1
|
Pacheco R, Juárez-Verdayes MA, Chávez-Martínez AI, Palacios-Martínez J, Leija A, Nava N, Cárdenas L, Quinto C. The non-specific phospholipase C of common bean PvNPC4 modulates roots and nodule development. PLoS One 2025; 20:e0306505. [PMID: 40323933 DOI: 10.1371/journal.pone.0306505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/20/2024] [Indexed: 05/07/2025] Open
Abstract
Plant phospholipase C (PLC) proteins are phospholipid-degrading enzymes classified into two subfamilies: phosphoinositide-specific PLCs (PI-PLCs) and non-specific PLCs (NPCs). PI-PLCs have been widely studied in various biological contexts, including responses to abiotic and biotic stresses and plant development; NPCs have been less thoroughly studied. No PLC subfamily has been characterized in relation to the symbiotic interaction between Fabaceae (legume) species and the nitrogen-fixing bacteria called rhizobia. However, lipids are reported to be crucial to this interaction, and PLCs may therefore contribute to regulating legume-rhizobia symbiosis. In this work, we functionally characterized NPC4 from common bean (Phaseolus vulgaris L.) during rhizobial symbiosis, findings evidence that NPC4 plays an important role in bean root development. The knockdown of PvNPC4 by RNA interference (RNAi) resulted in fewer and shorter primary roots and fewer lateral roots than were seen in control plants. Importantly, this phenotype seems to be related to altered auxin signaling. In the bean-rhizobia symbiosis, PvNPC4 transcript abundance increased 3 days after inoculation with Rhizobium tropici. Moreover, the number of infection threads and nodules, as well as the transcript abundance of PvEnod40, a regulatory gene of early stages of symbiosis, decreased in PvNPC4-RNAi roots. Additionally, transcript abundance of genes involved in autoregulation of nodulation (AON) was altered by PvNPC4 silencing. These results indicate that PvNPC4 is a key regulator of root and nodule development, underscoring the participation of PLC in rhizobial symbiosis.
Collapse
Affiliation(s)
- Ronal Pacheco
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| | - M A Juárez-Verdayes
- Departamento de Ciencias Básica, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro, Saltillo, Coahuila, Mexico
| | - A I Chávez-Martínez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| | - Janet Palacios-Martínez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| | - Alfonso Leija
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad, Mexico City, Mexico
| | - Noreide Nava
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| | - Luis Cárdenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| | - Carmen Quinto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| |
Collapse
|
2
|
Cortinovis G, Vincenzi L, Anderson R, Marturano G, Marsh JI, Bayer PE, Rocchetti L, Frascarelli G, Lanzavecchia G, Pieri A, Benazzo A, Bellucci E, Di Vittori V, Nanni L, Ferreira Fernández JJ, Rossato M, Aguilar OM, Morrell PL, Rodriguez M, Gioia T, Neumann K, Alvarez Diaz JC, Gratias A, Klopp C, Bitocchi E, Geffroy V, Delledonne M, Edwards D, Papa R. Adaptive gene loss in the common bean pan-genome during range expansion and domestication. Nat Commun 2024; 15:6698. [PMID: 39107305 PMCID: PMC11303546 DOI: 10.1038/s41467-024-51032-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
The common bean (Phaseolus vulgaris L.) is a crucial legume crop and an ideal evolutionary model to study adaptive diversity in wild and domesticated populations. Here, we present a common bean pan-genome based on five high-quality genomes and whole-genome reads representing 339 genotypes. It reveals ~234 Mb of additional sequences containing 6,905 protein-coding genes missing from the reference, constituting 49% of all presence/absence variants (PAVs). More non-synonymous mutations are found in PAVs than core genes, probably reflecting the lower effective population size of PAVs and fitness advantages due to the purging effect of gene loss. Our results suggest pan-genome shrinkage occurred during wild range expansion. Selection signatures provide evidence that partial or complete gene loss was a key adaptive genetic change in common bean populations with major implications for plant adaptation. The pan-genome is a valuable resource for food legume research and breeding for climate change mitigation and sustainable agriculture.
Collapse
Affiliation(s)
- Gaia Cortinovis
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Leonardo Vincenzi
- Department of Biotechnology, University of Verona, 37134, Verona, Italy
| | - Robyn Anderson
- Centre for Applied Bioinformatics and School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | | | - Jacob Ian Marsh
- Centre for Applied Bioinformatics and School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Philipp Emanuel Bayer
- Centre for Applied Bioinformatics and School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Lorenzo Rocchetti
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Giulia Frascarelli
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Giovanna Lanzavecchia
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Alice Pieri
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Andrea Benazzo
- Department of Life Sciences and Biotechnology, University of Ferrara, 44100, Ferrara, Italy
| | - Elisa Bellucci
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Valerio Di Vittori
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Laura Nanni
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | | | - Marzia Rossato
- Department of Biotechnology, University of Verona, 37134, Verona, Italy
- Genartis s.r.l, 37126, Verona, Italy
| | - Orlando Mario Aguilar
- Institute of Biotechnology and Molecular Biology, UNLP-CONICET, CCT La Plata, La Plata, Argentina
| | - Peter Laurent Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108-6026, USA
| | - Monica Rodriguez
- Department of Agriculture, University of Sassari, 07100, Sassari, Italy
- CBV-Centro per la Conservazione e Valorizzazione della Biodiversità Vegetale, University of Sassari, 07041, Alghero, Italy
| | - Tania Gioia
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100, Potenza, Italy
| | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Seeland, Germany
| | - Juan Camilo Alvarez Diaz
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), University of Evry, University Paris-Saclay, 91405, Orsay, France
| | - Ariane Gratias
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), University of Evry, University Paris-Saclay, 91405, Orsay, France
| | - Christophe Klopp
- INRAE, Genotoul Bioinformatics Platform, Applied Mathematics and Informatics of Toulouse, Sigenae, MIAT, UR875, Castanet Tolosan, France
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Valérie Geffroy
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), University of Evry, University Paris-Saclay, 91405, Orsay, France.
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, 37134, Verona, Italy.
- Genartis s.r.l, 37126, Verona, Italy.
| | - David Edwards
- Centre for Applied Bioinformatics and School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia.
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy.
| |
Collapse
|
3
|
Lu Y, Cheng K, Tang H, Li J, Zhang C, Zhu H. The role of Rab GTPase in Plant development and stress. JOURNAL OF PLANT PHYSIOLOGY 2024; 296:154239. [PMID: 38574493 DOI: 10.1016/j.jplph.2024.154239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Small GTPase is a type of crucial regulator in eukaryotes. It acts as a molecular switch by binding with GTP and GDP in cytoplasm, affecting various cellular processes. Small GTPase were divided into five subfamilies based on sequence, structure and function: Ras, Rho, Rab, Arf/Sar and Ran, with Rab being the largest subfamily. Members of the Rab subfamily play an important role in regulating complex vesicle transport and microtubule system activity. Plant cells are composed of various membrane-bound organelles, and vesicle trafficking is fundamental to the existence of plants. At present, the function of some Rab members, such as RabA1a, RabD2b/c and RabF2, has been well characterized in plants. This review summarizes the role of Rab GTPase in regulating plant tip growth, morphogenesis, fruit ripening and stress response, and briefly describes the regulatory mechanisms involved. It provides a reference for further alleviating environmental stress, improving plant resistance and even improving fruit quality.
Collapse
Affiliation(s)
- Yao Lu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Ke Cheng
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Hui Tang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Jinyan Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Chunjiao Zhang
- Supervision, Inspection & Testing Center of Agricultural Products Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China.
| | - Hongliang Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
4
|
Roda C, Clúa J, Eylenstein A, Greco M, Ariel F, Zanetti ME, Blanco FA. The C subunit of the nuclear factor Y binds to the Cyclin P4;1 promoter to modulate nodule organogenesis and infection during symbiosis in Phaseolus vulgaris. THE NEW PHYTOLOGIST 2024; 241:525-531. [PMID: 38009979 DOI: 10.1111/nph.19419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Affiliation(s)
- Carla Roda
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-La Plata, CONICET, La Plata, 1900, Argentina
| | - Joaquín Clúa
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-La Plata, CONICET, La Plata, 1900, Argentina
| | - Andrés Eylenstein
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-La Plata, CONICET, La Plata, 1900, Argentina
| | - Micaela Greco
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-La Plata, CONICET, La Plata, 1900, Argentina
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CCT Santa Fe, CONICET-Universidad Nacional del Litoral, Santa Fe, 3000, Argentina
| | - María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-La Plata, CONICET, La Plata, 1900, Argentina
| | - Flavio Antonio Blanco
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-La Plata, CONICET, La Plata, 1900, Argentina
| |
Collapse
|
5
|
Ganotra J, Sharma B, Biswal B, Bhardwaj D, Tuteja N. Emerging role of small GTPases and their interactome in plants to combat abiotic and biotic stress. PROTOPLASMA 2023; 260:1007-1029. [PMID: 36525153 DOI: 10.1007/s00709-022-01830-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/05/2022] [Indexed: 06/07/2023]
Abstract
Plants are frequently subjected to abiotic and biotic stress which causes major impediments in their growth and development. It is emerging that small guanosine triphosphatases (small GTPases), also known as monomeric GTP-binding proteins, assist plants in managing environmental stress. Small GTPases function as tightly regulated molecular switches that get activated with the aid of guanosine triphosphate (GTP) and deactivated by the subsequent hydrolysis of GTP to guanosine diphosphate (GDP). All small GTPases except Rat sarcoma (Ras) are found in plants, including Ras-like in brain (Rab), Rho of plant (Rop), ADP-ribosylation factor (Arf) and Ras-like nuclear (Ran). The members of small GTPases in plants interact with several downstream effectors to counteract the negative effects of environmental stress and disease-causing pathogens. In this review, we describe processes of stress alleviation by developing pathways involving several small GTPases and their associated proteins which are important for neutralizing fungal infections, stomatal regulation, and activation of abiotic stress-tolerant genes in plants. Previous reviews on small GTPases in plants were primarily focused on Rab GTPases, abiotic stress, and membrane trafficking, whereas this review seeks to improve our understanding of the role of all small GTPases in plants as well as their interactome in regulating mechanisms to combat abiotic and biotic stress. This review brings to the attention of scientists recent research on small GTPases so that they can employ genome editing tools to precisely engineer economically important plants through the overexpression/knock-out/knock-in of stress-related small GTPase genes.
Collapse
Affiliation(s)
- Jahanvi Ganotra
- Department of Botany, Central University of Jammu, Jammu and Kashmir, Jammu, 181143, India
| | - Bhawana Sharma
- Department of Botany, Central University of Jammu, Jammu and Kashmir, Jammu, 181143, India
| | - Brijesh Biswal
- Department of Botany, Central University of Jammu, Jammu and Kashmir, Jammu, 181143, India
| | - Deepak Bhardwaj
- Department of Botany, Central University of Jammu, Jammu and Kashmir, Jammu, 181143, India.
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
6
|
Clúa J, Rípodas C, Roda C, Battaglia ME, Zanetti ME, Blanco FA. NIPK, a protein pseudokinase that interacts with the C subunit of the transcription factor NF-Y, is involved in rhizobial infection and nodule organogenesis. FRONTIERS IN PLANT SCIENCE 2022; 13:992543. [PMID: 36212340 PMCID: PMC9532615 DOI: 10.3389/fpls.2022.992543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Heterotrimeric Nuclear Factor Y (NF-Y) transcription factors are key regulators of the symbiotic program that controls rhizobial infection and nodule organogenesis. Using a yeast two-hybrid screening, we identified a putative protein kinase of Phaseolus vulgaris that interacts with the C subunit of the NF-Y complex. Physical interaction between NF-YC1 Interacting Protein Kinase (NIPK) and NF-YC1 occurs in the cytoplasm and the plasma membrane. Only one of the three canonical amino acids predicted to be required for catalytic activity is conserved in NIPK and its putative homologs from lycophytes to angiosperms, indicating that NIPK is an evolutionary conserved pseudokinase. Post-transcriptional silencing on NIPK affected infection and nodule organogenesis, suggesting NIPK is a positive regulator of the NF-Y transcriptional complex. In addition, NIPK is required for activation of cell cycle genes and early symbiotic genes in response to rhizobia, including NF-YA1 and NF-YC1. However, strain preference in co-inoculation experiments was not affected by NIPK silencing, suggesting that some functions of the NF-Y complex are independent of NIPK. Our work adds a new component associated with the NF-Y transcriptional regulators in the context of nitrogen-fixing symbiosis.
