1
|
Tian Z, Nepomuceno AL, Song Q, Stupar RM, Liu B, Kong F, Ma J, Lee SH, Jackson SA. Soybean2035: A decadal vision for soybean functional genomics and breeding. MOLECULAR PLANT 2025; 18:245-271. [PMID: 39772289 DOI: 10.1016/j.molp.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/29/2024] [Accepted: 01/05/2025] [Indexed: 01/31/2025]
Abstract
Soybean, the fourth most important crop in the world, uniquely serves as a source of both plant oil and plant protein for the world's food and animal feed. Although soybean production has increased approximately 13-fold over the past 60 years, the continually growing global population necessitates further increases in soybean production. In the past, especially in the last decade, significant progress has been made in both functional genomics and molecular breeding. However, many more challenges should be overcome to meet the anticipated future demand. Here, we summarize past achievements in the areas of soybean omics, functional genomics, and molecular breeding. Furthermore, we analyze trends in these areas, including shortages and challenges, and propose new directions, potential approaches, and possible outputs toward 2035. Our views and perspectives provide insight into accelerating the development of elite soybean varieties to meet the increasing demands of soybean production.
Collapse
Affiliation(s)
- Zhixi Tian
- Yazhouwan National Laboratory, Sanya, Hainan, China.
| | | | - Qingxin Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA.
| | - Bin Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Soybean Biology (Beijing) (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China.
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN, USA.
| | - Suk-Ha Lee
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA.
| |
Collapse
|
2
|
Pelletier JM, Chen M, Lin JY, Le B, Kirkbride RC, Hur J, Wang T, Chang SH, Olson A, Nikolov L, Goldberg RB, Harada JJ. Dissecting the cellular architecture and genetic circuitry of the soybean seed. Proc Natl Acad Sci U S A 2025; 122:e2416987121. [PMID: 39793081 PMCID: PMC11725896 DOI: 10.1073/pnas.2416987121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/18/2024] [Indexed: 01/12/2025] Open
Abstract
Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages. Analyses of these profiles showed that all subregions express similar diverse gene numbers and that the small gene numbers expressed subregion specifically provide information about the biological processes that occur in these seed compartments. In parallel, we profiled RNAs in individual nuclei and identified nuclei clusters representing distinct cell identities. Integrating single-nucleus RNA and subregion mRNA transcriptomes allowed most cell identities to be assigned to specific subregions and cell types and/or cell states. The number of cell identities exceeds the number of anatomically distinguishable cell types, emphasizing the spatial complexity of seeds. We defined gene coexpression networks that underlie distinct biological processes during seed development. We showed that network distribution among subregions and cell identities is highly variable. Some networks operate in single subregions and/or cell identities, and many coexpression networks operate in multiple subregions and/or cell identities. We also showed that single subregions and cell identities possess several networks. Together, our studies provide unique insights into the biological processes and genetic circuitry that underlie the spatial landscape of the seed.
Collapse
Affiliation(s)
- Julie M. Pelletier
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA95616
| | - Min Chen
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA90095
| | - Jer-Young Lin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA90095
| | - Brandon Le
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA90095
| | - Ryan C. Kirkbride
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA95616
| | - Jungim Hur
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA90095
| | - Tina Wang
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA95616
| | - Shu-Heng Chang
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA95616
| | - Alexander Olson
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA95616
| | - Lachezar Nikolov
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA90095
| | - Robert B. Goldberg
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA90095
| | - John J. Harada
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA95616
| |
Collapse
|
3
|
Wang C, Fu P, Sun T, Wang Y, Li X, Lan S, Liu H, Gou Y, Shang Q, Li W. Identifying Candidate Genes Related to Soybean ( Glycine max) Seed Coat Color via RNA-Seq and Coexpression Network Analysis. Genes (Basel) 2025; 16:44. [PMID: 39858589 PMCID: PMC11764550 DOI: 10.3390/genes16010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND The quality of soybeans is reflected in the seed coat color, which indicates soybean quality and commercial value. Researchers have identified genes related to seed coat color in various plants. However, research on the regulation of genes related to seed coat color in soybeans is rare. METHODS In this study, four lines of seed coats with different colors (medium yellow 14, black, green, and brown) were selected from the F2:5 population, with Beinong 108 as the female parent and green bean as the male parent, and the dynamic changes in the anthocyanins in the seed coat were stained with 4-dimethylaminocinnamaldehyde (DMACA) during the grain maturation process (20 days from grain drum to seed harvest). Through RNA-seq of soybean lines with four different colored seed coats at 30 and 50 days after seeding, we can further understand the key pathways and gene regulation modules between soybean seed coats of different colors. RESULTS DMACA revealed that black seed coat soybeans produce anthocyanins first and have the deepest staining. Clustering and principal component analysis (PCA) of the RNA-seq data divided the eight samples into two groups, resulting in 16,456 DEGs, including 5359 TFs. GO and KEGG enrichment analyses revealed that the flavonoid biosynthesis, starch and sucrose metabolism, carotenoid biosynthesis, and circadian rhythm pathways were significantly enriched. We also conducted statistical and expression pattern analyses on the differentially expressed transcription factors. Based on weighted gene coexpression network analysis (WGCNA), we identified seven specific modules that were significantly related to the four soybean lines with different seed coat colors. The connectivity and functional annotation of genes within the modules were calculated, and 21 candidate genes related to soybean seed coat color were identified, including six transcription factor (TF) genes and three flavonoid pathway genes. CONCLUSIONS These findings provide a theoretical basis for an in-depth understanding of the molecular mechanisms underlying differences in soybean seed coat color and provide new genetic resources.
Collapse
Affiliation(s)
- Cheng Wang
- College of Plant Science and Technology, Beijing Key Laboratory of New Agricultural Technology in Agriculture Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China; (C.W.); (T.S.); (X.L.); (S.L.); (H.L.)
| | - Pingchun Fu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs Beijing University of Agriculture, Beijing 102206, China; (P.F.); (Y.W.); (Y.G.)
| | - Tingting Sun
- College of Plant Science and Technology, Beijing Key Laboratory of New Agricultural Technology in Agriculture Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China; (C.W.); (T.S.); (X.L.); (S.L.); (H.L.)
| | - Yan Wang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs Beijing University of Agriculture, Beijing 102206, China; (P.F.); (Y.W.); (Y.G.)
| | - Xueting Li
- College of Plant Science and Technology, Beijing Key Laboratory of New Agricultural Technology in Agriculture Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China; (C.W.); (T.S.); (X.L.); (S.L.); (H.L.)
| | - Shulin Lan
- College of Plant Science and Technology, Beijing Key Laboratory of New Agricultural Technology in Agriculture Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China; (C.W.); (T.S.); (X.L.); (S.L.); (H.L.)
| | - Hui Liu
- College of Plant Science and Technology, Beijing Key Laboratory of New Agricultural Technology in Agriculture Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China; (C.W.); (T.S.); (X.L.); (S.L.); (H.L.)
| | - Yongji Gou
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs Beijing University of Agriculture, Beijing 102206, China; (P.F.); (Y.W.); (Y.G.)
| | - Qiaoxia Shang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs Beijing University of Agriculture, Beijing 102206, China; (P.F.); (Y.W.); (Y.G.)
| | - Weiyu Li
- College of Plant Science and Technology, Beijing Key Laboratory of New Agricultural Technology in Agriculture Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China; (C.W.); (T.S.); (X.L.); (S.L.); (H.L.)
| |
Collapse
|
4
|
Li J, Le B, Wang X, Xu Y, Wang S, Li H, Gao L, Mo B, Liu L, Chen X. ALTERED MERISTEM PROGRAM1 impairs RNA silencing by repressing the biogenesis of a subset of inverted repeat-derived siRNAs. THE PLANT CELL 2024; 37:koae293. [PMID: 39495672 DOI: 10.1093/plcell/koae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/16/2024] [Accepted: 10/14/2024] [Indexed: 11/06/2024]
Abstract
RNA silencing negatively regulates gene expression at the transcriptional and posttranscriptional levels through DNA methylation, histone modification, mRNA cleavage, and translational inhibition. Small interfering RNAs (siRNAs) of 21 to 24 nucleotides are processed from double-stranded RNAs by Dicer-like (DCL) enzymes and play essential roles in RNA silencing in plants. Here, we demonstrated that ALTERED MERISTEM PROGRAM1 (AMP1) and its putative paralog LIKE AMP1 (LAMP1) impair RNA silencing by repressing the biogenesis of a subset of inverted repeat (IR)-derived siRNAs in Arabidopsis (Arabidopsis thaliana). AMP1 and LAMP1 inhibit Pol II-dependent IR gene transcription by suppressing ARGONAUTE 1 (AGO1) protein levels. Genetic analysis indicates that AMP1 acts upstream of RNA polymerase IV subunit 1 (NRPD1), RNA-dependent RNA polymerase 2 (RDR2), and DCL4, which are required for IR-induced RNA silencing. We also show that AMP1 and LAMP1 inhibit siRNA-mediated silencing in a different mechanism from that of AGO4 and DCL3. Together, these results reveal two previously unknown players in siRNA biogenesis from IRs-AGO1, which promotes IR transcription, and AMP1, which inhibits IR transcription indirectly through the repression of AGO1 expression.
Collapse
Affiliation(s)
- Jing Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Germplasm Resources of Tropical Special Ornamental Plants of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Brandon Le
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Xufeng Wang
- Beijing Advanced Center of RNA Biology (BEACON), State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ye Xu
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Suikang Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hao Li
- Beijing Advanced Center of RNA Biology (BEACON), State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xuemei Chen
- Beijing Advanced Center of RNA Biology (BEACON), State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Jaiswal SK, Dakora FD. Seed-Coat Pigmentation Plays a Crucial Role in Partner Selection and N 2 Fixation in Legume-Root-Microbe Associations in African Soils. PLANTS (BASEL, SWITZERLAND) 2024; 13:1464. [PMID: 38891273 PMCID: PMC11175086 DOI: 10.3390/plants13111464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Legume-rhizobia symbiosis is the most important plant-microbe interaction in sustainable agriculture due to its ability to provide much needed N in cropping systems. This interaction is mediated by the mutual recognition of signaling molecules from the two partners, namely legumes and rhizobia. In legumes, these molecules are in the form of flavonoids and anthocyanins, which are responsible for the pigmentation of plant organs, such as seeds, flowers, fruits, and even leaves. Seed-coat pigmentation in legumes is a dominant factor influencing gene expression relating to N2 fixation and may be responsible for the different N2-fixing abilities observed among legume genotypes under field conditions in African soils. Common bean, cowpea, Kersting's groundnut, and Bambara groundnut landraces with black seed-coat color are reported to release higher concentrations of nod-gene-inducing flavonoids and anthocyanins compared with the Red and Cream landraces. Black seed-coat pigmentation is considered a biomarker for enhanced nodulation and N2 fixation in legumes. Cowpea, Bambara groundnut, and Kersting's bean with differing seed-coat colors are known to attract different soil rhizobia based on PCR-RFLP analysis of bacterial DNA. Even when seeds of the same legume with diverse seed-coat colors were planted together in one hole, the nodulating bradyrhizobia clustered differently in the PCR-RFLP dendrogram. Kersting's groundnut, Bambara groundnut, and cowpea with differing seed-coat colors were selectively nodulated by different bradyrhizobial species. The 16S rRNA amplicon sequencing also found significant selective influences of seed-coat pigmentation on microbial community structure in the rhizosphere of five Kersting's groundnut landraces. Seed-coat color therefore plays a dominant role in the selection of the bacterial partner in the legume-rhizobia symbiosis.
Collapse
Affiliation(s)
- Sanjay K. Jaiswal
- Department of Chemistry, Tshwane University of Technology, Arcadia Campus, Pretoria 0183, South Africa
| | - Felix D. Dakora
- Department of Chemistry, Tshwane University of Technology, Arcadia Campus, Pretoria 0183, South Africa
| |
Collapse
|
6
|
Yuhazu M, Mikuriya S, Mori A, Dwiyanti MS, Senda M, Kanazawa A. Pigmentation of soybean seed coats via a mutation that abolishes production of multiple-phased siRNAs of chalcone synthase genes. Genes Genet Syst 2024; 99:n/a. [PMID: 38382925 DOI: 10.1266/ggs.23-00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
Lack of pigmentation in seed coats of soybean is caused by natural RNA silencing of chalcone synthase (CHS) genes. This phenomenon is an evolutionary consequence of structural changes in DNA that resulted in the production of double-stranded RNAs (dsRNAs) that trigger RNA degradation. Here we determined that a mutant with pigmented seed coats derived from a cultivar that lacked the pigmentation had a deletion between DNA regions ICHS1 and a cytochrome P450 gene; the deletion included GmIRCHS, a candidate gene that triggers CHS RNA silencing via production of CHS dsRNAs. We also characterized CHS short interfering RNAs (siRNAs) produced in the wild-type seed coats that had CHS RNA silencing. Phased 21-nt CHS siRNAs were detected in all 21 phases and were widely distributed in exon 2 of CHS7, which indicates commonality in the pattern of RNA degradation in natural CHS RNA silencing between distantly related species. These results with the similarities in the rearrangements found in spontaneous mutants suggest that the structural organization that generates dsRNAs that trigger phased siRNA production is vulnerable to further structural changes, which eventually abolish the induction of RNA silencing.
