1
|
Wundersitz A, Hoffmann KMV, van Dongen JT. Acyl-CoA-binding proteins: bridging long-chain acyl-CoA metabolism to gene regulation. THE NEW PHYTOLOGIST 2025. [PMID: 40259851 DOI: 10.1111/nph.70142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/18/2025] [Indexed: 04/23/2025]
Abstract
Acyl-Coenzyme A-binding proteins (ACBPs) sequester and transport long-chain acyl-Coenzyme A (LCA-CoA) molecules, key intermediates in lipid metabolism, membrane biogenesis, and energy production. In addition, recent research emphasizes their regulatory role in linking the metabolic state to gene expression. In animals, ACBPs coordinate acetyl-CoA metabolism and enzyme activity, thereby affecting gene expression through broad signaling networks. In plants, ACBPs contribute to development and stress responses, with hypoxia research showing their involvement in detecting LCA-CoA fluctuations to trigger genetic acclimation. This review explores ACBPs in LCA-CoA signaling and gene regulation, emphasizing their function as universal 'translators' of metabolic states for cellular acclimation. Further ACBP research will offer novel regulatory insights into numerous signaling pathways fundamental to health, development, and environmental responses across kingdoms.
Collapse
Affiliation(s)
- Allegra Wundersitz
- Department of Biology, Molecular Ecology of the Rhizosphere, RWTH Aachen University, 52074, Aachen, Germany
| | - Kurt M V Hoffmann
- Department of Biology, RWTH Aachen University, 52074, Aachen, Germany
| | - Joost T van Dongen
- Department of Biology, Molecular Ecology of the Rhizosphere, RWTH Aachen University, 52074, Aachen, Germany
| |
Collapse
|
2
|
Jain R, Rajendran R, Rajakumari S. Diet-induced obesity dampens the temporal oscillation of hepatic mitochondrial lipids. J Lipid Res 2025; 66:100790. [PMID: 40180216 DOI: 10.1016/j.jlr.2025.100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/25/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025] Open
Abstract
Mitochondria play a pivotal role in energy homeostasis and regulate several metabolic pathways. The inner and outer membrane of mitochondria comprises unique lipid composition and proteins that are essential to form electron transport chain complexes, orchestrate oxidative phosphorylation, β-oxidation, ATP synthesis, etc. As known, diet-induced obesity affects mitochondrial function, dynamics, and mitophagy, which are governed by circadian clock machinery. Though DIO impairs the interplay between circadian oscillation and lipid metabolism, the impact of DIO on mitochondrial membrane lipid composition and their temporal oscillation is unknown. Thus, we investigated the diurnal oscillation of liver mitochondrial lipidome at various Zeitgeber times using quantitative lipidomics. Our data suggested that obesity disrupted lipid accumulation profiles and diminished the oscillating lipid species in the hepatic mitochondria. Strikingly, HFD manifested a more homogenous temporal oscillation pattern in phospholipids regardless of possessing different fatty acyl-chain lengths and degrees of unsaturation. In particular, DIO impaired the circadian rhythmicity of phosphatidyl ethanolamine, phosphatidyl choline, phosphatidyl serine, and ether-linked phosphatidyl ethanolamine. Also, DIO altered the rhythmic profile of PE/PC, ePE/PC, PS/PC ratio, and key proteins related to mitochondrial function, dynamics, and quality control. Since HFD dampened lipid oscillation, we examined whether the diurnal oscillation of mitochondrial lipids synchronized with mitochondrial function. Also, our data emphasized that acrophase of mitochondrial lipids synchronized with increased oxygen consumption rate and Parkin levels at ZT16 in chow-fed mice. Our study revealed that obesity altered the mitochondrial lipid composition and hampered the rhythmicity of mitochondrial lipids, oxygen consumption rate, and Parkin levels in the liver.
Collapse
Affiliation(s)
- Rashi Jain
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Rajprabu Rajendran
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sona Rajakumari
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India.
| |
Collapse
|
3
|
Yang M, Wei J, Xu Y, Zheng S, Yu B, Ming Y, Jin H, Xie L, Qi H, Xiao S, Huang W, Chen L. Autophagy Regulates Plant Tolerance to Submergence by Modulating Photosynthesis. PLANT, CELL & ENVIRONMENT 2025; 48:2267-2284. [PMID: 39575938 DOI: 10.1111/pce.15290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 02/04/2025]
Abstract
The increase in global climate variability has increased the frequency and severity of floods, profoundly affecting agricultural production and food security worldwide. Autophagy is an intracellular catabolic pathway that is dispensable for plant responses to submergence. However, the physiological role of autophagy in plant response to submergence remains unclear. In this study, a multi-omics approach was applied by combining transcriptomics, proteomics, and lipidomics to characterize molecular changes in the Arabidopsis autophagy-defective mutant (atg5-1) responding to submergence. Our results revealed that submergence resulted in remarkable changes in the transcriptome, proteome, and lipidome of Arabidopsis. Under submerged conditions, the levels of chloroplastidic lipids, including monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylglycerol (PG), were lower in atg5-1 than in wild-type, suggesting that autophagy may affect photosynthesis by regulating lipid metabolism. Consistently, photosynthesis-related proteins and photosynthetic efficiency decreased in atg5-1 under submergence conditions. Phenotypic analysis revealed that inhibition of photosynthesis resulted in a decreased tolerance to submergence. Compared to wild-type plants, atg5-1 plants showed a significant decrease in starch content after submergence. Collectively, our findings reveal a novel role for autophagy in plant response to submergence via the regulation of underwater photosynthesis and starch content.
Collapse
Affiliation(s)
- Mingkang Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Henry Fok School of Biology & Agriculture, Shaoguan University, Shaoguan, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Jiaosheng Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yarou Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Shaoyan Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Baiyin Yu
- Henry Fok School of Biology & Agriculture, Shaoguan University, Shaoguan, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Yu Ming
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglei Jin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lijuan Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Hua Qi
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Liang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Kimberlin AN, Mahmud S, Holtsclaw RE, Walker A, Conrad K, Morley SA, Welti R, Allen DK, Koo AJ. Inducible expression of DEFECTIVE IN ANTHER DEHISCENCE 1 enhances triacylglycerol accumulation and lipid droplet formation in vegetative tissues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70088. [PMID: 40052427 PMCID: PMC11886949 DOI: 10.1111/tpj.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/10/2025]
Abstract
Bioengineering efforts to increase oil in non-storage vegetative tissues, which constitute the majority of plant biomass, are promising sustainable sources of renewable fuels and feedstocks. While plants typically do not accumulate significant amounts of triacylglycerol (TAG) in vegetative tissues, we report here that the expression of a plastid-localized phospholipase A1 protein, DEFECTIVE IN ANTHER DEHISCENCE1 (DAD1), led to a substantial increase in leaf TAG in Arabidopsis. Using an inducible system to control DAD1 expression circumvented growth penalties associated with overexpressing DAD1 and resulted in a rapid burst of TAG within several hours. The increase of TAG was accompanied by the formation of oil bodies in the leaves, petioles, and stems, but not in the roots. Lipid analysis indicated that the increase in TAG was negatively correlated with plastidial galactolipid concentration. The fatty acid (FA) composition of TAG predominantly consisted of 18:3. Expression of DAD1 in the fad3fad7fad8 mutant, devoid of 18:3, resulted in comparable TAG accumulation with 18:2 as the major FA constituent, reflecting the flexible in vivo substrate use of DAD1. The transient expression of either Arabidopsis DAD1 or Nicotiana benthamiana DAD1 (NbDAD1) in N. benthamiana leaves stimulated the accumulation of TAG. Similarly, transgenic soybeans expressing Arabidopsis DAD1 exhibited an accumulation of TAG in the leaves, showcasing the biotechnological potential of this technology. In summary, inducible expression of a plastidial lipase resulted in enhanced oil production in vegetative tissues, extending our understanding of lipid remodeling mediated by DAD1 and offering a valuable tool for metabolic engineering.
Collapse
Affiliation(s)
- Athen N. Kimberlin
- Department of BiochemistryUniversity of MissouriColumbiaMissouri65211USA
- Present address:
Aldevron LLCMadisonWisconsin53719USA
| | - Sakil Mahmud
- Department of BiochemistryUniversity of MissouriColumbiaMissouri65211USA
- Present address:
Department of Agriculture and Environmental SciencesLincoln UniversityJefferson CityMissouri65101USA
| | - Rebekah E. Holtsclaw
- Department of BiochemistryUniversity of MissouriColumbiaMissouri65211USA
- Present address:
Rubi LaboratoriesAlamedaCalifornia94502USA
| | - Alexie Walker
- Department of BiochemistryUniversity of MissouriColumbiaMissouri65211USA
| | - Kristyn Conrad
- Department of BiochemistryUniversity of MissouriColumbiaMissouri65211USA
| | | | - Ruth Welti
- Division of BiologyKansas State UniversityManhattanKansas66506USA
| | - Doug K. Allen
- Donald Danforth Plant Science CenterSt. LouisMissouri63132USA
- USDA‐ARSSt. LouisMissouri63132USA
| | - Abraham J. Koo
- Department of BiochemistryUniversity of MissouriColumbiaMissouri65211USA
| |
Collapse
|
5
|
Panozzo A, Bolla PK, Barion G, Botton A, Vamerali T. Phytohormonal Regulation of Abiotic Stress Tolerance, Leaf Senescence and Yield Response in Field Crops: A Comprehensive Review. BIOTECH 2025; 14:14. [PMID: 40227279 PMCID: PMC11939854 DOI: 10.3390/biotech14010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 04/15/2025] Open
Abstract
Field crops are expected to be increasingly threatened by climate change, which will negatively impact plant development, growth and yield. Phytohormones play a crucial role in regulating specific signalling pathways to induce rapid adaptive responses to environmental stresses. Exogenous phytohormone application alters hormonal balance, thereby enhancing plant adaptation to adverse conditions. While several studies have advanced our understanding of the use of phytohormones in field crops, yield responses and species-specific application strategies remain inconsistent and rarely assessed under field conditions. The application of cytokinins (CKs), abscisic acid (ABA), and gibberellic acid (GA) has been shown to maintain prolonged photosynthetic activity, stabilize plasma membrane, and reduce lipid peroxidation and ion accumulation under salinity stress in wheat. Additionally, inhibitors of ethylene synthesis and receptors can mitigate stress symptoms under drought and heat stress, which typically accelerates senescence and shortens the grain-filling period in cereal crops. In this way, exogenous application of CKs, GA, and ethylene inhibitors can delay senescence by sustaining leaf photosynthetic activity and postponing nutrient remobilization. However, these benefits may not consistently translate into improvements in grain yield and quality. This review explores the molecular mechanisms of phytohormones in abiotic stress tolerance, delineates their specific functions and evaluates experimental findings from field applications. It also summarizes the potential of phytohormone applications in field crops, emphasizing the need for species-specific investigations on application timing and dosages under open-field conditions to optimize their agronomic potential.
Collapse
Affiliation(s)
- Anna Panozzo
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padua, Viale dell’Università 16, 35020 Legnaro, PD, Italy; (P.K.B.); (G.B.); (A.B.); (T.V.)
| | | | | | | | | |
Collapse
|
6
|
Cheng S, Fan S, Yang C, Hu W, Liu F. Proteomics revealed novel functions and drought tolerance of Arabidopsis thaliana protein kinase ATG1. BMC Biol 2025; 23:48. [PMID: 39984923 PMCID: PMC11846238 DOI: 10.1186/s12915-025-02149-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/04/2025] [Indexed: 02/23/2025] Open
Abstract
ATG1 stimulates autophagy biogenesis and serves as a gatekeeper for classical autophagy. To obtain insight into the control of autophagy by ATG1 and determine whether ATG1 has broader processes, we performed a thorough proteomics analysis on the Col-0 wild-type and atg1abct mutant in Arabidopsis thaliana. Proteomic data analysis pointed out that ATG1 has an unidentified function within the inositol trisphosphate and fatty acid metabolism. We also discovered ATG1-dependent autophagy has an emerging connection with ER homeostasis and ABA biosynthesis. Moreover, Gene Ontology terms for abiotic and biotic stress were strongly enriched in differentially abundant proteins, consistent with the reported role of canonical autophagy in these processes. Additional physiological and biochemical analysis revealed that atg1abct exhibited stronger drought resistance under both PEG-simulated drought treatment and natural drought stress. Results from DAB staining also indicated that atg1abct accumulation fewer ROS than Col-0 following drought treatment. As a result, these results illuminate previously unknown functions for ATG1 and offers novel perspectives into the underlying processes of autophagy function.
