1
|
Wang J, Dai Y, Li X, Zhu L, Liu S, He Y, Zhang J, Song F, Li D. Tomato B-cell lymphoma2 (Bcl2)-associated athanogene 5 (SlBAG5) contributes negatively to immunity against necrotrophic fungus Botrytis cinerea through interacting with SlBAP1 and modulating catalase activity. Int J Biol Macromol 2025; 301:140466. [PMID: 39884610 DOI: 10.1016/j.ijbiomac.2025.140466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/11/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
The evolutionarily conserved and multifunctional B-cell lymphoma2 (Bcl2)-associated athanogene proteins (BAGs), serving as co-chaperone regulators, play a pivotal role in orchestrating plant stress responses. In this study, the possible involvement of tomato SlBAG genes in resistance to Botrytis cinerea was examined. The SlBAG genes respond with different expression change patterns to B. cinerea and defense signaling hormones. SlBAG proteins are individually differentially localized to the nucleus, mitochondria, cytoplasm, endoplasmic reticulum (ER), or vacuole. Silencing of SlBAG5 enhanced immunity to B. cinerea, while overexpression weakened it, affecting Botrytis-induced JA/ET defense gene expression and JA levels. Chitin-induced ROS burst and expression of PTI marker genes SlPTI5 and SlLRR22 were strengthened in SlBAG5-silenced plants but were weakened in SlBAG5-overexpressing plants (SlBAG5-OE) plants. SlBAG5 interacts with BON1 ASSOCIATED PROTEIN 1 (SlBAP1) through its BAG domain, and the stability of SlBAP1 depends on the presence of SlBAG5. Silencing of SlBAP1 conferred increased resistance to B. cinerea through increased expression of JA/ET signaling and defense genes. SlBAP1 functions by recruiting and boosting SlCAT3 activity to remove H2O2. The findings suggest that SlBAG5 suppresses tomato immunity to B. cinerea by stabilizing SlBAP1, which modulates ROS scavenging and acts as a negative regulator of immunity.
Collapse
Affiliation(s)
- Jiali Wang
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Yujie Dai
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaodan Li
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Liya Zhu
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Shixia Liu
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Yeling He
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Jing Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310057, PR China.
| | - Fengming Song
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| | - Dayong Li
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
2
|
Muñoz-Vargas MA, Taboada J, González-Gordo S, Palma JM, Corpas FJ. Characterization of leucine aminopeptidase (LAP) activity in sweet pepper fruits during ripening and its inhibition by nitration and reducing events. PLANT CELL REPORTS 2024; 43:92. [PMID: 38466441 PMCID: PMC10927865 DOI: 10.1007/s00299-024-03179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024]
Abstract
KEY MESSAGE Pepper fruits contain two leucine aminopeptidase (LAP) genes which are differentially modulated during ripening and by nitric oxide. The LAP activity increases during ripening but is negatively modulated by nitration. Leucine aminopeptidase (LAP) is an essential metalloenzyme that cleaves N-terminal leucine residues from proteins but also metabolizes dipeptides and tripeptides. LAPs play a fundamental role in cell protein turnover and participate in physiological processes such as defense mechanisms against biotic and abiotic stresses, but little is known about their involvement in fruit physiology. This study aims to identify and characterize genes encoding LAP and evaluate their role during the ripening of pepper (Capsicum annuum L.) fruits and under a nitric oxide (NO)-enriched environment. Using a data-mining approach of the pepper plant genome and fruit transcriptome (RNA-seq), two LAP genes, designated CaLAP1 and CaLAP2, were identified. The time course expression analysis of these genes during different fruit ripening stages showed that whereas CaLAP1 decreased, CaLAP2 was upregulated. However, under an exogenous NO treatment of fruits, both genes were downregulated. On the contrary, it was shown that during fruit ripening LAP activity increased by 81%. An in vitro assay of the LAP activity in the presence of different modulating compounds including peroxynitrite (ONOO-), NO donors (S-nitrosoglutathione and nitrosocyteine), reducing agents such as reduced glutathione (GSH), L-cysteine (L-Cys), and cyanide triggered a differential response. Thus, peroxynitrite and reducing compounds provoked around 50% inhibition of the LAP activity in green immature fruits, whereas cyanide upregulated it 1.5 folds. To our knowledge, this is the first characterization of LAP in pepper fruits as well as of its regulation by diverse modulating compounds. Based on the capacity of LAP to metabolize dipeptides and tripeptides, it could be hypothesized that the LAP might be involved in the GSH recycling during the ripening process.
Collapse
Affiliation(s)
- María A Muñoz-Vargas
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain
| | - Jorge Taboada
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain
| | - Salvador González-Gordo
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain
| | - José M Palma
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain
| | - Francisco J Corpas
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain.
| |
Collapse
|
3
|
Bruinsma K, Rioja C, Zhurov V, Santamaria ME, Arbona V, Navarro M, Cazaux M, Auger P, Migeon A, Wybouw N, Van Leeuwen T, Diaz I, Gómez-Cadenas A, Grbic M, Navajas M, Grbic V. Host adaptation and specialization in Tetranychidae mites. PLANT PHYSIOLOGY 2023; 193:2605-2621. [PMID: 37437113 DOI: 10.1093/plphys/kiad412] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/15/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
Composite generalist herbivores are comprised of host-adapted populations that retain the ability to shift hosts. The degree and overlap of mechanisms used by host-adapted generalist and specialist herbivores to overcome the same host plant defenses are largely unknown. Tetranychidae mites are exceptionally suited to address the relationship between host adaptation and specialization in herbivores as this group harbors closely related species with remarkably different host ranges-an extreme generalist the two-spotted spider mite (Tetranychus urticae Koch [Tu]) and the Solanaceous specialist Tetranychus evansi (Te). Here, we used tomato-adapted two-spotted spider mite (Tu-A) and Te populations to compare mechanisms underlying their host adaptation and specialization. We show that both mites attenuate induced tomato defenses, including protease inhibitors (PIs) that target mite cathepsin L digestive proteases. While Te solely relies on transcriptional attenuation of PI induction, Tu and Tu-A have elevated constitutive activity of cathepsin L proteases, making them less susceptible to plant anti-digestive proteins. Tu-A and Te also rely on detoxification of tomato constitutive defenses. Te uses esterase and P450 activities, while Tu-A depends on the activity of all major detoxification enzymatic classes to disarm tomato defensive compounds to a lesser extent. Thus, even though both Tu-A and Te use similar mechanisms to counteract tomato defenses, Te can better cope with them. This finding is congruent with the ecological and evolutionary times required to establish mite adaptation and specialization states, respectively.
Collapse
Affiliation(s)
- Kristie Bruinsma
- Department of Biology, The University of Western Ontario, London N6A 5B7, Ontario, Canada
| | - Cristina Rioja
- Department of Biology, The University of Western Ontario, London N6A 5B7, Ontario, Canada
| | - Vladimir Zhurov
- Department of Biology, The University of Western Ontario, London N6A 5B7, Ontario, Canada
| | - Maria Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, 20223 Madrid, Spain
| | - Vicent Arbona
- Department of Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, Campus Riu Sec, E-12071 Castellón, Spain
| | - Marie Navarro
- Department of Biology, The University of Western Ontario, London N6A 5B7, Ontario, Canada
| | - Marc Cazaux
- Department of Biology, The University of Western Ontario, London N6A 5B7, Ontario, Canada
| | - Philippe Auger
- Institut Agro, IRD, Institut national de recherche pour l'agronomie, l'alimentation et l'environnement (INRAE) Centre de Biologie et Gestion des Populations (CBGP), Univ Montpellier, 34988 Montferrier-sur-Lez, France
| | - Alain Migeon
- Institut Agro, IRD, Institut national de recherche pour l'agronomie, l'alimentation et l'environnement (INRAE) Centre de Biologie et Gestion des Populations (CBGP), Univ Montpellier, 34988 Montferrier-sur-Lez, France
| | - Nicky Wybouw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, 20223 Madrid, Spain
| | - Aurelio Gómez-Cadenas
- Department of Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, Campus Riu Sec, E-12071 Castellón, Spain
| | - Miodrag Grbic
- Department of Biology, The University of Western Ontario, London N6A 5B7, Ontario, Canada
- Department of Agriculture and Food, University of La Rioja, Logroño, La Rioja 26006, Spain
- Faculty of Biology, University of Belgrade, Belgrade 11000, Serbia
| | - Maria Navajas
- Institut Agro, IRD, Institut national de recherche pour l'agronomie, l'alimentation et l'environnement (INRAE) Centre de Biologie et Gestion des Populations (CBGP), Univ Montpellier, 34988 Montferrier-sur-Lez, France
| | - Vojislava Grbic
- Department of Biology, The University of Western Ontario, London N6A 5B7, Ontario, Canada
| |
Collapse
|
4
|
Bhattacharya O, Ortiz I, Hendricks N, Walling LL. The tomato chloroplast stromal proteome compendium elucidated by leveraging a plastid protein-localization prediction Atlas. FRONTIERS IN PLANT SCIENCE 2023; 14:1020275. [PMID: 37701797 PMCID: PMC10493611 DOI: 10.3389/fpls.2023.1020275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 06/22/2023] [Indexed: 09/14/2023]
Abstract
Tomato (Solanum lycopersicum) is a model species for studying fruit development, wounding, herbivory, and pathogen attack. Despite tomato's world-wide economic importance and the role of chloroplasts as metabolic hubs and integrators of environmental cues, little is known about the stromal proteome of tomato. Using a high-yielding protocol for chloroplast and stromal protein isolation, MudPIT nano-LC-MS/MS analyses, a robust in-house protein database (the Atlas) for predicting the plastid localization of tomato proteins, and rigorous selection criteria for inclusion/exclusion in the stromal proteome, we identified 1,278 proteins of the tomato stromal proteome. We provide one of the most robust stromal proteomes available to date with empirical evidence for 545 and 92 proteins not previously described for tomato plastids and the Arabidopsis stroma, respectively. The relative abundance of tomato stromal proteins was determined using the exponentially modified protein abundance index (emPAI). Comparison of the abundance of tomato and Arabidopsis stromal proteomes provided evidence for the species-specific nature of stromal protein homeostasis. The manual curation of the tomato stromal proteome classified proteins into ten functional categories resulting in an accessible compendium of tomato chloroplast proteins. After curation, only 91 proteins remained as unknown, uncharacterized or as enzymes with unknown functions. The curation of the tomato stromal proteins also indicated that tomato has a number of paralogous proteins, not present in Arabidopsis, which accumulated to different levels in chloroplasts. As some of these proteins function in key metabolic pathways or in perceiving or transmitting signals critical for plant adaptation to biotic and abiotic stress, these data suggest that tomato may modulate the bidirectional communication between chloroplasts and nuclei in a novel manner. The stromal proteome provides a fertile ground for future mechanistic studies in the field of tomato chloroplast-nuclear signaling and are foundational for our goal of elucidating the dynamics of the stromal proteome controlled by the solanaceous-specific, stromal, and wound-inducible leucine aminopeptidase A of tomato.
Collapse
Affiliation(s)
- Oindrila Bhattacharya
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Irma Ortiz
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Nathan Hendricks
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Linda L. Walling
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
5
|
Liu Y, Yu Y, Fei S, Chen Y, Xu Y, Zhu Z, He Y. Overexpression of Sly-miR398b Compromises Disease Resistance against Botrytis cinerea through Regulating ROS Homeostasis and JA-Related Defense Genes in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:2572. [PMID: 37447133 DOI: 10.3390/plants12132572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
MicroRNAs (miRNAs) have been shown to be critical components in plant immunity. MicroRNA398 (miR398) is a highly conserved miRNA in all land plants and plays crucial roles in diverse biotic stress responses. However, the role of miR398 has not yet been characterized in tomato resistance against Botrytis cinerea. In this report, the transcript levels of sly-miR398b were strongly decreased in B. cinerea-infected leaves and the overexpression of sly-miR398b resulted in enhanced susceptibility. The attenuated expression of cytosol Cu/Zn-SOD (CSD1), chloroplast Cu/Zn-SOD (CSD2), and guaiacol peroxidase (GPOD), as well as the decreased activities of superoxide dismutase (SOD) and GPOD, collectively led to increased hydrogen peroxide (H2O2) accumulation in sly-miR398b overexpressing plants. Furthermore, sly-miR398b was induced by methyl jasmonate (MeJA) treatment. The overexpression of sly-miR398b suppressed the expression of TomLoxD, LapA, and PR-STH2 in response to B. cinerea and MeJA treatment. Our data demonstrate that sly-miR398b overexpression negatively regulates the resistance to B. cinerea in tomato by inducing the accumulation of reactive oxygen species (ROS) and downregulating the expression of MeJA-responsive defense genes.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yiren Yu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Shihong Fei
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuxin Chen
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yunmin Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhujun Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yong He
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
6
|
Aguado ME, Izquierdo M, González-Matos M, Varela AC, Méndez Y, Del Rivero MA, Rivera DG, González-Bacerio J. Parasite Metalo-aminopeptidases as Targets in Human Infectious Diseases. Curr Drug Targets 2023; 24:416-461. [PMID: 36825701 DOI: 10.2174/1389450124666230224140724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Parasitic human infectious diseases are a worldwide health problem due to the increased resistance to conventional drugs. For this reason, the identification of novel molecular targets and the discovery of new chemotherapeutic agents are urgently required. Metalo- aminopeptidases are promising targets in parasitic infections. They participate in crucial processes for parasite growth and pathogenesis. OBJECTIVE In this review, we describe the structural, functional and kinetic properties, and inhibitors, of several parasite metalo-aminopeptidases, for their use as targets in parasitic diseases. CONCLUSION Plasmodium falciparum M1 and M17 aminopeptidases are essential enzymes for parasite development, and M18 aminopeptidase could be involved in hemoglobin digestion and erythrocyte invasion and egression. Trypanosoma cruzi, T. brucei and Leishmania major acidic M17 aminopeptidases can play a nutritional role. T. brucei basic M17 aminopeptidase down-regulation delays the cytokinesis. The inhibition of Leishmania basic M17 aminopeptidase could affect parasite viability. L. donovani methionyl aminopeptidase inhibition prevents apoptosis but not the parasite death. Decrease in Acanthamoeba castellanii M17 aminopeptidase activity produces cell wall structural modifications and encystation inhibition. Inhibition of Babesia bovis growth is probably related to the inhibition of the parasite M17 aminopeptidase, probably involved in host hemoglobin degradation. Schistosoma mansoni M17 aminopeptidases inhibition may affect parasite development, since they could participate in hemoglobin degradation, surface membrane remodeling and eggs hatching. Toxoplasma gondii M17 aminopeptidase inhibition could attenuate parasite virulence, since it is apparently involved in the hydrolysis of cathepsin Cs- or proteasome-produced dipeptides and/or cell attachment/invasion processes. These data are relevant to validate these enzymes as targets.
