1
|
He X, Wang H, Wei W, Han Z, Zuo J, He Q. Expression characteristics of CsESA1 in citrus and analysis of its interacting protein. PLANT SIGNALING & BEHAVIOR 2025; 20:2439249. [PMID: 39714922 DOI: 10.1080/15592324.2024.2439249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/10/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024]
Abstract
The most damaging disease affecting citrus globally is Huanglongbing (HLB), primarily attributed to the infection by 'Candidatus Liberibacter asiaticus' (CaLas). Based on comparative transcriptome data, two cellulose synthase (CESA) genes responsive to CaLas infection induction were screened, and one gene cloned with higher differential expression level was selected and named CsCESA1. we verified the interaction between CsCESA1 and citrus exopolysaccharide 2 (CsEPS2) proteins. Subcellular localization in tobacco indicated that both CsCESA1 and CsEPS2 proteins are primarily located in the nucleus and cytoplasm. RT-qPCR analysis indicated that the expression levels of CsCESA1 and CsEPS2 were associated with variety tolerance, tissue site, and symptom development. Furthermore, we generated CsCESA1 and CsEPS2 silencing plants and obtained CsCESA1 and CsEPS2 silencing and overexpressing hairy roots. The analysis of hormone content and gene expression also showed that CsCESA1 and CsEPS2 are involved in transcriptional regulation of genes involved in systemic acquired resistance (SAR) response. In conclusion, our results suggested that CsCESA1 and CsEPS2 could serve as potential resistance genes for HLB disease, offering insights into the plant's defense mechanisms against HLB.
Collapse
Affiliation(s)
- Xiao He
- School of Medical Technology, Chongqing Three Gorges Medical College, Chongqing, China
| | - Huiying Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Wei Wei
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Ziyue Han
- Department of Biological Science and Technology, Jinzhong University, Jinzhong, China
| | - Jiaqi Zuo
- College of Life Science and Food, Inner Mongolia University for Nationalities, Hohhot, China
| | - Qing He
- School of Medical Technology, Chongqing Three Gorges Medical College, Chongqing, China
| |
Collapse
|
2
|
Deng Y, Zhu Y, Su W, Zhang M, Liao W. Transcription factor WUSCHEL-related homeobox (WOX) underground revelations: Insights into plant root development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109928. [PMID: 40253917 DOI: 10.1016/j.plaphy.2025.109928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/06/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
Plant roots are essential for nutrient and water uptake and play a crucial role in plant growth and development. The development of roots is a complex process regulated by numerous factors, among which transcription factors (TFs) like WUSCHEL-related homeobox (WOX) have an essential function. The importance of WOXs in root development cannot be overstated. They act as key regulators in maintaining the balance between cell proliferation and differentiation and ensure the proper formation and function of root tissues. This review comprehensively presents the roles of WOXs in various root development aspects across multiple plant species, including primary, lateral, adventitious, and crown root development, as well as root hair, rhizoid formation, de novo root regeneration, and root apical meristem maintenance. We also discuss how WOXs regulate root development through various mechanisms in different plant species. Overall, this review provides comprehensive insights into the complex regulatory networks governing plant root growth and the importance of WOXs therein. Understanding WOXs in root development can help improve crop root architecture and stress tolerance and provide insights into the regulatory networks of plant root growth, contributing to plant breeding and agricultural productivity.
Collapse
Affiliation(s)
- Yuzheng Deng
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yongjie Zhu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wanyi Su
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Meiling Zhang
- College of Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
3
|
Wu H, Liu B, Cao Y, Ma G, Zheng X, Zhu H, Sui S. Genome-Wide Identification of WOX Gene Family in Chimonanthus praecox and a Functional Analysis of CpWUS. PLANTS (BASEL, SWITZERLAND) 2025; 14:1144. [PMID: 40219213 PMCID: PMC11991195 DOI: 10.3390/plants14071144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
Chimonanthus praecox, also known as wintersweet, is a traditional ornamental plant in China. It blooms during the cold winter months and emits a long-lasting fragrance. The WUSCHEL-related homeobox (WOX) transcription factor family is a plant-specific family of homeodomain (HD) transcription factors that plays diverse roles in plant development. We identified 13 WOX family genes (CpWOX1-CpWOX12 and CpWUS) and systematically analysed their physicochemical properties, evolutionary relationships, conserved domains, and expression regulation characteristics. The subcellular localization prediction indicates that all CpWOX proteins are localized in the nucleus and contain a conserved homeobox domain, with the WUS clade specifically containing a WUS-box motif. Phylogenetic analysis revealed that these genes are divided into three evolutionary branches: the WUS, ancient, and intermediate clades. Promoter analysis suggests that CpWOX genes may be involved in hormone responses, abiotic stress, developmental regulation, and encodes a nuclear-localised protein with self-activating activity. It is highly expressed in the stamen and root and is induced by low and high temperatures, salt stress, and methyl jasmonate. This study revealed the evolutionary characteristics of the WOX family genes in wintersweet and the function of CpWUS in regulating flowering time and root development, providing a theoretical basis for understanding the developmental regulatory mechanisms in wintersweet.
Collapse
Affiliation(s)
- Huafeng Wu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; (H.W.); (B.L.); (Y.C.); (G.M.); (X.Z.)
| | - Bin Liu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; (H.W.); (B.L.); (Y.C.); (G.M.); (X.Z.)
| | - Yinzhu Cao
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; (H.W.); (B.L.); (Y.C.); (G.M.); (X.Z.)
| | - Guanpeng Ma
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; (H.W.); (B.L.); (Y.C.); (G.M.); (X.Z.)
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Xiaowen Zheng
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; (H.W.); (B.L.); (Y.C.); (G.M.); (X.Z.)
| | - Haoxiang Zhu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China;
| | - Shunzhao Sui
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; (H.W.); (B.L.); (Y.C.); (G.M.); (X.Z.)
| |
Collapse
|
4
|
Li Z, Zhang Z, Xu Y, Lei X, Xie Q, Liu Z, Wang Y, Gao C. Genome-wide identification of the WOX gene family in Populus davidiana×P.bolleana and functional analysis of PdbWOX4 in salt resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112379. [PMID: 39736457 DOI: 10.1016/j.plantsci.2024.112379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/25/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
WOX transcription factors (TFs) are plant specific transcription regulatory factors that have a momentous role in maintaining plant growth and development and responding to abiotic stress. In this study, a total of 13 PdbWOX genes were identified. qRT-PCR analyses showed that 13 PdbWOX genes were responsive to salt stress. Notably, the expression of PdbWOX4 was significantly changed at all time points under NaCl stress, suggesting that PdbWOX4 expression may be involved in salt stress. Further, an overexpression vector of PdbWOX4 was constructed and transient transformed into Shanxin poplar. Biochemical staining and physiological parameter analysis showed that overexpression of PdbWOX4 decreased the total antioxidant capacity (T-AOC) and peroxidase (POD) activity, which in turn reduced the scavenging capacity of reactive oxygen species (ROS), and increased the cell damage and death induced by salt stress. qRT-PCR and ChIP-PCR demonstrated that PdbWOX4 can regulate the expression of PdbDREB2C by binding to its promoter. Further analyses revealed that overexpression of PdbDREB2C can reduce cellular damage by increasing ROS scavenging capacity thereby improving salt tolerance in Shanxin poplar. Taken together, we found that PdbWOX4 negatively regulated the salt tolerance of Shanxin poplar by repressing the PdbDREB2C, suggesting that PdbWOX4 may play a key role in the tolerance of Shanxin poplar to salt stress, and is an important candidate gene for molecular resistance breeding in forest trees.
Collapse
Affiliation(s)
- Zhengyang Li
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Ziqian Zhang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Yumeng Xu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Xiaojin Lei
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Qinjun Xie
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Zhongyuan Liu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Yanmin Wang
- Forestry Research Institute of Heilongjiang Province, Harbin 150081, China; Key Laboratory of Fast, Growing Tree Cultivating of Heilongjiang Province, Harbin 150081, China.
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China.
| |
Collapse
|
5
|
Xu J, Hu Z, Chen S, Tang J, Chen L, Chen P, Cai N, Xu Y. Transcriptome-wide identification and characterization of WUSCHEL-related homeobox (WOX) gene family in Pinus yunnanensis. BMC Genomics 2025; 26:99. [PMID: 39901066 PMCID: PMC11789396 DOI: 10.1186/s12864-025-11271-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
WUSCHEL-related homeobox (WOX), a specific gene family in plants, plays a critical role during stem cell regulation, plant regeneration and upgrowth. However, our understanding of WOX functions in conifers is limited compared to angiosperms. To address this gap, we investigated the presence, expression profiles and protein characteristics of WOX gene in P. yunnanensis. Our findings revealed that 10 PyWOX genes were dispersed across three existing clades, and their expression profiles were presented in specific developmental stages and tissues. The ancient-clade members (PyWOX13, PyWOXG, PyWOXA) exhibited constitutive expressions in most tissues and developmental stages, indicating that they are the oldest and conserved WOX genes. Members of the intermediate-clade (PyWOXB, PyWOXE) were primarily expressed during callus formation and seed germination, suggesting a role in promoting embryogenesis and plant regeneration. Most members of WUS-clade (PyWUS, PyWOX3, PyWOX4, PyWOX5, PyWOXX) showed high transcripts level in cluster buds, which may be related to meristematic development and the formation of axillary meristems. The self-activation assay demonstrated that PyWOX4 has transcriptional activation activity. Our study also suggested that there were highly conserved and clear orthologs of WOX genes present in Pinus. Together, these findings provide a foundation for further clarifying the function and regulatory mechanism of WOX genes in P. yunnanensis growth and development.
Collapse
Affiliation(s)
- Junfei Xu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Zhaoliu Hu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Sili Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Junrong Tang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Lin Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Peizhen Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Nianhui Cai
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Yulan Xu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China.
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China.
| |
Collapse
|
6
|
Guo H, Gao S, Li H, Yang J, Li J, Gu Y, Lou Q, Su R, Ye W, Zou A, Wang Y, Sun X, Zhang Z, Zhang H, Zeng Y, Yuan P, Peng Y, Li Z, Li J. Natural variation of CTB5 confers cold adaptation in plateau japonica rice. Nat Commun 2025; 16:1032. [PMID: 39863601 PMCID: PMC11763261 DOI: 10.1038/s41467-025-56174-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
During cold acclimation in high-latitude and high-altitude regions, japonica rice develops enhanced cold tolerance, but the underlying genetic basis remains unclear. Here, we identify CTB5, a homeodomain-leucine zipper (HD-Zip) transcription factor that confers cold tolerance at the booting stage in japonica rice. Four natural variations in the promoter and coding regions enhance cold response and transcriptional regulatory activity, enabling the favorable CTB5KM allele to improve cold tolerance. CTB5 interacts with OsHox12 and targets gibberellin (GA) metabolism genes to promote GAs accumulation in anthers and facilitate tapetum development under cold stress. Moreover, CTB5 directly regulates PYL9 and improves cold tolerance at the seedling stage by reducing reactive oxygen species (ROS) accumulation. The CTB5KM allele is selected during the cold acclimation of japonica rice to plateau habitats in Yunnan Province. Our findings provide insights into the mechanisms underlying cold adaptation in plateau japonica rice and offer potential targets for breeding cold-tolerant rice varieties.