Collapse
Affiliation(s)
| | - Shun Mikuriya
- Research Faculty of Agriculture, Hokkaido University
| | - Ayumi Mori
- Research Faculty of Agriculture, Hokkaido University
| | | | - Mineo Senda
- Faculty of Agriculture and Life Science, Hirosaki University
| | | |
Collapse
|
7
|
Vaucheret H, Voinnet O. The plant siRNA landscape. THE PLANT CELL 2024; 36:246-275. [PMID: 37772967 PMCID: PMC10827316 DOI: 10.1093/plcell/koad253] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/12/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
Whereas micro (mi)RNAs are considered the clean, noble side of the small RNA world, small interfering (si)RNAs are often seen as a noisy set of molecules whose barbarian acronyms reflect a large diversity of often elusive origins and functions. Twenty-five years after their discovery in plants, however, new classes of siRNAs are still being identified, sometimes in discrete tissues or at particular developmental stages, making the plant siRNA world substantially more complex and subtle than originally anticipated. Focusing primarily on the model Arabidopsis, we review here the plant siRNA landscape, including transposable elements (TE)-derived siRNAs, a vast array of non-TE-derived endogenous siRNAs, as well as exogenous siRNAs produced in response to invading nucleic acids such as viruses or transgenes. We primarily emphasize the extraordinary sophistication and diversity of their biogenesis and, secondarily, the variety of their known or presumed functions, including via non-cell autonomous activities, in the sporophyte, gametophyte, and shortly after fertilization.
Collapse
Affiliation(s)
- Hervé Vaucheret
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Olivier Voinnet
- Department of Biology, Swiss Federal Institute of Technology (ETH-Zurich), 8092 Zürich, Switzerland
| |
Collapse
|
8
|
Lemay MA, de Ronne M, Bélanger R, Belzile F. k-mer-based GWAS enhances the discovery of causal variants and candidate genes in soybean. THE PLANT GENOME 2023; 16:e20374. [PMID: 37596724 DOI: 10.1002/tpg2.20374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/19/2023] [Indexed: 08/20/2023]
Abstract
Genome-wide association studies (GWAS) are powerful statistical methods that detect associations between genotype and phenotype at genome scale. Despite their power, GWAS frequently fail to pinpoint the causal variant or the gene controlling a given trait in crop species. Assessing genetic variants other than single-nucleotide polymorphisms (SNPs) could alleviate this problem. In this study, we tested the potential of structural variant (SV)- and k-mer-based GWAS in soybean by applying these methods as well as conventional SNP/indel-based GWAS to 13 traits. We assessed the performance of each GWAS approach based on loci for which the causal genes or variants were known from previous genetic studies. We found that k-mer-based GWAS was the most versatile approach and the best at pinpointing causal variants or candidate genes. Moreover, k-mer-based analyses identified promising candidate genes for loci related to pod color, pubescence form, and resistance to Phytophthora sojae. In our dataset, SV-based GWAS did not add value compared to k-mer-based GWAS and may not be worth the time and computational resources invested. Despite promising results, significant challenges remain regarding the downstream analysis of k-mer-based GWAS. Notably, better methods are needed to associate significant k-mers with sequence variation. Our results suggest that coupling k-mer- and SNP/indel-based GWAS is a powerful approach for discovering candidate genes in crop species.
Collapse
Affiliation(s)
- Marc-André Lemay
- Département de phytologie, Université Laval, Québec, QC, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, QC, Canada
- Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, QC, Canada
| | - Maxime de Ronne
- Département de phytologie, Université Laval, Québec, QC, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, QC, Canada
- Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, QC, Canada
| | - Richard Bélanger
- Département de phytologie, Université Laval, Québec, QC, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, QC, Canada
- Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, QC, Canada
| | - François Belzile
- Département de phytologie, Université Laval, Québec, QC, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, QC, Canada
- Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, QC, Canada
| |
Collapse
|
9
|
Song J, Xu R, Guo Q, Wu C, Li Y, Wang X, Wang J, Qiu LJ. An omics strategy increasingly improves the discovery of genetic loci and genes for seed-coat color formation in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:71. [PMID: 37663546 PMCID: PMC10471558 DOI: 10.1007/s11032-023-01414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/13/2023] [Indexed: 09/05/2023]
Abstract
The phenotypic color of seeds is a complex agronomic trait and has economic and biological significance. The genetic control and molecular regulation mechanisms have been extensively studied. Here, we used a multi-omics strategy to explore the color formation in soybean seeds at a big data scale. We identified 13 large quantitative trait loci (QTL) for color with bulk segregating analysis in recombinant inbreeding lines. GWAS analysis of colors and decomposed attributes in 763 germplasms revealed associated SNP sites perfectly falling in five major QTL, suggesting inherited regulation on color during natural selection. Further transcriptomics analysis before and after color accumulation revealed 182 differentially expression genes (DEGs) in the five QTL, including known genes CHS, MYB, and F3'H involved in pigment accumulation. More DEGs with consistently upregulation or downregulation were identified as shared regulatory genes for two or more color formations while some DEGs were only for a specific color formation. For example, five upregulated DEGs in QTL qSC-3 were in flavonoid biosynthesis responsible for black and brown seed. The DEG (Glyma.08G085400) was identified in the purple seed only, which encodes gibberellin 2-beta-dioxygenase in the metabolism of colorful terpenoids. The candidate genes are involved in flavonoid biosynthesis, transcription factor regulation, gibberellin and terpenoid metabolism, photosynthesis, ascorbate and aldarate metabolism, and lipid metabolism. Seven differentially expressed transcription factors were also speculated that may regulate color formation, including a known MYB. The finds expand QTL and gene candidates for color formation, which could guide to breed better cultivars with designed colors. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01414-z.
Collapse
Affiliation(s)
- Jian Song
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Ruixin Xu
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Qingyuan Guo
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Caiyu Wu
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Yinghui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| | - Jun Wang
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Li-Juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
10
|
Yang Y, Zhao T, Wang F, Liu L, Liu B, Zhang K, Qin J, Yang C, Qiao Y. Identification of candidate genes for soybean seed coat-related traits using QTL mapping and GWAS. FRONTIERS IN PLANT SCIENCE 2023; 14:1190503. [PMID: 37384360 PMCID: PMC10293793 DOI: 10.3389/fpls.2023.1190503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/17/2023] [Indexed: 06/30/2023]
Abstract
Seed coat color is a typical morphological trait that can be used to reveal the evolution of soybean. The study of seed coat color-related traits in soybeans is of great significance for both evolutionary theory and breeding practices. In this study, 180 F10 recombinant inbred lines (RILs) derived from the cross between the yellow-seed coat cultivar Jidou12 (ZDD23040, JD12) and the wild black-seed coat accession Y9 (ZYD02739) were used as materials. Three methods, single-marker analysis (SMA), interval mapping (IM), and inclusive composite interval mapping (ICIM), were used to identify quantitative trait loci (QTLs) controlling seed coat color and seed hilum color. Simultaneously, two genome-wide association study (GWAS) models, the generalized linear model (GLM) and mixed linear model (MLM), were used to jointly identify seed coat color and seed hilum color QTLs in 250 natural populations. By integrating the results from QTL mapping and GWAS analysis, we identified two stable QTLs (qSCC02 and qSCC08) associated with seed coat color and one stable QTL (qSHC08) related to seed hilum color. By combining the results of linkage analysis and association analysis, two stable QTLs (qSCC02, qSCC08) for seed coat color and one stable QTL (qSHC08) for seed hilum color were identified. Upon further investigation using Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, we validated the previous findings that two candidate genes (CHS3C and CHS4A) reside within the qSCC08 region and identified a new QTL, qSCC02. There were a total of 28 candidate genes in the interval, among which Glyma.02G024600, Glyma.02G024700, and Glyma.02G024800 were mapped to the glutathione metabolic pathway, which is related to the transport or accumulation of anthocyanin. We considered the three genes as potential candidate genes for soybean seed coat-related traits. The QTLs and candidate genes detected in this study provide a foundation for further understanding the genetic mechanisms underlying soybean seed coat color and seed hilum color and are of significant value in marker-assisted breeding.
Collapse
Affiliation(s)
- Yue Yang
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Tiantian Zhao
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Fengmin Wang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Luping Liu
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Bingqiang Liu
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Kai Zhang
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jun Qin
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Chunyan Yang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Yake Qiao
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| |
Collapse
|
11
|
Zhao Y, Liu G, Yang F, Liang Y, Gao Q, Xiang C, Li X, Yang R, Zhang G, Jiang H, Yu L, Yang S. Multilayered regulation of secondary metabolism in medicinal plants. MOLECULAR HORTICULTURE 2023; 3:11. [PMID: 37789448 PMCID: PMC10514987 DOI: 10.1186/s43897-023-00059-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/27/2023] [Indexed: 10/05/2023]
Abstract
Medicinal plants represent a huge reservoir of secondary metabolites (SMs), substances with significant pharmaceutical and industrial potential. However, obtaining secondary metabolites remains a challenge due to their low-yield accumulation in medicinal plants; moreover, these secondary metabolites are produced through tightly coordinated pathways involving many spatiotemporally and environmentally regulated steps. The first regulatory layer involves a complex network of transcription factors; a second, more recently discovered layer of complexity in the regulation of SMs is epigenetic modification, such as DNA methylation, histone modification and small RNA-based mechanisms, which can jointly or separately influence secondary metabolites by regulating gene expression. Here, we summarize the findings in the fields of genetic and epigenetic regulation with a special emphasis on SMs in medicinal plants, providing a new perspective on the multiple layers of regulation of gene expression.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Guanze Liu
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
| | - Feng Yang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanli Liang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Qingqing Gao
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Chunfan Xiang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xia Li
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Run Yang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Guanghui Zhang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Huifeng Jiang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Lei Yu
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China.
| | - Shengchao Yang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China.
| |
Collapse
|
12
|
Liu F, Chen H, Yang L, You L, Ju J, Yang S, Wang X, Liu Z. QTL Mapping and Transcriptome Analysis Reveal Candidate Genes Regulating Seed Color in Brassica napus. Int J Mol Sci 2023; 24:ijms24119262. [PMID: 37298213 DOI: 10.3390/ijms24119262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Yellow seeds are desirable in rapeseed breeding because of their higher oil content and better nutritional quality than black seeds. However, the underlying genes and formation mechanism of yellow seeds remain unclear. Here, a novel yellow-seeded rapeseed line (Huangaizao, HAZ) was crossed with a black-seeded rapeseed line (Zhongshuang11, ZS11) to construct a mapping population of 196 F2 individuals, based on which, a high-density genetic linkage map was constructed. This map, comprising 4174 bin markers, was 1618.33 cM in length and had an average distance of 0.39 cM between its adjacent markers. To assess the seed color of the F2 population, three methods (imaging, spectrophotometry, and visual scoring) were used and a common major quantitative trait locus (QTL) on chromosome A09, explaining 10.91-21.83% of the phenotypic variance, was detected. Another minor QTL, accounting for 6.19-6.69% of the phenotypic variance, was detected on chromosome C03, only by means of imaging and spectrophotometry. Furthermore, a dynamic analysis of the differential expressions between the parental lines showed that flavonoid biosynthesis-related genes were down-regulated in the yellow seed coats at 25 and 35 days after flowering. A coexpression network between the differentially expressed genes identified 17 candidate genes for the QTL intervals, including a flavonoid structure gene, novel4557 (BnaC03.TT4), and two transcription factor genes, namely, BnaA09G0616800ZS (BnaA09.NFYA8) and BnaC03G0060200ZS (BnaC03.NAC083), that may regulate flavonoid biosynthesis. Our study lays a foundation for further identifying the genes responsible for and understanding the regulatory mechanism of yellow seed formation in Brassica napus.
Collapse
Affiliation(s)
- Fangying Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Hao Chen
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Liu Yang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Liang You
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Jianye Ju
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Shujie Yang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Xiaolin Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Zhongsong Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
13
|
Kafer JM, Molinari MDC, Henning FA, Koltun A, Marques VV, Marin SRR, Nepomuceno AL, Mertz-Henning LM. Transcriptional Profile of Soybean Seeds with Contrasting Seed Coat Color. PLANTS (BASEL, SWITZERLAND) 2023; 12:1555. [PMID: 37050181 PMCID: PMC10097363 DOI: 10.3390/plants12071555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Soybean is the primary source of vegetable protein and is used for various purposes, mainly to feed animals. This crop can have diverse seed coat colors, varying from yellow, black, brown, and green to bicolor. Black seed coat cultivars have already been assigned as favorable for both seed and grain production. Thus, this work aimed to identify genes associated with soybean seed quality by comparing the transcriptomes of soybean seeds with contrasting seed coat colors. The results from RNA-seq analyses were validated with real-time PCR using the cultivar BRS 715A (black seed coat) and the cultivars BRS 413 RR and DM 6563 IPRO (yellow seed coat). We found 318 genes differentially expressed in all cultivars (freshly harvested seeds and seeds stored in cold chamber). From the in silico analysis of the transcriptomes, the following genes were selected and validated with RT-qPCR: ACS1, ACSF3, CYP90A1, CYP710A1, HCT, CBL, and SAHH. These genes are genes induced in the black seed coat cultivar and are part of pathways responsible for ethylene, lipid, brassinosteroid, lignin, and sulfur amino acid biosynthesis. The BRSMG 715A gene has almost 4times more lignin than the yellow seed coat cultivars. These attributes are related to the BRSMG 715A cultivar's higher seed quality, which translates to more longevity and resistance to moisture and mechanical damage. Future silencing studies may evaluate the knockout of these genes to better understand the biology of soybean seeds with black seed coat.