Collapse
Affiliation(s)
- Mirtha E Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Ana C Varela
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Yanira Méndez
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Maday A Del Rivero
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Daniel G Rivera
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
- Department of Biochemistry, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| |
Collapse
|
7
|
Lamanchai K, Smirnoff N, Salmon DL, Ngernmuen A, Roytrakul S, Leetanasaksakul K, Kittisenachai S, Jantasuriyarat C. OsVTC1-1 Gene Silencing Promotes a Defense Response in Rice and Enhances Resistance to Magnaporthe oryzae. PLANTS (BASEL, SWITZERLAND) 2022; 11:2189. [PMID: 36079570 PMCID: PMC9460107 DOI: 10.3390/plants11172189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/13/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Rice blast disease is a serious disease in rice caused by Magnaporthe oryzae (M. oryzae). Ascorbic acid (AsA), or vitamin C, is a strong antioxidant that prevents oxidative damage to cellular components and plays an essential role in plant defense response. GDP-D-mannose pyrophosphorylase (GMP or VTC1) is an enzyme that generates GDP-D-mannose for AsA, cell wall, and glycoprotein synthesis. The OsVTC1 gene has three homologs in the rice genome: OsVTC1-1, OsVTC1-3, and OsVTC1-8. Using OsVTC1-1 RNAi lines, this study investigated the role of the OsVTC1-1 gene during rice blast fungus inoculation. The OsVTC1-1 RNAi inoculated with rice blast fungus induced changes to cell wall monosaccharides, photosynthetic efficiency, reactive oxygen species (ROS) accumulation, and malondialdehyde (MDA) content. Additionally, the OsVTC1-1 RNAi lines were shown to be more resistant to rice blast fungus than the wild type. Genes and proteins related to defense response, plant hormone synthesis, and signaling pathways, especially salicylic acid and jasmonic acid, were up-regulated in the OsVTC1-1 RNAi lines after rice blast inoculation. These results suggest that the OsVTC1-1 gene regulates rice blast resistance through several defense mechanisms, including hormone synthesis and signaling pathways.
Collapse
Affiliation(s)
- Kanyanat Lamanchai
- Department of Genetics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Deborah L. Salmon
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Athipat Ngernmuen
- Department of Zoology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Kantinan Leetanasaksakul
- Functional Proteomics Technology, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Suthathip Kittisenachai
- Functional Proteomics Technology, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Chatchawan Jantasuriyarat
- Department of Genetics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart (CASTNAR, NRU-KU), Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
8
|
Cowles KN, Block AK, Barak JD. Xanthomonas hortorum pv. gardneri TAL effector AvrHah1 is necessary and sufficient for increased persistence of Salmonella enterica on tomato leaves. Sci Rep 2022; 12:7313. [PMID: 35508535 PMCID: PMC9068798 DOI: 10.1038/s41598-022-11456-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/25/2022] [Indexed: 01/16/2023] Open
Abstract
Salmonella enterica is ubiquitous in the plant environment, persisting in the face of UV stress, plant defense responses, desiccation, and nutrient limitation. These fluctuating conditions of the leaf surface result in S. enterica population decline. Biomultipliers, such as the phytopathogenic bacterium Xanthomonas hortorum pv. gardneri (Xhg), alter the phyllosphere to the benefit of S. enterica. Specific Xhg-dependent changes to this niche that promote S. enterica persistence remain unclear, and this work focuses on identifying factors that lead to increased S. enterica survival on leaves. Here, we show that the Xhg transcription activator-like effector AvrHah1 is both necessary and sufficient for increased survival of S. enterica on tomato leaves. An Xhg avrHah1 mutant fails to influence S. enterica survival while addition of avrHah1 to X. vesicatoria provides a gain of function. Our results indicate that although Xhg stimulates a robust immune response from the plant, AvrHah1 is not required for these effects. In addition, we demonstrate that cellular leakage that occurs during disease is independent of AvrHah1. Investigation of the interaction between S. enterica, Xhg, and the plant host provides information regarding how an inhospitable environment changes during infection and can be transformed into a habitable niche.
Collapse
Affiliation(s)
- Kimberly N Cowles
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Anna K Block
- Center for Medical, Agricultural, and Veterinary Entomology, U.S. Department of Agriculture-Agricultural Research Service, Gainesville, FL, USA
| | - Jeri D Barak
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
9
|
Heo AY, Koo YM, Choi HW. Biological Control Activity of Plant Growth Promoting Rhizobacteria Burkholderia contaminans AY001 against Tomato Fusarium Wilt and Bacterial Speck Diseases. BIOLOGY 2022; 11:biology11040619. [PMID: 35453817 PMCID: PMC9028202 DOI: 10.3390/biology11040619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Burkholderia contaminans belongs to B. cepacia complex (Bcc), those of which are found in various environmental conditions. In this study, a novel strain AY001 of B. contaminans (AY001) was identified from the rhizosphere soil sample. AY001 showed (i) various plant growth-promoting rhizobacteria (PGPR)-related traits, (ii) antagonistic activity against different plant pathogenic fungi, (iii) suppressive activity against tomato Fusarium wilt disease, (iv) induced systemic acquired resistance (ISR)-triggering activity, and (v) production of various antimicrobial and plant immune-inducing secondary metabolites. These results suggest that AY001 is, indeed, a successful PGPR, and it can be practically used in tomato cultivation to alleviate biotic and abiotic stresses. However, further safety studies on the use of AY001 will be needed to ensure its safe use in the Agricultural system. Abstract Plant growth promoting rhizobacteria (PGPR) is not only enhancing plant growth, but also inducing resistance against a broad range of pathogens, thus providing effective strategies to substitute chemical products. In this study, Burkholderia contaminans AY001 (AY001) is isolated based on its broad-spectrum antifungal activity. AY001 not only inhibited fungal pathogen growth in dual culture and culture filtrate assays, but also showed various PGPR traits, such as nitrogen fixation, phosphate solubilization, extracellular protease production, zinc solubilization and indole-3-acetic acid (IAA) biosynthesis activities. Indeed, AY001 treatment significantly enhanced growth of tomato plants and enhanced resistance against two distinct pathogens, F. oxysporum f.sp. lycopersici and Pseudomonas syringae pv. tomato. Real-time qPCR analyses revealed that AY001 treatment induced jasmonic acid/ethylene-dependent defense-related gene expression, suggesting its Induced Systemic Resistance (ISR)-eliciting activity. Gas chromatography–mass spectrometry (GC-MS) analysis of culture filtrate of AY001 revealed production of antimicrobial compounds, including di(2-ethylhexyl) phthalate and pyrrolo [1,2-a]pyrazine-1,4-dione, hexahydro-3-(phenylmethyl). Taken together, our newly isolated AY001 showed promising PGPR and ISR activities in tomato plants, suggesting its potential use as a biofertilizer and biocontrol agent.
Collapse
Affiliation(s)
- A Yeong Heo
- Department of Plant Medicals, College of Life Sciences and Biotechnology, Andong National University, Andong 36729, Korea; (A.Y.H.); (Y.M.K.)
- Division of Forest Insect Pests & Diseases, National Institute of Forest Science, Seoul 02455, Korea
| | - Young Mo Koo
- Department of Plant Medicals, College of Life Sciences and Biotechnology, Andong National University, Andong 36729, Korea; (A.Y.H.); (Y.M.K.)
| | - Hyong Woo Choi
- Department of Plant Medicals, College of Life Sciences and Biotechnology, Andong National University, Andong 36729, Korea; (A.Y.H.); (Y.M.K.)
- Correspondence: ; Tel.: +82-54-820-5509
| |
Collapse
|
10
|
Zhang L, Song Y, Liu K, Gong F. The tomato Mediator subunit MED8 positively regulates plant response to Botrytis cinerea. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153533. [PMID: 34601339 DOI: 10.1016/j.jplph.2021.153533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
The Mediator complex acts as a bridge between specific transcription factors and the RNA polymerase II transcriptional machinery and plays a central role in plant immunity. Biological induction of plant resistance against pathogens requires endogenous hormone jasmonic acid (JA) and involves profound transcriptional changes controlled by the key transcription factor MYC2. Arabidopsis thaliana Mediator subunit 25 (AtMED25) regulates JA-dependent defense response through interacting with MYC2. Here, we report that the tomato (Solanum lycopersicum, Sl) Mediator subunit 8 (SlMED8) is another essential component in JA-dependent defense response. The transcript levels of SlMED8 could not be affected by treatment with MeJA, SA, ABA, and mechanical wounding. Yeast two-hybrid assays showed that SlMED8 could interact with itself, SlMYC2, and SlMED25, respectively. In addition, ectopic overexpression of SlMED8 complemented the late flowering and pathogen hypersensitivity phenotypes of Arabidopsis med8 mutant. Overexpression of SlMED8 rendered transgenic plants higher tolerance to necrotrophic pathogen Botrytis cinerea. Meanwhile, SlMED8 antisense plants displayed compromised resistance to Botrytis cinerea. Consistent with this, differential expression levels of several JA-responsive genes were detected within the transgenic plants. Overall, our results identified an important control point in the regulation of the JA signaling pathway within the transcriptional machinery.
Collapse
Affiliation(s)
- Lili Zhang
- Shanghai Key Lab of Protected Horticultural Technology; Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China.
| | - Yunpeng Song
- Shanghai Key Lab of Protected Horticultural Technology; Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China.
| | - Kaige Liu
- Shanghai Key Lab of Protected Horticultural Technology; Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China.
| | - Fanrong Gong
- Shanghai Key Lab of Protected Horticultural Technology; Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China.
| |
Collapse
|
11
|
González-Bacerio J, Izquierdo M, Aguado ME, Varela AC, González-Matos M, Del Rivero MA. Using microbial metalo-aminopeptidases as targets in human infectious diseases. MICROBIAL CELL 2021; 8:239-246. [PMID: 34692819 PMCID: PMC8485470 DOI: 10.15698/mic2021.10.761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022]
Abstract
Several microbial metalo-aminopeptidases are emerging as novel targets for the treatment of human infectious diseases. Some of them are well validated as targets and some are not; some are essential enzymes and others are important for virulence and pathogenesis. For another group, it is not clear if their enzymatic activity is involved in the critical functions that they mediate. But one aspect has been established: they display relevant roles in bacteria and protozoa that could be targeted for therapeutic purposes. This work aims to describe these biological functions for several microbial metalo-aminopeptidases.
Collapse
Affiliation(s)
- Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba.,Department of Biochemistry, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| | - Mirtha Elisa Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| | - Ana C Varela
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maday Alonso Del Rivero
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| |
Collapse
|
12
|
Ke L, Wang Y, Schäfer M, Städler T, Zeng R, Fabian J, Pulido H, De Moraes CM, Song Y, Xu S. Transcriptomic Profiling Reveals Shared Signalling Networks Between Flower Development and Herbivory-Induced Responses in Tomato. FRONTIERS IN PLANT SCIENCE 2021; 12:722810. [PMID: 34630470 PMCID: PMC8493932 DOI: 10.3389/fpls.2021.722810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/18/2021] [Indexed: 06/02/2023]
Abstract
Most flowering plants must defend themselves against herbivores for survival and attract pollinators for reproduction. Although traits involved in plant defence and pollinator attraction are often localised in leaves and flowers, respectively, they will show a diffuse evolution if they share the same molecular machinery and regulatory networks. We performed RNA-sequencing to characterise and compare transcriptomic changes involved in herbivory-induced defences and flower development, in tomato leaves and flowers, respectively. We found that both the herbivory-induced responses and flower development involved alterations in jasmonic acid signalling, suppression of primary metabolism and reprogramming of secondary metabolism. We identified 411 genes that were involved in both processes, a number significantly higher than expected by chance. Genetic manipulation of key regulators of induced defences also led to the expression changes in the same genes in both leaves and flowers. Targeted metabolomic analysis showed that among closely related tomato species, jasmonic acid and α-tomatine are correlated in flower buds and herbivory-induced leaves. These findings suggest that herbivory-induced responses and flower development share a common molecular machinery and likely have coevolved in nature.