Collapse
Affiliation(s)
- Shan Cheng
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China
| | - Siqi Fan
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China
| | - Chao Yang
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China
- College of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Weiming Hu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China.
| | - Fen Liu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China.
| |
Collapse
|
7
|
Colak N, Kurt-Celebi A, Roth MR, Welti R, Torun H, Ayaz FA. Salicylic acid priming before cadmium exposure increases wheat growth but does not uniformly reverse cadmium effects on membrane glycerolipids. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:79-91. [PMID: 39541134 DOI: 10.1111/plb.13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024]
Abstract
Cadmium (Cd) is an abiotic stressor negatively affecting plant growth and reducing crop productivity. The effects of Cd (25 μM) and of pre-soaking seeds with salicylic acid (SA) (500 μM) on morphological, physiological, and glycerolipid changes in two cultivars of wheat (Triticum aestivum L. 'Tosunbey' and 'Cumhuriyet') were explored. Parameters measured were length, fresh and dry biomass, Cd concentration, osmotic potential (ψ), lipid peroxidation, and polar lipid species in roots and leaves, as well as leaf chlorophyll a, carotenoids, and fv/fm. Fresh biomass of roots and leaves and leaf length were strongly depressed by Cd treatment compared to the control, but significantly increased with SA + Cd compared to Cd alone. Cd reduced leaf levels of chlorophyll a, carotenoids, and fv/fm, compared to controls. Treatment with SA + Cd increased pigment levels and fv/fm compared to Cd alone. Cd treatment led to a decrease in DW of total membrane lipids in leaves and depressed levels of monogalactosyldiacylglycerol and phosphatidic acid in leaves and roots of both cultivars. The effects of SA priming and SA + Cd treatment on lipid content and composition were cultivar-specific, suggesting that lipid metabolism may not be a primary target underlying SA remediation of the damaging effects of Cd on wheat growth and development.
Collapse
Affiliation(s)
- N Colak
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - A Kurt-Celebi
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - M R Roth
- Division of Biology, Kansas Lipidomics Research Center, Kansas State University, Manhattan, Kansas, USA
| | - R Welti
- Division of Biology, Kansas Lipidomics Research Center, Kansas State University, Manhattan, Kansas, USA
| | - H Torun
- Department of Biosystem Engineering, Faculty of Agriculture and Natural Sciences, Düzce University, Düzce, Turkey
| | - F A Ayaz
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
8
|
Liu T, Zheng Y, Zhou S, Wang Y, Lei X, Xie L, Lin Q, Chang C, Xiao S, Qiu R, Qi H. 14-3-3 proteins inhibit autophagy by regulating SINAT-mediated proteolysis of ATG6 in Arabidopsis. BMC PLANT BIOLOGY 2024; 24:1148. [PMID: 39609744 PMCID: PMC11605875 DOI: 10.1186/s12870-024-05854-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Autophagy is a conserved cellular process crucial for recycling cytoplasmic components and maintaining cellular homeostasis in eukaryotes. During autophagy, the formation of a protein complex involving AUTOPHAGY-RELATED PROTEIN 6 (ATG6) and phosphatidylinositol 3-kinase is pivotal for recruiting proteins involved in phagophore expansion. However, the intricate molecular mechanism regulating this protein complex in plants remains elusive. RESULTS Here, we aimed to unravel the molecular regulation of autophagy dynamics in Arabidopsis thaliana by investigating the involvement of the scaffold proteins 14-3-3λ and 14-3-3κ in regulating the proteolysis of ATG6. Phenotypic analyses revealed that 14-3-3λ and 14-3-3κ overexpression lines exhibited increased sensitivity to nutrient starvation, premature leaf senescence, and a decrease in starvation-induced autophagic vesicles, resembling the phenotypes of autophagy-defective mutants, suggesting the potential roles of 14-3-3 proteins in regulating autophagy in plants. Furthermore, our investigation unveiled the involvement of 14-3-3λ and 14-3-3κ in the RING finger E3 ligase SINAT1-mediated ubiquitination and destabilization of ATG6 in vivo. We also observed repressed turnover of ATG6 and translocation of GFP-ATG6 to mCherry-ATG8a-labelled punctate structures in the autophagy-defective mutant, which suggesting that ATG6 is probably a target of autophagy. Additionally, 14-3-3λ and 14-3-3κ interacted with Tumor necrosis factor Receptor Associated Factor 1a (TRAF1a) to promote the stability of TRAF1a in vivo under nutrient-rich conditions, suggesting a feedback regulation of autophagy. These findings demonstrate that 14-3-3λ and 14-3-3κ serve as scaffold proteins to regulate autophagy by facilitating the SINAT1-mediated proteolysis of ATG6, involving both direct and indirect mechanisms, in plants. CONCLUSIONS 14-3-3 proteins regulate autophagy by directly or indirectly binding to ATG6 and SINAT1 to promote ubiquitination and degradation of ATG6. 14-3-3 proteins are involved in modulating autophagy dynamics by facilitating SINAT1-mediated ubiquitination and degradation of ATG6.
Collapse
Affiliation(s)
- Ting Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yuping Zheng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Shunkang Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yao Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xue Lei
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Lijuan Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Qingqi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Changqing Chang
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Hua Qi
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Yu WW, Chen QF, Liao K, Zhou DM, Yang YC, He M, Yu LJ, Guo DY, Xiao S, Xie RH, Zhou Y. The calcium-dependent protein kinase CPK16 regulates hypoxia-induced ROS production by phosphorylating the NADPH oxidase RBOHD in Arabidopsis. THE PLANT CELL 2024; 36:3451-3466. [PMID: 38833610 PMCID: PMC11371159 DOI: 10.1093/plcell/koae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 03/22/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024]
Abstract
Reactive oxygen species (ROS) production is a key event in modulating plant responses to hypoxia and post-hypoxia reoxygenation. However, the molecular mechanism by which hypoxia-associated ROS homeostasis is controlled remains largely unknown. Here, we showed that the calcium-dependent protein kinase CPK16 regulates plant hypoxia tolerance by phosphorylating the plasma membrane-anchored NADPH oxidase respiratory burst oxidase homolog D (RBOHD) to regulate ROS production in Arabidopsis (Arabidopsis thaliana). In response to hypoxia or reoxygenation, CPK16 was activated through phosphorylation of its Ser274 residue. The cpk16 knockout mutant displayed enhanced hypoxia tolerance, whereas CPK16-overexpressing (CPK16-OE) lines showed increased sensitivity to hypoxic stress. In agreement with these observations, hypoxia and reoxygenation both induced ROS accumulation in the rosettes of CPK16-OEs more strongly than in the rosettes of the cpk16-1 mutant or the wild type. Moreover, CPK16 interacted with and phosphorylated the N-terminus of RBOHD at 4 serine residues (Ser133, Ser148, Ser163, and Ser347) that were necessary for hypoxia- and reoxygenation-induced ROS accumulation. Furthermore, the hypoxia-tolerant phenotype of cpk16-1 was fully abolished in the cpk16 rbohd double mutant. Thus, we have uncovered a regulatory mechanism by which the CPK16-RBOHD module shapes the ROS production during hypoxia and reoxygenation in Arabidopsis.
Collapse
Affiliation(s)
- Wei-Wei Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences/School of Agriculture and Biotechnology, Sun Yat-sen University, Guangzhou 510275, China
| | - Qin-Fang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences/School of Agriculture and Biotechnology, Sun Yat-sen University, Guangzhou 510275, China
| | - Ke Liao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences/School of Agriculture and Biotechnology, Sun Yat-sen University, Guangzhou 510275, China
| | - De-Mian Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences/School of Agriculture and Biotechnology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi-Cong Yang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences/School of Agriculture and Biotechnology, Sun Yat-sen University, Guangzhou 510275, China
| | - Miao He
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Lu-Jun Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences/School of Agriculture and Biotechnology, Sun Yat-sen University, Guangzhou 510275, China
| | - De-Ying Guo
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences/School of Agriculture and Biotechnology, Sun Yat-sen University, Guangzhou 510275, China
| | - Ruo-Han Xie
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences/School of Agriculture and Biotechnology, Sun Yat-sen University, Guangzhou 510275, China
| | - Ying Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences/School of Agriculture and Biotechnology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
10
|
Guo ZH, Hu TH, Hamdan MF, Li M, Wang R, Xu J, Lung SC, Liang W, Shi J, Zhang D, Chye ML. A promoter polymorphism defines distinct roles in anther development for Col-0 and Ler-0 alleles of Arabidopsis ACYL-COA BINDING PROTEIN3. THE NEW PHYTOLOGIST 2024; 243:1424-1439. [PMID: 38922886 DOI: 10.1111/nph.19924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Acyl-CoA-Binding Proteins (ACBPs) bind acyl-CoA esters and function in lipid metabolism. Although acbp3-1, the ACBP3 mutant in Arabidopsis thaliana ecotype Col-0, displays normal floral development, the acbp3-2 mutant from ecotype Ler-0 characterized herein exhibits defective adaxial anther lobes and improper sporocyte formation. To understand these differences and identify the role of ERECTA in ACBP3 function, the acbp3 mutants and acbp3-erecta (er) lines were analyzed by microscopy for anther morphology and high-performance liquid chromatography for lipid composition. Defects in Landsberg anther development were related to the ERECTA-mediated pathway because the progenies of acbp3-2 × La-0 and acbp3-1 × er-1 in Col-0 showed normal anthers, contrasting to that of acbp3-2 in Ler-0. Polymorphism in the regulatory region of ACBP3 enabled its function in anther development in Ler-0 but not Col-0 which harbored an AT-repeat insertion. ACBP3 expression and anther development in acbp3-2 were restored using ACBP3pro (Ler)::ACBP3 not ACBP3pro (Col)::ACBP3. SPOROCYTELESS (SPL), a sporocyte formation regulator activated ACBP3 transcription in Ler-0 but not Col-0. For anther development, the ERECTA-related role of ACBP3 is required in Ler-0, but not Col-0. The disrupted promoter regulatory region for SPL binding in Col-0 eliminates the role of ACBP3 in anther development.
Collapse
Affiliation(s)
- Ze-Hua Guo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Tai-Hua Hu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mohd Fadhli Hamdan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Minghui Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruifeng Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Xu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- The Core Facility and Service Center (CFSC), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, 572024, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, 572024, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, 572024, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
11
|
Anagnostopoulos G, Saavedra E, Lambertucci F, Motiño O, Dimitrov J, Roiz-Valle D, Quesada V, Alvarez-Valadez K, Chen H, Sauvat A, Rong Y, Nogueira-Recalde U, Li S, Montégut L, Djavaheri-Mergny M, Castedo M, Lopez-Otin C, Maiuri MC, Martins I, Kroemer G. Inhibition of acyl-CoA binding protein (ACBP) by means of a GABA ARγ2-derived peptide. Cell Death Dis 2024; 15:249. [PMID: 38582872 PMCID: PMC10998878 DOI: 10.1038/s41419-024-06633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
Acyl-CoA binding protein (ACBP) encoded by diazepam binding inhibitor (DBI) is an extracellular inhibitor of autophagy acting on the gamma-aminobutyric acid A receptor (GABAAR) γ2 subunit (GABAARγ2). Here, we show that lipoanabolic diets cause an upregulation of GABAARγ2 protein in liver hepatocytes but not in other major organs. ACBP/DBI inhibition by systemically injected antibodies has been demonstrated to mediate anorexigenic and organ-protective, autophagy-dependent effects. Here, we set out to develop a new strategy for developing ACBP/DBI antagonists. For this, we built a molecular model of the interaction of ACBP/DBI with peptides derived from GABAARγ2. We then validated the interaction between recombinant and native ACBP/DBI protein and a GABAARγ2-derived eicosapeptide (but not its F77I mutant) by pull down experiments or surface plasmon resonance. The GABAARγ2-derived eicosapeptide inhibited the metabolic activation of hepatocytes by recombinant ACBP/DBI protein in vitro. Moreover, the GABAARγ2-derived eicosapeptide (but not its F77I-mutated control) blocked appetite stimulation by recombinant ACBP/DBI in vivo, induced autophagy in the liver, and protected mice against the hepatotoxin concanavalin A. We conclude that peptidomimetics disrupting the interaction between ACBP/DBI and GABAARγ2 might be used as ACBP/DBI antagonists. This strategy might lead to the future development of clinically relevant small molecules of the ACBP/DBI system.
Collapse
Affiliation(s)
- Gerasimos Anagnostopoulos
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Ester Saavedra
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Departamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Paris, Spain
| | - Flavia Lambertucci
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Omar Motiño
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Jordan Dimitrov
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| | - David Roiz-Valle
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Victor Quesada
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Karla Alvarez-Valadez
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France
| | - Hui Chen
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France
| | - Allan Sauvat
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Yan Rong
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France
| | - Uxía Nogueira-Recalde
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de (INIBIC), Fundación Profesor Novoa Santos, A Coruña, Spain
| | - Sijing Li
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France
| | - Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Mojgan Djavaheri-Mergny
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Maria Castedo
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Carlos Lopez-Otin
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, Madrid, Spain
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, 80131, Naples, Italy
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
12
|
Chang H, Ma M, Gu M, Li S, Li M, Guo G, Xing G. Acyl-CoA-binding protein (ACBP) genes involvement in response to abiotic stress and exogenous hormone application in barley (Hordeum vulgare L.). BMC PLANT BIOLOGY 2024; 24:236. [PMID: 38561660 PMCID: PMC10985865 DOI: 10.1186/s12870-024-04944-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Acyl-CoA-Binding proteins (ACBPs) function as coenzyme A transporters and play important roles in regulating plant growth and development in response to abiotic stress and phytohormones, as well as in membrane repair. To date, the ACBP family has not been a comprehensively characterized in barley (Hordeum vulgare L.). RESULTS Eight ACBP genes were identified in the barley genome and named as HvACBP1-8. The analysis of the proteins structure and promoter elements of HvACBP suggested its potential functions in plant growth, development, and stress response. These HvACBPs are expressed in specific tissues and organs following induction by abiotic stressors such as drought, salinity, UV-B exposure, temperature extremes, and exposure to exogenous phytohormones. The HvACBP7 and HvACBP8 amino acid sequences were conserved during the domestication of Tibetan Qingke barley. CONCLUSIONS Acyl-CoA-binding proteins may play important roles in barley growth and environmental adaptation. This study provides foundation for further analyses of the biological functions of HvACBPs in the barley stress response.
