1
|
Giovannoni M, Scafati V, Rodrigues Pousada RA, Benedetti M, De Lorenzo G, Mattei B. The Vacuolar H +-ATPase subunit C is involved in oligogalacturonide (OG) internalization and OG-triggered immunity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109117. [PMID: 39293143 DOI: 10.1016/j.plaphy.2024.109117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024]
Abstract
In plants, the perception of cell wall fragments initiates signal transduction cascades that activate the immune response. Previous research on early protein dynamics induced by oligogalacturonides (OGs), pectin fragments acting as damage-associated molecular patterns (DAMPs), revealed significant phosphorylation changes in several proteins. Among them, the subunit C of the vacuolar H+-ATPase, known as DE-ETIOLATED 3 (DET3), was selected to elucidate its role in the OG-triggered immune response. The Arabidopsis det3 knockdown mutant exhibited defects in H2O2 accumulation, mitogen-activated protein kinases (MAPKs) activation, and induction of defense marker genes in response to OG treatment. Interestingly, the det3 mutant showed a higher basal resistance to the fungal pathogen Botrytis cinerea that, in turn, was completely reversed by the pre-treatment with OGs. Our results suggest a compromised ability of the det3 mutant to maintain a primed state over time, leading to a weaker defense response when the plant is later exposed to the fungal pathogen. Using fluorescently labelled OGs, we demonstrated that endocytosis of OGs was less efficient in the det3 mutant, implicating DET3 in the internalization process of OGs. This impairment aligns with the observed defect in the priming response in the det3 mutant, underscoring that proper internalization and signaling of OGs are crucial for initiating and maintaining a primed state in plant defense responses.
Collapse
Affiliation(s)
- Moira Giovannoni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Valentina Scafati
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | | | - Manuel Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185, Rome, Italy
| | - Benedetta Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| |
Collapse
|
2
|
Hoffmann N, Mohammad E, McFarlane HE. Disrupting cell wall integrity impacts endomembrane trafficking to promote secretion over endocytic trafficking. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3731-3747. [PMID: 38676707 PMCID: PMC11194303 DOI: 10.1093/jxb/erae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
The plant cell wall provides a strong yet flexible barrier to protect cells from the external environment. Modifications of the cell wall, either during development or under stress conditions, can induce cell wall integrity responses and ultimately lead to alterations in gene expression, hormone production, and cell wall composition. These changes in cell wall composition presumably require remodelling of the secretory pathway to facilitate synthesis and secretion of cell wall components and cell wall synthesis/remodelling enzymes from the Golgi apparatus. Here, we used a combination of live-cell confocal imaging and transmission electron microscopy to examine the short-term and constitutive impact of isoxaben, which reduces cellulose biosynthesis, and Driselase, a cocktail of cell-wall-degrading fungal enzymes, on cellular processes during cell wall integrity responses in Arabidopsis. We show that both treatments altered organelle morphology and triggered rebalancing of the secretory pathway to promote secretion while reducing endocytic trafficking. The actin cytoskeleton was less dynamic following cell wall modification, and organelle movement was reduced. These results demonstrate active remodelling of the endomembrane system and actin cytoskeleton following changes to the cell wall.
Collapse
Affiliation(s)
- Natalie Hoffmann
- Department of Cell & Systems Biology, University of Toronto, M5S 3B2Canada
| | - Eskandar Mohammad
- Department of Cell & Systems Biology, University of Toronto, M5S 3B2Canada
| | | |
Collapse
|
3
|
Zboińska M, Romero LC, Gotor C, Kabała K. Regulation of V-ATPase by Jasmonic Acid: Possible Role of Persulfidation. Int J Mol Sci 2023; 24:13896. [PMID: 37762199 PMCID: PMC10531226 DOI: 10.3390/ijms241813896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Vacuolar H+-translocating ATPase (V-ATPase) is a proton pump crucial for plant growth and survival. For this reason, its activity is tightly regulated, and various factors, such as signaling molecules and phytohormones, may be involved in this process. The aim of this study was to explain the role of jasmonic acid (JA) in the signaling pathways responsible for the regulation of V-ATPase in cucumber roots and its relationship with other regulators of this pump, i.e., H2S and H2O2. We analyzed several aspects of the JA action on the enzyme, including transcriptional regulation, modulation of protein levels, and persulfidation of selected V-ATPase subunits as an oxidative posttranslational modification induced by H2S. Our results indicated that JA functions as a repressor of V-ATPase, and its action is related to a decrease in the protein amount of the A and B subunits, the induction of oxidative stress, and the downregulation of the E subunit persulfidation. We suggest that both H2S and H2O2 may be downstream components of JA-dependent negative proton pump regulation. The comparison of signaling pathways induced by two negative regulators of the pump, JA and cadmium, revealed that multiple pathways are involved in the V-ATPase downregulation in cucumber roots.
Collapse
Affiliation(s)
- Magdalena Zboińska
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland;
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, C. Américo Vespucio, 49, 41092 Sevilla, Spain; (L.C.R.); (C.G.)
| | - Luis C. Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, C. Américo Vespucio, 49, 41092 Sevilla, Spain; (L.C.R.); (C.G.)
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, C. Américo Vespucio, 49, 41092 Sevilla, Spain; (L.C.R.); (C.G.)
| | - Katarzyna Kabała
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland;
| |
Collapse
|
4
|
Li W, Luo L, Gu L, Li H, Zhang Q, Ye Y, Li L. Vacuolar H + -ATPase subunit VAB3 regulates cell growth and ion homeostasis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:664-676. [PMID: 36069460 DOI: 10.1111/tpj.15971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Vacuolar H+ -ATPase (V-ATPase) has diverse functions related to plant development and growth. It creates the turgor pressure that drives cell growth by generating the energy needed for the active transport of solutes across the tonoplast. V-ATPase is a large protein complex made up of multiheteromeric subunits, some of which have unknown functions. In this study, a forward genetics-based strategy was employed to identify the vab3 mutant, which displayed resistance to isoxaben, a cellulose synthase inhibitor that could induce excessive transverse cell expansion. Map-based cloning and genetic complementary assays demonstrated that V-ATPase B subunit 3 (VAB3) is associated with the observed insensitivity of the mutant to isoxaben. Analysis of the vab3 mutant revealed defective ionic homeostasis and hypersensitivity to salt stress. Treatment with a V-ATPase inhibitor exacerbated ionic tolerance and cell elongation defects in the vab3 mutant. Notably, exogenous low-dose Ca2+ or Na+ could partially restore isoxaben resistance of the vab3 mutant, suggesting a relationship between VAB3-regulated cell growth and ion homeostasis. Taken together, the results of this study suggest that the V-ATPase subunit VAB3 is required for cell growth and ion homeostasis in Arabidopsis.
Collapse
Affiliation(s)
- Wenbo Li
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Laifu Luo
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lili Gu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Haimin Li
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qian Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yajin Ye
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
5
|
Seidel T. The Plant V-ATPase. FRONTIERS IN PLANT SCIENCE 2022; 13:931777. [PMID: 35845650 PMCID: PMC9280200 DOI: 10.3389/fpls.2022.931777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/03/2022] [Indexed: 05/25/2023]
Abstract
V-ATPase is the dominant proton pump in plant cells. It contributes to cytosolic pH homeostasis and energizes transport processes across endomembranes of the secretory pathway. Its localization in the trans Golgi network/early endosomes is essential for vesicle transport, for instance for the delivery of cell wall components. Furthermore, it is crucial for response to abiotic and biotic stresses. The V-ATPase's rather complex structure and multiple subunit isoforms enable high structural flexibility with respect to requirements for different organs, developmental stages, and organelles. This complexity further demands a sophisticated assembly machinery and transport routes in cells, a process that is still not fully understood. Regulation of V-ATPase is a target of phosphorylation and redox-modifications but also involves interactions with regulatory proteins like 14-3-3 proteins and the lipid environment. Regulation by reversible assembly, as reported for yeast and the mammalian enzyme, has not be proven in plants but seems to be absent in autotrophic cells. Addressing the regulation of V-ATPase is a promising approach to adjust its activity for improved stress resistance or higher crop yield.
Collapse
|
6
|
González Solís A, Berryman E, Otegui MS. Plant endosomes as protein sorting hubs. FEBS Lett 2022; 596:2288-2304. [PMID: 35689494 DOI: 10.1002/1873-3468.14425] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 01/10/2023]
Abstract
Endocytosis, secretion, and endosomal trafficking are key cellular processes that control the composition of the plasma membrane. Through the coordination of these trafficking pathways, cells can adjust the composition, localization, and turnover of proteins and lipids in response to developmental or environmental cues. Upon being incorporated into vesicles and internalized through endocytosis, plant plasma membrane proteins are delivered to the trans-Golgi network (TGN). At the TGN, plasma membrane proteins are recycled back to the plasma membrane or transferred to multivesicular endosomes (MVEs), where they are further sorted into intralumenal vesicles for degradation in the vacuole. Both types of plant endosomes, TGN and MVEs, act as sorting organelles for multiple endocytic, recycling, and secretory pathways. Molecular assemblies such as retromer, ESCRT (endosomal sorting complex required for transport) machinery, small GTPases, adaptor proteins, and SNAREs associate with specific domains of endosomal membranes to mediate different sorting and membrane-budding events. In this review, we discuss the mechanisms underlying the recognition and sorting of proteins at endosomes, membrane remodeling and budding, and their implications for cellular trafficking and physiological responses in plants.
Collapse
Affiliation(s)
- Ariadna González Solís
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, WI, USA
| | - Elizabeth Berryman
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, WI, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
7
|
Abstract
H+-ATPases, including the phosphorylated intermediate-type (P-type) and vacuolar-type (V-type) H+-ATPases, are important ATP-driven proton pumps that generate membrane potential and provide proton motive force for secondary active transport. P- and V-type H+-ATPases have distinct structures and subcellular localizations and play various roles in growth and stress responses. A P-type H+-ATPase is mainly regulated at the posttranslational level by phosphorylation and dephosphorylation of residues in its autoinhibitory C terminus. The expression and activity of both P- and V-type H+-ATPases are highly regulated by hormones and environmental cues. In this review, we summarize the recent advances in understanding of the evolution, regulation, and physiological roles of P- and V-type H+-ATPases, which coordinate and are involved in plant growth and stress adaptation. Understanding the different roles and the regulatory mechanisms of P- and V-type H+-ATPases provides a new perspective for improving plant growth and stress tolerance by modulating the activity of H+-ATPases, which will mitigate the increasing environmental stress conditions associated with ongoing global climate change.
Collapse
Affiliation(s)
- Ying Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Feiyun Xu
- Center for Plant Water-Use and Nutrition Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China;
| | - Feng Yan
- Institute of Agronomy and Plant Breeding, Justus Liebig University of Giessen, Giessen, Germany
| | - Weifeng Xu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- Center for Plant Water-Use and Nutrition Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China;
| |
Collapse
|
8
|
Qi C, Lei L, Hu J, Wang G, Liu J, Ou S. Identification of a five-gene signature deriving from the vacuolar ATPase (V-ATPase) sub-classifies gliomas and decides prognoses and immune microenvironment alterations. Cell Cycle 2022; 21:1294-1315. [PMID: 35266851 PMCID: PMC9132400 DOI: 10.1080/15384101.2022.2049157] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aberrant expression of coding genes of the V-ATPase subunits has been reported in glioma patients that can activate oncogenic pathways and result in worse prognosis. However, the predictive effect of a single gene is not specific or sensitive enough. In this study, by using a series of bioinformatics analyses, we identified five coding genes (ATP6V1C2, ATP6V1G2, TCIRG1, ATP6AP1 and ATP6AP2) of the V-ATPase that were related to glioma patient prognosis. Based on the expression of these genes, glioma patients were sub-classified into different prognosis clusters, of which C1 cluster performed better prognosis; however, C2 cluster showed more malignant phenotypes with oncogenic and immune-related pathway activation. The single-cell RNA-seq data revealed that ATP6AP1, ATP6AP2, ATP6V1G2 and TCIRG1 might be cell-type potential markers. Copy number variation and DNA promoter methylation potentially regulate these five gene expressions. A risk score model consisted of these five genes effectively predicted glioma prognosis and was fully validated by six independent datasets. The risk scores also showed a positive correlation with immune checkpoint expression. Importantly, glioma patients with high-risk scores presented resistance to traditional treatment. We also revealed that more inhibitory immune cells infiltration and higher rates of “non-response” to immune checkpoint blockade (ICB) treatment in the high-risk score group. In conclusion, our study identified a five-gene signature from the V-ATPase that could sub-classify gliomas into different phenotypes and their abnormal expression was regulated by distinct mechanisms and accompanied with immune microenvironment alterations potentially act as a biomarker for ICB treatment.