Collapse
|
7
|
Visualization of the Crossroads between a Nascent Infection Thread and the First Cell Division Event in Phaseolus vulgaris Nodulation. Int J Mol Sci 2022; 23:ijms23095267. [PMID: 35563659 PMCID: PMC9105610 DOI: 10.3390/ijms23095267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
The development of a symbiotic nitrogen-fixing nodule in legumes involves infection and organogenesis. Infection begins when rhizobia enter a root hair through an inward structure, the infection thread (IT), which guides the bacteria towards the cortical tissue. Concurrently, organogenesis takes place by inducing cortical cell division (CCD) at the infection site. Genetic analysis showed that both events are well-coordinated; however, the dynamics connecting them remain to be elucidated. To visualize the crossroads between IT and CCD, we benefited from the fact that, in Phaseolus vulgaris nodulation, where the first division occurs in subepidermal cortical cells located underneath the infection site, we traced a Rhizobium etli strain expressing DsRed, the plant cytokinesis marker YFP-PvKNOLLE, a nuclear stain and cell wall auto-fluorescence. We found that the IT exits the root hair to penetrate an underlying subepidermal cortical (S-E) cell when it is concluding cytokinesis.
Collapse
|
8
|
Castaingts M, Kirolinko C, Rivero C, Artunian J, Mancini Villagra U, Blanco FA, Zanetti ME. Identification of conserved and new miRNAs that affect nodulation and strain selectivity in the Phaseolus vulgaris-Rhizobium etli symbiosis through differential analysis of host small RNAs. THE NEW PHYTOLOGIST 2022; 234:1430-1447. [PMID: 35203109 DOI: 10.1111/nph.18055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Phaseolus vulgaris plants from the Mesoamerican centre of genetic diversification establish a preferential and more efficient root nodule symbiosis with sympatric Rhizobium etli strains. This is mediated by changes in host gene expression, which might occur either at the transcriptional or at the post-transcriptional level. However, the implication of small RNA (sRNA)-mediated control of gene expression in strain selectivity has remained elusive. sRNA sequencing was used to identify host microRNAs (miRNAs) differentially regulated in roots at an early stage of the symbiotic interaction, which were further characterized by applying a reverse genetic approach. In silico analysis identified known and new miRNAs that accumulated to a greater extent in the preferential and more efficient interaction. One of them, designated as Pvu-miR5924, participates in the mechanisms that determine the selection of R. etli strains that will colonize the nodules. In addition, the functional analysis of Pvu-miR390b verified that this miRNA is a negative modulator of nodule formation and bacterial infection. This study not only extended the list of miRNAs identified in P. vulgaris but also enabled the identification of miRNAs that play relevant functions in nodule formation, rhizobial infection and the selection of the rhizobial strains that will occupy the nodule.
Collapse
Affiliation(s)
- Melisse Castaingts
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, 1900, Argentina
| | - Cristina Kirolinko
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, 1900, Argentina
| | - Claudio Rivero
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, 1900, Argentina
| | - Jennifer Artunian
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, 1900, Argentina
| | - Ulises Mancini Villagra
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, 1900, Argentina
| | - Flavio Antonio Blanco
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, 1900, Argentina
| | - María Eugenia Zanetti
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, 1900, Argentina
| |
Collapse
|
9
|
Transcriptomic analysis of Mesoamerican and Andean Phaseolus vulgaris accessions revealed mRNAs and lncRNAs associated with strain selectivity during symbiosis. Sci Rep 2022; 12:2614. [PMID: 35173231 PMCID: PMC8850587 DOI: 10.1038/s41598-022-06566-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 01/28/2022] [Indexed: 12/29/2022] Open
Abstract
Legume plants establish a nitrogen-fixing symbiosis with soil bacteria known as rhizobia. Compatibility between legumes and rhizobia is determined at species-specific level, but variations in the outcome of the symbiotic process are also influenced by the capacity of the plant to discriminate and select specific strains that are better partners. We compared the transcriptional response of two genetically diverse accessions of Phaseolus vulgaris from Mesoamerica and South Andes to Rhizobium etli strains that exhibit variable degrees of symbiotic affinities. Our results indicate that the plant genotype is the major determinant of the transcriptional reprogramming occurring in roots at early stages of the symbiotic interaction. Differentially expressed genes (DEGs) regulated in the Mesoamerican and the Andean accessions in response to specific strains are different, but they belong to the same functional categories. The common and strain-specific transcriptional responses to rhizobia involve distinct transcription factors and cis-elements present in the promoters of DEGs in each accession, showing that diversification and domestication of common bean at different geographic regions influenced the evolution of symbiosis differently in each genetic pool. Quantitative PCR analysis validated our transcriptional datasets, which constitute a valuable source of coding and non-coding candidate genes to further unravel the molecular determinants governing the mechanisms by which plants select bacterial strains that produce a better symbiotic outcome.
Collapse
|
10
|
Ying S, Blancaflor EB, Liao F, Scheible W. A phosphorus-limitation induced, functionally conserved DUF506 protein is a repressor of root hair elongation in plants. THE NEW PHYTOLOGIST 2022; 233:1153-1171. [PMID: 34775627 PMCID: PMC9300206 DOI: 10.1111/nph.17862] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Root hairs (RHs) function in nutrient and water acquisition, root metabolite exudation, soil anchorage and plant-microbe interactions. Longer or more abundant RHs are potential breeding traits for developing crops that are more resource-use efficient and can improve soil health. While many genes are known to promote RH elongation, relatively little is known about genes and mechanisms that constrain RH growth. Here we demonstrate that a DOMAIN OF UNKNOWN FUNCTION 506 (DUF506) protein, AT3G25240, negatively regulates Arabidopsis thaliana RH growth. The AT3G25240 gene is strongly and specifically induced during phosphorus (P)-limitation. Mutants of this gene, which we call REPRESSOR OF EXCESSIVE ROOT HAIR ELONGATION 1 (RXR1), have much longer RHs, higher phosphate content and seedling biomass, while overexpression of the gene exhibits opposite phenotypes. Co-immunoprecipitation, pull-down and bimolecular fluorescence complementation (BiFC) analyses reveal that RXR1 physically interacts with a RabD2c GTPase in nucleus, and a rabd2c mutant phenocopies the rxr1 mutant. Furthermore, N-terminal variable region of RXR1 is crucial for inhibiting RH growth. Overexpression of a Brachypodium distachyon RXR1 homolog results in repression of RH elongation in Brachypodium. Taken together, our results reveal a novel DUF506-GTPase module with a prominent role in repression of plant RH elongation especially under P stress.
Collapse
Affiliation(s)
- Sheng Ying
- Noble Research Institute LLCArdmoreOK73401USA
- Present address:
Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48823USA
| | | | - Fuqi Liao
- Noble Research Institute LLCArdmoreOK73401USA
| | | |
Collapse
|
11
|
Höller S, Küpper H, Brückner D, Garrevoet J, Spiers K, Falkenberg G, Andresen E, Peiter E. Overexpression of METAL TOLERANCE PROTEIN8 reveals new aspects of metal transport in Arabidopsis thaliana seeds. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:23-29. [PMID: 34546650 DOI: 10.1111/plb.13342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
METAL TOLERANCE PROTEIN8 (MTP8) of Arabidopsis thaliana is a member of the CATION DIFFUSION FACILITATOR (CDF) family of proteins that transports primarily manganese (Mn), but also iron (Fe). MTP8 mediates Mn allocation to specific cell types in the developing embryo, and Fe re-allocation as well as Mn tolerance during imbibition. We analysed if an overexpression of MTP8 driven by the CaMV 35S promoter has an effect on Mn tolerance during imbibition and on Mn and Fe storage in seeds, which would render it a biofortification target. Fe, Mn and Zn concentrations in MTP8-overexpressing lines in wild type and vit1-1 backgrounds were analysed by ICP-MS. Distribution of metals in intact seeds was determined by synchrotron µXRF tomography. MTP8 overexpression led to a strongly increased Mn tolerance of seeds during imbibition, supporting its effectiveness in loading excess Mn into the vacuole. In mature seeds, MTP8 overexpression did not cause a consistent increase in Mn and Fe accumulation, and it did not change the allocation pattern of these metals. Zn concentrations were consistently increased in bulk samples. The results demonstrate that Mn and Fe allocation is not determined primarily by the MTP8 expression pattern, suggesting either a cell type-specific provision of metals for vacuolar sequestration by upstream transport processes, or the determination of MTP8 activity by post-translational regulation.
Collapse
Affiliation(s)
- S Höller
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - H Küpper
- Biology Centre, Institute of Plant Molecular Biology, Department of Plant Biophysics & Biochemistry, Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Experimental Plant Biology, University of South Bohemia, České Budějovice, Czech Republic
| | - D Brückner
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- Department of Physics, University of Hamburg, Hamburg, Germany
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - J Garrevoet
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - K Spiers
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - G Falkenberg
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - E Andresen
- Biology Centre, Institute of Plant Molecular Biology, Department of Plant Biophysics & Biochemistry, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - E Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
12
|
Liu D, Luo Y, Zheng X, Wang X, Chou M, Wei G. TRAPPC13 Is a Novel Target of Mesorhizobium amorphae Type III Secretion System Effector NopP. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:511-523. [PMID: 33630651 DOI: 10.1094/mpmi-12-20-0354-fi] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Similar to pathogenic bacteria, rhizobia can inject effector proteins into host cells directly to promote infection via the type III secretion system (T3SS). Nodulation outer protein P (NopP), a specific T3SS effector of rhizobia, plays different roles in the establishment of multiple rhizobia-legume symbiotic systems. Mesorhizobium amorphae CCNWGS0123 (GS0123), which infects Robinia pseudoacacia specifically, secretes several T3SS effectors, including NopP. Here, we demonstrate that NopP is secreted through T3SS-I of GS0123 during the early stages of infection, and its deficiency decreases nodule nitrogenase activity of R. pseudoacacia nodules. A trafficking protein particle complex subunit 13-like protein (TRAPPC13) has been identified as a NopP target protein in R. pseudoacacia roots by screening a yeast two-hybrid library. The physical interaction between NopP and TRAPPC13 is verified by bimolecular fluorescence complementation and coimmunoprecipitation assays. In addition, subcellular localization analysis reveals that both NopP and its target, TRAPPC13, are colocalized on the plasma membrane. Compared with GS0123-inoculated R. pseudoacacia roots, some genes associated with cell wall remodeling and plant innate immunity down-regulated in ΔnopP-inoculated roots at 36 h postinoculation. The results suggest that NopP in M. amorphae CCNWGS0123 acts in multiple processes in R. pseudoacacia during the early stages of infection, and TRAPPC13 could participate in the process as a NopP target.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Dongying Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yantao Luo
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaofeng Zheng
- Shaanxi Hydrogeology Engineering Geology and Environmental Geology Survey Center, Shaanxi Institute of Geological Survey, Xi'an, Shaanxi 710054, China
| | - Xinye Wang
- Moutai Institute, Renhuai, Guizhou 564500, China
| | - Minxia Chou
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
13
|
Kirolinko C, Hobecker K, Wen J, Mysore KS, Niebel A, Blanco FA, Zanetti ME. Auxin Response Factor 2 (ARF2), ARF3, and ARF4 Mediate Both Lateral Root and Nitrogen Fixing Nodule Development in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2021; 12:659061. [PMID: 33897748 PMCID: PMC8060633 DOI: 10.3389/fpls.2021.659061] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Auxin Response Factors (ARFs) constitute a large family of transcription factors that mediate auxin-regulated developmental programs in plants. ARF2, ARF3, and ARF4 are post-transcriptionally regulated by the microRNA390 (miR390)/trans-acting small interference RNA 3 (TAS3) module through the action of TAS3-derived trans - acting small interfering RNAs (ta-siRNA). We have previously reported that constitutive activation of the miR390/TAS3 pathway promotes elongation of lateral roots but impairs nodule organogenesis and infection by rhizobia during the nitrogen-fixing symbiosis established between Medicago truncatula and its partner Sinorhizobium meliloti. However, the involvement of the targets of the miR390/TAS3 pathway, i.e., MtARF2, MtARF3, MtARF4a, and MtARF4b, in root development and establishment of the nitrogen-fixing symbiosis remained unexplored. Here, promoter:reporter fusions showed that expression of both MtARF3 and MtARF4a was associated with lateral root development; however, only the MtARF4a promoter was active in developing nodules. In addition, up-regulation of MtARF2, MtARF3, and MtARF4a/b in response to rhizobia depends on Nod Factor perception. We provide evidence that simultaneous knockdown of MtARF2, MtARF3, MtARF4a, and MtARF4b or mutation in MtARF4a impaired nodule formation, and reduced initiation and progression of infection events. Silencing of MtARF2, MtARF3, MtARF4a, and MtARF4b altered mRNA levels of the early nodulation gene nodulation signaling pathway 2 (MtNSP2). In addition, roots with reduced levels of MtARF2, MtARF3, MtARF4a, and MtARF4b, as well as arf4a mutant plants exhibited altered root architecture, causing a reduction in primary and lateral root length, but increasing lateral root density. Taken together, our results suggest that these ARF members are common key players of the morphogenetic programs that control root development and the formation of nitrogen-fixing nodules.