Collapse
Affiliation(s)
- João M. Kafer
- Biotechnology Department, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Mayla D. C. Molinari
- Arthur Bernardes Foundation, Embrapa Soja, Londrina 86085-981, PR, Brazil; (M.D.C.M.); (V.V.M.)
| | - Fernando A. Henning
- Embrapa Soja, Londrina 86085-981, PR, Brazil; (F.A.H.); (S.R.R.M.); (A.L.N.)
| | - Alessandra Koltun
- Agronomy Department, State University of Maringá, Maringá 87020-900, PR, Brazil;
| | - Viviani V. Marques
- Arthur Bernardes Foundation, Embrapa Soja, Londrina 86085-981, PR, Brazil; (M.D.C.M.); (V.V.M.)
| | - Silvana R. R. Marin
- Embrapa Soja, Londrina 86085-981, PR, Brazil; (F.A.H.); (S.R.R.M.); (A.L.N.)
| | | | | |
Collapse
|
14
|
Yu B, Gao P, Song J, Yang H, Qin L, Yu X, Song H, Coulson J, Bekkaoui Y, Akhov L, Han X, Cram D, Wei Y, Zaharia LI, Zou J, Konkin D, Quilichini TD, Fobert P, Patterson N, Datla R, Xiang D. Spatiotemporal transcriptomics and metabolic profiling provide insights into gene regulatory networks during lentil seed development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36965062 DOI: 10.1111/tpj.16205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Lentil (Lens culinaris Medik.) is a nutritious legume with seeds rich in protein, minerals and an array of diverse specialized metabolites. The formation of a seed requires regulation and tight coordination of developmental programs to form the embryo, endosperm and seed coat compartments, which determines the structure and composition of mature seed and thus its end-use quality. Understanding the molecular and cellular events and metabolic processes of seed development is essential for improving lentil yield and seed nutritional value. However, such information remains largely unknown, especially at the seed compartment level. In this study, we generated high-resolution spatiotemporal gene expression profiles in lentil embryo, seed coat and whole seeds from fertilization through maturation. Apart from anatomic differences between the embryo and seed coat, comparative transcriptomics and weighted gene co-expression network analysis revealed embryo- and seed coat-specific genes and gene modules predominant in specific tissues and stages, which highlights distinct genetic programming. Furthermore, we investigated the dynamic profiles of flavonoid, isoflavone, phytic acid and saponin in seed compartments across seed development. Coupled with transcriptome data, we identified sets of candidate genes involved in the biosynthesis of these metabolites. The global view of the transcriptional and metabolic changes of lentil seed tissues throughout development provides a valuable resource for dissecting the genetic control of secondary metabolism and development of molecular tools for improving seed nutritional quality.
Collapse
Affiliation(s)
- Bianyun Yu
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Peng Gao
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Jingpu Song
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Hui Yang
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Li Qin
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - Xiaoyu Yu
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - Halim Song
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Justin Coulson
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Yasmina Bekkaoui
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Leonid Akhov
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Xiumei Han
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Dustin Cram
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Yangdou Wei
- College of Art & Science, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK, S7N 5A5, Canada
| | - L Irina Zaharia
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Jitao Zou
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - David Konkin
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Teagen D Quilichini
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Pierre Fobert
- Aquatic and Crop Resource Development, National Research Council Canada, Ottawa, Ontario, K1A 0R6, Canada
| | - Nii Patterson
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - Daoquan Xiang
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| |
Collapse
|
15
|
Novel Seed Size: A Novel Seed-Developing Gene in Glycine max. Int J Mol Sci 2023; 24:ijms24044189. [PMID: 36835599 PMCID: PMC9967547 DOI: 10.3390/ijms24044189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Soybean-seed development is controlled in multiple ways, as in many known regulating genes. Here, we identify a novel gene, Novel Seed Size (NSS), involved in seed development, by analyzing a T-DNA mutant (S006). The S006 mutant is a random mutant of the GmFTL4pro:GUS transgenic line, with phenotypes with small and brown seed coats. An analysis of the metabolomics and transcriptome combined with RT-qPCR in the S006 seeds revealed that the brown coat may result from the increased expression of chalcone synthase 7/8 genes, while the down-regulated expression of NSS leads to small seed size. The seed phenotypes and a microscopic observation of the seed-coat integument cells in a CRISPR/Cas9-edited mutant nss1 confirmed that the NSS gene conferred small phenotypes of the S006 seeds. As mentioned in an annotation on the Phytozome website, NSS encodes a potential DNA helicase RuvA subunit, and no such genes were previously reported to be involved in seed development. Therefore, we identify a novel gene in a new pathway controlling seed development in soybeans.
Collapse
|
16
|
Vaucheret H. Epigenetic management of self and non-self: lessons from 40 years of transgenic plants. C R Biol 2023; 345:149-174. [PMID: 36847123 DOI: 10.5802/crbiol.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022]
Abstract
Plant varieties exhibiting unstable or variegated phenotypes, or showing virus recovery have long remained a mystery. It is only with the development of transgenic plants 40 years ago that the epigenetic features underlying these phenomena were elucidated. Indeed, the study of transgenic plants that did not express the introduced sequences revealed that transgene loci sometimes undergo transcriptional gene silencing (TGS) or post-transcriptional gene silencing (PTGS) by activating epigenetic defenses that naturally control transposable elements, duplicated genes or viruses. Even when they do not trigger TGS or PTGS spontaneously, stably expressed transgenes driven by viral promoters set apart from endogenous genes in their epigenetic regulation. As a result, transgenes driven by viral promoters are capable of undergoing systemic PTGS throughout the plant, whereas endogenous genes can only undergo local PTGS in cells where RNA quality control is impaired. Together, these results indicate that the host genome distinguishes self from non-self at the epigenetic level, allowing PTGS to eliminate non-self, and preventing PTGS to become systemic and kill the plant when it is locally activated against deregulated self.
Collapse
|
17
|
Tabara M, Yamanashi R, Kuriyama K, Koiwa H, Fukuhara T. The dicing activity of DCL3 and DCL4 is negatively affected by flavonoids. PLANT MOLECULAR BIOLOGY 2023; 111:107-116. [PMID: 36219366 DOI: 10.1007/s11103-022-01314-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The dicing activities of DCL3 and DCL4 are inhibited by accumulated metabolites in soybean leaves. Epicatechin and 7,4'-dihydroxyflavone inhibited Arabidopsis DCL3 and DCL4 in vitro. Flavonoids are major secondary metabolites in plants, and soybean (Glycine max L.) is a representative plant that accumulates flavonoids, including isoflavonoids, to high levels. Naturally-occurring RNA interference (RNAi) against the chalcone synthase (CHS) gene represses flavonoid (anthocyanin) biosynthesis in an organ-specific manner, resulting in a colorless (yellow) seed coat in many soybean cultivars. To better understand seed coat-specific naturally-occurring RNAi in soybean, we characterized soybean Dicer-like (DCL) 3 and 4, which play critical roles in RNAi. Using a previously established dicing assay, two dicing activities producing 24- and 21-nt siRNAs, corresponding to DCL3 and DCL4, respectively, were detected in soybean. Dicing activity was detected in colorless seed coats where RNAi against CHS genes was found, but no dicing activity was detected in leaves where CHS expression was prevalent. Biochemical analysis revealed that soybean leaves contained two types of inhibitors effective for Arabidopsis Dicers (AtDCL3 and AtDCL4), one of which was a heat-labile high molecular weight compound of 50 to 100 kD while another was a low molecular weight substance. We found that some flavonoids, such as epicatechin and 7,4'-dihydroxyflavone, inhibited both AtDCL3 and AtDCL4, but AtDCL4 was more sensitive to these flavonoids than AtDCL3. These results suggest that flavonoids inhibit the dicing activity of DCL4 and thereby attenuate RNAi in soybean leaves.
Collapse
Affiliation(s)
- Midori Tabara
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, 1-1-1, Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan.
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan.
| | - Riho Yamanashi
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Kazunori Kuriyama
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Hisashi Koiwa
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
- Vegetable and Fruit Improvement Center and Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Toshiyuki Fukuhara
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
18
|
Bohra A, Tiwari A, Kaur P, Ganie SA, Raza A, Roorkiwal M, Mir RR, Fernie AR, Smýkal P, Varshney RK. The Key to the Future Lies in the Past: Insights from Grain Legume Domestication and Improvement Should Inform Future Breeding Strategies. PLANT & CELL PHYSIOLOGY 2022; 63:1554-1572. [PMID: 35713290 PMCID: PMC9680861 DOI: 10.1093/pcp/pcac086] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 05/11/2023]
Abstract
Crop domestication is a co-evolutionary process that has rendered plants and animals significantly dependent on human interventions for survival and propagation. Grain legumes have played an important role in the development of Neolithic agriculture some 12,000 years ago. Despite being early companions of cereals in the origin and evolution of agriculture, the understanding of grain legume domestication has lagged behind that of cereals. Adapting plants for human use has resulted in distinct morpho-physiological changes between the wild ancestors and domesticates, and this distinction has been the focus of several studies aimed at understanding the domestication process and the genetic diversity bottlenecks created. Growing evidence from research on archeological remains, combined with genetic analysis and the geographical distribution of wild forms, has improved the resolution of the process of domestication, diversification and crop improvement. In this review, we summarize the significance of legume wild relatives as reservoirs of novel genetic variation for crop breeding programs. We describe key legume features, which evolved in response to anthropogenic activities. Here, we highlight how whole genome sequencing and incorporation of omics-level data have expanded our capacity to monitor the genetic changes accompanying these processes. Finally, we present our perspective on alternative routes centered on de novo domestication and re-domestication to impart significant agronomic advances of novel crops over existing commodities. A finely resolved domestication history of grain legumes will uncover future breeding targets to develop modern cultivars enriched with alleles that improve yield, quality and stress tolerance.
Collapse
Affiliation(s)
- Abhishek Bohra
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Abha Tiwari
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kalyanpur, Kanpur 208024, India
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Showkat Ahmad Ganie
- Department of Biotechnology, Visva-Bharati, Santiniketan, Santiniketan Road, Bolpur 731235, India
| | - Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
| | - Manish Roorkiwal
- Khalifa Center for Genetic Engineering and Biotechnology (KCGEB), UAE University, Sheik Khalifa Bin Zayed Street, Al Ain, Abu Dhabi 15551, UAE
| | - Reyazul Rouf Mir
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST, Shalimar, Srinagar 190025, India
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Petr Smýkal
- Department of Botany, Faculty of Sciences, Palacky University, Křížkovského 511/8, Olomouc 78371, Czech Republic
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| |
Collapse
|
19
|
Li J, Zhang Y, Ma R, Huang W, Hou J, Fang C, Wang L, Yuan Z, Sun Q, Dong X, Hou Y, Wang Y, Kong F, Sun L. Identification of ST1 reveals a selection involving hitchhiking of seed morphology and oil content during soybean domestication. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1110-1121. [PMID: 35178867 PMCID: PMC9129076 DOI: 10.1111/pbi.13791] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/29/2021] [Accepted: 01/26/2022] [Indexed: 05/26/2023]
Abstract
Seed morphology and quality of cultivated soybean (Glycine max) have changed dramatically during domestication from their wild relatives, but their relationship to selection is poorly understood. Here, we describe a semi-dominant locus, ST1 (Seed Thickness 1), affecting seed thickness and encoding a UDP-D-glucuronate 4-epimerase, which catalyses UDP-galacturonic acid production and promotes pectin biosynthesis. Interestingly, this morphological change concurrently boosted seed oil content, which, along with up-regulation of glycolysis biosynthesis modulated by ST1, enabled soybean to become a staple oil crop. Strikingly, ST1 and an inversion controlling seed coat colour formed part of a single selective sweep. Structural variation analysis of the region surrounding ST1 shows that the critical mutation in ST1 existed in earlier wild relatives of soybean and the region containing ST1 subsequently underwent an inversion, which was followed by successive selection for both traits through hitchhiking during selection for seed coat colour. Together, these results provide direct evidence that simultaneously variation for seed morphology and quality occurred earlier than variation for seed coat colour during soybean domestication. The identification of ST1 thus sheds light on a crucial phase of human empirical selection in soybeans and provides evidence that our ancestors improved soybean based on taste.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityBeijingChina
- Beijing Key Laboratory for Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Yuhang Zhang
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Ruirui Ma
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityBeijingChina
- Beijing Key Laboratory for Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Wenxuan Huang
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityBeijingChina
- Beijing Key Laboratory for Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Jingjing Hou
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityBeijingChina
- Beijing Key Laboratory for Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Chao Fang
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Lingshuang Wang
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Zhihui Yuan
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityBeijingChina
- Beijing Key Laboratory for Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Qun Sun
- Beijing Key Laboratory for Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xuehui Dong
- Beijing Key Laboratory for Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Yufeng Hou
- College of Humanities and Development StudiesChina Agricultural UniversityBeijingChina
| | - Ying Wang
- College of Plant ScienceJilin UniversityChangchunChina
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Lianjun Sun
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityBeijingChina
- Beijing Key Laboratory for Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
20
|
Hossain R, Quispe C, Saikat ASM, Jain D, Habib A, Janmeda P, Islam MT, Radha, Daştan SD, Kumar M, Butnariu M, Cho WC, Sharifi-Rad J, Kipchakbayeva A, Calina D. Biosynthesis of Secondary Metabolites Based on the Regulation of MicroRNAs. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9349897. [PMID: 35281611 PMCID: PMC8916866 DOI: 10.1155/2022/9349897] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022]
Abstract
MicroRNA (miRNA), a noncoding ribonucleic acid, is considered to be important for the progression of gene expression in plants and animals by rupture or translational repression of targeted mRNAs. Many types of miRNA regulate plant metabolism, growth, and response to biotic and abiotic factors. miRNA characterization helps to expose its function in regulating the process of post-transcriptional genetic regulation. There are a lot of factors associated with miRNA function, but the function of miRNA in the organic synthesis of by-products by natural products is not yet fully elucidated. The current review is aimed at observing and characterizing miRNAs and identifying those involved in the functioning of the biosynthesis of secondary metabolites in plants, with their use in controlled manipulation.