Collapse
Affiliation(s)
- Lanlan Ke
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Yangzi Wang
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Martin Schäfer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Thomas Städler
- Plant Ecological Genetics Group, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jörg Fabian
- Institute for Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Hannier Pulido
- Department of Environmental Systems Sciences, ETH Zürich, Zürich, Switzerland
| | | | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuqing Xu
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
13
|
Tlak Gajger I, Smodiš Škerl MI, Šoštarić P, Šuran J, Sikirić P, Vlainić J. Physiological and Immunological Status of Adult Honeybees ( Apis mellifera) Fed Sugar Syrup Supplemented with Pentadecapeptide BPC 157. BIOLOGY 2021; 10:891. [PMID: 34571768 PMCID: PMC8467873 DOI: 10.3390/biology10090891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 01/18/2023]
Abstract
Various factors contribute to a decline in diversity and number of bees. Here, an integrated approach in experimental BPC 157 therapy was implemented, combining laboratory-controlled and field study results. The aim of a study was to assess the effects of BPC 157 additional feeding of newly emerged worker honeybees on few biochemical and immunological parameters in hemolymph (glucose, trehalose, lipids, proteins, vitellogenin, glucose-oxidase (GOX)), and hypopharyngeal gland (HPG), in laboratory-controlled conditions. Additionally, to examine the physiological status of protein digestion, the enzymatic activity of leucine aminopeptidase (LAP) in the mid-guts of worker honeybees was analyzed. It was found that individual honeybees, in hoarding cages, following BPC 157 administration through carbohydrate food, showed positive physiological changes when compared to the control groups. Those results were complemented by strong and visible LAP activity, particularly noticeable in the apical parts of the epithelial cells in the mid-guts of young worker honeybees originated from treated hives, suggesting a link between alternative oral therapy with BPC 157 and honeybees' immunity.
Collapse
Affiliation(s)
- Ivana Tlak Gajger
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Petra Šoštarić
- Department for Pharmacology, Medical Faculty, University of Zagreb, 10000 Zagreb, Croatia; (P.Š.); (P.S.)
| | - Jelena Šuran
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Predrag Sikirić
- Department for Pharmacology, Medical Faculty, University of Zagreb, 10000 Zagreb, Croatia; (P.Š.); (P.S.)
| | - Josipa Vlainić
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Institute Ruđer Bošković, 10000 Zagreb, Croatia
| |
Collapse
|
14
|
Abbasi S, Sadeghi A, Omidvari M, Tahan V. The stimulators and responsive genes to induce systemic resistance against pathogens: An exclusive focus on tomato as a model plant. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Gamir J, Minchev Z, Berrio E, García JM, De Lorenzo G, Pozo MJ. Roots drive oligogalacturonide-induced systemic immunity in tomato. PLANT, CELL & ENVIRONMENT 2021; 44:275-289. [PMID: 33070347 PMCID: PMC7883634 DOI: 10.1111/pce.13917] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 05/21/2023]
Abstract
Oligogalacturonides (OGs) are fragments of pectin released from the plant cell wall during insect or pathogen attack. They can be perceived by the plant as damage signals, triggering local and systemic defence responses. Here, we analyse the dynamics of local and systemic responses to OG perception in tomato roots or shoots, exploring their impact across the plant and their relevance in pathogen resistance. Targeted and untargeted metabolomics and gene expression analysis in plants treated with purified OGs revealed that local responses were transient, while distal responses were stronger and more sustained. Remarkably, changes were more conspicuous in roots, even upon foliar application of the OGs. The treatments differentially activated the synthesis of defence-related hormones and secondary metabolites including flavonoids, alkaloids and lignans, some of them exclusively synthetized in roots. Finally, the biological relevance of the systemic defence responses activated upon OG perception was confirmed, as the treatment induced systemic resistance to Botrytis cinerea. Overall, this study shows the differential regulation of tomato defences upon OGs perception in roots and shoots and reveals the key role of roots in the coordination of the plant responses to damage sensing.
Collapse
Affiliation(s)
- Jordi Gamir
- Department of Soil Microbiology and Symbiotic SystemsEstación Experimental del Zaidín (CSIC)GranadaSpain
- Dipartimento di Biologia e Biotecnologie C. DarwinSapienza Università di RomaRomeItaly
| | - Zhivko Minchev
- Department of Soil Microbiology and Symbiotic SystemsEstación Experimental del Zaidín (CSIC)GranadaSpain
| | - Estefanía Berrio
- Department of Soil Microbiology and Symbiotic SystemsEstación Experimental del Zaidín (CSIC)GranadaSpain
| | - Juan M. García
- Department of Soil Microbiology and Symbiotic SystemsEstación Experimental del Zaidín (CSIC)GranadaSpain
| | - Giulia De Lorenzo
- Present address: Metabolic Integration and Cell Signaling Group, Plant Physiology Section, Unidad Asociada a la EEZ‐CSIC, Dept Ciencias Agrarias y del Medio Natural, Universitat Jaume ICastellónSpain
| | - Maria J. Pozo
- Department of Soil Microbiology and Symbiotic SystemsEstación Experimental del Zaidín (CSIC)GranadaSpain
| |
Collapse
|
16
|
Sáez C, Flores-León A, Montero-Pau J, Sifres A, Dhillon NPS, López C, Picó B. RNA-Seq Transcriptome Analysis Provides Candidate Genes for Resistance to Tomato Leaf Curl New Delhi Virus in Melon. FRONTIERS IN PLANT SCIENCE 2021; 12:798858. [PMID: 35116050 PMCID: PMC8805612 DOI: 10.3389/fpls.2021.798858] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/29/2021] [Indexed: 05/10/2023]
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) emerged in the Mediterranean Basin in 2012 as the first DNA bipartite begomovirus (Geminiviridae family), causing severe yield and economic losses in cucurbit crops. A major resistance locus was identified in the wild melon accession WM-7 (Cucumis melo kachri group), but the mechanisms involved in the resistant response remained unknown. In this work, we used RNA-sequencing to identify disease-associated genes that are differentially expressed in the course of ToLCNDV infection and could contribute to resistance. Transcriptomes of the resistant WM-7 genotype and the susceptible cultivar Piñonet Piel de Sapo (PS) (C. melo ibericus group) in ToLCNDV and mock inoculated plants were compared at four time points during infection (0, 3, 6, and 12 days post inoculation). Different gene expression patterns were observed over time in the resistant and susceptible genotypes in comparison to their respective controls. Differentially expressed genes (DEGs) in ToLCNDV-infected plants were classified using gene ontology (GO) terms, and genes of the categories transcription, DNA replication, and helicase activity were downregulated in WM-7 but upregulated in PS, suggesting that reduced activity of these functions reduces ToLCNDV replication and intercellular spread and thereby contributes to resistance. DEGs involved in the jasmonic acid signaling pathway, photosynthesis, RNA silencing, transmembrane, and sugar transporters entail adverse consequences for systemic infection in the resistant genotype, and lead to susceptibility in PS. The expression levels of selected candidate genes were validated by qRT-PCR to corroborate their differential expression upon ToLCNDV infection in resistant and susceptible melon. Furthermore, single nucleotide polymorphism (SNPs) with an effect on structural functionality of DEGs linked to the main QTLs for ToLCNDV resistance have been identified. The obtained results pinpoint cellular functions and candidate genes that are differentially expressed in a resistant and susceptible melon line in response to ToLCNDV, an information of great relevance for breeding ToLCNDV-resistant melon cultivars.
Collapse
Affiliation(s)
- Cristina Sáez
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
- *Correspondence: Cristina Sáez,
| | - Alejandro Flores-León
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
| | - Javier Montero-Pau
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de València, Valencia, Spain
| | - Alicia Sifres
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
| | - Narinder P. S. Dhillon
- World Vegetable Center, East and Southeast Asia, Research and Training Station, Kasetsart University, Nakhon Pathom, Thailand
| | - Carmelo López
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
- Carmelo López,
| | - Belén Picó
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
- Belén Picó,
| |
Collapse
|
17
|
Wang J, Li D, Chen N, Chen J, Mu C, Yin K, He Y, Liu H. Plant grafting relieves asymmetry of jasmonic acid response induced by wounding between scion and rootstock in tomato hypocotyl. PLoS One 2020; 15:e0241317. [PMID: 33232332 PMCID: PMC7685457 DOI: 10.1371/journal.pone.0241317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/13/2020] [Indexed: 11/19/2022] Open
Abstract
Plant grafting is a sequential wound healing process. However, whether wounding induces a different jasmonic acid (JA) response within half a day (12 h) after grafting or non-grafting remains unclear. Using the tomato hypocotyl grafting method, we show that grafting alleviates the asymmetrical accumulation of JA and jasmonic acid isoleucine conjugate (JA-Ile) in scion and rootstock caused by wounding, and from 2 h after tomato micrografting, grafting obviously restored the level of JA-Ile in the scion and rootstock. Meanwhile, five JA-related genes, SlLOX11, SlAOS, SlCOI1, SlLAPA and SlJA2L, are detected and show significant changes in transcriptional expression patterns within 12 h of grafting, from asymmetrical to symmetrical, when the expression of 30 JA- and defense-related genes were analyzed. The results indicated that grafting alleviates the asymmetrical JA and defense response between scion and rootstock of the tomato hypocotyl within 12 h as induced by wounding. Moreover, we demonstrate that in the very early hours after grafting, JA-related genes may be involved in a molecular mechanism that changes asymmetrical expression as induced by wounding between scion and rootstock, thereby promoting wound healing and grafting success.
Collapse
Affiliation(s)
- Jiaqi Wang
- Plant and Microbe Interaction Lab, Hei Longjiang Bayi Agricultural University, Daqing, Hei Longjiang, P. R. China
- College of Life Science, Shaoxing University, Zhejiang, P. R. China
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture, Zhanjiang, Guangdong, P. R. China
- National Field Genebank for Tropical Fruit, Institute of South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Dongliang Li
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture, Zhanjiang, Guangdong, P. R. China
- National Field Genebank for Tropical Fruit, Institute of South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China
| | - Ni Chen
- College of Life Science, Shaoxing University, Zhejiang, P. R. China
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture, Zhanjiang, Guangdong, P. R. China
- National Field Genebank for Tropical Fruit, Institute of South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China
| | - Jingjing Chen
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture, Zhanjiang, Guangdong, P. R. China
- National Field Genebank for Tropical Fruit, Institute of South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China
| | - Changjun Mu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Kuide Yin
- Plant and Microbe Interaction Lab, Hei Longjiang Bayi Agricultural University, Daqing, Hei Longjiang, P. R. China
- * E-mail: (KY); (YH); (HL)
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, P. R. China
- * E-mail: (KY); (YH); (HL)
| | - Heng Liu
- Plant and Microbe Interaction Lab, Hei Longjiang Bayi Agricultural University, Daqing, Hei Longjiang, P. R. China
- College of Life Science, Shaoxing University, Zhejiang, P. R. China
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture, Zhanjiang, Guangdong, P. R. China
- National Field Genebank for Tropical Fruit, Institute of South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, P. R. China
- * E-mail: (KY); (YH); (HL)
| |
Collapse
|
18
|
Barajas HR, Martínez-Sánchez S, Romero MF, Álvarez CH, Servín-González L, Peimbert M, Cruz-Ortega R, García-Oliva F, Alcaraz LD. Testing the Two-Step Model of Plant Root Microbiome Acquisition Under Multiple Plant Species and Soil Sources. Front Microbiol 2020; 11:542742. [PMID: 33162946 PMCID: PMC7581803 DOI: 10.3389/fmicb.2020.542742] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/11/2020] [Indexed: 12/23/2022] Open
Abstract
The two-step model for plant root microbiomes considers soil as the primary microbial source. Active selection of the plant’s bacterial inhabitants results in a biodiversity decrease toward roots. We collected sixteen samples of in situ ruderal plant roots and their soils and used these soils as the main microbial input for single genotype tomatoes grown in a greenhouse. Our main goal was to test the soil influence in the structuring of rhizosphere microbiomes, minimizing environmental variability, while testing multiple plant species. We massively sequenced the 16S rRNA and shotgun metagenomes of the soils, in situ plants, and tomato roots. We identified a total of 271,940 bacterial operational taxonomic units (OTUs) within the soils, rhizosphere and endospheric microbiomes. We annotated by homology a total of 411,432 (13.07%) of the metagenome predicted proteins. Tomato roots did follow the two-step model with lower α-diversity than soil, while ruderal plants did not. Surprisingly, ruderal plants are probably working as a microenvironmental oasis providing moisture and plant-derived nutrients, supporting larger α-diversity. Ruderal plants and their soils are closer according to their microbiome community composition than tomato and its soil, based on OTUs and protein comparisons. We expected that tomato β-diversity clustered together with their soil, if it is the main rhizosphere microbiome structuring factor. However, tomato microbiome β-diversity was associated with plant genotype in most samples (81.2%), also supported by a larger set of enriched proteins in tomato rhizosphere than soil or ruderals. The most abundant bacteria found in soils was the Actinobacteria Solirubrobacter soli, ruderals were dominated by the Proteobacteria Sphingomonas sp. URGHD0057, and tomato mainly by the Bacteroidetes Ohtaekwangia koreensis, Flavobacterium terrae, Niastella vici, and Chryseolinea serpens. We calculated a metagenomic tomato root core of 51 bacterial genera and 2,762 proteins, which could be the basis for microbiome-oriented plant breeding programs. We attributed a larger diversity in ruderal plants roots exudates as an effect of the moisture and nutrient acting as a microbial harbor. The tomato and ruderal metagenomic differences are probably due to plant domestication trade-offs, impacting plant-bacteria interactions.