Collapse
Affiliation(s)
- Cristina Kirolinko
- Instituto de Biotecnología y Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - Karen Hobecker
- Instituto de Biotecnología y Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - Jiangqi Wen
- Noble Research Institute LLC, Ardmore, OK, United States
| | | | - Andreas Niebel
- Laboratoire des Interactions Plantes-Microorganismes, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Flavio Antonio Blanco
- Instituto de Biotecnología y Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| |
Collapse
|
14
|
García-Soto I, Boussageon R, Cruz-Farfán YM, Castro-Chilpa JD, Hernández-Cerezo LX, Bustos-Zagal V, Leija-Salas A, Hernández G, Torres M, Formey D, Courty PE, Wipf D, Serrano M, Tromas A. The Lotus japonicus ROP3 Is Involved in the Establishment of the Nitrogen-Fixing Symbiosis but Not of the Arbuscular Mycorrhizal Symbiosis. FRONTIERS IN PLANT SCIENCE 2021; 12:696450. [PMID: 34868100 PMCID: PMC8636059 DOI: 10.3389/fpls.2021.696450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/25/2021] [Indexed: 05/17/2023]
Abstract
Legumes form root mutualistic symbioses with some soil microbes promoting their growth, rhizobia, and arbuscular mycorrhizal fungi (AMF). A conserved set of plant proteins rules the transduction of symbiotic signals from rhizobia and AMF in a so-called common symbiotic signaling pathway (CSSP). Despite considerable efforts and advances over the past 20 years, there are still key elements to be discovered about the establishment of these root symbioses. Rhizobia and AMF root colonization are possible after a deep cell reorganization. In the interaction between the model legume Lotus japonicus and Mesorhizobium loti, this reorganization has been shown to be dependent on a SCAR/Wave-like signaling module, including Rho-GTPase (ROP in plants). Here, we studied the potential role of ROP3 in the nitrogen-fixing symbiosis (NFS) as well as in the arbuscular mycorrhizal symbiosis (AMS). We performed a detailed phenotypic study on the effects of the loss of a single ROP on the establishment of both root symbioses. Moreover, we evaluated the expression of key genes related to CSSP and to the rhizobial-specific pathway. Under our experimental conditions, rop3 mutant showed less nodule formation at 7- and 21-days post inoculation as well as less microcolonies and a higher frequency of epidermal infection threads. However, AMF root colonization was not affected. These results suggest a role of ROP3 as a positive regulator of infection thread formation and nodulation in L. japonicus. In addition, CSSP gene expression was neither affected in NFS nor in AMS condition in rop3 mutant. whereas the expression level of some genes belonging to the rhizobial-specific pathway, like RACK1, decreased in the NFS. In conclusion, ROP3 appears to be involved in the NFS, but is neither required for intra-radical growth of AMF nor arbuscule formation.
Collapse
Affiliation(s)
- Ivette García-Soto
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- Programa de Doctorado en Ciencias Bioquímicas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- *Correspondence: Ivette García-Soto,
| | - Raphael Boussageon
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | | | | | | | - Victor Bustos-Zagal
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Alfonso Leija-Salas
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Georgina Hernández
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Martha Torres
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Damien Formey
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Pierre-Emmanuel Courty
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- Mario Serrano,
| | - Alexandre Tromas
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- La Cité College, Bureau de la Recherche et de l’Innovation, Ottawa, ON, Canada
- Alexandre Tromas,
| |
Collapse
|
15
|
Oladzad A, González A, Macchiavelli R, de Jensen CE, Beaver J, Porch T, McClean P. Genetic Factors Associated With Nodulation and Nitrogen Derived From Atmosphere in a Middle American Common Bean Panel. FRONTIERS IN PLANT SCIENCE 2020; 11:576078. [PMID: 33384700 PMCID: PMC7769817 DOI: 10.3389/fpls.2020.576078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Among grain legume crops, common beans (Phaseolus vulgaris L.) are considered to have poor biological nitrogen (N2) fixation (BNF) capabilities although variation in N2 fixing capabilities exists within the species. The availability of genetic panel varying in BNF capacity and a large-scale single nucleotide polymorphism (SNP) data set for common bean provided an opportunity to discover genetic factors associated with N2 fixation among genotypes in the Middle American gene pool. Using nodulation and percentage of N2-derived from atmosphere (%NDFA) data collected from field trials, at least 11 genotypes with higher levels of BNF capacity were identified. Genome-wide association studies (GWASs) detected both major and minor effects that control these traits. A major nodulation interval at Pv06:28.0-28.27 Mbp was discovered. In this interval, the peak SNP was located within a small GTPase that positively regulates cellular polarity and growth of root hair tips. Located 20 kb upstream of this peak SNP is an auxin-responsive factor AUX/indole acetic auxin (IAA)-related gene involved in auxin transportation during root nodulation. For %NDFA, nitrate (NO3 -) transporters, NRT1:2 and NRT1.7 (Pv02:8.64), squamosa promoter binding transcriptome factor (Pv08:28.42), and multi-antimicrobial extrusion protein (MATE) efflux family protein (Pv06:10.91) were identified as candidate genes. Three additional QTLs were identified on chromosomes Pv03:5.24, Pv09:25.89, and Pv11: 32.89 Mbp. These key candidate genes from both traits were integrated with previous results on N2 fixation to describe a BNF pathway.
Collapse
Affiliation(s)
- Atena Oladzad
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Abiezer González
- Department of Agroenvironmental Sciences, University of Puerto Rico, Mayagüez, Puerto Rico
| | - Raul Macchiavelli
- Department of Agroenvironmental Sciences, University of Puerto Rico, Mayagüez, Puerto Rico
| | | | - James Beaver
- Department of Agroenvironmental Sciences, University of Puerto Rico, Mayagüez, Puerto Rico
| | - Tim Porch
- USDA-ARS, Tropical Agriculture Research Station, Mayagüez, Puerto Rico
| | - Phillip McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
16
|
Liu J, Liu MX, Qiu LP, Xie F. SPIKE1 Activates the GTPase ROP6 to Guide the Polarized Growth of Infection Threads in Lotus japonicus. THE PLANT CELL 2020; 32:3774-3791. [PMID: 33023954 PMCID: PMC7721321 DOI: 10.1105/tpc.20.00109] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/11/2020] [Accepted: 10/01/2020] [Indexed: 05/22/2023]
Abstract
In legumes, rhizobia attach to root hair tips and secrete nodulation factor to activate rhizobial infection and nodule organogenesis. Endosymbiotic rhizobia enter nodule primordia via a specialized transcellular compartment known as the infection thread (IT). The IT elongates by polar tip growth, following the path of the migrating nucleus along and within the root hair cell. Rho-family ROP GTPases are known to regulate the polarized growth of cells, but their role in regulating polarized IT growth is poorly understood. Here, we show that LjSPK1, a DOCK family guanine nucleotide exchange factor (GEF), interacts with three type I ROP GTPases. Genetic analyses showed that these three ROP GTPases are involved in root hair development, but only LjROP6 is required for IT formation after rhizobia inoculation. Misdirected ITs formed in the root hairs of Ljspk1 and Ljrop6 mutants. We show that LjSPK1 functions as a GEF that activates LjROP6. LjROP6 enhanced the plasma membrane localization LjSPK1 in Nicotiana benthamiana leaf cells and Lotus japonicus root hairs, and LjSPK1 and LjROP6 interact at the plasma membrane. Taken together, these results shed light on how the LjROP6-LjSPK1 module mediates the polarized growth of ITs in L. japonicus.
Collapse
Affiliation(s)
- Jing Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100864, China
| | - Miao Xia Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Li Ping Qiu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
17
|
Zou Q, Luo S, Wu H, He D, Li X, Cheng G. A GMC Oxidoreductase GmcA Is Required for Symbiotic Nitrogen Fixation in Rhizobium leguminosarum bv. viciae. Front Microbiol 2020; 11:394. [PMID: 32265862 PMCID: PMC7105596 DOI: 10.3389/fmicb.2020.00394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/26/2020] [Indexed: 11/13/2022] Open
Abstract
GmcA is a FAD-containing enzyme belonging to the GMC (glucose-methanol-choline oxidase) family of oxidoreductases. A mutation in the Rhizobium leguminosarum gmcA gene was generated by homologous recombination. The mutation in gmcA did not affect the growth of R. leguminosarum, but it displayed decreased antioxidative capacity at H2O2 conditions higher than 5 mM. The gmcA mutant strain displayed no difference of glutathione reductase activity, but significantly lower level of the glutathione peroxidase activity than the wild type. Although the gmcA mutant was able to induce the formation of nodules, the symbiotic ability was severely impaired, which led to an abnormal nodulation phenotype coupled to a 30% reduction in the nitrogen fixation capacity. The observation on ultrastructure of 4-week pea nodules showed that the mutant bacteroids tended to start senescence earlier and accumulate poly-β-hydroxybutyrate (PHB) granules. In addition, the gmcA mutant was severely impaired in rhizosphere colonization. Real-time quantitative PCR showed that the gmcA gene expression was significantly up-regulated in all the detected stages of nodule development, and statistically significant decreases in the expression of the redoxin genes katG, katE, and ohrB were found in gmcA mutant bacteroids. LC-MS/MS analysis quantitative proteomics techniques were employed to compare differential gmcA mutant root bacteroids in response to the wild type infection. Sixty differentially expressed proteins were identified including 33 up-regulated and 27 down-regulated proteins. By sorting the identified proteins according to metabolic function, 15 proteins were transporter protein, 12 proteins were related to stress response and virulence, and 9 proteins were related to transcription factor activity. Moreover, nine proteins related to amino acid metabolism were over-expressed.
Collapse
Affiliation(s)
- Qian Zou
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Sha Luo
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hetao Wu
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Donglan He
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xiaohua Li
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Guojun Cheng
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
18
|
Elliott L, Moore I, Kirchhelle C. Spatio-temporal control of post-Golgi exocytic trafficking in plants. J Cell Sci 2020; 133:133/4/jcs237065. [PMID: 32102937 DOI: 10.1242/jcs.237065] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A complex and dynamic endomembrane system is a hallmark of eukaryotic cells and underpins the evolution of specialised cell types in multicellular organisms. Endomembrane system function critically depends on the ability of the cell to (1) define compartment and pathway identity, and (2) organise compartments and pathways dynamically in space and time. Eukaryotes possess a complex molecular machinery to control these processes, including small GTPases and their regulators, SNAREs, tethering factors, motor proteins, and cytoskeletal elements. Whereas many of the core components of the eukaryotic endomembrane system are broadly conserved, there have been substantial diversifications within different lineages, possibly reflecting lineage-specific requirements of endomembrane trafficking. This Review focusses on the spatio-temporal regulation of post-Golgi exocytic transport in plants. It highlights recent advances in our understanding of the elaborate network of pathways transporting different cargoes to different domains of the cell surface, and the molecular machinery underpinning them (with a focus on Rab GTPases, their interactors and the cytoskeleton). We primarily focus on transport in the context of growth, but also highlight how these pathways are co-opted during plant immunity responses and at the plant-pathogen interface.
Collapse
Affiliation(s)
- Liam Elliott
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Ian Moore
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Charlotte Kirchhelle
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
19
|
Traubenik S, Reynoso MA, Hobecker K, Lancia M, Hummel M, Rosen B, Town C, Bailey-Serres J, Blanco F, Zanetti ME. Reprogramming of Root Cells during Nitrogen-Fixing Symbiosis Involves Dynamic Polysome Association of Coding and Noncoding RNAs. THE PLANT CELL 2020; 32:352-373. [PMID: 31748328 PMCID: PMC7008484 DOI: 10.1105/tpc.19.00647] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/11/2019] [Accepted: 11/20/2019] [Indexed: 05/04/2023]
Abstract
Translational control is a widespread mechanism that allows the cell to rapidly modulate gene expression in order to provide flexibility and adaptability to eukaryotic organisms. We applied translating ribosome affinity purification combined with RNA sequencing to characterize translational regulation of mRNAs at early stages of the nitrogen-fixing symbiosis established between Medicago truncatula and Sinorhizobium meliloti Our analysis revealed a poor correlation between transcriptional and translational changes and identified hundreds of regulated protein-coding and long noncoding RNAs (lncRNAs), some of which are regulated in specific cell types. We demonstrated that a short variant of the lncRNA Trans-acting small interference RNA3 (TAS3) increased its association to the translational machinery in response to rhizobia. Functional analysis revealed that this short variant of TAS3 might act as a target mimic that captures microRNA390, contributing to reduce trans acting small interference Auxin Response Factor production and modulating nodule formation and rhizobial infection. The analysis of alternative transcript variants identified a translationally upregulated mRNA encoding subunit 3 of the SUPERKILLER complex (SKI3), which participates in mRNA decay. Knockdown of SKI3 decreased nodule initiation and development, as well as the survival of bacteria within nodules. Our results highlight the importance of translational control and mRNA decay pathways for the successful establishment of the nitrogen-fixing symbiosis.