Collapse
Affiliation(s)
- Rajib Hossain
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Abu Saim Mohammad Saikat
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Divya Jain
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| | - Arslan Habib
- Lab of Infectious and Molecular Immunology, School of Life Sciences, Fudan University, Shanghai, China
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| | - Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, Sivas 58140, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, Sivas 58140, Turkey
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | | | - Aliya Kipchakbayeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| |
Collapse
|
21
|
Ohta Y, Atsumi G, Yoshida C, Takahashi S, Shimizu M, Nishihara M, Nakatsuka T. Post-transcriptional gene silencing of the chalcone synthase gene CHS causes corolla lobe-specific whiting of Japanese gentian. PLANTA 2021; 255:29. [PMID: 34964920 DOI: 10.1007/s00425-021-03815-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Post-transcriptional gene silencing of the chalcone synthase gene CHS specifically suppresses anthocyanin biosynthesis in corolla lobes and is responsible for the formation of a stripe type bicolor in Japanese gentian. The flower of Japanese gentian is a bell-shaped corolla composed of lobes and plicae, which is painted uniformly blue. However, the gentian cultivar 'Hakuju' shows bicolor phenotype (blue-white stripe corolla), in which anthocyanin accumulation is suppressed only in corolla lobes. Expression analysis indicated that steady-state levels of chalcone synthase (CHS) transcripts were remarkably reduced in corolla lobes compared with plicae during petal pigmentation initiation. However, no significant difference in expression levels of other flavonoid biosynthetic structural and regulatory genes was detected in its lobes and plicae. On feeding naringenin in white lobes, anthocyanin accumulation was recovered. Northern blotting probed with CHS confirmed the abundant accumulation of small RNAs in corolla lobes. Likewise, small RNA-seq analysis indicated that short reads from its lobes were predominantly mapped onto the 2nd exon region of the CHS gene, whereas those from the plicae were scarcely mapped. Subsequent infection with the gentian ovary ringspot virus (GORV), which had an RNA-silencing activity, showed the recovery of partial pigmentation in lobes. Hence, these results strongly suggested that suppressing anthocyanin accumulation in the lobes of bicolored 'Hakuju' was attributed to the specific degradation of CHS mRNA in corolla lobes, which was through post-transcriptional gene silencing (PTGS). Herein, we revealed the molecular mechanism of strip bicolor formation in Japanese gentian, and showed that PTGS of CHS was also responsible for flower color pattern in a floricultural plant other than petunia and dahlia.
Collapse
Affiliation(s)
- Yuka Ohta
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Go Atsumi
- Iwate Biotechnology Research Center, Kitakami, 024-0003, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, 062-8517, Japan
| | - Chiharu Yoshida
- Iwate Biotechnology Research Center, Kitakami, 024-0003, Japan
| | | | - Motoki Shimizu
- Iwate Biotechnology Research Center, Kitakami, 024-0003, Japan
| | | | - Takashi Nakatsuka
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan.
- College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, 422-8529, Japan.
| |
Collapse
|
22
|
Ohno S, Makishima R, Doi M. Post-transcriptional gene silencing of CYP76AD controls betalain biosynthesis in bracts of bougainvillea. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6949-6962. [PMID: 34279632 DOI: 10.1093/jxb/erab340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Betalain is one of four major plant pigments and shares some features with anthocyanin; however, no plant has been found to biosynthesize both pigments. Previous studies have reported that anthocyanin biosynthesis in some plants is regulated by post-transcriptional gene-silencing (PTGS), but the importance of PTGS in betalain biosynthesis remains unclear. In this study, we report the occurrence of PTGS in betalain biosynthesis in bougainvillea (Bougainvillea peruviana) 'Thimma', which produces bracts of three different color on the same plant, namely pink, white, and pink-white. This resembles the unstable anthocyanin pigmentation phenotype that is associated with PTGS, and hence we anticipated the presence of PTGS in the betalain biosynthetic pathway. To test this, we analysed pigments, gene expression, small RNAs, and transient overexpression. Our results demonstrated that PTGS of BpCYP76AD1, a gene encoding one of the betalain biosynthesis enzymes, is responsible for the loss of betalain biosynthesis in 'Thimma'. Neither the genetic background nor DNA methylation in the BpCYP76AD1 sequence could explain the induction of PTGS, implying that another locus controls the unstable pigmentation. Our results indicate that naturally occurring PTGS contributes to the diversification of color patterns not only in anthocyanin biosynthesis but also in betalain biosynthesis.
Collapse
Affiliation(s)
- Sho Ohno
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Rikako Makishima
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Motoaki Doi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
23
|
Jia L, Li Y, Huang F, Jiang Y, Li H, Wang Z, Chen T, Li J, Zhang Z, Yao W. LIRBase: a comprehensive database of long inverted repeats in eukaryotic genomes. Nucleic Acids Res 2021; 50:D174-D182. [PMID: 34643715 PMCID: PMC8728187 DOI: 10.1093/nar/gkab912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/20/2021] [Accepted: 09/25/2021] [Indexed: 11/14/2022] Open
Abstract
Small RNAs (sRNAs) constitute a large portion of functional elements in eukaryotic genomes. Long inverted repeats (LIRs) can be transcribed into long hairpin RNAs (hpRNAs), which can further be processed into small interfering RNAs (siRNAs) with vital biological roles. In this study, we systematically identified a total of 6 619 473 LIRs in 424 eukaryotic genomes and developed LIRBase (https://venyao.xyz/lirbase/), a specialized database of LIRs across different eukaryotic genomes aiming to facilitate the annotation and identification of LIRs encoding long hpRNAs and siRNAs. LIRBase houses a comprehensive collection of LIRs identified in a wide range of eukaryotic genomes. In addition, LIRBase not only allows users to browse and search the identified LIRs in any eukaryotic genome(s) of interest available in GenBank, but also provides friendly web functionalities to facilitate users to identify LIRs in user-uploaded sequences, align sRNA sequencing data to LIRs, perform differential expression analysis of LIRs, predict mRNA targets for LIR-derived siRNAs, and visualize the secondary structure of candidate long hpRNAs encoded by LIRs. As demonstrated by two case studies, collectively, LIRBase bears the great utility for systematic investigation and characterization of LIRs and functional exploration of potential roles of LIRs and their derived siRNAs in diverse species.
Collapse
Affiliation(s)
- Lihua Jia
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China.,National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yang Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Fangfang Huang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Yingru Jiang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Haoran Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhizhan Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Tiantian Chen
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiaming Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhang Zhang
- China National Center for Bioinformation, Beijing 100101, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Wen Yao
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
24
|
Wang X, Li MW, Wong FL, Luk CY, Chung CYL, Yung WS, Wang Z, Xie M, Song S, Chung G, Chan TF, Lam HM. Increased copy number of gibberellin 2-oxidase 8 genes reduced trailing growth and shoot length during soybean domestication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1739-1755. [PMID: 34245624 DOI: 10.1111/tpj.15414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 05/27/2023]
Abstract
Copy number variations (CNVs) play important roles in crop domestication. However, there is only very limited information on the involvement of CNVs in soybean domestication. Trailing growth and long shoots are soybean adaptations for natural habitats but cause lodging that hampers yield in cultivation. Previous studies have focused on Dt1/2 affecting the indeterminate/determinate growth habit, whereas the possible role of the gibberellin pathway remained unclear. In the present study, quantitative trait locus (QTL) mapping of a recombinant inbred population of 460 lines revealed a trailing-growth-and-shoot-length QTL. A CNV region within this QTL was identified, featuring the apical bud-expressed gibberellin 2-oxidase 8A/B, the copy numbers of which were positively correlated with expression levels and negatively with trailing growth and shoot length, and their effects were demonstrated by transgenic soybean and Arabidopsis thaliana. Based on the fixation index, this CNV region underwent intense selection during the initial domestication process.
Collapse
Affiliation(s)
- Xin Wang
- School of Life Sciences and the Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Man-Wah Li
- School of Life Sciences and the Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Fuk-Ling Wong
- School of Life Sciences and the Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ching-Yee Luk
- School of Life Sciences and the Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Claire Yik-Lok Chung
- School of Life Sciences and the Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wai-Shing Yung
- School of Life Sciences and the Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zhili Wang
- School of Life Sciences and the Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Min Xie
- School of Life Sciences and the Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Shikui Song
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, South Korea
| | - Ting-Fung Chan
- School of Life Sciences and the Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518000, China
| | - Hon-Ming Lam
- School of Life Sciences and the Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518000, China
| |
Collapse
|
25
|
Biosynthetic Pathway of Proanthocyanidins in Major Cash Crops. PLANTS 2021; 10:plants10091792. [PMID: 34579325 PMCID: PMC8472070 DOI: 10.3390/plants10091792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 01/10/2023]
Abstract
Proanthocyanidins (PAs) are a group of oligomers or polymers composed of monomeric flavanols. They offer many benefits for human fitness, such as antioxidant, anticancer, and anti-inflammatory activities. To date, three types of PA have been observed in nature: procyanidins, propelargonidins, and prodelphinidins. These are synthesized as some of the end-products of the flavonoid pathway by different consecutive enzymatic activities, from the same precursor—naringenin. Although the general biosynthetic pathways of PAs have been reported in a few model plant species, little is known about the species-specific pathways in major crops containing different types of PA. In the present study, we identified the species-specific pathways in 10 major crops, based on the presence/absence of flavanol-based intermediates in the metabolic pathway, and found 202 orthologous genes in the reference genomic database of each species, which may encode for key enzymes involved in the biosynthetic pathways of PAs. Parallel enzymatic reactions in the pathway are responsible for the ratio between PAs and anthocyanins, as well as among the three types of PAs. Our study suggests a promising strategy for molecular breeding, to regulate the content of PAs and anthocyanins and improve the nutritional quality of food sources globally.
Collapse
|
26
|
Sajid M, Stone SR, Kaur P. Recent Advances in Heterologous Synthesis Paving Way for Future Green-Modular Bioindustries: A Review With Special Reference to Isoflavonoids. Front Bioeng Biotechnol 2021; 9:673270. [PMID: 34277582 PMCID: PMC8282456 DOI: 10.3389/fbioe.2021.673270] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Isoflavonoids are well-known plant secondary metabolites that have gained importance in recent time due to their multiple nutraceutical and pharmaceutical applications. In plants, isoflavonoids play a role in plant defense and can confer the host plant a competitive advantage to survive and flourish under environmental challenges. In animals, isoflavonoids have been found to interact with multiple signaling pathways and have demonstrated estrogenic, antioxidant and anti-oncologic activities in vivo. The activity of isoflavonoids in the estrogen pathways is such that the class has also been collectively called phytoestrogens. Over 2,400 isoflavonoids, predominantly from legumes, have been identified so far. The biosynthetic pathways of several key isoflavonoids have been established, and the genes and regulatory components involved in the biosynthesis have been characterized. The biosynthesis and accumulation of isoflavonoids in plants are regulated by multiple complex environmental and genetic factors and interactions. Due to this complexity of secondary metabolism regulation, the export and engineering of isoflavonoid biosynthetic pathways into non-endogenous plants are difficult, and instead, the microorganisms Saccharomyces cerevisiae and Escherichia coli have been adapted and engineered for heterologous isoflavonoid synthesis. However, the current ex-planta production approaches have been limited due to slow enzyme kinetics and traditionally laborious genetic engineering methods and require further optimization and development to address the required titers, reaction rates and yield for commercial application. With recent progress in metabolic engineering and the availability of advanced synthetic biology tools, it is envisaged that highly efficient heterologous hosts will soon be engineered to fulfill the growing market demand.