Collapse
Affiliation(s)
- Chunxiao Qi
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China.,Department of Neurosurgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Lei Lei
- Department of Rheumatology and Immunology, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, Liaoning, China
| | - Jinqu Hu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Gang Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiyuan Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shaowu Ou
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Interactome of Arabidopsis Thaliana. PLANTS 2022; 11:plants11030350. [PMID: 35161331 PMCID: PMC8838453 DOI: 10.3390/plants11030350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 01/24/2023]
Abstract
More than 95,000 protein–protein interactions of Arabidopsis thaliana have been published and deposited in databases. This dataset was supplemented by approximately 900 additional interactions, which were identified in the literature from the years 2002–2021. These protein–protein interactions were used as the basis for a Cytoscape network and were supplemented with data on subcellular localization, gene ontologies, biochemical properties and co-expression. The resulting network has been exemplarily applied in unraveling the PPI-network of the plant vacuolar proton-translocating ATPase (V-ATPase), which was selected due to its central importance for the plant cell. In particular, it is involved in cellular pH homeostasis, providing proton motive force necessary for transport processes, trafficking of proteins and, thereby, cell wall synthesis. The data points to regulation taking place on multiple levels: (a) a phosphorylation-dependent regulation by 14-3-3 proteins and by kinases such as WNK8 and NDPK1a, (b) an energy-dependent regulation via HXK1 and the glucose receptor RGS1 and (c) a Ca2+-dependent regulation by SOS2 and IDQ6. The known importance of V-ATPase for cell wall synthesis is supported by its interactions with several proteins involved in cell wall synthesis. The resulting network was further analyzed for (experimental) biases and was found to be enriched in nuclear, cytosolic and plasma membrane proteins but depleted in extracellular and mitochondrial proteins, in comparison to the entity of protein-coding genes. Among the processes and functions, proteins involved in transcription were highly abundant in the network. Subnetworks were extracted for organelles, processes and protein families. The degree of representation of organelles and processes reveals limitations and advantages in the current knowledge of protein–protein interactions, which have been mainly caused by a high number of database entries being contributed by only a few publications with highly specific motivations and methodologies that favor, for instance, interactions in the cytosol and the nucleus.
Collapse
|
10
|
McKay DW, McFarlane HE, Qu Y, Situmorang A, Gilliham M, Wege S. Plant Trans-Golgi Network/Early Endosome pH regulation requires Cation Chloride Cotransporter (CCC1). eLife 2022; 11:70701. [PMID: 34989335 PMCID: PMC8791640 DOI: 10.7554/elife.70701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 01/05/2022] [Indexed: 01/04/2023] Open
Abstract
Plant cells maintain a low luminal pH in the trans-Golgi-network/early endosome (TGN/EE), the organelle in which the secretory and endocytic pathways intersect. Impaired TGN/EE pH regulation translates into severe plant growth defects. The identity of the proton pump and proton/ion antiporters that regulate TGN/EE pH have been determined, but an essential component required to complete the TGN/EE membrane transport circuit remains unidentified − a pathway for cation and anion efflux. Here, we have used complementation, genetically encoded fluorescent sensors, and pharmacological treatments to demonstrate that Arabidopsis cation chloride cotransporter (CCC1) is this missing component necessary for regulating TGN/EE pH and function. Loss of CCC1 function leads to alterations in TGN/EE-mediated processes including endocytic trafficking, exocytosis, and response to abiotic stress, consistent with the multitude of phenotypic defects observed in ccc1 knockout plants. This discovery places CCC1 as a central component of plant cellular function.
Collapse
Affiliation(s)
- Daniel W McKay
- School of Agriculture, Food and Wine, Waite Research Institute, ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Adelaide, Australia
| | - Heather E McFarlane
- School of Biosciences, University of Melbourne, Melbourne, Australia.,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Yue Qu
- School of Agriculture, Food and Wine, Waite Research Institute, ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Adelaide, Australia
| | - Apriadi Situmorang
- School of Agriculture, Food and Wine, Waite Research Institute, ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Adelaide, Australia
| | - Matthew Gilliham
- School of Agriculture, Food and Wine, Waite Research Institute, ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Adelaide, Australia
| | - Stefanie Wege
- School of Agriculture, Food and Wine, Waite Research Institute, ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Adelaide, Australia
| |
Collapse
|
11
|
Wang Y, Li Y, Gong SY, Qin LX, Nie XY, Liu D, Zheng Y, Li XB. GhKNL1 controls fiber elongation and secondary cell wall synthesis by repressing its downstream genes in cotton (Gossypium hirsutum). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:39-55. [PMID: 34796654 DOI: 10.1111/jipb.13192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Cotton which produces natural fiber materials for the textile industry is one of the most important crops in the world. Class II KNOX proteins are often considered as transcription factors in regulating plant secondary cell wall (SCW) formation. However, the molecular mechanism of the KNOX transcription factor-regulated SCW synthesis in plants (especially in cotton) remains unclear in details so far. In this study, we show a cotton class II KNOX protein (GhKNL1) as a transcription repressor functioning in fiber development. The GhKNL1-silenced transgenic cotton produced longer fibers with thicker SCWs, whereas GhKNL1 dominant repression transgenic lines displayed the opposite fiber phenotype, compared with controls. Further experiments revealed that GhKNL1 could directly bind to promoters of GhCesA4-2/4-4/8-2 and GhMYB46 for modulating cellulose synthesis during fiber SCW development in cotton. On the other hand, GhKNL1 could also suppress expressions of GhEXPA2D/4A-1/4D-1/13A through binding to their promoters for regulating fiber elongation of cotton. Taken together, these data revealed GhKNL1 functions in fiber elongation and SCW formation by directly repressing expressions of its target genes related to cell elongation and cellulose synthesis. Thus, our data provide an effective clue for potentially improving fiber quality by genetic manipulation of GhKNL1 in cotton breeding.
Collapse
Affiliation(s)
- Yao Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Si-Ying Gong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Li-Xia Qin
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xiao-Ying Nie
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Dong Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yong Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
12
|
Wang C, Xiang Y, Qian D. Current progress in plant V-ATPase: From biochemical properties to physiological functions. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153525. [PMID: 34560396 DOI: 10.1016/j.jplph.2021.153525] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/12/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Vacuolar-type adenosine triphosphatase (V-ATPase, VHA) is a highly conserved, ATP-driven multisubunit proton pump that is widely distributed in all eukaryotic cells. V-ATPase consists of two domains formed by at least 13 different subunits, the membrane peripheral V1 domain responsible for ATP hydrolysis, and the membrane-integral V0 domain responsible for proton translocation. V-ATPase plays an essential role in energizing secondary active transport and is indispensable to plants. In addition to multiple stress responses, plant V-ATPase is also implicated in physiological processes such as growth, development, and morphogenesis. Based on the identification of distinct V-ATPase mutants and advances in luminal pH measurements in vivo, it has been revealed that this holoenzyme complex plays a pivotal role in pH homeostasis of the plant endomembrane system and endocytic and secretory trafficking. Here, we review recent progress in comprehending the biochemical properties and physiological functions of plant V-ATPase and explore the topics that require further elucidation.
Collapse
Affiliation(s)
- Chao Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
13
|
Scholl S, Hillmer S, Krebs M, Schumacher K. ClCd and ClCf act redundantly at the trans-Golgi network/early endosome and prevent acidification of the Golgi stack. J Cell Sci 2021; 134:272608. [PMID: 34528690 DOI: 10.1242/jcs.258807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
The trans-Golgi network/early endosome (TGN/EE) serves as the central hub in which exocytic and endocytic trafficking pathways converge and specificity of cargo routing needs to be achieved. Acidification is a hallmark of the TGN/EE and is maintained by the vacuolar H+-ATPase (V-ATPase) with support of proton-coupled antiporters. We show here that ClCd and ClCf, two distantly related members of the Arabidopsis Cl- channel (ClC) family, colocalize in the TGN/EE, where they act redundantly, and are essential for male gametophyte development. Combining an inducible knockdown approach and in vivo pH measurements, we show here that reduced ClC activity does not affect pH in the TGN/EE but causes hyperacidification of trans-Golgi cisternae. Taken together, our results show that ClC-mediated anion transport into the TGN/EE is essential and affects spatiotemporal aspects of TGN/EE maturation as well as its functional separation from the Golgi stack.
Collapse
Affiliation(s)
- Stefan Scholl
- Department of Cell Biology, Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Stefan Hillmer
- Electron Microscopy Core Facility, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Melanie Krebs
- Department of Cell Biology, Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Karin Schumacher
- Department of Cell Biology, Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| |
Collapse
|
14
|
Ding Y, Yu S, Wang J, Li M, Qu C, Li J, Liu L. Comparative transcriptomic analysis of seed coats with high and low lignin contents reveals lignin and flavonoid biosynthesis in Brassica napus. BMC PLANT BIOLOGY 2021; 21:246. [PMID: 34051742 PMCID: PMC8164251 DOI: 10.1186/s12870-021-03030-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Brassica napus L. (2n = 38, AACC) is one of the most important oil crops and sources of protein for animal feed worldwide. Lignin is a large molecule aromatic polymer and a major cell wall component. However, lignin in the seed coat reduces the availability and restricts the development of rapeseed cake. Therefore, it is critical to reduce the lignin content of the seed coat. Here, high-lignin (H-lignin) and low-lignin (L-lignin) content recombinant inbred lines (RILs) were selected from an RIL population for analysis. RESULTS The cross-section results indicated that the seed coat of the H-lignin lines was thicker than that of the L-lignin lines, especially the palisade layer. The seed coats and embryos at 35, 40 and 46 days after flowering (DAF) were subjected to RNA sequencing (RNA-Seq), and the expression of the BnPAL and BnC4H gene families in the lignin pathway was significantly higher in the H-lignin seed coat than in the L-lignin seed coat. The Bn4CL gene family also showed this trend. In addition, among the genes related to plant hormone synthesis, BnaC02g01710D was upregulated and BnaA07g11700D and BnaC09g00190D were downregulated in H-lignin lines. Some transcription factors were upregulated, such as BnNAC080, BnNAC083, BnMYB9, BnMYB9-1, BnMYB60 and BnMYB60-1, while BnMYB91 was downregulated in H-lignin lines. Moreover, most genes of the flavonoid pathway, such as BnCHS and BnDFR, were strongly expressed in H-lignin seed coat. CONCLUSIONS In Our study, some key genes such as hormone synthesis genes, transcription factors and miRNAs related to lignin and flavonoid biosynthesis were identified. A regulatory model of B. napus seed coat lignin was proposed. These results provide new insight into lignin and flavonoid biosynthesis in B. napus.
Collapse
Affiliation(s)
- Yiran Ding
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Shizhou Yu
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guizhou, 550008, China
| | - Jia Wang
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Maoteng Li
- Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430070, Hubei, China
| | - Cunmin Qu
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Liezhao Liu
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
15
|
Kaushal R, Peng L, Singh SK, Zhang M, Zhang X, Vílchez JI, Wang Z, He D, Yang Y, Lv S, Xu Z, Morcillo RJL, Wang W, Huang W, Paré PW, Song CP, Zhu JK, Liu R, Zhong W, Ma P, Zhang H. Dicer-like proteins influence Arabidopsis root microbiota independent of RNA-directed DNA methylation. MICROBIOME 2021; 9:57. [PMID: 33637135 PMCID: PMC7913254 DOI: 10.1186/s40168-020-00966-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/06/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plants are naturally associated with root microbiota, which are microbial communities influential to host fitness. Thus, it is important to understand how plants control root microbiota. Epigenetic factors regulate the readouts of genetic information and consequently many essential biological processes. However, it has been elusive whether RNA-directed DNA methylation (RdDM) affects root microbiota assembly. RESULTS By applying 16S rRNA gene sequencing, we investigated root microbiota of Arabidopsis mutants defective in the canonical RdDM pathway, including dcl234 that harbors triple mutation in the Dicer-like proteins DCL3, DCL2, and DCL4, which produce small RNAs for RdDM. Alpha diversity analysis showed reductions in microbe richness from the soil to roots, reflecting the selectivity of plants on root-associated bacteria. The dcl234 triple mutation significantly decreases the levels of Aeromonadaceae and Pseudomonadaceae, while it increases the abundance of many other bacteria families in the root microbiota. However, mutants of the other examined key players in the canonical RdDM pathway showed similar microbiota as Col-0, indicating that the DCL proteins affect root microbiota in an RdDM-independent manner. Subsequently gene analysis by shotgun sequencing of root microbiome indicated a selective pressure on microbial resistance to plant defense in the dcl234 mutant. Consistent with the altered plant-microbe interactions, dcl234 displayed altered characters, including the mRNA and sRNA transcriptomes that jointly highlighted altered cell wall organization and up-regulated defense, the decreased cellulose and callose deposition in root xylem, and the restructured profile of root exudates that supported the alterations in gene expression and cell wall modifications. CONCLUSION Our findings demonstrate an important role of the DCL proteins in influencing root microbiota through integrated regulation of plant defense, cell wall compositions, and root exudates. Our results also demonstrate that the canonical RdDM is dispensable for Arabidopsis root microbiota. These findings not only establish a connection between root microbiota and plant epigenetic factors but also highlight the complexity of plant regulation of root microbiota. Video abstract.