Collapse
Affiliation(s)
- Hugo R Barajas
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Shamayim Martínez-Sánchez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miguel F Romero
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Cristóbal Hernández Álvarez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Servín-González
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mariana Peimbert
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Rocío Cruz-Ortega
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Felipe García-Oliva
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Mexico
| | - Luis D Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
19
|
Bhattacharya O, Ortiz I, Walling LL. Methodology: an optimized, high-yield tomato leaf chloroplast isolation and stroma extraction protocol for proteomics analyses and identification of chloroplast co-localizing proteins. PLANT METHODS 2020; 16:131. [PMID: 32983250 PMCID: PMC7513546 DOI: 10.1186/s13007-020-00667-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/04/2020] [Indexed: 06/09/2023]
Abstract
BACKGROUND Chloroplasts are critical organelles that perceive and convey metabolic and stress signals to different cellular components, while remaining the seat of photosynthesis and a metabolic factory. The proteomes of intact leaves, chloroplasts, and suborganellar fractions of plastids have been evaluated in the model plant Arabidopsis, however fewer studies have characterized the proteomes of plastids in crops. Tomato (Solanum lycopersicum) is an important world-wide crop and a model system for the study of wounding, herbivory and fruit ripening. While significant advances have been made in understanding proteome and metabolome changes in fruit ripening, far less is known about the tomato chloroplast proteome or its subcompartments. RESULTS With the long-term goal of understanding chloroplast proteome dynamics in response to stress, we describe a high-yielding method to isolate intact tomato chloroplasts and stromal proteins for proteomic studies. The parameters that limit tomato chloroplast yields were identified and revised to increase yields. Compared to published data, our optimized method increased chloroplast yields by 6.7- and 4.3-fold relative to published spinach and Arabidopsis leaf protocols, respectively; furthermore, tomato stromal protein yields were up to 79-fold higher than Arabidopsis stromal proteins yields. We provide immunoblot evidence for the purity of the stromal proteome isolated using our enhanced methods. In addition, we leverage our nanoliquid chromatography tandem mass spectrometry (nanoLC-MS/MS) data to assess the quality of our stromal proteome. Using strict criteria, proteins detected by 1 peptide spectral match, by one peptide, or were sporadically detected were designated as low-level contaminating proteins. A set of 254 proteins that reproducibly co-isolated with the tomato chloroplast stroma were identified. The subcellular localization, frequency of detection, normalized spectral abundance, and functions of the co-isolating proteins are discussed. CONCLUSIONS Our optimized method for chloroplast isolation increased the yields of tomato chloroplasts eightfold enabling the proteomics analysis of the chloroplast stromal proteome. The set of 254 proteins that co-isolate with the chloroplast stroma provides opportunities for developing a better understanding of the extensive and dynamic interactions of chloroplasts with other organelles. These co-isolating proteins also have the potential for expanding our knowledge of proteins that are co-localized in multiple subcellular organelles.
Collapse
Affiliation(s)
- Oindrila Bhattacharya
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA 92521 USA
| | - Irma Ortiz
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA 92521 USA
| | - Linda L. Walling
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA 92521 USA
| |
Collapse
|
20
|
Mbaluto CM, Ahmad EM, Fu M, Martínez-Medina A, van Dam NM. The impact of Spodoptera exigua herbivory on Meloidogyne incognita-induced root responses depends on the nematodes' life cycle stages. AOB PLANTS 2020; 12:plaa029. [PMID: 32665829 PMCID: PMC7336558 DOI: 10.1093/aobpla/plaa029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/17/2020] [Indexed: 05/22/2023]
Abstract
Induced responses to above-ground and below-ground herbivores may interact via systemic signalling in plants. We investigated whether the impact of above-ground herbivory on root-knot nematode-induced responses depends on the nematode's life cycle stages. Tomato plants were infected with the nematode (Meloidogyne incognita) for 5, 15 or 30 days before receiving Spodoptera exigua caterpillars above-ground. We collected root materials after 24 h of caterpillar feeding. We investigated phytohormones and α-tomatine levels, and the expression of defence and glycoalkaloid metabolism (GAME) marker genes in tomato roots. Nematode infection alone increased the endogenous root levels of jasmonic acid (JA), salicylic acid (SA), abscisic acid (ABA), α-tomatine and the expression of the GLYCOALKALOID METABOLISM 1 (GAME1) gene mostly at 30 days post-nematode inoculation. Caterpillar feeding alone upregulated Lipoxygenase D and downregulated Basic-β-1-glucanase and GAME1 expression in roots. On nematode-infected plants, caterpillar feeding decreased JA levels, but it increased the expression of Leucine aminopeptidase A. The induction patterns of ABA and SA suggest that caterpillars cause cross-talk between the JA-signalling pathway and the SA and ABA pathways. Our results show that caterpillar feeding attenuated the induction of the JA pathway triggered by nematodes, mostly in the nematodes' reproduction stage. These results generate a better understanding of the molecular and chemical mechanisms underlying frequent nematode-plant-caterpillar interactions in natural and agricultural ecosystems.
Collapse
Affiliation(s)
- Crispus M Mbaluto
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-Universität-Jena, Jena, Germany
| | - Esraa M Ahmad
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Melody Fu
- Faculty of Land and Food Systems, University of British Columbia, BC, Canada
| | - Ainhoa Martínez-Medina
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Plant-Microorganism Interaction Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Nicole M van Dam
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-Universität-Jena, Jena, Germany
| |
Collapse
|
21
|
Zhang H, Zhang H, Lin J. Systemin-mediated long-distance systemic defense responses. THE NEW PHYTOLOGIST 2020; 226:1573-1582. [PMID: 32083726 DOI: 10.1111/nph.16495] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/13/2020] [Indexed: 05/20/2023]
Abstract
Systemin, a peptide plant hormone of 18 amino acids, coordinates local and systemic immune responses. The activation of the canonical systemin-mediated systemic signaling pathway involves systemin release from its precursor prosystemin, systemin binding to its membrane receptor SYSTEMIN RECEPTOR1 (SYR1), and the transport of long-distance signaling molecules, including jasmonic acid, the prosystemin mRNA, volatile organic compounds and possibly systemin itself. Here, we review emerging evidence that the disordered structure and unconventional processing and secretion of systemin contribute to the regulation of systemin-mediated signaling during plant defense. We highlight recent advances in systemin research, which elucidated how cells integrate multiple long-distance signals into the systemic defense response. In addition, we discuss the perception of systemin by SYR1 and its mediation of downstream defense responses.
Collapse
Affiliation(s)
- Haiyan Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Hui Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jinxing Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design and College of Biological Sciences, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
22
|
Knegt B, Meijer TT, Kant MR, Kiers ET, Egas M. Tetranychus evansi spider mite populations suppress tomato defenses to varying degrees. Ecol Evol 2020; 10:4375-4390. [PMID: 32489604 PMCID: PMC7246200 DOI: 10.1002/ece3.6204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/30/2019] [Accepted: 04/13/2019] [Indexed: 01/30/2023] Open
Abstract
Plant defense suppression is an offensive strategy of herbivores, in which they manipulate plant physiological processes to increase their performance. Paradoxically, defense suppression does not always benefit the defense-suppressing herbivores, because lowered plant defenses can also enhance the performance of competing herbivores and can expose herbivores to increased predation. Suppression of plant defense may therefore entail considerable ecological costs depending on the presence of competitors and natural enemies in a community. Hence, we hypothesize that the optimal magnitude of suppression differs among locations. To investigate this, we studied defense suppression across populations of Tetranychus evansi spider mites, a herbivore from South America that is an invasive pest of solanaceous plants including cultivated tomato, Solanum lycopersicum, in other parts of the world. We measured the level of expression of defense marker genes in tomato plants after infestation with mites from eleven different T. evansi populations. These populations were chosen across a range of native (South American) and non-native (other continents) environments and from different host plant species. We found significant variation at three out of four defense marker genes, demonstrating that T. evansi populations suppress jasmonic acid- and salicylic acid-dependent plant signaling pathways to varying degrees. While we found no indication that this variation in defense suppression was explained by differences in host plant species, invasive populations tended to suppress plant defense to a smaller extent than native populations. This may reflect either the genetic lineage of T. evansi-as all invasive populations we studied belong to one linage and both native populations to another-or the absence of specialized natural enemies in invasive T. evansi populations.
Collapse
Affiliation(s)
- Bram Knegt
- Department of Evolutionary and Population BiologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Tomas T. Meijer
- Department of Evolutionary and Population BiologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Merijn R. Kant
- Department of Evolutionary and Population BiologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - E. Toby Kiers
- Department of Ecological ScienceVU UniversityAmsterdamThe Netherlands
| | - Martijn Egas
- Department of Evolutionary and Population BiologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
23
|
Chen YL, Fan KT, Hung SC, Chen YR. The role of peptides cleaved from protein precursors in eliciting plant stress reactions. THE NEW PHYTOLOGIST 2020; 225:2267-2282. [PMID: 31595506 DOI: 10.1111/nph.16241] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/17/2019] [Indexed: 05/18/2023]
Abstract
As sessile organisms, plants are exposed to diverse abiotic and biotic stresses, and thus have developed complex signaling mechanisms that orchestrate multiple stress responses. Plant peptides have recently emerged as key signaling molecules of stress responses, not only to mechanical wounding and pathogen infection but also to nutrient imbalance, drought and high salinity. The currently identified stress-related signaling peptides in plants are derived from proteolytic processing of protein precursors. Here, we review these protein-derived peptides and the evidence for their functions in stress signaling. We recommend potential research directions that could clarify their roles in stress biology, and propose possible crosstalk with regard to the physiological outcome. The stress-centric perspective allows us to highlight the crucial roles of peptides in regulating the dynamics of stress physiology. Inspired by historic and recent findings, we review how peptides initiate complex molecular interactions to coordinate biotic and abiotic stress responses in plants.
Collapse
Affiliation(s)
- Ying-Lan Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Kai-Ting Fan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Sheng-Chi Hung
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
24
|
α-Ionone, an Apocarotenoid, Induces Plant Resistance to Western Flower Thrips, Frankliniella occidentalis, Independently of Jasmonic Acid. Molecules 2019; 25:molecules25010017. [PMID: 31861560 PMCID: PMC6982998 DOI: 10.3390/molecules25010017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 11/17/2022] Open
Abstract
Apocarotenoids, such as β-cyclocitral, α-ionone, β-ionone, and loliolide, are derived from carotenes via chemical or enzymatic processes. Recent studies revealed that β-cyclocitral and loliolide play an important role in various aspects of plant physiology, such as stress responses, plant growth, and herbivore resistance. However, information on the physiological role of α-ionone is limited. We herein investigated the effects of α-ionone on plant protection against herbivore attacks. The pretreatment of whole tomato (Solanum lycopersicum) plants with α-ionone vapor decreased the survival rate of western flower thrips (Frankliniella occidentalis) without exhibiting insecticidal activity. Exogenous α-ionone enhanced the expression of defense-related genes, such as basic β-1,3-glucanase and basic chitinase genes, in tomato leaves, but not that of jasmonic acid (JA)- or loliolide-responsive genes. The pretreatment with α-ionone markedly decreased egg deposition by western flower thrips in the JA-insensitive Arabidopsis (Arabidopsis thaliana) mutant coi1-1. We also found that common cutworm (Spodoptera litura) larvae fed on α-ionone-treated tomato plants exhibited a reduction in weight. These results suggest that α-ionone induces plant resistance to western flower thrips through a different mode of action from that of JA and loliolide.
Collapse
|
25
|
Bacillus amyloliquefaciens MBI600 differentially induces tomato defense signaling pathways depending on plant part and dose of application. Sci Rep 2019; 9:19120. [PMID: 31836790 PMCID: PMC6910970 DOI: 10.1038/s41598-019-55645-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/18/2019] [Indexed: 12/21/2022] Open
Abstract
The success of Bacillus amyloliquefaciens as a biological control agent relies on its ability to outgrow plant pathogens. It is also thought to interact with its plant host by inducing systemic resistance. In this study, the ability of B. amyloliquefaciens MBI600 to elicit defense (or other) responses in tomato seedlings and plants was assessed upon the expression of marker genes and transcriptomic analysis. Spray application of Serifel, a commercial formulation of MBI600, induced responses in a dose-dependent manner. Low dosage primed plant defense by activation of SA-responsive genes. Suggested dosage induced defense by mediating synergistic cross-talk between JA/ET and SA-signaling. Saturation of tomato roots or leaves with MBI600 elicitors activated JA/ET signaling at the expense of SA-mediated responses. The complex signaling network that is implicated in MBI600-tomato seedling interactions was mapped. MBI600 and flg22 (a bacterial flagellin peptide) elicitors induced, in a similar manner, biotic and abiotic stress responses by the coordinated activation of genes involved in JA/ET biosynthesis as well as hormone and redox signaling. This is the first study to suggest the activation of plant defense following the application of a commercial microbial formulation under conditions of greenhouse crop production.
