0.54 fold) in the leaves of rhizome sprouts. The presence of a high gingerol gene in leaf ESTs and high expression of CHS in leaves presumed that the site of synthesis of gingerols in ginger is the leaves. A modified pathway for gingerol/polyketide backbone formation has been constructed explaining the involvement of KAT gene isoforms KAT2 and KAT5 in gingerol/flavonoid biosynthesis, specifically the KAT2 gene which is otherwise thought to be involved mainly in β-oxidation. The results of the present investigations have the potential of utilizing KAT/thiolase superfamily enzymes for protein/metabolic pathway engineering in ginger for large-scale production of gingerols. Supplementary Information The online version contains supplementary material available at 10.1007/s13562-022-00825-x.
Collapse
Affiliation(s)
- S. Sreeja
- Centre for Plant Biotechnology and Molecular Biology, College of Agriculture, Kerala Agricultural University, Vellanikkara, Kerala India
| | - M. R. Shylaja
- Centre for Plant Biotechnology and Molecular Biology, College of Agriculture, Kerala Agricultural University, Vellanikkara, Kerala India
| | - P. A. Nazeem
- Centre for Plant Biotechnology and Molecular Biology, College of Agriculture, Kerala Agricultural University, Vellanikkara, Kerala India
| | - Deepu Mathew
- Centre for Plant Biotechnology and Molecular Biology, College of Agriculture, Kerala Agricultural University, Vellanikkara, Kerala India
| |
Collapse
|
22
|
Singh G, Sharma S, Rawat S, Sharma RK. Plant Specialised Glycosides (PSGs): their biosynthetic enzymatic machinery, physiological functions and commercial potential. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:1009-1028. [PMID: 36038144 DOI: 10.1071/fp21294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Plants, the primary producers of our planet, have evolved from simple aquatic life to very complex terrestrial habitat. This habitat transition coincides with evolution of enormous chemical diversity, collectively termed as 'Plant Specialised Metabolisms (PSMs)', to cope the environmental challenges. Plant glycosylation is an important process of metabolic diversification of PSMs to govern their in planta stability, solubility and inter/intra-cellular transport. Although, individual category of PSMs (terpenoids, phenylpropanoids, flavonoids, saponins, alkaloids, phytohormones, glucosinolates and cyanogenic glycosides) have been well studied; nevertheless, deeper insights of physiological functioning and genomic aspects of plant glycosylation/deglycosylation processes including enzymatic machinery (CYPs, GTs, and GHs) and regulatory elements are still elusive. Therefore, this review discussed the paradigm shift on genomic background of enzymatic machinery, transporters and regulatory mechanism of 'Plant Specialised Glycosides (PSGs)'. Current efforts also update the fundamental understanding about physiological, evolutionary and adaptive role of glycosylation/deglycosylation processes during the metabolic diversification of PSGs. Additionally, futuristic considerations and recommendations for employing integrated next-generation multi-omics (genomics, transcriptomics, proteomics and metabolomics), including gene/genome editing (CRISPR-Cas) approaches are also proposed to explore commercial potential of PSGs.
Collapse
Affiliation(s)
- Gopal Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; and Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India; and Present address: Department of Plant Functional Metabolomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Shikha Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; and Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India
| | - Sandeep Rawat
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; and Present address: G. B. Pant National Institute of Himalayan Environment and Sustainable Development, Sikkim Regional Centre, Pangthang, Gangtok 737101, Sikkim, India
| | - Ram Kumar Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; and Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
23
|
Jeon JS, Rybka D, Carreno-Quintero N, De Vos R, Raaijmakers JM, Etalo DW. Metabolic signatures of rhizobacteria-induced plant growth promotion. PLANT, CELL & ENVIRONMENT 2022; 45:3086-3099. [PMID: 35751418 DOI: 10.1111/pce.14385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 05/21/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Various root-colonizing bacterial species can promote plant growth and trigger systemic resistance against aboveground leaf pathogens and herbivore insects. To date, the underlying metabolic signatures of these rhizobacteria-induced plant phenotypes are poorly understood. To identify core metabolic pathways that are targeted by growth-promoting rhizobacteria, we used combinations of three plant species and three rhizobacterial species and interrogated plant shoot chemistry by untargeted metabolomics. A substantial part (50%-64%) of the metabolites detected in plant shoot tissue was differentially affected by the rhizobacteria. Among others, the phenylpropanoid pathway was targeted by the rhizobacteria in each of the three plant species. Differential regulation of the various branches of the phenylpropanoid pathways showed an association with either plant growth promotion or growth reduction. Overall, suppression of flavonoid biosynthesis was associated with growth promotion, while growth reduction showed elevated levels of flavonoids. Subsequent assays with 12 Arabidopsis flavonoid biosynthetic mutants revealed that the proanthocyanidin branch plays an essential role in rhizobacteria-mediated growth promotion. Our study also showed that a number of pharmaceutically and nutritionally relevant metabolites in the plant shoot were significantly increased by rhizobacterial treatment, providing new avenues to use rhizobacteria to tilt plant metabolism towards the biosynthesis of valuable natural plant products.
Collapse
Affiliation(s)
- Je-Seung Jeon
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Dominika Rybka
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
| | - Natalia Carreno-Quintero
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
- KeyGene, Wageningen, The Netherlands
| | - Ric De Vos
- Wageningen Plant Research, Bioscience, Wageningen, The Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Desalegn W Etalo
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
24
|
Liu W, Chen T, Liu Y, Le QT, Wang R, Lee H, Xiong L. The Plastidial DIG5 Protein Affects Lateral Root Development by Regulating Flavonoid Biosynthesis and Auxin Transport in Arabidopsis. Int J Mol Sci 2022; 23:ijms231810642. [PMID: 36142550 PMCID: PMC9501241 DOI: 10.3390/ijms231810642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
To reveal the mechanisms underlying root adaptation to drought stress, we isolated and characterized an Arabidopsis mutant, dig5 (drought inhibition of lateral root growth 5), which exhibited increased sensitivity to the phytohormone abscisic acid (ABA) for the inhibition of lateral root growth. The dig5 mutant also had fewer lateral roots under normal conditions and the aerial parts were yellowish with a lower level of chlorophylls. The mutant seedlings also displayed phenotypes indicative of impaired auxin transport, such as abnormal root curling, leaf venation defects, absence of apical hook formation, and reduced hypocotyl elongation in darkness. Auxin transport assays with [3H]-labeled indole acetic acid (IAA) confirmed that dig5 roots were impaired in polar auxin transport. Map-based cloning and complementation assays indicated that the DIG5 locus encodes a chloroplast-localized tRNA adenosine deaminase arginine (TADA) that is involved in chloroplast protein translation. The levels of flavonoids, which are naturally occurring auxin transport inhibitors in plants, were significantly higher in dig5 roots than in the wild type roots. Further investigation showed that flavonoid biosynthetic genes were upregulated in dig5. Introduction of the flavonoid biosynthetic mutation transparent testa 4 (tt4) into dig5 restored the lateral root growth of dig5. Our study uncovers an important role of DIG5/TADA in retrogradely controlling flavonoid biosynthesis and lateral root development. We suggest that the DIG5-related signaling pathways, triggered likely by drought-induced chlorophyll breakdown and leaf senescence, may potentially help the plants to adapt to drought stress through optimizing the root system architecture.
