1
|
Fu H, Zhong J, Zhao J, Huo L, Wang C, Ma D, Pan W, Sun L, Ren Z, Fan T, Wang Z, Wang W, Lei X, Yu G, Li J, Zhu Y, Geelen D, Liu B. Ultraviolet attenuates centromere-mediated meiotic genome stability and alters gametophytic ploidy consistency in flowering plants. THE NEW PHYTOLOGIST 2024; 243:2214-2234. [PMID: 39039772 DOI: 10.1111/nph.19978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/29/2024] [Indexed: 07/24/2024]
Abstract
Ultraviolet (UV) radiation influences development and genome stability in organisms; however, its impact on meiosis, a special cell division essential for the delivery of genetic information across generations in eukaryotes, has not yet been elucidated. In this study, by performing cytogenetic studies, we reported that UV radiation does not damage meiotic chromosome integrity but attenuates centromere-mediated chromosome stability and induces unreduced gametes in Arabidopsis thaliana. We showed that functional centromere-specific histone 3 (CENH3) is required for obligate crossover formation and plays a role in the protection of sister chromatid cohesion under UV stress. Moreover, we found that UV specifically alters the orientation and organization of spindles and phragmoplasts at meiosis II, resulting in meiotic restitution and unreduced gametes. We determined that UV-induced meiotic restitution does not rely on the UV Resistance Locus8-mediated UV perception and the Tapetal Development and Function1- and Aborted Microspores-dependent tapetum development, but possibly occurs via altered JASON function and downregulated Parallel Spindle1. This study provides evidence that UV radiation influences meiotic genome stability and gametophytic ploidy consistency in flowering plants.
Collapse
Affiliation(s)
- Huiqi Fu
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Jiaqi Zhong
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Jiayi Zhao
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Li Huo
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Chong Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Dexuan Ma
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Wenjing Pan
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Limin Sun
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Ziming Ren
- Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Tianyi Fan
- Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, 200438, China
| | - Ze Wang
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Wenyi Wang
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Xiaoning Lei
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guanghui Yu
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Jing Li
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Yan Zhu
- Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, 200438, China
| | - Danny Geelen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Bing Liu
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| |
Collapse
|
2
|
Chen Y, Jia M, Ge L, Li Z, He H, Zhou X, Li F. A Negative Feedback Loop Compromises NMD-Mediated Virus Restriction by the Autophagy Pathway in Plants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400978. [PMID: 39189522 PMCID: PMC11348178 DOI: 10.1002/advs.202400978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/21/2024] [Indexed: 08/28/2024]
Abstract
Nonsense-mediated decay (NMD) and autophagy play pivotal roles in restricting virus infection in plants. However, the interconnection between these two pathways in viral infections has not been explored. Here, it is shown that overexpression of NbSMG7 and NbUPF3 attenuates cucumber green mottle mosaic virus (CGMMV) infection by recognizing the viral internal termination codon and vice versa. NbSMG7 is subjected to autophagic degradation, which is executed by its interaction with one of the autophagy-related proteins, NbATG8i. Mutation of the ATG8 interacting motif (AIM) in NbSMG7 (SMG7mAIM1) abolishes the interaction and comprises its autophagic degradation. Silencing of NbSMG7 and NbATG8i, or NbUPF3 and NbATG8i, compared to silencing each gene individually, leads to more virus accumulations, but overexpression of NbSMG7 and NbATG8i fails to achieve more potent virus inhibition. When CGMMV is co-inoculated with NbSMG7mAIM1 or with NbUPF3, compared to co-inoculating with NbSMG7 in NbATG8i transgene plants, the inoculated plants exhibit milder viral phenotypes. These findings reveal that NMD-mediated virus inhibition is impaired by the autophagic degradation of SMG7 in a negative feedback loop, and a novel regulatory interplay between NMD and autophagy is uncovered, providing insights that are valuable in optimizing strategies to harness NMD and autophagy for combating viral infections.
Collapse
Affiliation(s)
- Yalin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Mingxuan Jia
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Linhao Ge
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Zhaolei Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Hao He
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
- State Key Laboratory of Rice BiologyInstitute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| |
Collapse
|
3
|
Zhang T, Zhao SH, He Y. ZmTDM1 encodes a tetratricopeptide repeat domain protein and is required for meiotic exit in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1517-1527. [PMID: 38047628 DOI: 10.1111/tpj.16579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
Elaborate cell-cycle control must be adopted to ensure the continuity of the meiotic second division and termination after that. Despite its importance, however, the genetic controls underlying the meiotic cell cycle have not been reported in maize. Here, we characterized a meiotic cell-cycle controller ZmTDM1, which is a homolog of Arabidopsis TDM1 and encodes a canonical tetratricopeptide repeat domain protein in maize. The Zmtdm1 homozygous plants exhibited complete male sterility and severe female abortion. In Zmtdm1 mutants, cell-cycle progression was almost identical to that of wild type from leptotene to anaphase II. However, chromosomes in the tetrad failed meiotic termination at the end of the second division and underwent additional divisions in succession without DNA replication, reducing the ploidy to less than haploid in the product. In addition, two ZmTDM1-like homologs (ZmTDML1 and ZmTDML2) were not functional in meiotic cell-cycle control. Moreover, ZmTDM1 interacted with RING-type E3 ubiquitin ligase, revealing that it acts as a subunit of the APC/C E3 ubiquitin ligase complex. Overall, our results identified a regulator of meiotic cell cycle in maize and demonstrated that ZmTDM1 is essential for meiotic exit after meiosis II.