Collapse
|
26
|
Drinkwater N, Malcolm TR, McGowan S. M17 aminopeptidases diversify function by moderating their macromolecular assemblies and active site environment. Biochimie 2019; 166:38-51. [DOI: 10.1016/j.biochi.2019.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/10/2019] [Indexed: 12/24/2022]
|
27
|
Phosphonic Acid Analogues of Phenylglycine as Inhibitors of Aminopeptidases: Comparison of Porcine Aminopeptidase N, Bovine Leucine Aminopeptidase, Tomato Acidic Leucine Aminopeptidase and Aminopeptidase from Barley Seeds. Pharmaceuticals (Basel) 2019; 12:ph12030139. [PMID: 31533309 PMCID: PMC6789573 DOI: 10.3390/ph12030139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/22/2022] Open
Abstract
The inhibitory activity of 14 racemic phosphonic acid analogs of phenylglycine, substituted in aromatic rings, towards porcine aminopeptidase N (pAPN) and barley seed aminopeptidase was determined experimentally. The obtained patterns of the inhibitory activity against the two enzymes were similar. The obtained data served as a basis for studying the binding modes of these inhibitors by pAPN using molecular modeling. It was found that their aminophosphonate fragments were bound in a highly uniform manner and that the difference in their affinities most likely resulted from the mode of substitution of their phenyl rings. The obtained binding modes towards pAPN were compared, with these predicted for bovine lens leucine aminopeptidase (blLAP) and tomato acidic leucine aminopeptidase (tLAPA). The performed studies indicated that the binding manner of the phenylglycine analogs to biLAP and tLAPA are significantly similar and differ slightly from that predicted for pAPN.
Collapse
|
28
|
Characterization of Solanum melongena Thioesterases Related to Tomato Methylketone Synthase 2. Genes (Basel) 2019; 10:genes10070549. [PMID: 31323901 PMCID: PMC6678348 DOI: 10.3390/genes10070549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 11/16/2022] Open
Abstract
2-Methylketones are involved in plant defense and fragrance and have industrial applications as flavor additives and for biofuel production. We isolated three genes from the crop plant Solanum melongena (eggplant) and investigated these as candidates for methylketone production. The wild tomato methylketone synthase 2 (ShMKS2), which hydrolyzes β-ketoacyl-acyl carrier proteins (ACP) to release β-ketoacids in the penultimate step of methylketone synthesis, was used as a query to identify three homologs from S. melongena: SmMKS2-1, SmMKS2-2, and SmMKS2-3. Expression and functional characterization of SmMKS2s in E. coli showed that SmMKS2-1 and SmMKS2-2 exhibited the thioesterase activity against different β-ketoacyl-ACP substrates to generate the corresponding saturated and unsaturated β-ketoacids, which can undergo decarboxylation to form their respective 2-methylketone products, whereas SmMKS2-3 showed no activity. SmMKS2-1 was expressed at high level in leaves, stems, roots, flowers, and fruits, whereas expression of SmMKS2-2 and SmMKS2-3 was mainly in flowers and fruits, respectively. Expression of SmMKS2-1 was induced in leaves by mechanical wounding, and by methyl jasmonate or methyl salicylate, but SmMKS2-2 and SmMKS2-3 genes were not induced. SmMKS2-1 is a candidate for methylketone-based defense in eggplant, and both SmMKS2-1 and SmMKS2-2 are novel MKS2 enzymes for biosynthesis of methylketones as feedstocks to biofuel production.
Collapse
|
29
|
Stührwohldt N, Schaller A. Regulation of plant peptide hormones and growth factors by post-translational modification. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:49-63. [PMID: 30047205 DOI: 10.1111/plb.12881] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/20/2018] [Indexed: 05/24/2023]
Abstract
The number, diversity and significance of peptides as regulators of cellular differentiation, growth, development and defence of plants has long been underestimated. Peptides have now emerged as an important class of signals for cell-to-cell communication over short distances, and also for long-range signalling. We refer to these signalling molecules as peptide growth factors and peptide hormones, respectively. As compared to remarkable progress with respect to the mechanisms of peptide perception and signal transduction, the biogenesis of signalling peptides is still in its infancy. This review focuses on the biogenesis and activity of small post-translationally modified peptides. These peptides are derived from inactive pre-pro-peptides of approximately 70-120 amino acids. Multiple post-translational modifications (PTMs) may be required for peptide maturation and activation, including proteolytic processing, tyrosine sulfation, proline hydroxylation and hydroxyproline glycosylation. While many of the enzymes responsible for these modifications have been identified, their impact on peptide activity and signalling is not fully understood. These PTMs may or may not be required for bioactivity, they may inactivate the peptide or modify its signalling specificity, they may affect peptide stability or targeting, or its binding affinity with the receptor. In the present review, we will first introduce the peptides that undergo PTMs and for which these PTMs were shown to be functionally relevant. We will then discuss the different types of PTMs and the impact they have on peptide activity and plant growth and development. We conclude with an outlook on the open questions that need to be addressed in future research.
Collapse
Affiliation(s)
- N Stührwohldt
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - A Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
30
|
Chen D, Shao M, Sun S, Liu T, Zhang H, Qin N, Zeng R, Song Y. Enhancement of Jasmonate-Mediated Antiherbivore Defense Responses in Tomato by Acetic Acid, a Potent Inducer for Plant Protection. FRONTIERS IN PLANT SCIENCE 2019; 10:764. [PMID: 31231416 PMCID: PMC6566139 DOI: 10.3389/fpls.2019.00764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/24/2019] [Indexed: 05/13/2023]
Abstract
Acetic acid (AA) has been proved as a chemical that could prime the jasmonic acid (JA) signaling pathway for plant drought tolerance. In this study, the capability of AA for priming of tomato defense against a chewing caterpillar Spodoptera litura and its underlying molecular mechanism were evaluated. AA pretreatment significantly increased tomato resistance against S. litura larvae. Upon larval attack, tomato plants pretreated with AA exhibited increased transcript levels of defense-related genes and elevated activities of polyphenol oxidase (PPO) and peroxidase (POD), and accumulation of protease inhibitor. Moreover, AA pretreatment resulted in upregulated transcription of JA biosynthesis genes and elevated JA accumulation in tomato seedlings upon insect attack. Furthermore, an apparent loss of AA-induced resistance was observed in a JA pathway-impaired mutant suppressor of prosystemin-mediated responses8 (spr8). These results indicate that AA enhances jasmonate-mediated antiherbivore defense responses in tomato. This raises the possibility of use of AA, a basic and simple biochemical compound, as a promising inducer for management of agricultural pests.
Collapse
Affiliation(s)
- Daoqian Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Min Shao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaozhi Sun
- Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tingting Liu
- Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hao Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ningning Qin
- Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Yuanyuan Song,
| |
Collapse
|
31
|
Schimmel BCJ, Alba JM, Wybouw N, Glas JJ, Meijer TT, Schuurink RC, Kant MR. Distinct Signatures of Host Defense Suppression by Plant-Feeding Mites. Int J Mol Sci 2018; 19:E3265. [PMID: 30347842 PMCID: PMC6214137 DOI: 10.3390/ijms19103265] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 01/09/2023] Open
Abstract
Tomato plants are attacked by diverse herbivorous arthropods, including by cell-content-feeding mites, such as the extreme generalist Tetranychus urticae and specialists like Tetranychus evansi and Aculops lycopersici. Mite feeding induces plant defense responses that reduce mite performance. However, T. evansi and A. lycopersici suppress plant defenses via poorly understood mechanisms and, consequently, maintain a high performance on tomato. On a shared host, T. urticae can be facilitated by either of the specialist mites, likely due to the suppression of plant defenses. To better understand defense suppression and indirect plant-mediated interactions between herbivorous mites, we used gene-expression microarrays to analyze the transcriptomic changes in tomato after attack by either a single mite species (T. urticae, T. evansi, A. lycopersici) or two species simultaneously (T. urticae plus T. evansi or T. urticae plus A. lycopersici). Additionally, we assessed mite-induced changes in defense-associated phytohormones using LC-MS/MS. Compared to non-infested controls, jasmonates (JAs) and salicylate (SA) accumulated to higher amounts upon all mite-infestation treatments, but the response was attenuated after single infestations with defense-suppressors. Strikingly, whereas 8 to 10% of tomato genes were differentially expressed upon single infestations with T. urticae or A. lycopersici, respectively, only 0.1% was altered in T. evansi-infested plants. Transcriptome analysis of dual-infested leaves revealed that A. lycopersici primarily suppressed T. urticae-induced JA defenses, while T. evansi dampened T. urticae-triggered host responses on a transcriptome-wide scale. The latter suggests that T. evansi not solely down-regulates plant gene expression, but rather directs it back towards housekeeping levels. Our results provide valuable new insights into the mechanisms underlying host defense suppression and the plant-mediated facilitation of competing herbivores.
Collapse
Affiliation(s)
- Bernardus C J Schimmel
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| | - Juan M Alba
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| | - Nicky Wybouw
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium.
| | - Joris J Glas
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| | - Tomas T Meijer
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE Amsterdam, The Netherlands.
| | - Merijn R Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Bensoussan N, Zhurov V, Yamakawa S, O'Neil CH, Suzuki T, Grbić M, Grbić V. The Digestive System of the Two-Spotted Spider Mite, Tetranychus urticae Koch, in the Context of the Mite-Plant Interaction. FRONTIERS IN PLANT SCIENCE 2018; 9:1206. [PMID: 30271412 PMCID: PMC6142783 DOI: 10.3389/fpls.2018.01206] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/26/2018] [Indexed: 05/07/2023]
Abstract
The two-spotted spider mite (TSSM), Tetranychus urticae Koch (Acari: Tetranychidae), is one of the most polyphagous herbivores, feeding on more than 1,100 plant species. Its wide host range suggests that TSSM has an extraordinary ability to modulate its digestive and xenobiotic physiology. The analysis of the TSSM genome revealed the expansion of gene families that encode proteins involved in digestion and detoxification, many of which were associated with mite responses to host shifts. The majority of plant defense compounds that directly impact mite fitness are ingested. They interface mite compounds aimed at counteracting their effect in the gut. Despite several detailed ultrastructural studies, our knowledge of the TSSM digestive tract that is needed to support the functional analysis of digestive and detoxification physiology is lacking. Here, using a variety of histological and microscopy techniques, and a diversity of tracer dyes, we describe the organization and properties of the TSSM alimentary system. We define the cellular nature of floating vesicles in the midgut lumen that are proposed to be the site of intracellular digestion of plant macromolecules. In addition, by following the TSSM's ability to intake compounds of defined sizes, we determine a cut off size for the ingestible particles. Moreover, we demonstrate the existence of a distinct filtering function between midgut compartments which enables separation of molecules by size. Furthermore, we broadly define the spatial distribution of the expression domains of genes involved in digestion and detoxification. Finally, we discuss the relative simplicity of the spider mite digestive system in the context of mite's digestive and xenobiotic physiology, and consequences it has on the effectiveness of plant defenses.
Collapse
Affiliation(s)
- Nicolas Bensoussan
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Vladimir Zhurov
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Sota Yamakawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Caroline H. O'Neil
- Robarts Research Institute, The University of Western Ontario, London, ON, Canada
| | - Takeshi Suzuki
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Miodrag Grbić
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Vojislava Grbić
- Department of Biology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
33
|
Cowles KN, Groves RL, Barak JD. Leafhopper-Induced Activation of the Jasmonic Acid Response Benefits Salmonella enterica in a Flagellum-Dependent Manner. Front Microbiol 2018; 9:1987. [PMID: 30190716 PMCID: PMC6115507 DOI: 10.3389/fmicb.2018.01987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/07/2018] [Indexed: 11/29/2022] Open
Abstract
Enteric human pathogens such as Salmonella enterica are typically studied in the context of their animal hosts, but it has become apparent that these bacteria spend a significant portion of their life cycle on plants. S. enterica survives the numerous stresses common to a plant niche, including defense responses, water and nutrient limitation, and exposure to UV irradiation leading to an increased potential for human disease. In fact, S. enterica is estimated to cause over one million cases of foodborne illness each year in the United States with 20% of those cases resulting from consumption of contaminated produce. Although S. enterica successfully persists in the plant environment, phytobacterial infection by Pectobacterium carotovorum or Xanthomonas spp. increases S. enterica survival and infrequently leads to growth on infected plants. The co-association of phytophagous insects, such as the Aster leafhopper, Macrosteles quadrilineatus, results in S. enterica populations that persist at higher levels for longer periods of time when compared to plants treated with S. enterica alone. We hypothesized that leafhoppers increase S. enterica persistence by altering the plant defense response to the benefit of the bacteria. Leafhopper infestation activated the jasmonic acid (JA) defense response while S. enterica colonization triggered the salicylic acid (SA) response. In tomato plants co-treated with S. enterica and leafhoppers, both JA- and SA-inducible genes were activated, suggesting that the presence of leafhoppers may affect the crosstalk that occurs between the two immune response pathways. To rule out the possibility that leafhoppers provide additional benefits to S. enterica, plants were treated with a chemical JA analog to activate the immune response in the absence of leafhoppers. Although bacterial populations continue to decline over time, analog treatment significantly increased bacterial persistence on the leaf surface. Bacterial mutant analysis determined that the bacterial flagellum, whether functional or not, was required for increased S. enterica survival after analog treatment. By investigating the interaction between this human pathogen, a common phytophagous insect, and their plant host, we hope to elucidate the mechanisms promoting S. enterica survival on plants and provide information to be used in the development of new food safety intervention strategies.