Collapse
Affiliation(s)
- Soledad Traubenik
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900-La Plata, Argentina
| | - Mauricio Alberto Reynoso
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900-La Plata, Argentina
| | - Karen Hobecker
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900-La Plata, Argentina
| | - Marcos Lancia
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900-La Plata, Argentina
| | - Maureen Hummel
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521
| | | | | | - Julia Bailey-Serres
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521
| | - Flavio Blanco
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900-La Plata, Argentina
| | - María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900-La Plata, Argentina
| |
Collapse
|
20
|
Zhu G, Gao W, Song X, Sun F, Hou S, Liu N, Huang Y, Zhang D, Ni Z, Chen Q, Guo W. Genome-wide association reveals genetic variation of lint yield components under salty field conditions in cotton (Gossypium hirsutum L.). BMC PLANT BIOLOGY 2020; 20:23. [PMID: 31937242 PMCID: PMC6961271 DOI: 10.1186/s12870-019-2187-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/05/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND Salinity is one of the most significant environmental factors limiting the productivity of cotton. However, the key genetic components responsible for the reduction in cotton yield in saline-alkali soils are still unclear. RESULTS Here, we evaluated three main components of lint yield, single boll weight (SBW), lint percentage (LP) and boll number per plant (BNPP), across 316 G. hirsutum accessions under four salt conditions over two years. Phenotypic analysis indicated that LP was unchanged under different salt conditions, however BNPP decreased significantly and SBW increased slightly under high salt conditions. Based on 57,413 high-quality single nucleotide polymorphisms (SNPs) and genome-wide association study (GWAS) analysis, a total of 42, 91 and 25 stable quantitative trait loci (QTLs) were identified for SBW, LP and BNPP, respectively. Phenotypic and QTL analysis suggested that there was little correlation among the three traits. For LP, 8 stable QTLs were detected simultaneously in four different salt conditions, while fewer repeated QTLs for SBW or BNPP were identified. Gene Ontology (GO) analysis indicated that their regulatory mechanisms were also quite different. Via transcriptome profile data, we detected that 10 genes from the 8 stable LP QTLs were predominantly expressed during fiber development. Further, haplotype analyses found that a MYB gene (GhMYB103), with the two SNP variations in cis-regulatory and coding regions, was significantly correlated with lint percentage, implying a crucial role in lint yield. We also identified that 40 candidate genes from BNPP QTLs were salt-inducible. Genes related to carbohydrate metabolism and cell structure maintenance were rich in plants grown in high salt conditions, while genes related to ion transport were active in plants grown in low salt conditions, implying different regulatory mechanisms for BNPP at high and low salt conditions. CONCLUSIONS This study provides a foundation for elucidating cotton salt tolerance mechanisms and contributes gene resources for developing upland cotton varieties with high yields and salt stress tolerance.
Collapse
Affiliation(s)
- Guozhong Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Wenwei Gao
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi, 830052 China
| | - Xiaohui Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Fenglei Sun
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi, 830052 China
| | - Sen Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Na Liu
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi, 830052 China
| | - Yajie Huang
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi, 830052 China
| | - Dayong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhiyong Ni
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi, 830052 China
| | - Quanjia Chen
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi, 830052 China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
21
|
Jimenez-Jimenez S, Santana O, Lara-Rojas F, Arthikala MK, Armada E, Hashimoto K, Kuchitsu K, Salgado S, Aguirre J, Quinto C, Cárdenas L. Differential tetraspanin genes expression and subcellular localization during mutualistic interactions in Phaseolus vulgaris. PLoS One 2019; 14:e0219765. [PMID: 31437164 PMCID: PMC6705802 DOI: 10.1371/journal.pone.0219765] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/01/2019] [Indexed: 12/19/2022] Open
Abstract
Arbuscular mycorrhizal fungi and rhizobia association with plants are two of the most successful plant-microbe associations that allow the assimilation of P and N by plants, respectively. These mutualistic interactions require a molecular dialogue, i.e., legume roots exude flavonoids or strigolactones which induce the Nod factors or Myc factors synthesis and secretion from the rhizobia or fungi, respectively. These Nod or Myc factors trigger several responses in the plant root, including calcium oscillations, and reactive oxygen species (ROS). Furthermore, superoxide and H2O2 have emerged as key components that regulate the transitions from proliferation to differentiation in the plant meristems. Similar to the root meristem, the nodule meristem accumulates superoxide and H2O2. Tetraspanins are transmembrane proteins that organize into tetraspanin web regions, where they recruit specific proteins into platforms required for signal transduction, membrane fusion, cell trafficking and ROS generation. Plant tetraspanins are scaffolding proteins associated with root radial patterning, biotic and abiotic stress responses, cell fate determination, and hormonal regulation and recently have been reported as a specific marker of exosomes in animal and plant cells and key players at the site of plant fungal infection. In this study, we conducted transcriptional profiling of the tetraspanin family in common bean (Phaseolus vulgaris L. var. Negro Jamapa) to determine the specific expression patterns and subcellular localization of tetraspanins during nodulation or under mycorrhizal association. Our results demonstrate that the tetraspanins are transcriptionally modulated during the mycorrhizal association, but are also expressed in the infection thread and nodule meristem development. Subcellular localization indicates that tetraspanins have a key role in vesicular trafficking, cell division, and root hair polar growth.
Collapse
Affiliation(s)
- Saul Jimenez-Jimenez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Olivia Santana
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Fernando Lara-Rojas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Manoj-Kumar Arthikala
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León-Universidad Nacional Autónoma de México, León, Guanajuato, México
| | - Elisabeth Armada
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Kenji Hashimoto
- Department of Applied Biological Science, Tokyo University of Science, Yamazaki, Noda, Chiba, Japan
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, Yamazaki, Noda, Chiba, Japan
| | - Sandra Salgado
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Jesús Aguirre
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Carmen Quinto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Luis Cárdenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- * E-mail:
| |
Collapse
|
22
|
Rípodas C, Castaingts M, Clúa J, Villafañe J, Blanco FA, Zanetti ME. The PvNF-YA1 and PvNF-YB7 Subunits of the Heterotrimeric NF-Y Transcription Factor Influence Strain Preference in the Phaseolus vulgaris-Rhizobium etli Symbiosis. FRONTIERS IN PLANT SCIENCE 2019; 10:221. [PMID: 30873199 PMCID: PMC6403126 DOI: 10.3389/fpls.2019.00221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/08/2019] [Indexed: 05/23/2023]
Abstract
Transcription factors of the Nuclear Factor Y (NF-Y) family play essential functions in plant development and plasticity, including the formation of lateral root organs such as lateral root and symbiotic nodules. NF-Ys mediate transcriptional responses by acting as heterotrimers composed of three subunits, NF-YA, NF-YB, and NF-YC, which in plants are encoded by relatively large gene families. We have previously shown that, in the Phaseolus vulgaris × Rhizobium etli interaction, the PvNF-YC1 subunit is involved not only in the formation of symbiotic nodules, but also in the preference exhibited by the plant for rhizobial strains that are more efficient and competitive in nodule formation. PvNF-YC1 forms a heterotrimer with the PvNF-YA1 and PvNF-YB7 subunits. Here, we used promoter:reporter fusions to show that both PvNF-YA1 and PvNF-YB7 are expressed in symbiotic nodules. In addition, we report that knock-down of PvNF-YA1 and its close paralog PvNF-YA9 abolished nodule formation by either high or low efficient strains and arrested rhizobial infection. On the other hand, knock-down of PvNF-YB7 only affected the symbiotic outcome of the high efficient interaction, suggesting that other symbiotic NF-YB subunits might be involved in the more general mechanisms of nodule formation. More important, we present functional evidence supporting that both PvNF-YA1 and PvNF-YB7 are part of the mechanisms that allow P. vulgaris plants to discriminate and select those bacterial strains that perform better in nodule formation, most likely by acting in the same heterotrimeric complex that PvNF-YC1.
Collapse
|
23
|
Robert G, Muñoz N, Alvarado-Affantranger X, Saavedra L, Davidenco V, Rodríguez-Kessler M, Estrada-Navarrete G, Sánchez F, Lascano R. Phosphatidylinositol 3-kinase function at very early symbiont perception: a local nodulation control under stress conditions? JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2037-2048. [PMID: 29394394 DOI: 10.1093/jxb/ery030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/24/2018] [Indexed: 05/12/2023]
Abstract
Root hair curling is an early and essential morphological change required for the success of the symbiotic interaction between legumes and rhizobia. At this stage rhizobia grow as an infection thread within root hairs and are internalized into the plant cells by endocytosis, where the PI3K enzyme plays important roles. Previous observations show that stress conditions affect early stages of the symbiotic interaction, from 2 to 30 min post-inoculation, which we term as very early host responses, and affect symbiosis establishment. Herein, we demonstrated the relevance of the very early host responses for the symbiotic interaction. PI3K and the NADPH oxidase complex are found to have key roles in the microsymbiont recognition response, modulating the apoplastic and intracellular/endosomal ROS induction in root hairs. Interestingly, compared with soybean mutant plants that do not perceive the symbiont, we demonstrated that the very early symbiont perception under sublethal saline stress conditions induced root hair death. Together, these results highlight not only the importance of the very early host-responses on later stages of the symbiont interaction, but also suggest that they act as a mechanism for local control of nodulation capacity, prior to the abortion of the infection thread, preventing the allocation of resources/energy for nodule formation under unfavorable environmental conditions.
Collapse
Affiliation(s)
- Germán Robert
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias-INTA, de Septiembre, X5020ICA, Córdoba, Argentina
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield, Córdoba, Argentina
| | - Nacira Muñoz
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias-INTA, de Septiembre, X5020ICA, Córdoba, Argentina
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield, Córdoba, Argentina
| | - Xochitl Alvarado-Affantranger
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Laura Saavedra
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield, Córdoba, Argentina
| | - Vanina Davidenco
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias-INTA, de Septiembre, X5020ICA, Córdoba, Argentina
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Margarita Rodríguez-Kessler
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Georgina Estrada-Navarrete
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Federico Sánchez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Ramiro Lascano
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield, Córdoba, Argentina
| |
Collapse
|
24
|
Jaiswal S, Antala TJ, Mandavia MK, Chopra M, Jasrotia RS, Tomar RS, Kheni J, Angadi UB, Iquebal MA, Golakia BA, Rai A, Kumar D. Transcriptomic signature of drought response in pearl millet (Pennisetum glaucum (L.) and development of web-genomic resources. Sci Rep 2018; 8:3382. [PMID: 29467369 PMCID: PMC5821703 DOI: 10.1038/s41598-018-21560-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/04/2018] [Indexed: 01/12/2023] Open
Abstract
Pearl millet, (Pennisetum glaucum L.), an efficient (C4) crop of arid/semi-arid regions is known for hardiness. Crop is valuable for bio-fortification combating malnutrition and diabetes, higher caloric value and wider climatic resilience. Limited studies are done in pot-based experiments for drought response at gene-expression level, but field-based experiment mimicking drought by withdrawal of irrigation is still warranted. We report de novo assembly-based transcriptomic signature of drought response induced by irrigation withdrawal in pearl millet. We found 19983 differentially expressed genes, 7595 transcription factors, gene regulatory network having 45 hub genes controlling drought response. We report 34652 putative markers (4192 simple sequence repeats, 12111 SNPs and 6249 InDels). Study reveals role of purine and tryptophan metabolism in ABA accumulation mediating abiotic response in which MAPK acts as major intracellular signal sensing drought. Results were validated by qPCR of 13 randomly selected genes. We report the first web-based genomic resource ( http://webtom.cabgrid.res.in/pmdtdb/ ) which can be used for candidate genes-based SNP discovery programs and trait-based association studies. Looking at climatic change, nutritional and pharmaceutical importance of this crop, present investigation has immense value in understanding drought response in field condition. This is important in germplasm management and improvement in endeavour of pearl millet productivity.