Collapse
Grants
- 2023CYJSTX03-19 Modern Agro-Industry Technology Research System of Shanxi Province, China
- 2023CYJSTX03-19 Modern Agro-Industry Technology Research System of Shanxi Province, China
- 2023CYJSTX03-19 Modern Agro-Industry Technology Research System of Shanxi Province, China
- 2023CYJSTX03-19 Modern Agro-Industry Technology Research System of Shanxi Province, China
- 2023CYJSTX03-19 Modern Agro-Industry Technology Research System of Shanxi Province, China
- 202204010910001-06 National Laboratory for Minor Crops Germplasm Innovation and Molecular Breeding, China (in preparation)
- 202204010910001-06 National Laboratory for Minor Crops Germplasm Innovation and Molecular Breeding, China (in preparation)
- 202204010910001-06 National Laboratory for Minor Crops Germplasm Innovation and Molecular Breeding, China (in preparation)
- 202204010910001-06 National Laboratory for Minor Crops Germplasm Innovation and Molecular Breeding, China (in preparation)
- 202204010910001-06 National Laboratory for Minor Crops Germplasm Innovation and Molecular Breeding, China (in preparation)
- 202204010910001-06 National Laboratory for Minor Crops Germplasm Innovation and Molecular Breeding, China (in preparation)
- 202204010910001-06 National Laboratory for Minor Crops Germplasm Innovation and Molecular Breeding, China (in preparation)
- CARS-05 China Agriculture Research System of MOF and MORA
- CARS-05 China Agriculture Research System of MOF and MORA
- CARS-05 China Agriculture Research System of MOF and MORA
- CARS-05 China Agriculture Research System of MOF and MORA
Collapse
Affiliation(s)
- Huayu Chang
- Hou Ji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
- Key laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Minhu Ma
- Hou Ji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
- Key laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Mingzhou Gu
- Hou Ji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
| | - Shanshan Li
- Key laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Mengrun Li
- Hou Ji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
| | - Ganggang Guo
- Key laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Guofang Xing
- Hou Ji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China.
| |
Collapse
|
13
|
Leyland B, Novichkova E, Dolui AK, Jallet D, Daboussi F, Legeret B, Li Z, Li-Beisson Y, Boussiba S, Khozin-Goldberg I. Acyl-CoA binding protein is required for lipid droplet degradation in the diatom Phaeodactylum tricornutum. PLANT PHYSIOLOGY 2024; 194:958-981. [PMID: 37801606 DOI: 10.1093/plphys/kiad525] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/28/2023] [Accepted: 07/15/2023] [Indexed: 10/08/2023]
Abstract
Diatoms (Bacillariophyceae) accumulate neutral storage lipids in lipid droplets during stress conditions, which can be rapidly degraded and recycled when optimal conditions resume. Since nutrient and light availability fluctuate in marine environments, storage lipid turnover is essential for diatom dominance of marine ecosystems. Diatoms have garnered attention for their potential to provide a sustainable source of omega-3 fatty acids. Several independent proteomic studies of lipid droplets isolated from the model oleaginous pennate diatom Phaeodactylum tricornutum have identified a previously uncharacterized protein with an acyl-CoA binding (ACB) domain, Phatrdraft_48778, here referred to as Phaeodactylum tricornutum acyl-CoA binding protein (PtACBP). We report the phenotypic effects of CRISPR-Cas9 targeted genome editing of PtACBP. ptacbp mutants were defective in lipid droplet and triacylglycerol degradation, as well as lipid and eicosapentaenoic acid synthesis, during recovery from nitrogen starvation. Transcription of genes responsible for peroxisomal β-oxidation, triacylglycerol lipolysis, and eicosapentaenoic acid synthesis was inhibited. A lipid-binding assay using a synthetic ACB domain from PtACBP indicated preferential binding specificity toward certain polar lipids. PtACBP fused to eGFP displayed an endomembrane-like pattern, which surrounded the periphery of lipid droplets. PtACBP is likely responsible for intracellular acyl transport, affecting cell division, development, photosynthesis, and stress response. A deeper understanding of the molecular mechanisms governing storage lipid turnover will be crucial for developing diatoms and other microalgae as biotechnological cell factories.
Collapse
Affiliation(s)
- Ben Leyland
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel
| | - Ekaterina Novichkova
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel
| | - Achintya Kumar Dolui
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel
| | - Denis Jallet
- Toulouse Biotechnology Institute Bio & Chemical Engineering, Institut National de la Recherche Agronomique, Institute National Des Sciences Appliquees, Le Centre national de la recherche scientifique, Toulouse 31077, France
| | - Fayza Daboussi
- Toulouse Biotechnology Institute Bio & Chemical Engineering, Institut National de la Recherche Agronomique, Institute National Des Sciences Appliquees, Le Centre national de la recherche scientifique, Toulouse 31077, France
| | - Bertrand Legeret
- Aix-Marseille University, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France
| | - Zhongze Li
- Aix-Marseille University, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France
| | - Yonghua Li-Beisson
- Aix-Marseille University, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France
| | - Sammy Boussiba
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel
| | - Inna Khozin-Goldberg
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel
| |
Collapse
|
14
|
Huang L, Wen X, Jin L, Han H, Guo H. HOOKLESS1 acetylates AUTOPHAGY-RELATED PROTEIN18a to promote autophagy during nutrient starvation in Arabidopsis. THE PLANT CELL 2023; 36:136-157. [PMID: 37823521 PMCID: PMC10734606 DOI: 10.1093/plcell/koad252] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/23/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
Acetylation is an important posttranslational modification (PTM) that regulates almost all core processes of autophagy in yeast and mammals. However, the role of protein acetylation in plant autophagy and the underlying regulatory mechanisms remain unclear. Here, we show the essential role of the putative acetyltransferase HOOKLESS1 (HLS1) in acetylation of the autophagy-related protein ATG18a, a key autophagy component that regulates autophagosome formation in Arabidopsis (Arabidopsis thaliana). Loss of HLS1 function suppressed starvation-induced autophagy and increased plant susceptibility to nutrient deprivation. We discovered that HLS1 physically interacts with and directly acetylates ATG18a both in vitro and in vivo. In contrast, mutating putative active sites in HLS1 inhibited ATG18a acetylation and suppressed autophagy upon nutrient deprivation. Accordingly, overexpression of ATG18a mutant variants with lower acetylation levels inhibited the binding activity of ATG18a to PtdIns(3)P and autophagosome formation under starvation conditions. Moreover, HLS1-modulated autophagy was uncoupled from its function in hook development. Taken together, these findings shed light on a key regulator of autophagy and further elucidate the importance of PTMs in modulating autophagy in plants.
Collapse
Affiliation(s)
- Li Huang
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Xing Wen
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Lian Jin
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Huihui Han
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Hongwei Guo
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| |
Collapse
|
15
|
Lv Z, Zhao W, Kong S, Li L, Lin S. Overview of molecular mechanisms of plant leaf development: a systematic review. FRONTIERS IN PLANT SCIENCE 2023; 14:1293424. [PMID: 38146273 PMCID: PMC10749370 DOI: 10.3389/fpls.2023.1293424] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/22/2023] [Indexed: 12/27/2023]
Abstract
Leaf growth initiates in the peripheral region of the meristem at the apex of the stem, eventually forming flat structures. Leaves are pivotal organs in plants, serving as the primary sites for photosynthesis, respiration, and transpiration. Their development is intricately governed by complex regulatory networks. Leaf development encompasses five processes: the leaf primordium initiation, the leaf polarity establishment, leaf size expansion, shaping of leaf, and leaf senescence. The leaf primordia starts from the side of the growth cone at the apex of the stem. Under the precise regulation of a series of genes, the leaf primordia establishes adaxial-abaxial axes, proximal-distal axes and medio-lateral axes polarity, guides the primordia cells to divide and differentiate in a specific direction, and finally develops into leaves of a certain shape and size. Leaf senescence is a kind of programmed cell death that occurs in plants, and as it is the last stage of leaf development. Each of these processes is meticulously coordinated through the intricate interplay among transcriptional regulatory factors, microRNAs, and plant hormones. This review is dedicated to examining the regulatory influences of major regulatory factors and plant hormones on these five developmental aspects of leaves.
Collapse
Affiliation(s)
- Zhuo Lv
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| | - Wanqi Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| | - Shuxin Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| | - Long Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| | - Shuyan Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
16
|
Zhang B, Huang S, Guo Z, Meng Y, Li X, Tian Y, Chen W. Salicylic acid accelerates carbon starvation-induced leaf senescence in Arabidopsis thaliana by inhibiting autophagy through Nonexpressor of pathogenesis-related genes 1. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111859. [PMID: 37673221 DOI: 10.1016/j.plantsci.2023.111859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/09/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
In plants, leaf senescence is regulated by several factors, including age and carbon starvation. The molecular mechanism of age-regulated developmental leaf senescence differs from that of carbon starvation-induced senescence. Salicylic acid (SA) and Nonexpressor of pathogenesis-related genes 1 (NPR1) play important roles in promoting developmental leaf senescence. However, the relationship between SA signaling and carbon starvation-induced leaf senescence is not currently well understood. Here, we used Arabidopsis thaliana as material and found that carbon starvation-induced leaf senescence was accelerated in the SA dihydroxylase mutants s3hs5h compared to the Columbia ecotype (Col). Exogenous SA treatment significantly promoted carbon starvation-induced leaf senescence, especially in NPR1-GFP. Increasing the endogenous SA and overexpression of NPR1 inhibited carbon starvation-induced autophagy. However, mutation of NPR1 delayed carbon starvation-induced leaf senescence, increased autophagosome production and accelerated autophagic degradation of the Neighbor of BRCA1 gene 1 (NBR1). In conclusion, SA promotes carbon starvation-induced leaf senescence by inhibiting autophagy via NPR1.
Collapse
Affiliation(s)
- Baihong Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Shuqin Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Zetian Guo
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yixuan Meng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xue Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yuzhen Tian
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
17
|
Qi H, Wang Y, Bao Y, Bassham DC, Chen L, Chen QF, Hou S, Hwang I, Huang L, Lai Z, Li F, Liu Y, Qiu R, Wang H, Wang P, Xie Q, Zeng Y, Zhuang X, Gao C, Jiang L, Xiao S. Studying plant autophagy: challenges and recommended methodologies. ADVANCED BIOTECHNOLOGY 2023; 1:2. [PMID: 39883189 PMCID: PMC11727600 DOI: 10.1007/s44307-023-00002-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 01/31/2025]
Abstract
In plants, autophagy is a conserved process by which intracellular materials, including damaged proteins, aggregates, and entire organelles, are trafficked to the vacuole for degradation, thus maintaining cellular homeostasis. The past few decades have seen extensive research into the core components of the central autophagy machinery and their physiological roles in plant growth and development as well as responses to biotic and abiotic stresses. Moreover, several methods have been established for monitoring autophagic activities in plants, and these have greatly facilitated plant autophagy research. However, some of the methodologies are prone to misuse or misinterpretation, sometimes casting doubt on the reliability of the conclusions being drawn about plant autophagy. Here, we summarize the methods that are widely used for monitoring plant autophagy at the physiological, microscopic, and biochemical levels, including discussions of their advantages and limitations, to provide a guide for studying this important process.
Collapse
Affiliation(s)
- Hua Qi
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yao Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yan Bao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Liang Chen
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qin-Fang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Suiwen Hou
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology and Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Li Huang
- Institute of Plant and Food Science, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Zhibing Lai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Faqiang Li
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Hao Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Pengwei Wang
- MOE Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, New Territories, Shatin Hong Kong, China
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, New Territories, Shatin Hong Kong, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, New Territories, Shatin Hong Kong, China.
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
18
|
Montégut L, Abdellatif M, Motiño O, Madeo F, Martins I, Quesada V, López‐Otín C, Kroemer G. Acyl coenzyme A binding protein (ACBP): An aging- and disease-relevant "autophagy checkpoint". Aging Cell 2023; 22:e13910. [PMID: 37357988 PMCID: PMC10497816 DOI: 10.1111/acel.13910] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023] Open
Abstract
Acyl coenzyme A binding protein (ACBP), also known as diazepam-binding inhibitor (DBI), is a phylogenetically ancient protein present in some eubacteria and the entire eukaryotic radiation. In several eukaryotic phyla, ACBP/DBI transcends its intracellular function in fatty acid metabolism because it can be released into the extracellular space. This ACBP/DBI secretion usually occurs in response to nutrient scarcity through an autophagy-dependent pathway. ACBP/DBI and its peptide fragments then act on a range of distinct receptors that diverge among phyla, namely metabotropic G protein-coupled receptor in yeast (and likely in the mammalian central nervous system), a histidine receptor kinase in slime molds, and ionotropic gamma-aminobutyric acid (GABA)A receptors in mammals. Genetic or antibody-mediated inhibition of ACBP/DBI orthologs interferes with nutrient stress-induced adaptations such as sporulation or increased food intake in multiple species, as it enhances lifespan or healthspan in yeast, plant leaves, nematodes, and multiple mouse models. These lifespan and healthspan-extending effects of ACBP/DBI suppression are coupled to the induction of autophagy. Altogether, it appears that neutralization of extracellular ACBP/DBI results in "autophagy checkpoint inhibition" to unleash the anti-aging potential of autophagy. Of note, in humans, ACBP/DBI levels increase in various tissues, as well as in the plasma, in the context of aging, obesity, uncontrolled infection or cardiovascular, inflammatory, neurodegenerative, and malignant diseases.