Collapse
Affiliation(s)
- Wei Liu
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- High-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Tao Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yajie Liu
- Department of Biology, Hong Kong Baptist University, Kowloon Tang, Hong Kong, China
| | - Quang Tri Le
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Korea
| | - Ruigang Wang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Hojoung Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Korea
| | - Liming Xiong
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Department of Biology, Hong Kong Baptist University, Kowloon Tang, Hong Kong, China
- State Key Laboratory for Agribiotechnology, Chinese University of Hong Kong, Hong Kong, China
- Correspondence:
| |
Collapse
|
25
|
Sang L, Chen G, Cao J, Liu J, Yu Y. PhRHMs play important roles in leaf and flower development and anthocyanin synthesis in petunia. PHYSIOLOGIA PLANTARUM 2022; 174:e13773. [PMID: 36066309 DOI: 10.1111/ppl.13773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Anthocyanins, vital metabolites in plants, are formed by anthocyanidins combined with various monosaccharides, including glucose, rhamnose, and arabinose. Rhamnose contributes greatly to the glycosylation of anthocyanidins. There are two kinds of rhamnose synthase (RS): rhamnose biosynthesis (RHM), and nucleotide-RS/epimerase-reductase (UER1). Nevertheless, no RS isoform was reported to be involved in anthocyanin synthesis. Here, three homologous PhRHM genes, namely PhRHM1, PhRHM2, and PhRHM3, and one PhUER1 gene from petunia were cloned and characterized. Green fluorescent protein fusion protein assays revealed that PhRHMs and PhUER1 are localized in the cytoplasm. We obtained PhRHM1 or/and PhRHM2 or PhUER1 silenced petunia plants and did not attempt to obtain PhRHM3 silenced plants since PhRHM3 mRNA was not detected in petunia organs examined. PhRHM1 and PhRHM2 (PhRHM1-2) silencing induced abnormal plant growth and decreased the contents of l-rhamnose, photosynthetic pigments and total anthocyanins, while PhUER1 silencing did not cause any visible phenotypic changes. Flavonoid metabolome analysis further revealed that PhRHM1-2 silencing reduced the contents of anthocyanins with rhamnose residue. These results revealed that PhRHMs contribute to the biosynthesis of rhamnose and that PhRHMs participate in the anthocyanin rhamnosylation in petunia, while PhUER1 does not.
Collapse
Affiliation(s)
- Lina Sang
- College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Guoju Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jiahao Cao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Juanxu Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yixun Yu
- College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
26
|
Li Y, Li P, Zhang L, Shu J, Court MH, Sun Z, Jiang L, Zheng C, Shu H, Ji L, Zhang S. Genome-wide analysis of the apple family 1 glycosyltransferases identified a flavonoid-modifying UGT, MdUGT83L3, which is targeted by MdMYB88 and contributes to stress adaptation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111314. [PMID: 35696914 DOI: 10.1016/j.plantsci.2022.111314] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/18/2022] [Accepted: 05/06/2022] [Indexed: 05/02/2023]
Abstract
The plant family 1 UDP-glycosyltransferases (UGTs) are increasingly being investigated because of their contribution to plant secondary metabolism and other diverse biological roles. The apple (Malus domestica) is one of the most widely cultivated fruit trees with great economic importance. However, little is known regarding the apple UGTs. In this study, we identified 229 members of family 1 through a genome-wide analysis of the apple UGTs, which were clustered into 18 groups, from A to R. We also performed detailed analysis of 34 apple UGTs by quantitative RT-PCR, and discovered a number of stress-regulated UGTs. Among them, we characterized the role of MD09G1064900, also named MdUGT83L3, which was significantly induced by salt and cold. In vivo analysis showed that it has high activity towards cyanidin, and moderate activity towards quercetin and keampferol. Transgenic callus and regenerated apple plants overexpressing MdUGT83L3 showed enhanced tolerance to salt and cold treatments. Overexpression of MdUGT83L3 also increased anthocyanin accumulation in the callus tissues and enhanced ROS clearing upon exposure to salt and cold stresses. Furthermore, via yeast-one-hybrid assay, EMSA and CHIP analyses, we also found that MdUGT83L3 could be directly regulated by MdMYB88. Our study indicated that MdUGT83L3, under the regulation of MdMYB88, plays important roles in salt and cold stress adaptation via modulating flavonoid metabolism in apple.
Collapse
Affiliation(s)
- Yanjie Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, Shandong University, Qingdao 266237, PR China
| | - Pan Li
- School of Pharmacy, Liaocheng University, Liaocheng, Shandong 250000, PR China
| | - Lei Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jing Shu
- Shandong Agriculture and Engineering University, Jinan, Shandong 250100, PR China
| | - Michael H Court
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Zhuojing Sun
- Science and Technology Development Center of Ministry of Agriculture and Rural Affairs, PR China
| | - Lepu Jiang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Huairui Shu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Lusha Ji
- School of Pharmacy, Liaocheng University, Liaocheng, Shandong 250000, PR China.
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
27
|
Wada KC, Inagaki N, Sakai H, Yamashita H, Nakai Y, Fujimoto Z, Yonemaru J, Itoh H. Genetic effects of Red Lettuce Leaf genes on red coloration in leaf lettuce under artificial lighting conditions. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2022; 3:179-192. [PMID: 37283610 PMCID: PMC10168059 DOI: 10.1002/pei3.10089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/15/2022] [Accepted: 08/05/2022] [Indexed: 06/08/2023]
Abstract
Some cultivars of lettuce accumulate anthocyanins, which act as functional food ingredients. Leaf lettuce has been known to be erratic in exhibiting red color when grown under artificial light, and there is a need for cultivars that more stably exhibit red color in artificial light cultivation. In this study, we aimed to dissect the genetic architecture for red coloring in various leaf lettuce cultivars grown under artificial light. We investigated the genotype of Red Lettuce Leaf (RLL) genes in 133 leaf lettuce strains, some of which were obtained from publicly available resequencing data. By studying the allelic combination of RLL genes, we further analyzed the contribution of these genes to producing red coloring in leaf lettuce. From the quantification of phenolic compounds and corresponding transcriptome data, we revealed that gene expression level-dependent regulation of RLL1 (bHLH) and RLL2 (MYB) is the underlying mechanism conferring high anthocyanin accumulation in red leaf lettuce under artificial light cultivation. Our data suggest that different combinations of RLL genotypes cause quantitative differences in anthocyanin accumulation among cultivars, and some genotype combinations are more effective at producing red coloration even under artificial lighting.
Collapse
Affiliation(s)
- Kaede C. Wada
- Breeding Big Data Management and Utilization Group, Division of Smart Breeding Research, Institute of Crop ScienceNational Agriculture and Food Research OrganizationTsukubaJapan
| | - Noritoshi Inagaki
- Biomacromolecules Research Unit, Research Center for Advanced Analysis, Core Technology Research HeadquartersNational Agriculture and Food Research OrganizationTsukubaJapan
| | - Hiroaki Sakai
- Bioinformatics Unit, Research Center for Advanced Analysis, Core Technology Research HeadquartersNational Agriculture and Food Research OrganizationTsukubaJapan
| | - Hiroto Yamashita
- Breeding Big Data Management and Utilization Group, Division of Smart Breeding Research, Institute of Crop ScienceNational Agriculture and Food Research OrganizationTsukubaJapan
| | - Yusuke Nakai
- Greenhouse Vegetable Production Group, Division of Field Crop and Vegetable Research, Kyushu‐Okinawa Agricultural Research CenterNational Agriculture and Food Research OrganizationKurumeJapan
| | - Zui Fujimoto
- Biomacromolecules Research Unit, Research Center for Advanced Analysis, Core Technology Research HeadquartersNational Agriculture and Food Research OrganizationTsukubaJapan
| | - Jun‐ichi Yonemaru
- Breeding Big Data Management and Utilization Group, Division of Smart Breeding Research, Institute of Crop ScienceNational Agriculture and Food Research OrganizationTsukubaJapan
| | - Hironori Itoh
- Breeding Big Data Management and Utilization Group, Division of Smart Breeding Research, Institute of Crop ScienceNational Agriculture and Food Research OrganizationTsukubaJapan
| |
Collapse
|
28
|
Tan FF, Zhu R, Xiong B, Zhang GM, Zhao W, Jia KZ. Engineering the Entrance of a Flavonoid Glycosyltransferase Promotes the Glycosylation of Etoposide Aglycone. ACS Synth Biol 2022; 11:1874-1880. [PMID: 35522995 DOI: 10.1021/acssynbio.2c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enzyme entrances, which function as the first molecular filters, influence substrate selectivity and enzymatic activity. Because of low binding affinities, engineering enzyme entrances that recognize non-natural substrates is a major challenge for artificial biocatalyst design. Here, the entrance of flavonoid glycosyltransferase UGT78D2 was engineered to promote the recognition of the aglycone of etoposide, a chemotherapeutic agent. We found that Q258, S446, R444, and R450, the key residues surrounding the substrate entrance, specifically guide the flux of etoposide aglycone, which has a high steric hindrance, into the active site; this activity was inferred to be determined by the entrance size and hydrophobic and electrostatic interactions. Engineering the coordination of Q258 and S446 to increase the entrance size and hydrophobic interaction between UGT78D2 and etoposide aglycone increased the affinity by 10.10-fold and the conversion by 10%. The entrance-engineering strategy applied in this study can improve the design of artificial biocatalysts.