Collapse
Affiliation(s)
- Richa Kaushal
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
| | - Li Peng
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
| | - Sunil K. Singh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
| | - Mengrui Zhang
- Department of Statistics, University of Georgia, Athens, GA 30602 USA
| | - Xinlian Zhang
- Department of Statistics, University of Georgia, Athens, GA 30602 USA
| | - Juan I. Vílchez
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
| | - Zhen Wang
- Department of Statistics, University of Georgia, Athens, GA 30602 USA
| | - Danxia He
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yu Yang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
| | - Suhui Lv
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhongtian Xu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
- Current address: Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Rafael J. L. Morcillo
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
- Current address: Institute for Water Research and Department of Microbiology, University of Granada, Granada, Spain
| | - Wei Wang
- Shanghai Chenshan Botanical Garden, Shanghai, 201602 China
| | - Weichang Huang
- Shanghai Chenshan Botanical Garden, Shanghai, 201602 China
| | - Paul W. Paré
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409 USA
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004 China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN 47906 USA
| | - Renyi Liu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
- Current address: Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Wenxuan Zhong
- Department of Statistics, University of Georgia, Athens, GA 30602 USA
| | - Ping Ma
- Department of Statistics, University of Georgia, Athens, GA 30602 USA
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004 China
| |
Collapse
|
16
|
Lupanga U, Röhrich R, Askani J, Hilmer S, Kiefer C, Krebs M, Kanazawa T, Ueda T, Schumacher K. The Arabidopsis V-ATPase is localized to the TGN/EE via a seed plant-specific motif. eLife 2020; 9:e60568. [PMID: 33236982 PMCID: PMC7717909 DOI: 10.7554/elife.60568] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022] Open
Abstract
The V-ATPase is a versatile proton-pump found in a range of endomembrane compartments yet the mechanisms governing its differential targeting remain to be determined. In Arabidopsis, VHA-a1 targets the V-ATPase to the TGN/EE whereas VHA-a2 and VHA-a3 are localized to the tonoplast. We report here that the VHA-a1 targeting domain serves as both an ER-exit and as a TGN/EE-retention motif and is conserved among seed plants. In contrast, Marchantia encodes a single VHA-isoform that localizes to the TGN/EE and the tonoplast in Arabidopsis. Analysis of CRISPR/Cas9 generated null alleles revealed that VHA-a1 has an essential function for male gametophyte development but acts redundantly with the tonoplast isoforms during vegetative growth. We propose that in the absence of VHA-a1, VHA-a3 is partially re-routed to the TGN/EE. Our findings contribute to understanding the evolutionary origin of V-ATPase targeting and provide a striking example that differential localization does not preclude functional redundancy.
Collapse
Affiliation(s)
- Upendo Lupanga
- Department of Cell Biology, Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
| | - Rachel Röhrich
- Department of Cell Biology, Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
| | - Jana Askani
- Department of Cell Biology, Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
| | - Stefan Hilmer
- Electron Microscopy Core Facility, Heidelberg UniversityHeidelbergGermany
| | - Christiane Kiefer
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
| | - Melanie Krebs
- Department of Cell Biology, Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
| | - Takehiko Kanazawa
- Division of Cellular Dynamics, National Institute for Basic BiologyOkazakiAichiJapan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies)OkazakiAichiJapan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic BiologyOkazakiAichiJapan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies)OkazakiAichiJapan
| | - Karin Schumacher
- Department of Cell Biology, Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
| |
Collapse
|
17
|
Nozaki M, Kawade K, Horiguchi G, Tsukaya H. an3-Mediated Compensation Is Dependent on a Cell-Autonomous Mechanism in Leaf Epidermal Tissue. PLANT & CELL PHYSIOLOGY 2020; 61:1181-1190. [PMID: 32321167 DOI: 10.1093/pcp/pcaa048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Leaves are formed by coordinated growth of tissue layers driven by cell proliferation and expansion. Compensation, in which a defect in cell proliferation induces compensated cell enlargement (CCE), plays an important role in cell-size determination during leaf development. We previously reported that CCE triggered by the an3 mutation is observed in epidermal and subepidermal layers in Arabidopsis thaliana (Arabidopsis) leaves. Interestingly, CCE is induced in a non-cell autonomous manner between subepidermal cells. However, whether CCE in the subepidermis affects cell size in the adjacent epidermis is still unclear. We induced layer-specific expression of AN3 in an3 leaves and found that CCE in the subepidermis had little impact on cell-size determination in the epidermis, and vice versa, suggesting that CCE is induced in a tissue-autonomous manner. Examination of the epidermis in an3 leaves having AN3-positive and -negative sectors generated by Cre/loxP revealed that, in contrast to the subepidermis, CCE occurred exclusively in AN3-negative epidermal cells, indicating a cell autonomous action of an3-mediated compensation in the epidermis. These results clarified that the epidermal and subepidermal tissue layers have different cell autonomies in CCE. In addition, quantification of cell-expansion kinetics in epidermal and subepidermal tissues of the an3 showed that the tissues exhibited a similar temporal profile to reach a peak cell-expansion rate as compared to wild type. This might be one feature representing that the two tissue layers retain their growth coordination even in the presence of CCE.
Collapse
Affiliation(s)
- Mamoru Nozaki
- Exploratory Research Center on Life and Living Systems (ExCELLS), 5-1, Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787 Japan
| | - Kensuke Kawade
- Exploratory Research Center on Life and Living Systems (ExCELLS), 5-1, Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787 Japan
- National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585 Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | - Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501 Japan
- Research Center for Life Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Tokyo, Toshima-ku, 171-8501 Japan
| | - Hirokazu Tsukaya
- Exploratory Research Center on Life and Living Systems (ExCELLS), 5-1, Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787 Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
18
|
Nagashima Y, Ma Z, Liu X, Qian X, Zhang X, von Schaewen A, Koiwa H. Multiple Quality Control Mechanisms in the ER and TGN Determine Subcellular Dynamics and Salt-Stress Tolerance Function of KORRIGAN1. THE PLANT CELL 2020; 32:470-485. [PMID: 31852774 PMCID: PMC7008481 DOI: 10.1105/tpc.19.00714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/18/2019] [Accepted: 12/17/2019] [Indexed: 05/03/2023]
Abstract
Among many glycoproteins within the plant secretory system, KORRIGAN1 (KOR1), a membrane-anchored endo-β-1,4-glucanase involved in cellulose biosynthesis, provides a link between N-glycosylation, cell wall biosynthesis, and abiotic stress tolerance. After insertion into the endoplasmic reticulum, KOR1 cycles between the trans-Golgi network (TGN) and the plasma membrane (PM). From the TGN, the protein is targeted to growing cell plates during cell division. These processes are governed by multiple sequence motifs and also host genotypes. Here, we investigated the interaction and hierarchy of known and newly identified sorting signals in KOR1 and how they affect KOR1 transport at various stages in the secretory pathway. Conventional steady-state localization showed that structurally compromised KOR1 variants were directed to tonoplasts. In addition, a tandem fluorescent timer technology allowed for differential visualization of young versus aged KOR1 proteins, enabling the analysis of single-pass transport through the secretory pathway. Observations suggest the presence of multiple checkpoints/branches during KOR1 trafficking, where the destination is determined based on KOR1's sequence motifs and folding status. Moreover, growth analyses of dominant PM-confined KOR1-L48L49→A48A49 variants revealed the importance of active removal of KOR1 from the PM during salt stress, which otherwise interfered with stress acclimation.
Collapse
Affiliation(s)
- Yukihiro Nagashima
- Vegetable and Fruit Improvement Center and Department of Horticultural Sciences, Texas A&M University, College Station, Texas 77843
| | - Zeyang Ma
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Xueting Liu
- Department of Electrical & Computer Engineering, Texas A&M University, College Station, Texas 77843
| | - Xiaoning Qian
- Department of Electrical & Computer Engineering, Texas A&M University, College Station, Texas 77843
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, Texas 77843
| | - Antje von Schaewen
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Hisashi Koiwa
- Vegetable and Fruit Improvement Center and Department of Horticultural Sciences, Texas A&M University, College Station, Texas 77843
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
19
|
Abstract
Endosomes play a major role in various cellular processes including cell-cell signaling, development and cellular responses to environment. Endosomes are dynamically organized into a complex set of endomembrane compartments themselves subcompartmentalized in distinct pools or subpopulations. It is increasingly evident that endosome dynamics and maturation is driven by local modification of lipid composition. The diversity of membrane lipids is impressive and their homeostasis often involves crosstalk between distinct lipid classes. Hence, biochemical characterization of endosomal membrane lipidome would clarify the maturation steps of endocytic routes. Immunopurification of intact endomembrane compartments has been employed in recent years to isolate early and late endosomal compartments and can even be used to separate subpopulations of early endosomes. In this section, we will describe the immunoprecipitation protocol to isolate endosomes with the aim to analyze the lipid content. We will detail a procedure to identify the total fatty acid and sterol content of isolated endosomes as a first line of lipid identification. Advantages and limitations of the method will be discussed as well as potential pitfalls and critical steps.
Collapse
|
20
|
Liang G, Zhang Z. Reducing the Nitrate Content in Vegetables Through Joint Regulation of Short-Distance Distribution and Long-Distance Transport. FRONTIERS IN PLANT SCIENCE 2020; 11:1079. [PMID: 32765562 PMCID: PMC7378733 DOI: 10.3389/fpls.2020.01079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/30/2020] [Indexed: 05/11/2023]
Abstract
As an important nitrogen source, nitrate (NO3 -) absorbed by plants is carried throughout the plant via short-distance distribution (cytoplasm to vacuole) and long-distance transportation (root to shoot), the two pathways that jointly regulate the content of NO3 - in plants. NO3 - accumulation within the vacuole depends on the activities of both tonoplast proton pumps and chloride channel (CLC) proteins, and less NO3 - is stored in vacuoles when the activities of these proteins are reduced. The ratio of the distribution of NO3 - in the cytoplasm and vacuole affects the long-distance transport of NO3 -, which is regulated by the proteins NPF7.3 and NPF7.2 that play opposite but complementary roles. NPF7.3 is responsible for loading NO3 - from the root cytoplasm into the xylem, whereas NPF7.2 regulates the unloading of NO3 - from the xylem, thereby facilitating the long-distance transport of NO3 - through the roots to the shoots. Vegetables, valued for their nutrient content, are consumed in large quantities; however, a high content of NO3 - can detrimentally affect the quality of these plants. NO3 - that is not assimilated and utilized in plant tissues is converted via enzyme-catalyzed reactions to nitrite (NO2 -), which is toxic to plants and harmful to human health. In this review, we describe the mechanisms underlying NO3 - distribution and transport in plants, a knowledge of which will contribute to breeding leafy vegetables with lower NO3 - contents and thus be of considerable significance from the perspectives of environmental protection and food safety.
Collapse
|
21
|
Shi L, Dean GH, Zheng H, Meents MJ, Haslam TM, Haughn GW, Kunst L. ECERIFERUM11/C-TERMINAL DOMAIN PHOSPHATASE-LIKE2 Affects Secretory Trafficking. PLANT PHYSIOLOGY 2019; 181:901-915. [PMID: 31484679 PMCID: PMC6836826 DOI: 10.1104/pp.19.00722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/22/2019] [Indexed: 05/24/2023]
Abstract
Secretory trafficking is highly conserved in all eukaryotic cells and is required for secretion of proteins as well as extracellular matrix components. In plants, the export of cuticular waxes and various cell wall components relies on secretory trafficking, but the molecular mechanisms underlying their secretion are not well understood. In this study, we characterize the Arabidopsis (Arabidopsis thaliana) dwarf eceriferum11 (cer11) mutant and we show that it exhibits reduced stem cuticular wax deposition, aberrant seed coat mucilage extrusion, and delayed secondary cell wall columella formation, as well as a block in secretory GFP trafficking. Cloning of the CER11 gene revealed that it encodes a C-TERMINAL DOMAIN PHOSPHATASE-LIKE2 (CPL2) protein. Thus, secretory trafficking in plant cells in general, and secretion of extracellular matrix constituents in developing epidermal cells in particular, involves a dephosphorylation step catalyzed by CER11/CPL2.