Collapse
Affiliation(s)
- Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
- Faculté de MédecineUniversité de Paris SaclayParisFrance
| | - Mahmoud Abdellatif
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
- Department of CardiologyMedical University of GrazGrazAustria
- BioTechMed‐GrazGrazAustria
| | - Omar Motiño
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
| | - Frank Madeo
- BioTechMed‐GrazGrazAustria
- Institute of Molecular Biosciences, NAWI GrazUniversity of GrazGrazAustria
- Field of Excellence BioHealthUniversity of GrazGrazAustria
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
| | - Victor Quesada
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA)Universidad de OviedoOviedoSpain
| | - Carlos López‐Otín
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA)Universidad de OviedoOviedoSpain
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
- Institut du Cancer Paris CARPEM, Department of BiologyHôpital Européen Georges Pompidou, AP‐HPParisFrance
| |
Collapse
|
19
|
Hu P, Ren Y, Xu J, Luo W, Wang M, Song P, Guan Y, Hu H, Li C. Identification of acyl-CoA-binding protein gene in Triticeae species reveals that TaACBP4A-1 and TaACBP4A-2 positively regulate powdery mildew resistance in wheat. Int J Biol Macromol 2023; 246:125526. [PMID: 37379955 DOI: 10.1016/j.ijbiomac.2023.125526] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Plant acyl-CoA-binding proteins (ACBPs), which contain the conserved ACB domain, participate in multiple biological processes, however, there are few reports on wheat ACBPs. In this study, the ACBP genes from nine different species were identified comprehensively. The expression patterns of TaACBP genes in multiple tissues and under various biotic stresses were determined by qRT-PCR. The function of selected TaACBP genes was studied by virus-induced gene silencing. A total of 67 ACBPs were identified from five monocotyledonous and four dicotyledonous species and divided into four classes. Tandem duplication analysis of the ACBPs suggested that tandem duplication events occurred in Triticum dicoccoides, but there was no tandem duplication event in wheat ACBP genes. Evolutionary analysis suggested that the TdACBPs may have experienced gene introgression during tetraploid evolution, while TaACBP gene loss events occurred during hexaploid wheat evolution. The expression pattern showed that all the TaACBP genes were expressed, and most of them were responsive to induction by Blumeria graminis f. sp. tritici or Fusarium graminearum. Silencing of TaACBP4A-1 and TaACBP4A-2 increased powdery mildew susceptibility in the common wheat BainongAK58. Furthermore, TaACBP4A-1, which belonged to class III, physically interacted with autophagy-related ubiquitin-like protein TaATG8g in yeast cells. This study provided a valuable reference for further investigations into the functional and molecular mechanisms of the ACBP gene family.
Collapse
Affiliation(s)
- Ping Hu
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China.
| | - Yueming Ren
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Jun Xu
- College of Landscape Architecture and Horticulture, Henan Institute of Science and Technology, Xinxiang, China
| | - Wanglong Luo
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Mengfei Wang
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Puwen Song
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China.
| | - Yuanyuan Guan
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Haiyan Hu
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China.
| | - Chengwei Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China.
| |
Collapse
|
20
|
Tanin MJ, Sharma A, Ram H, Singh S, Srivastava P, Mavi GS, Saini DK, Gudi S, Kumar P, Goyal P, Sohu VS. Application of potassium nitrate and salicylic acid improves grain yield and related traits by delaying leaf senescence in Gpc-B1 carrying advanced wheat genotypes. FRONTIERS IN PLANT SCIENCE 2023; 14:1107705. [PMID: 37528976 PMCID: PMC10389087 DOI: 10.3389/fpls.2023.1107705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/29/2023] [Indexed: 08/03/2023]
Abstract
Grain protein content (GPC) is an important quality trait that effectively modulates end-use quality and nutritional characteristics of wheat flour-based food products. The Gpc-B1 gene is responsible for the higher protein content in wheat grain. In addition to higher GPC, the Gpc-B1 is also generally associated with reduced grain filling period which eventually causes the yield penalty in wheat. The main aim of the present study was to evaluate the effect of foliar application of potassium nitrate (PN) and salicylic acid (SA) on the physiological characteristics of a set of twelve genotypes, including nine isogenic wheat lines carrying the Gpc-B1 gene and three elite wheat varieties with no Gpc-B1 gene, grown at wheat experimental area of the Department of Plant Breeding and Genetics, PAU, Punjab, India. The PN application significantly increased the number of grains per spike (GPS) by 6.42 grains, number of days to maturity (DTM) by 1.03 days, 1000-grain weight (TGW) by 1.97 g and yield per plot (YPP) by 0.2 kg/plot. As a result of PN spray, the flag leaf chlorophyll content was significantly enhanced by 2.35 CCI at anthesis stage and by 1.96 CCI at 10 days after anthesis in all the tested genotypes. Furthermore, the PN application also significantly increased the flag leaf nitrogen content by an average of 0.52% at booting stage and by 0.35% at both anthesis and 10 days after anthesis in all the evaluated genotypes. In addition, the yellow peduncle colour at 30 days after anthesis was also increased by 19.08% while the straw nitrogen content was improved by 0.17% in all the genotypes. The preliminary experiment conducted using SA demonstrated a significant increase in DTM and other yield component traits. The DTM increased by an average of 2.31 days, GPS enhanced by approximately 3.17 grains, TGW improved by 1.13g, and YPP increased by 0.21 kg/plot. The foliar application of PN and SA had no significant effect on GPC itself. The findings of the present study suggests that applications of PN and SA can effectively mitigate the yield penalty associated with Gpc-B1 gene by extending grain filling period in the wheat.
Collapse
Affiliation(s)
| | - Achla Sharma
- *Correspondence: Mohammad Jafar Tanin, ; Achla Sharma,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
He Y, Gao J, Luo M, Gao C, Lin Y, Wong HY, Cui Y, Zhuang X, Jiang L. VAMP724 and VAMP726 are involved in autophagosome formation in Arabidopsis thaliana. Autophagy 2023; 19:1406-1423. [PMID: 36130166 PMCID: PMC10240985 DOI: 10.1080/15548627.2022.2127240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/02/2022] Open
Abstract
Macroautophagy/autophagy, an evolutionarily conserved degradative process essential for cell homeostasis and development in eukaryotes, involves autophagosome formation and fusion with a lysosome/vacuole. The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins play important roles in regulating autophagy in mammals and yeast, but relatively little is known about SNARE function in plant autophagy. Here we identified and characterized two Arabidopsis SNAREs, AT4G15780/VAMP724 and AT1G04760/VAMP726, involved in plant autophagy. Phenotypic analysis showed that mutants of VAMP724 and VAMP726 are sensitive to nutrient-starved conditions. Live-cell imaging on mutants of VAMP724 and VAMP726 expressing YFP-ATG8e showed the formation of abnormal autophagic structures outside the vacuoles and compromised autophagic flux. Further immunogold transmission electron microscopy and electron tomography (ET) analysis demonstrated a direct connection between the tubular autophagic structures and the endoplasmic reticulum (ER) in vamp724-1 vamp726-1 double mutants. Further transient co-expression, co-immunoprecipitation and double immunogold TEM analysis showed that ATG9 (autophagy related 9) interacts and colocalizes with VAMP724 and VAMP726 in ATG9-positive vesicles during autophagosome formation. Taken together, VAMP724 and VAMP726 regulate autophagosome formation likely working together with ATG9 in Arabidopsis.Abbreviations: ATG, autophagy related; BTH, benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester; Conc A, concanamycin A; EM, electron microscopy; ER, endoplasmic reticulum; FRET, Förster/fluorescence resonance energy transfer; MS, Murashige and Skoog; MVB, multivesicular body; PAS, phagophore assembly site; PM, plasma membrane; PVC, prevacuolar compartment; SNARE, soluble N-ethylmaleimide-sensitive factor attachment protein receptor; TEM, transmission electron microscopy; TGN, trans-Golgi network; WT, wild-type.
Collapse
Affiliation(s)
- Yilin He
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiayang Gao
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Mengqian Luo
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Youshun Lin
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hiu Yan Wong
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yong Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiaohong Zhuang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Liwen Jiang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
22
|
Chun CKY, Roth M, Welti R, Richards MP, Hsu WW, O'Quinn T, Chao MD. Exploring the potential effect of phospholipase A2 antibody to extend beef shelf-life in a beef liposome model system. Meat Sci 2023; 198:109091. [PMID: 36587462 DOI: 10.1016/j.meatsci.2022.109091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
The objective of this study was to elucidate the effect of phospholipase A2 (PLA2) and a PLA2 antibody (aPLA2) on phospholipid (PL) hydrolysis in beef and to understand how the altered PL composition may affect lipid oxidation and antioxidant capacity of beef in an in vitro system. Various combinations of PLA2 and aPLA2 were introduced to a beef liposome model system and exposed to a retail display. The PL and free fatty acid (FFA) profiles, antioxidant capacity and lipid oxidation were measured for the liposome system. Key PL classes were reduced and the release of polyunsaturated FFAs was increased with the inclusion of PLA2 in the treatments (P < 0.05). There was no inhibition of PL hydrolysis with the addition of aPLA2. PLA2 showed strong antioxidant capacity in the liposome system (P < 0.01), but lipid oxidation still increased in samples treated with PLA2 throughout the retail display (P < 0.01). Finally, aPLA2 treatments demonstrated potential to decrease lipid oxidation (P < 0.01).
Collapse
Affiliation(s)
- Colin K Y Chun
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, Kansas 66506, USA
| | - Mary Roth
- Kansas State University, Division of Biology, Manhattan, Kansas, 66506, USA
| | - Ruth Welti
- Kansas State University, Division of Biology, Manhattan, Kansas, 66506, USA
| | - Mark P Richards
- University of Wisconsin Madison, Animal and Dairy Sciences, Madison, WI 53706-1205, USA
| | - Wei-Wen Hsu
- University of Cincinnati, Environmental and Public Health Sciences, Cincinnati, OH 45267, USA
| | - Travis O'Quinn
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, Kansas 66506, USA
| | - Michael D Chao
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, Kansas 66506, USA.
| |
Collapse
|
23
|
Ding G, Mugume Y, Dueñas ME, Lee YJ, Liu M, Nettleton DS, Zhao X, Li L, Bassham DC, Nikolau BJ. Biological insights from multi-omics analysis strategies: Complex pleotropic effects associated with autophagy. FRONTIERS IN PLANT SCIENCE 2023; 14:1093358. [PMID: 36875559 PMCID: PMC9978356 DOI: 10.3389/fpls.2023.1093358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Research strategies that combine molecular data from multiple levels of genome expression (i.e., multi-omics data), often referred to as a systems biology strategy, has been advocated as a route to discovering gene functions. In this study we conducted an evaluation of this strategy by combining lipidomics, metabolite mass-spectral imaging and transcriptomics data from leaves and roots in response to mutations in two AuTophaGy-related (ATG) genes of Arabidopsis. Autophagy is an essential cellular process that degrades and recycles macromolecules and organelles, and this process is blocked in the atg7 and atg9 mutants that were the focus of this study. Specifically, we quantified abundances of ~100 lipids and imaged the cellular locations of ~15 lipid molecular species and the relative abundance of ~26,000 transcripts from leaf and root tissues of WT, atg7 and atg9 mutant plants, grown either in normal (nitrogen-replete) and autophagy-inducing conditions (nitrogen-deficient). The multi-omics data enabled detailed molecular depiction of the effect of each mutation, and a comprehensive physiological model to explain the consequence of these genetic and environmental changes in autophagy is greatly facilitated by the a priori knowledge of the exact biochemical function of the ATG7 and ATG9 proteins.
Collapse
Affiliation(s)
- Geng Ding
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Yosia Mugume
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | | | - Young Jin Lee
- Department of Chemistry, Iowa State University, Ames, IA, United States
| | - Meiling Liu
- Department of Statistics, Iowa State University, Ames, IA, United States
| | | | - Xuefeng Zhao
- Research Information Technology, College of Liberal Arts & Sciences, Iowa State University, Ames, IA, United States
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Diane C. Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Basil J. Nikolau
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
24
|
Ling J, Li L, Lin L, Xie H, Zheng Y, Wan X. Genome-wide identification of acyl-CoA binding proteins and possible functional prediction in legumes. Front Genet 2023; 13:1057160. [PMID: 36704331 PMCID: PMC9871394 DOI: 10.3389/fgene.2022.1057160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Acyl-CoA-binding proteins (ACBPs), members of a vital housekeeping protein family, are present in various animal and plant species. They are divided into four classes: small ACBPs (class I), ankyrin-repeat ACBPs (class II), large ACBPs (class III), and kelch-ACBPs (class IV). Plant ACBPs play a pivotal role in intracellular transport, protection, and pool formation of acyl-CoA esters, promoting plant development and stress response. Even though legume crops are important for vegetable oils, proteins, vegetables and green manure, legume ACBPs are not well investigated. To comprehensively explore the functions of ACBPs in nine legumes (Lotus japonicus, Medicago truncatula, Glycine max, Vigna angularis, Vigna radiata, Phaseolus vulgaris, Arachis hypogaea, Arachis duranensis, and Arachis ipaensis), we conducted genome-wide identification of the ACBP gene family. Our evolutionary analyses included phylogenetics, gene structure, the conserved motif, chromosomal distribution and homology, subcellular localization, cis-elements, and interacting proteins. The results revealed that ACBP Orthologs of nine legumes had a high identity in gene structure and conserved motif. However, subcellular localization, cis-acting elements, and interaction protein analyses revealed potentially different functions from previously reported. The predicted results were also partially verified in Arachis hypogaea. We believe that our findings will help researchers understand the roles of ACBPs in legumes and encourage them to conduct additional research.