Collapse
Affiliation(s)
- Fei-Fan Tan
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
| | - Rui Zhu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
| | - Bin Xiong
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
| | - Gui-Min Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Kai-Zhi Jia
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
29
|
Berger A, Latimer S, Stutts LR, Soubeyrand E, Block AK, Basset GJ. Kaempferol as a precursor for ubiquinone (coenzyme Q) biosynthesis: An atypical node between specialized metabolism and primary metabolism. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102165. [PMID: 35026487 DOI: 10.1016/j.pbi.2021.102165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/15/2021] [Accepted: 12/01/2021] [Indexed: 05/23/2023]
Abstract
Ubiquinone (coenzyme Q) is a vital respiratory cofactor and liposoluble antioxidant. Studies have shown that plants derive approximately a quarter of 4-hydroxybenzoate, which serves as the direct ring precursor of ubiquinone, from the catabolism of kaempferol. Biochemical and genetic evidence suggests that the release of 4-hydroxybenzoate from kaempferol is catalyzed by heme-dependent peroxidases and that 3-O-glycosylations of kaempferol act as a negative regulator of this process. These findings not only represent an atypical instance of primary metabolite being derived from specialized metabolism but also raise the question as to whether ubiquinone contributes to the ROS scavenging and signaling functions already established for flavonols.
Collapse
Affiliation(s)
- Antoine Berger
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Scott Latimer
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Lauren R Stutts
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Eric Soubeyrand
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Anna K Block
- Center for Medical, Agricultural and Veterinary Entomology, Chemistry Research Unit, ARS, USDA, Gainesville, FL, 32608, USA
| | - Gilles J Basset
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
30
|
Yin Q, Wei Y, Han X, Chen J, Gao H, Sun W. Unraveling the Glucosylation of Astringency Compounds of Horse Chestnut via Integrative Sensory Evaluation, Flavonoid Metabolism, Differential Transcriptome, and Phylogenetic Analysis. FRONTIERS IN PLANT SCIENCE 2022; 12:830343. [PMID: 35185970 PMCID: PMC8850972 DOI: 10.3389/fpls.2021.830343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/27/2021] [Indexed: 06/12/2023]
Abstract
The seeds of Chinese horse chestnut are used as a source of starch and escin, whereas the potential use of whole plant has been ignored. The astringency and bitterness of tea produced from the leaves and flowers were found to be significantly better than those of green tea, suggesting that the enriched flavonoids maybe sensory determinates. During 47 flavonoids identified in leaves and flowers, seven flavonol glycosides in the top 10 including astragalin and isoquercitrin were significantly higher content in flowers than in leaves. The crude proteins of flowers could catalyze flavonol glucosides' formation, in which three glycosyltransferases contributed to the flavonol glucosylation were screened out by multi-dimensional integration of transcriptome, evolutionary analyses, recombinant enzymatic analysis and molecular docking. The deep exploration for flavonol profile and glycosylation provides theoretical and experimental basis for utilization of flowers and leaves of Aesculus chinensis as additives and dietary supplements.
Collapse
Affiliation(s)
- Qinggang Yin
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiding Wei
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyan Han
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jingwang Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han Gao
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Sun
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Cerny M, Berka M, Dvořák M, Milenković I, Saiz-Fernández I, Brzobohatý B, Ďurkovič J. Defense mechanisms promoting tolerance to aggressive Phytophthora species in hybrid poplar. FRONTIERS IN PLANT SCIENCE 2022; 13:1018272. [PMID: 36325556 PMCID: PMC9621118 DOI: 10.3389/fpls.2022.1018272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/30/2022] [Indexed: 05/04/2023]
Abstract
Poplars are among the fastest-growing trees and significant resources in agriculture and forestry. However, rapid growth requires a large water consumption, and irrigation water provides a natural means for pathogen spread. That includes members of Phytophthora spp. that have proven to be a global enemy to forests. With the known adaptability to new hosts, it is only a matter of time for more aggressive Phytophthora species to become a threat to poplar forests and plantations. Here, the effects of artificial inoculation with two different representatives of aggressive species (P. cactorum and P. plurivora) were analyzed in the proteome of the Phytophthora-tolerant hybrid poplar clone T-14 [Populus tremula L. 70 × (Populus × canescens (Ait.) Sm. 23)]. Wood microcore samples were collected at the active necrosis borders to provide insight into the molecular processes underlying the observed tolerance to Phytophthora. The analysis revealed the impact of Phytophthora on poplar primary and secondary metabolism, including carbohydrate-active enzymes, amino acid biosynthesis, phenolic metabolism, and lipid metabolism, all of which were confirmed by consecutive metabolome and lipidome profiling. Modulations of enzymes indicating systemic response were confirmed by the analysis of leaf proteome, and sampling of wood microcores in distal locations revealed proteins with abundance correlating with proximity to the infection, including germin-like proteins, components of proteosynthesis, glutamate carboxypeptidase, and an enzyme that likely promotes anthocyanin stability. Finally, the identified Phytophthora-responsive proteins were compared to those previously found in trees with compromised defense against Phytophthora, namely, Quercus spp. and Castanea sativa. That provided a subset of candidate markers of Phytophthora tolerance, including certain ribosomal proteins, auxin metabolism enzymes, dioxygenases, polyphenol oxidases, trehalose-phosphate synthase, mannose-1-phosphate guanylyltransferase, and rhamnose biosynthetic enzymes. In summary, this analysis provided the first insight into the molecular mechanisms of hybrid poplar defense against Phytophthora and identified prospective targets for improving Phytophthora tolerance in trees.
Collapse
Affiliation(s)
- Martin Cerny
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Phytophthora Research Centre, Mendel University in Brno, Brno, Czechia
- *Correspondence: Martin Cerny,
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Phytophthora Research Centre, Mendel University in Brno, Brno, Czechia
| | - Miloň Dvořák
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Phytophthora Research Centre, Mendel University in Brno, Brno, Czechia
| | - Ivan Milenković
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Phytophthora Research Centre, Mendel University in Brno, Brno, Czechia
- Department of Forestry, University of Belgrade-Faculty of Forestry, Belgrade, Serbia
| | - Iñigo Saiz-Fernández
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Phytophthora Research Centre, Mendel University in Brno, Brno, Czechia
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Phytophthora Research Centre, Mendel University in Brno, Brno, Czechia
| | - Jaroslav Ďurkovič
- Department of Phytology, Technical University in Zvolen, Zvolen, Slovakia
| |
Collapse
|
32
|
He Y, Chen H, Zhao J, Yang Y, Yang B, Feng L, Zhang Y, Wei P, Hou D, Zhao J, Yu M. Transcriptome and metabolome analysis to reveal major genes of saikosaponin biosynthesis in Bupleurum chinense. BMC Genomics 2021; 22:839. [PMID: 34798822 PMCID: PMC8603497 DOI: 10.1186/s12864-021-08144-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/25/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Bupleurum chinense DC. is a widely used traditional Chinese medicinal plant. Saikosaponins are the major bioactive constituents of B. chinense, but relatively little is known about saikosaponin biosynthesis. In the present study, we performed an integrated analysis of metabolic composition and the expressed genes involved in saikosaponin biosynthetic pathways among four organs (the root, flower, stem, and leaf) of B. chinense to discover the genes related to the saikosaponin biosynthetic pathway. RESULTS Transcript and metabolite profiles were generated through high-throughput RNA-sequencing (RNA-seq) data analysis and liquid chromatography tandem mass spectrometry, respectively. Evaluation of saikosaponin contents and transcriptional changes showed 152 strong correlations (P < 0.05) over 3 compounds and 77 unigenes. These unigenes belonged to eight gene families: the acetoacetyl CoA transferase (AACT) (6), HMG-CoA synthase (HMGS) (2), HMG-CoA reductase (HMGR) (2), mevalonate diphosphate decarboxylase (MVD) (1), 1-deoxy-D-xylulose-5-phosphate synthase (DXS) (3), farnesyl diphosphate synthase (FPPS) (11), β-amyrin synthase (β-AS) (13) and cytochrome P450 enzymes (P450s) (39) families. CONCLUSIONS Our results investigated the diversity of the saikosaponin triterpene biosynthetic pathway in the roots, stems, leaves and flowers of B. chinese by integrated transcriptomic and metabolomic analysis, implying that manipulation of P450s genes such as Bc95697 and Bc35434 might improve saikosaponin biosynthesis. This is a good candidate for the genetic improvement of this important medicinal plant.