Collapse
Affiliation(s)
- Haifeng Guo
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shilei Gao
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Huahui Li
- Institute of Food Crop Research, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jiazhen Yang
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jin Li
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yunsong Gu
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qijin Lou
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Runbin Su
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Wei Ye
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Andong Zou
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yulong Wang
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xingming Sun
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhanying Zhang
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Hongliang Zhang
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yawen Zeng
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Pingrong Yuan
- Institute of Food Crop Research, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Youliang Peng
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zichao Li
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| | - Jinjie Li
- Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| |
Collapse
|
7
|
Youngstrom C, Wang K, Lee K. Unlocking regeneration potential: harnessing morphogenic regulators and small peptides for enhanced plant engineering. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17193. [PMID: 39658544 PMCID: PMC11771577 DOI: 10.1111/tpj.17193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/18/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024]
Abstract
Plant genetic transformation is essential for understanding gene functions and developing improved crop varieties. Traditional methods, often genotype-dependent, are limited by plants' recalcitrance to gene delivery and low regeneration capacity. To overcome these limitations, new approaches have emerged that greatly improve efficiency and genotype flexibility. This review summarizes key strategies recently developed for plant transformation, focusing on groundbreaking technologies enhancing explant- and genotype flexibility. It covers the use of morphogenic regulators (MRs), stem cell-based methods, and in planta transformation methods. MRs, such as maize Babyboom (BBM) with Wuschel2 (WUS2), and GROWTH-REGULATING FACTORs (GRFs) with their cofactors GRF-interacting factors (GIFs), offer great potential for transforming many monocot species, including major cereal crops. Optimizing BBM/WUS2 expression cassettes has further enabled successful transformation and gene editing using seedling leaves as starting material. This technology lowers the barriers for academic laboratories to adopt monocot transformation systems. For dicot plants, tissue culture-free or in planta transformation methods, with or without the use of MRs, are emerging as more genotype-flexible alternatives to traditional tissue culture-based transformation systems. Additionally, the discovery of the local wound signal peptide Regeneration Factor 1 (REF1) has been shown to enhance transformation efficiency by activating wound-induced regeneration pathways in both monocot and dicot plants. Future research may combine these advances to develop truly genotype-independent transformation methods.
Collapse
Affiliation(s)
- Christopher Youngstrom
- Department of AgronomyIowa State UniversityAmesIowa50011USA
- Crop Bioengineering CenterIowa State UniversityAmesIowa50011USA
| | - Kan Wang
- Department of AgronomyIowa State UniversityAmesIowa50011USA
- Crop Bioengineering CenterIowa State UniversityAmesIowa50011USA
| | - Keunsub Lee
- Department of AgronomyIowa State UniversityAmesIowa50011USA
- Crop Bioengineering CenterIowa State UniversityAmesIowa50011USA
| |
Collapse
|
8
|
Zhang N, Bitterli P, Oluoch P, Hermann M, Aichinger E, Groot EP, Laux T. Deciphering the molecular logic of WOX5 function in the root stem cell organizer. EMBO J 2025; 44:281-303. [PMID: 39558109 PMCID: PMC11696986 DOI: 10.1038/s44318-024-00302-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 11/20/2024] Open
Abstract
Plant and animal stem cells receive signals from their surrounding cells to stay undifferentiated. In the Arabidopsis root, the quiescent center (QC) acts as a stem cell organizer, signaling to the neighboring stem cells. WOX5 is a central transcription factor regulating QC function. However, due to the scarcity of QC cells, WOX5 functions in the QC are largely unexplored at a genomic scale. Here, we unveil the transcriptional and epigenetic landscapes of the QC and the role of WOX5 within them. We find that WOX5 functions both as a transcriptional repressor and activator, affecting histone modifications and chromatin accessibility. Our data expand on known WOX5 functions, such as the regulation of differentiation, cell division, and auxin biosynthesis. We also uncover unexpected WOX5-regulated pathways involved in nitrate transport and the regulation of basal expression levels of genes associated with mature root tissues. These data suggest a role for QC cells as reserve stem cells and primed cells for prospective progenitor fates. Taken together, these findings offer insights into the role of WOX5 at the QC and provide a basis for further analyses to advance our understanding of the nature of plant stem cell organizers.
Collapse
Affiliation(s)
- Ning Zhang
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, 271018, Tai'an, Shandong, China.
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany.
| | - Pamela Bitterli
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Peter Oluoch
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Marita Hermann
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Ernst Aichinger
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Edwin P Groot
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
- Sino-German Joint Research Center on Agricultural Biology, Shandong Agricultural University, Tai'an, Shandong, China
| | - Thomas Laux
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany.
- Sino-German Joint Research Center on Agricultural Biology, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
9
|
Gregory J, Liu X, Chen Z, Gallardo C, Punskovsky J, Koslow G, Galli M, Gallavotti A. Transcriptional corepressors in maize maintain meristem development. PLANT PHYSIOLOGY 2024; 197:kiae476. [PMID: 39255069 PMCID: PMC11663565 DOI: 10.1093/plphys/kiae476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/25/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024]
Abstract
The formation of the plant body proceeds in a sequential postembryonic manner through the action of meristems. Tightly coordinated meristem regulation is required for development and reproductive success, eventually determining yield in crop species. In maize (Zea mays), the RAMOSA1 ENHANCER LOCUS2 (REL2) family of transcriptional corepressors includes four members, REL2, RELK1 (REL2-LIKE1), RELK2, and RELK3. In a screen for rel2 enhancers, we identified shorter double mutants with enlarged ear inflorescence meristems (IMs) carrying mutations in RELK1. Expression and genetic analysis indicated that REL2 and RELK1 cooperatively regulate ear IM development by controlling genes involved in redox balance, hormone homeostasis, and differentiation, ultimately tipping the meristem toward an environment favorable to expanded expression of the ZmWUSCHEL1 gene, which encodes a key stem-cell promoting transcription factor. We further demonstrated that RELK genes have partially redundant yet diverse functions in the maintenance of various meristem types during development. By exploiting subtle increases in ear IM size in rel2 heterozygous plants, we also showed that extra rows of kernels are formed across a diverse set of F1 hybrids. Our findings reveal that the REL2 family maintains development from embryonic initiation to reproductive growth and can potentially be harnessed for increasing seed yield in a major crop species.
Collapse
Affiliation(s)
- Jason Gregory
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Xue Liu
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Cecilia Gallardo
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Jason Punskovsky
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Gabriel Koslow
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
10
|
Zhou X, Han H, Chen J, Han H. The emerging roles of WOX genes in development and stress responses in woody plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112259. [PMID: 39284515 DOI: 10.1016/j.plantsci.2024.112259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/08/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Woody plants represent the world largest biomass which are actually developed from small amounts of stem cells. The programing and re-programing of these stem cells significantly affect the plastic development and environmental adaptation of woody plants. The WUSCHEL-related homeobox (WOX) genes constitute a family of plant-specific homeodomain transcription factors that perform key functions in plant development, including embryonic patterning, stem-cell maintenance, and organ formation. There also is emerging evidence supporting their participation in stress responses, although whether these functions are stem-cell-mediated is unknown. Past research has mainly focused on the WOX protein family in non-woody plants, such as Arabidopsis thaliana and Oryza sativa. The roles of WOX genes in woody plant stem cell regulation are less understood, partially due to their long life cycles, large physical sizes and challenges in obtaining transgenic trees. Recent advancements in transformation protocols in various tree species have begun to reveal the functions of WOXs in woody plants. Here, we summarize current understanding of WOXs in embryogenesis, organogenesis, and stress responses, highlighting an emerging molecular network centered on WOXs in woody plants.
Collapse
Affiliation(s)
- Xiaoqi Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Haitao Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Jinhui Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Han Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
11
|
Rasheed H, Shi L, Winarsih C, Jakada BH, Chai R, Huang H. Plant Growth Regulators: An Overview of WOX Gene Family. PLANTS (BASEL, SWITZERLAND) 2024; 13:3108. [PMID: 39520025 PMCID: PMC11548557 DOI: 10.3390/plants13213108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
The adaptation of plants to land requires sophisticated biological processes and signaling. Transcription factors (TFs) regulate several cellular and metabolic activities, as well as signaling pathways in plants during stress and growth and development. The WUSCHEL-RELATED HOMEOBOX (WOX) genes are TFs that are part of the homeodomain (HD) family, which is important for the maintenance of apical meristem, stem cell niche, and other cellular processes. The WOX gene family is divided into three clades: ancient, intermediate, and modern (WUS) based on historical evolution linkage. The number of WOX genes in the plant body increases as plants grow more complex and varies in different species. Numerous research studies have discovered that the WOX gene family play a role in the whole plant's growth and development, such as in the stem, embryo, root, flower, and leaf. This review comprehensively analyzes roles of the WOX gene family across various plant species, highlighting the evolutionary significance and potential biotechnological applications in stress resistance and crop improvement.
Collapse
Affiliation(s)
- Haroon Rasheed
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.R.); (L.S.); (C.W.)
| | - Lin Shi
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.R.); (L.S.); (C.W.)
| | - Chichi Winarsih
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.R.); (L.S.); (C.W.)
| | - Bello Hassan Jakada
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China;
| | - Rusong Chai
- Forest Botanical Garden of Heilongjiang Province, Haping Road 105, Harbin 150040, China
| | - Haijiao Huang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.R.); (L.S.); (C.W.)
| |
Collapse
|
12
|
Luo L, Liu L, She L, Zhang H, Zhang N, Wang Y, Ni Y, Chen F, Wan F, Dai Y, Zhu G, Zhao Z. DRN facilitates WUS transcriptional regulatory activity by chromatin remodeling to regulate shoot stem cell homeostasis in Arabidopsis. PLoS Biol 2024; 22:e3002878. [PMID: 39514478 PMCID: PMC11548754 DOI: 10.1371/journal.pbio.3002878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Shoot stem cells, harbored in the shoot apical meristem (SAM), play key roles during post-embryonic development of Arabidopsis and function as the origin of plant aerial tissues. Multiple transcription factors are involved in the sophisticated transcriptional regulation of stem cell homeostasis, with the WUSCHEL (WUS)/CLAVATA3 (CLV3) negative feedback loop playing a central role. WUS acts as a master regulator in maintaining stem cells through its transcriptional regulatory activity including repressive and activating abilities. Although the interaction between WUS and TOPLESS confers the repressive activity of WUS in transcriptional control, the mechanism by which WUS activates gene expression remains elusive. Here, we showed that DORNRÖSCHEN competitively interacts with WUS and disturbs the WUS homodimer, which recruits BRAHMA to activate CLV3 expression via nucleosome depletion for maintaining the stem cell pool.
Collapse
Affiliation(s)
- Linjie Luo
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Li Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Lili She
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Haoran Zhang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Nannan Zhang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yaqin Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yuting Ni
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Fugui Chen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Fengying Wan
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yuqiu Dai
- CAS Center for Excellence in Molecular Plant Sciences, MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Zhong Zhao
- CAS Center for Excellence in Molecular Plant Sciences, MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
13
|
Zhang Y, Chen X, Wei G, Tian W, Ling Y, Wang N, Zhang T, Sang X, Zhu X, He G, Li Y. The WOX9-WUS modules are indispensable for the maintenance of stem cell homeostasis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:910-927. [PMID: 39269929 DOI: 10.1111/tpj.17024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/13/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
The dynamic balance between the self-renewal and differentiation of stem cells in plants is precisely regulated by a series of developmental regulated genes that exhibit spatiotemporal-specific expression patterns. Several studies have demonstrated that the WOX family transcription factors play critical roles in maintaining the identity of stem cells in Arabidopsis thaliana. In this study, we obtained amiR-WOX9 transgenic plants, which displayed terminating prematurely of shoot apical meristem (SAM) development, along with alterations in inflorescence meristem and flower development. The phenotype of amiR-WOX9 plants exhibited similarities to that of wus-101 mutant, characterized by a stop-and-go growth pattern. It was also found that the expression of WUS in amiR-WOX9 lines was decreased significantly, while in UBQ10::WOX9-GFP transgenic plants, the WUS expression was increased significantly despite no substantial alteration in meristem size compared to Col. Therefore, these data substantiated the indispensable role of WOX9 in maintaining the proper expression of WUS. Further investigations unveiled the direct binding of WOX9 to the WUS promoter via the TAAT motif, thereby activating its expression. It was also found that WUS recognized identical the same TAAT motif cis-elements in its own promoter, thereby repress self-expression. Next, we successfully identified a physical interaction between WOX9 and WUS, and verified that it was harmful to the expression of WUS. Finally, our experimental findings demonstrate that WOX9 was responsible for the direct activating of WUS, which however was interfered by the ways of WUS binding its own promoter and the interaction of WUS and WOX9, thereby ensuring the appropriate expression pattern of WUS and then the stem cell stability. This study contributes to an enhanced comprehension of the regulatory network of the WOX9-WUS module in maintaining the equilibrium of the SAM.