Collapse
|
25
|
Melnikova DN, Finkina EI, Bogdanov IV, Tagaev AA, Ovchinnikova TV. Features and Possible Applications of Plant Lipid-Binding and Transfer Proteins. MEMBRANES 2022; 13:2. [PMID: 36676809 PMCID: PMC9866449 DOI: 10.3390/membranes13010002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
In plants, lipid trafficking within and inside the cell is carried out by lipid-binding and transfer proteins. Ligands for these proteins are building and signaling lipid molecules, secondary metabolites with different biological activities due to which they perform diverse functions in plants. Many different classes of such lipid-binding and transfer proteins have been found, but the most common and represented in plants are lipid transfer proteins (LTPs), pathogenesis-related class 10 (PR-10) proteins, acyl-CoA-binding proteins (ACBPs), and puroindolines (PINs). A low degree of amino acid sequence homology but similar spatial structures containing an internal hydrophobic cavity are common features of these classes of proteins. In this review, we summarize the latest known data on the features of these protein classes with particular focus on their ability to bind and transfer lipid ligands. We analyzed the structural features of these proteins, the diversity of their possible ligands, the key amino acids participating in ligand binding, the currently known mechanisms of ligand binding and transferring, as well as prospects for possible application.
Collapse
Affiliation(s)
- Daria N. Melnikova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| | - Ekaterina I. Finkina
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Ivan V. Bogdanov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Andrey A. Tagaev
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Tatiana V. Ovchinnikova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| |
Collapse
|
26
|
Montégut L, Joseph A, Chen H, Abdellatif M, Ruckenstuhl C, Motiño O, Lambertucci F, Anagnostopoulos G, Lachkar S, Dichtinger S, Maiuri MC, Goldwasser F, Blanchet B, Fumeron F, Martins I, Madeo F, Kroemer G. High plasma concentrations of acyl-coenzyme A binding protein (ACBP) predispose to cardiovascular disease: Evidence for a phylogenetically conserved proaging function of ACBP. Aging Cell 2022; 22:e13751. [PMID: 36510662 PMCID: PMC9835587 DOI: 10.1111/acel.13751] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Autophagy defects accelerate aging, while stimulation of autophagy decelerates aging. Acyl-coenzyme A binding protein (ACBP), which is encoded by a diazepam-binding inhibitor (DBI), acts as an extracellular feedback regulator of autophagy. As shown here, knockout of the gene coding for the yeast orthologue of ACBP/DBI (ACB1) improves chronological aging, and this effect is reversed by knockout of essential autophagy genes (ATG5, ATG7) but less so by knockout of an essential mitophagy gene (ATG32). In humans, ACBP/DBI levels independently correlate with body mass index (BMI) as well as with chronological age. In still-healthy individuals, we find that high ACBP/DBI levels correlate with future cardiovascular events (such as heart surgery, myocardial infarction, and stroke), an association that is independent of BMI and chronological age, suggesting that ACBP/DBI is indeed a biomarker of "biological" aging. Concurringly, ACBP/DBI plasma concentrations correlate with established cardiovascular risk factors (fasting glucose levels, systolic blood pressure, total free cholesterol, triglycerides), but are inversely correlated with atheroprotective high-density lipoprotein (HDL). In mice, neutralization of ACBP/DBI through a monoclonal antibody attenuates anthracycline-induced cardiotoxicity, which is a model of accelerated heart aging. In conclusion, plasma elevation of ACBP/DBI constitutes a novel biomarker of chronological aging and facets of biological aging with a prognostic value in cardiovascular disease.
Collapse
Affiliation(s)
- Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance,Faculté de Médecine, Université de Paris SaclayParisFrance
| | - Adrien Joseph
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance,Faculté de Médecine, Université de Paris SaclayParisFrance,Service de médecine intensive réanimationHôpital Saint‐LouisParisFrance
| | - Hui Chen
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance,Faculté de Médecine, Université de Paris SaclayParisFrance
| | - Mahmoud Abdellatif
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance,Department of CardiologyMedical University of GrazGrazAustria,BioTechMed‐GrazGrazAustria
| | | | - Omar Motiño
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
| | - Flavia Lambertucci
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
| | - Gerasimos Anagnostopoulos
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance,Faculté de Médecine, Université de Paris SaclayParisFrance
| | - Sylvie Lachkar
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
| | - Silvia Dichtinger
- Institute of Molecular Biosciences, NAWI GrazUniversity of GrazGrazAustria
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
| | - François Goldwasser
- Department of Medical OncologyCochin Hospital, AP‐HPParisFrance,URP4466, Université Paris CitéParisFrance
| | - Benoit Blanchet
- Pharmacokinetics and Pharmacochemistry UnitCochin Hospital, Paris Descartes University, CARPEM, AP‐HPParisFrance,UMR8038 CNRS, U1268 INSERM, Faculty of Pharmacy, University of Paris, PRES Sorbonne Paris Cité, CARPEMParisFrance
| | - Frédéric Fumeron
- Institut Necker‐Enfants Malades, Université Paris Cité, INSERM UMR‐S1151, CNRS UMR‐S8253ParisFrance
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
| | - Frank Madeo
- BioTechMed‐GrazGrazAustria,Institute of Molecular Biosciences, NAWI GrazUniversity of GrazGrazAustria,Field of Excellence BioHealthUniversity of GrazGrazAustria
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance,Institut du Cancer Paris CARPEM, Department of BiologyHôpital Européen Georges Pompidou, AP‐HPParisFrance
| |
Collapse
|
27
|
Qi H, Lei X, Wang Y, Yu S, Liu T, Zhou SK, Chen JY, Chen QF, Qiu RL, Jiang L, Xiao S. 14-3-3 proteins contribute to autophagy by modulating SINAT-mediated degradation of ATG13. THE PLANT CELL 2022; 34:4857-4876. [PMID: 36053201 PMCID: PMC9709989 DOI: 10.1093/plcell/koac273] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/16/2022] [Indexed: 05/07/2023]
Abstract
In multicellular eukaryotes, autophagy is a conserved process that delivers cellular components to the vacuole or lysosome for recycling during development and stress responses. Induction of autophagy activates AUTOPHAGY-RELATED PROTEIN 1 (ATG1) and ATG13 to form a protein kinase complex that initiates autophagosome formation. However, the detailed molecular mechanism underlying the regulation of this protein complex in plants remains unclear. Here, we determined that in Arabidopsis thaliana, the regulatory proteins 14-3-3λ and 14-3-3κ redundantly modulate autophagy dynamics by facilitating SEVEN IN ABSENTIA OF ARABIDOPSIS THALIANA (SINAT)-mediated proteolysis of ATG13a and ATG13b. 14-3-3λ and 14-3-3κ directly interacted with SINATs and ATG13a/b in vitro and in vivo. Compared to wild-type (WT), the 14-3-3λ 14-3-3κ double mutant showed increased tolerance to nutrient starvation, delayed leaf senescence, and enhanced starvation-induced autophagic vesicles. Moreover, 14-3-3s were required for SINAT1-mediated ubiquitination and degradation of ATG13a. Consistent with their roles in ATG degradation, the 14-3-3λ 14-3-3κ double mutant accumulated higher levels of ATG1a/b/c and ATG13a/b than the WT upon nutrient deprivation. Furthermore, the specific association of 14-3-3s with phosphorylated ATG13a was crucial for ATG13a stability and formation of the ATG1-ATG13 complex. Thus, our findings demonstrate that 14-3-3λ and 14-3-3κ function as molecular adaptors to regulate autophagy by modulating the homeostasis of phosphorylated ATG13.
Collapse
Affiliation(s)
- Hua Qi
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xue Lei
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yao Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shan Yu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ting Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shun-Kang Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Jin-Yu Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qin-Fang Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Rong-Liang Qiu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Shi Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
28
|
Serrano N, Pejchar P, Soukupová H, Hubálek M, Potocký M. Comprehensive analysis of glycerolipid dynamics during tobacco pollen germination and pollen tube growth. FRONTIERS IN PLANT SCIENCE 2022; 13:1028311. [PMID: 36426152 PMCID: PMC9679300 DOI: 10.3389/fpls.2022.1028311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/11/2022] [Indexed: 06/12/2023]
Abstract
Pollen germination and subsequent pollen tube elongation are essential for successful land plant reproduction. These processes are achieved through well-documented activation of membrane trafficking and cell metabolism. Despite this, our knowledge of the dynamics of cellular phospholipids remains scarce. Here we present the turnover of the glycerolipid composition during the establishment of cell polarity and elongation processes in tobacco pollen and show the lipid composition of pollen plasma membrane-enriched fraction for the first time. To achieve this, we have combined several techniques, such as lipidomics, plasma membrane isolation, and live-cell microscopy, and performed a study with different time points during the pollen germination and pollen tube growth. Our results showed that tobacco pollen tubes undergo substantial changes in their whole-cell lipid composition during the pollen germination and growth, finding differences in most of the glycerolipids analyzed. Notably, while lysophospholipid levels decrease during germination and growth, phosphatidic acid increases significantly at cell polarity establishment and continues with similar abundance in cell elongation. We corroborated these findings by measuring several phospholipase activities in situ. We also observed that lysophospholipids and phosphatidic acid are more abundant in the plasma membrane-enriched fraction than that in the whole cell. Our results support the important role for the phosphatidic acid in the establishment and maintenance of cellular polarity in tobacco pollen tubes and indicate that plasma membrane lysophospholipids may be involved in pollen germination.
Collapse
Affiliation(s)
- Natalia Serrano
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Přemysl Pejchar
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Hana Soukupová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
29
|
Guan B, Jiang YT, Lin DL, Lin WH, Xue HW. Phosphatidic acid suppresses autophagy through competitive inhibition by binding GAPC (glyceraldehyde-3-phosphate dehydrogenase) and PGK (phosphoglycerate kinase) proteins. Autophagy 2022; 18:2656-2670. [PMID: 35289711 PMCID: PMC9629070 DOI: 10.1080/15548627.2022.2046449] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Macroautophagy/autophagy is a finely-regulated process in which cytoplasm encapsulated within transient organelles termed autophagosomes is delivered to lysosomes or vacuoles for degradation. Phospholipids, particularly phosphatidic acid (PA) that functions as a second messenger, play crucial and differential roles in autophagosome formation; however, the underlying mechanism remains largely unknown. Here we demonstrated that PA inhibits autophagy through competitive inhibition of the formation of ATG3 (autophagy-related)-ATG8e and ATG6-VPS34 (vacuolar protein sorting 34) complexes. PA bound to GAPC (glyceraldehyde-3-phosphate dehydrogenase) or PGK (phosphoglycerate kinase) and promoted their interaction with ATG3 or ATG6, which further attenuated the interactions of ATG3-ATG8e or ATG6-VPS34, respectively. Structural and mutational analyses revealed the mechanism of PA binding with GAPCs and PGK3, and that GAPCs or ATG8e competitively interacted with ATG3, and PGK3 or VPS34 competitively interacted with ATG6, at the same binding interface. These results elucidate the molecular mechanism of how PA inhibits autophagy through binding GAPC or PGK3 proteins and expand the understanding of the functional mode of PA, demonstrating the importance of phospholipids in plant autophagy and providing a new perspective for autophagy regulation by phospholipids.Abbreviation: ATG: autophagy-related; BiFC: bimolecular fluorescence complementation; co-IP: co-immunoprecipitation; Con A: concanamycin A; ER: endoplasmic reticulum; EZ: elongation zone; FRET-FLIM: fluorescence resonance energy transfer with fluorescence lifetime imaging microscopy; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GST: glutathione S-transferase; MDC: monodansylcadaverine; MZ: meristem zone; PA: phosphatidic acid; PAS: phagophore assembly site; PC: phosphatidylcholine; PE: phosphatidylethanolamine; PGK3: phosphoglycerate kinase; PtdIns3K: phosphatidylinositol 3-kinase; PLD: phospholipase D; TEM: transmission electron microscopy; TOR: target of rapamycin; VPS34: vacuolar protein sorting 34; WT: wild type; Y2H: yeast two-hybrid.