Collapse
Affiliation(s)
- Lin Shi
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Gillian H Dean
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Huanquan Zheng
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Miranda J Meents
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Tegan M Haslam
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - George W Haughn
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Ljerka Kunst
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| |
Collapse
|
22
|
Arabidopsis H +-ATPase AHA1 controls slow wave potential duration and wound-response jasmonate pathway activation. Proc Natl Acad Sci U S A 2019; 116:20226-20231. [PMID: 31527254 PMCID: PMC6778210 DOI: 10.1073/pnas.1907379116] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Electrogenic proton pumps have been implicated in the generation of slow wave potentials (SWPs), damage-induced membrane depolarizations that activate the jasmonate (JA) defense pathway in leaves distal to wounds. However, no defined H+-ATPases have been shown to modulate these electrical signals. Pilot experiments revealed that the proton pump activator fusicoccin attenuated SWP duration in Arabidopsis Using mutant analyses, we identified Arabidopsis H+-ATPase 1 (AHA1) as a SWP regulator. The duration of the repolarization phase was strongly extended in reduced function aha1 mutants. Moreover, the duration of SWP repolarization was shortened in the presence of a gain-of-function AHA1 allele. We employed aphid electrodes to probe the effects of the aha1 mutation on wound-stimulated electrical activity in the phloem. Relative to the wild type, the aha1-7 mutant increased the duration and reduced the amplitudes of electrical signals in sieve tube cells. In addition to affecting electrical signaling, expression of the JA pathway marker gene JAZ10 in leaves distal to wounds was enhanced in aha1-7 Consistent with this, levels of wound-response jasmonoyl-isoleucine were enhanced in the mutant, as was defense against a lepidopteran herbivore. The work identifies a discrete member of the P-type ATPase superfamily with a role in leaf-to-leaf electrical signaling and plant defense.
Collapse
|
23
|
Liao Q, Jian SF, Song HX, Guan CY, Lepo JE, Ismail AM, Zhang ZH. Balance between nitrogen use efficiency and cadmium tolerance in Brassica napus and Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 284:57-66. [PMID: 31084879 DOI: 10.1016/j.plantsci.2019.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/30/2019] [Accepted: 04/02/2019] [Indexed: 05/14/2023]
Abstract
The transmembrane transport of NO3- and Cd2+ into plant cell vacuoles relies on the energy from their tonoplast proton pumps, V-ATPase and V-PPase. If the activity of these pumps is reduced, it results in less NO3- and Cd2+ being transported into the vacuoles, which contributes to better nitrogen use efficiency (NUE) and lower Cd2+ tolerance in plants. The physiological mechanisms that regulate the balance between NUE and Cd2+ tolerance remain unknown. In our study, two Brassica napus genotypes with differential NUEs, xiangyou 15 and 814, and Atclca-2 mutant and AtCAX4 over-expression line (AtCAX4-OE) of Arabidopsis thaliana, were used to investigate Cd2+ stress responses. We found that the Brassica napus genotype, with higher NUE, was more sensitive to Cd2+ stress. The AtCAX4-OE mutant, with higher Cd2+ vacuolar sequestration capacity (VSC), limited NO3- sequestration into root vacuoles and promoted NUE. Atclca-2 mutants, with decreased NO3- VSC, enhanced Cd2+ sequestration into root vacuoles and conferred greater Cd2+ tolerance than the WT. This may be due to the competition between Cd2+ andNO3- in the vacuoles for the energy provided by V-ATPase and V-PPase. Regulating the balance between Cd2+ and NO3- vacuolar accumulation by inhibiting the activity of CLCa transporter and increasing the activity of CAX4 transporter will simultaneously enhance both the NUE and Cd2+ tolerance of Brassica napus, essential for improving its Cd2+ phytoremediation potential.
Collapse
Affiliation(s)
- Qiong Liao
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Shao-Fen Jian
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Hai-Xing Song
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China; National Engineering Laboratory of High Efficiency Utilization of Soil and Fertilizer Resources, Hunan Agricultural University, Changsha, China
| | - Chun-Yun Guan
- National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, China
| | - Joe Eugene Lepo
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, FL, 32514, United States
| | - Abdelbagi M Ismail
- International Rice Research Institute, DAPO 7777, Metro Manila, Philippines
| | - Zhen-Hua Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China; National Engineering Laboratory of High Efficiency Utilization of Soil and Fertilizer Resources, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
24
|
Wang Y, Tang RJ, Yang X, Zheng X, Shao Q, Tang QL, Fu A, Luan S. Golgi-localized cation/proton exchangers regulate ionic homeostasis and skotomorphogenesis in Arabidopsis. PLANT, CELL & ENVIRONMENT 2019; 42:673-687. [PMID: 30255504 DOI: 10.1111/pce.13452] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/14/2018] [Accepted: 09/22/2018] [Indexed: 05/24/2023]
Abstract
Multiple transporters and channels mediate cation transport across the plasma membrane and tonoplast to regulate ionic homeostasis in plant cells. However, much less is known about the molecular function of transporters that facilitate cation transport in other organelles such as Golgi. We report here that Arabidopsis KEA4, KEA5, and KEA6, members of cation/proton antiporters-2 (CPA2) superfamily were colocalized with the known Golgi marker, SYP32-mCherry. Although single kea4,5,6 mutants showed similar phenotype as the wild type under various conditions, kea4/5/6 triple mutants showed hypersensitivity to low pH, high K+ , and high Na+ and displayed growth defects in darkness, suggesting that these three KEA-type transporters function redundantly in controlling etiolated seedling growth and ion homeostasis. Detailed analysis indicated that the kea4/5/6 triple mutant exhibited cell wall biosynthesis defect during the rapid etiolated seedling growth and under high K+ /Na+ condition. The cell wall-derived pectin homogalacturonan (GalA)3 partially suppressed the growth defects and ionic toxicity in the kea4/5/6 triple mutants when grown in the dark but not in the light conditions. Together, these data support the hypothesis that the Golgi-localized KEAs play key roles in the maintenance of ionic and pH homeostasis, thereby facilitating Golgi function in cell wall biosynthesis during rapid etiolated seedling growth and in coping with high K+ /Na+ stress.
Collapse
Affiliation(s)
- Yuan Wang
- College of Life Sciences, Northwest University, Xi'an, China
- Department of Plant and Microbial Biology, University of California, Berkeley, California
| | - Ren-Jie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, California
| | - Xiyan Yang
- Department of Plant and Microbial Biology, University of California, Berkeley, California
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xiaojiang Zheng
- College of Life Sciences, Northwest University, Xi'an, China
- Department of Plant and Microbial Biology, University of California, Berkeley, California
| | - Qiaolin Shao
- Department of Plant and Microbial Biology, University of California, Berkeley, California
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Qing-Lin Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, California
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Southwest University, Chongqing, China
| | - Aigen Fu
- College of Life Sciences, Northwest University, Xi'an, China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, California
| |
Collapse
|
25
|
Hloušková P, Černý M, Kořínková N, Luklová M, Minguet EG, Brzobohatý B, Galuszka P, Bergougnoux V. Affinity chromatography revealed 14-3-3 interactome of tomato (Solanum lycopersicum L.) during blue light-induced de-etiolation. J Proteomics 2018; 193:44-61. [PMID: 30583044 DOI: 10.1016/j.jprot.2018.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/09/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022]
Abstract
De-etiolation is the first developmental process under light control allowing the heterotrophic seedling to become autotrophic. The phytohormones cytokinins (CKs) largely contribute to this process. Reversible phosphorylation is a key event of cell signaling, allowing proteins to become active or generating a binding site for specific protein interaction. 14-3-3 proteins regulate a variety of plant responses. The expression, hormonal regulation, and proteomic network under the control of 14-3-3s were addressed in tomato (Solanum lycopersicum L.) during blue light-induced photomorphogenesis. Two isoforms were specifically investigated due to their high expression during tomato de-etiolation. The multidisciplinary approach demonstrated that TFT9 expression, but not TFT6, was regulated by CKs and identified cis-regulating elements required for this response. Our study revealed >130 potential TFT6/9 interactors. Their functional annotation predicted that TFTs might regulate the activity of proteins involved notably in cell wall strengthening or primary metabolism. Several potential interactors were also predicted to be CK-responsive. For the first time, the 14-3-3 interactome linked to de-etiolation was investigated and evidenced that 14-3-3s might be involved in CK signaling pathway, cell expansion inhibition and steady-state growth rate establishment, and reprograming from heterotrophy to autotrophy. BIOLOGICAL SIGNIFICANCE: Tomato (Solanum lycopersicum L.) is one of the most important vegetables consumed all around the world and represents probably the most preferred garden crop. Regulation of hypocotyl growth by light plays an important role in the early development of a seedling, and consequently the homogeneity of the culture. The present study focuses on the importance of tomato 14-3-3/TFT proteins in this process. We provide here the first report of 14-3-3 interactome in the regulation of light-induced de-etiolation and subsequent photomorphogenesis. Our data provide new insights into light-induced de-etiolation and open new horizons for dissecting the post-transcriptional regulations.
Collapse
Affiliation(s)
- Petra Hloušková
- Department of Molecular Biology, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University in Olomouc, Šlechtitelu 27, 783 71 Olomouc, Czechia
| | - Martin Černý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR and CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czechia
| | - Nikola Kořínková
- Department of Molecular Biology, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University in Olomouc, Šlechtitelu 27, 783 71 Olomouc, Czechia
| | - Markéta Luklová
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR and CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czechia
| | - Eugenio Gómez Minguet
- Instituto de Biología Molecular y Celular de Plantas (UPV-Consejo Superior de Investigaciones Científicas), Universidad Politécnica de Valencia, 46022, Valencia, Spain
| | - Břetislav Brzobohatý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR and CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czechia
| | - Petr Galuszka
- Department of Molecular Biology, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University in Olomouc, Šlechtitelu 27, 783 71 Olomouc, Czechia
| | - Véronique Bergougnoux
- Department of Molecular Biology, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University in Olomouc, Šlechtitelu 27, 783 71 Olomouc, Czechia.
| |
Collapse
|
26
|
Ban Q, Han Y, He Y, Jin M, Han S, Suo J, Rao J. Functional characterization of persimmon β-galactosidase gene DkGAL1 in tomato reveals cell wall modification related to fruit ripening and radicle elongation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:109-120. [PMID: 30080594 DOI: 10.1016/j.plantsci.2018.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/14/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Cell wall metabolism during fruit ripening is a highly organized process that involves complex interplay among various cell wall hydrolases. Among these cell wall hydrolases, β-galactosidase has been identified to participate in cell wall metabolism via its ability to catalyze galactosyl metabolism from the large and complex side chains of cell walls. In this study, the galactose content in the pericarp increased during persimmon fruit ripening, but cell wall galactosyl residues decreased, indicating a relationship between galactose metabolism and persimmon fruit ripening. Expression of a previously isolated β-galactosidase gene, DkGAL1, increased 25.01-fold during fruit ripening. Heterologous expression of DkGAL1 under the CaMV 35S promoter in tomato accelerated on-plant and postharvest fruits ripening. The fruit firmness of one of transgenic line, OE-18, was 23.83% lower than that of WT at the breaker stage. The transgenic fruits produced more ethylene by promoting the expression of ethylene synthesis-related genes and cell wall degradation-related genes. Overexpression of DkGAL1 in tomato also reduced cell-to-cell adhesion and promoted both wider intercellular spaces and less cell compaction in transgenic fruit structures. Moreover, DkGAL1 was involved in seed germination and radicle elongation in transgenic tomato seeds. These results confirm the role of DkGAL1 in fruit ripening and suggest that this gene alters galactose metabolism in the fruit, which can promote ripening and reduce cellular adhesion. In addition, the role of DkGAL1 is not limited to fruit softening; DkGAL1 was also involved in seed germination and radicle elongation in transgenic tomato seeds.
Collapse
Affiliation(s)
- Qiuyan Ban
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Ye Han
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yiheng He
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Mijing Jin
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Shoukun Han
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiangtao Suo
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - JingPing Rao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
27
|
Feeney M, Kittelmann M, Menassa R, Hawes C, Frigerio L. Protein Storage Vacuoles Originate from Remodeled Preexisting Vacuoles in Arabidopsis thaliana. PLANT PHYSIOLOGY 2018; 177:241-254. [PMID: 29555788 PMCID: PMC5933143 DOI: 10.1104/pp.18.00010] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/09/2018] [Indexed: 05/19/2023]
Abstract
Protein storage vacuoles (PSV) are the main repository of protein in dicotyledonous seeds, but little is known about the origins of these transient organelles. PSV are hypothesized to either arise de novo or originate from the preexisting embryonic vacuole (EV) during seed maturation. Here, we tested these hypotheses by studying PSV formation in Arabidopsis (Arabidopsis thaliana) embryos at different stages of seed maturation and recapitulated this process in Arabidopsis leaves reprogrammed to an embryogenic fate by inducing expression of the LEAFY COTYLEDON2 transcription factor. Confocal and immunoelectron microscopy indicated that both storage proteins and tonoplast proteins typical of PSV were delivered to the preexisting EV in embryos or to the lytic vacuole in reprogrammed leaf cells. In addition, sectioning through embryos at several developmental stages using serial block face scanning electron microscopy revealed the 3D architecture of forming PSV. Our results indicate that the preexisting EV is reprogrammed to become a PSV in Arabidopsis.