Collapse
Affiliation(s)
- Sarika Jaiswal
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Tushar J Antala
- Department of Biochemistry and Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - M K Mandavia
- Department of Biochemistry and Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Meenu Chopra
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Rahul Singh Jasrotia
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Rukam S Tomar
- Department of Biochemistry and Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Jashminkumar Kheni
- Department of Biochemistry and Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - U B Angadi
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - M A Iquebal
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - B A Golakia
- Department of Biochemistry and Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India.
| |
Collapse
|
25
|
Flores AC, Via VD, Savy V, Villagra UM, Zanetti ME, Blanco F. Comparative phylogenetic and expression analysis of small GTPases families in legume and non-legume plants. PLANT SIGNALING & BEHAVIOR 2018; 13:e1432956. [PMID: 29452030 PMCID: PMC5846509 DOI: 10.1080/15592324.2018.1432956] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND Small monomeric GTPases act as molecular switches in several processes that involve polar cell growth, participating mainly in vesicle trafficking and cytoskeleton rearrangements. This gene superfamily has largely expanded in plants through evolution as compared with other Kingdoms, leading to the suggestion that members of each subfamily might have acquired new functions associated to plant-specific processes. Legume plants engage in a nitrogen-fixing symbiotic interaction with rhizobia in a process that involves polar growth processes associated with the infection throughout the root hair. To get insight into the evolution of small GTPases associated with this process, we use a comparative genomic approach to establish differences in the Ras GTPase superfamily between legume and non-legume plants. RESULTS Phylogenetic analyses did not show clear differences in the organization of the different subfamilies of small GTPases between plants that engage or not in nodule symbiosis. Protein alignments revealed a strong conservation at the sequence level of small GTPases previously linked to nodulation by functional genetics. Interestingly, one Rab and three Rop proteins showed conserved amino acid substitutions in legumes, but these changes do not alter the predicted conformational structure of these proteins. Although the steady-state levels of most small GTPases do not change in response to rhizobia, we identified a subset of Rab, Rop and Arf genes whose transcript levels are modulated during the symbiotic interaction, including their spatial distribution along the indeterminate nodule. CONCLUSIONS This study provides a comprehensive study of the small GTPase superfamily in several plant species. The genetic program associated to root nodule symbiosis includes small GTPases to fulfill specific functions during infection and formation of the symbiosomes. These GTPases seems to have been recruited from members that were already present in common ancestors with plants as distant as monocots since we failed to detect asymmetric evolution in any of the subfamily trees. Expression analyses identified a number of legume members that can have undergone neo- or sub-functionalization associated to the spatio-temporal transcriptional control during the onset of the symbiotic interaction.
Collapse
Affiliation(s)
- Ana Claudia Flores
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - Virginia Dalla Via
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - Virginia Savy
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - Ulises Mancini Villagra
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - Flavio Blanco
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| |
Collapse
|
26
|
Li P, Guo W. Genome-wide characterization of the Rab gene family in Gossypium by comparative analysis. BOTANICAL STUDIES 2017; 58:26. [PMID: 28577194 PMCID: PMC5457372 DOI: 10.1186/s40529-017-0181-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/24/2017] [Indexed: 05/10/2023]
Abstract
BACKGROUND Rab protein family is the largest subfamily of small G protein family. As one of the most important families in plant, Rab family plays an important role in the process of plant growth and development. So far, the identification of 57 members of the Rab family in Arabidopsis has been completed. In cotton, the relevant family has not been reported. RESULTS Here, we identified 87, 169, 136, 80 Rabs in the four sequenced cotton species, G. raimondii (D5), G. hirsutum acc. TM-1 (AD1), G. barbadense acc. 3-79 (AD2) and G. arboreum (A2), respectively. Biological information analysis showed that the number of amino acid is 200-300 aa among Rab family members in G. raimondii and the protein molecular weight is between 20 and 30 kDa, which is consistent with the characterization of the Rab protein itself. 87 GrRabs in G. raimondii are divided into eight groups. In each group, intron numbers and subcellular localization of Rab protein are basically the same. We mapped the distribution of GrRab genes on 13 chromosomes of G. raimondii except two genes. Among the 87 GrRabs in G. raimondii, we identified 60 pairs of GrRabs formed in whole genome duplication. Among all the gene pairs, the Ka/Ks values were less than 1. This indicates that it is the results of the purification selection and will help maintain the conservation of gene in structure and function. Further, 4 of the 87 GrRabs showed tandem duplication. They were GrRabA2a vs GrRabD1a and GrRabA2h vs GrRabD1b respectively. Expression patterns analysis of 169 GhRabs in G. hirsutum acc. TM-1 indicates that most Rab family members play a certain role in different tissues/organs and different growth stages of cotton, implying their potential function in the polar growth of pollen tube, root hair and fiber cell, as well as improving stress and disease tolerance. CONCLUSION The systematic investigation of Rab genes in cotton will lay a foundation for understanding the functional roles of different Rab members in the polar growth and stress tolerance.
Collapse
Affiliation(s)
- Peng Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province People’s Republic of China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province People’s Republic of China
| |
Collapse
|
27
|
Abstract
The superfamily of small monomeric GTPases originated in a common ancestor of eukaryotic multicellular organisms and, since then, it has evolved independently in each lineage to cope with the environmental challenges imposed by their different life styles. Members of the small GTPase family function in the control of vesicle trafficking, cytoskeleton rearrangements and signaling during crucial biological processes, such as cell growth and responses to environmental cues. In this review, we discuss the emerging roles of these small GTPases in the pathogenic and symbiotic interactions established by plants with microorganisms present in their nearest environment, in which membrane trafficking is crucial along the different steps of the interaction, from recognition and signal transduction to nutrient exchange.
Collapse
Affiliation(s)
- Claudio Rivero
- a Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas , La Plata , Argentina
| | - Soledad Traubenik
- a Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas , La Plata , Argentina
| | - María Eugenia Zanetti
- a Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas , La Plata , Argentina
| | - Flavio Antonio Blanco
- a Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas , La Plata , Argentina
| |
Collapse
|
28
|
Dalla Via V, Traubenik S, Rivero C, Aguilar OM, Zanetti ME, Blanco FA. The monomeric GTPase RabA2 is required for progression and maintenance of membrane integrity of infection threads during root nodule symbiosis. PLANT MOLECULAR BIOLOGY 2017; 93:549-562. [PMID: 28074430 DOI: 10.1007/s11103-016-0581-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
Progression of the infection canal that conducts rhizobia to the nodule primordium requires a functional Rab GTPase located in Golgi/trans-Golgi that also participate in root hair polar growth. Common bean (Phaseolus vulgaris) symbiotically associates with its partner Rhizobium etli, resulting in the formation of root nitrogen-fixing nodules. Compatible bacteria can reach cortical cells in a tightly regulated infection process, in which the specific recognition of signal molecules is a key step to select the symbiotic partner. In this work, we show that RabA2, a monomeric GTPase from common bean, is required for the progression of the infection canal, referred to as the infection thread (IT), toward the cortical cells. Expression of miss-regulated mutant variants of RabA2 resulted in an increased number of abortive infection events, including bursting of ITs and a reduction in the number of nodules. Nodules formed in these plants were small and contained infected cells with disrupted symbiosome membranes, indicating either early senescence of these cells or defects in the formation of the symbiosome membrane during bacterial release. RabA2 localized to mobile vesicles around the IT, but mutations that affect GTP hydrolysis or GTP/GDP exchange modified this localization. Colocalization of RabA2 with ArfA1 and a Golgi marker indicates that RabA2 localizes in Golgi stacks and the trans-Golgi network. Our results suggest that RabA2 is part of the vesicle transport events required to maintain the integrity of the membrane during IT progression.
Collapse
Affiliation(s)
- Virginia Dalla Via
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, calle 115 y 49 s/n, CP 1900, La Plata, Argentina
| | - Soledad Traubenik
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, calle 115 y 49 s/n, CP 1900, La Plata, Argentina
| | - Claudio Rivero
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, calle 115 y 49 s/n, CP 1900, La Plata, Argentina
| | - O Mario Aguilar
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, calle 115 y 49 s/n, CP 1900, La Plata, Argentina
| | - María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, calle 115 y 49 s/n, CP 1900, La Plata, Argentina
| | - Flavio Antonio Blanco
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, calle 115 y 49 s/n, CP 1900, La Plata, Argentina.
| |
Collapse
|
29
|
Estrada-Navarrete G, Cruz-Mireles N, Lascano R, Alvarado-Affantranger X, Hernández-Barrera A, Barraza A, Olivares JE, Arthikala MK, Cárdenas L, Quinto C, Sanchez F. An Autophagy-Related Kinase Is Essential for the Symbiotic Relationship between Phaseolus vulgaris and Both Rhizobia and Arbuscular Mycorrhizal Fungi. THE PLANT CELL 2016; 28:2326-2341. [PMID: 27577790 PMCID: PMC5059792 DOI: 10.1105/tpc.15.01012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 07/18/2016] [Accepted: 08/29/2016] [Indexed: 05/02/2023]
Abstract
Eukaryotes contain three types of lipid kinases that belong to the phosphatidylinositol 3-kinase (PI3K) family. In plants and Saccharomyces cerevisiae, only PI3K class III family members have been identified. These enzymes regulate the innate immune response, intracellular trafficking, autophagy, and senescence. Here, we report that RNAi-mediated downregulation of common bean (Phaseolus vulgaris) PI3K severely impaired symbiosis in composite P. vulgaris plants with endosymbionts such as Rhizobium tropici and Rhizophagus irregularis Downregulation of Pv-PI3K was associated with a marked decrease in root hair growth and curling. Additionally, infection thread growth, root-nodule number, and symbiosome formation in root nodule cells were severely affected. Interestingly, root colonization by AM fungi and the formation of arbuscules were also abolished in PI3K loss-of-function plants. Furthermore, the transcript accumulation of genes encoding proteins known to interact with PI3K to form protein complexes involved in autophagy was drastically reduced in these transgenic roots. RNAi-mediated downregulation of one of these genes, Beclin1/Atg6, resulted in a similar phenotype as observed for transgenic roots in which Pv-PI3K had been downregulated. Our findings show that an autophagy-related process is crucial for the mutualistic interactions of P. vulgaris with beneficial microorganisms.
Collapse
Affiliation(s)
- Georgina Estrada-Navarrete
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Neftaly Cruz-Mireles
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Ramiro Lascano
- Centro de Investigaciones Agropecuarias, Instituto de Fisiología y Recursos Genéticos Vegetales, CP 5119 Córdoba, Argentina
| | - Xóchitl Alvarado-Affantranger
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Alejandra Hernández-Barrera
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Aarón Barraza
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Juan E Olivares
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Manoj-Kumar Arthikala
- Escuela Nacional de Estudios Superiores-Unidad León, Universidad Nacional Autónoma de México, León, Guanajuato 37684, Mexico
| | - Luis Cárdenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Carmen Quinto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Federico Sanchez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
30
|
Choudhury SR, Pandey S. Phosphorylation-Dependent Regulation of G-Protein Cycle during Nodule Formation in Soybean. THE PLANT CELL 2015; 27:3260-76. [PMID: 26498905 PMCID: PMC4682299 DOI: 10.1105/tpc.15.00517] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/28/2015] [Accepted: 10/05/2015] [Indexed: 05/05/2023]
Abstract
Signaling pathways mediated by heterotrimeric G-protein complexes comprising Gα, Gβ, and Gγ subunits and their regulatory RGS (Regulator of G-protein Signaling) protein are conserved in all eukaryotes. We have shown that the specific Gβ and Gγ proteins of a soybean (Glycine max) heterotrimeric G-protein complex are involved in regulation of nodulation. We now demonstrate the role of Nod factor receptor 1 (NFR1)-mediated phosphorylation in regulation of the G-protein cycle during nodulation in soybean. We also show that during nodulation, the G-protein cycle is regulated by the activity of RGS proteins. Lower or higher expression of RGS proteins results in fewer or more nodules, respectively. NFR1 interacts with RGS proteins and phosphorylates them. Analysis of phosphorylated RGS protein identifies specific amino acids that, when phosphorylated, result in significantly higher GTPase accelerating activity. These data point to phosphorylation-based regulation of G-protein signaling during nodule development. We propose that active NFR1 receptors phosphorylate and activate RGS proteins, which help maintain the Gα proteins in their inactive, trimeric conformation, resulting in successful nodule development. Alternatively, RGS proteins might also have a direct role in regulating nodulation because overexpression of their phospho-mimic version leads to partial restoration of nodule formation in nod49 mutants.
Collapse
Affiliation(s)
| | - Sona Pandey
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| |
Collapse
|
31
|
Dalla Via V, Narduzzi C, Aguilar OM, Zanetti ME, Blanco FA. Changes in the Common Bean Transcriptome in Response to Secreted and Surface Signal Molecules of Rhizobium etli. PLANT PHYSIOLOGY 2015; 169:1356-70. [PMID: 26282238 PMCID: PMC4587446 DOI: 10.1104/pp.15.00508] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/16/2015] [Indexed: 05/08/2023]
Abstract
Establishment of nitrogen-fixing symbiosis requires the recognition of rhizobial molecules to initiate the development of nodules. Using transcriptional profiling of roots inoculated with mutant strains defective in the synthesis of Nod Factor (NF), exopolysaccharide (EPS), or lipopolysaccharide (LPS), we identified 2,606 genes from common bean (Phaseolus vulgaris) that are differentially regulated at early stages of its interaction with Rhizobium etli. Many transcription factors from different families are modulated by NF, EPS, and LPS in different combinations, suggesting that the plant response depends on the integration of multiple signals. Some receptors identified as differentially expressed constitute excellent candidates to participate in signal perception of molecules derived from the bacteria. Several components of the ethylene signal response, a hormone that plays a negative role during early stages of the process, were down-regulated by NF and LPS. In addition, genes encoding proteins involved in small RNA-mediated gene regulation were regulated by these signal molecules, such as Argonaute7, a specific component of the trans-acting short interfering RNA3 pathway, an RNA-dependent RNA polymerase, and an XH/XP domain-containing protein, which is part of the RNA-directed DNA methylation. Interestingly, a number of genes encoding components of the circadian central oscillator were down-regulated by NF and LPS, suggesting that a root circadian clock is adjusted at early stages of symbiosis. Our results reveal a complex interaction of the responses triggered by NF, LPS, and EPS that integrates information of the signals present in the surface or secreted by rhizobia.