Collapse
Affiliation(s)
- Yilian He
- School of life science and engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China
| | - Hua Chen
- School of life science and engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China
| | - Jun Zhao
- School of life science and engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China
| | - Yuxia Yang
- Institute of Medicinal Plant Resources, Sichuan Academy of Traditional Chinese Medicine Sciences, 51 4th Section S. Renmin Road, Chengdu, 610041, Sichuan, China
| | - Bin Yang
- School of life science and engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China
| | - Liang Feng
- School of life science and engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China
| | - Yiguan Zhang
- Sichuan Institute for Translational Chinese Medicine, Chengdu, 610041, China
| | - Ping Wei
- Sichuan Institute for Translational Chinese Medicine, Chengdu, 610041, China
| | - Dabin Hou
- School of life science and engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China
| | - Junning Zhao
- Sichuan Institute for Translational Chinese Medicine, Chengdu, 610041, China.
| | - Ma Yu
- School of life science and engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China. .,Laboratory of Medicinal Plant Cultivation, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
33
|
Tsugawa H, Rai A, Saito K, Nakabayashi R. Metabolomics and complementary techniques to investigate the plant phytochemical cosmos. Nat Prod Rep 2021; 38:1729-1759. [PMID: 34668509 DOI: 10.1039/d1np00014d] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2021Plants and their associated microbial communities are known to produce millions of metabolites, a majority of which are still not characterized and are speculated to possess novel bioactive properties. In addition to their role in plant physiology, these metabolites are also relevant as existing and next-generation medicine candidates. Elucidation of the plant metabolite diversity is thus valuable for the successful exploitation of natural resources for humankind. Herein, we present a comprehensive review on recent metabolomics approaches to illuminate molecular networks in plants, including chemical isolation and enzymatic production as well as the modern metabolomics approaches such as stable isotope labeling, ultrahigh-resolution mass spectrometry, metabolome imaging (spatial metabolomics), single-cell analysis, cheminformatics, and computational mass spectrometry. Mass spectrometry-based strategies to characterize plant metabolomes through metabolite identification and annotation are described in detail. We also highlight the use of phytochemical genomics to mine genes associated with specialized metabolites' biosynthesis. Understanding the metabolic diversity through biotechnological advances is fundamental to elucidate the functions of the plant-derived specialized metabolome.
Collapse
Affiliation(s)
- Hiroshi Tsugawa
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. .,RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan.,Graduate School of Medical Life Science, Yokohama City University, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Amit Rai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. .,Plant Molecular Science Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. .,Plant Molecular Science Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
34
|
KC S, Long L, Liu M, Zhang Q, Ruan J. Light Intensity Modulates the Effect of Phosphate Limitation on Carbohydrates, Amino Acids, and Catechins in Tea Plants ( Camellia sinensis L.). FRONTIERS IN PLANT SCIENCE 2021; 12:743781. [PMID: 34691121 PMCID: PMC8532574 DOI: 10.3389/fpls.2021.743781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Metabolites are major contributors to the quality of tea that are regulated by various abiotic stresses. Light intensity and phosphorus (P) supply affect the metabolism of tea plants. However, how these two factors interact and mediate the metabolite levels in tea plants are not fully understood. The present study investigated the consequences of different light intensity and P regimes on the metabolism of carbohydrates, amino acids, and flavonoids in the Fengqing tea cultivar. The leaves and young shoots were subjected to untargeted metabolomics analysis by two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOF/MS), ultra-performance liquid chromatography-quadrupole-TOF/MS (UPLC-Q-TOF/MS), and targeted analysis by high-performance liquid chromatography (HPLC) along with quantification of gene expression by quantitative real time-PCR (qRT-PCR). The results from young shoots showed that amino acids, pentose phosphate, and flavonol glycosides pathways were enhanced in response to decreasing light intensities and P deficiency. The expression of the genes hexokinase 1, ribose 5-phosphate isomerase A (RPIA), glutamate synthetase 1 (GS1), prolyl 4-hydroxylase (P4H), and arginase was induced by P limitation, thereafter affecting carbohydrates and amino acids metabolism, where shading modulated the responses of transcripts and corresponding metabolites caused by P deficiency. P deprivation repressed the expression of Pi transport, stress, sensing, and signaling (SPX2) and induced bidirectional sugar transporter (SWEET3) and amino acid permeases (AAP) which ultimately caused an increase in the amino acids: glutamate (Glu), proline (Pro), and arginine (Arg) under shading but decreased catechins [epicatechingallate (ECG) and Gallic acid, GA] content in young shoots.
Collapse
|
35
|
Huang T, Suen D. Iron insufficiency in floral buds impairs pollen development by disrupting tapetum function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:244-267. [PMID: 34310779 PMCID: PMC9292431 DOI: 10.1111/tpj.15438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/25/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Reduction of crop yield due to iron (Fe) deficiency has always been a concern in agriculture. How Fe insufficiency in floral buds affects pollen development remains unexplored. Here, plants transferred to Fe-deficient medium at the reproductive stage had reduced floral Fe content and viable pollen and showed a defective pollen outer wall, all restored by supplying floral buds with Fe. A comparison of differentially expressed genes (DEGs) in Fe-deficient leaves, roots, and anthers suggested that changes in several cellular processes were unique to anthers, including increased lipid degradation. Co-expression analysis revealed that ABORTED MICROSPORES (AMS), DEFECTIVE IN TAPETAL DEVELOPMENT AND FUNCTION1, and BASIC HELIX-LOOP-HELIX 089/091/010 encode key upstream transcription factors of Fe deficiency-responsive DEGs involved in tapetum function and development, including tapetal ROS homeostasis, programmed cell death, and pollen outer wall formation-related lipid metabolism. Analysis of RESPIRATORY-BURST OXIDASE HOMOLOG E (RBOHE) gain- and loss-of-function under Fe deficiency indicated that RBOHE- and Fe-dependent regulation cooperatively control anther reactive oxygen species levels and pollen development. Since DEGs in Fe-deficient anthers were not significantly enriched in genes related to mitochondrial function, the changes in mitochondrial status under Fe deficiency, including respiration activity, density, and morphology, were probably because the Fe amount was insufficient to maintain proper mitochondrial protein function in anthers. To sum up, Fe deficiency in anthers may affect Fe-dependent protein function and impact upstream transcription factors and their downstream genes, resulting in extensively impaired tapetum function and pollen development.