Collapse
Affiliation(s)
| | | | - Parwinder Kaur
- UWA School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
27
|
Ahn JY, Jung YH, Song H, Yi H, Hur Y. Alleles disrupting LBD37-like gene by an 136 bp insertion show different distributions between green and purple cabbages (Brassica oleracea var. capitata). Genes Genomics 2021; 43:679-688. [PMID: 33837934 DOI: 10.1007/s13258-021-01087-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/18/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND In Arabidopsis thaliana (Arabidopsis), clade IIb lateral organ boundary domain (LBD) 37, 38, and 39 proteins negatively regulate anthocyanin biosynthesis and affect nitrogen responses. OBJECTIVE To investigate the possible role of LBD genes in anthocyanin accumulations among green and purple cabbages (Brassica oleracea var. capitata), we determined sequence variations and expression levels of cabbage homologs of Arabidopsis LBD37, 38, and 39. METHODS DNA and mRNA sequences of BoLBD37, BoLBD37L (BoLBD37-like), BoLBD38, BoLBD38L (BoLBD38-like), and BoLBD39 gene in cabbage were determined. Allelic variations of BoLBD37L alleles in cabbages, resulting from insertions, were validated by genomic DNA PCR. Gene expressions were examined by semi-quantitative reverse transcription (RT-PCR) or quantitative RT-PCR. RESULTS Based on the expression analyses, BoLBD37L with two alleles, BoLBD37L-G and BoLBD37L-P, was selected as a candidate gene important for differential anthocyanin accumulation. BoLBD37L-P contains an 136 base pair insertion in the 2nd exon, producing two splicing variants encoding truncated proteins. Most purple cabbage lines were found to have BoLBD37L-P allele as homozygotes or heterozygotes, and only two out of sixty-four purple cabbages were identified as BoLBD37L-G homozygotes. Expression analyses of anthocyanin biosynthesis genes and their upstream regulators, including BoLBD37L, suggest that truncated proteins encoded by splicing variants of BoLBD37L-P may disrupt the BoLBD37L function as repressor. CONCLUSION Difference in the C-terminal region of BoLBD37L-G and BolBD37L-P may affect the expression of downstream genes, BoMYB114L and BoTT8, resulting in differential anthocyanin accumulation.
Collapse
Affiliation(s)
- Ju Young Ahn
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yi Hyun Jung
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hayoung Song
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hankuil Yi
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Yoonkang Hur
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
28
|
Li C, Wang M, Qiu X, Zhou H, Lu S. Noncoding RNAs in Medicinal Plants and their Regulatory Roles in Bioactive Compound Production. Curr Pharm Biotechnol 2021; 22:341-359. [PMID: 32469697 DOI: 10.2174/1389201021666200529101942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/14/2020] [Accepted: 03/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), small interfering RNAs (siRNAs) and long noncoding RNAs (lncRNAs), play significant regulatory roles in plant development and secondary metabolism and are involved in plant response to biotic and abiotic stresses. They have been intensively studied in model systems and crops for approximately two decades and massive amount of information have been obtained. However, for medicinal plants, ncRNAs, particularly their regulatory roles in bioactive compound biosynthesis, are just emerging as a hot research field. OBJECTIVE This review aims to summarize current knowledge on herbal ncRNAs and their regulatory roles in bioactive compound production. RESULTS So far, scientists have identified thousands of miRNA candidates from over 50 medicinal plant species and 11794 lncRNAs from Salvia miltiorrhiza, Panax ginseng, and Digitalis purpurea. Among them, more than 30 miRNAs and five lncRNAs have been predicted to regulate bioactive compound production. CONCLUSION The regulation may achieve through various regulatory modules and pathways, such as the miR397-LAC module, the miR12112-PPO module, the miR156-SPL module, the miR828-MYB module, the miR858-MYB module, and other siRNA and lncRNA regulatory pathways. Further functional analysis of herbal ncRNAs will provide useful information for quality and quantity improvement of medicinal plants.
Collapse
Affiliation(s)
- Caili Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Meizhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiaoxiao Qiu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Hong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|
29
|
Butel N, Yu A, Le Masson I, Borges F, Elmayan T, Taochy C, Gursanscky NR, Cao J, Bi S, Sawyer A, Carroll BJ, Vaucheret H. Contrasting epigenetic control of transgenes and endogenous genes promotes post-transcriptional transgene silencing in Arabidopsis. Nat Commun 2021; 12:2787. [PMID: 33986281 PMCID: PMC8119426 DOI: 10.1038/s41467-021-22995-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/06/2021] [Indexed: 11/20/2022] Open
Abstract
Transgenes that are stably expressed in plant genomes over many generations could be assumed to behave epigenetically the same as endogenous genes. Here, we report that whereas the histone H3K9me2 demethylase IBM1, but not the histone H3K4me3 demethylase JMJ14, counteracts DNA methylation of Arabidopsis endogenous genes, JMJ14, but not IBM1, counteracts DNA methylation of expressed transgenes. Additionally, JMJ14-mediated specific attenuation of transgene DNA methylation enhances the production of aberrant RNAs that readily induce systemic post-transcriptional transgene silencing (PTGS). Thus, the JMJ14 chromatin modifying complex maintains expressed transgenes in a probationary state of susceptibility to PTGS, suggesting that the host plant genome does not immediately accept expressed transgenes as being epigenetically the same as endogenous genes. Accumulating evidences point to a discrepancy in the epigenetic behaviour of transgenes and endogenous genes. Here, via characterization of mutants impaired in histone demethylases JMJ14 and IBM1, the authors show that transgenes and endogenous genes are regulated by different epigenetic mechanisms in Arabidopsis.
Collapse
Affiliation(s)
- Nicolas Butel
- Institut Jean-Pierre Bourgin, UMR 1318, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France.,Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Agnès Yu
- Institut Jean-Pierre Bourgin, UMR 1318, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Ivan Le Masson
- Institut Jean-Pierre Bourgin, UMR 1318, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Filipe Borges
- Institut Jean-Pierre Bourgin, UMR 1318, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Taline Elmayan
- Institut Jean-Pierre Bourgin, UMR 1318, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Christelle Taochy
- Institut Jean-Pierre Bourgin, UMR 1318, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Nial R Gursanscky
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jiangling Cao
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Shengnan Bi
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Anne Sawyer
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.,Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Bernard J Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, UMR 1318, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France.
| |
Collapse
|
30
|
Jia J, Ji R, Li Z, Yu Y, Nakano M, Long Y, Feng L, Qin C, Lu D, Zhan J, Xia R, Meyers BC, Liu B, Zhai J. Soybean DICER-LIKE2 Regulates Seed Coat Color via Production of Primary 22-Nucleotide Small Interfering RNAs from Long Inverted Repeats. THE PLANT CELL 2020; 32:3662-3673. [PMID: 33077493 PMCID: PMC7721327 DOI: 10.1105/tpc.20.00562] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/16/2020] [Accepted: 10/15/2020] [Indexed: 05/02/2023]
Abstract
In plants, 22-nucleotide small RNAs trigger the production of secondary small interfering RNAs (siRNAs) and enhance silencing. DICER-LIKE2 (DCL2)-dependent 22-nucleotide siRNAs are rare in Arabidopsis (Arabidopsis thaliana) and are thought to function mainly during viral infection; by contrast, these siRNAs are abundant in many crops such as soybean (Glycine max) and maize (Zea mays). Here, we studied soybean 22-nucleotide siRNAs by applying CRISPR-Cas9 to simultaneously knock out the two copies of soybean DCL2, GmDCL2a and GmDCL2b, in the Tianlong1 cultivar. Small RNA sequencing revealed that most 22-nucleotide siRNAs are derived from long inverted repeats (LIRs) and disappeared in the Gmdcl2a/2b double mutant. De novo assembly of a Tianlong1 reference genome and transcriptome profiling identified an intronic LIR formed by the chalcone synthase (CHS) genes CHS1 and CHS3 This LIR is the source of primary 22-nucleotide siRNAs that target other CHS genes and trigger the production of secondary 21-nucleotide siRNAs. Disruption of this process in Gmdcl2a/2b mutants substantially increased CHS mRNA levels in the seed coat, thus changing the coat color from yellow to brown. Our results demonstrated that endogenous LIR-derived transcripts in soybean are predominantly processed by GmDCL2 into 22-nucleotide siRNAs and uncovered a role for DCL2 in regulating natural traits.
Collapse
Affiliation(s)
- Jinbu Jia
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ronghuan Ji
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhuowen Li
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiming Yu
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mayumi Nakano
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Yanping Long
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
| | - Li Feng
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chao Qin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dongdong Lu
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
| | - Junpeng Zhan
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Rui Xia
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211
| | - Bin Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jixian Zhai
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
31
|
Kim JH, Park JS, Lee CY, Jeong MG, Xu JL, Choi Y, Jung HW, Choi HK. Dissecting seed pigmentation-associated genomic loci and genes by employing dual approaches of reference-based and k-mer-based GWAS with 438 Glycine accessions. PLoS One 2020; 15:e0243085. [PMID: 33259564 PMCID: PMC7707508 DOI: 10.1371/journal.pone.0243085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/15/2020] [Indexed: 11/19/2022] Open
Abstract
The soybean is agro-economically the most important among all cultivated legume crops, and its seed color is considered one of the most attractive factors in the selection-by-breeders. Thus, genome-wide identification of genes and loci associated with seed colors is critical for the precision breeding of crop soybeans. To dissect seed pigmentation-associated genomic loci and genes, we employed dual approaches by combining reference-based genome-wide association study (rbGWAS) and k-mer-based reference-free GWAS (rfGWAS) with 438 Glycine accessions. The dual analytical strategy allowed us to identify four major genomic loci (designated as SP1-SP4 in this study) associated with the seed colors of soybeans. The k-mer analysis enabled us to find an important recombination event that occurred between subtilisin and I-cluster B in the soybean genome, which could describe a special structural feature of ii allele within the I locus (SP3). Importantly, mapping analyses of both mRNAs and small RNAs allowed us to reveal that the subtilisin-CHS1/CHS3 chimeric transcripts generate and act as an initiator towards 'mirtron (i.e., intron-harboring miRNA precursor)'-triggered silencing of chalcone synthase (CHS) genes. Consequently, the results led us to propose a working model of 'mirtron-triggered gene silencing (MTGS)' to elucidate a long-standing puzzle in the genome-wide CHS gene silencing mechanism. In summary, our study reports four major genomic loci, lists of key genes and genome-wide variations that are associated with seed pigmentation in soybeans. In addition, we propose that the MTGS mechanism plays a crucial role in the genome-wide silencing of CHS genes, thereby suggesting a clue to currently predominant soybean cultivars with the yellow seed coat. Finally, this study will provide a broad insight into the interactions and correlations among seed color-associated genes and loci within the context of anthocyanin biosynthetic pathways.
Collapse
Affiliation(s)
- Jin-Hyun Kim
- Department of Medical Bioscience, Dong-A University, Busan, Republic of Korea
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Joo-Seok Park
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Chae-Young Lee
- Department of Medical Bioscience, Dong-A University, Busan, Republic of Korea
| | - Min-Gyun Jeong
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Jiu Liang Xu
- Systems Biotechnology Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
| | - Yongsoo Choi
- Systems Biotechnology Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
| | - Ho-Won Jung
- Department of Molecular Genetics, Dong-A University, Busan, Republic of Korea
| | - Hong-Kyu Choi
- Department of Molecular Genetics, Dong-A University, Busan, Republic of Korea
| |
Collapse
|
32
|
Zabala G, Kour A, Vodkin LO. Overexpression of an ethylene-forming ACC oxidase (ACO) gene precedes the Minute Hilum seed coat phenotype in Glycine max. BMC Genomics 2020; 21:716. [PMID: 33066734 PMCID: PMC7566151 DOI: 10.1186/s12864-020-07130-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/08/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND To elucidate features of seed development, we investigated the transcriptome of a soybean isoline from the germplasm collection that contained an introgressed allele known as minute hilum (mi) which confers a smaller hilum region where the seed attaches to the pod and also results in seed coat cracking surrounding the hilum region. RESULTS RNAs were extracted from immature seed from an extended hilum region (i.e., the hilum and a small ring of tissue surrounding the hilum in which the cracks form) at three different developmental stages:10-25, 25-50 and 50-100 mg seed fresh weight in two independent replicates for each stage. The transcriptomes of these samples from both the Clark isoline containing the mi allele (PI 547628, UC413, ii R t mi G), and its recurrent Clark 63 parent isoline (PI 548532, UC7, ii R T Mi g), which was used for six generations of backcrossing, were compared for differential expression of 88,648 Glyma models of the soybean genome Wm82.a2. The RNA sequence data obtained from the 12 cDNA libraries were subjected to padj value < 0.05 and at least two-fold expression differences to select with confidence genes differentially expressed in the hilum-containing tissue of the seed coat between the two lines. Glyma.09G008400 annotated as encoding an ethylene forming enzyme, ACC oxidase (ACO), was found to be highly overexpressed in the mi hilum region at 165 RPKMs (reads per kilobase per million mapped reads) compared to the standard line at just 0.03 RPKMs. Evidence of changes in expression of genes downstream of the ethylene pathway included those involved in auxin and gibberellin hormone action and extensive differences in expression of cell wall protein genes. These changes are postulated to determine the restricted hilum size and cracking phenotypes. CONCLUSIONS We present transcriptome and phenotypic evidence that substantially higher expression of an ethylene-forming ACO gene likely shifts hormone balance and sets in motion downstream changes resulting in a smaller hilum phenotype and the cracks observed in the minute hilum (mi) isoline as compared to its recurrent parent.