Collapse
Affiliation(s)
- Kimberly N Cowles
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Russell L Groves
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jeri D Barak
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
34
|
The cloak, dagger, and shield: proteases in plant-pathogen interactions. Biochem J 2018; 475:2491-2509. [PMID: 30115747 DOI: 10.1042/bcj20170781] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 01/03/2023]
Abstract
Plants sense the presence of pathogens or pests through the recognition of evolutionarily conserved microbe- or herbivore-associated molecular patterns or specific pathogen effectors, as well as plant endogenous danger-associated molecular patterns. This sensory capacity is largely mediated through plasma membrane and cytosol-localized receptors which trigger complex downstream immune signaling cascades. As immune signaling outputs are often associated with a high fitness cost, precise regulation of this signaling is critical. Protease-mediated proteolysis represents an important form of pathway regulation in this context. Proteases have been widely implicated in plant-pathogen interactions, and their biochemical mechanisms and targets continue to be elucidated. During the plant and pathogen arms race, specific proteases are employed from both the plant and the pathogen sides to contribute to either defend or invade. Several pathogen effectors have been identified as proteases or protease inhibitors which act to functionally defend or camouflage the pathogens from plant proteases and immune receptors. In this review, we discuss known protease functions and protease-regulated signaling processes involved in both sides of plant-pathogen interactions.
Collapse
|
35
|
Beloshistov RE, Dreizler K, Galiullina RA, Tuzhikov AI, Serebryakova MV, Reichardt S, Shaw J, Taliansky ME, Pfannstiel J, Chichkova NV, Stintzi A, Schaller A, Vartapetian AB. Phytaspase-mediated precursor processing and maturation of the wound hormone systemin. THE NEW PHYTOLOGIST 2018; 218:1167-1178. [PMID: 28407256 DOI: 10.1111/nph.14568] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/21/2017] [Indexed: 05/24/2023]
Abstract
Peptide hormones are implicated in many important aspects of plant life and are usually synthesized as precursor proteins. In contrast to animals, data for plant peptide hormone maturation are scarce and the specificity of processing enzyme(s) is largely unknown. Here we tested a hypothesis that processing of prosystemin, a precursor of tomato (Solanum lycopersicum) wound hormone systemin, is performed by phytaspases, aspartate-specific proteases of the subtilase family. Following the purification of phytaspase from tomato leaves, two tomato phytaspase genes were identified, the cDNAs were cloned and the recombinant enzymes were obtained after transient expression in Nicotiana benthamiana. The newly identified tomato phytaspases hydrolyzed prosystemin at two aspartate residues flanking the systemin sequence. Site-directed mutagenesis of the phytaspase cleavage sites in prosystemin abrogated not only the phytaspase-mediated processing of the prohormone in vitro, but also the ability of prosystemin to trigger the systemic wound response in vivo. The data show that the prohormone prosystemin requires processing for signal biogenesis and biological activity. The identification of phytaspases as the proteases involved in prosystemin maturation provides insight into the mechanisms of wound signaling in tomato. Our data also suggest a novel role for cell death-related proteases in mediating defense signaling in plants.
Collapse
Affiliation(s)
- Roman E Beloshistov
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Konrad Dreizler
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Raisa A Galiullina
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Alexander I Tuzhikov
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Sven Reichardt
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Jane Shaw
- The James Hutton Institute, Dundee, DD2 5DA, UK
| | | | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Unit, University of Hohenheim, Stuttgart, 70593, Germany
| | - Nina V Chichkova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Annick Stintzi
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Andreas Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Andrey B Vartapetian
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
36
|
Wang D, Dong Z, Zhang Y, Guo K, Guo P, Zhao P, Xia Q. Proteomics Provides Insight into the Interaction between Mulberry and Silkworm. J Proteome Res 2017; 16:2472-2480. [PMID: 28503925 DOI: 10.1021/acs.jproteome.7b00071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mulberry leaves have been selected as a food source for the silkworm (Bombyx mori) for over 5000 years. However, the interaction mechanisms of mulberry-silkworm remain largely unknown. We explore the interaction between mulberry and silkworm at the protein level. Total proteins were extracted from mulberry leaves and silkworm feces on day 5 of the fifth larval instar and analyzed on shotgun liquid chromatography-tandem mass spectrometry, respectively. In total, 2076 and 210 foliar proteins were identified from mulberry leaves and silkworm feces, respectively. These proteins were classified into four categories according to their subcellular location: chloroplast proteins, mitochondrial proteins, secretory-pathway proteins, and proteins of other locations. Chloroplast proteins accounted for 68.3% in mulberry leaves but only 23.2% in the feces. In contrast, secretory-pathway proteins had low abundance in mulberry leaves (7.3%) but were greatly enriched to the largest component in the feces (60.1%). Most of the foliar secretory-pathway proteins in the feces were found to be resistant to silkworm feeding by becoming involved in primary metabolite, proteinase inhibition, cell-wall remodeling, redox regulation, and pathogen-resistant processes. On the contrary, only six defensive proteins were identified in the fecal chloroplast proteins including two key proteins responsible for synthesizing jasmonic acid, although chloroplast proteins were the second largest component in the feces. Collectively, the comparative proteomics analyses indicate that mulberry leaves not only provide amino acids to the silkworm but also display defense against silkworm feeding, although the silkworm grows very well by feeding on mulberry leaves, which provides new insights into the interactions between host-plant and insect herbivores.
Collapse
Affiliation(s)
- Dandan Wang
- State Key Laboratory of Silkworm Genome Biology, ‡Chongqing Engineering and Technology Research Center for Novel Silk Materials, and §College of Biotechnology, Southwest University , 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, ‡Chongqing Engineering and Technology Research Center for Novel Silk Materials, and §College of Biotechnology, Southwest University , 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, ‡Chongqing Engineering and Technology Research Center for Novel Silk Materials, and §College of Biotechnology, Southwest University , 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Kaiyu Guo
- State Key Laboratory of Silkworm Genome Biology, ‡Chongqing Engineering and Technology Research Center for Novel Silk Materials, and §College of Biotechnology, Southwest University , 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Pengchao Guo
- State Key Laboratory of Silkworm Genome Biology, ‡Chongqing Engineering and Technology Research Center for Novel Silk Materials, and §College of Biotechnology, Southwest University , 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, ‡Chongqing Engineering and Technology Research Center for Novel Silk Materials, and §College of Biotechnology, Southwest University , 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, ‡Chongqing Engineering and Technology Research Center for Novel Silk Materials, and §College of Biotechnology, Southwest University , 2 Tiansheng Road, Beibei, Chongqing 400716, China
| |
Collapse
|
37
|
Lamovšek J, Stare BG, Pleško IM, Širca S, Urek G. Agrobacteria Enhance Plant Defense Against Root-Knot Nematodes on Tomato. PHYTOPATHOLOGY 2017; 107:681-691. [PMID: 28134593 DOI: 10.1094/phyto-07-16-0269-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The increased incidence of the crown gall disease caused by Agrobacterium tumefaciens has long been associated with activities of root-knot nematodes (Meloidogyne spp.). Pot experiments on tomato were designed to assess plant vitality, nematode reproduction, and crown gall incidence in combined infection with Agrobacterium and Meloidogyne spp. on tomato roots. Results suggest that tomato plants infected with pathogenic A. tumefaciens 2 days before the nematodes show enhanced plant defense against M. ethiopica resulting in lower egg and gall counts on roots 45 and 90 days postinoculation (dpi); no significantly enhanced defense was observed when the plant was inoculated with bacteria and nematodes at the same time. Split-root experiments also showed that the observed interaction was systemic. Reverse-transcription quantitative polymerase chain reaction analysis that targeted several genes under plant hormonal control suggests that the suppression was mediated via systemic acquired resistance by the pathogenesis-related protein 1 and that M. ethiopica did not enhance the defense reaction of tomato against Agrobacterium spp. Nematodes completely inhibited tumor growth in a 45-day experiment if inoculated onto the roots before the pathogenic bacteria. We conclude that the observed antagonism in the tested pathosystem was the result of initially strong plant defense that was later suppressed by the invading pathogen and pest.
Collapse
Affiliation(s)
- Janja Lamovšek
- Agricultural Institute of Slovenia, Plant Protection Department, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia
| | - Barbara Gerič Stare
- Agricultural Institute of Slovenia, Plant Protection Department, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia
| | - Irena Mavrič Pleško
- Agricultural Institute of Slovenia, Plant Protection Department, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia
| | - Saša Širca
- Agricultural Institute of Slovenia, Plant Protection Department, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia
| | - Gregor Urek
- Agricultural Institute of Slovenia, Plant Protection Department, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
38
|
Peña-Diaz P, Vancová M, Resl C, Field MC, Lukeš J. A leucine aminopeptidase is involved in kinetoplast DNA segregation in Trypanosoma brucei. PLoS Pathog 2017; 13:e1006310. [PMID: 28388690 PMCID: PMC5397073 DOI: 10.1371/journal.ppat.1006310] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 04/19/2017] [Accepted: 03/23/2017] [Indexed: 12/29/2022] Open
Abstract
The kinetoplast (k), the uniquely packaged mitochondrial DNA of trypanosomatid protists is formed by a catenated network of minicircles and maxicircles that divide and segregate once each cell cycle. Although many proteins involved in kDNA replication and segregation are now known, several key steps in the replication mechanism remain uncharacterized at the molecular level, one of which is the nabelschnur or umbilicus, a prominent structure which in the mammalian parasite Trypanosoma brucei connects the daughter kDNA networks prior to their segregation. Here we characterize an M17 family leucyl aminopeptidase metalloprotease, termed TbLAP1, which specifically localizes to the kDNA disk and the nabelschur and represents the first described protein found in this structure. We show that TbLAP1 is required for correct segregation of kDNA, with knockdown resulting in delayed cytokinesis and ectopic expression leading to kDNA loss and decreased cell proliferation. We propose that TbLAP1 is required for efficient kDNA division and specifically participates in the separation of daughter kDNA networks.
Collapse
Affiliation(s)
- Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Marie Vancová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Christian Resl
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Mark C. Field
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
- Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
39
|
Escobar-Bravo R, Klinkhamer PG, Leiss KA. Induction of Jasmonic Acid-Associated Defenses by Thrips Alters Host Suitability for Conspecifics and Correlates with Increased Trichome Densities in Tomato. PLANT & CELL PHYSIOLOGY 2017; 58:622-634. [PMID: 28158865 PMCID: PMC5444573 DOI: 10.1093/pcp/pcx014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/20/2017] [Indexed: 05/04/2023]
Abstract
Plant defenses inducible by herbivorous arthropods can determine performance of subsequent feeding herbivores. We investigated how infestation of tomato (Solanum lycopersicum) plants with the Western flower thrips (Frankliniella occidentalis) alters host plant suitability and foraging decisions of their conspecifics. We explored the role of delayed-induced jasmonic acid (JA)-mediated plant defense responses in thrips preference by using the tomato mutant def-1, impaired in JA biosynthesis. In particular, we investigated the effect of thrips infestation on trichome-associated tomato defenses. The results showed that when offered a choice, thrips preferred non-infested plants over infested wild-type plants, while no differences were observed in def-1. Exogenous application of methyl jasmonate restored the repellency effect in def-1. Gene expression analysis showed induction of the JA defense signaling pathway in wild-type plants, while activating the ethylene signaling pathway in both genotypes. Activation of JA defenses led to increases in type-VI leaf glandular trichome densities in the wild type, augmenting the production of trichome-associated volatiles, i.e. terpenes. Our study revealed that plant-mediated intraspecific interactions between thrips are determined by JA-mediated defenses in tomato. We report that insects can alter not only trichome densities but also the allelochemicals produced therein, and that this response might depend on the magnitude and/or type of the induction.