Collapse
Affiliation(s)
- Virginia Dalla Via
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900 La Plata, Argentina
| | - Candela Narduzzi
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900 La Plata, Argentina
| | - Orlando Mario Aguilar
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900 La Plata, Argentina
| | - María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900 La Plata, Argentina
| | - Flavio Antonio Blanco
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900 La Plata, Argentina
| |
Collapse
|
32
|
Berson T, von Wangenheim D, Takáč T, Šamajová O, Rosero A, Ovečka M, Komis G, Stelzer EHK, Šamaj J. Trans-Golgi network localized small GTPase RabA1d is involved in cell plate formation and oscillatory root hair growth. BMC PLANT BIOLOGY 2014; 14:252. [PMID: 25260869 PMCID: PMC4180857 DOI: 10.1186/s12870-014-0252-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/18/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND Small Rab GTPases are important regulators of vesicular trafficking in plants. AtRabA1d, a member of the RabA1 subfamily of small GTPases, was previously found in the vesicle-rich apical dome of growing root hairs suggesting a role during tip growth; however, its specific intracellular localization and role in plants has not been well described. RESULTS The transient expression of 35S::GFP:RabA1d construct in Allium porrum and Nicotiana benthamiana revealed vesicular structures, which were further corroborated in stable transformed Arabidopsis thaliana plants. GFP-RabA1d colocalized with the trans-Golgi network marker mCherry-VTI12 and with early FM4-64-labeled endosomal compartments. Late endosomes and endoplasmic reticulum labeled with FYVE-DsRed and ER-DsRed, respectively, were devoid of GFP-RabA1d. The accumulation of GFP-RabA1d in the core of brefeldin A (BFA)-induced-compartments and the quantitative upregulation of RabA1d protein levels after BFA treatment confirmed the association of RabA1d with early endosomes/TGN and its role in vesicle trafficking. Light-sheet microscopy revealed involvement of RabA1d in root development. In root cells, GFP-RabA1d followed cell plate expansion consistently with cytokinesis-related vesicular trafficking and membrane recycling. GFP-RabA1d accumulated in disc-like structures of nascent cell plates, which progressively evolved to marginal ring-like structures of the growing cell plates. During root hair growth and development, GFP-RabA1d was enriched at root hair bulges and at the apical dome of vigorously elongating root hairs. Importantly, GFP-RabA1d signal intensity exhibited an oscillatory behavior in-phase with tip growth. Progressively, this tip localization dissapeared in mature root hairs suggesting a link between tip localization of RabA1d and root hair elongation. Our results support a RabA1d role in events that require vigorous membrane trafficking. CONCLUSIONS RabA1d is located in early endosomes/TGN and is involved in vesicle trafficking. RabA1d participates in both cell plate formation and root hair oscillatory tip growth. The specific GFP-RabA1d subcellular localization confirms a correlation between its specific spatio-temporal accumulation and local vesicle trafficking requirements during cell plate and root hair formation.
Collapse
Affiliation(s)
- Tobias Berson
- />Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, Bonn, D-53115 Germany
| | - Daniel von Wangenheim
- />Buchmann Institute for Molecular Life Sciences, Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 15, Frankfurt am Main, 60438 Germany
| | - Tomáš Takáč
- />Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc, 783 71 Czech Republic
| | - Olga Šamajová
- />Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc, 783 71 Czech Republic
| | - Amparo Rosero
- />Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc, 783 71 Czech Republic
| | - Miroslav Ovečka
- />Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc, 783 71 Czech Republic
| | - George Komis
- />Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc, 783 71 Czech Republic
| | - Ernst HK Stelzer
- />Buchmann Institute for Molecular Life Sciences, Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 15, Frankfurt am Main, 60438 Germany
| | - Jozef Šamaj
- />Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc, 783 71 Czech Republic
| |
Collapse
|
33
|
Robert G, Muñoz N, Melchiorre M, Sánchez F, Lascano R. Expression of animal anti-apoptotic gene Ced-9 enhances tolerance during Glycine max L.-Bradyrhizobium japonicum interaction under saline stress but reduces nodule formation. PLoS One 2014; 9:e101747. [PMID: 25050789 PMCID: PMC4106779 DOI: 10.1371/journal.pone.0101747] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/10/2014] [Indexed: 12/30/2022] Open
Abstract
The mechanisms by which the expression of animal cell death suppressors in economically important plants conferred enhanced stress tolerance are not fully understood. In the present work, the effect of expression of animal antiapoptotic gene Ced-9 in soybean hairy roots was evaluated under root hairs and hairy roots death-inducing stress conditions given by i) Bradyrhizobium japonicum inoculation in presence of 50 mM NaCl, and ii) severe salt stress (150 mM NaCl), for 30 min and 3 h, respectively. We have determined that root hairs death induced by inoculation in presence of 50 mM NaCl showed characteristics of ordered process, with increased ROS generation, MDA and ATP levels, whereas the cell death induced by 150 mM NaCl treatment showed non-ordered or necrotic-like characteristics. The expression of Ced-9 inhibited or at least delayed root hairs death under these treatments. Hairy roots expressing Ced-9 had better homeostasis maintenance, preventing potassium release; increasing the ATP levels and controlling the oxidative damage avoiding the increase of reactive oxygen species production. Even when our results demonstrate a positive effect of animal cell death suppressors in plant cell ionic and redox homeostasis under cell death-inducing conditions, its expression, contrary to expectations, drastically inhibited nodule formation even under control conditions.
Collapse
Affiliation(s)
- Germán Robert
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias-INTA, Córdoba, Argentina
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nacira Muñoz
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias-INTA, Córdoba, Argentina
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Melchiorre
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias-INTA, Córdoba, Argentina
| | - Federico Sánchez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Ramiro Lascano
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias-INTA, Córdoba, Argentina
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
34
|
Bohra A, Pandey MK, Jha UC, Singh B, Singh IP, Datta D, Chaturvedi SK, Nadarajan N, Varshney RK. Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1263-91. [PMID: 24710822 PMCID: PMC4035543 DOI: 10.1007/s00122-014-2301-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/17/2014] [Indexed: 05/08/2023]
Abstract
KEY MESSAGE Given recent advances in pulse molecular biology, genomics-driven breeding has emerged as a promising approach to address the issues of limited genetic gain and low productivity in various pulse crops. The global population is continuously increasing and is expected to reach nine billion by 2050. This huge population pressure will lead to severe shortage of food, natural resources and arable land. Such an alarming situation is most likely to arise in developing countries due to increase in the proportion of people suffering from protein and micronutrient malnutrition. Pulses being a primary and affordable source of proteins and minerals play a key role in alleviating the protein calorie malnutrition, micronutrient deficiencies and other undernourishment-related issues. Additionally, pulses are a vital source of livelihood generation for millions of resource-poor farmers practising agriculture in the semi-arid and sub-tropical regions. Limited success achieved through conventional breeding so far in most of the pulse crops will not be enough to feed the ever increasing population. In this context, genomics-assisted breeding (GAB) holds promise in enhancing the genetic gains. Though pulses have long been considered as orphan crops, recent advances in the area of pulse genomics are noteworthy, e.g. discovery of genome-wide genetic markers, high-throughput genotyping and sequencing platforms, high-density genetic linkage/QTL maps and, more importantly, the availability of whole-genome sequence. With genome sequence in hand, there is a great scope to apply genome-wide methods for trait mapping using association studies and to choose desirable genotypes via genomic selection. It is anticipated that GAB will speed up the progress of genetic improvement of pulses, leading to the rapid development of cultivars with higher yield, enhanced stress tolerance and wider adaptability.
Collapse
Affiliation(s)
- Abhishek Bohra
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324 India
| | - Uday C. Jha
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | - Balwant Singh
- National Research Centre on Plant Biotechnology (NRCPB), New Delhi, 110012 India
| | - Indra P. Singh
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | - Dibendu Datta
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | | | - N. Nadarajan
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324 India
- The University of Western Australia (UWA), Crawley, 6009 Australia
| |
Collapse
|
35
|
Battaglia M, Rípodas C, Clúa J, Baudin M, Aguilar OM, Niebel A, Zanetti ME, Blanco FA. A nuclear factor Y interacting protein of the GRAS family is required for nodule organogenesis, infection thread progression, and lateral root growth. PLANT PHYSIOLOGY 2014; 164:1430-42. [PMID: 24424321 PMCID: PMC3938631 DOI: 10.1104/pp.113.230896] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A C subunit of the heterotrimeric nuclear factor Y (NF-YC1) was shown to play a key role in nodule organogenesis and bacterial infection during the nitrogen fixing symbiosis established between common bean (Phaseolus vulgaris) and Rhizobium etli. To identify other proteins involved in this process, we used the yeast (Saccharomyces cerevisiae) two-hybrid system to screen for NF-YC1-interacting proteins. One of the positive clones encodes a member of the Phytochrome A Signal Transduction1 subfamily of GRAS (for Gibberellic Acid-Insensitive (GAI), Repressor of GAI, and Scarecrow) transcription factors. The protein, named Scarecrow-like13 Involved in Nodulation (SIN1), localizes both to the nucleus and the cytoplasm, but in transgenic Nicotiana benthamiana cells, bimolecular fluorescence complementation suggested that the interaction with NF-YC1 takes place predominantly in the nucleus. SIN1 is expressed in aerial and root tissues, with higher levels in roots and nodules. Posttranscriptional gene silencing of SIN1 using RNA interference (RNAi) showed that the product of this gene is involved in lateral root elongation. However, root cell organization, density of lateral roots, and the length of root hairs were not affected by SIN1 RNAi. In addition, the expression of the RNAi of SIN1 led to a marked reduction in the number and size of nodules formed upon inoculation with R. etli and affected the progression of infection threads toward the nodule primordia. Expression of NF-YA1 and the G2/M transition cell cycle genes Cyclin B and Cell Division Cycle2 was reduced in SIN1 RNAi roots. These data suggest that SIN1 plays a role in lateral root elongation and the establishment of root symbiosis in common bean.
Collapse
|
36
|
Nanjareddy K, Blanco L, Arthikala MK, Affantrange XA, Sánchez F, Lara M. Nitrate regulates rhizobial and mycorrhizal symbiosis in common bean (Phaseolus vulgaris L.). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:281-98. [PMID: 24387000 DOI: 10.1111/jipb.12156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/31/2013] [Indexed: 05/15/2023]
Abstract
Nitrogen-limited conditions are considered to be a prerequisite for legume-rhizobial symbiosis, but the effects of nitrate-rich conditions on symbiotic status remain poorly understood. We addressed this issue by examining rhizobial (Rhizobim tropici) and arbusclar mycorrhizal (Glomus intraradices) symbiosis in Phaseolus vulgaris L. cv. Negro Jamapa under nitrate pre-incubation and continuous nitrate conditions. Our results indicate that nitrate pre-incubation, independent of the concentration, did not affect nodule development. However, the continuous supply of nitrate at high concentrations impaired nodule maturation and nodule numbers. Low nitrate conditions, in addition to positively regulating nodule number, biomass, and nitrogenase activity, also extended the span of nitrogen-fixing activity. By contrast, for arbuscular mycorrhizae, continuous 10 and 50 mmol/L nitrate increased the percent root length colonization, concomitantly reduced arbuscule size, and enhanced ammonia transport without affecting phosphate transport. Therefore, in this manuscript, we have proposed the importance of nitrate as a positive regulator in promoting both rhizobial and mycorrhizal symbiosis in the common bean.