Collapse
Affiliation(s)
- Mistianne Feeney
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Maike Kittelmann
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Rima Menassa
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada N5V 4T3
| | - Chris Hawes
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Lorenzo Frigerio
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
28
|
Zhou A, Liu E, Ma H, Feng S, Gong S, Wang J. NaCl-induced expression of AtVHA-c5 gene in the roots plays a role in response of Arabidopsis to salt stress. PLANT CELL REPORTS 2018; 37:443-452. [PMID: 29307003 DOI: 10.1007/s00299-017-2241-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/03/2017] [Indexed: 06/07/2023]
Abstract
Suppression of AtVHA-c5 expression results in changes in H+ and Na+ fluxes of roots, and increase sensitivity to salt in Arabidopsis. Vacuolar-type H+-ATPase (V-ATPase), a multisubunit endomembrane proton pump, is essential in plant growth and response to environmental stresses. In the present study, the function of Arabidopsis V-ATPase subunit c5 (AtVHA-c5) gene in response to salt stress was investigated. Subcellular localization showed that AtVHA-c5 was mainly localized to endosomes and the vacuolar membrane in Arabidopsis. The analysis of quantitative real-time PCR showed that expression of AtVHA-c5 gene was induced by NaCl stress. Histochemical analysis revealed that AtVHA-c5 was expressed in the root epidermis of untreated Arabidopsis and in the whole root elongation zone after NaCl treatment. Phenotypic analysis showed that the atvha-c5 mutant is sensitive to high NaCl as compared to the wild type. The non-invasive micro-test technology measurement demonstrated that the net H+ and Na+ efflux in the root elongation zone of the atvha-c5 mutant was weaker than that of the wild type under NaCl treatment, suggesting that H+ and Na+ fluxes in atvha-c5 roots are impaired under NaCl stress. Moreover, compared to the wild type, the expression of AtSOS1 (salt overly sensitive 1) and AtAHA1 (plasma membrane H+-ATPase 1) were down-regulated in atvha-c5 roots under NaCl stress. Overall, our results indicate that AtVHA-c5 plays a role in Arabidopsis root response to NaCl stress by influencing H+ and Na+ fluxes.
Collapse
Affiliation(s)
- Aimin Zhou
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Enhui Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Hongping Ma
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Shuang Feng
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, China
| | - Shufang Gong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Jingang Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
29
|
Zhou A, Takano T, Liu S. The role of endomembrane-localized VHA-c in plant growth. PLANT SIGNALING & BEHAVIOR 2018; 13:e1382796. [PMID: 29231785 PMCID: PMC5790406 DOI: 10.1080/15592324.2017.1382796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/16/2017] [Indexed: 06/07/2023]
Abstract
In plant cells, the vacuolar-type H+-ATPase (V-ATPase), a large multis`ubunit endomembrane proton pump, plays an important role in acidification of subcellular organelles, pH and ion homeostasis, and endocytic and secretory trafficking. V-ATPase subunit c (VHA-c) is essential for V-ATPase assembly, and is directly responsible for binding and transmembrane transport of protons. In previous studies, we identified a PutVHA-c gene from Puccinellia tenuiflora, and investigated its function in plant growth. Subcellular localization revealed that PutVHA-c is mainly localized in endosomal compartments. Overexpression of PutVHA-c enhanced V-ATPase activity and promoted plant growth in transgenic Arabidopsis. Furthermore, the activity of V-ATPase affected intracellular transport of the Golgi-derived endosomes. Our results showed that endomembrane localized-VHA-c contributes to plant growth by influencing V-ATPase-dependent endosomal trafficking. Here, we discuss these recent findings and speculate on the VHA-c mediated molecular mechanisms involved in plant growth, providing a better understanding of the functions of VHA-c and V-ATPase.
Collapse
Affiliation(s)
- Aimin Zhou
- Department of Landscape Architecture, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Department of Biochemistry and Molecular Biology, Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, China
| | - Tetsuo Takano
- Department of Agriculture, Asian Natural Environmental Science Center, University of Tokyo, Nishitokyo-shi, Tokyo, Japan
| | - Shenkui Liu
- Department of Silviculture, State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang, China
| |
Collapse
|
30
|
Takagi J, Uemura T. Use of Brefeldin A and Wortmannin to Dissect Post-Golgi Organelles Related to Vacuolar Transport in Arabidopsis thaliana. Methods Mol Biol 2018; 1789:155-165. [PMID: 29916078 DOI: 10.1007/978-1-4939-7856-4_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Eukaryotic cells comprise various organelles surrounded by the membrane. Each organelle is characterized by unique proteins and lipids and has its own specific functions. Single membrane-bounded organelles, including the Golgi apparatus, endosomes, and vacuoles are connected by membrane trafficking. Identifying the organelle localization of a protein of interest is essential for determining the proteins physiological functions. Here, we describe methods for determining protein subcellular localization using the inhibitors brefeldin A and wortmannin in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Junpei Takagi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
31
|
Rosquete MR, Davis DJ, Drakakaki G. The Plant Trans-Golgi Network: Not Just a Matter of Distinction. PLANT PHYSIOLOGY 2018; 176:187-198. [PMID: 29192030 PMCID: PMC5761815 DOI: 10.1104/pp.17.01239] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/27/2017] [Indexed: 05/18/2023]
Abstract
The trans-Golgi network in plants is a major sorting station of Golgi derived cargo while it also receives recycled material from endocytosis.
Collapse
Affiliation(s)
| | - Destiny Jade Davis
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California, Davis, California 95616
| |
Collapse
|
32
|
Lenglet A, Jaślan D, Toyota M, Mueller M, Müller T, Schönknecht G, Marten I, Gilroy S, Hedrich R, Farmer EE. Control of basal jasmonate signalling and defence through modulation of intracellular cation flux capacity. THE NEW PHYTOLOGIST 2017; 216:1161-1169. [PMID: 28885692 DOI: 10.1111/nph.14754] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/19/2017] [Indexed: 05/24/2023]
Abstract
Unknown mechanisms tightly regulate the basal activity of the wound-inducible defence mediator jasmonate (JA) in undamaged tissues. However, the Arabidopsis fatty acid oxygenation upregulated2 (fou2) mutant in vacuolar two-pore channel 1 (TPC1D454N ) displays high JA pathway activity in undamaged leaves. This mutant was used to explore mechanisms controlling basal JA pathway regulation. fou2 was re-mutated to generate novel 'ouf' suppressor mutants. Patch-clamping was used to examine TPC1 cation channel characteristics in the ouf suppressor mutants and in fou2. Calcium (Ca2+ ) imaging was used to study the effects fou2 on cytosolic Ca2+ concentrations. Six intragenic ouf suppressors with near wild-type (WT) JA pathway activity were recovered and one mutant, ouf8, affected the channel pore. At low luminal calcium concentrations, ouf8 had little detectable effect on fou2. However, increased vacuolar Ca2+ concentrations caused channel occlusion, selectively blocking K+ fluxes towards the cytoplasm. Cytosolic Ca2+ concentrations in unwounded fou2 were found to be lower than in the unwounded WT, but they increased in a similar manner in both genotypes following wounding. Basal JA pathway activity can be controlled solely by manipulating endomembrane cation flux capacities. We suggest that changes in endomembrane potential affect JA pathway activity.
Collapse
Affiliation(s)
- Aurore Lenglet
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Dawid Jaślan
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, Würzburg, D-97082, Germany
| | - Masatsugu Toyota
- Department of Botany, University of Wisconsin, Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
- Department of Biochemistry and Molecular Biology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Saitama, 332-0012, Japan
| | - Matthias Mueller
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Thomas Müller
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, Würzburg, D-97082, Germany
| | - Gerald Schönknecht
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Irene Marten
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, Würzburg, D-97082, Germany
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, Würzburg, D-97082, Germany
| | - Edward E Farmer
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, CH-1015, Switzerland
| |
Collapse
|
33
|
Lv S, Jiang P, Tai F, Wang D, Feng J, Fan P, Bao H, Li Y. The V-ATPase subunit A is essential for salt tolerance through participating in vacuolar Na + compartmentalization in Salicornia europaea. PLANTA 2017; 246:1177-1187. [PMID: 28825133 DOI: 10.1007/s00425-017-2762-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/15/2017] [Indexed: 05/25/2023]
Abstract
The V-ATPase subunit A participates in vacuolar Na + compartmentalization in Salicornia europaea regulating V-ATPase and V-PPase activities. Na+ sequestration into the vacuole is an efficient strategy in response to salinity in many halophytes. However, it is not yet fully understood how this process is achieved. Particularly, the role of vacuolar H+-ATPase (V-ATPase) in this process is controversial. Our previous proteomic investigation in the euhalophyte Salicornia europaea L. found a significant increase of the abundance of V-ATPase subunit A under salinity. Here, the gene encoding this subunit named SeVHA-A was characterized, and its role in salt tolerance was demonstrated by RNAi directed downregulation in suspension-cultured cells of S. europaea. The transcripts of genes encoding vacuolar H+-PPase (V-PPase) and vacuolar Na+/H+ antiporter (SeNHX1) also decreased significantly in the RNAi cells. Knockdown of SeVHA-A resulted in a reduction in both V-ATPase and vacuolar H+-PPase (V-PPase) activities. Accordingly, the SeVHA-A-RNAi cells showed increased vacuolar pH and decreased cell viability under different NaCl concentrations. Further Na+ staining showed the reduced vacuolar Na+ sequestration in RNAi cells. Taken together, our results evidenced that SeVHA-A participates in vacuolar Na+ sequestration regulating V-ATPase and V-PPase activities and thereby vacuolar pH in S. europaea. The possible mechanisms underlying the reduction of vacuolar V-PPase activity in SeVHA-A-RNAi cells were also discussed.
Collapse
Affiliation(s)
- Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Ping Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Fang Tai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Duoliya Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Juanjuan Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Pengxiang Fan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hexigeduleng Bao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
34
|
Pereira PN, Smith JAC, Mercier H. Nitrate enhancement of CAM activity in two Kalanchoë species is associated with increased vacuolar proton transport capacity. PHYSIOLOGIA PLANTARUM 2017; 160:361-372. [PMID: 28393374 DOI: 10.1111/ppl.12578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/24/2017] [Accepted: 03/05/2017] [Indexed: 06/07/2023]
Abstract
Among species that perform CAM photosynthesis, members of the genus Kalanchoë have been studied frequently to investigate the effect of environmental factors on the magnitude of CAM activity. In particular, different nitrogen sources have been shown to influence the rate of nocturnal CO2 fixation and organic-acid accumulation in several species of Kalanchoë. However, there has been little investigation of the interrelationship between nitrogen source (nitrate versus ammonium), concentration and the activity of the vacuolar proton pumps responsible for driving nocturnal organic-acid accumulation in these species. In the present study with Kalanchoë laxiflora and Kalanchoë delagoensis cultivated on different nitrogen sources, both species were found to show highest total nocturnal organic-acid accumulation and highest rates of ATP- and PPi-dependent vacuolar proton transport on 2.5 mM nitrate, whereas plants cultivated on 5.0 mM ammonium showed the lowest values. In both species malate was the principal organic-acid accumulated during the night, but the second-most accumulated organic-acid was fumarate for K. laxiflora and citrate for K. delagoensis. Higher ATP- and PPi-dependent vacuolar proton transport rates and greater nocturnal acid accumulation were observed in K. delagoensis compared with K. laxiflora. These results show that the effect of nitrogen source on CAM activity in Kalanchoë species is reflected in corresponding differences in activity of the tonoplast proton pumps responsible for driving sequestration of these acids in the vacuole of CAM-performing cells.
Collapse
Affiliation(s)
- Paula Natália Pereira
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, 05508-090, Brazil
| | | | - Helenice Mercier
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, 05508-090, Brazil
| |
Collapse
|
35
|
Eisenach C, De Angeli A. Ion Transport at the Vacuole during Stomatal Movements. PLANT PHYSIOLOGY 2017; 174:520-530. [PMID: 28381500 PMCID: PMC5462060 DOI: 10.1104/pp.17.00130] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/03/2017] [Indexed: 05/19/2023]
Abstract
Recent research on vacuolar ion channels, transporters, and pumps of Arabidopsis highlight their function and roles in stomatal opening and closure.