Collapse
Affiliation(s)
- Yingying Zhang
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xinlong Chen
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Gang Wei
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Weijiang Tian
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yinghua Ling
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Nan Wang
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Ting Zhang
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xianchun Sang
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xiaoyan Zhu
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Guanghua He
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yunfeng Li
- Key Laboratory of Crop Molecular Improvement, Engineering Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute, Southwest University, Chongqing, 400715, People's Republic of China
| |
Collapse
|
14
|
Li H, Ma W, Wang X, Hu H, Cao L, Ma H, Lin J, Zhong M. A WUSCHEL-related homeobox transcription factor, SlWOX4, negatively regulates drought tolerance in tomato. PLANT CELL REPORTS 2024; 43:253. [PMID: 39370470 DOI: 10.1007/s00299-024-03333-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/17/2024] [Indexed: 10/08/2024]
Abstract
KEY MESSAGE CRISPR/Cas9-mediated knockout of SlWOX4 gene in tomato enhances tolerance to drought stress. Drought stress is one of the major abiotic factors that seriously affects plant growth and crop yield. WUSCHEL-related homeobox (WOX) transcription factors are involved in plant growth, development and stress response. However, little is known about the role of WOX genes in drought tolerance in tomato. Here, SlWOX4, a member of the WOX family in tomato, was functionally characterized in mediating drought tolerance. SlWOX4 was homologous to Nicotiana tabacum NtWOX4 with a conserved HD domain, and was localized in the nucleus. SlWOX4 was significantly down-regulated by drought and abscisic acid (ABA) treatments. The loss-of-function mutations of SlWOX4 produced using the CRISPR-Cas9 system in tomato improved drought tolerance by reducing water loss rate and enhancing stomatal closure. In addition, the wox4 lines exhibited reduced accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), increased antioxidant enzyme activity, proline contents and ABA contents under drought stress. Moreover, gene editing of SlWOX4 in tomato enhanced drought tolerance by regulating the expression of genes encoding antioxidants and ABA signaling molecules. In summary, SlWOX4 gene might negatively regulate drought stress tolerance in tomato and has great potential as a drought-resistant crop-breeding target genes.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Wanying Ma
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xiao Wang
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Hongling Hu
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Lina Cao
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Hui Ma
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Jingwei Lin
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China.
| | - Ming Zhong
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
15
|
Song W, Xie Y, Liu B, Huang Y, Cheng Z, Zhao Z, Tian D, Geng Y, Guo J, Li C, She D, Zhong Y, Li M, Liu L, Chen J, Sun C, Zhang X, Zhou Z, Lai J, Xin M, Yan L, Zhao J, Zhang X. Single nucleotide polymorphisms in SEPALLATA 2 underlie fruit length variation in cucurbits. THE PLANT CELL 2024; 36:4607-4621. [PMID: 39133577 PMCID: PMC11448892 DOI: 10.1093/plcell/koae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/03/2024] [Indexed: 10/05/2024]
Abstract
Complete disruption of critical genes is generally accompanied by severe growth and developmental defects, which dramatically hinder its utilization in crop breeding. Identifying subtle changes, such as single-nucleotide polymorphisms (SNPs), in critical genes that specifically modulate a favorable trait is a prerequisite to fulfill breeding potential. Here, we found 2 SNPs in the E-class floral organ identity gene cucumber (Cucumis sativus) SEPALLATA2 (CsSEP2) that specifically regulate fruit length. Haplotype (HAP) 1 (8G2667A) and HAP2 (8G2667T) exist in natural populations, whereas HAP3 (8A2667T) is induced by ethyl methanesulfonate mutagenesis. Phenotypic characterization of 4 near-isogenic lines and a mutant line showed that HAP2 fruits are significantly longer than those of HAP1, and those of HAP3 are 37.8% longer than HAP2 fruit. The increasing fruit length in HAP1-3 was caused by a decreasing inhibitory effect on CRABS CLAW (CsCRC) transcription (a reported positive regulator of fruit length), resulting in enhanced cell expansion. Moreover, a 7638G/A-SNP in melon (Cucumis melo) CmSEP2 modulates fruit length in a natural melon population via the conserved SEP2-CRC module. Our findings provide a strategy for utilizing essential regulators with pleiotropic effects during crop breeding.
Collapse
Affiliation(s)
- Weiyuan Song
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Yang Xie
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Normal University of Science & Technology, Qinhuangdao 066004, P. R.China
| | - Bin Liu
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, P. R.China
| | - Yuxiang Huang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Zhihua Cheng
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Zilong Zhao
- Department of Plant Genetics and Breeding, State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, P. R. China
| | - Di Tian
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Yan Geng
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Jingyu Guo
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Chuang Li
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Daixi She
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Yanting Zhong
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Min Li
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Liu Liu
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Jiacai Chen
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Chengzhen Sun
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Normal University of Science & Technology, Qinhuangdao 066004, P. R.China
| | - Xuejun Zhang
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, P. R.China
| | - Zhaoyang Zhou
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Jinsheng Lai
- Department of Plant Genetics and Breeding, State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, P. R. China
| | - Ming Xin
- College of Horticulture and Landscape Architecture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Northeast Agricultural University, Harbin 150030, P. R.China
| | - Liying Yan
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Normal University of Science & Technology, Qinhuangdao 066004, P. R.China
| | - Jianyu Zhao
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| |
Collapse
|
16
|
Yong CSY, Atheeqah-Hamzah N. Transcriptome-wide Identification of Nine Tandem Repeat Protein Families in Roselle ( Hibiscus sabdariffa L.). Trop Life Sci Res 2024; 35:121-148. [PMID: 39464663 PMCID: PMC11507979 DOI: 10.21315/tlsr2024.35.3.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/20/2024] [Indexed: 10/29/2024] Open
Abstract
Plants are rich in tandem repeats-containing proteins. It is postulated that the occurrence of tandem repeat gene families facilitates the adaptation and survival of plants in adverse environmental conditions. This study intended to identify the tandem repeats in the transcriptome of a high potential tropical horticultural plant, roselle (Hibiscus sabdariffa L.). A total of 92,974 annotated de novo assembled transcripts were analysed using in silico approach, and 6,541 transcripts that encoded proteins containing tandem repeats with length of 20-60 amino acid residues were identified. Domain analysis revealed a total of nine tandem repeat protein families in the transcriptome of roselle, which are the Ankyrin repeats (ANK), Armadillo repeats (ARM), elongation factor-hand domain repeats (EF-hand), Huntingtin, elongation factor 3, protein phosphatase 2A, yeast kinase TOR1 repeats (HEAT), Kelch repeats (Kelch), leucine rich repeats (LRR), pentatricopeptide repeats (PPR), tetratricopeptide repeats (TPR) and WD40 repeats (WD40). Functional annotation analysis further matched 6,236 transcripts to 1,045 known proteins that contained tandem repeats including proteins implicated in plant development, protein-protein interaction, immunity and abiotic stress responses. The findings provide new insights into the occurrence of tandem repeats in the transcriptome and lay the foundation to elucidate the functional associations between tandem peptide repeats (TRs) and proteins in roselle and facilitate the identification of novel biotic and abiotic response related tandem repeats genes that may be useful in breeding improved varieties.
Collapse
Affiliation(s)
- Christina Seok Yien Yong
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Jalan UPM, 43400 Serdang, Selangor, Malaysia
| | - Nur Atheeqah-Hamzah
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Jalan UPM, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
17
|
Haghighat M, Zhong R, Ye ZH. WUSCHEL-RELATED HOMEOBOX genes are crucial for normal vascular organization and wood formation in poplar. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112138. [PMID: 38825043 DOI: 10.1016/j.plantsci.2024.112138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/07/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
Vascular cambium in tree species is a cylindrical domain of meristematic cells that are responsible for producing secondary xylem (also called wood) inward and secondary phloem outward. The poplar (Populus trichocarpa) WUSCHEL (WUS)-RELATED HOMEOBOX (WOX) family members, PtrWUSa and PtrWOX13b, were previously shown to be expressed in vascular cambium and differentiating xylem cells in poplar stems, but their functions remain unknown. Here, we investigated roles of PtrWUSa, PtrWOX13b and their close homologs in vascular organization and wood formation. Expression analysis showed that like PtrWUSa and PtrWOX13b, their close homologs, PtrWUSb, PtrWUS4a/b and PtrWOX13a/c, were also expressed in vascular cambium and differentiating xylem cells in poplar stems. PtrWUSa also exhibited a high level of expression in developing phloem fibers. Expression of PtrWUSa fused with the dominant EAR repression domain (PtrWUSa-DR) in transgenic poplar caused retarded growth of plants with twisted stems and curled leaves and a severe disruption of vascular organization. In PtrWUSa-DR stems, a drastic proliferation of cells occurred in the phloem region between vascular cambium and phloem fibers and they formed islands of ectopic vascular tissues or phloem fiber-like sclerenchyma cells. A similar proliferation of cells was also observed in PtrWUSa-DR leaf petioles and midveins. On the other hand, overexpression of PtrWOX4a-DR caused ectopic formation of vascular bundles in the cortical region, and overexpression of PtrWOX13a-DR and PtrWOX13b-DR led to a reduction in wood formation without affecting vascular organization in transgenic poplar plants. Together, these findings indicate crucial roles of PtrWUSa and PtrWOX13a/b in regulating vascular organization and wood formation, which furthers our understanding of the functions of WOX genes in regulating vascular cambium activity in tree species.
Collapse
Affiliation(s)
- Marziyeh Haghighat
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
18
|
Dhatterwal P, Sharma N, Prasad M. Decoding the functionality of plant transcription factors. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4745-4759. [PMID: 38761104 DOI: 10.1093/jxb/erae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
Transcription factors (TFs) intricately govern cellular processes and responses to external stimuli by modulating gene expression. TFs help plants to balance the trade-off between stress tolerance and growth, thus ensuring their long-term survival in challenging environments. Understanding the factors and mechanisms that define the functionality of plant TFs is of paramount importance for unravelling the intricate regulatory networks governing development, growth, and responses to environmental stimuli in plants. This review provides a comprehensive understanding of these factors and mechanisms defining the activity of TFs. Understanding the dynamic nature of TFs has practical implications for modern molecular breeding programmes, as it provides insights into how to manipulate gene expression to optimize desired traits in crops. Moreover, recent studies also report the functional duality of TFs, highlighting their ability to switch between activation and repression modes; this represents an important mechanism for attuning gene expression. Here we discuss what the possible reasons for the dual nature of TFs are and how this duality instructs the cell fate decision during development, and fine-tunes stress responses in plants, enabling them to adapt to various environmental challenges.
Collapse
Affiliation(s)
| | | | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India
- Department of Genetics, University of Delhi South Campus, New Delhi, India
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
19
|
Shen M, Zhao K, Luo X, Guo L, Ma Z, Wen L, Lin S, Lin Y, Sun H, Ahmad S. Genome mining of WOX-ARF gene linkage in Machilus pauhoi underpinned cambial activity associated with IAA induction. FRONTIERS IN PLANT SCIENCE 2024; 15:1364086. [PMID: 39114465 PMCID: PMC11303294 DOI: 10.3389/fpls.2024.1364086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
As an upright tree with multifunctional economic application, Machilus pauhoi is an excellent choice in modern forestry from Lauraceae. The growth characteristics is of great significance for its molecular breeding and improvement. However, there still lack the information of WUSCHEL-related homeobox (WOX) and Auxin response factor (ARF) gene family, which were reported as specific transcription factors in plant growth as well as auxin signaling. Here, a total of sixteen MpWOX and twenty-one MpARF genes were identified from the genome of M. pauhoi. Though member of WOX conserved in the Lauraceae, MpWOX and MpARF genes were unevenly distributed on 12 chromosomes as a result of region duplication. These genes presented 45 and 142 miRNA editing sites, respectively, reflecting a potential post-transcriptional restrain. Overall, MpWOX4, MpWOX13a, MpWOX13b, MpARF6b, MpARF6c, and MpARF19a were highly co-expressed in the vascular cambium, forming a working mode as WOX-ARF complex. MpWOXs contains typical AuxRR-core and TGA-element cis-acting regulatory elements in this auxin signaling linkage. In addition, under IAA and NPA treatments, MpARF2a and MpWOX1a was highly sensitive to IAA response, showing significant changes after 6 hours of treatment. And MpWOX1a was significantly inhibited by NPA treatment. Through all these solid analysis, our findings provide a genetic foundation to growth mechanism analysis and further molecular designing breeding in Machilus pauhoi.