Collapse
Affiliation(s)
- Gracia Zabala
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61981, USA
| | - Anupreet Kour
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61981, USA
- Present address: Robert M. Berne Cardiovascular Research Institute, University of Virginia School of Medicine, Charlottesville, Virginia, 22908, USA
| | - Lila O Vodkin
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61981, USA.
| |
Collapse
|
33
|
Ku YS, Contador CA, Ng MS, Yu J, Chung G, Lam HM. The Effects of Domestication on Secondary Metabolite Composition in Legumes. Front Genet 2020; 11:581357. [PMID: 33193705 PMCID: PMC7530298 DOI: 10.3389/fgene.2020.581357] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Legumes are rich in secondary metabolites, such as polyphenols, alkaloids, and saponins, which are important defense compounds to protect the plant against herbivores and pathogens, and act as signaling molecules between the plant and its biotic environment. Legume-sourced secondary metabolites are well known for their potential benefits to human health as pharmaceuticals and nutraceuticals. During domestication, the color, smell, and taste of crop plants have been the focus of artificial selection by breeders. Since these agronomic traits are regulated by secondary metabolites, the basis behind the genomic evolution was the selection of the secondary metabolite composition. In this review, we will discuss the classification, occurrence, and health benefits of secondary metabolites in legumes. The differences in their profiles between wild legumes and their cultivated counterparts will be investigated to trace the possible effects of domestication on secondary metabolite compositions, and the advantages and drawbacks of such modifications. The changes in secondary metabolite contents will also be discussed at the genetic level to examine the genes responsible for determining the secondary metabolite composition that might have been lost due to domestication. Understanding these genes would enable breeding programs and metabolic engineering to produce legume varieties with favorable secondary metabolite profiles for facilitating adaptations to a changing climate, promoting beneficial interactions with biotic factors, and enhancing health-beneficial secondary metabolite contents for human consumption.
Collapse
Affiliation(s)
- Yee-Shan Ku
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Carolina A. Contador
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Ming-Sin Ng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Jeongjun Yu
- Department of Biotechnology, Chonnam National University, Yeosu, South Korea
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, South Korea
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| |
Collapse
|
34
|
Bao W, Yan T, Deng X, Wuriyanghan H. Synthesis of Full-Length cDNA Infectious Clones of Soybean Mosaic Virus and Functional Identification of a Key Amino Acid in the Silencing Suppressor Hc-Pro. Viruses 2020; 12:E886. [PMID: 32823665 PMCID: PMC7472419 DOI: 10.3390/v12080886] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Soybean mosaic virus (SMV), which belongs to the Potyviridae, causes significant reductions in soybean yield and seed quality. In this study, both tag-free and reporter gene green fluorescent protein (GFP)-containing infectious clones for the SMV N1 strain were constructed by Gibson assembly and with the yeast homologous recombination system, respectively. Both infectious clones are suitable for agroinfiltration on the model host N. benthamiana and show strong infectivity for the natural host soybean and several other legume species. Both infectious clones were seed transmitted and caused typical virus symptoms on seeds and progeny plants. We used the SMV-GFP infectious clone to further investigate the role of key amino acids in the silencing suppressor helper component-proteinase (Hc-Pro). Among twelve amino acid substitution mutants, the co-expression of mutant 2-with an Asparagine→Leucine substitution at position 182 of the FRNK (Phe-Arg-Asn-Lys) motif-attenuated viral symptoms and alleviated the host growth retardation caused by SMV. Moreover, the Hc-Prom2 mutant showed stronger oligomerization than wild-type Hc-Pro. Taken together, the SMV infectious clones will be useful for studies of host-SMV interactions and functional gene characterization in soybeans and related legume species, especially in terms of seed transmission properties. Furthermore, the SMV-GFP infectious clone will also facilitate functional studies of both virus and host genes in an N. benthamiana transient expression system.
Collapse
Affiliation(s)
- Wenhua Bao
- Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (W.B.); (T.Y.); (X.D.)
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ting Yan
- Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (W.B.); (T.Y.); (X.D.)
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xiaoyi Deng
- Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (W.B.); (T.Y.); (X.D.)
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Hada Wuriyanghan
- Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (W.B.); (T.Y.); (X.D.)
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
35
|
Liu Y, Du H, Li P, Shen Y, Peng H, Liu S, Zhou GA, Zhang H, Liu Z, Shi M, Huang X, Li Y, Zhang M, Wang Z, Zhu B, Han B, Liang C, Tian Z. Pan-Genome of Wild and Cultivated Soybeans. Cell 2020; 182:162-176.e13. [PMID: 32553274 DOI: 10.1016/j.cell.2020.05.023] [Citation(s) in RCA: 469] [Impact Index Per Article: 93.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/07/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022]
Abstract
Soybean is one of the most important vegetable oil and protein feed crops. To capture the entire genomic diversity, it is needed to construct a complete high-quality pan-genome from diverse soybean accessions. In this study, we performed individual de novo genome assemblies for 26 representative soybeans that were selected from 2,898 deeply sequenced accessions. Using these assembled genomes together with three previously reported genomes, we constructed a graph-based genome and performed pan-genome analysis, which identified numerous genetic variations that cannot be detected by direct mapping of short sequence reads onto a single reference genome. The structural variations from the 2,898 accessions that were genotyped based on the graph-based genome and the RNA sequencing (RNA-seq) data from the representative 26 accessions helped to link genetic variations to candidate genes that are responsible for important traits. This pan-genome resource will promote evolutionary and functional genomics studies in soybean.
Collapse
Affiliation(s)
- Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huilong Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengcheng Li
- Berry Genomics Corporation, Beijing 100015, China
| | - Yanting Shen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hua Peng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Guo-An Zhou
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Zhi Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Shi
- Berry Genomics Corporation, Beijing 100015, China
| | - Xuehui Huang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yan Li
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Min Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zheng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Baoge Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Han
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
36
|
Sarkar MAR, Otsu W, Suzuki A, Hashimoto F, Anai T, Watanabe S. Single-base deletion in GmCHR5 increases the genistein-to-daidzein ratio in soybean seed. BREEDING SCIENCE 2020; 70:265-276. [PMID: 32714048 PMCID: PMC7372027 DOI: 10.1270/jsbbs.19134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/03/2019] [Indexed: 06/11/2023]
Abstract
Novel mutant alleles related to isoflavone content are useful for breeding programs to improve the disease resistance and nutritional content of soybean. However, identification of mutant alleles from high-density mutant libraries is expensive and time-consuming because soybean has a large, complicated genome. Here, we identified the gene responsible for increased genistein-to-daidzein ratio in seed of the mutant line F333ES017D9. For this purpose, we used a time- and cost-effective approach based on selective genotyping of a small number of F2 plants showing the mutant phenotype with nearest-neighboring-nucleotide substitution-high-resolution melting analysis markers, followed by alignment of short reads obtained by next-generation sequencing analysis with the identified locus. In the mutant line, GmCHR5 harbored a single-base deletion that caused a change in the substrate flow in the isoflavone biosynthetic pathway towards genistein. Mutated GmCHR5 was expressed at a lower level during seed development than wild-type GmCHR5. Ectopic overexpression of GmCHR5 increased the production of daidzein derivatives in both the wild-type and mutant plants. The present strategy will be useful for accelerating identification of mutant alleles responsible for traits of interest in agronomically important crops.
Collapse
Affiliation(s)
- Md. Abdur Rauf Sarkar
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, Saga 840-8502, Japan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Wakana Otsu
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, Saga 840-8502, Japan
| | - Akihiro Suzuki
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, Saga 840-8502, Japan
| | - Fumio Hashimoto
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Toyoaki Anai
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, Saga 840-8502, Japan
| | - Satoshi Watanabe
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, Saga 840-8502, Japan
| |
Collapse
|
37
|
Cicchillo RM, Beeson WT, McCaskill DG, Shan G, Herman RA, Walsh TA. Identification of iron-chelating phenolics contributing to seed coat coloration in soybeans (Glycine max (L.) Merr.) expressing aryloxyalkanoate dioxygenase-12. PHYTOCHEMISTRY 2020; 172:112279. [PMID: 31999963 DOI: 10.1016/j.phytochem.2020.112279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Soybeans (Glycine max (L.) Merr.) genetically modified to express aryloxyalkanoate dioxygenase-12 (AAD-12), an enzyme that confers resistance to the herbicide 2,4-D, can sometimes exhibit a darker seed coat coloration than equivalent unmodified soybeans. The biochemical basis for this coloration was investigated in a non-commercial transgenic event, DAS-411Ø4-7 that exhibited more pronounced AAD-12-associated seed coat coloration than the commercial event, DAS-444Ø6-6. Analysis of color-enriched seed coat fractions from DAS-411Ø4-7 showed that the color was due to localized accumulation of iron-chelating phenolics, particularly the isoflavone genistin, that are associated with seed coat pectic polysaccharide and produce a brown chromophore. The association between genistin, iron, and pectic polysaccharide was characterized using a variety of analytical methods. Darker seeds from commercial soybean event DAS-444Ø6-6 also show higher genistin content localized to the darker colored portions of the seed coat (with no increase in whole seed genistin levels).
Collapse
Affiliation(s)
| | | | | | - Guomin Shan
- Corteva Agriscience, Indianapolis, IN, 46268, United States
| | - Rod A Herman
- Corteva Agriscience, Indianapolis, IN, 46268, United States
| | | |
Collapse
|
38
|
Valliyodan B, Cannon SB, Bayer PE, Shu S, Brown AV, Ren L, Jenkins J, Chung CYL, Chan TF, Daum CG, Plott C, Hastie A, Baruch K, Barry KW, Huang W, Patil G, Varshney RK, Hu H, Batley J, Yuan Y, Song Q, Stupar RM, Goodstein DM, Stacey G, Lam HM, Jackson SA, Schmutz J, Grimwood J, Edwards D, Nguyen HT. Construction and comparison of three reference-quality genome assemblies for soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1066-1082. [PMID: 31433882 DOI: 10.1111/tpj.14500] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 05/15/2023]
Abstract
We report reference-quality genome assemblies and annotations for two accessions of soybean (Glycine max) and for one accession of Glycine soja, the closest wild relative of G. max. The G. max assemblies provided are for widely used US cultivars: the northern line Williams 82 (Wm82) and the southern line Lee. The Wm82 assembly improves the prior published assembly, and the Lee and G. soja assemblies are new for these accessions. Comparisons among the three accessions show generally high structural conservation, but nucleotide difference of 1.7 single-nucleotide polymorphisms (snps) per kb between Wm82 and Lee, and 4.7 snps per kb between these lines and G. soja. snp distributions and comparisons with genotypes of the Lee and Wm82 parents highlight patterns of introgression and haplotype structure. Comparisons against the US germplasm collection show placement of the sequenced accessions relative to global soybean diversity. Analysis of a pan-gene collection shows generally high conservation, with variation occurring primarily in genomically clustered gene families. We found approximately 40-42 inversions per chromosome between either Lee or Wm82v4 and G. soja, and approximately 32 inversions per chromosome between Wm82 and Lee. We also investigated five domestication loci. For each locus, we found two different alleles with functional differences between G. soja and the two domesticated accessions. The genome assemblies for multiple cultivated accessions and for the closest wild ancestor of soybean provides a valuable set of resources for identifying causal variants that underlie traits for the domestication and improvement of soybean, serving as a basis for future research and crop improvement efforts for this important crop species.