Collapse
Affiliation(s)
- Cornelia Eisenach
- Department of Plant and Microbial Biology, University of Zurich, Zurich CH-8008, Switzerland (C.E.); and
- Institut de Biologie Intégrative de la Cellule, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette, France (A.D.A.)
| | - Alexis De Angeli
- Department of Plant and Microbial Biology, University of Zurich, Zurich CH-8008, Switzerland (C.E.); and
- Institut de Biologie Intégrative de la Cellule, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette, France (A.D.A.)
| |
Collapse
|
36
|
H. Wegner L. Cotransport of water and solutes in plant membranes: The molecular basis, and physiological functions. AIMS BIOPHYSICS 2017. [DOI: 10.3934/biophy.2017.2.192] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
37
|
Hloušková P, Bergougnoux V. A subtracted cDNA library identifies genes up-regulated during PHOT1-mediated early step of de-etiolation in tomato (Solanum lycopersicum L.). BMC Genomics 2016; 17:291. [PMID: 27090636 PMCID: PMC4835860 DOI: 10.1186/s12864-016-2613-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 04/06/2016] [Indexed: 11/19/2022] Open
Abstract
Background De-etiolation is the switch from skoto- to photomorphogenesis, enabling the heterotrophic etiolated seedling to develop into an autotrophic plant. Upon exposure to blue light (BL), reduction of hypocotyl growth rate occurs in two phases: a rapid inhibition mediated by phototropin 1 (PHOT1) within the first 30–40 min of illumination, followed by the cryptochrome 1 (CRY1)-controlled establishment of the steady-state growth rate. Although some information is available for CRY1-mediated de-etiolation, less attention has been given to the PHOT1 phase of de-etiolation. Results We generated a subtracted cDNA library using the suppression subtractive hybridization method to investigate the molecular mechanisms of BL-induced de-etiolation in tomato (Solanum lycopersicum L.), an economically important crop. We focused our interest on the first 30 min following the exposure to BL when PHOT1 is required to induce the process. Our library generated 152 expressed sequence tags that were found to be rapidly accumulated upon exposure to BL and consequently potentially regulated by PHOT1. Annotation revealed that biological functions such as modification of chromatin structure, cell wall modification, and transcription/translation comprise an important part of events contributing to the establishment of photomorphogenesis in young tomato seedlings. Our conclusions based on bioinformatics data were supported by qRT-PCR analyses the specific investigation of V-H+-ATPase during de-etiolation in tomato. Conclusions Our study provides the first report dealing with understanding the PHOT1-mediated phase of de-etiolation. Using subtractive cDNA library, we were able to identify important regulatory mechanisms. The profound induction of transcription/translation, as well as modification of chromatin structure, is relevant in regard to the fact that the entry into photomorphogenesis is based on a deep reprograming of the cell. Also, we postulated that BL restrains the cell expansion by the rapid modification of the cell wall. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2613-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Petra Hloušková
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research and Faculty of Science, Palacký University in Olomouc, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic
| | - Véronique Bergougnoux
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research and Faculty of Science, Palacký University in Olomouc, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic.
| |
Collapse
|
38
|
Han YL, Song HX, Liao Q, Yu Y, Jian SF, Lepo JE, Liu Q, Rong XM, Tian C, Zeng J, Guan CY, Ismail AM, Zhang ZH. Nitrogen Use Efficiency Is Mediated by Vacuolar Nitrate Sequestration Capacity in Roots of Brassica napus. PLANT PHYSIOLOGY 2016; 170:1684-98. [PMID: 26757990 PMCID: PMC4775117 DOI: 10.1104/pp.15.01377] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/10/2016] [Indexed: 05/08/2023]
Abstract
Enhancing nitrogen use efficiency (NUE) in crop plants is an important breeding target to reduce excessive use of chemical fertilizers, with substantial benefits to farmers and the environment. In Arabidopsis (Arabidopsis thaliana), allocation of more NO3 (-) to shoots was associated with higher NUE; however, the commonality of this process across plant species have not been sufficiently studied. Two Brassica napus genotypes were identified with high and low NUE. We found that activities of V-ATPase and V-PPase, the two tonoplast proton-pumps, were significantly lower in roots of the high-NUE genotype (Xiangyou15) than in the low-NUE genotype (814); and consequently, less vacuolar NO3 (-) was retained in roots of Xiangyou15. Moreover, NO3 (-) concentration in xylem sap, [(15)N] shoot:root (S:R) and [NO3 (-)] S:R ratios were significantly higher in Xiangyou15. BnNRT1.5 expression was higher in roots of Xiangyou15 compared with 814, while BnNRT1.8 expression was lower. In both B. napus treated with proton pump inhibitors or Arabidopsis mutants impaired in proton pump activity, vacuolar sequestration capacity (VSC) of NO3 (-) in roots substantially decreased. Expression of NRT1.5 was up-regulated, but NRT1.8 was down-regulated, driving greater NO3 (-) long-distance transport from roots to shoots. NUE in Arabidopsis mutants impaired in proton pumps was also significantly higher than in the wild type col-0. Taken together, these data suggest that decrease in VSC of NO3 (-) in roots will enhance transport to shoot and essentially contribute to higher NUE by promoting NO3 (-) allocation to aerial parts, likely through coordinated regulation of NRT1.5 and NRT1.8.
Collapse
Affiliation(s)
- Yong-Liang Han
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China (Y.-L.H., H.-X.S., Q.Liao, Y.Y., S.-F.J., Q.Liu, X.-M.R., C.T., J.Z., C.-Y.G., Z.-H.Z.);National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, 410128, China (C.-Y.G.); Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida 32514, (J.E.L.); andCrop and Environment Sciences Division, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines (A.M.I.)
| | - Hai-Xing Song
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China (Y.-L.H., H.-X.S., Q.Liao, Y.Y., S.-F.J., Q.Liu, X.-M.R., C.T., J.Z., C.-Y.G., Z.-H.Z.);National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, 410128, China (C.-Y.G.); Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida 32514, (J.E.L.); andCrop and Environment Sciences Division, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines (A.M.I.)
| | - Qiong Liao
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China (Y.-L.H., H.-X.S., Q.Liao, Y.Y., S.-F.J., Q.Liu, X.-M.R., C.T., J.Z., C.-Y.G., Z.-H.Z.);National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, 410128, China (C.-Y.G.); Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida 32514, (J.E.L.); andCrop and Environment Sciences Division, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines (A.M.I.)
| | - Yin Yu
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China (Y.-L.H., H.-X.S., Q.Liao, Y.Y., S.-F.J., Q.Liu, X.-M.R., C.T., J.Z., C.-Y.G., Z.-H.Z.);National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, 410128, China (C.-Y.G.); Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida 32514, (J.E.L.); andCrop and Environment Sciences Division, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines (A.M.I.)
| | - Shao-Fen Jian
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China (Y.-L.H., H.-X.S., Q.Liao, Y.Y., S.-F.J., Q.Liu, X.-M.R., C.T., J.Z., C.-Y.G., Z.-H.Z.);National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, 410128, China (C.-Y.G.); Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida 32514, (J.E.L.); andCrop and Environment Sciences Division, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines (A.M.I.)
| | - Joe Eugene Lepo
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China (Y.-L.H., H.-X.S., Q.Liao, Y.Y., S.-F.J., Q.Liu, X.-M.R., C.T., J.Z., C.-Y.G., Z.-H.Z.);National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, 410128, China (C.-Y.G.); Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida 32514, (J.E.L.); andCrop and Environment Sciences Division, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines (A.M.I.)
| | - Qiang Liu
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China (Y.-L.H., H.-X.S., Q.Liao, Y.Y., S.-F.J., Q.Liu, X.-M.R., C.T., J.Z., C.-Y.G., Z.-H.Z.);National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, 410128, China (C.-Y.G.); Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida 32514, (J.E.L.); andCrop and Environment Sciences Division, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines (A.M.I.)
| | - Xiang-Min Rong
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China (Y.-L.H., H.-X.S., Q.Liao, Y.Y., S.-F.J., Q.Liu, X.-M.R., C.T., J.Z., C.-Y.G., Z.-H.Z.);National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, 410128, China (C.-Y.G.); Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida 32514, (J.E.L.); andCrop and Environment Sciences Division, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines (A.M.I.)
| | - Chang Tian
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China (Y.-L.H., H.-X.S., Q.Liao, Y.Y., S.-F.J., Q.Liu, X.-M.R., C.T., J.Z., C.-Y.G., Z.-H.Z.);National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, 410128, China (C.-Y.G.); Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida 32514, (J.E.L.); andCrop and Environment Sciences Division, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines (A.M.I.)
| | - Jing Zeng
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China (Y.-L.H., H.-X.S., Q.Liao, Y.Y., S.-F.J., Q.Liu, X.-M.R., C.T., J.Z., C.-Y.G., Z.-H.Z.);National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, 410128, China (C.-Y.G.); Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida 32514, (J.E.L.); andCrop and Environment Sciences Division, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines (A.M.I.)
| | - Chun-Yun Guan
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China (Y.-L.H., H.-X.S., Q.Liao, Y.Y., S.-F.J., Q.Liu, X.-M.R., C.T., J.Z., C.-Y.G., Z.-H.Z.);National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, 410128, China (C.-Y.G.); Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida 32514, (J.E.L.); andCrop and Environment Sciences Division, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines (A.M.I.)
| | - Abdelbagi M Ismail
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China (Y.-L.H., H.-X.S., Q.Liao, Y.Y., S.-F.J., Q.Liu, X.-M.R., C.T., J.Z., C.-Y.G., Z.-H.Z.);National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, 410128, China (C.-Y.G.); Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida 32514, (J.E.L.); andCrop and Environment Sciences Division, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines (A.M.I.)
| | - Zhen-Hua Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China (Y.-L.H., H.-X.S., Q.Liao, Y.Y., S.-F.J., Q.Liu, X.-M.R., C.T., J.Z., C.-Y.G., Z.-H.Z.);National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, 410128, China (C.-Y.G.); Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida 32514, (J.E.L.); andCrop and Environment Sciences Division, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines (A.M.I.)
| |
Collapse
|
39
|
Han YL, Song HX, Liao Q, Yu Y, Jian SF, Lepo JE, Liu Q, Rong XM, Tian C, Zeng J, Guan CY, Ismail AM, Zhang ZH. Nitrogen Use Efficiency Is Mediated by Vacuolar Nitrate Sequestration Capacity in Roots of Brassica napus. PLANT PHYSIOLOGY 2016. [PMID: 26757990 DOI: 10.1014/pp.15.01377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Enhancing nitrogen use efficiency (NUE) in crop plants is an important breeding target to reduce excessive use of chemical fertilizers, with substantial benefits to farmers and the environment. In Arabidopsis (Arabidopsis thaliana), allocation of more NO3 (-) to shoots was associated with higher NUE; however, the commonality of this process across plant species have not been sufficiently studied. Two Brassica napus genotypes were identified with high and low NUE. We found that activities of V-ATPase and V-PPase, the two tonoplast proton-pumps, were significantly lower in roots of the high-NUE genotype (Xiangyou15) than in the low-NUE genotype (814); and consequently, less vacuolar NO3 (-) was retained in roots of Xiangyou15. Moreover, NO3 (-) concentration in xylem sap, [(15)N] shoot:root (S:R) and [NO3 (-)] S:R ratios were significantly higher in Xiangyou15. BnNRT1.5 expression was higher in roots of Xiangyou15 compared with 814, while BnNRT1.8 expression was lower. In both B. napus treated with proton pump inhibitors or Arabidopsis mutants impaired in proton pump activity, vacuolar sequestration capacity (VSC) of NO3 (-) in roots substantially decreased. Expression of NRT1.5 was up-regulated, but NRT1.8 was down-regulated, driving greater NO3 (-) long-distance transport from roots to shoots. NUE in Arabidopsis mutants impaired in proton pumps was also significantly higher than in the wild type col-0. Taken together, these data suggest that decrease in VSC of NO3 (-) in roots will enhance transport to shoot and essentially contribute to higher NUE by promoting NO3 (-) allocation to aerial parts, likely through coordinated regulation of NRT1.5 and NRT1.8.