Collapse
Affiliation(s)
- Mingli Shen
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Plant Eco-physiology, State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Plant Eco-physiology, State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Xianmei Luo
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory for Plant Eco-physiology, State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Lingling Guo
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zhirui Ma
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Lei Wen
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Siqing Lin
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yingxuan Lin
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Hongyan Sun
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Sagheer Ahmad
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
20
|
Lou X, Wang J, Wang G, He D, Shang W, Song Y, Wang Z, He S. Genome-Wide Analysis of the WOX Family and Its Expression Pattern in Root Development of Paeonia ostii. Int J Mol Sci 2024; 25:7668. [PMID: 39062910 PMCID: PMC11277081 DOI: 10.3390/ijms25147668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Tree peony (Paeonia suffruticosa Andr.) is a woody plant with high ornamental, medicinal, and oil values. However, its low rooting rate and poor rooting quality are bottleneck issues in the micropropagation of P. ostii. The WUSCHEL-related homeobox (WOX) family plays a crucial role in root development. In this study, based on the screening of the genome and root transcriptome database, we identified ten WOX members in P. ostii. Phylogenetic analysis revealed that the ten PoWOX proteins clustered into three major clades, the WUS, intermediate, and ancient clade, respectively. The conserved motifs and tertiary structures of PoWOX proteins located in the same clade exhibited higher similarity. The analysis of cis-regulatory elements in the promoter indicated that PoWOX genes are involved in plant growth and development, phytohormones, and stress responses. The expression analysis revealed that PoWOX genes are expressed in distinct tissues. PoWOX4, PoWOX5, PoWOX11, and PoWOX13b are preferentially expressed in roots at the early stage of root primordium formation, suggesting their role in the initiation and development of roots. These results will provide a comprehensive reference for the evolution and potential function of the WOX family and offer guidance for further study on the root development of tree peony.
Collapse
Affiliation(s)
- Xueyuan Lou
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China;
| | - Jiange Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (G.W.); (D.H.); (W.S.); (Y.S.)
| | - Guiqing Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (G.W.); (D.H.); (W.S.); (Y.S.)
| | - Dan He
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (G.W.); (D.H.); (W.S.); (Y.S.)
| | - Wenqian Shang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (G.W.); (D.H.); (W.S.); (Y.S.)
| | - Yinglong Song
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (G.W.); (D.H.); (W.S.); (Y.S.)
| | - Zheng Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (G.W.); (D.H.); (W.S.); (Y.S.)
| | - Songlin He
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (G.W.); (D.H.); (W.S.); (Y.S.)
| |
Collapse
|
21
|
Chen W, Wang P, Liu C, Han Y, Zhao F. Male Germ Cell Specification in Plants. Int J Mol Sci 2024; 25:6643. [PMID: 38928348 PMCID: PMC11204311 DOI: 10.3390/ijms25126643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Germ cells (GCs) serve as indispensable carriers in both animals and plants, ensuring genetic continuity across generations. While it is generally acknowledged that the timing of germline segregation differs significantly between animals and plants, ongoing debates persist as new evidence continues to emerge. In this review, we delve into studies focusing on male germ cell specifications in plants, and we summarize the core gene regulatory circuits in germ cell specification, which show remarkable parallels to those governing meristem homeostasis. The similarity in germline establishment between animals and plants is also discussed.
Collapse
Affiliation(s)
- Wenqian Chen
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China; (W.C.); (P.W.); (C.L.); (Y.H.)
| | - Pan Wang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China; (W.C.); (P.W.); (C.L.); (Y.H.)
| | - Chan Liu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China; (W.C.); (P.W.); (C.L.); (Y.H.)
| | - Yuting Han
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China; (W.C.); (P.W.); (C.L.); (Y.H.)
| | - Feng Zhao
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China; (W.C.); (P.W.); (C.L.); (Y.H.)
- Collaborative Innovation Center of Northwestern Polytechnical University, Shanghai 201108, China
| |
Collapse
|
22
|
Dvořák Tomaštíková E, Vaculíková J, Štenclová V, Kaduchová K, Pobořilová Z, Paleček JJ, Pecinka A. The interplay of homology-directed repair pathways in the repair of zebularine-induced DNA-protein crosslinks in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38824612 DOI: 10.1111/tpj.16863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 06/03/2024]
Abstract
DNA-protein crosslinks (DPCs) are highly toxic DNA lesions represented by proteins covalently bound to the DNA. Persisting DPCs interfere with fundamental genetic processes such as DNA replication and transcription. Cytidine analog zebularine (ZEB) has been shown to crosslink DNA METHYLTRANSFERASE1 (MET1). Recently, we uncovered a critical role of the SMC5/6-mediated SUMOylation in the repair of DPCs. In an ongoing genetic screen, we identified two additional candidates, HYPERSENSITIVE TO ZEBULARINE 2 and 3, that were mapped to REGULATOR OF TELOMERE ELONGATION 1 (RTEL1) and polymerase TEBICHI (TEB), respectively. By monitoring the growth of hze2 and hze3 plants in response to zebularine, we show the importance of homologous recombination (HR) factor RTEL1 and microhomology-mediated end-joining (MMEJ) polymerase TEB in the repair of MET1-DPCs. Moreover, genetic interaction and sensitivity assays showed the interdependency of SMC5/6 complex, HR, and MMEJ in the homology-directed repair of MET1-DPCs in Arabidopsis. Altogether, we provide evidence that MET1-DPC repair in plants is more complex than originally expected.
Collapse
Affiliation(s)
- Eva Dvořák Tomaštíková
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, Olomouc, 77900, Czech Republic
| | - Jitka Vaculíková
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, Olomouc, 77900, Czech Republic
- Faculty of Science, National Center for Biomolecular Research, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Veronika Štenclová
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, Olomouc, 77900, Czech Republic
| | - Kateřina Kaduchová
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, Olomouc, 77900, Czech Republic
| | - Zuzana Pobořilová
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, Olomouc, 77900, Czech Republic
| | - Jan J Paleček
- Faculty of Science, National Center for Biomolecular Research, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Ales Pecinka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, Olomouc, 77900, Czech Republic
| |
Collapse
|
23
|
Liu L, Zhao L, Liu Y, Zhu Y, Chen S, Yang L, Li X, Chen W, Xu Z, Xu P, Wang H, Yu D. Transcription factor OsWRKY72 controls rice leaf angle by regulating LAZY1-mediated shoot gravitropism. PLANT PHYSIOLOGY 2024; 195:1586-1600. [PMID: 38478430 DOI: 10.1093/plphys/kiae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/13/2024] [Indexed: 06/02/2024]
Abstract
Leaf angle is a major trait of ideal architecture, which is considered to influence rice (Oryza sativa) cultivation and grain yield. Although a few mutants with altered rice leaf inclination angles have been reported, the underlying molecular mechanism remains unclear. In this study, we showed that a WRKY transcription factor gene, OsWRKY72, was highly expressed in the leaf sheath and lamina joint. Phenotypic analyses showed that oswrky72 mutants had smaller leaf angles than the wild type, while OsWRKY72 overexpression lines exhibited an increased leaf angle. This observation suggests that OsWRKY72 functions as a positive regulator, promoting the enlargement of the leaf angle. Our bioinformatics analysis identified LAZY1 as the downstream gene of OsWRKY72. Electrophoretic mobility shift assays and dual-luciferase analysis revealed that OsWRKY72 directly inhibited LAZY1 by binding to its promoter. Moreover, knocking out OsWRKY72 enhanced shoot gravitropism, which contrasted with the phenotype of lazy1 plants. These results imply that OsWRKY72 regulates the leaf angle through gravitropism by reducing the expression of LAZY1. In addition, OsWRKY72 could directly regulate the expression of other leaf angle-related genes such as FLOWERING LOCUS T-LIKE 12 (OsFTL12) and WALL-ASSOCIATED KINASE 11 (OsWAK11). Our study indicates that OsWRKY72 contributes positively to the expansion of the leaf angle by interfering with shoot gravitropism in rice.
Collapse
Affiliation(s)
- Lei Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lirong Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yunwei Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
| | - Yi Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
- School of Life Sciences, Yunnan University, 650500 Kunming, China
| | - Shidie Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
- Southwest United Graduate School, 650092 Kunming, China
| | - Lu Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
| | - Xia Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
- Southwest United Graduate School, 650092 Kunming, China
| | - Wanqin Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
| | - Zhiyu Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
| | - Peng Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Houping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
- School of Life Sciences, Yunnan University, 650500 Kunming, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
- School of Life Sciences, Yunnan University, 650500 Kunming, China
- Southwest United Graduate School, 650092 Kunming, China
| |
Collapse
|
24
|
He J, Huo X, Pei G, Jia Z, Yan Y, Yu J, Qu H, Xie Y, Yuan J, Zheng Y, Hu Y, Shi M, You K, Li T, Ma T, Zhang MQ, Ding S, Li P, Li Y. Dual-role transcription factors stabilize intermediate expression levels. Cell 2024; 187:2746-2766.e25. [PMID: 38631355 DOI: 10.1016/j.cell.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/08/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
Precise control of gene expression levels is essential for normal cell functions, yet how they are defined and tightly maintained, particularly at intermediate levels, remains elusive. Here, using a series of newly developed sequencing, imaging, and functional assays, we uncover a class of transcription factors with dual roles as activators and repressors, referred to as condensate-forming level-regulating dual-action transcription factors (TFs). They reduce high expression but increase low expression to achieve stable intermediate levels. Dual-action TFs directly exert activating and repressing functions via condensate-forming domains that compartmentalize core transcriptional unit selectively. Clinically relevant mutations in these domains, which are linked to a range of developmental disorders, impair condensate selectivity and dual-action TF activity. These results collectively address a fundamental question in expression regulation and demonstrate the potential of level-regulating dual-action TFs as powerful effectors for engineering controlled expression levels.
Collapse
Affiliation(s)
- Jinnan He
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Xiangru Huo
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Gaofeng Pei
- State Key Laboratory of Membrane Biology, Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
| | - Zeran Jia
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yiming Yan
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Jiawei Yu
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Haozhi Qu
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yunxin Xie
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Junsong Yuan
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yuan Zheng
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yanyan Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
| | - Minglei Shi
- Bioinformatics Division, National Research Center for Information Science and Technology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Kaiqiang You
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tianhua Ma
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
| | - Michael Q Zhang
- Bioinformatics Division, National Research Center for Information Science and Technology, School of Medicine, Tsinghua University, Beijing 100084, China; Department of Biological Sciences, Center for Systems Biology, The University of Texas, Dallas, TX 75080-3021, USA
| | - Sheng Ding
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
| | - Pilong Li
- State Key Laboratory of Membrane Biology, Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China.
| | - Yinqing Li
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
25
|
Pei Y, Xue Q, Shu P, Xu W, Du X, Wu M, Liu K, Pirrello J, Bouzayen M, Hong Y, Liu M. Bifunctional transcription factors SlERF.H5 and H7 activate cell wall and repress gibberellin biosynthesis genes in tomato via a conserved motif. Dev Cell 2024; 59:1345-1359.e6. [PMID: 38579721 DOI: 10.1016/j.devcel.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/31/2023] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
The plant cell wall is a dynamic structure that plays an essential role in development, but the mechanism regulating cell wall formation remains poorly understood. We demonstrate that two transcription factors, SlERF.H5 and SlERF.H7, control cell wall formation and tomato fruit firmness in an additive manner. Knockout of SlERF.H5, SlERF.H7, or both genes decreased cell wall thickness, firmness, and cellulose contents in fruits during early development, especially in double-knockout lines. Overexpressing either gene resulted in thicker cell walls and greater fruit firmness with elevated cellulose levels in fruits but severely dwarf plants with lower gibberellin contents. We further identified that SlERF.H5 and SlERF.H7 activate the cellulose biosynthesis gene SlCESA3 but repress the gibberellin biosynthesis gene GA20ox1. Moreover, we identified a conserved LPL motif in these ERFs responsible for their activities as transcriptional activators and repressors, providing insight into how bifunctional transcription factors modulate distinct developmental processes.