Collapse
Affiliation(s)
- Kalpana Nanjareddy
- Genómica Funcional de Eucariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62271, México; Escuela Nacional de Estudios Superiores-UNAM, León, Blvd.UNAM 2011, Predio El Saucillo y El Potrero, Comunidad de los Tepetates, León, Gto. C.P.37684, Mexico
| | | | | | | | | | | |
Collapse
|
37
|
Zepeda I, Sánchez-López R, Kunkel JG, Bañuelos LA, Hernández-Barrera A, Sánchez F, Quinto C, Cárdenas L. Visualization of highly dynamic F-actin plus ends in growing phaseolus vulgaris root hair cells and their responses to Rhizobium etli nod factors. PLANT & CELL PHYSIOLOGY 2014; 55:580-592. [PMID: 24399235 DOI: 10.1093/pcp/pct202] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Legume plants secrete signaling molecules called flavonoids into the rhizosphere. These molecules activate the transcription of rhizobial nod genes, which encode proteins involved in the synthesis of signaling compounds named Nod factors (NFs). NFs, in turn, trigger changes in plant gene expression, cortical cell dedifferentiation and mitosis, depolarization of the root hair cell membrane potential and rearrangement of the actin cytoskeleton. Actin polymerization plays an important role in apical growth in hyphae and pollen tubes. Using sublethal concentrations of fluorescently labeled cytochalasin D (Cyt-Fl), we visualized the distribution of filamentous actin (F-actin) plus ends in living Phaseolus vulgaris and Arabidopsis root hairs during apical growth. We demonstrated that Cyt-Fl specifically labeled the newly available plus ends of actin microfilaments, which probably represent sites of polymerization. The addition of unlabeled competing cytochalasin reduced the signal, suggesting that the labeled and unlabeled forms of the drug bind to the same site on F-actin. Exposure to Rhizobium etli NFs resulted in a rapid increase in the number of F-actin plus ends in P. vulgaris root hairs and in the re-localization of F-actin plus ends to infection thread initiation sites. These data suggest that NFs promote the formation of F-actin plus ends, which results in actin cytoskeleton rearrangements that facilitate infection thread formation.
Collapse
Affiliation(s)
- Isaac Zepeda
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, UNAM, Apdo. Postal 510-3, Cuernavaca, Morelos 62250, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Mazziotta L, Reynoso MA, Aguilar OM, Blanco FA, Zanetti ME. Transcriptional and functional variation of NF-YC1 in genetically diverse accessions of Phaseolus vulgaris during the symbiotic association with Rhizobium etli. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:808-18. [PMID: 23126265 DOI: 10.1111/j.1438-8677.2012.00683.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 09/06/2012] [Indexed: 05/07/2023]
Abstract
Phaseolus vulgaris (common bean) is an agronomic important legume crop native to America, where two centres of genetic diversification (GD) are recognised, one in Mesoamerica and the other in the south Andes. Mesoamerican bean accessions have preferential and more efficient nodulation with Rhizobium etli strains carrying the allele nodC type-α, which is predominant in soils of Mesoamerica. It was previously demonstrated that the host nuclear factor NF-YC1, which is involved in nodule formation and rhizobial infection, contributes to this preferential selection and enhances nodulation in the domesticated accession NAG12 from Mesoamerica. Here, we show that both domesticated and wild Mesoamerican beans exhibit higher nodulation performance with a nodC type-α than with a nodC type-δ strain. Transcripts of NF-YC1 significantly increased in roots of these accessions 24 h post-inoculation (hpi) with the nodC type-α strain. On the other hand, accessions from the Andean GD centre formed a higher number of nodules with a strain carrying the nodC type-δ, which is predominant in Andean soils. However, NF-YC1 transcript levels did not exhibit significant changes in Andean accessions upon inoculation with the nodC type-δ strain, at least at 24 hpi. RNA interference (RNAi)-mediated gene silencing of NF-YC1 in the domesticated Andean accession Alubia showed that NF-YC1 or a closely related member of this family is required for nodule formation and bacterial infection, in agreement with observations in Mesoamerican common beans. Isolation and sequencing of the full-length ORF of NF-YC1 from Alubia revealed that it was identical to the sequence previously identified in the Mesoamerican accession NAG12. Interestingly, overexpression of NF-YC1 had a negative impact on nodule formation in the Alubia accession, independently of the R. etli lineage. Our findings suggest that transcriptional and functional variation of NF-YC1 occurs among genetically diverse bean accessions, which might positively or negatively contribute to the fine-tuning mechanisms that regulate nodule formation in the common bean-R. etli symbiosis.
Collapse
Affiliation(s)
- L Mazziotta
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-La Plata, CONICET, La Plata, Argentina
| | | | | | | | | |
Collapse
|
39
|
Arthikala MK, Montiel J, Nava N, Santana O, Sánchez-López R, Cárdenas L, Quinto C. PvRbohB negatively regulates Rhizophagus irregularis colonization in Phaseolus vulgaris. PLANT AND CELL PHYSIOLOGY 2013; 54:1391-402. [PMID: 23788647 DOI: 10.1093/pcp/pct089] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
40
|
Rípodas C, Via VD, Aguilar OM, Zanetti ME, Blanco FA. Knock-down of a member of the isoflavone reductase gene family impairs plant growth and nodulation in Phaseolus vulgaris. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 68:81-9. [PMID: 23644278 DOI: 10.1016/j.plaphy.2013.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 04/08/2013] [Indexed: 05/05/2023]
Abstract
Flavonoids and isoflavonoids participate in the signaling exchange between roots of legumes and nitrogen-fixing rhizobia and can promote division of cortical cells during nodule formation by inhibiting auxin transport. Here, we report the characterization of a member of the common bean isoflavone reductase (EC 1.3.1.45, PvIFR1) gene family, an enzyme that participates in the last steps of the biosynthetic pathway of isoflavonoids. Transcript levels of PvIFR1 were detected preferentially in the susceptible zone of roots, augmented upon nitrogen starvation and in response to Rhizobium etli inoculation at very early stages of the interaction. Knockdown of PvIFR1 mediated by RNA interference (RNAi) in common bean composite plants resulted in a reduction of shoot and root length. Furthermore, reduction of PvIFR1 mRNAs also affected growth of lateral roots after emergence, a stage in which auxins are required to establish a persistent meristem. Upon inoculation, the number of nodules formed by different strains of R. etli was significantly lower in IFR RNAi than in control roots. Transcript levels of two auxin-regulated genes are consistent with lower levels of auxin in PvIFR1 silenced roots. These results suggest a complex role of PvIFR1 during plant growth, root development and symbiosis, all processes in which auxin transport is involved.
Collapse
Affiliation(s)
- Carolina Rípodas
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-La Plata, CONICET, Calle 115 y 49 s/n, CP 1900, La Plata, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
41
|
Chen H, Chou M, Wang X, Liu S, Zhang F, Wei G. Profiling of differentially expressed genes in roots of Robinia pseudoacacia during nodule development using suppressive subtractive hybridization. PLoS One 2013; 8:e63930. [PMID: 23776436 PMCID: PMC3679122 DOI: 10.1371/journal.pone.0063930] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 04/09/2013] [Indexed: 11/23/2022] Open
Abstract
Background Legume-rhizobium symbiosis is a complex process that is regulated in the host plant cell through gene expression network. Many nodulin genes that are upregulated during different stages of nodulation have been identified in leguminous herbs. However, no nodulin genes in woody legume trees, such as black locust (Robinia pseudoacacia), have yet been reported. Methodology/Principal findings To identify the nodulin genes involved in R. pseudoacacia-Mesorhizobium amorphae CCNWGS0123 symbiosis, a suppressive subtractive hybridization approach was applied to reveal profiling of differentially expressed genes and two subtracted cDNA libraries each containing 600 clones were constructed. Then, 114 unigenes were identified from forward SSH library by differential screening and the putative functions of these translational products were classified into 13 categories. With a particular interest in regulatory genes, twenty-one upregulated genes encoding potential regulatory proteins were selected based on the result of reverse transcription-polymerase chain reaction (RT-PCR) analysis. They included nine putative transcription genes, eight putative post-translational regulator genes and four membrane protein genes. The expression patterns of these genes were further analyzed by quantitative RT-PCR at different stages of nodule development. Conclusions The data presented here offer the first insights into the molecular foundation underlying R. pseudoacacia–M. amorphae symbiosis. A number of regulatory genes screened in the present study revealed a high level of regulatory complexity (transcriptional, post-transcriptional, translational and post-translational) that is likely essential to develop symbiosis. In addition, the possible roles of these genes in black locust nodulation are discussed.
Collapse
Affiliation(s)
- Hongyan Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Minxia Chou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Xinye Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Sisi Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Feilong Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
42
|
Qi X, Zheng H. Rab-A1c GTPase defines a population of the trans-Golgi network that is sensitive to endosidin1 during cytokinesis in Arabidopsis. MOLECULAR PLANT 2013; 6:847-59. [PMID: 23075992 DOI: 10.1093/mp/sss116] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In plant cells, Rab-A proteins have been implicated to play important roles in membrane trafficking from the trans-Golgi network (TGN) to the plasma membrane/cell wall and to the newly formed cell plate in cytokinesis. But how different Rab-A proteins may work in the TGN is not well studied. We show here that RAB-A1c defines a population of TGN that is partially overlapped with the VHA-a1 marked-TGN. Interestingly, the morphology of RAB-A1c defined-TGN is sensitive to endosidin 1 (ES1), but not to wortmannin. In mitotic cells, RAB-A1c is relocated to the cell plate. We revealed that this process could be interrupted by ES1, but not by wortmannin. In addition, root growth and cytokinesis in root mitotic cells of rab-a1a/b/c triple mutant seedlings are hypersensitive to lower concentrations of ES1. ES1 is known to selectively block the transport of several plasma membrane auxin transporters, including PIN2 and AUX1 at the TGN. Together with the known facts that members of Rab-A1 proteins are involved in auxin-mediated responses in root growth and that mutations in TRAPPII, a protein complex that acts upstream of RAB-A1c, also selectively impair the transport of PIN2 and AUX1 at the TGN, we propose that the Rab-A1-mediated trafficking pathways around the TGN, but not Rab-A1s directly, are the target of ES1.
Collapse
Affiliation(s)
- Xingyun Qi
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec H3A 1B1, Canada
| | | |
Collapse
|
43
|
Barraza A, Estrada-Navarrete G, Rodriguez-Alegria ME, Lopez-Munguia A, Merino E, Quinto C, Sanchez F. Down-regulation of PvTRE1 enhances nodule biomass and bacteroid number in the common bean. THE NEW PHYTOLOGIST 2013; 197:194-206. [PMID: 23121215 DOI: 10.1111/nph.12002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 09/12/2012] [Indexed: 05/02/2023]
Abstract
Legume-rhizobium interactions have been widely studied and characterized, and the disaccharide trehalose has been commonly detected during this symbiotic interaction. It has been proposed that trehalose content in nodules during this symbiotic interaction might be regulated by trehalase. In the present study, we assessed the role of trehalose accumulation by down-regulating trehalase in the nodules of common bean plants. We performed gene expression analysis for trehalase (PvTRE1) during nodule development. PvTRE1 was knocked down by RNA interference (RNAi) in transgenic nodules of the common bean. PvTRE1 expression in nodulated roots is mainly restricted to nodules. Down-regulation of PvTRE1 led to increased trehalose content (78%) and bacteroid number (almost one order of magnitude). In addition, nodule biomass, nitrogenase activity, and GOGAT transcript accumulation were significantly enhanced too. The trehalose accumulation, triggered by PvTRE1 down-regulation, led to a positive impact on the legume-rhizobium symbiotic interaction. This could contribute to the agronomical enhancement of symbiotic nitrogen fixation.
Collapse
MESH Headings
- Agrobacterium/genetics
- Agrobacterium/metabolism
- Autophagy
- Bacterial Load
- Carbohydrate Metabolism
- Cloning, Molecular
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Gene Knockdown Techniques
- Genes, Plant
- Microbial Viability
- Nitrogen Fixation
- Nitrogenase/genetics
- Nitrogenase/metabolism
- Phaseolus/enzymology
- Phaseolus/genetics
- Phaseolus/microbiology
- Phylogeny
- Plant Leaves/enzymology
- Plant Leaves/genetics
- Plant Root Nodulation
- Plants, Genetically Modified/enzymology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/microbiology
- Promoter Regions, Genetic
- RNA Interference
- Rhizobium etli/growth & development
- Rhizobium etli/isolation & purification
- Rhizobium etli/metabolism
- Root Nodules, Plant/enzymology
- Root Nodules, Plant/microbiology
- Symbiosis
- Transformation, Genetic
- Trehalase/genetics
- Trehalase/metabolism
- Trehalose/metabolism
Collapse
Affiliation(s)
- Aarón Barraza
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología/Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, México
| | - Georgina Estrada-Navarrete
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología/Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, México
| | - Maria Elena Rodriguez-Alegria
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología/Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, México
| | - Agustin Lopez-Munguia
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología/Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, México
| | - Enrique Merino
- Departamento de Microbiología Molecular, Instituto de Biotecnología/Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, México
| | - Carmen Quinto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología/Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, México
| | - Federico Sanchez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología/Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, México
| |
Collapse
|
44
|
Lin MH, Gresshoff PM, Ferguson BJ. Systemic regulation of soybean nodulation by acidic growth conditions. PLANT PHYSIOLOGY 2012; 160:2028-39. [PMID: 23054568 PMCID: PMC3510129 DOI: 10.1104/pp.112.204149] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/01/2012] [Indexed: 05/22/2023]
Abstract
Mechanisms inhibiting legume nodulation by low soil pH, although highly prevalent and economically significant, are poorly understood. We addressed this in soybean (Glycine max) using a combination of physiological and genetic approaches. Split-root and grafting studies using an autoregulation-of-nodulation-deficient mutant line, altered in the autoregulation-of-nodulation receptor kinase GmNARK, determined that a systemic, shoot-controlled, and GmNARK-dependent mechanism was critical for facilitating the inhibitory effect. Acid inhibition was independent of aluminum ion concentration and occurred early in nodule development, between 12 and 96 h post inoculation with Bradyrhizobium japonicum. Biological effects were confirmed by measuring transcript numbers of known early nodulation genes. Transcripts decreased on both sides of split-root systems, where only one side was subjected to low-pH conditions. Our findings enhance the present understanding of the innate mechanisms regulating legume nodulation control under acidic conditions, which could benefit future attempts in agriculture to improve nodule development and biological nitrogen fixation in acid-stressed soils.