Collapse
Affiliation(s)
- Yong-Liang Han
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China (Y.-L.H., H.-X.S., Q.Liao, Y.Y., S.-F.J., Q.Liu, X.-M.R., C.T., J.Z., C.-Y.G., Z.-H.Z.);National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, 410128, China (C.-Y.G.); Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida 32514, (J.E.L.); andCrop and Environment Sciences Division, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines (A.M.I.)
| | - Hai-Xing Song
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China (Y.-L.H., H.-X.S., Q.Liao, Y.Y., S.-F.J., Q.Liu, X.-M.R., C.T., J.Z., C.-Y.G., Z.-H.Z.);National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, 410128, China (C.-Y.G.); Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida 32514, (J.E.L.); andCrop and Environment Sciences Division, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines (A.M.I.)
| | - Qiong Liao
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China (Y.-L.H., H.-X.S., Q.Liao, Y.Y., S.-F.J., Q.Liu, X.-M.R., C.T., J.Z., C.-Y.G., Z.-H.Z.);National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, 410128, China (C.-Y.G.); Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida 32514, (J.E.L.); andCrop and Environment Sciences Division, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines (A.M.I.)
| | - Yin Yu
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China (Y.-L.H., H.-X.S., Q.Liao, Y.Y., S.-F.J., Q.Liu, X.-M.R., C.T., J.Z., C.-Y.G., Z.-H.Z.);National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, 410128, China (C.-Y.G.); Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida 32514, (J.E.L.); andCrop and Environment Sciences Division, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines (A.M.I.)
| | - Shao-Fen Jian
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China (Y.-L.H., H.-X.S., Q.Liao, Y.Y., S.-F.J., Q.Liu, X.-M.R., C.T., J.Z., C.-Y.G., Z.-H.Z.);National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, 410128, China (C.-Y.G.); Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida 32514, (J.E.L.); andCrop and Environment Sciences Division, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines (A.M.I.)
| | - Joe Eugene Lepo
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China (Y.-L.H., H.-X.S., Q.Liao, Y.Y., S.-F.J., Q.Liu, X.-M.R., C.T., J.Z., C.-Y.G., Z.-H.Z.);National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, 410128, China (C.-Y.G.); Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida 32514, (J.E.L.); andCrop and Environment Sciences Division, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines (A.M.I.)
| | - Qiang Liu
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China (Y.-L.H., H.-X.S., Q.Liao, Y.Y., S.-F.J., Q.Liu, X.-M.R., C.T., J.Z., C.-Y.G., Z.-H.Z.);National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, 410128, China (C.-Y.G.); Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida 32514, (J.E.L.); andCrop and Environment Sciences Division, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines (A.M.I.)
| | - Xiang-Min Rong
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China (Y.-L.H., H.-X.S., Q.Liao, Y.Y., S.-F.J., Q.Liu, X.-M.R., C.T., J.Z., C.-Y.G., Z.-H.Z.);National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, 410128, China (C.-Y.G.); Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida 32514, (J.E.L.); andCrop and Environment Sciences Division, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines (A.M.I.)
| | - Chang Tian
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China (Y.-L.H., H.-X.S., Q.Liao, Y.Y., S.-F.J., Q.Liu, X.-M.R., C.T., J.Z., C.-Y.G., Z.-H.Z.);National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, 410128, China (C.-Y.G.); Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida 32514, (J.E.L.); andCrop and Environment Sciences Division, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines (A.M.I.)
| | - Jing Zeng
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China (Y.-L.H., H.-X.S., Q.Liao, Y.Y., S.-F.J., Q.Liu, X.-M.R., C.T., J.Z., C.-Y.G., Z.-H.Z.);National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, 410128, China (C.-Y.G.); Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida 32514, (J.E.L.); andCrop and Environment Sciences Division, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines (A.M.I.)
| | - Chun-Yun Guan
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China (Y.-L.H., H.-X.S., Q.Liao, Y.Y., S.-F.J., Q.Liu, X.-M.R., C.T., J.Z., C.-Y.G., Z.-H.Z.);National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, 410128, China (C.-Y.G.); Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida 32514, (J.E.L.); andCrop and Environment Sciences Division, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines (A.M.I.)
| | - Abdelbagi M Ismail
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China (Y.-L.H., H.-X.S., Q.Liao, Y.Y., S.-F.J., Q.Liu, X.-M.R., C.T., J.Z., C.-Y.G., Z.-H.Z.);National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, 410128, China (C.-Y.G.); Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida 32514, (J.E.L.); andCrop and Environment Sciences Division, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines (A.M.I.)
| | - Zhen-Hua Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China (Y.-L.H., H.-X.S., Q.Liao, Y.Y., S.-F.J., Q.Liu, X.-M.R., C.T., J.Z., C.-Y.G., Z.-H.Z.);National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, 410128, China (C.-Y.G.); Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida 32514, (J.E.L.); andCrop and Environment Sciences Division, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines (A.M.I.)
| |
Collapse
|
40
|
Zhou A, Bu Y, Takano T, Zhang X, Liu S. Conserved V-ATPase c subunit plays a role in plant growth by influencing V-ATPase-dependent endosomal trafficking. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:271-83. [PMID: 25917395 PMCID: PMC11388952 DOI: 10.1111/pbi.12381] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 03/10/2015] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
In plant cells, the vacuolar-type H(+)-ATPases (V-ATPase) are localized in the tonoplast, Golgi, trans-Golgi network and endosome. However, little is known about how V-ATPase influences plant growth, particularly with regard to the V-ATPase c subunit (VHA-c). Here, we characterized the function of a VHA-c gene from Puccinellia tenuiflora (PutVHA-c) in plant growth. Compared to the wild-type, transgenic plants overexpressing PutVHA-c in Arabidopsis thaliana exhibit better growth phenotypes in root length, fresh weight, plant height and silique number under the normal and salt stress conditions due to noticeably higher V-ATPase activity. Consistently, the Arabidopsis atvha-c5 mutant shows reduced V-ATPase activity and retarded plant growth. Furthermore, confocal and immunogold electron microscopy assays demonstrate that PutVHA-c is mainly localized to endosomal compartments. The treatment of concanamycin A (ConcA), a specific inhibitor of V-ATPases, leads to obvious aggregation of the endosomal compartments labelled with PutVHA-c-GFP. Moreover, ConcA treatment results in the abnormal localization of two plasma membrane (PM) marker proteins Pinformed 1 (AtPIN1) and regulator of G protein signalling-1 (AtRGS1). These findings suggest that the decrease in V-ATPase activity blocks endosomal trafficking. Taken together, our results strongly suggest that the PutVHA-c plays an important role in plant growth by influencing V-ATPase-dependent endosomal trafficking.
Collapse
Affiliation(s)
- Aimin Zhou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, China
| | - Yuanyuan Bu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, China
| | - Tetsuo Takano
- Asian Natural Environmental Science Center, The University of Tokyo, Nishitokyo-shi, Tokyo, Japan
| | - Xinxin Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, China
| | - Shenkui Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, China
| |
Collapse
|
41
|
Lin YT, Chen LJ, Herrfurth C, Feussner I, Li HM. Reduced Biosynthesis of Digalactosyldiacylglycerol, a Major Chloroplast Membrane Lipid, Leads to Oxylipin Overproduction and Phloem Cap Lignification in Arabidopsis. THE PLANT CELL 2016; 28:219-32. [PMID: 26721860 PMCID: PMC4746690 DOI: 10.1105/tpc.15.01002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/23/2015] [Accepted: 12/30/2015] [Indexed: 05/20/2023]
Abstract
DIGALACTOSYLDIACYLGLYCEROL SYNTHASE1 (DGD1) is a chloroplast outer membrane protein responsible for the biosynthesis of the lipid digalactosyldiacylglycerol (DGDG) from monogalactosyldiacylglycerol (MGDG). The Arabidopsis thaliana dgd1 mutants have a greater than 90% reduction in DGDG content, reduced photosynthesis, and altered chloroplast morphology. However, the most pronounced visible phenotype is the extremely short inflorescence stem, but how deficient DGDG biosynthesis causes this phenotype is unclear. We found that, in dgd1 mutants, phloem cap cells were lignified and jasmonic acid (JA)-responsive genes were highly upregulated under normal growth conditions. The coronative insensitive1 dgd1 and allene oxide synthase dgd1 double mutants no longer exhibited the short inflorescence stem and lignification phenotypes but still had the same lipid profile and reduced photosynthesis as dgd1 single mutants. Hormone and lipidomics analyses showed higher levels of JA, JA-isoleucine, 12-oxo-phytodienoic acid, and arabidopsides in dgd1 mutants. Transcript and protein level analyses further suggest that JA biosynthesis in dgd1 is initially activated through the increased expression of genes encoding 13-lipoxygenases (LOXs) and phospholipase A-Iγ3 (At1g51440), a plastid lipase with a high substrate preference for MGDG, and is sustained by further increases in LOX and allene oxide cyclase mRNA and protein levels. Our results demonstrate a link between the biosynthesis of DGDG and JA.
Collapse
Affiliation(s)
- Yang-Tsung Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Lih-Jen Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Cornelia Herrfurth
- Georg-August-University Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, D-37077 Goettingen, Germany
| | - Ivo Feussner
- Georg-August-University Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, D-37077 Goettingen, Germany Georg-August-University Goettingen, Goettingen Center for Molecular Biosciences, Department of Plant Biochemistry, D-37077 Goettingen, Germany
| | - Hsou-Min Li
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
42
|
Wasternack C, Strnad M. Jasmonate signaling in plant stress responses and development - active and inactive compounds. N Biotechnol 2015; 33:604-613. [PMID: 26581489 DOI: 10.1016/j.nbt.2015.11.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/21/2015] [Accepted: 11/04/2015] [Indexed: 12/28/2022]
Abstract
Jasmonates (JAs) are lipid-derived signals mediating plant responses to biotic and abiotic stresses and in plant development. Following the elucidation of each step in their biosynthesis and the important components of perception and signaling, several activators, repressors and co-repressors have been identified which contribute to fine-tuning the regulation of JA-induced gene expression. Many of the metabolic reactions in which JA participates, such as conjugation with amino acids, glucosylation, hydroxylation, carboxylation, sulfation and methylation, lead to numerous compounds with different biological activities. These metabolites may be highly active, partially active in specific processes or inactive. Hydroxylation, carboxylation and sulfation inactivate JA signaling. The precursor of JA biosynthesis, 12-oxo-phytodienoic acid (OPDA), has been identified as a JA-independent signaling compound. An increasing number of OPDA-specific processes is being identified. To conclude, the numerous JA compounds and their different modes of action allow plants to respond specifically and flexibly to alterations in the environment.
Collapse
Affiliation(s)
- Claus Wasternack
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Institute of Experimental Botany AS CR, Šlechtitelů 11, CZ 78371 Olomouc, Czech Republic.
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Institute of Experimental Botany AS CR, Šlechtitelů 11, CZ 78371 Olomouc, Czech Republic
| |
Collapse
|
43
|
Qian D, Tian L, Qu L. Proteomic analysis of endoplasmic reticulum stress responses in rice seeds. Sci Rep 2015; 5:14255. [PMID: 26395408 PMCID: PMC4585792 DOI: 10.1038/srep14255] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/21/2015] [Indexed: 01/15/2023] Open
Abstract
The defects in storage proteins secretion in the endosperm of transgenic rice seeds often leads to endoplasmic reticulum (ER) stress, which produces floury and shrunken seeds, but the mechanism of this response remains unclear. We used an iTRAQ-based proteomics analysis of ER-stressed rice seeds due to the endosperm-specific suppression of OsSar1 to identify changes in the protein levels in response to ER stress. ER stress changed the expression of 405 proteins in rice seed by >2.0- fold compared with the wild-type control. Of these proteins, 140 were upregulated and 265 were downregulated. The upregulated proteins were mainly involved in protein modification, transport and degradation, and the downregulated proteins were mainly involved in metabolism and stress/defense responses. A KOBAS analysis revealed that protein-processing in the ER and degradation-related proteasome were the predominant upregulated pathways in the rice endosperm in response to ER stress. Trans-Golgi protein transport was also involved in the ER stress response. Combined with bioinformatic and molecular biology analyses, our proteomic data will facilitate our understanding of the systemic responses to ER stress in rice seeds.
Collapse
Affiliation(s)
- Dandan Qian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Lihong Tian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Leqing Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
44
|
Luo Y, Scholl S, Doering A, Zhang Y, Irani NG, Rubbo SD, Neumetzler L, Krishnamoorthy P, Van Houtte I, Mylle E, Bischoff V, Vernhettes S, Winne J, Friml J, Stierhof YD, Schumacher K, Persson S, Russinova E. V-ATPase activity in the TGN/EE is required for exocytosis and recycling in Arabidopsis. NATURE PLANTS 2015; 1:15094. [PMID: 27250258 PMCID: PMC4905525 DOI: 10.1038/nplants.2015.94] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 06/03/2015] [Indexed: 05/18/2023]
Abstract
In plants, vacuolar H(+)-ATPase (V-ATPase) activity acidifies both the trans-Golgi network/early endosome (TGN/EE) and the vacuole. This dual V-ATPase function has impeded our understanding of how the pH homeostasis within the plant TGN/EE controls exo- and endocytosis. Here, we show that the weak V-ATPase mutant deetiolated3 (det3) displayed a pH increase in the TGN/EE, but not in the vacuole, strongly impairing secretion and recycling of the brassinosteroid receptor and the cellulose synthase complexes to the plasma membrane, in contrast to mutants lacking tonoplast-localized V-ATPase activity only. The brassinosteroid insensitivity and the cellulose deficiency defects in det3 were tightly correlated with reduced Golgi and TGN/EE motility. Thus, our results provide strong evidence that acidification of the TGN/EE, but not of the vacuole, is indispensable for functional secretion and recycling in plants.