Collapse
Affiliation(s)
- Yangang Pei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Qihan Xue
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Peng Shu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Weijie Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Xiaofei Du
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Mengbo Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China
| | - Julien Pirrello
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Mondher Bouzayen
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Yiguo Hong
- School of Life Sciences, University of Warwick, Warwick CV4 7AL, UK; State Key Laboratory of North China Crop Improvement and Regulation, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.
| |
Collapse
|
26
|
Luo X, Zheng Q, He X, Zhao X, Zhang M, Huang Y, Cai B, Liu Z. The Evolution of the WUSCHEL-Related Homeobox Gene Family in Dendrobium Species and Its Role in Sex Organ Development in D. chrysotoxum. Int J Mol Sci 2024; 25:5352. [PMID: 38791390 PMCID: PMC11121392 DOI: 10.3390/ijms25105352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The WUSCHEL-related homeobox (WOX) transcription factor plays a vital role in stem cell maintenance and organ morphogenesis, which are essential processes for plant growth and development. Dendrobium chrysotoxum, D. huoshanense, and D. nobile are valued for their ornamental and medicinal properties. However, the specific functions of the WOX gene family in Dendrobium species are not well understood. In our study, a total of 30 WOX genes were present in the genomes of the three Dendrobium species (nine DchWOXs, 11 DhuWOXs, and ten DnoWOXs). These 30 WOXs were clustered into ancient clades, intermediate clades, and WUS/modern clades. All 30 WOXs contained a conserved homeodomain, and the conserved motifs and gene structures were similar among WOXs belonging to the same branch. D. chrysotoxum and D. huoshanense had one pair of fragment duplication genes and one pair of tandem duplication genes, respectively; D. nobile had two pairs of fragment duplication genes. The cis-acting regulatory elements (CREs) in the WOX promoter region were mainly enriched in the light response, stress response, and plant growth and development regulation. The expression pattern and RT-qPCR analysis revealed that the WOXs were involved in regulating the floral organ development of D. chrysotoxum. Among them, the high expression of DchWOX3 suggests that it might be involved in controlling lip development, whereas DchWOX5 might be involved in controlling ovary development. In conclusion, this work lays the groundwork for an in-depth investigation into the functions of WOX genes and their regulatory role in Dendrobium species' floral organ development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bangping Cai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (Q.Z.); (X.H.); (X.Z.); (M.Z.); (Y.H.)
| | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (Q.Z.); (X.H.); (X.Z.); (M.Z.); (Y.H.)
| |
Collapse
|
27
|
Wang Y, Yang L, Geng W, Cheng R, Zhang H, Zhou H. Genome-wide prediction and functional analysis of WOX genes in blueberry. BMC Genomics 2024; 25:434. [PMID: 38693497 PMCID: PMC11064388 DOI: 10.1186/s12864-024-10356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/26/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND WOX genes are a class of plant-specific transcription factors. The WUSCHEL-related homeobox (WOX) family is a member of the homeobox transcription factor superfamily. Previous studies have shown that WOX members play important roles in plant growth and development. However, studies of the WOX gene family in blueberry plants have not been reported. RESULTS In order to understand the biological function of the WOX gene family in blueberries, bioinformatics were used methods to identify WOX gene family members in the blueberry genome, and analyzed the basic physical and chemical properties, gene structure, gene motifs, promoter cis-acting elements, chromosome location, evolutionary relationships, expression pattern of these family members and predicted their functions. Finally, 12 genes containing the WOX domain were identified and found to be distributed on eight chromosomes. Phylogenetic tree analysis showed that the blueberry WOX gene family had three major branches: ancient branch, middle branch, and WUS branch. Blueberry WOX gene family protein sequences differ in amino acid number, molecular weight, isoelectric point and hydrophobicity. Predictive analysis of promoter cis-acting elements showed that the promoters of the VdWOX genes contained abundant light response, hormone, and stress response elements. The VdWOX genes were induced to express in both stems and leaves in response to salt and drought stress. CONCLUSIONS Our results provided comprehensive characteristics of the WOX gene family and important clues for further exploration of its role in the growth, development and resistance to various stress in blueberry plants.
Collapse
Affiliation(s)
- Yanwen Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, 264025, Shandong, China
| | - Lei Yang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, 264025, Shandong, China.
- Bestplant (Shandong) Stem Cell Engineering Co., Ltd, 300 Changjiang Road, Yantai, 264001, Shandong, China.
| | - Wenzhu Geng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, 264025, Shandong, China
| | - Rui Cheng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, 264025, Shandong, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, 264025, Shandong, China.
- Bestplant (Shandong) Stem Cell Engineering Co., Ltd, 300 Changjiang Road, Yantai, 264001, Shandong, China.
| | - Houjun Zhou
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, 264025, Shandong, China.
- Bestplant (Shandong) Stem Cell Engineering Co., Ltd, 300 Changjiang Road, Yantai, 264001, Shandong, China.
| |
Collapse
|
28
|
Tang L, Li G, Wang H, Zhao J, Li Z, Liu X, Shu Y, Liu W, Wang S, Huang J, Ying J, Tong X, Yuan W, Wei X, Tang S, Wang Y, Bu Q, Zhang J. Exogenous abscisic acid represses rice flowering via SAPK8-ABF1-Ehd1/Ehd2 pathway. J Adv Res 2024; 59:35-47. [PMID: 37399924 PMCID: PMC11081964 DOI: 10.1016/j.jare.2023.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023] Open
Abstract
INTRODUCTION Rice flowering is a major agronomic trait, determining yield and ecological adaptability in particular regions. ABA plays an essential role in rice flowering, but the underlying molecular mechanism remains largely elusive. OBJECTIVES In this study, we demonstrated a "SAPK8-ABF1-Ehd1/Ehd2" pathway, through which exogenous ABA represses rice flowering in a photoperiod-independent manner. METHODS We generated abf1 and sapk8 mutants using the CRISPR-Cas9 method. Using yeast two-hybrid, Pull down, BiFC and kinase assays, SAPK8 interacted and phosphorylated ABF1. ABF1 directly bound to the promoters of Ehd1 and Ehd2 using ChIP-qPCR, EMSA, and LUC transient transcriptional activity assay, and suppressed the transcription of these genes. RESULTS Under both long day and short day conditions, simultaneous knock-out of ABF1 and its homolog bZIP40 accelerated flowering, while SAPK8 and ABF1 over-expression lines exhibited delayed flowering and hypersensitivity to ABA-mediated flowering repression. After perceiving the ABA signal, SAPK8 physically binds to and phosphorylates ABF1 to enhance its binding to the promoters of master positive flowering regulators Ehd1 and Ehd2. Upon interacting with FIE2, ABF1 recruited PRC2 complex to deposit H3K27me3 suppressive histone modification on Ehd1 and Ehd2 to suppress these genes transcription, thereby leading to later flowering. CONCLUSION Our work highlighted the biological functions of SAPK8 and ABF1 in ABA signaling, flowering control and the involvement of a PRC2-mediated epigenetic repression mechanism in the transcription regulation governed by ABF1 on ABA-mediated rice flowering repression.
Collapse
Affiliation(s)
- Liqun Tang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Guanghao Li
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Huimei Wang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Juan Zhao
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Zhiyong Li
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Xixi Liu
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Yazhou Shu
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Wanning Liu
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Shuang Wang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Jie Huang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Jiezheng Ying
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Xiaohong Tong
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Wenya Yuan
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiangjin Wei
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Shaoqing Tang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Yifeng Wang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China.
| | - Qingyun Bu
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, the Chinese Academy of Sciences, Harbin 150081, China; The Innovative Academy of Seed Design, the Chinese Academy of Sciences, Beijing 100101, China.
| | - Jian Zhang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China.
| |
Collapse
|
29
|
Zuo X, Wang S, Liu X, Tang T, Li Y, Tong L, Shah K, Ma J, An N, Zhao C, Xing L, Zhang D. FLOWERING LOCUS T1 and TERMINAL FLOWER1 regulatory networks mediate flowering initiation in apple. PLANT PHYSIOLOGY 2024; 195:580-597. [PMID: 38366880 DOI: 10.1093/plphys/kiae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/01/2023] [Accepted: 01/07/2024] [Indexed: 02/18/2024]
Abstract
Flower bud formation is a critical process that directly determines yield and fruit quality in fruit crops. Floral induction is modulated by the balance between 2 flowering-related proteins, FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1); however, the mechanisms underlying the establishment and maintenance of this dynamic balance remain largely elusive. Here, we showed that in apple (Malus × domestica Borkh.), MdFT1 is predominantly expressed in spur buds and exhibits an increase in expression coinciding with flower induction; in contrast, MdTFL1 exhibited downregulation in apices during flower induction, suggesting that MdTFL1 has a role in floral repression. Interestingly, both the MdFT1 and MdTFL1 transcripts are directly regulated by transcription factor basic HELIX-LOOP-HELIX48 (MdbHLH48), and overexpression of MdbHLH48 in Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) results in accelerated flowering. Binding and activation analyses revealed that MdbHLH48 functions as a positive regulator of MdFT1 and a negative regulator of MdTFL1. Further studies established that both MdFT1 and MdTFL1 interact competitively with MdWRKY6 protein to facilitate and inhibit, respectively, MdWRKY6-mediated transcriptional activation of target gene APPLE FLORICAULA/LFY (AFL1, an apple LEAFY-like gene), ultimately regulating apple flower bud formation. These findings illustrate the fine-tuned regulation of flowering by the MdbHLH48-MdFT1/MdTFL1-MdWRKY6 module and provide insights into flower bud formation in apples.
Collapse
Affiliation(s)
- Xiya Zuo
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shixiang Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiuxiu Liu
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Tang
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Youmei Li
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Lu Tong
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kamran Shah
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juanjuan Ma
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na An
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Caiping Zhao
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Libo Xing
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dong Zhang
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
30
|
Lee S, Park YS, Rhee JH, Chu H, Frost JM, Choi Y. Insights into plant regeneration: cellular pathways and DNA methylation dynamics. PLANT CELL REPORTS 2024; 43:120. [PMID: 38634973 PMCID: PMC11026228 DOI: 10.1007/s00299-024-03216-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Plants, known for their immobility, employ various mechanisms against stress and damage. A prominent feature is the formation of callus tissue-a cellular growth phenomenon that remains insufficiently explored, despite its distinctive cellular plasticity compared to vertebrates. Callus formation involves dedifferentiated cells, with a subset attaining pluripotency. Calluses exhibit an extraordinary capacity to reinitiate cellular division and undergo structural transformations, generating de novo shoots and roots, thereby developing into regenerated plants-a testament to the heightened developmental plasticity inherent in plants. In this way, plant regeneration through clonal propagation is a widely employed technique for vegetative reproduction. Thus, exploration of the biological components involved in regaining pluripotency contributes to the foundation upon which methods of somatic plant propagation can be advanced. This review provides an overview of the cellular pathway involved in callus and subsequent de novo shoot formation from already differentiated plant tissue, highlighting key genes critical to this process. In addition, it explores the intricate realm of epigenetic regulatory processes, emphasizing the nuanced dynamics of DNA methylation that contribute to plant regeneration. Finally, we briefly discuss somaclonal variation, examining its relation to DNA methylation, and investigating the heritability of epigenomic changes in crops.
Collapse
Affiliation(s)
- Seunga Lee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Korea
| | - Young Seo Park
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Ji Hoon Rhee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Korea
| | - Hyojeong Chu
- Department of Biological Sciences, Seoul National University, Seoul, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Korea
- The Research Institute of Basic Sciences, Seoul National University, Seoul, Korea
| | - Jennifer M Frost
- Genomics and Child Health, The Blizard Institute, Queen Mary University of London, London, UK
| | - Yeonhee Choi
- Department of Biological Sciences, Seoul National University, Seoul, Korea.
- Research Center for Plant Plasticity, Seoul National University, Seoul, Korea.
| |
Collapse
|
31
|
Nan L, Li Y, Ma C, Meng X, Han Y, Li H, Huang M, Qin Y, Ren X. Identification and Expression Analysis of the WOX Transcription Factor Family in Foxtail Millet ( Setaria italica L.). Genes (Basel) 2024; 15:476. [PMID: 38674410 PMCID: PMC11050393 DOI: 10.3390/genes15040476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
WUSCHEL-related homeobox (WOX) transcription factors are unique to plants and play pivotal roles in plant development and stress responses. In this investigation, we acquired protein sequences of foxtail millet WOX gene family members through homologous sequence alignment and a hidden Markov model (HMM) search. Utilizing conserved domain prediction, we identified 13 foxtail millet WOX genes, which were classified into ancient, intermediate, and modern clades. Multiple sequence alignment results revealed that all WOX proteins possess a homeodomain (HD). The SiWOX genes, clustered together in the phylogenetic tree, exhibited analogous protein spatial structures, gene structures, and conserved motifs. The foxtail millet WOX genes are distributed across 7 chromosomes, featuring 3 pairs of tandem repeats: SiWOX1 and SiWOX13, SiWOX4 and SiWOX5, and SiWOX11 and SiWOX12. Collinearity analysis demonstrated that WOX genes in foxtail millet exhibit the highest collinearity with green foxtail, followed by maize. The SiWOX genes primarily harbor two categories of cis-acting regulatory elements: Stress response and plant hormone response. Notably, prominent hormones triggering responses include methyl jasmonate, abscisic acid, gibberellin, auxin, and salicylic acid. Analysis of SiWOX expression patterns and hormone responses unveiled potential functional diversity among different SiWOX genes in foxtail millet. These findings lay a solid foundation for further elucidating the functions and evolution of SiWOX genes.