Collapse
|
40
|
Donze-Reiner T, Palmer NA, Scully ED, Prochaska TJ, Koch KG, Heng-Moss T, Bradshaw JD, Twigg P, Amundsen K, Sattler SE, Sarath G. Transcriptional analysis of defense mechanisms in upland tetraploid switchgrass to greenbugs. BMC PLANT BIOLOGY 2017; 17:46. [PMID: 28209137 PMCID: PMC5314684 DOI: 10.1186/s12870-017-0998-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/08/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Aphid infestation of switchgrass (Panicum virgatum) has the potential to reduce yields and biomass quality. Although switchgrass-greenbug (Schizaphis graminum; GB) interactions have been studied at the whole plant level, little information is available on plant defense responses at the molecular level. RESULTS The global transcriptomic response of switchgrass cv Summer to GB was monitored by RNA-Seq in infested and control (uninfested) plants harvested at 5, 10, and 15 days after infestation (DAI). Differentially expressed genes (DEGs) in infested plants were analyzed relative to control uninfested plants at each time point. DEGs in GB-infested plants induced by 5-DAI included an upregulation of reactive burst oxidases and several cell wall receptors. Expression changes in genes linked to redox metabolism, cell wall structure, and hormone biosynthesis were also observed by 5-DAI. At 10-DAI, network analysis indicated a massive upregulation of defense-associated genes, including NAC, WRKY, and MYB classes of transcription factors and potential ancillary signaling molecules such as leucine aminopeptidases. Molecular evidence for loss of chloroplastic functions was also detected at this time point. Supporting these molecular changes, chlorophyll content was significantly decreased, and ROS levels were elevated in infested plants 10-DAI. Total peroxidase and laccase activities were elevated in infested plants at 10-DAI relative to control uninfested plants. The net result appeared to be a broad scale defensive response that led to an apparent reduction in C and N assimilation and a potential redirection of nutrients away from GB and towards the production of defensive compounds, such as pipecolic acid, chlorogenic acid, and trehalose by 10-DAI. By 15-DAI, evidence of recovery in primary metabolism was noted based on transcript abundances for genes associated with carbon, nitrogen, and nutrient assimilation. CONCLUSIONS Extensive remodeling of the plant transcriptome and the production of ROS and several defensive metabolites in an upland switchgrass cultivar were observed in response to GB feeding. The early loss and apparent recovery in primary metabolism by 15-DAI would suggest that these transcriptional changes in later stages of GB infestation could underlie the recovery response categorized for this switchgrass cultivar. These results can be exploited to develop switchgrass lines with more durable resistance to GB and potentially other aphids.
Collapse
Affiliation(s)
- Teresa Donze-Reiner
- Department of Biology, West Chester University of Pennsylvania, West Chester, PA 19383 USA
| | - Nathan A. Palmer
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, 251 Filley Hall, East Campus, UNL, Lincoln, NE 68583-0937 USA
| | - Erin D. Scully
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, 251 Filley Hall, East Campus, UNL, Lincoln, NE 68583-0937 USA
- Stored Product Insect and Engineering Research Unit, USDA-ARS, Manhattan, KS 66502 USA
| | - Travis J. Prochaska
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583-0816 USA
- Present address: North Central Research Extension Center, North Dakota State University, South Minot, ND 58701 USA
| | - Kyle G. Koch
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583-0816 USA
| | - Tiffany Heng-Moss
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583-0816 USA
| | - Jeffrey D. Bradshaw
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583-0816 USA
| | - Paul Twigg
- Biology Department, University of Nebraska-Kearney, Kearney, NE 68849 USA
| | - Keenan Amundsen
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583-0915 USA
| | - Scott E. Sattler
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, 251 Filley Hall, East Campus, UNL, Lincoln, NE 68583-0937 USA
| | - Gautam Sarath
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, 251 Filley Hall, East Campus, UNL, Lincoln, NE 68583-0937 USA
| |
Collapse
|
41
|
Budič M, Cigić B, Šoštarič M, Sabotič J, Meglič V, Kos J, Kidrič M. The response of aminopeptidases of Phaseolus vulgaris to drought depends on the developmental stage of the leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:326-336. [PMID: 27783982 DOI: 10.1016/j.plaphy.2016.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/09/2016] [Accepted: 10/09/2016] [Indexed: 06/06/2023]
Abstract
Aminopeptidases, together with other proteases, execute and regulate the total and specifically limited protein breakdown involved in plant physiology, raising the possibility of their involvement in response to drought. We have identified, in leaves of Phaseolus vulgaris L., five aminopeptidases (E.C.3.4.11) whose levels of activity changed when three week old plants were subjected to drought. First, second and third trifoliate leaves were investigated separately. The aminopeptidases were first identified then isolated using ion exchange chromatography of leaf extracts. Three, named PvAP1, PvAP2 and PvAP4, are metallo aminopeptidases with broad substrate specificity, active against substrates conjugated to alanine and lysine. Two others, PvAP3 and PvAP5, are apparently serine aminopeptidases, the former active against substrates conjugated to phenylalanine and leucine, and the latter characterised by narrow specificity against substrates conjugated to phenylalanine. Their apparent molecular weights range from ∼37 kDa to ∼80 kDa. Levels of activity of individual aminopeptidases in both watered and drought stressed plants are shown to depend on the age of leaves. In watered plants they were generally highest in young, and very low in older, trifoliate leaves, the latter with the exception of PvAP5. Drought initiated an almost general increase of their activities, although to different extents, with the exception of PvAP4 and PvAP5 in young trifoliate leaves. Thus, in such studies it is necessary to investigate the effects of drought separately in leaves of different ages in order to elucidate the different complex and probably specific roles of aminopeptidases in the response of common bean to drought.
Collapse
Affiliation(s)
- Maruška Budič
- Department of Biotechnology, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Blaž Cigić
- Chair of Biochemistry and Food Chemistry, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Maja Šoštarič
- Department of Biotechnology, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Vladimir Meglič
- Crop and Seed Science Department, Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Marjetka Kidrič
- Department of Biotechnology, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
42
|
Medeiros AH, Mingossi FB, Dias RO, Franco FP, Vicentini R, Mello MO, Moura DS, Silva-Filho MC. Sugarcane Serine Peptidase Inhibitors, Serine Peptidases, and Clp Protease System Subunits Associated with Sugarcane Borer (Diatraea saccharalis) Herbivory and Wounding. Int J Mol Sci 2016; 17:E1444. [PMID: 27598134 PMCID: PMC5037723 DOI: 10.3390/ijms17091444] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/16/2016] [Accepted: 08/25/2016] [Indexed: 11/16/2022] Open
Abstract
Sugarcane's (Saccharum spp.) response to Diatraea saccharalis (F.) (Lepidoptera: (Crambidae) herbivory was investigated using a macroarray spotted with 248 sugarcane Expressed Sequence Tags (ESTs) encoding serine peptidase inhibitors, serine peptidases. and Clp protease system subunits. Our results showed that after nine hours of herbivory, 13 sugarcane genes were upregulated and nine were downregulated. Among the upregulated genes, nine were similar to serine peptidase inhibitors and four were similar to Bowman-Birk Inhibitors (BBIs). Phylogenetic analysis revealed that these sequences belong to a phylogenetic group of sugarcane BBIs that are potentially involved in plant defense against insect predation. The remaining four upregulated genes included serine peptidases and one homolog to the Arabidopsis AAA+ chaperone subunit ClpD, which is a member of the Clp protease system. Among the downregulated genes, five were homologous to serine peptidases and four were homologous to Arabidopsis Clp subunits (three homologous to Clp AAA+ chaperones and one to a ClpP-related ClpR subunit). Although the roles of serine peptidase inhibitors in plant defenses against herbivory have been extensively investigated, the roles of plant serine peptidases and the Clp protease system represent a new and underexplored field of study. The up- and downregulated D. saccharalis genes presented in this study may be candidate genes for the further investigation of the sugarcane response to herbivory.
Collapse
Affiliation(s)
- Ane H Medeiros
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, 13600-970 São Paulo, Brazil.
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 13418-260 São Paulo, Brazil.
| | - Fabiana B Mingossi
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 13418-260 São Paulo, Brazil.
| | - Renata O Dias
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 13418-260 São Paulo, Brazil.
| | - Flávia P Franco
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 13418-260 São Paulo, Brazil.
| | - Renato Vicentini
- Systems Biology Laboratory, Center for Molecular Biology and Genetic Engineering, State University of Campinas, Campinas, 13083-970 São Paulo, Brazil.
| | - Marcia O Mello
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 13418-260 São Paulo, Brazil.
- Monsanto do Brasil, Campinas, 13069-380 São Paulo, Brazil.
| | - Daniel S Moura
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 13400-918 São Paulo, Brazil.
| | - Marcio C Silva-Filho
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 13418-260 São Paulo, Brazil.
| |
Collapse
|
43
|
Meyer M, Huttenlocher F, Cedzich A, Procopio S, Stroeder J, Pau-Roblot C, Lequart-Pillon M, Pelloux J, Stintzi A, Schaller A. The subtilisin-like protease SBT3 contributes to insect resistance in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4325-38. [PMID: 27259555 PMCID: PMC5301937 DOI: 10.1093/jxb/erw220] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Subtilisin-like proteases (SBTs) constitute a large family of extracellular plant proteases, the function of which is still largely unknown. In tomato plants, the expression of SBT3 was found to be induced in response to wounding and insect attack in injured leaves but not in healthy systemic tissues. The time course of SBT3 induction resembled that of proteinase inhibitor II and other late wound response genes suggesting a role for SBT3 in herbivore defense. Consistent with such a role, larvae of the specialist herbivore Manduca sexta performed better on transgenic plants silenced for SBT3 expression (SBT3-SI). Supporting a contribution of SBT3 to systemic wound signaling, systemic induction of late wound response genes was attenuated in SBT3-SI plants. The partial loss of insect resistance may thus be explained by a reduction in systemic defense gene expression. Alternatively, SBT3 may play a post-ingestive role in plant defense. Similar to other anti-nutritive proteins, SBT3 was found to be stable and active in the insect's digestive system, where it may act on unidentified proteins of insect or plant origin. Finally, a reduction in the level of pectin methylesterification that was observed in transgenic plants with altered levels of SBT3 expression suggested an involvement of SBT3 in the regulation of pectin methylesterases (PMEs). While such a role has been described in other systems, PME activity and the degree of pectin methylesterification did not correlate with the level of insect resistance in SBT3-SI and SBT3 overexpressing plants and are thus unrelated to the observed resistance phenotype.
Collapse
Affiliation(s)
- Michael Meyer
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Franziska Huttenlocher
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Anna Cedzich
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Susanne Procopio
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Jasper Stroeder
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Corinne Pau-Roblot
- EA3900-BIOPI Biologie des Plantes et Innovation, Université de Picardie, 80039 Amiens, France
| | - Michelle Lequart-Pillon
- EA3900-BIOPI Biologie des Plantes et Innovation, Université de Picardie, 80039 Amiens, France
| | - Jérôme Pelloux
- EA3900-BIOPI Biologie des Plantes et Innovation, Université de Picardie, 80039 Amiens, France
| | - Annick Stintzi
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Andreas Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany
| |
Collapse
|
44
|
Wang J, Chung SH, Peiffer M, Rosa C, Hoover K, Zeng R, Felton GW. Herbivore Oral Secreted Bacteria Trigger Distinct Defense Responses in Preferred and Non-Preferred Host Plants. J Chem Ecol 2016; 42:463-74. [PMID: 27294415 DOI: 10.1007/s10886-016-0712-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/08/2016] [Accepted: 05/28/2016] [Indexed: 11/30/2022]
Abstract
Insect symbiotic bacteria affect host physiology and mediate plant-insect interactions, yet there are few clear examples of symbiotic bacteria regulating defense responses in different host plants. We hypothesized that plants would induce distinct defense responses to herbivore- associated bacteria. We evaluated whether preferred hosts (horsenettle) or non-preferred hosts (tomato) respond similarly to oral secretions (OS) from the false potato beetle (FPB, Leptinotarsa juncta), and whether the induced defense triggered by OS was due to the presence of symbiotic bacteria in OS. Both horsenettle and tomato damaged by antibiotic (AB) treated larvae showed higher polyphenol oxidase (PPO) activity than those damaged by non-AB treated larvae. In addition, application of OS from AB treated larvae induced higher PPO activity compared with OS from non-AB treated larvae or water treatment. False potato beetles harbor bacteria that may provide abundant cues that can be recognized by plants and thus mediate corresponding defense responses. Among all tested bacterial isolates, the genera Pantoea, Acinetobacter, Enterobacter, and Serratia were found to suppress PPO activity in tomato, while only Pantoea sp. among these four isolates was observed to suppress PPO activity in horsenettle. The distinct PPO suppression caused by symbiotic bacteria in different plants was similar to the pattern of induced defense-related gene expression. Pantoea inoculated FPB suppressed JA-responsive genes and triggered a SA-responsive gene in both tomato and horsenettle. However, Enterobacter inoculated FPB eliminated JA-regulated gene expression and elevated SA-regulated gene expression in tomato, but did not show evident effects on the expression levels of horsenettle defense-related genes. These results indicate that suppression of plant defenses by the bacteria found in the oral secretions of herbivores may be a more widespread phenomenon than previously indicated.