Collapse
Affiliation(s)
- Meng-Han Lin
- Australian Research Council Centre of Excellence for Integrative Legume Research, School of Agricultural and Food Sciences, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Peter M. Gresshoff
- Australian Research Council Centre of Excellence for Integrative Legume Research, School of Agricultural and Food Sciences, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Brett J. Ferguson
- Australian Research Council Centre of Excellence for Integrative Legume Research, School of Agricultural and Food Sciences, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
45
|
Montiel J, Nava N, Cárdenas L, Sánchez-López R, Arthikala MK, Santana O, Sánchez F, Quinto C. A Phaseolus vulgaris NADPH oxidase gene is required for root infection by Rhizobia. PLANT & CELL PHYSIOLOGY 2012; 53:1751-67. [PMID: 22942250 DOI: 10.1093/pcp/pcs120] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant NADPH oxidases [respiratory burst oxidase homologs (RBOHs)] have emerged as key players in the regulation of plant-pathogen interactions. Nonetheless, their role in mutualistic associations, such as the rhizobia-legume symbiosis, is poorly understood. In this work, nine members of the Phaseolus vulgaris Rboh gene family were identified. The transcript of one of these, PvRbohB, accumulated abundantly in shoots, roots and nodules. PvRbohB promoter activity was detected in meristematic regions of P. vulgaris roots, as well as during infection thread (IT) progression and nodule development. RNA interference (RNAi)-mediated PvRbohB down-regulation in transgenic roots reduced reactive oxygen species (ROS) production and lateral root density, and greatly impaired nodulation. Microscopy analysis revealed that progression of the ITs was impeded at the base of root hairs in PvRbohB-RNAi roots. Furthermore, the few nodules that formed in PvRbohB-down-regulated roots displayed abnormally wide ITs and reduced nitrogen fixation. These findings indicate that this common bean NADPH oxidase is crucial for successful rhizobial colonization and probably maintains proper IT growth and shape.
Collapse
Affiliation(s)
- Jesús Montiel
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62271, México
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Ke D, Fang Q, Chen C, Zhu H, Chen T, Chang X, Yuan S, Kang H, Ma L, Hong Z, Zhang Z. The small GTPase ROP6 interacts with NFR5 and is involved in nodule formation in Lotus japonicus. PLANT PHYSIOLOGY 2012; 159:131-43. [PMID: 22434040 PMCID: PMC3375957 DOI: 10.1104/pp.112.197269] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 03/16/2012] [Indexed: 05/02/2023]
Abstract
Nod Factor Receptor5 (NFR5) is an atypical receptor-like kinase, having no activation loop in the protein kinase domain. It forms a heterodimer with NFR1 and is required for the early plant responses to Rhizobium infection. A Rho-like small GTPase from Lotus japonicus was identified as an NFR5-interacting protein. The amino acid sequence of this Rho-like GTPase is closest to the Arabidopsis (Arabidopsis thaliana) ROP6 and Medicago truncatula ROP6 and was designated as LjROP6. The interaction between Rop6 and NFR5 occurred both in vitro and in planta. No interaction between Rop6 and NFR1 was observed. Green fluorescent protein-tagged ROP6 was localized at the plasma membrane and cytoplasm. The interaction between ROP6 and NFR5 appeared to take place at the plasma membrane. The expression of the ROP6 gene could be detected in vascular tissues of Lotus roots. After inoculation with Mesorhizobium loti, elevated levels of ROP6 expression were found in the root hairs, root tips, vascular bundles of roots, nodule primordia, and young nodules. In transgenic hairy roots expressing ROP6 RNA interference constructs, Rhizobium entry into the root hairs did not appear to be affected, but infection thread growth through the root cortex were severely inhibited, resulting in the development of fewer nodules per plant. These data demonstrate a role of ROP6 as a positive regulator of infection thread formation and nodulation in L. japonicus.
Collapse
Affiliation(s)
| | | | - Chunfen Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China (D.K., Q.F., C.C., H.Z., T.C., X.C., S.Y., H.K., L.M., Z.Z.); and Department of Plant, Soil, and Entomological Sciences and Program of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844–2339 (Z.H.)
| | - Hui Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China (D.K., Q.F., C.C., H.Z., T.C., X.C., S.Y., H.K., L.M., Z.Z.); and Department of Plant, Soil, and Entomological Sciences and Program of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844–2339 (Z.H.)
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China (D.K., Q.F., C.C., H.Z., T.C., X.C., S.Y., H.K., L.M., Z.Z.); and Department of Plant, Soil, and Entomological Sciences and Program of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844–2339 (Z.H.)
| | - Xiaojun Chang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China (D.K., Q.F., C.C., H.Z., T.C., X.C., S.Y., H.K., L.M., Z.Z.); and Department of Plant, Soil, and Entomological Sciences and Program of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844–2339 (Z.H.)
| | - Songli Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China (D.K., Q.F., C.C., H.Z., T.C., X.C., S.Y., H.K., L.M., Z.Z.); and Department of Plant, Soil, and Entomological Sciences and Program of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844–2339 (Z.H.)
| | - Heng Kang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China (D.K., Q.F., C.C., H.Z., T.C., X.C., S.Y., H.K., L.M., Z.Z.); and Department of Plant, Soil, and Entomological Sciences and Program of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844–2339 (Z.H.)
| | | | - Zonglie Hong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China (D.K., Q.F., C.C., H.Z., T.C., X.C., S.Y., H.K., L.M., Z.Z.); and Department of Plant, Soil, and Entomological Sciences and Program of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844–2339 (Z.H.)
| | - Zhongming Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China (D.K., Q.F., C.C., H.Z., T.C., X.C., S.Y., H.K., L.M., Z.Z.); and Department of Plant, Soil, and Entomological Sciences and Program of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844–2339 (Z.H.)
| |
Collapse
|
47
|
Qi X, Kaneda M, Chen J, Geitmann A, Zheng H. A specific role for Arabidopsis TRAPPII in post-Golgi trafficking that is crucial for cytokinesis and cell polarity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:234-48. [PMID: 21689172 DOI: 10.1111/j.1365-313x.2011.04681.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cytokinesis and cell polarity are supported by membrane trafficking from the trans-Golgi network (TGN), but the molecular mechanisms that promote membrane trafficking from the TGN are poorly defined in plant cells. Here we show that TRAPPII in Arabidopsis regulates the post-Golgi trafficking that is crucial for assembly of the cell plate and cell polarity. Disruptions of AtTRS120 or AtTRS130, two genes encoding two key subunits of TRAPPII, result in defective cytokinesis and cell polarity in embryogenesis and seedling development. In attrs120 and attrs130, the organization and trafficking in the endoplasmic reticulum (ER)-Golgi interface are normal. However, post-Golgi trafficking to the cell plate and to the cell wall, but not to the vacuole, is impaired. Furthermore, TRAPPII is required for the selective transport of PIN2, but not PIN1, to the plasma membrane. We revealed that AtTRS130 is co-localized with RAB-A1c. Expression of constitutively active RAB-A1c partially rescues attrs130. RAB-A1c, which resides at the TGN, is delocalized to the cytosol in attrs130. We propose that TRAPPII in Arabidopsis acts upstream of Rab-A GTPases in post-Golgi membrane trafficking in plant cells.
Collapse
Affiliation(s)
- Xingyun Qi
- Developmental Biology Research Initiatives, Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec H3A 1B1, Canada
| | | | | | | | | |
Collapse
|
48
|
Popp C, Ott T. Regulation of signal transduction and bacterial infection during root nodule symbiosis. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:458-67. [PMID: 21489860 DOI: 10.1016/j.pbi.2011.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/15/2011] [Accepted: 03/18/2011] [Indexed: 05/08/2023]
Abstract
Among plant-microbe interactions, root nodule symbiosis is one of the most important beneficial interactions providing legume plants with nitrogenous compounds. Over the past years a number of genes required for root nodule symbiosis has been identified but most recently great advances have been made to dissect signalling pathways and molecular interactions triggered by a set of receptor-like kinases. Genetic and biochemical approaches have not only provided evidence for the cross talk between bacterial infection of the host plant and organogenesis of a root nodule but also gained insights into dynamic regulation processes underlying successful infection events. Here, we summarise recent progress in the understanding of molecular mechanisms that regulate and trigger cellular signalling cascades during this mutualistic interaction.
Collapse
Affiliation(s)
- Claudia Popp
- University of Munich, Genetics, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | | |
Collapse
|
49
|
Qin Y, Shi F, Tang C. Molecular characterization and expression analysis of cDNAs encoding four Rab and two Arf GTPases in the latex of Hevea brasiliensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:729-737. [PMID: 21530287 DOI: 10.1016/j.plaphy.2011.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 03/01/2011] [Indexed: 05/30/2023]
Abstract
In plants, Rab and Arf GTPases are key regulators of vesicle trafficking. To investigate whether these small GTPases (SG) play a role in the regulation of the regeneration of latex (the cytoplasm of the rubber-producing laticifer cell) in Hevea brasiliensis (Hevea hereafter), full-length cDNAs that encode four HbRab and two HbArf GTPases were cloned. The four HbRab proteins showed specific GTP-binding activity when expressed in Escherichia coli. Transcript expression of the six SG genes was investigated by real-time RT-PCR. All genes revealed to be expressed in each of the six Hevea tissues examined, but the expression patterns were different. Four genes, HbArf1, HbRab2, HbRab3 and HbRab4, displayed a preferential expression in latex. The expression of all genes was upregulated by the act of latex exploitation (tapping), and HbRab1 had the highest level of upregulation. Wounding markedly upregulated the expression of two SG genes (HbRab1 and HbArf2), and exogenous methyl jasmonate upregulated all six SG genes. Wounding might upregulate the expression of HbRab1 and HbArf2 through a jasmonic acid-mediated signaling pathway. None of the genes were markedly upregulated by Ethrel (an ethylene releaser and latex stimulator); instead, HbArf2 and HbRab4 were downregulated significantly after a 24 h treatment with Ethrel. This paper gives the first description of Rab and Arf GTPases in Hevea and provides clues for their involvement, HbRab1 in particular, in latex regeneration.
Collapse
Affiliation(s)
- Yunxia Qin
- Key Lab of Rubber Biology, Ministry of Agriculture & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | | | | |
Collapse
|
50
|
Zanetti ME, Blanco FA, Beker MP, Battaglia M, Aguilar OM. A C subunit of the plant nuclear factor NF-Y required for rhizobial infection and nodule development affects partner selection in the common bean-Rhizobium etli symbiosis. THE PLANT CELL 2010; 22:4142-57. [PMID: 21139064 PMCID: PMC3027164 DOI: 10.1105/tpc.110.079137] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/03/2010] [Accepted: 11/12/2010] [Indexed: 05/20/2023]
Abstract
Legume plants are able to interact symbiotically with soil bacteria to form nitrogen-fixing root nodules. Although specific recognition between rhizobia and legume species has been extensively characterized, plant molecular determinants that govern the preferential colonization by different strains within a single rhizobium species have received little attention. We found that the C subunit of the heterotrimeric nuclear factor NF-Y from common bean (Phaseolus vulgaris) NF-YC1 plays a key role in the improved nodulation seen by more efficient strains of rhizobia. Reduction of NF-YC1 transcript levels by RNA interference (RNAi) in Agrobacterium rhizogenes-induced hairy roots leads to the arrest of nodule development and defects in the infection process with either high or low efficiency strains. Induction of three G2/M transition cell cycle genes in response to rhizobia was impaired or attenuated in NF-YC1 RNAi roots, suggesting that this transcription factor might promote nodule development by activating cortical cell divisions. Furthermore, overexpression of this gene has a positive impact on nodulation efficiency and selection of Rhizobium etli strains that are naturally less efficient and bad competitors. Our findings suggest that this transcription factor might be part of a mechanism that links nodule organogenesis with an early molecular dialogue that selectively discriminates between high- and low-quality symbiotic partners, which holds important implications for optimizing legume performance.
Collapse
|