Collapse
Affiliation(s)
- Lizhang Nan
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Yajun Li
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Cui Ma
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Xiaowei Meng
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Yuanhuai Han
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Hongying Li
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Mingjing Huang
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (L.N.); (Y.L.); (C.M.); (X.M.); (Y.H.); (H.L.); (M.H.)
| | - Yingying Qin
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| | - Xuemei Ren
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| |
Collapse
|
32
|
Sato Y, Minamikawa MF, Pratama BB, Koyama S, Kojima M, Takebayashi Y, Sakakibara H, Igawa T. Autonomous differentiation of transgenic cells requiring no external hormone application: the endogenous gene expression and phytohormone behaviors. FRONTIERS IN PLANT SCIENCE 2024; 15:1308417. [PMID: 38633452 PMCID: PMC11021773 DOI: 10.3389/fpls.2024.1308417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
The ectopic overexpression of developmental regulator (DR) genes has been reported to improve the transformation in recalcitrant plant species because of the promotion of cellular differentiation during cell culture processes. In other words, the external plant growth regulator (PGR) application during the tissue and cell culture process is still required in cases utilizing DR genes for plant regeneration. Here, the effect of Arabidopsis BABY BOOM (BBM) and WUSCHEL (WUS) on the differentiation of tobacco transgenic cells was examined. We found that the SRDX fusion to WUS, when co-expressed with the BBM-VP16 fusion gene, significantly influenced the induction of autonomous differentiation under PGR-free culture conditions, with similar effects in some other plant species. Furthermore, to understand the endogenous background underlying cell differentiation toward regeneration, phytohormone and RNA-seq analyses were performed using tobacco leaf explants in which transgenic cells were autonomously differentiating. The levels of active auxins, cytokinins, abscisic acid, and inactive gibberellins increased as cell differentiation proceeded toward organogenesis. Gene Ontology terms related to phytohormones and organogenesis were identified as differentially expressed genes, in addition to those related to polysaccharide and nitrate metabolism. The qRT-PCR four selected genes as DEGs supported the RNA-seq data. This differentiation induction system and the reported phytohormone and transcript profiles provide a foundation for the development of PGR-free tissue cultures of various plant species, facilitating future biotechnological breeding.
Collapse
Affiliation(s)
- Yuka Sato
- Plant Cell Technology Laboratory, Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Mai F. Minamikawa
- Institute for Advanced Academic Research (IAAR), Chiba University, Chiba, Japan
| | - Berbudi Bintang Pratama
- Plant Cell Technology Laboratory, Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Shohei Koyama
- Plant Cell Technology Laboratory, Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Tomoko Igawa
- Plant Cell Technology Laboratory, Graduate School of Horticulture, Chiba University, Matsudo, Japan
- Plant Molecular Science Center, Chiba University, Chiba, Japan
- Research Center for Space Agriculture and Horticulture, Chiba University, Matsudo, Japan
| |
Collapse
|
33
|
Chen Z, Cortes L, Gallavotti A. Genetic dissection of cis-regulatory control of ZmWUSCHEL1 expression by type B RESPONSE REGULATORS. PLANT PHYSIOLOGY 2024; 194:2240-2248. [PMID: 38060616 PMCID: PMC10980522 DOI: 10.1093/plphys/kiad652] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/06/2023] [Indexed: 04/01/2024]
Abstract
Mutations in cis-regulatory regions play an important role in the domestication and improvement of crops by altering gene expression. However, assessing the in vivo impact of cis-regulatory elements (CREs) on transcriptional regulation and phenotypic outcomes remains challenging. Previously, we showed that the dominant Barren inflorescence3 (Bif3) mutant of maize (Zea mays) contains a duplicated copy of the homeobox transcription factor gene ZmWUSCHEL1 (ZmWUS1), named ZmWUS1-B. ZmWUS1-B is controlled by a spontaneously generated novel promoter region that dramatically increases its expression and alters patterning and development of young ears. Overexpression of ZmWUS1-B is caused by a unique enhancer region containing multimerized binding sites for type B RESPONSE REGULATORs (RRs), key transcription factors in cytokinin signaling. To better understand how the enhancer increases the expression of ZmWUS1 in vivo, we specifically targeted the ZmWUS1-B enhancer region by CRISPR-Cas9-mediated editing. A series of deletion events with different numbers of type B RR DNA binding motifs (AGATAT) enabled us to determine how the number of AGATAT motifs impacts in vivo expression of ZmWUS1-B and consequently ear development. In combination with dual-luciferase assays in maize protoplasts, our analysis reveals that AGATAT motifs have an additive effect on ZmWUS1-B expression, while the distance separating AGATAT motifs does not appear to have a meaningful impact, indicating that the enhancer activity derives from the sum of individual CREs. These results also suggest that in maize inflorescence development, there is a threshold of buffering capacity for ZmWUS1 overexpression.
Collapse
Affiliation(s)
- Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Liz Cortes
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
34
|
Li JJ, Qiu XY, Dai YJ, Nyonga TM, Li CC. Genome-Wide Identification and Co-Expression Networks of WOX Gene Family in Nelumbo nucifera. PLANTS (BASEL, SWITZERLAND) 2024; 13:720. [PMID: 38475567 DOI: 10.3390/plants13050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
WUSCHEL-related homeobox (WOX) genes are a class of plant-specific transcription factors, regulating the development of multiple tissues. However, the genomic characterizations and expression patterns of WOX genes have not been analyzed in lotus. In this study, 15 NnWOX genes were identified based on the well-annotated reference genome of lotus. According to the phylogenetic analysis, the NnWOX genes were clustered into three clades, i.e., ancient clade, intermediate clade, and WUS clade. Except for the conserved homeobox motif, we further found specific motifs of NnWOX genes in different clades and divergence gene structures, suggesting their distinct functions. In addition, two NnWOX genes in the ancient clade have conserved expression patterns and other NnWOX genes exhibit different expression patterns in lotus tissues, suggesting a low level of functional redundancy in lotus WOX genes. Furthermore, we constructed the gene co-expression networks for each NnWOX gene. Based on weighted gene co-expression network analysis (WGCNA), ten NnWOX genes and their co-expressed genes were assigned to the modules that were significantly related to the cotyledon and seed coat. We further performed RT-qPCR experiments, validating the expression levels of ten NnWOX genes in the co-expression networks. Our study reveals comprehensive genomic features of NnWOX genes in lotus, providing a solid basis for further function studies.
Collapse
Affiliation(s)
- Juan-Juan Li
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Xiao-Yan Qiu
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Yu-Jun Dai
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Tonny M Nyonga
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Chang-Chun Li
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| |
Collapse
|
35
|
Han N, Li F, Zhu H, Li T, Wang X, Li T, Kang J, Zhang Z. Comprehensive analysis of WOX transcription factors provide insight into genes related to the regulation of unisexual flowers development in Akebia trifoliata. Int J Biol Macromol 2024; 260:129486. [PMID: 38237833 DOI: 10.1016/j.ijbiomac.2024.129486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Akebia trifoliata is a fascinating economic and medicinal plant that produces functionally unisexual flowers due to stamen/pistil abortion during flower development, and the genetic regulation pathway of this process remain completely unknown. Here, 10 AktWOXs were identified for the first time, all contained a highly conserved homeodomain. AktWOXs were divided into three clades, each with the same or similar intron, exon, and motifs distribution. Many cis-elements related to stress response, growth and development, and hormone response were found in the AktWOXs promoter region. In addition, four candidate genes AktWOX8, AktWOX11, AktWOX13.2 and AktWUS that might be involved in unisexual flowers development were screened, all of which were located in the nucleus and showed transcriptional activation activity. Yeast one-hybrid showed that both AktKNU and AktAG1, the potential core transcription factors in the activity termination pathway of flower meristem stem cells, could bind to the promoter region of AktWUS. Dual-luciferase assay further confirmed that only AktKNU inhibited the expression of AktWUS. Collectively, this study revealed the mechanism of AktWUS that might affect the formation of unisexual flowers by regulating the timely termination of flower meristem in A. trifoliata.
Collapse
Affiliation(s)
- Ning Han
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Fengjiao Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Huiqin Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Tian Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiuting Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Tao Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an, Shaanxi 710119, China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of the Ministry of Education, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Juqing Kang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Zheng Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an, Shaanxi 710119, China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of the Ministry of Education, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
36
|
Wang D, Qiu Z, Xu T, Yao S, Zhang M, Cheng X, Zhao Y, Ji K. Identification and Expression Patterns of WOX Transcription Factors under Abiotic Stresses in Pinus massoniana. Int J Mol Sci 2024; 25:1627. [PMID: 38338907 PMCID: PMC10855728 DOI: 10.3390/ijms25031627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/04/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
WUSCHEL-related homeobox (WOX) transcription factors (TFs) play a crucial role in regulating plant development and responding to various abiotic stresses. However, the members and functions of WOX proteins in Pinus massoniana remain unclear. In this study, a total of 11 WOX genes were identified, and bioinformatics methods were used for preliminary identification and analysis. The phylogenetic tree revealed that most PmWOXs were distributed in ancient and WUS clades, with only one member found in the intermediate clade. We selected four highly conserved WOX genes within plants for further expression analysis. These genes exhibited expressions across almost all tissues, while PmWOX2, PmWOX3, and PmWOX4 showed high expression levels in the callus, suggesting their potential involvement in specific functions during callus development. Expression patterns under different abiotic stresses indicated that PmWOXs could participate in resisting multiple stresses in P. massoniana. The identification and preliminary analysis of PmWOXs lay the foundation for further research on analyzing the resistance molecular mechanism of P. massoniana to abiotic stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kongshu Ji
- State Key Laboratory of Tree Genetics and Breeding, Key Open Laboratory of Forest Genetics and Gene Engineering of National Forestry and Grassland Administration, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (D.W.); (Z.Q.); (T.X.); (S.Y.); (M.Z.); (X.C.); (Y.Z.)
| |
Collapse
|
37
|
Baranov D, Dolgov S, Timerbaev V. New Advances in the Study of Regulation of Tomato Flowering-Related Genes Using Biotechnological Approaches. PLANTS (BASEL, SWITZERLAND) 2024; 13:359. [PMID: 38337892 PMCID: PMC10856997 DOI: 10.3390/plants13030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
The tomato is a convenient object for studying reproductive processes, which has become a classic. Such complex processes as flowering and fruit setting require an understanding of the fundamental principles of molecular interaction, the structures of genes and proteins, the construction of signaling pathways for transcription regulation, including the synchronous actions of cis-regulatory elements (promoter and enhancer), trans-regulatory elements (transcription factors and regulatory RNAs), and transposable elements and epigenetic regulators (DNA methylation and acetylation, chromatin structure). Here, we discuss the current state of research on tomatoes (2017-2023) devoted to studying the function of genes that regulate flowering and signal regulation systems using genome-editing technologies, RNA interference gene silencing, and gene overexpression, including heterologous expression. Although the central candidate genes for these regulatory components have been identified, a complete picture of their relationship has yet to be formed. Therefore, this review summarizes the latest achievements related to studying the processes of flowering and fruit set. This work attempts to display the gene interaction scheme to better understand the events under consideration.