Collapse
Affiliation(s)
- Bin Guan
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, Minhang, China,National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, Xuhui, China
| | - Yu-Tong Jiang
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, Minhang, China
| | - De-Li Lin
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, Minhang, China
| | - Wen-Hui Lin
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, Minhang, China,CONTACT Hong-Wei Xue Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, ofAgriculture, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hong-Wei Xue
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, Minhang, China,Wen-Hui Lin School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
30
|
Yang MK, Zhu XJ, Chen CM, Guo X, Xu SX, Xu YR, Du SX, Xiao S, Mueller-Roeber B, Huang W, Chen L. The plant circadian clock regulates autophagy rhythm through transcription factor LUX ARRHYTHMO. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2135-2149. [PMID: 35962716 DOI: 10.1111/jipb.13343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Autophagy is an evolutionarily conserved degradation pathway in eukaryotes; it plays a critical role in nutritional stress tolerance. The circadian clock is an endogenous timekeeping system that generates biological rhythms to adapt to daily changes in the environment. Accumulating evidence indicates that the circadian clock and autophagy are intimately interwoven in animals. However, the role of the circadian clock in regulating autophagy has been poorly elucidated in plants. Here, we show that autophagy exhibits a robust circadian rhythm in both light/dark cycle (LD) and in constant light (LL) in Arabidopsis. However, autophagy rhythm showed a different pattern with a phase-advance shift and a lower amplitude in LL compared to LD. Moreover, mutation of the transcription factor LUX ARRHYTHMO (LUX) removed autophagy rhythm in LL and led to an enhanced amplitude in LD. LUX represses expression of the core autophagy genes ATG2, ATG8a, and ATG11 by directly binding to their promoters. Phenotypic analysis revealed that LUX is responsible for improved resistance of plants to carbon starvation, which is dependent on moderate autophagy activity. Comprehensive transcriptomic analysis revealed that the autophagy rhythm is ubiquitous in plants. Taken together, our findings demonstrate that the LUX-mediated circadian clock regulates plant autophagy rhythms.
Collapse
Affiliation(s)
- Ming-Kang Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Jie Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Chu-Min Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xu Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shu-Xuan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ya-Rou Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shen-Xiu Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Bernd Mueller-Roeber
- Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam-Golm, Germany
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Wei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, 510642, China
| | - Liang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
31
|
Wang Q, Qin Q, Su M, Li N, Zhang J, Liu Y, Yan L, Hou S. Type one protein phosphatase regulates fixed-carbon starvation-induced autophagy in Arabidopsis. THE PLANT CELL 2022; 34:4531-4553. [PMID: 35961047 PMCID: PMC9614501 DOI: 10.1093/plcell/koac251] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/04/2022] [Indexed: 05/23/2023]
Abstract
Autophagy, a conserved pathway that carries out the bulk degradation of cytoplasmic material in eukaryotic cells, is critical for plant physiology and development. This process is tightly regulated by ATG13, a core component of the ATG1 kinase complex, which initiates autophagy. Although ATG13 is known to be dephosphorylated immediately after nutrient starvation, the phosphatase regulating this process is poorly understood. Here, we determined that the Arabidopsis (Arabidopsis thaliana) septuple mutant (topp-7m) and octuple mutant (topp-8m) of TYPE ONE PROTEIN PHOSPHATASE (TOPP) exhibited significantly reduced tolerance to fixed-carbon (C) starvation due to compromised autophagy activity. Genetic analysis placed TOPP upstream of autophagy. Interestingly, ATG13a was found to be an interactor of TOPP. TOPP directly dephosphorylated ATG13a in vitro and in vivo. We identified 18 phosphorylation sites in ATG13a by LC-MS. Phospho-dead ATG13a at these 18 sites significantly promoted autophagy and increased the tolerance of the atg13ab mutant to fixed-C starvation. The dephosphorylation of ATG13a facilitated ATG1a-ATG13a complex formation. Consistently, the recruitment of ATG13a for ATG1a was markedly inhibited in topp-7m-1. Finally, TOPP-controlled dephosphorylation of ATG13a boosted ATG1a phosphorylation. Taken together, our study reveals the crucial role of TOPP in regulating autophagy by stimulating the formation of the ATG1a-ATG13a complex by dephosphorylating ATG13a in Arabidopsis.
Collapse
Affiliation(s)
- Qiuling Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Qianqian Qin
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Meifei Su
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Na Li
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Jing Zhang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Yang Liu
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Longfeng Yan
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Suiwen Hou
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
32
|
Brady NG, Qian S, Nguyen J, O'Neill HM, Bruce BD. Small angle neutron scattering and lipidomic analysis of a native, trimeric PSI-SMALP from a thermophilic cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148596. [PMID: 35853496 PMCID: PMC10228149 DOI: 10.1016/j.bbabio.2022.148596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 06/05/2022] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
The use of styrene-maleic acid copolymers (SMAs) to produce membrane protein-containing nanodiscs without the initial detergent isolation has gained significant interest over the last decade. We have previously shown that a Photosystem I SMALP from the thermophilic cyanobacterium, Thermosynechococcus elongatus (PSI-SMALP), has much more rapid energy transfer and charge separation in vitro than detergent isolated PSI complexes. In this study, we have utilized small-angle neutron scattering (SANS) to better understand the geometry of these SMALPs. These techniques allow us to investigate the size and shape of these particles in their fully solvated state. Further, the particle's proteolipid core and detergent shell or copolymer belt can be interrogated separately using contrast variation, a capability unique to SANS. Here we report the dimensions of the Thermosynechococcus elongatus PSI-SMALP containing a PSI trimer. At ~1.5 MDa, PSI-SMALP is the largest SMALP to be isolated; our lipidomic analysis indicates it contains ~1300 lipids/per trimeric particle, >40-fold more than the PSI-DDM particle and > 100 fold more than identified in the 1JB0 crystal structure. Interestingly, the lipid composition to the PSI trimer in the PSI-SMALP differs significantly from bulk thylakoid composition, being enriched ~50 % in the anionic sulfolipid, SQDG. Finally, utilizing the contrast match point for the SMA 1440 copolymer, we also can observe the ~1 nm SMA copolymer belt surrounding this SMALP for the first time, consistent with most models of SMA organization.
Collapse
Affiliation(s)
- Nathan G Brady
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Shuo Qian
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Second Target Station Project, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jon Nguyen
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Hugh M O'Neill
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Barry D Bruce
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
33
|
Lusk HJ, Neumann N, Colter M, Roth MR, Tamura P, Yao L, Shiva S, Shah J, Schrick K, Durrett TP, Welti R. Lipidomic Analysis of Arabidopsis T-DNA Insertion Lines Leads to Identification and Characterization of C-Terminal Alterations in FATTY ACID DESATURASE 6. PLANT & CELL PHYSIOLOGY 2022; 63:1193-1204. [PMID: 35726963 PMCID: PMC9474942 DOI: 10.1093/pcp/pcac088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 05/27/2023]
Abstract
Mass-spectrometry-based screening of lipid extracts of wounded and unwounded leaves from a collection of 364 Arabidopsis thaliana T-DNA insertion lines produced lipid profiles that were scored on the number and significance of their differences from the leaf lipid profiles of wild-type plants. The analysis identified Salk_109175C, which displayed alterations in leaf chloroplast glycerolipid composition, including a decreased ratio between two monogalactosyldiacylglycerol (MGDG) molecular species, MGDG(18:3/16:3) and MGDG(18:3/18:3). Salk_109175C has a confirmed insertion in the At5g64790 locus; the insertion did not co-segregate with the recessive lipid phenotype in the F2 generation of a wild-type (Columbia-0) × Salk_109175C cross. The altered lipid compositional phenotype mapped to the At4g30950 locus, which encodes the plastidial ω-6 desaturase FATTY ACID DESATURASE 6 (FAD6). Sequencing revealed a splice-site mutation, leading to the in-frame deletion of 13 amino acids near the C-terminal end of the 448 amino acid protein. Heterologous expression in yeast showed that this deletion eliminates desaturase activity and reduces protein stability. Sequence comparison across species revealed that several amino acids within the deletion are conserved in plants and cyanobacteria. Individual point mutations in four conserved residues resulted in 77-97% reductions in desaturase activity, while a construct with all four alanine substitutions lacked activity. The data suggest that the deleted region of FAD6, which is on the C-terminal side of the four putative transmembrane segments and the histidine boxes putatively involved in catalysis, is critical for FAD6 function.
Collapse
Affiliation(s)
| | | | - Madeline Colter
- Division of Biology, Kansas State University, 1717 Claflin Rd., Manhattan, KS 66506, USA
| | - Mary R Roth
- Division of Biology, Kansas State University, 1717 Claflin Rd., Manhattan, KS 66506, USA
| | - Pamela Tamura
- Division of Biology, Kansas State University, 1717 Claflin Rd., Manhattan, KS 66506, USA
| | - Libin Yao
- Division of Biology, Kansas State University, 1717 Claflin Rd., Manhattan, KS 66506, USA
| | - Sunitha Shiva
- Division of Biology, Kansas State University, 1717 Claflin Rd., Manhattan, KS 66506, USA
- Eurofins Scientific, 4780 Discovery Drive, Columbia, MO 65201, USA
| | - Jyoti Shah
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017, USA
| | - Kathrin Schrick
- Division of Biology, Kansas State University, 1717 Claflin Rd., Manhattan, KS 66506, USA
| | - Timothy P Durrett
- *Corresponding authors: Timothy Durrett, E-mail, ; Ruth Welti, E-mail,
| | - Ruth Welti
- *Corresponding authors: Timothy Durrett, E-mail, ; Ruth Welti, E-mail,
| |
Collapse
|
34
|
Degradation Mechanism of Autophagy-Related Proteins and Research Progress. Int J Mol Sci 2022; 23:ijms23137301. [PMID: 35806307 PMCID: PMC9266641 DOI: 10.3390/ijms23137301] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/21/2022] Open
Abstract
In all eukaryotes, autophagy is the main pathway for nutrient recycling, which encapsulates parts of the cytoplasm and organelles in double-membrane vesicles, and then fuses with lysosomes/vacuoles to degrade them. Autophagy is a highly dynamic and relatively complex process influenced by multiple factors. Under normal growth conditions, it is maintained at basal levels. However, when plants are subjected to biotic and abiotic stresses, such as pathogens, drought, waterlogging, nutrient deficiencies, etc., autophagy is activated to help cells to survive under stress conditions. At present, the regulation of autophagy is mainly reflected in hormones, second messengers, post-transcriptional regulation, and protein post-translational modification. In recent years, the degradation mechanism of autophagy-related proteins has attracted much attention. In this review, we have summarized how autophagy-related proteins are degraded in yeast, animals, and plants, which will help us to have a more comprehensive and systematic understanding of the regulation mechanisms of autophagy. Moreover, research progress on the degradation of autophagy-related proteins in plants has been discussed.
Collapse
|
35
|
Huang P, Li Z, Guo H. New Advances in the Regulation of Leaf Senescence by Classical and Peptide Hormones. FRONTIERS IN PLANT SCIENCE 2022; 13:923136. [PMID: 35837465 PMCID: PMC9274171 DOI: 10.3389/fpls.2022.923136] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Leaf senescence is the last stage of leaf development, manifested by leaf yellowing due to the loss of chlorophyll, along with the degradation of macromolecules and facilitates nutrient translocation from the sink to the source tissues, which is essential for the plants' fitness. Leaf senescence is controlled by a sophisticated genetic network that has been revealed through the study of the molecular mechanisms of hundreds of senescence-associated genes (SAGs), which are involved in multiple layers of regulation. Leaf senescence is primarily regulated by plant age, but also influenced by a variety of factors, including phytohormones and environmental stimuli. Phytohormones, as important signaling molecules in plant, contribute to the onset and progression of leaf senescence. Recently, peptide hormones have been reported to be involved in the regulation of leaf senescence, enriching the significance of signaling molecules in controlling leaf senescence. This review summarizes recent advances in the regulation of leaf senescence by classical and peptide hormones, aiming to better understand the coordinated network of different pathways during leaf senescence.
Collapse
Affiliation(s)
- Peixin Huang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhonghai Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hongwei Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
36
|
Hamdan MF, Lung SC, Guo ZH, Chye ML. Roles of acyl-CoA-binding proteins in plant reproduction. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2918-2936. [PMID: 35560189 DOI: 10.1093/jxb/erab499] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/11/2021] [Indexed: 06/15/2023]
Abstract
Acyl-CoA-binding proteins (ACBPs) constitute a well-conserved family of proteins in eukaryotes that are important in stress responses and development. Past studies have shown that ACBPs are involved in maintaining, transporting and protecting acyl-CoA esters during lipid biosynthesis in plants, mammals, and yeast. ACBPs show differential expression and various binding affinities for acyl-CoA esters. Hence, ACBPs can play a crucial part in maintaining lipid homeostasis. This review summarizes the functions of ACBPs during the stages of reproduction in plants and other organisms. A comprehensive understanding on the roles of ACBPs during plant reproduction may lead to opportunities in crop improvement in agriculture.