Collapse
Affiliation(s)
- Tzu‐Hsiang Huang
- Agricultural Biotechnology Research CenterAcademia SinicaTaipei11529Taiwan
- Molecular and Biological Agricultural Sciences ProgramTaiwan International Graduate ProgramAcademia Sinica and National Chung‐Hsing UniversityTaipei11529Taiwan
- Graduate Institute of BiotechnologyNational Chung‐Hsing UniversityTaichung40227Taiwan
| | - Der‐Fen Suen
- Agricultural Biotechnology Research CenterAcademia SinicaTaipei11529Taiwan
- Molecular and Biological Agricultural Sciences ProgramTaiwan International Graduate ProgramAcademia Sinica and National Chung‐Hsing UniversityTaipei11529Taiwan
- Biotechnology CenterNational Chung‐Hsing UniversityTaichung40227Taiwan
| |
Collapse
|
36
|
Chen J, Li G, Zhang H, Yuan Z, Li W, Peng Z, Shi M, Ding W, Zhang H, Cheng Y, Yao JL, Xu J. Primary Bitter Taste of Citrus is Linked to a Functional Allele of the 1,2-Rhamnosyltransferase Gene Originating from Citrus grandis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9869-9882. [PMID: 34410124 DOI: 10.1021/acs.jafc.1c01211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
1,2-Rhamnosyltransferase (1,2RhaT) catalyzes the final step of production of flavanone neohesperidoside (FNH) that is responsible for the primary bitter taste of citrus fruits. In this study, species-specific flavonoid profiles were determined in 87 Citrus accessions by identifying eight main flavanone glycosides (FGs). Accumulation of FNHs was completely correlated to the presence of the 1,2RhaT gene in 87 citrus accessions analyzed using a novel 1,2RhaT-specific DNA marker. Pummelo (Citrus grandis) was identified as the genetic origin for a function allele of 1,2RhaT that underpinned FNH-bitterness in modern citrus cultivars. In addition, genes encoding six MYB and five bHLH transcription factors were shown to coexpress with 1,2RhaT and other flavonoid pathway genes related to FNH accumulation, indicating that these transcription factors may affect the fruit taste of citrus. This study provides a better understanding of bitterness formation in Citrus varieties and a genetic marker for the early selection of nonbitterness lines in citrus breeding programs.
Collapse
Affiliation(s)
- Jiajing Chen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Gu Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Haipeng Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Ziyu Yuan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Wenyun Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Zhaoxin Peng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Meiyan Shi
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Wenyu Ding
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Huixian Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Jia-Long Yao
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
37
|
Wu C, Dai J, Chen Z, Tie W, Yan Y, Yang H, Zeng J, Hu W. Comprehensive analysis and expression profiles of cassava UDP-glycosyltransferases (UGT) family reveal their involvement in development and stress responses in cassava. Genomics 2021; 113:3415-3429. [PMID: 34371100 DOI: 10.1016/j.ygeno.2021.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 07/12/2021] [Accepted: 08/03/2021] [Indexed: 11/30/2022]
Abstract
UDP-glycosyltransferases (UGTs) are widely involved in plant growth and stress responses. However, UGT family are not well understood in cassava. Here, we identified 121 MeUGT genes and classified them into 14 subfamilies by phylogenetic analysis. All MeUGT proteins have typical feature of the UGTs family. Tandem duplications are the crucial driving force for the expansion of MeUGT family. Cis-Acting elements analysis uncovered those 14 kinds of cis-elements associated with biotic and abiotic stress responses. Transcriptomic and qRT-PCR analyses indicated that MeUGT genes participate in postharvest physiological deterioration of storage root and the responses of biotic and abiotic stresses. Of which, MeUGT-14/41 were significantly induced after Xam treatment. Silencing of MeUGT-14 or MeUGT-41 reduced cassava resistance to Xam, verifying the accuracy of transcriptomic data for function prediction. Together, this study characterized the MeUGTs family and revealed their potential functions, which build a solid foundation for MeUGTs associated genetic improvement of cassava.
Collapse
Affiliation(s)
- Chunlai Wu
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China; Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jing Dai
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China; National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhisheng Chen
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Weiwei Tie
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China,.
| | - Yan Yan
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| | - Hai Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jian Zeng
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China.
| | - Wei Hu
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China,.
| |
Collapse
|
38
|
Dossou SSK, Xu F, Cui X, Sheng C, Zhou R, You J, Tozo K, Wang L. Comparative metabolomics analysis of different sesame (Sesamum indicum L.) tissues reveals a tissue-specific accumulation of metabolites. BMC PLANT BIOLOGY 2021; 21:352. [PMID: 34303354 PMCID: PMC8305604 DOI: 10.1186/s12870-021-03132-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/12/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Sesame (Sesamum indicum L.) leaves, flowers, especially seeds are used in traditional medicine to prevent or cure various diseases. Its seed's market is expanding. However, the other tissues are still underexploited due to the lack of information related to metabolites distribution and variability in the plant. Herein, the metabolite profiles of five sesame tissues (leaves, fresh seeds, white and purple flowers, and fresh carpels) have been investigated using ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS/MS)-based widely targeted metabolomics analysis platform. RESULTS In total, 776 metabolites belonging to diverse classes were qualitatively and quantitatively identified. The different tissues exhibited obvious differences in metabolites composition. The majority of flavonoids predominantly accumulated in flowers. Amino acids and derivatives, and lipids were identified predominantly in fresh seeds followed by flowers. Many metabolites, including quinones, coumarins, tannins, vitamins, terpenoids and some bioactive phenolic acids (acteoside, isoacteoside, verbascoside, plantamajoside, etc.) accumulated mostly in leaves. Lignans were principally detected in seeds. 238 key significantly differential metabolites were filtered out. KEGG annotation and enrichment analyses of the differential metabolites revealed that flavonoid biosynthesis, amino acids biosynthesis, and phenylpropanoid biosynthesis were the main differently regulated pathways. In addition to the tissue-specific accumulation of metabolites, we noticed a cooperative relationship between leaves, fresh carpels, and developing seeds in terms of metabolites transfer. Delphinidin-3-O-(6"-O-p-coumaroyl)glucoside and most of the flavonols were up-regulated in the purple flowers indicating they might be responsible for the purple coloration. CONCLUSION This study revealed that the metabolic processes in the sesame tissues are differently regulated. It offers valuable resources for investigating gene-metabolites interactions in sesame tissues and examining metabolic transports during seed development in sesame. Furthermore, our findings provide crucial knowledge that will facilitate sesame biomass valorization.
Collapse
Affiliation(s)
- Senouwa Segla Koffi Dossou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062 China
- Laboratory of Plant Biotechnology and Physiology, University of Lomé, Lomé, 01 BP 1515 Togo
| | - Fangtao Xu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062 China
| | - Xianghua Cui
- Zhumadian Academy of Agricultural Sciences, Zhumadian, 4693000 China
| | - Chen Sheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062 China
| | - Rong Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062 China
| | - Jun You
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062 China
| | - Koffi Tozo
- Laboratory of Plant Biotechnology and Physiology, University of Lomé, Lomé, 01 BP 1515 Togo
| | - Linhai Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062 China
| |
Collapse
|
39
|
Zhou C, Xu Q, He S, Ye W, Cao R, Wang P, Ling Y, Yan X, Wang Q, Zhang G. GTDB: an integrated resource for glycosyltransferase sequences and annotations. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2020:5857526. [PMID: 32542364 PMCID: PMC7296393 DOI: 10.1093/database/baaa047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 04/03/2020] [Accepted: 05/21/2020] [Indexed: 11/15/2022]
Abstract
Glycosyltransferases (GTs), a large class of carbohydrate-active enzymes, adds glycosyl moieties to various substrates to generate multiple bioactive compounds, including natural products with pharmaceutical or agrochemical values. Here, we first collected comprehensive information on GTs, including amino acid sequences, coding region sequences, available tertiary structures, protein classification families, catalytic reactions and metabolic pathways. Then, we developed sequence search and molecular docking processes for GTs, resulting in a GTs database (GTDB). In the present study, 520 179 GTs from approximately 21 647 species that involved in 394 kinds of different reactions were deposited in GTDB. GTDB has the following useful features: (i) text search is provided for retrieving the complete details of a query by combining multiple identifiers and data sources; (ii) a convenient browser allows users to browse data by different classifications and download data in batches; (iii) BLAST is offered for searching against pre-defined sequences, which can facilitate the annotation of the biological functions of query GTs; and lastly, (iv) GTdock using AutoDock Vina performs docking simulations of several GTs with the same single acceptor and displays the results based on 3Dmol.js allowing easy view of models.