Collapse
Affiliation(s)
- Denis Baranov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Sergey Dolgov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Vadim Timerbaev
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
38
|
Yao Y, Xiang D, Wu N, Wang Y, Chen Y, Yuan Y, Ye Y, Hu D, Zheng C, Yan Y, Lv Q, Li X, Chen G, Hu H, Xiong H, Peng S, Xiong L. Control of rice ratooning ability by a nucleoredoxin that inhibits histidine kinase dimerization to attenuate cytokinin signaling in axillary buds. MOLECULAR PLANT 2023; 16:1911-1926. [PMID: 37853691 DOI: 10.1016/j.molp.2023.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/24/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Rice ratooning, the fast outgrowth of dormant buds on stubble, is an important cropping practice in rice production. However, the low ratooning ability (RA) of most rice varieties restricts the application of this cost-efficient system, and the genetic basis of RA remains unknown. In this study, we dissected the genetic architecture of RA by a genome-wide association study in a natural rice population. Rice ratooning ability 3 (RRA3), encoding a hitherto not characterized nucleoredoxin involved in reduction of disulfide bonds, was identified as the causal gene of a major locus controlling RA. Overexpression of RRA3 in rice significantly accelerated leaf senescence and reduced RA, whereas knockout of RRA3 significantly delayed leaf senescence and increased RA and ratoon yield. We demonstrated that RRA3 interacts with Oryza sativa histidine kinase 4 (OHK4), a cytokinin receptor, and inhibits the dimerization of OHK4 through disulfide bond reduction. This inhibition ultimately led to decreased cytokinin signaling and reduced RA. In addition, variations in the RRA3 promoter were identified to be associated with RA. Introgression of a superior haplotype with weak expression of RRA3 into the elite rice variety Guichao 2 significantly increased RA and ratoon yield by 23.8%. Collectively, this study not only uncovers an undocumented regulatory mechanism of cytokinin signaling through de-dimerization of a histidine kinase receptor-but also provides an eximious gene with promising value for ratoon rice breeding.
Collapse
Affiliation(s)
- Yilong Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Denghao Xiang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Nai Wu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yao Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Yuan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Ye
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Chang Zheng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Qingya Lv
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaokai Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Guoxing Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Haiyan Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
39
|
Zeng J, Zhao X, Liang Z, Hidalgo I, Gebert M, Fan P, Wenzl C, Gornik SG, Lohmann JU. Nitric oxide controls shoot meristem activity via regulation of DNA methylation. Nat Commun 2023; 14:8001. [PMID: 38049411 PMCID: PMC10696095 DOI: 10.1038/s41467-023-43705-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/16/2023] [Indexed: 12/06/2023] Open
Abstract
Despite the importance of Nitric Oxide (NO) as signaling molecule in both plant and animal development, the regulatory mechanisms downstream of NO remain largely unclear. Here, we show that NO is involved in Arabidopsis shoot stem cell control via modifying expression and activity of ARGONAUTE 4 (AGO4), a core component of the RNA-directed DNA Methylation (RdDM) pathway. Mutations in components of the RdDM pathway cause meristematic defects, and reduce responses of the stem cell system to NO signaling. Importantly, we find that the stem cell inducing WUSCHEL transcription factor directly interacts with AGO4 in a NO dependent manner, explaining how these two signaling systems may converge to modify DNA methylation patterns. Taken together, our results reveal that NO signaling plays an important role in controlling plant stem cell homeostasis via the regulation of de novo DNA methylation.
Collapse
Affiliation(s)
- Jian Zeng
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Xin'Ai Zhao
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Zhe Liang
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Inés Hidalgo
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Michael Gebert
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
- CureVac, 72076, Tübingen, Germany
| | - Pengfei Fan
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Christian Wenzl
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Sebastian G Gornik
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Jan U Lohmann
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|
40
|
Ramakrishnan M, Zhou M, Ceasar SA, Ali DJ, Maharajan T, Vinod KK, Sharma A, Ahmad Z, Wei Q. Epigenetic modifications and miRNAs determine the transition of somatic cells into somatic embryos. PLANT CELL REPORTS 2023; 42:1845-1873. [PMID: 37792027 DOI: 10.1007/s00299-023-03071-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023]
Abstract
KEY MESSAGE This review discusses the epigenetic changes during somatic embryo (SE) development, highlights the genes and miRNAs involved in the transition of somatic cells into SEs as a result of epigenetic changes, and draws insights on biotechnological opportunities to study SE development. Somatic embryogenesis from somatic cells occurs in a series of steps. The transition of somatic cells into somatic embryos (SEs) is the most critical step under genetic and epigenetic regulations. Major regulatory genes such as SERK, WUS, BBM, FUS3/FUSA3, AGL15, and PKL, control SE steps and development by turning on and off other regulatory genes. Gene transcription profiles of somatic cells during SE development is the result of epigenetic changes, such as DNA and histone protein modifications, that control and decide the fate of SE formation. Depending on the type of somatic cells and the treatment with plant growth regulators, epigenetic changes take place dynamically. Either hypermethylation or hypomethylation of SE-related genes promotes the transition of somatic cells. For example, the reduced levels of DNA methylation of SERK and WUS promotes SE initiation. Histone modifications also promote SE induction by regulating SE-related genes in somatic cells. In addition, miRNAs contribute to the various stages of SE by regulating the expression of auxin signaling pathway genes (TIR1, AFB2, ARF6, and ARF8), transcription factors (CUC1 and CUC2), and growth-regulating factors (GRFs) involved in SE formation. These epigenetic and miRNA functions are unique and have the potential to regenerate bipolar structures from somatic cells when a pluripotent state is induced. However, an integrated overview of the key regulators involved in SE development and downstream processes is lacking. Therefore, this review discusses epigenetic modifications involved in SE development, SE-related genes and miRNAs associated with epigenetics, and common cis-regulatory elements in the promoters of SE-related genes. Finally, we highlight future biotechnological opportunities to alter epigenetic pathways using the genome editing tool and to study the transition mechanism of somatic cells.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration On Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Stanislaus Antony Ceasar
- Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kalamassery, Kochi, 683104, Kerala, India
| | - Doulathunnisa Jaffar Ali
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Theivanayagam Maharajan
- Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kalamassery, Kochi, 683104, Kerala, India
| | | | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Zishan Ahmad
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration On Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Qiang Wei
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration On Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
41
|
Tourdot E, Grob S. Three-dimensional chromatin architecture in plants - General features and novelties. Eur J Cell Biol 2023; 102:151344. [PMID: 37562220 DOI: 10.1016/j.ejcb.2023.151344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Research on the three-dimensional (3D) structure of the genome and its distribution within the nuclear space has made a big leap in the last two decades. Work in the animal field has led to significant advances in our general understanding on eukaryotic genome organization. This did not only bring along insights into how the 3D genome interacts with the epigenetic landscape and the transcriptional machinery but also how 3D genome architecture is relevant for fundamental developmental processes, such as cell differentiation. In parallel, the 3D organization of plant genomes have been extensively studied, which resulted in both congruent and novel findings, contributing to a more complete view on how eukaryotic genomes are organized in multiple dimensions. Plant genomes are remarkably diverse in size, composition, and ploidy. Furthermore, as intrinsically sessile organisms without the possibility to relocate to more favorable environments, plants have evolved an elaborate epigenetic repertoire to rapidly respond to environmental challenges. The diversity in genome organization and the complex epigenetic programs make plants ideal study subjects to acquire a better understanding on universal features and inherent constraints of genome organization. Furthermore, considering a wide range of species allows us to study the evolutionary crosstalk between the various levels of genome architecture. In this article, we aim at summarizing important findings on 3D genome architecture obtained in various plant species. These findings cover many aspects of 3D genome organization on a wide range of levels, from gene loops to topologically associated domains and to global 3D chromosome configurations. We present an overview on plant 3D genome organizational features that resemble those in animals and highlight facets that have only been observed in plants to date.
Collapse
Affiliation(s)
- Edouard Tourdot
- Department of Plant and Microbial Biology, University of Zurich, Switzerland.
| | - Stefan Grob
- Department of Plant and Microbial Biology, University of Zurich, Switzerland.
| |
Collapse
|
42
|
Abubakar AS, Wu Y, Chen F, Zhu A, Chen P, Chen K, Qiu X, Huang X, Zhao H, Chen J, Gao G. Comprehensive Analysis of WUSCEL-Related Homeobox Gene Family in Ramie ( Boehmeria nivea) Indicates Its Potential Role in Adventitious Root Development. BIOLOGY 2023; 12:1475. [PMID: 38132301 PMCID: PMC10740585 DOI: 10.3390/biology12121475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
A WUSCHEL-related homeobox (WOX) gene family has been implicated in promoting vegetative organs to embryonic transition and maintaining plant embryonic stem cell identity. Using genome-wide analysis, we identified 17 candidates, WOX genes in ramie (Boehmeria nivea). The genes (BnWOX) showed highly conserved homeodomain regions typical of WOX. Based on phylogenetic analysis, they were classified into three distinct groups: modern, intermediate, and ancient clades. The genes displayed 65% and 35% collinearities with their Arabidopsis thaliana and Oryza sativa ortholog, respectively, and exhibited similar motifs, suggesting similar functions. Furthermore, four segmental duplications (BnWOX10/14, BnWOX13A/13B, BnWOX9A/9B, and BnWOX6A/Maker00021031) and a tandem-duplicated pair (BnWOX5/7) among the putative ramie WOX genes were obtained, suggesting that whole-genome duplication (WGD) played a role in WOX gene expansion. Expression profiling analysis of the genes in the bud, leaf, stem, and root of the stem cuttings revealed higher expression levels of BnWOX10 and BnWOX14 in the stem and root and lower in the leaf consistent with the qRT-PCR analysis, suggesting their direct roles in ramie root formation. Analysis of the rooting characteristics and expression in the stem cuttings of sixty-seven different ramie genetic resources showed a possible involvement of BnWOX14 in the adventitious rooting of ramie. Thus, this study provides valuable information on ramie WOX genes and lays the foundation for further research.
Collapse
Affiliation(s)
- Aminu Shehu Abubakar
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China; (A.S.A.); (F.C.)
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
- Department of Agronomy, Bayero University Kano, PMB 3011, Kano 700241, Nigeria
| | - Yongmei Wu
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China; (A.S.A.); (F.C.)
| | - Fengming Chen
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China; (A.S.A.); (F.C.)
| | - Aiguo Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Ping Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Kunmei Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Xiaojun Qiu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
| | - Xiaoyu Huang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
| | - Haohan Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
| | - Jikang Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
- Key Laboratory of Biological and Processing for Bast Fiber Crops, Changsha 410221, China
| | - Gang Gao
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China; (A.S.A.); (F.C.)
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
43
|
Hong L, Fletcher JC. Stem Cells: Engines of Plant Growth and Development. Int J Mol Sci 2023; 24:14889. [PMID: 37834339 PMCID: PMC10573764 DOI: 10.3390/ijms241914889] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The development of both animals and plants relies on populations of pluripotent stem cells that provide the cellular raw materials for organ and tissue formation. Plant stem cell reservoirs are housed at the shoot and root tips in structures called meristems, with the shoot apical meristem (SAM) continuously producing aerial leaf, stem, and flower organs throughout the life cycle. Thus, the SAM acts as the engine of plant development and has unique structural and molecular features that allow it to balance self-renewal with differentiation and act as a constant source of new cells for organogenesis while simultaneously maintaining a stem cell reservoir for future organ formation. Studies have identified key roles for intercellular regulatory networks that establish and maintain meristem activity, including the KNOX transcription factor pathway and the CLV-WUS stem cell feedback loop. In addition, the plant hormones cytokinin and auxin act through their downstream signaling pathways in the SAM to integrate stem cell activity and organ initiation. This review discusses how the various regulatory pathways collectively orchestrate SAM function and touches on how their manipulation can alter stem cell activity to improve crop yield.