Collapse
Affiliation(s)
- Babu Valliyodan
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, 65211, MO, USA
- Department of Agriculture and Environmental Sciences, Lincoln University, Jefferson City, 65101, MO, USA
| | - Steven B Cannon
- Corn Insects and Crop Genetics Research Unit, US Department of Agriculture-Agricultural Research Service, Ames, 50011, IA, USA
| | - Philipp E Bayer
- School of Biological Sciences, The University of Western Australia, Crawley, 6009, WA, Australia
| | - Shengqiang Shu
- Department of Energy Joint Genome Institute, Walnut Creek, 94598, CA, USA
| | - Anne V Brown
- Corn Insects and Crop Genetics Research Unit, US Department of Agriculture-Agricultural Research Service, Ames, 50011, IA, USA
| | - Longhui Ren
- Interdepartmental Genetics Program, Iowa State University, Ames, 50011, IA, USA
| | - Jerry Jenkins
- Hudson-Alpha Institute for Biotechnology, Huntsville, 35806, AL, USA
| | - Claire Y-L Chung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Ting-Fung Chan
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Christopher G Daum
- Department of Energy Joint Genome Institute, Walnut Creek, 94598, CA, USA
| | - Christopher Plott
- Hudson-Alpha Institute for Biotechnology, Huntsville, 35806, AL, USA
| | | | | | - Kerrie W Barry
- Department of Energy Joint Genome Institute, Walnut Creek, 94598, CA, USA
| | - Wei Huang
- Department of Agronomy, Iowa State University, Ames, 50011, IA, USA
| | - Gunvant Patil
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, 65211, MO, USA
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, India
| | - Haifei Hu
- School of Biological Sciences, The University of Western Australia, Crawley, 6009, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, The University of Western Australia, Crawley, 6009, WA, Australia
| | - Yuxuan Yuan
- School of Biological Sciences, The University of Western Australia, Crawley, 6009, WA, Australia
| | - Qijian Song
- Soybean Genomics and Improvement Lab, US Department of Agriculture - Agricultural Research Service, Beltsville, 20705, MD, USA
| | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, 55108, MN, USA
| | - David M Goodstein
- Department of Energy Joint Genome Institute, Walnut Creek, 94598, CA, USA
| | - Gary Stacey
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, 65211, MO, USA
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, 30602, GA, USA
| | - Jeremy Schmutz
- Hudson-Alpha Institute for Biotechnology, Huntsville, 35806, AL, USA
| | - Jane Grimwood
- Hudson-Alpha Institute for Biotechnology, Huntsville, 35806, AL, USA
| | - David Edwards
- School of Biological Sciences, The University of Western Australia, Crawley, 6009, WA, Australia
| | - Henry T Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, 65211, MO, USA
| |
Collapse
|
39
|
Tian B, Li J, Vodkin LO, Todd TC, Finer JJ, Trick HN. Host-derived gene silencing of parasite fitness genes improves resistance to soybean cyst nematodes in stable transgenic soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2651-2662. [PMID: 31230117 PMCID: PMC6707959 DOI: 10.1007/s00122-019-03379-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 06/14/2019] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE Soybean expressing small interfering RNA of SCN improved plant resistance to SCN consistently, and small RNA-seq analysis revealed a threshold of siRNA expression required for resistance ability. Soybean cyst nematode (SCN), Heterodera glycines, is one of the most destructive pests limiting soybean production worldwide, with estimated losses of $1 billion dollars annually in the USA alone. RNA interference (RNAi) has become a powerful tool for silencing gene expression. We report here that the expression of hairpin RNAi constructs, derived from two SCN genes related to reproduction and fitness, HgY25 and HgPrp17, enhances resistance to SCN in stably transformed soybean plants. The analyses of T3 to T5 generations of stable transgenic soybeans by molecular strategies and next-generation sequencing confirmed the presence of specific short interfering RNAs complementary to the target SCN genes. Bioassays performed on transgenic soybean lines targeting SCN HgY25 and HgPrp17 fitness genes showed significant reductions (up to 73%) for eggs/g root in the T3 and T4 homozygous transgenic lines. Targeted mRNAs of SCN eggs collected from the transgenic soybean lines were efficiently down-regulated, as confirmed by quantitative RT-PCR. Based on the small RNA-seq data and bioassays, it is our hypothesis that a threshold of small interfering RNA molecules is required to significantly reduce SCN populations feeding on the host plants. Our results demonstrated that host-derived gene silencing of essential SCN fitness genes could be an effective strategy for enhancing resistance in crop plants.
Collapse
Affiliation(s)
- Bin Tian
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, Manhattan, KS, 66506, USA
| | - Jiarui Li
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, Manhattan, KS, 66506, USA
- Innatrix Inc, 6 Davis Drive, Research Triangle Park, NC, 27709, USA
| | - Lila O Vodkin
- Department of Crop Sciences, University of Illinois, 1201 W. Gregory Drive, Urbana, IL, 61801, USA
| | - Timothy C Todd
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, Manhattan, KS, 66506, USA
| | - John J Finer
- Department of Horticulture and Crop Science, OARDC, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA
| | - Harold N Trick
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, Manhattan, KS, 66506, USA.
| |
Collapse
|
40
|
Paauw M, Koes R, Quattrocchio FM. Alteration of flavonoid pigmentation patterns during domestication of food crops. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3719-3735. [PMID: 30949670 DOI: 10.1093/jxb/erz141] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/15/2019] [Indexed: 05/20/2023]
Abstract
Flavonoids are plant pigments that provide health benefits for human and animal consumers. Understanding why domesticated crops have altered pigmentation patterns and unraveling the molecular/genetic mechanisms that underlie this will facilitate the breeding of new (healthier) varieties. We present an overview of changes in flavonoid pigmentation patterns that have occurred during crop domestication and, where possible, link them to the molecular changes that brought about the new phenotypes. We consider species that lost flavonoid pigmentation in the edible part of the plant at some point during domestication (like cereals). We also consider the converse situation, for example eggplant (aubergine), which instead gained strong anthocyanin accumulation in the skin of the fruit during domestication, and some varieties of citrus and apple that acquired anthocyanins in the fruit flesh. Interestingly, the genes responsible for such changes are sometimes closely linked to, or have pleiotropic effects on, important domestication genes, suggesting accidental and perhaps inevitable changes of anthocyanin patterning during domestication. In other cases, flavonoid pigmentation patterns in domesticated crops are the result of cultural preferences, with examples being found in varieties of citrus, barley, wheat, and maize. Finally, and more recently, in some species, anthocyanins seem to have been the direct target of selection in a second wave of domestication that followed the introduction of industrial food processing.
Collapse
Affiliation(s)
- Misha Paauw
- Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park, XH, Amsterdam, Netherlands
| | - Ronald Koes
- Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park, XH, Amsterdam, Netherlands
| | | |
Collapse
|
41
|
Cho YB, Jones SI, Vodkin LO. Nonallelic homologous recombination events responsible for copy number variation within an RNA silencing locus. PLANT DIRECT 2019; 3:e00162. [PMID: 31468028 PMCID: PMC6710647 DOI: 10.1002/pld3.162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 05/18/2023]
Abstract
The structure of chalcone synthase (CHS) gene repeats in different alleles of the I (inhibitor) locus in soybean spawns endogenous RNA interference (RNAi) that leads to phenotypic change in seed coat color of this major agronomic crop. Here, we examined CHS gene copy number by digital PCR and single nucleotide polymorphisms (SNPs) through whole genome resequencing of 15 cultivars that varied in alleles of the I locus (I, ii , ik , and i) that control the pattern distribution of pigments in the seed coats. Lines homozygous for the ii allele had the highest copy number followed by the I and ik cultivars which were more related to each other than to the lines with ii alleles. Some of the recessive i alleles were spontaneous mutations, and each revealed a loss of copy number by digital PCR relative to the parent varieties. Amplicon sequencing and whole genome resequencing determined that the breakpoints of several ii to i mutations resulted from nonallelic homologous recombination (NAHR) events between CHS genes located in segmental duplications leading to large 138-kilobase deletions that erase the structure generating the CHS siRNAs along with eight other non-CHS genes. Functional hybrid CHS genes (designated CHS5:1) were formed in the process and represent rare examples of NAHR in higher plants that have been captured by examining spontaneous mutational events in isogenic mutant lines.
Collapse
Affiliation(s)
- Young B. Cho
- Department of Crop SciencesUniversity of IllinoisUrbanaIllinois
- Present address:
Carl R. Woese Institute for Genomic BiologyUniversity of IllinoisUrbanaIllinois
| | - Sarah I. Jones
- Department of Crop SciencesUniversity of IllinoisUrbanaIllinois
| | - Lila O. Vodkin
- Department of Crop SciencesUniversity of IllinoisUrbanaIllinois
| |
Collapse
|
42
|
Integrated physiological and genomic analysis reveals structural variations and expression patterns of candidate genes for colored- and green-leaf poplar. Sci Rep 2019; 9:11150. [PMID: 31371772 PMCID: PMC6673700 DOI: 10.1038/s41598-019-47681-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Colored-leaf plants are increasingly popular and have been attracting more and more attentions. However, the molecular mechanism of leaf coloration in plants has not been fully understood. In this study, a colored-leaf cultivar of Populus deltoides (Caihong poplar, CHP) and green-leaf cultivar of Populus deltoides L2025 were used to explore the mechanism of leaf coloration through physiological and the whole genome resequencing analysis. The content of anthocyanins, total Chl, and carotenoids in the leaves of CHP and L2025 were evaluated. The ratio of anthocyanins to total Chl in CHP was 25.0 times higher than that in L2025; this could be attributed to the red leaf color of CHP. Based on the whole genome resequencing analysis, 951,421 polymorphic SNPs and 221,907 indels were screened between CHP and L2025. Using qRT-PCR analysis, three structural genes (flavonol synthase 1 family protein, UDP-glucose flavonoid 3-O-glucosyltransferase 3′ and flavonoid 3-O-galactosyl transferase family protein) and six transcription factors (MYB-related protein Myb4, transcription factor GAMYB, PtrMYB179, transcription factor bHLH53, transcription factor bHLH3, VARICOSE family protein) may be involved in the anthocyanin synthesis pathway, which could be used as candidate genes to explore the molecular regulation mechanism of leaf coloration in Populus deltoids, and could be used in molecular breeding in the future.
Collapse
|
43
|
Zhang C, Yao X, Ren H, Wang K, Chang J. Isolation and Characterization of Three Chalcone Synthase Genes in Pecan ( Carya illinoinensis). Biomolecules 2019; 9:E236. [PMID: 31216753 PMCID: PMC6627513 DOI: 10.3390/biom9060236] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 12/04/2022] Open
Abstract
Phenolics are a group of important plant secondary metabolites that have been proven to possess remarkable antioxidant activity and to be beneficial for human health. Pecan nuts are an excellent source of dietary phenolics. In recent years, many studies have focused on the separation and biochemical analysis of pecan phenolics, but the molecular mechanisms of phenolic metabolism in pecans have not been fully elucidated, which significantly hinders quality breeding research for this plant. Chalcone synthase (CHS) plays crucial roles in phenolic biosynthesis. In this study, three Carya illinoinensisCHSs (CiCHS1, CiCHS2, and CiCHS3), were isolated and analyzed. CiCHS2 and CiCHS3 present high expression levels in different tissues, and they are also highly expressed at the initial developmental stages of kernels in three pecan genotypes. A correlation analysis was performed between the phenolic content and CHSs expression values during kernel development. The results indicated that the expression variations of CiCHS2 and CiCHS3 are significantly related to changes in total phenolic content. Therefore, CiCHSs play crucial roles in phenolic components synthesis in pecan. We believe that the isolation of CiCHSs is helpful for understanding phenolic metabolism in C. illinoinensis, which will improve quality breeding and resistance breeding studies in this plant.
Collapse
Affiliation(s)
- Chengcai Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China.
| | - Xiaohua Yao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China.
| | - Huadong Ren
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China.
| | - Kailiang Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China.
| | - Jun Chang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China.
| |
Collapse
|
44
|
Molecular basis of transitivity in plant RNA silencing. Mol Biol Rep 2019; 46:4645-4660. [DOI: 10.1007/s11033-019-04866-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/09/2019] [Indexed: 12/11/2022]
|
45
|
Xie M, Chung CYL, Li MW, Wong FL, Wang X, Liu A, Wang Z, Leung AKY, Wong TH, Tong SW, Xiao Z, Fan K, Ng MS, Qi X, Yang L, Deng T, He L, Chen L, Fu A, Ding Q, He J, Chung G, Isobe S, Tanabata T, Valliyodan B, Nguyen HT, Cannon SB, Foyer CH, Chan TF, Lam HM. A reference-grade wild soybean genome. Nat Commun 2019; 10:1216. [PMID: 30872580 PMCID: PMC6418295 DOI: 10.1038/s41467-019-09142-9] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/22/2019] [Indexed: 01/01/2023] Open
Abstract
Efficient crop improvement depends on the application of accurate genetic information contained in diverse germplasm resources. Here we report a reference-grade genome of wild soybean accession W05, with a final assembled genome size of 1013.2 Mb and a contig N50 of 3.3 Mb. The analytical power of the W05 genome is demonstrated by several examples. First, we identify an inversion at the locus determining seed coat color during domestication. Second, a translocation event between chromosomes 11 and 13 of some genotypes is shown to interfere with the assignment of QTLs. Third, we find a region containing copy number variations of the Kunitz trypsin inhibitor (KTI) genes. Such findings illustrate the power of this assembly in the analysis of large structural variations in soybean germplasm collections. The wild soybean genome assembly has wide applications in comparative genomic and evolutionary studies, as well as in crop breeding and improvement programs.