Collapse
Affiliation(s)
- Chenfen Zhou
- National Genomics Data Center, Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui, Shanghai 200031, China
| | - Qingwei Xu
- College of Computer, Hubei University of Education, 129 Second Gaoxin Road, Wuhan Hi-Tech Zone, Wu Han 430205, China
| | - Sheng He
- National Genomics Data Center, Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Wei Ye
- National Genomics Data Center, Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui, Shanghai 200031, China
| | - Ruifang Cao
- National Genomics Data Center, Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui, Shanghai 200031, China
| | - Pengyu Wang
- National Genomics Data Center, Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui, Shanghai 200031, China
| | - Yunchao Ling
- National Genomics Data Center, Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui, Shanghai 200031, China
| | - Xing Yan
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Xuhui, Shanghai 200032, China
| | - Qingzhong Wang
- National Genomics Data Center, Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui, Shanghai 200031, China
| | - Guoqing Zhang
- National Genomics Data Center, Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui, Shanghai 200031, China
| |
Collapse
|
40
|
Lu J, Zhang Q, Lang L, Jiang C, Wang X, Sun H. Integrated metabolome and transcriptome analysis of the anthocyanin biosynthetic pathway in relation to color mutation in miniature roses. BMC PLANT BIOLOGY 2021; 21:257. [PMID: 34088264 PMCID: PMC8176584 DOI: 10.1186/s12870-021-03063-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/24/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Roses are famous ornamental plants worldwide. Floral coloration is one of the most prominent traits in roses and is mainly regulated through the anthocyanin biosynthetic pathway. In this study, we investigated the key genes and metabolites of the anthocyanin biosynthetic pathway involved in color mutation in miniature roses. A comparative metabolome and transcriptome analysis was carried out on the Neptune King rose and its color mutant, Queen rose, at the blooming stage. Neptune King rose has light pink colored petals while Queen rose has deep pink colored petals. RESULT A total of 190 flavonoid-related metabolites and 38,551 unique genes were identified. The contents of 45 flavonoid-related metabolites, and the expression of 15 genes participating in the flavonoid pathway, varied significantly between the two cultivars. Seven anthocyanins (cyanidin 3-O-glucosyl-malonylglucoside, cyanidin O-syringic acid, cyanidin 3-O-rutinoside, cyanidin 3-O-galactoside, cyanidin 3-O-glucoside, peonidin 3-O-glucoside chloride, and pelargonidin 3-O-glucoside) were found to be the major metabolites, with higher abundance in the Queen rose. Thirteen anthocyanin biosynthetic related genes showed an upregulation trend in the mutant flower, which may favor the higher levels of anthocyanins in the mutant. Besides, eight TRANSPARENT TESTA 12 genes were found upregulated in Queen rose, probably contributing to a high vacuolar sequestration of anthocyanins. Thirty transcription factors, including two MYB and one bHLH, were differentially expressed between the two cultivars. CONCLUSIONS This study provides important insights into major genes and metabolites of the anthocyanin biosynthetic pathway modulating flower coloration in miniature rose. The results will be conducive for manipulating the anthocyanin pathways in order to engineer novel miniature rose cultivars with specific colors.
Collapse
Affiliation(s)
- Jiaojiao Lu
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Qing Zhang
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Lixin Lang
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Chuang Jiang
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Xiaofeng Wang
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Hongmei Sun
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
41
|
Soubeyrand E, Latimer S, Bernert AC, Keene SA, Johnson TS, Shin D, Block AK, Colquhoun TA, Schäffner AR, Kim J, Basset GJ. 3-O-glycosylation of kaempferol restricts the supply of the benzenoid precursor of ubiquinone (Coenzyme Q) in Arabidopsis thaliana. PHYTOCHEMISTRY 2021; 186:112738. [PMID: 33756238 DOI: 10.1016/j.phytochem.2021.112738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Ubiquinone (Coenzyme Q) is a vital respiratory cofactor and antioxidant in eukaryotes. The recent discovery that kaempferol serves as a precursor for ubiquinone's benzenoid moiety both challenges the conventional view of flavonoids as specialized metabolites, and offers new prospects for engineering ubiquinone in plants. Here, we present evidence that Arabidopsis thaliana mutants lacking kaempferol 3-O-rhamnosyltransferase (ugt78d1) and kaempferol 3-O-glucosyltransferase (ugt78d2) activities display increased de novo biosynthesis of ubiquinone and increased ubiquinone content. These data are congruent with the proposed model that unprotected C-3 hydroxyl of kaempferol triggers the oxidative release of its B-ring as 4-hydroxybenzoate, which in turn is incorporated into ubiquinone. Ubiquinone content in the ugt78d1/ugt78d2 double knockout represented 160% of wild-type level, matching that achieved via exogenous feeding of 4-hydroxybenzoate to wild-type plants. This suggests that 4-hydroxybenzoate is no longer limiting ubiquinone biosynthesis in the ugt78d1/ugt78d2 plants. Evidence is also shown that the glucosylation of 4-hydroxybenzoate as well as the conversion of the immediate precursor of kaempferol, dihydrokaempferol, into dihydroquercetin do not compete with ubiquinone biosynthesis in A. thaliana.
Collapse
Affiliation(s)
- Eric Soubeyrand
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Scott Latimer
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Ann C Bernert
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Shea A Keene
- Department of Environmental Horticulture, Plant Innovation Center, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Timothy S Johnson
- Department of Environmental Horticulture, Plant Innovation Center, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Doosan Shin
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Anna K Block
- Center for Medical, Agricultural and Veterinary Entomology, U.S. Department of Agriculture-Agricultural Research Service, Gainesville, FL, 32608, USA
| | - Thomas A Colquhoun
- Department of Environmental Horticulture, Plant Innovation Center, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Anton R Schäffner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Germany
| | - Jeongim Kim
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Gilles J Basset
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
42
|
Zhang X, He Y, Li L, Liu H, Hong G. Involvement of the R2R3-MYB transcription factor MYB21 and its homologs in regulating flavonol accumulation in Arabidopsis stamen. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4319-4332. [PMID: 33831169 PMCID: PMC8163065 DOI: 10.1093/jxb/erab156] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 05/19/2023]
Abstract
Commonly found flavonols in plants are synthesized from dihydroflavonols by flavonol synthase (FLS). The genome of Arabidopsis thaliana contains six FLS genes, among which FLS1 encodes a functional enzyme. Previous work has demonstrated that the R2R3-MYB subgroup 7 transcription factors MYB11, MYB12, and MYB111 redundantly regulate flavonol biosynthesis. However, flavonol accumulation in pollen grains was unaffected in the myb11myb12myb111 triple mutant. Here we show that MYB21 and its homologs MYB24 and MYB57, which belong to subgroup 19, promote flavonol biosynthesis through regulation of FLS1 gene expression. We used a combination of genetic and metabolite analysis to identify the role of MYB21 in regulating flavonol biosynthesis through direct binding to the GARE cis-element in the FLS1 promoter. Treatment with kaempferol or overexpression of FLS1 rescued stamen defects in the myb21 mutant. We also observed that excess reactive oxygen species (ROS) accumulated in the myb21 stamen, and that treatment with the ROS inhibitor diphenyleneiodonium chloride partly rescued the reduced fertility of the myb21 mutant. Furthermore, drought increased ROS abundance and impaired fertility in myb21, myb21myb24myb57, and chs, but not in the wild type or myb11myb12myb111, suggesting that pollen-specific flavonol accumulation contributes to drought-induced male fertility by ROS scavenging in Arabidopsis.