Collapse
Affiliation(s)
- Yu Luo
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Stefan Scholl
- Developmental Biology of Plants, Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Anett Doering
- Max-Planck Institute for Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Yi Zhang
- Max-Planck Institute for Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Niloufer G. Irani
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Simone Di Rubbo
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Lutz Neumetzler
- Max-Planck Institute for Molecular Plant Physiology, 14476 Potsdam, Germany
| | | | - Isabelle Van Houtte
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Evelien Mylle
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Volker Bischoff
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, 78000 Versailles, France
- AgroParisTech,Institut Jean-Pierre Bourgin, 78000 Versailles, France
| | - Samantha Vernhettes
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, 78000 Versailles, France
- AgroParisTech,Institut Jean-Pierre Bourgin, 78000 Versailles, France
| | - Johan Winne
- Department of Organic Chemistry, Polymer Chemistry Research Group and Laboratory for Organic Synthesis, Ghent University, 9000 Gent, Belgium
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - York-Dieter Stierhof
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Karin Schumacher
- Developmental Biology of Plants, Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
- , , and
| | - Staffan Persson
- Max-Planck Institute for Molecular Plant Physiology, 14476 Potsdam, Germany
- Australian Research Council, Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Victoria 3010, Australia
- , , and
| | - Eugenia Russinova
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- , , and
| |
Collapse
|
45
|
Reguera M, Bassil E, Tajima H, Wimmer M, Chanoca A, Otegui MS, Paris N, Blumwald E. pH Regulation by NHX-Type Antiporters Is Required for Receptor-Mediated Protein Trafficking to the Vacuole in Arabidopsis. THE PLANT CELL 2015; 27:1200-17. [PMID: 25829439 PMCID: PMC4558692 DOI: 10.1105/tpc.114.135699] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/26/2015] [Accepted: 03/12/2015] [Indexed: 05/18/2023]
Abstract
Protein trafficking requires proper ion and pH homeostasis of the endomembrane system. The NHX-type Na(+)/H(+) antiporters NHX5 and NHX6 localize to the Golgi, trans-Golgi network, and prevacuolar compartments and are required for growth and trafficking to the vacuole. In the nhx5 nhx6 T-DNA insertional knockouts, the precursors of the 2S albumin and 12S globulin storage proteins accumulated and were missorted to the apoplast. Immunoelectron microscopy revealed the presence of vesicle clusters containing storage protein precursors and vacuolar sorting receptors (VSRs). Isolation and identification of complexes of VSRs with unprocessed 12S globulin by 2D blue-native PAGE/SDS-PAGE indicated that the nhx5 nhx6 knockouts showed compromised receptor-cargo association. In vivo interaction studies using bimolecular fluorescence complementation between VSR2;1, aleurain, and 12S globulin suggested that nhx5 nhx6 knockouts showed a significant reduction of VSR binding to both cargoes. In vivo pH measurements indicated that the lumens of VSR compartments containing aleurain, as well as the trans-Golgi network and prevacuolar compartments, were significantly more acidic in nhx5 nhx6 knockouts. This work demonstrates the importance of NHX5 and NHX6 in maintaining endomembrane luminal pH and supports the notion that proper vacuolar trafficking and proteolytic processing of storage proteins require endomembrane pH homeostasis.
Collapse
Affiliation(s)
- Maria Reguera
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Elias Bassil
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Hiromi Tajima
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Monika Wimmer
- Institute of Crop Science and Resource Conservation, Division of Plant Nutrition, University of Bonn, D-53115 Bonn, Germany
| | - Alexandra Chanoca
- Departments of Botany and Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Marisa S Otegui
- Departments of Botany and Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Nadine Paris
- Biochemistry and Plant Molecular Biology Laboratory, Unité Mixte de Recherche 5004, 34060 Montpellier, France
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, California 95616
| |
Collapse
|
46
|
Wang ZY, Gehring C, Zhu J, Li FM, Zhu JK, Xiong L. The Arabidopsis Vacuolar Sorting Receptor1 is required for osmotic stress-induced abscisic acid biosynthesis. PLANT PHYSIOLOGY 2015; 167:137-52. [PMID: 25416474 PMCID: PMC4281004 DOI: 10.1104/pp.114.249268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.
Collapse
Affiliation(s)
- Zhen-Yu Wang
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia (Z.-Y.W., C.G., L.X.);State Key Laboratory of Grassland Agroecosystem, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China (Z.-Y.W., F.-M.L.);Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742 (J.Z.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (J.-K.Z.); andShanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (J.-K.Z.)
| | - Chris Gehring
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia (Z.-Y.W., C.G., L.X.);State Key Laboratory of Grassland Agroecosystem, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China (Z.-Y.W., F.-M.L.);Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742 (J.Z.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (J.-K.Z.); andShanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (J.-K.Z.)
| | - Jianhua Zhu
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia (Z.-Y.W., C.G., L.X.);State Key Laboratory of Grassland Agroecosystem, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China (Z.-Y.W., F.-M.L.);Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742 (J.Z.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (J.-K.Z.); andShanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (J.-K.Z.)
| | - Feng-Min Li
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia (Z.-Y.W., C.G., L.X.);State Key Laboratory of Grassland Agroecosystem, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China (Z.-Y.W., F.-M.L.);Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742 (J.Z.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (J.-K.Z.); andShanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (J.-K.Z.)
| | - Jian-Kang Zhu
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia (Z.-Y.W., C.G., L.X.);State Key Laboratory of Grassland Agroecosystem, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China (Z.-Y.W., F.-M.L.);Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742 (J.Z.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (J.-K.Z.); andShanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (J.-K.Z.)
| | - Liming Xiong
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia (Z.-Y.W., C.G., L.X.);State Key Laboratory of Grassland Agroecosystem, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China (Z.-Y.W., F.-M.L.);Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742 (J.Z.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (J.-K.Z.); andShanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (J.-K.Z.)
| |
Collapse
|
47
|
Maeda S, Gunji S, Hanai K, Hirano T, Kazama Y, Ohbayashi I, Abe T, Sawa S, Tsukaya H, Ferjani A. The conflict between cell proliferation and expansion primarily affects stem organogenesis in Arabidopsis. PLANT & CELL PHYSIOLOGY 2014; 55:1994-2007. [PMID: 25246492 DOI: 10.1093/pcp/pcu131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plant shoot organs such as stems, leaves and flowers are derived from specialized groups of stem cells organized at the shoot apical meristem (SAM). Organogenesis involves two major processes, namely cell proliferation and differentiation, whereby the former contributes to increasing the cell number and the latter involves substantial increases in cell volume through cell expansion. Co-ordination between the above processes in time and space is essential for proper organogenesis. To identify regulatory factors involved in proper organogenesis, heavy-ion beam-irradiated de-etiolated (det) 3-1 seeds have been used to identify striking phenotypes in the A#26-2; det3-1 mutant. In addition to the stunted plant stature mimicking det3-1, the A#26-2; det3-1 mutant exhibited stem thickening, increased floral organ number and a fruit shape reminiscent of clavata (clv) mutants. DNA sequencing analysis demonstrated that A#26-2; det3-1 harbors a mutation in the CLV3 gene. Importantly, A#26-2; det3-1 displayed cracks that randomly occurred on the main stem with a frequency of approximately 50%. Furthermore, the double mutants clv3-8 det3-1, clv1-4 det3-1 and clv2-1 det3-1 consistently showed stem cracks with frequencies of approximately 97, 38 and 35%, respectively. Cross-sections of stems further revealed an increase in vascular bundle number, cell number and size in the pith of clv3-8 det3-1 compared with det3-1. These findings suggest that the stem inner volume increase due to clv mutations exerts an outward mechanical stress; that in a det3-1 background (defective in cell expansion) resulted in cracking of the outermost layer of epidermal cells.
Collapse
Affiliation(s)
- Saori Maeda
- Department of Biology, Tokyo Gakugei University, Koganei-shi, 184-8501 Japan These authors contributed equally to this work
| | - Shizuka Gunji
- Department of Biology, Tokyo Gakugei University, Koganei-shi, 184-8501 Japan These authors contributed equally to this work
| | - Kenya Hanai
- Department of Biology, Tokyo Gakugei University, Koganei-shi, 184-8501 Japan These authors contributed equally to this work
| | - Tomonari Hirano
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - Yusuke Kazama
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - Iwai Ohbayashi
- Department of Biology, Tokyo Gakugei University, Koganei-shi, 184-8501 Japan
| | - Tomoko Abe
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Chuo-ku, 860-8555 Japan
| | - Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, 113-0033 Japan
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Koganei-shi, 184-8501 Japan
| |
Collapse
|
48
|
Molino D, Van der Giessen E, Gissot L, Hématy K, Marion J, Barthelemy J, Bellec Y, Vernhettes S, Satiat-Jeunemaître B, Galli T, Tareste D, Faure JD. Inhibition of very long acyl chain sphingolipid synthesis modifies membrane dynamics during plant cytokinesis. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1842:1422-30. [DOI: 10.1016/j.bbalip.2014.06.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 05/23/2014] [Accepted: 06/24/2014] [Indexed: 01/08/2023]
|
49
|
Bosch M, Wright LP, Gershenzon J, Wasternack C, Hause B, Schaller A, Stintzi A. Jasmonic acid and its precursor 12-oxophytodienoic acid control different aspects of constitutive and induced herbivore defenses in tomato. PLANT PHYSIOLOGY 2014; 166:396-410. [PMID: 25073705 PMCID: PMC4149723 DOI: 10.1104/pp.114.237388] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/25/2014] [Indexed: 05/20/2023]
Abstract
The jasmonate family of growth regulators includes the isoleucine (Ile) conjugate of jasmonic acid (JA-Ile) and its biosynthetic precursor 12-oxophytodienoic acid (OPDA) as signaling molecules. To assess the relative contribution of JA/JA-Ile and OPDA to insect resistance in tomato (Solanum lycopersicum), we silenced the expression of OPDA reductase3 (OPR3) by RNA interference (RNAi). Consistent with a block in the biosynthetic pathway downstream of OPDA, OPR3-RNAi plants contained wild-type levels of OPDA but failed to accumulate JA or JA-Ile after wounding. JA/JA-Ile deficiency in OPR3-RNAi plants resulted in reduced trichome formation and impaired monoterpene and sesquiterpene production. The loss of these JA/JA-Ile -dependent defense traits rendered them more attractive to the specialist herbivore Manduca sexta with respect to feeding and oviposition. Oviposition preference resulted from reduced levels of repellant monoterpenes and sesquiterpenes. Feeding preference, on the other hand, was caused by increased production of cis-3-hexenal acting as a feeding stimulant for M. sexta larvae in OPR3-RNAi plants. Despite impaired constitutive defenses and increased palatability of OPR3-RNAi leaves, larval development was indistinguishable on OPR3-RNAi and wild-type plants, and was much delayed compared with development on the jasmonic acid-insensitive1 (jai1) mutant. Apparently, signaling through JAI1, the tomato ortholog of the ubiquitin ligase CORONATINE INSENSITIVE1 in Arabidopsis (Arabidopsis thaliana), is required for defense, whereas the conversion of OPDA to JA/JA-Ile is not. Comparing the signaling activities of OPDA and JA/JA-Ile, we found that OPDA can substitute for JA/JA-Ile in the local induction of defense gene expression, but the production of JA/JA-Ile is required for a systemic response.
Collapse
Affiliation(s)
- Marko Bosch
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Louwrance P Wright
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Jonathan Gershenzon
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Claus Wasternack
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Bettina Hause
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Andreas Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Annick Stintzi
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| |
Collapse
|
50
|
Xu P, Cai XT, Wang Y, Xing L, Chen Q, Xiang CB. HDG11 upregulates cell-wall-loosening protein genes to promote root elongation in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4285-95. [PMID: 24821957 PMCID: PMC4112634 DOI: 10.1093/jxb/eru202] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The gain-of-function mutant edt1 shows significantly enhanced drought tolerance and a well-developed root system including deeper primary roots and more lateral roots. To explore the molecular mechanisms underlying the improved root system of edt1, we performed transcriptome comparison between the wild-type and edt1 roots. One of the interesting findings from the analysis was that several gene families of cell-wall-loosening proteins were upregulated in the mutant roots, including expansins, extensins, xyloglucan endotransglucosylase/hydrolases (XTHs), pectin-related enzymes, and cellulases. Most of these genes contain HD-binding cis-elements in their promoters predominantly with the TTTAATTT sequence, which can be bound by HDG11 in vitro and in vivo. The coordinated expression of these gene families overlaps fast root elongation. Furthermore, overexpression of AtEXPA5, which was dramatically upregulated in edt1, resulted in longer primary roots because cells were more extended longitudinally. When combined by crossing the AtEXPA5-overexpression lines with one pectin methylesterase inhibitor family protein (PMEI) gene (At5g62360)- or one cellulase (CEL) gene (At2g32990)-overexpression lines, the primary roots of the progeny even exceeded both parents in length. Our results demonstrate that HDG11 directly upregulates cell-wall-loosening protein genes, which is correlated with altered root system architecture, and confirm that cell-wall-loosening proteins play important roles in coordinating cell-wall extensibility with root development. The results of transgene experiments showed that expansin works together with PMEI and CEL to generate synergistic effects on primary root elongation, suggesting that different cell-wall-loosening protein families may function in combination to generate optimal effects on root extensibility.
Collapse
Affiliation(s)
- Ping Xu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiao-Teng Cai
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yao Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Lu Xing
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qiong Chen
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Cheng-Bin Xiang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|