Collapse
Affiliation(s)
- Min Xie
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Claire Yik-Lok Chung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Man-Wah Li
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Fuk-Ling Wong
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Xin Wang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Ailin Liu
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Zhili Wang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Alden King-Yung Leung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Tin-Hang Wong
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Suk-Wah Tong
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Zhixia Xiao
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Kejing Fan
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Ming-Sin Ng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Xinpeng Qi
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Linfeng Yang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Tianquan Deng
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Lijuan He
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Lu Chen
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Aisi Fu
- Wuhan Institute of Biotechnology, Wuhan, 430075, Hubei, China
| | - Qiong Ding
- Wuhan Institute of Biotechnology, Wuhan, 430075, Hubei, China
| | - Junxian He
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Gwangju, 550-749, Jeonnam, South Korea
| | - Sachiko Isobe
- Kazusa DNA Research Institute, Kazusa-Kamatari, Kisarazu, 292-0818, Chiba, Japan
| | - Takanari Tanabata
- Kazusa DNA Research Institute, Kazusa-Kamatari, Kisarazu, 292-0818, Chiba, Japan
| | - Babu Valliyodan
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, Missouri, 65211, USA
| | - Henry T Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, Missouri, 65211, USA
| | - Steven B Cannon
- Corn Insects and Crop Genetics Research Unit, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Ames, Iowa, 50011-4014, USA
| | - Christine H Foyer
- Faculty of Biological Sciences, Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, Yorkshire, UK
| | - Ting-Fung Chan
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China.
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China.
| |
Collapse
|
46
|
Ha J, Kang YG, Lee T, Kim M, Yoon MY, Lee E, Yang X, Kim D, Kim YJ, Lee TR, Kim MY, Lee SH. Comprehensive RNA sequencing and co-expression network analysis to complete the biosynthetic pathway of coumestrol, a phytoestrogen. Sci Rep 2019; 9:1934. [PMID: 30760815 PMCID: PMC6374408 DOI: 10.1038/s41598-018-38219-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 12/17/2018] [Indexed: 01/22/2023] Open
Abstract
Coumestrol (CMS), a coumestan isoflavone, plays key roles in nodulation through communication with rhizobia, and has been used as phytoestrogens for hormone replacement therapy in humans. Because CMS content is controlled by multiple genetic factors, the genetic basis of CMS biosynthesis has remained unclear. We identified soybean genotypes with consistently high (Daewonkong) or low (SS0903-2B-21-1-2) CMS content over 2 years. We performed RNA sequencing of leaf samples from both genotypes at developmental stage R7, when CMS levels are highest. Within the phenylpropanoid biosynthetic pathway, 41 genes were tightly connected in a functional co-expression gene network; seven of these genes were differentially expressed between two genotypes. We identified 14 candidate genes involved in CMS biosynthesis. Among them, seven were annotated as encoding oxidoreductases that may catalyze the transfer of electrons from daidzein, a precursor of CMS. Two of the other genes, annotated as encoding a MYB domain protein and a MLP-like protein, may increase CMS accumulation in response to stress conditions. Our results will help to complete our understanding of the CMS biosynthetic pathway, and should facilitate development of soybean cultivars with high CMS content that could be used to promote the fitness of plants and human beings.
Collapse
Affiliation(s)
- Jungmin Ha
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Young-Gyu Kang
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Taeyoung Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Myoyeon Kim
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Min Young Yoon
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Eunsoo Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Xuefei Yang
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Donghyun Kim
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Yong-Jin Kim
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Tae Ryong Lee
- Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Moon Young Kim
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Suk-Ha Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
47
|
Anguraj Vadivel AK, Krysiak K, Tian G, Dhaubhadel S. Genome-wide identification and localization of chalcone synthase family in soybean (Glycine max [L]Merr). BMC PLANT BIOLOGY 2018; 18:325. [PMID: 30509179 PMCID: PMC6278125 DOI: 10.1186/s12870-018-1569-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/23/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Soybean is a paleopolyploid that has undergone two whole genome duplication events. Gene duplication is a type of genomic change that can lead to novel functions of pre-existing genes. Chalcone synthase (CHS) is the plant-specific type III polyketide synthase that catalyzes the first committed step in (iso)flavonoid biosynthesis in plants. RESULTS Here we performed a genome-wide search of CHS genes in soybean, and identified 21 GmCHS loci containing 14 unique GmCHS (GmCHS1-GmCHS14) that included 5 newly identified GmCHSs (GmCHS10-GmCHS14). Furthermore, 3 copies of GmCHS3 and 2 copies of GmCHS4 were found in soybean. Analysis of gene structure of GmCHSs revealed the presence of a single intron in protein-coding regions except for GmCHS12 that contained 3 introns. Even though GmCHS genes are located on 8 different chromosomes, a large number of these genes are present on chromosome 8 where they form 3 distinct clusters. Expression analysis of GmCHS genes revealed tissue-specific expression pattern, and that some GmCHS isoforms localize in the cytoplasm and the nucleus while other isoforms are restricted to cytoplasm only. CONCLUSION Overall, we have identified 21 GmCHS loci with 14 unique GmCHS genes in the soybean genome. Their gene structures and genomic organization together with the spatio-temporal expression and protein localization suggest their importance in the production of downstream metabolites such as (iso)flavonoids and their derived phytoalexins.
Collapse
Affiliation(s)
- Arun Kumaran Anguraj Vadivel
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3 Canada
- Department of Biology, University of Western Ontario, London, ON Canada
| | - Kevin Krysiak
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3 Canada
| | - Gang Tian
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3 Canada
| | - Sangeeta Dhaubhadel
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3 Canada
- Department of Biology, University of Western Ontario, London, ON Canada
| |
Collapse
|
48
|
Patil G, Vuong TD, Kale S, Valliyodan B, Deshmukh R, Zhu C, Wu X, Bai Y, Yungbluth D, Lu F, Kumpatla S, Shannon JG, Varshney RK, Nguyen HT. Dissecting genomic hotspots underlying seed protein, oil, and sucrose content in an interspecific mapping population of soybean using high-density linkage mapping. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1939-1953. [PMID: 29618164 PMCID: PMC6181215 DOI: 10.1111/pbi.12929] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/09/2018] [Accepted: 03/21/2018] [Indexed: 05/04/2023]
Abstract
The cultivated [Glycine max (L) Merr.] and wild [Glycine soja Siebold & Zucc.] soybean species comprise wide variation in seed composition traits. Compared to wild soybean, cultivated soybean contains low protein, high oil, and high sucrose. In this study, an interspecific population was derived from a cross between G. max (Williams 82) and G. soja (PI 483460B). This recombinant inbred line (RIL) population of 188 lines was sequenced at 0.3× depth. Based on 91 342 single nucleotide polymorphisms (SNPs), recombination events in RILs were defined, and a high-resolution bin map was developed (4070 bins). In addition to bin mapping, quantitative trait loci (QTL) analysis for protein, oil, and sucrose was performed using 3343 polymorphic SNPs (3K-SNP), derived from Illumina Infinium BeadChip sequencing platform. The QTL regions from both platforms were compared, and a significant concordance was observed between bin and 3K-SNP markers. Importantly, the bin map derived from next-generation sequencing technology enhanced mapping resolution (from 1325 to 50 Kb). A total of five, nine, and four QTLs were identified for protein, oil, and sucrose content, respectively, and some of the QTLs coincided with soybean domestication-related genomic loci. The major QTL for protein and oil were mapped on Chr. 20 (qPro_20) and suggested negative correlation between oil and protein. In terms of sucrose content, a novel and major QTL were identified on Chr. 8 (qSuc_08) and harbours putative genes involved in sugar transport. In addition, genome-wide association using 91 342 SNPs confirmed the genomic loci derived from QTL mapping. A QTL-based haplotype using whole-genome resequencing of 106 diverse soybean lines identified unique allelic variation in wild soybean that could be utilized to widen the genetic base in cultivated soybean.
Collapse
Affiliation(s)
- Gunvant Patil
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
- Present address:
Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMN55108USA
| | - Tri D. Vuong
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | - Sandip Kale
- Center of Excellence in GenomicsInternational Crops Research Institute for the Semi‐Arid TropicsHyderabadIndia
- Present address:
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GateslebenD‐06466StadtSeelandGermany
| | - Babu Valliyodan
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | | | - Chengsong Zhu
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | - Xiaolei Wu
- Crop Science DivisionBayer CropScienceMorrisvilleNCUSA
| | - Yonghe Bai
- Dow AgroSciencesIndianapolisINUSA
- Present address:
Nuseed Americas10 N. East Street, Suite 101WoodlandCA95776USA
| | | | - Fang Lu
- Dow AgroSciencesIndianapolisINUSA
- Present address:
AmgenOne Amgen Center DriveThousand OaksCA91320USA
| | | | | | - Rajeev K. Varshney
- Center of Excellence in GenomicsInternational Crops Research Institute for the Semi‐Arid TropicsHyderabadIndia
| | - Henry T. Nguyen
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| |
Collapse
|
49
|
Zhou H, Liao L, Xu S, Ren F, Zhao J, Ogutu C, Wang L, Jiang Q, Han Y. Two amino acid changes in the R3 repeat cause functional divergence of two clustered MYB10 genes in peach. PLANT MOLECULAR BIOLOGY 2018; 98:169-183. [PMID: 30155830 DOI: 10.1007/s11103-018-0773-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 08/24/2018] [Indexed: 05/23/2023]
Abstract
R2R3-MYB genes play a pivotal role in regulating anthocyanin accumulation. Here, we report two tandemly duplicated R2R3-MYB genes in peach, PpMYB10.1 and PpMYB10.2, with the latter showing lower ability to induce anthocyanin accumulation than the former. Site-directed mutation assay revealed two amino acid changes in the R3 repeat, Arg/Lys66 and Gly/Arg93, responsible for functional divergence between these two PpMYB10 genes. Anthocyanin-promoting activity of PpMYB10.2 was significantly increased by a single amino acid replacement of Arg93 with Gly93. However, either the Gly93 → Arg93 or Arg66 → Lys66 substitutions alone showed little impact on anthocyanin-promoting activity of PpMYB10.1, but simultaneous substitutions caused a significant decrease. Reciprocal substitution of Arg/Gly93 could significantly alter binding affinity to PpbHLH3, while the Arg66 → Lys66 substitution is predicted to affect the folding of the MYB DNA-binding domain, instead of PpbHLH3-binding affinity. Overall, the change of anthocyanin-promoting activity was accompanied with that of bHLH-binding affinity, suggesting that DNA-binding affinity of R2R3-MYBs depends on their bHLH partners. Our study is helpful for understanding of functional evolution of R2R3-MYBs and their interaction with DNA targets.
Collapse
Affiliation(s)
- Hui Zhou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Horticultural Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Liao Liao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, China
| | - Shengli Xu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Fei Ren
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jianbo Zhao
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Collins Ogutu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Lu Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, China
| | - Quan Jiang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yuepeng Han
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
50
|
Song H, Yi H, Lee M, Han CT, Lee J, Kim H, Park JI, Nou IS, Kim SJ, Hur Y. Purple Brassica oleracea var. capitata F. rubra is due to the loss of BoMYBL2-1 expression. BMC PLANT BIOLOGY 2018; 18:82. [PMID: 29739331 PMCID: PMC5941660 DOI: 10.1186/s12870-018-1290-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 04/24/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Water-soluble anthocyanin pigments are important ingredients in health-improving supplements and valuable for the food industry. Although great attention has been paid to the breeding and production of crops containing high levels of anthocyanin, genetic variation in red or purple cabbages (Brassica oleracea var. capitata F. rubra) has not yet been characterized at the molecular level. In this study, we identified the mechanism responsible for the establishment of purple color in cabbages. RESULTS BoMYBL2-1 is one of the regulatory genes in the anthocyanin biosynthesis pathway in cabbages. It is a repressor whose expression is inversely correlated to anthocyanin synthesis and is not detectable in purple cabbages. Sequence analysis of purple cabbages revealed that most lacked BoMYBL2-1 coding sequences, although a few had a substitution in the region of the promoter 347 bp upstream of the gene that was associated with an absence of BoMYBL2-1 expression. Lack of transcriptional activity of the substitution-containing promoter was confirmed using transgenic Arabidopsis plants transformed with promoter::GUS fusion constructs. The finding that the defect in BoMYBL2-1 expression was solely responsible for purple coloration in cabbages was further demonstrated using genomic PCR and RT-PCR analyses of many other structural and regulatory genes in anthocyanin biosynthesis. Molecular markers for purple cabbages were developed and validated using 69 cabbage lines. CONCLUSION Expression of BoMYBL2-1 was inversely correlated to anthocyanin content, and purple color in cabbages resulted from a loss of BoMYBL2-1 expression, caused by either the promoter substitution or deletion of the gene. This is the first report of molecular markers that distinguish purple cabbages. Such markers will be useful for the production of intraspecific and interspecific hybrids for functional foods, and for industrial purposes requiring high anthocyanin content.
Collapse
Affiliation(s)
- Hayoung Song
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hankuil Yi
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Myungjin Lee
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ching-Tack Han
- Department of Life Science, Sogang University, Seoul, 04107, Republic of Korea
| | - Jeongyeo Lee
- Korea Research Institute of Bioscience and Biotechnology, 125 Gwahangno, Yuseong-gu, Daejoen, 34141, Republic of Korea
| | - HyeRan Kim
- Korea Research Institute of Bioscience and Biotechnology, 125 Gwahangno, Yuseong-gu, Daejoen, 34141, Republic of Korea
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Sun-Ju Kim
- Department of BioEnvironmental Chemistry, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yoonkang Hur
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|