Collapse
Affiliation(s)
- Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
| | - Linying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
| | - Hongru Liu
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai 200032, China
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
- Correspondence:
| |
Collapse
|
43
|
Abstract
Specialized (secondary) metabolites have been largely considered bioactive “end” products synthesized from primary metabolites. We report biochemical evidence of a retrograde flow of sulfur atoms from specialized metabolites (glucosinolates) to primary metabolites (cysteine) in Arabidopsis thaliana. The reaction begins with glucosinolate breakdown by specific beta-glucosidases, which facilitates sulfur deficiency tolerance, demonstrating a physiological advantage of utilizing specialized metabolites as nutrient reservoirs. Our findings address the breadth of turnover systems in nature and enhance our understanding of how plants coordinate primary and specialized metabolism under different environmental conditions. Specialized (secondary) metabolic pathways in plants have long been considered one-way routes of leading primary metabolite precursors to bioactive end products. Conversely, endogenous degradation of such “end” products in plant tissues has been observed following environmental stimuli, including nutrition stress. Therefore, it is of general interest whether specialized metabolites can be reintegrated into primary metabolism to recover the invested resources, especially in the case of nitrogen- or sulfur-rich compounds. Here, we demonstrate that endogenous glucosinolates (GLs), a class of sulfur-rich plant metabolites, are exploited as a sulfur source by the reallocation of sulfur atoms to primary metabolites such as cysteine in Arabidopsis thaliana. Tracer experiments using 34S- or deuterium-labeled GLs depicted the catabolic processing of GL breakdown products in which sulfur is mobilized from the thioglucoside group in GL molecules, potentially accompanied by the release of the sulfate group. Moreover, we reveal that beta-glucosidases BGLU28 and BGLU30 are the major myrosinases that initiate sulfur reallocation by hydrolyzing particular GL species, conferring sulfur deficiency tolerance in A. thaliana, especially during early development. The results delineate the physiological function of GL as a sulfur reservoir, in addition to their well-known functions as defense chemicals. Overall, our findings demonstrate the bidirectional interaction between primary and specialized metabolism, which enhances our understanding of the underlying metabolic mechanisms via which plants adapt to their environments.
Collapse
|
44
|
Zhao C, Liu X, Gong Q, Cao J, Shen W, Yin X, Grierson D, Zhang B, Xu C, Li X, Chen K, Sun C. Three AP2/ERF family members modulate flavonoid synthesis by regulating type IV chalcone isomerase in citrus. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:671-688. [PMID: 33089636 PMCID: PMC8051604 DOI: 10.1111/pbi.13494] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 05/19/2023]
Abstract
Flavanones and flavones are excellent source of bioactive compounds but the molecular basis of their highly efficient production remains elusive. Chalcone isomerase (CHI) family proteins play essential roles in flavonoid biosynthesis but little are known about the transcription factors controlling their gene expression. Here, we identified a type IV CHI (designated as CitCHIL1) from citrus which enhances the accumulation of citrus flavanones and flavones (CFLs). CitCHIL1 participates in a CFL biosynthetic metabolon and assists the cyclization of naringenin chalcone to (2S)-naringenin, which leads to the efficient influx of substrates to chalcone synthase (CHS) and improves the catalytic efficiency of CHS. Overexpressing CitCHIL1 in Citrus and Arabidopsis significantly increased flavonoid content and RNA interference-induced silencing of CitCHIL1 in citrus led to a 43% reduction in CFL content. Three AP2/ERF transcription factors were identified as positive regulators of the CitCHIL1 expression. Of these, two dehydration-responsive element binding (DREB) proteins, CitERF32 and CitERF33, activated the transcription by directly binding to the CGCCGC motif in the promoter, while CitRAV1 (RAV: related to ABI3/VP1) formed a transcription complex with CitERF33 that strongly enhanced the activation efficiency and flavonoid accumulation. These results not only illustrate the specific function that CitCHIL1 executes in CFL biosynthesis but also reveal a new DREB-RAV transcriptional complex regulating flavonoid production.
Collapse
Affiliation(s)
- Chenning Zhao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Xiaojuan Liu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Qin Gong
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Jinping Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Wanxia Shen
- Citrus Research InstituteSouthwest University/Chinese Academy of Agricultural SciencesChongqingChina
| | - Xueren Yin
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Donald Grierson
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
- Division of Plant and Crop SciencesSchool of BiosciencesUniversity of NottinghamLoughboroughUK
| | - Bo Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Changjie Xu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Xian Li
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| |
Collapse
|
45
|
Yonekura-Sakakibara K, Yamamura M, Matsuda F, Ono E, Nakabayashi R, Sugawara S, Mori T, Tobimatsu Y, Umezawa T, Saito K. Seed-coat protective neolignans are produced by the dirigent protein AtDP1 and the laccase AtLAC5 in Arabidopsis. THE PLANT CELL 2021; 33:129-152. [PMID: 33751095 PMCID: PMC8136895 DOI: 10.1093/plcell/koaa014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/20/2020] [Indexed: 05/03/2023]
Abstract
Lignans/neolignans are generally synthesized from coniferyl alcohol (CA) in the cinnamate/monolignol pathway by oxidation to generate the corresponding radicals with subsequent stereoselective dimerization aided by dirigent proteins (DIRs). Genes encoding oxidases and DIRs for neolignan biosynthesis have not been identified previously. In Arabidopsis thaliana, the DIR AtDP1/AtDIR12 plays an essential role in the 8-O-4' coupling in neolignan biosynthesis by unequivocal structural determination of the compound missing in the atdp1 mutant as a sinapoylcholine (SC)-conjugated neolignan, erythro-3-{4-[2-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-1-hydroxymethylethoxy]-3,5-dimethoxyphenyl}acryloylcholine. Phylogenetic analyses showed that AtDP1/AtDIR12 belongs to the DIR-a subfamily composed of DIRs for 8-8' coupling of monolignol radicals. AtDP1/AtDIR12 is specifically expressed in outer integument 1 cells in developing seeds. As a putative oxidase for neolignan biosynthesis, we focused on AtLAC5, a laccase gene coexpressed with AtDP1/AtDIR12. In lac5 mutants, the abundance of feruloylcholine (FC)-conjugated neolignans decreased to a level comparable to those in the atdp1 mutant. In addition, SC/FC-conjugated neolignans were missing in the seeds of mutants defective in SCT/SCPL19, an enzyme that synthesizes SC. These results strongly suggest that AtDP1/AtDIR12 and AtLAC5 are involved in neolignan biosynthesis via SC/FC. A tetrazolium penetration assay showed that seed coat permeability increased in atdp1 mutants, suggesting a protective role of neolignans in A. thaliana seeds.
Collapse
Affiliation(s)
- Keiko Yonekura-Sakakibara
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Masaomi Yamamura
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Fumio Matsuda
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Eiichiro Ono
- Research Institute, Suntory Global Innovation Center Ltd., 8-1-1 Seikadai, Seika, Soraku-gun, Kyoto 619-0284, Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Satoko Sugawara
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Research Unit for Development of Global Sustainability, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Plant Molecular Science Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
- Author for correspondence: ,
| |
Collapse
|
46
|
Yin Q, Han X, Chen J, Han Z, Shen L, Sun W, Chen S. Identification of Specific Glycosyltransferases Involved in Flavonol Glucoside Biosynthesis in Ginseng Using Integrative Metabolite Profiles, DIA Proteomics, and Phylogenetic Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1714-1726. [PMID: 33512142 DOI: 10.1021/acs.jafc.0c06989] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ginseng contains a variety of flavonol glycosides that possess diverse biological activities; however, scant information of flavonoid glycosylation was reported in ginseng. We found that panasenoside and kaempferol 3-O-glucoside were commonly accumulated along with cultivation years in leaves. In order to explore the procedure of flavonol glycosylation in ginseng, 50 UDP-glycosyltransferases (UGTs) were screened out using differentiated data-independent acquisition (DIA) proteomics and phylogenetic analysis. UGT92A10 and UGT94Q4 were found contributing to the formation of kaempferol 3-O-glucoside. UGT73A18, UGT74T4, and UGT75W1 could catalyze galactosylation of kaempferol 3-O-glucoside. Ser278, Trp335, Gln338, and Val339 were found forming hydrogen bonds with UDP-galactose in UGT75W1 by docking. MeJA induced transcripts of UGT73A18 and UGT74T4 by over fourfold, consistent with the decrease of kaempferol 3-O-glucoside, which indicated that these genes may be related to resisting adversity stress in ginseng. These results highlight the significance of integrative metabolite profiles, proteomics, and phylogenetic analysis for exploring flavonol glycosylation in ginseng.