Collapse
Affiliation(s)
- Mohd Fadhli Hamdan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ze-Hua Guo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
37
|
Mahmood K, Torres-Jerez I, Krom N, Liu W, Udvardi MK. Transcriptional Programs and Regulators Underlying Age-Dependent and Dark-Induced Senescence in Medicago truncatula. Cells 2022; 11:cells11091570. [PMID: 35563875 PMCID: PMC9103780 DOI: 10.3390/cells11091570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/10/2022] Open
Abstract
In forage crops, age-dependent and stress-induced senescence reduces forage yield and quality. Therefore, delaying leaf senescence may be a way to improve forage yield and quality as well as plant resilience to stresses. Here, we used RNA-sequencing to determine the molecular bases of age-dependent and dark-induced leaf senescence in Medicago truncatula. We identified 6845 differentially expressed genes (DEGs) in M3 leaves associated with age-dependent leaf senescence. An even larger number (14219) of DEGs were associated with dark-induced senescence. Upregulated genes identified during age-dependent and dark-induced senescence were over-represented in oxidation–reduction processes and amino acid, carboxylic acid and chlorophyll catabolic processes. Dark-specific upregulated genes also over-represented autophagy, senescence and cell death. Mitochondrial functions were strongly inhibited by dark-treatment while these remained active during age-dependent senescence. Additionally, 391 DE transcription factors (TFs) belonging to various TF families were identified, including a core set of 74 TFs during age-dependent senescence while 759 DE TFs including a core set of 338 TFs were identified during dark-induced senescence. The heterologous expression of several senescence-induced TFs belonging to NAC, WKRY, bZIP, MYB and HD-zip TF families promoted senescence in tobacco leaves. This study revealed the dynamics of transcriptomic responses to age- and dark-induced senescence in M. truncatula and identified senescence-associated TFs that are attractive targets for future work to control senescence in forage legumes.
Collapse
Affiliation(s)
- Kashif Mahmood
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA; (K.M.); (I.T.-J.); (N.K.); (W.L.)
- Noble Research Institute, L.L.C., Ardmore, OK 73401, USA
| | - Ivone Torres-Jerez
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA; (K.M.); (I.T.-J.); (N.K.); (W.L.)
- Noble Research Institute, L.L.C., Ardmore, OK 73401, USA
| | - Nick Krom
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA; (K.M.); (I.T.-J.); (N.K.); (W.L.)
| | - Wei Liu
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA; (K.M.); (I.T.-J.); (N.K.); (W.L.)
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX 76201, USA
| | - Michael K. Udvardi
- Noble Research Institute, L.L.C., Ardmore, OK 73401, USA
- Centre for Crop Science, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
- Correspondence:
| |
Collapse
|
38
|
Welter AA, Wu WJ, Maurer R, O’Quinn TG, Chao MD, Boyle DL, Geisbrecht ER, Hartson SD, Bowker BC, Zhuang H. An Investigation of the Altered Textural Property in Woody Breast Myopathy Using an Integrative Omics Approach. Front Physiol 2022; 13:860868. [PMID: 35370787 PMCID: PMC8970568 DOI: 10.3389/fphys.2022.860868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/04/2022] [Indexed: 12/02/2022] Open
Abstract
Woody breast (WB) is a myopathy observed in broiler Pectoralis major (PM) characterized by its tough and rubbery texture with greater level of calcium content. The objective of this study was to investigate the functionality/integrity of WB sarcoplasmic reticulum (SR), which may contribute to the elevated calcium content observed in WB and other factors that may influence WB texture. Fourteen Ross line broiler PM [7 severe WB and 7 normal (N)] were selected, packaged, and frozen at -20°C at 8 h postmortem from a commercial processing plant. Samples were used to measure pH, sarcomere length, proteolysis, calpain activity, collagenase activity, collagen content, collagen crosslinks density, and connective tissue peak transitional temperature. Exudate was also collected from each sample to evaluate free calcium concentration. The SR fraction of the samples was separated and utilized for proteomic and lipidomic analysis. The WB PM had a higher pH, shorter sarcomeres, lower % of intact troponin-T, more autolyzed μ/m calpain, more activated collagenase, greater collagen content, greater mature collagen crosslinks density, and higher connective tissue peak transitional temperature than the N PM (p ≤ 0.05). Exudate from WB PM had higher levels of free calcium than those from N PM (p < 0.05). Proteomics data revealed an upregulation of calcium transport proteins and a downregulation of proteins responsible for calcium release (p < 0.05) in WB SR. Interestingly, there was an upregulation of phospholipase A2 (PLA2), and cholinesterase exhibited a 7.6-fold increase in WB SR (p < 0.01). Lipidomics data revealed WB SR had less relative % of phosphatidylcholine (PC) and more lysophosphatidylcholine (LPC; p < 0.05). The results indicated that upregulation of calcium transport proteins and downregulation of calcium-release proteins in WB SR may be the muscle's attempt to regulate this proposed excessive signaling of calcium release due to multiple factors, such as upregulation of PLA2 resulting in PC hydrolysis and presence of cholinesterase inhibitors in the system prolonging action potential. In addition, the textural abnormality of WB may be the combined effects of shorter sarcomere length and more collagen with greater crosslink density being deposited in the broiler PM.
Collapse
Affiliation(s)
- Amelia A. Welter
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, United States
| | - Wan Jun Wu
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, United States
| | - Ryan Maurer
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, United States
| | - Travis G. O’Quinn
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, United States
| | - Michael D. Chao
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, United States
| | - Daniel L. Boyle
- Division of Biology, Kansas State University Microscopy Facility, Manhattan, KS, United States
| | - Erika R. Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Steve D. Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
| | - Brian C. Bowker
- United States National Poultry Research Center USDA, Agricultural Research Service, Athens, GA, United States
| | - Hong Zhuang
- United States National Poultry Research Center USDA, Agricultural Research Service, Athens, GA, United States
| |
Collapse
|
39
|
Zhou Y, Zhou DM, Yu WW, Shi LL, Zhang Y, Lai YX, Huang LP, Qi H, Chen QF, Yao N, Li JF, Xie LJ, Xiao S. Phosphatidic acid modulates MPK3- and MPK6-mediated hypoxia signaling in Arabidopsis. THE PLANT CELL 2022; 34:889-909. [PMID: 34850198 PMCID: PMC8824597 DOI: 10.1093/plcell/koab289] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/19/2021] [Indexed: 05/07/2023]
Abstract
Phosphatidic acid (PA) is an important lipid essential for several aspects of plant development and biotic and abiotic stress responses. We previously suggested that submergence induces PA accumulation in Arabidopsis thaliana; however, the molecular mechanism underlying PA-mediated regulation of submergence-induced hypoxia signaling remains unknown. Here, we showed that in Arabidopsis, loss of the phospholipase D (PLD) proteins PLDα1 and PLDδ leads to hypersensitivity to hypoxia, but increased tolerance to submergence. This enhanced tolerance is likely due to improvement of PA-mediated membrane integrity. PA bound to the mitogen-activated protein kinase 3 (MPK3) and MPK6 in vitro and contributed to hypoxia-induced phosphorylation of MPK3 and MPK6 in vivo. Moreover, mpk3 and mpk6 mutants were more sensitive to hypoxia and submergence stress compared with wild type, and fully suppressed the submergence-tolerant phenotypes of pldα1 and pldδ mutants. MPK3 and MPK6 interacted with and phosphorylated RELATED TO AP2.12, a master transcription factor in the hypoxia signaling pathway, and modulated its activity. In addition, MPK3 and MPK6 formed a regulatory feedback loop with PLDα1 and/or PLDδ to regulate PLD stability and submergence-induced PA production. Thus, our findings demonstrate that PA modulates plant tolerance to submergence via both membrane integrity and MPK3/6-mediated hypoxia signaling in Arabidopsis.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - De-Mian Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wei-Wei Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Li-Li Shi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yong-Xia Lai
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Li-Ping Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Hua Qi
- Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qin-Fang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian-Feng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | | | - Shi Xiao
- Authors for correspondence: (S.X.) and (L.J.X.)
| |
Collapse
|
40
|
Ma D, Endo S, Betsuyaku E, Fujiwara T, Betsuyaku S, Fukuda H. Root-specific CLE3 expression is required for WRKY33 activation in Arabidopsis shoots. PLANT MOLECULAR BIOLOGY 2022; 108:225-239. [PMID: 35038066 DOI: 10.1007/s11103-021-01234-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
This study focused on the role of CLE1-7 peptides as defense mediators, and showed that root-expressed CLE3 functions as a systemic signal to regulate defense-related gene expression in shoots. In the natural environment, plants employ diverse signaling molecules including peptides to defend themselves against various pathogen attacks. In this study, we investigated whether CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) genes (CLE1-7) respond to biotic stimuli. CLE3 showed significant up-regulation upon treatment with flg22, Pep2, and salicylic acid (SA). Quantitative real-time PCR (qRT-PCR) analysis revealed that CLE3 expression is regulated by the NON-EXPRESSOR OF PR GENES1 (NPR1)-dependent SA signaling and flg22-FLAGELLIN-SENSITIVE 2 (FLS2) signaling pathways. We demonstrated that SA-induced up-regulation of CLE3 in roots was required for activation of WRKY33, a gene involved in the regulation of systemic acquired resistance (SAR), in shoots, suggesting that CLE3 functions as a root-derived signal that regulates the expression of defense-related genes in shoots. Microarray analysis of transgenic Arabidopsis lines overexpressing CLE3 under the control of a β-estradiol-inducible promoter revealed that root-confined CLE3 overexpression affected gene expression in both roots and shoots. Comparison of CLE2- and CLE3-induced genes indicated that CLE2 and CLE3 peptides target a few common but largely distinct downstream genes. These results suggest that root-derived CLE3 is involved in the regulation of systemic rather than local immune responses. Our study also sheds light on the potential role of CLE peptides in long-distance regulation of plant immunity.
Collapse
Affiliation(s)
- Dichao Ma
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Satoshi Endo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Institute of Interdisciplinary Research, Kyoto University of Advanced Science, 1-1 Nanjo-Ohtani, Sogabe-cho, Kameoka-city, Kyoto, 621-8555, Japan
| | - Eriko Betsuyaku
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194, Japan
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shigeyuki Betsuyaku
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194, Japan.
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Department of Bioscience and Biotechnology, Faculty of Bioenvironmental Sciences, Kyoto University of Advanced Science, 1-1 Nanjo-Ohtani, Sogabe-cho, Kameoka-city, Kyoto, 621-8555, Japan.
| |
Collapse
|
41
|
Song C, Wu M, Zhou Y, Gong Z, Yu W, Zhang Y, Yang Z. NAC-mediated membrane lipid remodeling negatively regulates fruit cold tolerance. HORTICULTURE RESEARCH 2022; 9:uhac039. [PMID: 35531317 PMCID: PMC9071380 DOI: 10.1093/hr/uhac039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/06/2022] [Indexed: 05/11/2023]
Abstract
Low temperatures are known to destroy cell membranes' structural integrity by affecting the remodeling of their phospholipids. Fruits stored at low temperature are prone to chilling injury, characterized by discoloration, absence of ripening, surface pitting, growth inhibition, flavor loss, decay, and wilting. Phosphatidic acid, a vital second-messenger lipid in plants, is known to accumulate in response to different kinds of stress stimuli. However, the regulatory mechanism of its production from the degradation of phospholipids remains poorly understood. We identified two cold-responsive NAC (NAM/ATAF1/CUC2) transcription factors from bananas, namely, MaNAC25 and MaNAC28, which negatively regulated cold tolerance in banana fruits by upregulating the expression of phospholipid degradation genes in banana fruits. Furthermore, MaNAC25 and MaNAC28 formed a positive feedback loop to induce phospholipid degradation and produce phosphatidic acid. In contrast, ethylene directly inhibited the degradation of phospholipids in banana and transgenic tomato fruits. In addition, ethylene reduced the activity of MaNAC25 and MaNAC28, thereby inhibiting phospholipid degradation. To conclude, NAC-mediated membrane lipid remodeling negatively regulates the cold tolerance of banana and transgenic tomato fruits.
Collapse
Affiliation(s)
- Chunbo Song
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Mengbo Wu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Ying Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zehao Gong
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Weiwei Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | | |
Collapse
|
42
|
Interactions between plant lipid-binding proteins and their ligands. Prog Lipid Res 2022; 86:101156. [DOI: 10.1016/j.plipres.2022.101156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/05/2021] [Accepted: 01/14/2022] [Indexed: 01/11/2023]
|
43
|
Liu Q, Dong GR, Ma YQ, Huang XX, Mu TJ, Huang XX, Li YJ, Li X, Hou BK. Retracted: Glycosyltransferase UGT79B7 negatively regulates hypoxia response through γ-aminobutyric acid homeostasis in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7998-8010. [PMID: 33693583 DOI: 10.1093/jxb/erab107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Qian Liu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Guang-Rui Dong
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Yu-Qing Ma
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Xiu-Xiu Huang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Tian-Jiao Mu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Xu-Xu Huang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Yan-Jie Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, PR China
| | - Xugang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, PR China
| | - Bing-Kai Hou
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, PR China
| |
Collapse
|
44
|
Kocourková D, Kroumanová K, Podmanická T, Daněk M, Martinec J. Phospholipase Dα1 Acts as a Negative Regulator of High Mg 2+-Induced Leaf Senescence in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:770794. [PMID: 34899793 PMCID: PMC8656112 DOI: 10.3389/fpls.2021.770794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/26/2021] [Indexed: 05/16/2023]
Abstract
Magnesium (Mg2+) is a macronutrient involved in essential cellular processes. Its deficiency or excess is a stress factor for plants, seriously affecting their growth and development and therefore, its accurate regulation is essential. Recently, we discovered that phospholipase Dα1 (PLDα1) activity is vital in the stress response to high-magnesium conditions in Arabidopsis roots. This study shows that PLDα1 acts as a negative regulator of high-Mg2+-induced leaf senescence in Arabidopsis. The level of phosphatidic acid produced by PLDα1 and the amount of PLDα1 in the leaves increase in plants treated with high Mg2+. A knockout mutant of PLDα1 (pldα1-1), exhibits premature leaf senescence under high-Mg2+ conditions. In pldα1-1 plants, higher accumulation of abscisic and jasmonic acid (JA) and impaired magnesium, potassium and phosphate homeostasis were observed under high-Mg2+ conditions. High Mg2+ also led to an increase of starch and proline content in Arabidopsis plants. While the starch content was higher in pldα1-1 plants, proline content was significantly lower in pldα1-1 compared with wild type plants. Our results show that PLDα1 is essential for Arabidopsis plants to cope with the pleiotropic effects of high-Mg2+ stress and delay the leaf senescence.