Collapse
Affiliation(s)
- Jie Wang
- Department of Ecology, South China Agricultural University, Guangzhou, Guangdong, 510640, China. .,Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Seung Ho Chung
- Department of Entomology, Cornell University, Ithaca, NY, 14850, USA
| | - Michelle Peiffer
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Cristina Rosa
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Kelli Hoover
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Rensen Zeng
- Department of Ecology, South China Agricultural University, Guangzhou, Guangdong, 510640, China.,Department of Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Gary W Felton
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
45
|
Krasuska U, Andrzejczak O, Staszek P, Bogatek R, Gniazdowska A. Canavanine Alters ROS/RNS Level and Leads to Post-translational Modification of Proteins in Roots of Tomato Seedlings. FRONTIERS IN PLANT SCIENCE 2016; 7:840. [PMID: 27379131 PMCID: PMC4905978 DOI: 10.3389/fpls.2016.00840] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/27/2016] [Indexed: 05/09/2023]
Abstract
Canavanine (CAN), a structural analog of arginine (Arg), is used as a selective inhibitor of inducible NOS in mammals. CAN is incorporated into proteins' structure in the place of Arg, leading to the formation of aberrant compounds. This non-protein amino acid is found in legumes, e.g., Canavalia ensiformis (L.) DC. or Sutherlandia frutescens (L.) R.Br. and acts as a strong toxin against herbivores or plants. Tomato (Solanum lycopersicum L.) seedlings were treated for 24-72 h with CAN (10 or 50 μM) inhibiting root growth by 50 or 100%, without lethal effect. We determined ROS level/production in root extracts, fluorescence of DAF-FM and APF derivatives corresponding to RNS level in roots of tomato seedlings and linked CAN-induced restriction of root growth to the post-translational modifications (PTMs) of proteins: carbonylation and nitration. Both PTMs are stable markers of nitro-oxidative stress, regarded as the plant's secondary response to phytotoxins. CAN enhanced H2O2 content and superoxide radicals generation in extracts of tomato roots and stimulated formation of protein carbonyl groups. An elevated level of carbonylated proteins was characteristic for the plants after 72 h of the culture, mainly for the roots exposed to 10 μM CAN. The proteolytic activity was stimulated by tested non-protein amino acid. CAN treatment led to decline of fluorescence of DAF-FM derivatives, and transiently stimulated fluorescence of APF derivatives. Short-term exposure of tomato seedlings to CAN lowered the protein nitration level. Activity of peroxidase, polyamine oxidase and NADPH oxidase, enzymes acting as modulators of H2O2 concentration and governing root architecture and growth were determined. Activities of all enzymes were stimulated by CAN, but no strict CAN concentration dependence was observed. We conclude, that although CAN treatment led to a decline in the nitric oxide level, PTMs observed in roots of plants exposed to CAN are linked rather to the formation of carbonyl groups than to nitration, and are detected particularly after 24 h. Thus, oxidative stress and oxidative modifications of proteins seems to be of significant importance in the rapid response of plants to CAN.
Collapse
|
46
|
Naconsie M, Lertpanyasampatha M, Viboonjun U, Netrphan S, Kuwano M, Ogasawara N, Narangajavana J. Cassava root membrane proteome reveals activities during storage root maturation. JOURNAL OF PLANT RESEARCH 2016; 129:51-65. [PMID: 26547558 DOI: 10.1007/s10265-015-0761-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/13/2015] [Indexed: 06/05/2023]
Abstract
Cassava (Manihot esculenta Crantz) is one of the most important crops of Thailand. Its storage roots are used as food, feed, starch production, and be the important source for biofuel and biodegradable plastic production. Despite the importance of cassava storage roots, little is known about the mechanisms involved in their formation. This present study has focused on comparison of the expression profiles of cassava root proteome at various developmental stages using two-dimensional gel electrophoresis and LC-MS/MS. Based on an anatomical study using Toluidine Blue, the secondary growth was confirmed to be essential during the development of cassava storage root. To investigate biochemical processes occurring during storage root maturation, soluble and membrane proteins were isolated from storage roots harvested from 3-, 6-, 9-, and 12-month-old cassava plants. The proteins with differential expression pattern were analysed and identified to be associated with 8 functional groups: protein folding and degradation, energy, metabolism, secondary metabolism, stress response, transport facilitation, cytoskeleton, and unclassified function. The expression profiling of membrane proteins revealed the proteins involved in protein folding and degradation, energy, and cell structure were highly expressed during early stages of development. Integration of these data along with the information available in genome and transcriptome databases is critical to expand knowledge obtained solely from the field of proteomics. Possible role of identified proteins were discussed in relation with the activities during storage root maturation in cassava.
Collapse
Affiliation(s)
- Maliwan Naconsie
- Deparment of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Rd.,Rajthewee, Phayathai, Bangkok, 10400, Thailand
| | - Manassawe Lertpanyasampatha
- Deparment of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Rd.,Rajthewee, Phayathai, Bangkok, 10400, Thailand
| | - Unchera Viboonjun
- Deparment of Plant Science, Faculty of Science, Mahidol University, Phayathai, Bangkok, 10400, Thailand
| | - Supatcharee Netrphan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Rangsit, Pathumthani, 10210, Thailand
| | - Masayoshi Kuwano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Naotake Ogasawara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Jarunya Narangajavana
- Deparment of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Rd.,Rajthewee, Phayathai, Bangkok, 10400, Thailand.
| |
Collapse
|
47
|
Zhang Y, Li D, Zhang H, Hong Y, Huang L, Liu S, Li X, Ouyang Z, Song F. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways. BMC PLANT BIOLOGY 2015; 15:252. [PMID: 26490733 PMCID: PMC4618151 DOI: 10.1186/s12870-015-0614-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 09/13/2015] [Indexed: 05/17/2023]
Abstract
BACKGROUND Histone H2B monoubiquitination pathway has been shown to play critical roles in regulating growth/development and stress response in Arabidopsis. In the present study, we explored the involvement of the tomato histone H2B monoubiquitination pathway in defense response against Botrytis cinerea by functional analysis of SlHUB1 and SlHUB2, orthologues of the Arabidopsis AtHUB1/AtHUB2. METHODS We used the TRV-based gene silencing system to knockdown the expression levels of SlHUB1 or SlHUB2 in tomato plants and compared the phenotype between the silenced and the control plants after infection with B. cinerea and Pseudomonas syringae pv. tomato (Pst) DC3000. Biochemical and interaction properties of proteins were examined using in vitro histone monoubiquitination and yeast two-hybrid assays, respectively. The transcript levels of genes were analyzed by quantitative real time PCR (qRT-PCR). RESULTS The tomato SlHUB1 and SlHUB2 had H2B monoubiquitination E3 ligases activity in vitro and expression of SlHUB1 and SlHUB2 was induced by infection of B. cinerea and Pst DC3000 and by treatment with salicylic acid (SA) and 1-amino cyclopropane-1-carboxylic acid (ACC). Silencing of either SlHUB1 or SlHUB2 in tomato plants showed increased susceptibility to B. cinerea, whereas silencing of SlHUB1 resulted in increased resistance against Pst DC3000. SlMED21, a Mediator complex subunit, interacted with SlHUB1 but silencing of SlMED21 did not affect the disease resistance to B. cinerea and Pst DC3000. The SlHUB1- and SlHUB2-silenced plants had thinner cell wall but increased accumulation of reactive oxygen species (ROS), increased callose deposition and exhibited altered expression of the genes involved in phenylpropanoid pathway and in ROS generation and scavenging system. Expression of genes in the SA-mediated signaling pathway was significantly upregulated, whereas expression of genes in the jasmonic acid (JA)/ethylene (ET)-mediated signaling pathway were markedly decreased in SlHUB1- and SlHUB2-silenced plants after infection of B. cinerea. CONCLUSION VIGS-based functional analyses demonstrate that both SlHUB1 and SlHUB2 contribute to resistance against B. cinerea most likely through modulating the balance between the SA- and JA/ET-mediated signaling pathways.
Collapse
Affiliation(s)
- Yafen Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Huijuan Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Yongbo Hong
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Lei Huang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Shixia Liu
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Xiaohui Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Zhigang Ouyang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
48
|
Kant MR, Jonckheere W, Knegt B, Lemos F, Liu J, Schimmel BCJ, Villarroel CA, Ataide LMS, Dermauw W, Glas JJ, Egas M, Janssen A, Van Leeuwen T, Schuurink RC, Sabelis MW, Alba JM. Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. ANNALS OF BOTANY 2015; 115:1015-51. [PMID: 26019168 PMCID: PMC4648464 DOI: 10.1093/aob/mcv054] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/12/2015] [Accepted: 04/24/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND Plants are hotbeds for parasites such as arthropod herbivores, which acquire nutrients and energy from their hosts in order to grow and reproduce. Hence plants are selected to evolve resistance, which in turn selects for herbivores that can cope with this resistance. To preserve their fitness when attacked by herbivores, plants can employ complex strategies that include reallocation of resources and the production of defensive metabolites and structures. Plant defences can be either prefabricated or be produced only upon attack. Those that are ready-made are referred to as constitutive defences. Some constitutive defences are operational at any time while others require activation. Defences produced only when herbivores are present are referred to as induced defences. These can be established via de novo biosynthesis of defensive substances or via modifications of prefabricated substances and consequently these are active only when needed. Inducibility of defence may serve to save energy and to prevent self-intoxication but also implies that there is a delay in these defences becoming operational. Induced defences can be characterized by alterations in plant morphology and molecular chemistry and are associated with a decrease in herbivore performance. These alterations are set in motion by signals generated by herbivores. Finally, a subset of induced metabolites are released into the air as volatiles and function as a beacon for foraging natural enemies searching for prey, and this is referred to as induced indirect defence. SCOPE The objective of this review is to evaluate (1) which strategies plants have evolved to cope with herbivores and (2) which traits herbivores have evolved that enable them to counter these defences. The primary focus is on the induction and suppression of plant defences and the review outlines how the palette of traits that determine induction/suppression of, and resistance/susceptibility of herbivores to, plant defences can give rise to exploitative competition and facilitation within ecological communities "inhabiting" a plant. CONCLUSIONS Herbivores have evolved diverse strategies, which are not mutually exclusive, to decrease the negative effects of plant defences in order to maximize the conversion of plant material into offspring. Numerous adaptations have been found in herbivores, enabling them to dismantle or bypass defensive barriers, to avoid tissues with relatively high levels of defensive chemicals or to metabolize these chemicals once ingested. In addition, some herbivores interfere with the onset or completion of induced plant defences, resulting in the plant's resistance being partly or fully suppressed. The ability to suppress induced plant defences appears to occur across plant parasites from different kingdoms, including herbivorous arthropods, and there is remarkable diversity in suppression mechanisms. Suppression may strongly affect the structure of the food web, because the ability to suppress the activation of defences of a communal host may facilitate competitors, whereas the ability of a herbivore to cope with activated plant defences will not. Further characterization of the mechanisms and traits that give rise to suppression of plant defences will enable us to determine their role in shaping direct and indirect interactions in food webs and the extent to which these determine the coexistence and persistence of species.
Collapse
Affiliation(s)
- M R Kant
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - W Jonckheere
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - B Knegt
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - F Lemos
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - J Liu
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - B C J Schimmel
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - C A Villarroel
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - L M S Ataide
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - W Dermauw
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - J J Glas
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - M Egas
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - A Janssen
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - T Van Leeuwen
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - R C Schuurink
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - M W Sabelis
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - J M Alba
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| |
Collapse
|
49
|
Howe GA, Herde M. Interaction of plant defense compounds with the insect gut: new insights from genomic and molecular analyses. CURRENT OPINION IN INSECT SCIENCE 2015; 9:62-68. [PMID: 32846710 DOI: 10.1016/j.cois.2015.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/16/2015] [Indexed: 06/11/2023]
Abstract
The co-evolutionary conflict between insect herbivores and their host plants is profoundly influenced by biochemical reactions associated with passage of toxin-laden plant material through the herbivore digestive canal. Insect herbivores provide excellent models in which to understand the mechanistic interplay between nutrition and detoxification, how plant defense compounds hijack these processes, and how insects adapt to host defense chemistry. Expanding genome sequence information and genetic approaches to manipulate gene function in both interacting partners are providing new insights into the genetic underpinnings of host preference and plasticity in gut physiology. Fundamental knowledge gained from these studies has practical application in understanding how insects evolve resistance to pesticides, and may also inform efforts to better understand how plant chemicals impact human health.
Collapse
Affiliation(s)
- Gregg A Howe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | - Marco Herde
- Institute of Plant Nutrition, Leibniz University of Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| |
Collapse
|
50
|
Martel C, Zhurov V, Navarro M, Martinez M, Cazaux M, Auger P, Migeon A, Santamaria ME, Wybouw N, Diaz I, Van Leeuwen T, Navajas M, Grbic M, Grbic V. Tomato Whole Genome Transcriptional Response to Tetranychus urticae Identifies Divergence of Spider Mite-Induced Responses Between Tomato and Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:343-61. [PMID: 25679539 DOI: 10.1094/mpmi-09-14-0291-fi] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The two-spotted spider mite Tetranychus urticae is one of the most significant mite pests in agriculture, feeding on more than 1,100 plant hosts, including model plants Arabidopsis thaliana and tomato, Solanum lycopersicum. Here, we describe timecourse tomato transcriptional responses to spider mite feeding and compare them with Arabidopsis in order to determine conserved and divergent defense responses to this pest. To refine the involvement of jasmonic acid (JA) in mite-induced responses and to improve tomato Gene Ontology annotations, we analyzed transcriptional changes in the tomato JA-signaling mutant defenseless1 (def-1) upon JA treatment and spider mite herbivory. Overlay of differentially expressed genes (DEG) identified in def-1 onto those from the timecourse experiment established that JA controls expression of the majority of genes differentially regulated by herbivory. Comparison of defense responses between tomato and Arabidopsis highlighted 96 orthologous genes (of 2,133 DEG) that were recruited for defense against spider mites in both species. These genes, involved in biosynthesis of JA, phenylpropanoids, flavonoids, and terpenoids, represent the conserved core of induced defenses. The remaining tomato DEG support the establishment of tomato-specific defenses, indicating profound divergence of spider mite-induced responses between tomato and Arabidopsis.
Collapse
|