Collapse
Affiliation(s)
- Qinggang Yin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoyan Han
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jingwang Chen
- Key Laboratory of Agro-products Processing, Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zongxian Han
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liang Shen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Beijing Museum of Natural History, Beijing Academy of Science and Technology, Beijing 100050, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
47
|
Jiang N, Dillon FM, Silva A, Gomez-Cano L, Grotewold E. Rhamnose in plants - from biosynthesis to diverse functions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110687. [PMID: 33288005 DOI: 10.1016/j.plantsci.2020.110687] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 05/27/2023]
Abstract
In plants, the deoxy sugar l-rhamnose is widely present as rhamnose-containing polymers in cell walls and as part of the decoration of various specialized metabolites. Here, we review the current knowledge on the distribution of rhamnose, highlighting the differences between what is known in dicotyledoneuos compared to commelinid monocotyledoneous (grasses) plants. We discuss the biosynthesis and transport of UDP-rhamnose, as well as the transfer of rhamnose from UDP-rhamnose to various primary and specialized metabolites. This is carried out by rhamnosyltransferases, enzymes that can use a large variety of substrates. Some unique characteristics of rhamnose synthases, the multifunctional enzymes responsible for the conversion of UDP-glucose into UDP-rhamnose, are considered, particularly from the perspective of their ability to convert glucose present in flavonoids. Finally, we discuss how little is still known with regards to how plants rescue rhamnose from the many compounds to which it is linked, or how rhamnose is catabolized.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Francisco M Dillon
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Alexander Silva
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Lina Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
48
|
Chapman JM, Muday GK. Flavonols modulate lateral root emergence by scavenging reactive oxygen species in Arabidopsis thaliana. J Biol Chem 2021; 296:100222. [PMID: 33839683 PMCID: PMC7948594 DOI: 10.1074/jbc.ra120.014543] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022] Open
Abstract
Flavonoids are a class of specialized metabolites with subclasses including flavonols and anthocyanins, which have unique properties as antioxidants. Flavonoids modulate plant development, but whether and how they impact lateral root development is unclear. We examined potential roles for flavonols in this process using Arabidopsis thaliana mutants with defects in genes encoding key enzymes in flavonoid biosynthesis. We observed the tt4 and fls1 mutants, which produce no flavonols, have increased lateral root emergence. The tt4 root phenotype was reversed by genetic and chemical complementation. To more specifically define the flavonoids involved, we tested an array of flavonoid biosynthetic mutants, eliminating roles for anthocyanins and the flavonols quercetin and isorhamnetin in modulating lateral root development. Instead, two tt7 mutant alleles, with defects in a branchpoint enzyme blocking quercetin biosynthesis, formed reduced numbers of lateral roots and tt7-2 had elevated levels of kaempferol. Using a flavonol-specific dye, we observed that in the tt7-2 mutant, kaempferol accumulated within lateral root primordia at higher levels than wild-type. These data are consistent with kaempferol, or downstream derivatives, acting as a negative regulator of lateral root emergence. We examined ROS accumulation using ROS-responsive probes and found reduced fluorescence of a superoxide-selective probe within the primordia of tt7-2 compared with wild-type, but not in the tt4 mutant, consistent with opposite effects of these mutants on lateral root emergence. These results support a model in which increased level of kaempferol in the lateral root primordia of tt7-2 reduces superoxide concentration and ROS-stimulated lateral root emergence.
Collapse
Affiliation(s)
- Jordan M Chapman
- Biology Department, Wake Forest University, Winston Salem, North Carolina, USA
| | - Gloria K Muday
- Biology Department, Wake Forest University, Winston Salem, North Carolina, USA.
| |
Collapse
|
49
|
Wang H, Liu S, Wang T, Liu H, Xu X, Chen K, Zhang P. The moss flavone synthase I positively regulates the tolerance of plants to drought stress and UV-B radiation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110591. [PMID: 32771149 DOI: 10.1016/j.plantsci.2020.110591] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 05/24/2023]
Abstract
Flavonoids are extensively distributed secondary metabolites in land plants. They play a critical role in plant evolution from aquatic to terrestrial and plant adaption to ultraviolet radiation. However, the downstream branching pathway of flavonoids and its regulatory mechanism in bryophytes, which are the most ancient of terrestrial plants, remain unclear. Here, a type I flavone synthase (PnFNSI) was characterized from the Antarctic moss Pohlia nutans. PnFNSI was primarily distributed in the cytoplasm, as detected by subcellular localization. PnFNSI could catalyze the conversion of naringenin to apigenin with an optimal temperature between 15 and 20 °C in vitro. Overexpression of PnFNSI in Arabidopsis alleviated the growth restriction caused by naringenin and accumulated apigenin product. PnFNSI-overexpressing plants showed enhanced plant tolerance to drought stress and UV-B radiation. PnFNSI also increased the enzyme activities and gene transcription levels of reactive oxygen species (ROS) scavengers, protecting plants against oxidative stress. Moreover, overexpression of PnFNSI enhanced the flavone biosynthesis pathway in Arabidopsis. Therefore, this moss FNSI-type enzyme participates in flavone metabolism, conferring protection against drought stress and UV-B radiation.
Collapse
Affiliation(s)
- Huijuan Wang
- National Glycoengineering Research Center, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Shenghao Liu
- Marine Ecology Research Center, First Institute of Oceanography, Natural Resources Ministry, Qingdao, 266061, China
| | - Tailin Wang
- National Glycoengineering Research Center, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Hongwei Liu
- National Glycoengineering Research Center, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Xinhui Xu
- National Glycoengineering Research Center, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Kaoshan Chen
- National Glycoengineering Research Center, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Pengying Zhang
- National Glycoengineering Research Center, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
50
|
Wang M, Chen L, Liang Z, He X, Liu W, Jiang B, Yan J, Sun P, Cao Z, Peng Q, Lin Y. Metabolome and transcriptome analyses reveal chlorophyll and anthocyanin metabolism pathway associated with cucumber fruit skin color. BMC PLANT BIOLOGY 2020; 20:386. [PMID: 32831013 PMCID: PMC7444041 DOI: 10.1186/s12870-020-02597-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/12/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Fruit skin color play important role in commercial value of cucumber, which is mainly determined by the content and composition of chlorophyll and anthocyanins. Therefore, understanding the related genes and metabolomics involved in composition of fruit skin color is essential for cucumber quality and commodity value. RESULTS The results showed that chlorophyll a, chlorophyll b and carotenoid content in fruit skin were higher in Lv (dark green skin) than Bai (light green skin) on fruit skin. Cytological observation showed more chloroplast existed in fruit skin cells of Lv. A total of 162 significantly different metabolites were found between the fruit skin of the two genotypes by metabolome analysis, including 40 flavones, 9 flavanones, 8 flavonols, 6 anthocyanins, and other compounds. Crucial anthocyanins and flavonols for fruit skin color, were detected significantly decreased in fruit skin of Bai compared with Lv. By RNA-seq assay, 4516 differentially expressed genes (DEGs) were identified between two cultivars. Further analyses suggested that low expression level of chlorophyll biosynthetic genes, such as chlM, por and NOL caused less chlorophylls or chloroplast in fruit skin of Bai. Meanwhile, a predicted regulatory network of anthocyanin biosynthesis was established to illustrate involving many DEGs, especially 4CL, CHS and UFGT. CONCLUSIONS This study uncovered significant differences between two cucumber genotypes with different fruit color using metabolome and RNA-seq analysis. We lay a foundation to understand molecular regulation mechanism on formation of cucumber skin color, by exploring valuable genes, which is helpful for cucumber breeding and improvement on fruit skin color.
Collapse
Affiliation(s)
- Min Wang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Lin Chen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Zhaojun Liang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Xiaoming He
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Wenrui Liu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Jinqiang Yan
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Piaoyun Sun
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Zhenqiang Cao
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Qingwu Peng
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China.
| | - Yu'e Lin
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China.
| |
Collapse
|