Collapse
Affiliation(s)
| | | | | | | | - Jan Martinec
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
45
|
Jiang X, Xu L, Gao Y, He M, Bu Q, Meng W. Phylogeny and subcellular localization analyses reveal distinctions in monocot and eudicot class IV acyl-CoA-binding proteins. PLANTA 2021; 254:71. [PMID: 34505938 DOI: 10.1007/s00425-021-03721-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Plant class IV ACBPs diverged with the split of monocots and eudicots. Difference in the subcellular localization supported the functional variation of plant class IV ACBP. Acyl-CoA-binding proteins (ACBPs) are divided into class I-IV in plants. Class IV ACBPs are kelch motif containing proteins that are specific to plants. The currently known subcellular localizations of plant class IV ACBPs are either in the cytosol (Arabidopsis) or in the peroxisomes (rice). However, it is not clear whether peroxisomal localization of class IV ACBP is a shared character that distinguishes eudicots and monocots. Here, the phylogeny of class IV ACBPs from 73 plant species and subcellular localization of class IV ACBPs from six monocots and eudicots were conducted. Phylogenetic analysis of 112 orthologues revealed that monocot class IV ACBPs were basal to the monophyletic clade formed by eudicots and basal angiosperm. Transient expression of GFP fusions in onion epidermal cells demonstrated that monocot maize (Zea mays), wheat (Triticum aestivum), and sorghum (Sorghum bicolor) and eudicot poplar (Populus trichocarpa) all contained at least one peroxisomal localized class IV ACBP, while orthologues from cucumber (Cucumis sativus L.) and soybean (Glycine max) were all cytosolic. Combining the location of Arabidopsis and rice class IV ACBPs, it indicates that maintaining at least one peroxisomal class IV ACBP could be a shared feature within the tested monocots, while cytosolic class IV ACBPs would be preferred in the tested eudicots. Furthermore, the interaction between OsACBP6 and peroxisomal ATP-binding cassette (ABC) transporter provided clues for the functional mechanism of OsACBP6.
Collapse
Affiliation(s)
- Xue Jiang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Lijian Xu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Ying Gao
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Mingliang He
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China
| | - Qingyun Bu
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China
| | - Wei Meng
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China.
| |
Collapse
|
46
|
Zoong Lwe Z, Sah S, Persaud L, Li J, Gao W, Raja Reddy K, Narayanan S. Alterations in the leaf lipidome of Brassica carinata under high-temperature stress. BMC PLANT BIOLOGY 2021; 21:404. [PMID: 34488625 PMCID: PMC8419912 DOI: 10.1186/s12870-021-03189-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/13/2021] [Indexed: 05/21/2023]
Abstract
BACKGROUND Brassica carinata (A) Braun has recently gained increased attention across the world as a sustainable biofuel crop. B. carinata is grown as a summer crop in many regions where high temperature is a significant stress during the growing season. However, little research has been conducted to understand the mechanisms through which this crop responds to high temperatures. Understanding traits that improve the high-temperature adaption of this crop is essential for developing heat-tolerant varieties. This study investigated lipid remodeling in B. carinata in response to high-temperature stress. A commercial cultivar, Avanza 641, was grown under sunlit-controlled environmental conditions in Soil-Plant-Atmosphere-Research (SPAR) chambers under optimal temperature (OT; 23/15°C) conditions. At eight days after sowing, plants were exposed to one of the three temperature treatments [OT, high-temperature treatment-1 (HT-1; 33/25°C), and high-temperature treatment-2 (HT-2; 38/30°C)]. The temperature treatment period lasted until the final harvest at 84 days after sowing. Leaf samples were collected at 74 days after sowing to profile lipids using electrospray-ionization triple quadrupole mass spectrometry. RESULTS Temperature treatment significantly affected the growth and development of Avanza 641. Both high-temperature treatments caused alterations in the leaf lipidome. The alterations were primarily manifested in terms of decreases in unsaturation levels of membrane lipids, which was a cumulative effect of lipid remodeling. The decline in unsaturation index was driven by (a) decreases in lipids that contain the highly unsaturated linolenic (18:3) acid and (b) increases in lipids containing less unsaturated fatty acids such as oleic (18:1) and linoleic (18:2) acids and/or saturated fatty acids such as palmitic (16:0) acid. A third mechanism that likely contributed to lowering unsaturation levels, particularly for chloroplast membrane lipids, is a shift toward lipids made by the eukaryotic pathway and the channeling of eukaryotic pathway-derived glycerolipids that are composed of less unsaturated fatty acids into chloroplasts. CONCLUSIONS The lipid alterations appear to be acclimation mechanisms to maintain optimal membrane fluidity under high-temperature conditions. The lipid-related mechanisms contributing to heat stress response as identified in this study could be utilized to develop biomarkers for heat tolerance and ultimately heat-tolerant varieties.
Collapse
Affiliation(s)
- Zolian Zoong Lwe
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634, USA
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Saroj Sah
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, 39762, USA
| | - Leelawatti Persaud
- Plant and Soil Sciences, Mississippi State University, Starkville, MS, 39762, USA
| | - Jiaxu Li
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, 39762, USA
| | - Wei Gao
- USDA UVB Monitoring and Research Program, Natural Resource Ecology Laboratory, Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, 80523, USA
| | - K Raja Reddy
- Plant and Soil Sciences, Mississippi State University, Starkville, MS, 39762, USA.
| | - Sruthi Narayanan
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
47
|
Rajakumari S, Srivastava S. Aging and β3-adrenergic stimulation alter mitochondrial lipidome of adipose tissue. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158922. [PMID: 33713833 DOI: 10.1016/j.bbalip.2021.158922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/10/2021] [Accepted: 03/07/2021] [Indexed: 12/14/2022]
Abstract
Mitochondrial abundance and thermogenic capacity are two imperative components that distinguish brown, beige and white adipose tissues. Most importantly, the lipid composition is vital for maintaining the quantity, quality and function of mitochondria. Therefore, we employed quantitative lipidomics to probe the mitochondrial lipidome of adipose tissues. The mitochondrial lipidome reveals β3-adrenergic stimulation and aging drastically altered the levels of phosphatidylcholine (PC)/phosphatidylethanolamine (PE) ratio and acyl chain desaturation. Precisely, PC36:2 and PE38:4 levels correlate with the increased brown and beige fat activity in young mice. While aging increased lysoPC species in white adipose tissue (WAT) mitochondria, CL-316,243 administration reduced lysoPC species and increased lyso-PE18:1 and 18:2 content during WAT browning. Also, non-thermogenic mitochondria accumulate sphingomyelin (SM), phosphatidylserine (PS), phosphatidic acid (PA) and ether-linked PC (ePC). Similarly, enrichment of phosphatidylglycerol (PG) and cardiolipin (CL) levels are associated with thermogenic mitochondria. Also, our in vitro experiment supports that blocking the de novo sphingolipid synthesis pathway by myriocin, SPT1 inhibitor increased the thermogenic capacity and oxygen consumption rate in mature adipocytes. Overall, our study suggests mitochondria of brown, beige and white adipose tissues own a unique pattern of lipid molecular species and their levels are altered by aging and CL-316,243 administration.
Collapse
Affiliation(s)
- Sona Rajakumari
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru 560012, India.
| | - Simran Srivastava
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
48
|
Hiser C, Montgomery BL, Ferguson-Miller S. TSPO protein binding partners in bacteria, animals, and plants. J Bioenerg Biomembr 2021; 53:463-487. [PMID: 34191248 PMCID: PMC8243069 DOI: 10.1007/s10863-021-09905-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/12/2021] [Indexed: 12/11/2022]
Abstract
The ancient membrane protein TSPO is phylogenetically widespread from archaea and bacteria to insects, vertebrates, plants, and fungi. TSPO’s primary amino acid sequence is only modestly conserved between diverse species, although its five transmembrane helical structure appears mainly conserved. Its cellular location and orientation in membranes have been reported to vary between species and tissues, with implications for potential diverse binding partners and function. Most TSPO functions relate to stress-induced changes in metabolism, but in many cases it is unclear how TSPO itself functions—whether as a receptor, a sensor, a transporter, or a translocator. Much evidence suggests that TSPO acts indirectly by association with various protein binding partners or with endogenous or exogenous ligands. In this review, we focus on proteins that have most commonly been invoked as TSPO binding partners. We suggest that TSPO was originally a bacterial receptor/stress sensor associated with porphyrin binding as its most ancestral function and that it later developed additional stress-related roles in eukaryotes as its ability to bind new partners evolved.
Collapse
Affiliation(s)
- Carrie Hiser
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
| | - Beronda L Montgomery
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
49
|
Guo Y, Ren G, Zhang K, Li Z, Miao Y, Guo H. Leaf senescence: progression, regulation, and application. MOLECULAR HORTICULTURE 2021; 1:5. [PMID: 37789484 PMCID: PMC10509828 DOI: 10.1186/s43897-021-00006-9] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/11/2021] [Indexed: 05/24/2023]
Abstract
Leaf senescence, the last stage of leaf development, is a type of postmitotic senescence and is characterized by the functional transition from nutrient assimilation to nutrient remobilization which is essential for plants' fitness. The initiation and progression of leaf senescence are regulated by a variety of internal and external factors such as age, phytohormones, and environmental stresses. Significant breakthroughs in dissecting the molecular mechanisms underpinning leaf senescence have benefited from the identification of senescence-altered mutants through forward genetic screening and functional assessment of hundreds of senescence-associated genes (SAGs) via reverse genetic research in model plant Arabidopsis thaliana as well as in crop plants. Leaf senescence involves highly complex genetic programs that are tightly tuned by multiple layers of regulation, including chromatin and transcription regulation, post-transcriptional, translational and post-translational regulation. Due to the significant impact of leaf senescence on photosynthesis, nutrient remobilization, stress responses, and productivity, much effort has been made in devising strategies based on known senescence regulatory mechanisms to manipulate the initiation and progression of leaf senescence, aiming for higher yield, better quality, or improved horticultural performance in crop plants. This review aims to provide an overview of leaf senescence and discuss recent advances in multi-dimensional regulation of leaf senescence from genetic and molecular network perspectives. We also put forward the key issues that need to be addressed, including the nature of leaf age, functional stay-green trait, coordination between different regulatory pathways, source-sink relationship and nutrient remobilization, as well as translational researches on leaf senescence.
Collapse
Affiliation(s)
- Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101 Shandong China
| | - Guodong Ren
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Kewei Zhang
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004 Zhejiang China
| | - Zhonghai Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083 China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Hongwei Guo
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, 518055 Guangdong China
| |
Collapse
|
50
|
Lin Y, Zeng Y, Zhu Y, Shen J, Ye H, Jiang L. Plant Rho GTPase signaling promotes autophagy. MOLECULAR PLANT 2021; 14:905-920. [PMID: 33794369 DOI: 10.1016/j.molp.2021.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/27/2021] [Accepted: 03/25/2021] [Indexed: 05/06/2023]
Abstract
The roles of Rho family guanosine triphosphatases (GTPases) of plants (ROPs) in modulating plant growth and development have been well characterized. However, little is known about the roles of ROP signaling pathways in regulating plant autophagy and autophagosome formation. In this study, we identify a unique ROP signaling mechanism, which mediates developmental to autophagic transition under stress conditions in the model plant Arabidopsis. Loss-of-function mutants of ROP8 showed stress-induced hypersensitive phenotypes and compromised autophagic flux. Similar to other ROPs in the ROP/RAC family, ROP8 exhibits both plasma membrane and cytosolic punctate localization patterns. Upon autophagic induction, active ROP8 puncta colocalize with autophagosomal markers and are degraded inside the vacuole. In human cells, RalB, an RAS subfamily GTPase, engages its effector Exo84 for autophagosome assembly. However, a RalB counterpart is missing in the plant lineage. Intriguingly, we discovered that plant ROP8 promotes autophagy via its downstream effector Sec5. Live-cell super-resolution imaging showed that ROP8 and Sec5 reside on phagophores for autophagosome formation. Taken together, our findings highlight a previously unappreciated role of an ROP8-Sec5 signaling axis in autophagy promotion, providing new insights into how plants utilize versatile ROP signaling networks to coordinate developmental and autophagic responses depending on environmental changes.
Collapse
Affiliation(s)
- Youshun Lin
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ying Zhu
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Hao Ye
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Institute of Plant Molecular Biology and Agricultural Biotechnology, CUHK, Hong Kong, China; CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, N.T., Shenzhen, Hong Kong, 518057, China.
| |
Collapse
|