Collapse
Affiliation(s)
- Liu Hong
- Plant Gene Expression Center, United States Department of Agriculture—Agricultural Research Service, Albany, CA 94710, USA;
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jennifer C. Fletcher
- Plant Gene Expression Center, United States Department of Agriculture—Agricultural Research Service, Albany, CA 94710, USA;
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
44
|
Chen GZ, Huang J, Lin ZC, Wang F, Yang SM, Jiang X, Ahmad S, Zhou YZ, Lan S, Liu ZJ, Peng DH. Genome-Wide Analysis of WUSCHEL-Related Homeobox Gene Family in Sacred Lotus ( Nelumbo nucifera). Int J Mol Sci 2023; 24:14216. [PMID: 37762519 PMCID: PMC10531982 DOI: 10.3390/ijms241814216] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
WUSCHEL-related homeobox (WOX) is a plant-specific transcription factor (TF), which plays an essential role in the regulation of plant growth, development, and abiotic stress responses. However, little information is available on the specific roles of WOX TFs in sacred lotus (Nelumbo nucifera), which is a perennial aquatic plant with important edible, ornamental, and medicinal values. We identified 15 WOX TFs distributing on six chromosomes in the genome of N. nucifera. A total of 72 WOX genes from five species were divided into three clades and nine subclades based on the phylogenetic tree. NnWOXs in the same subclades had similar gene structures and conserved motifs. Cis-acting element analysis of the promoter regions of NnWOXs found many elements enriched in hormone induction, stress responses, and light responses, indicating their roles in growth and development. The Ka/Ks analysis showed that the WOX gene family had been intensely purified and selected in N. nucifera. The expression pattern analysis suggested that NnWOXs were involved in organ development and differentiation of N. nucifera. Furthermore, the protein-protein interaction analysis showed that NnWOXs might participate in the growth, development, and metabolic regulation of N. nucifera. Taken together, these findings laid a foundation for further analysis of NnWOX functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (G.-Z.C.); (J.H.); (Z.-C.L.); (F.W.); (S.-M.Y.); (X.J.); (S.A.); (Y.-Z.Z.); (S.L.)
| | - Dong-Hui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (G.-Z.C.); (J.H.); (Z.-C.L.); (F.W.); (S.-M.Y.); (X.J.); (S.A.); (Y.-Z.Z.); (S.L.)
| |
Collapse
|
45
|
McFarland FL, Collier R, Walter N, Martinell B, Kaeppler SM, Kaeppler HF. A key to totipotency: Wuschel-like homeobox 2a unlocks embryogenic culture response in maize (Zea mays L.). PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1860-1872. [PMID: 37357571 PMCID: PMC10440991 DOI: 10.1111/pbi.14098] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/19/2023] [Accepted: 05/28/2023] [Indexed: 06/27/2023]
Abstract
The ability of plant somatic cells to dedifferentiate, form somatic embryos and regenerate whole plants in vitro has been harnessed for both clonal propagation and as a key component of plant genetic engineering systems. Embryogenic culture response is significantly limited, however, by plant genotype in most species. This impedes advancements in both plant transformation-based functional genomics research and crop improvement efforts. We utilized natural variation among maize inbred lines to genetically map somatic embryo generation potential in tissue culture and identify candidate genes underlying totipotency. Using a series of maize lines derived from crosses involving the culturable parent A188 and the non-responsive parent B73, we identified a region on chromosome 3 associated with embryogenic culture response and focused on three candidate genes within the region based on genetic position and expression pattern. Two candidate genes showed no effect when ectopically expressed in B73, but the gene Wox2a was found to induce somatic embryogenesis and embryogenic callus proliferation. Transgenic B73 cells with strong constitutive expression of the B73 and A188 coding sequences of Wox2a were found to produce somatic embryos at similar frequencies, demonstrating that sufficient expression of either allele could rescue the embryogenic culture phenotype. Transgenic B73 plants were regenerated from the somatic embryos without chemical selection and no pleiotropic effects were observed in the Wox2a overexpression lines in the regenerated T0 plants or in the two independent events which produced T1 progeny. In addition to linking natural variation in tissue culture response to Wox2a, our data support the utility of Wox2a in enabling transformation of recalcitrant genotypes.
Collapse
Affiliation(s)
- Frank L. McFarland
- Department of AgronomyUniversity of WisconsinMadisonWIUSA
- Wisconsin Crop Innovation CenterUniversity of WisconsinMiddletonWIUSA
| | - Ray Collier
- Department of AgronomyUniversity of WisconsinMadisonWIUSA
| | | | | | - Shawn M. Kaeppler
- Department of AgronomyUniversity of WisconsinMadisonWIUSA
- Wisconsin Crop Innovation CenterUniversity of WisconsinMiddletonWIUSA
| | - Heidi F. Kaeppler
- Department of AgronomyUniversity of WisconsinMadisonWIUSA
- Wisconsin Crop Innovation CenterUniversity of WisconsinMiddletonWIUSA
| |
Collapse
|
46
|
Wang Y, Jiao Y. Cell signaling in the shoot apical meristem. PLANT PHYSIOLOGY 2023; 193:70-82. [PMID: 37224874 DOI: 10.1093/plphys/kiad309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
Distinct from animals, plants maintain organogenesis from specialized tissues termed meristems throughout life. In the shoot apex, the shoot apical meristem (SAM) produces all aerial organs, such as leaves, from its periphery. For this, the SAM needs to precisely balance stem cell renewal and differentiation, which is achieved through dynamic zonation of the SAM, and cell signaling within functional domains is key for SAM functions. The WUSCHEL-CLAVATA feedback loop plays a key role in SAM homeostasis, and recent studies have uncovered new components, expanding our understanding of the spatial expression and signaling mechanism. Advances in polar auxin transport and signaling have contributed to knowledge of the multifaceted roles of auxin in the SAM and organogenesis. Finally, single-cell techniques have expanded our understanding of the cellular functions within the shoot apex at single-cell resolution. In this review, we summarize the most up-to-date understanding of cell signaling in the SAM and focus on the multiple levels of regulation of SAM formation and maintenance.
Collapse
Affiliation(s)
- Ying Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuling Jiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
| |
Collapse
|
47
|
Wang JW, Squire HJ, Goh NS, Ni HM, Lien E, Wong C, González-Grandío E, Landry MP. Delivered complementation in planta (DCIP) enables measurement of peptide-mediated protein delivery efficiency in plants. Commun Biol 2023; 6:840. [PMID: 37573467 PMCID: PMC10423278 DOI: 10.1038/s42003-023-05191-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 07/28/2023] [Indexed: 08/14/2023] Open
Abstract
Using a fluorescence complementation assay, Delivered Complementation in Planta (DCIP), we demonstrate cell-penetrating peptide-mediated cytosolic delivery of peptides and recombinant proteins in Nicotiana benthamiana. We show that DCIP enables quantitative measurement of protein delivery efficiency and enables functional screening of cell-penetrating peptides for in-planta protein delivery. Finally, we demonstrate that DCIP detects cell-penetrating peptide-mediated delivery of recombinantly expressed proteins such as mCherry and Lifeact into intact leaves. We also demonstrate delivery of a recombinant plant transcription factor, WUSCHEL (AtWUS), into N. benthamiana. RT-qPCR analysis of AtWUS delivery in Arabidopsis seedlings also suggests delivered WUS can recapitulate transcriptional changes induced by overexpression of AtWUS. Taken together, our findings demonstrate that DCIP offers a new and powerful tool for interrogating cytosolic delivery of proteins in plants and highlights future avenues for engineering plant physiology.
Collapse
Affiliation(s)
- Jeffrey W Wang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Henry J Squire
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Natalie S Goh
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Heyuan Michael Ni
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Edward Lien
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Cerise Wong
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Eduardo González-Grandío
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Innovative Genomics Institute, Berkeley, CA, 94720, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94063, USA.
| |
Collapse
|
48
|
Sun R, Zhang X, Ma D, Liu C. Identification and Evolutionary Analysis of Cotton ( Gossypium hirsutum) WOX Family Genes and Their Potential Function in Somatic Embryogenesis. Int J Mol Sci 2023; 24:11077. [PMID: 37446257 DOI: 10.3390/ijms241311077] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
WUSCHEL-related homeobox (WOX) proteins participate profoundly in plant development and stress responses. As the difficulty of somatic embryogenesis severely constrains cotton genetic modification, in this study, we identified and comprehensively analyzed WOX genes in cotton. As a result, 40 WOX genes were identified in the upland cotton genome. All these cotton WOX genes were classified into three clades, ancient, intermediate, and modern clades, based on the phylogenetic analysis of previous studies. The majority (24) of the cotton WOX genes belonged to the modern clade, in which all gene members contain the vital functional domain WUS-box, which is necessary for plant stem cell regulation and maintenance. Collinearity analysis indicated that the WOX gene family in cotton expanded to some degree compared to Arabidopsis, especially in the modern clade. Genome duplication and segmental duplication may greatly contribute to expansion. Hormone-response- and abiotic-stress-response-related cis-acting regulatory elements were widely distributed in the promoter regions of cotton WOX genes, suggesting that the corresponding functions of stress responses and the participation of development processes were involved in hormone responses. By RNA sequencing, we profiled the expression patterns of cotton WOX genes in somatic embryogenesis. Only about half of cotton WOX genes were actively expressed during somatic embryogenesis; different cotton WOX genes may function in different development stages. The most representative, GhWOX4 and GhWOX13, may function in almost all stages of somatic embryogenesis; GhWOX2 and GhWOX9 function in the late stages of embryo patterning and embryo development during cotton somatic embryogenesis. Co-expression analysis showed that the cotton WOXs co-expressed with genes involved in extensive genetic information processing, including DNA replication, DNA repair, homologous recombination, RNA transport, protein processing, and several signaling and metabolism pathways, in which plant hormones signal transduction, MAPK signaling pathways, phosphatidylinositol signaling systems, and ABC transporters, as well as the metabolism of fatty acid; valine, leucine, and isoleucine biosynthesis; and cutin, suberine, and wax biosynthesis, were most significantly enriched. Taken together, the present study provides useful information and new insights into the functions of cotton WOX genes during somatic embryogenesis. The specific regulatory roles of some WOX genes in somatic embryogenesis are worthy of further functional research.
Collapse
Affiliation(s)
- Ruibin Sun
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xue Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Dan Ma
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Chuanliang Liu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
49
|
Hummel NFC, Zhou A, Li B, Markel K, Ornelas IJ, Shih PM. The trans-regulatory landscape of gene networks in plants. Cell Syst 2023; 14:501-511.e4. [PMID: 37348464 DOI: 10.1016/j.cels.2023.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/21/2023] [Accepted: 05/11/2023] [Indexed: 06/24/2023]
Abstract
The transcriptional effector domains of transcription factors play a key role in controlling gene expression; however, their functional nature is poorly understood, hampering our ability to explore this fundamental dimension of gene regulatory networks. To map the trans-regulatory landscape in a complex eukaryote, we systematically characterized the putative transcriptional effector domains of over 400 Arabidopsis thaliana transcription factors for their capacity to modulate transcription. We demonstrate that transcriptional effector activity can be integrated into gene regulatory networks capable of elucidating the functional dynamics underlying gene expression patterns. We further show how our characterized domains can enhance genome engineering efforts and reveal how plant transcriptional activators share regulatory features conserved across distantly related eukaryotes. Our results provide a framework to systematically characterize the regulatory role of transcription factors at a genome-scale in order to understand the transcriptional wiring of biological systems.
Collapse
Affiliation(s)
- Niklas F C Hummel
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94705, USA; Department of Biology, Technische Universität Darmstadt, Darmstadt 64287, Germany
| | - Andy Zhou
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94705, USA
| | - Baohua Li
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94705, USA
| | - Kasey Markel
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94705, USA
| | - Izaiah J Ornelas
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94705, USA
| | - Patrick M Shih
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94705, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
50
|
Yang H, Zhang P, Guo D, Wang N, Lin H, Wang X, Niu L. Transcriptional repressor AGL79 positively regulates flowering time in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2023; 285:153985. [PMID: 37148653 DOI: 10.1016/j.jplph.2023.153985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023]
Abstract
The MADS-box gene family is widely distributed in higher plants and the members of the angiosperm-specific APETALA1/FRUITFULL (AP1/FUL) subfamily plays important roles in the regulation of plant reproductive development. Recent studies revealed that the AP1/FUL subfamily member Dt2, VEGETATIVE1/PsFRUITFULc (VEG1/PsFULc) and MtFRUITFULc (MtFULc) are essential for the stem growth, branching and inflorescence development in legume species soybean (Glycine max), pea (Pisum sativum) and Medicago truncatula. However, the biological function of their homologue in Arabidopsis thaliana, AGAMOUS-LIKE 79 (AGL79), has not been well elucidated. In this study, we investigated the developmental roles of Arabidopsis AGL79 by CRISPR/Cas9-mutagenesis and molecular and physiological analyses. We found that AGL79 mainly acts as a transcriptional repressor and positively regulates Arabidopsis flowering time. We further revealed that AGL79 interacts with SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1) and represses the expression of TERMINAL FLOWER 1 (TFL1). Our results demonstrated the AGL79-mediated flowering regulation in Arabidopsis and added an additional layer of complexity to the understanding of flowering time regulation in dicot plants.
Collapse
Affiliation(s)
- Haibo Yang
- College of Life Sciences, Shanxi Agriculture University, Taigu, 030801, China; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Pengcheng Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Diandian Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Na Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xingchun Wang
- College of Life Sciences, Shanxi Agriculture University, Taigu, 030801, China.
| | - Lifang Niu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|