Collapse
Affiliation(s)
- Ting Zhang
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shuang-Hui Zhao
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yan He
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
4
|
Tanasa S, Shukla N, Cairo A, Ganji RS, Mikulková P, Valuchova S, Raxwal VK, Capitao C, Schnittger A, Zdráhal Z, Riha K. A complex role of Arabidopsis CDKD;3 in meiotic progression and cytokinesis. PLANT DIRECT 2023; 7:e477. [PMID: 36891158 PMCID: PMC9986724 DOI: 10.1002/pld3.477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Meiosis is a specialized cell division that halves the number of chromosomes in two consecutive rounds of chromosome segregation. In angiosperm plants is meiosis followed by mitotic divisions to form rudimentary haploid gametophytes. In Arabidopsis, termination of meiosis and transition to gametophytic development are governed by TDM1 and SMG7 that mediate inhibition of translation. Mutants deficient in this mechanism do not form tetrads but instead undergo multiple cycles of aberrant nuclear divisions that are likely caused by the failure to downregulate cyclin dependent kinases during meiotic exit. A suppressor screen to identify genes that contribute to meiotic exit uncovered a mutation in cyclin-dependent kinase D;3 (CDKD;3) that alleviates meiotic defects in smg7 deficient plants. The CDKD;3 deficiency prevents aberrant meiotic divisions observed in smg7 mutants or delays their onset after initiation of cytokinesis, which permits formation of functional microspores. Although CDKD;3 acts as an activator of cyclin-dependent kinase A;1 (CDKA;1), the main cyclin dependent kinase that regulates meiosis, cdkd;3 mutation appears to promote meiotic exit independently of CDKA;1. Furthermore, analysis of CDKD;3 interactome revealed enrichment for proteins implicated in cytokinesis, suggesting a more complex function of CDKD;3 in cell cycle regulation.
Collapse
Affiliation(s)
- Sorin Tanasa
- Central European Institute of Technology (CEITEC) Masaryk UniversityBrnoCzech Republic
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Neha Shukla
- Central European Institute of Technology (CEITEC) Masaryk UniversityBrnoCzech Republic
| | - Albert Cairo
- Central European Institute of Technology (CEITEC) Masaryk UniversityBrnoCzech Republic
| | - Ranjani S. Ganji
- Central European Institute of Technology (CEITEC) Masaryk UniversityBrnoCzech Republic
| | - Pavlina Mikulková
- Central European Institute of Technology (CEITEC) Masaryk UniversityBrnoCzech Republic
| | - Sona Valuchova
- Central European Institute of Technology (CEITEC) Masaryk UniversityBrnoCzech Republic
| | - Vivek K. Raxwal
- Central European Institute of Technology (CEITEC) Masaryk UniversityBrnoCzech Republic
| | - Claudio Capitao
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesViennaAustria
| | - Arp Schnittger
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| | - Zbyněk Zdráhal
- Central European Institute of Technology (CEITEC) Masaryk UniversityBrnoCzech Republic
| | - Karel Riha
- Central European Institute of Technology (CEITEC) Masaryk UniversityBrnoCzech Republic
| |
Collapse
|
5
|
The biological functions of nonsense-mediated mRNA decay in plants: RNA quality control and beyond. Biochem Soc Trans 2023; 51:31-39. [PMID: 36695509 DOI: 10.1042/bst20211231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved quality control pathway that inhibits the expression of transcripts containing premature termination codon. Transcriptome and phenotypic studies across a range of organisms indicate roles of NMD beyond RNA quality control and imply its involvement in regulating gene expression in a wide range of physiological processes. Studies in moss Physcomitrella patens and Arabidopsis thaliana have shown that NMD is also important in plants where it contributes to the regulation of pathogen defence, hormonal signalling, circadian clock, reproduction and gene evolution. Here, we provide up to date overview of the biological functions of NMD in plants. In addition, we discuss several biological processes where NMD factors implement their function through NMD-independent mechanisms.
Collapse
|
6
|
Cairo A, Vargova A, Shukla N, Capitao C, Mikulkova P, Valuchova S, Pecinkova J, Bulankova P, Riha K. Meiotic exit in Arabidopsis is driven by P-body-mediated inhibition of translation. Science 2022; 377:629-634. [PMID: 35926014 DOI: 10.1126/science.abo0904] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Meiosis, at the transition between diploid and haploid life cycle phases, is accompanied by reprograming of cell division machinery and followed by a transition back to mitosis. We show that, in Arabidopsis, this transition is driven by inhibition of translation, achieved by a mechanism that involves processing bodies (P-bodies). During the second meiotic division, the meiosis-specific protein THREE-DIVISION MUTANT 1 (TDM1) is incorporated into P-bodies through interaction with SUPPRESSOR WITH MORPHOGENETIC EFFECTS ON GENITALIA 7 (SMG7). TDM1 attracts eIF4F, the main translation initiation complex, temporarily sequestering it in P-bodies and inhibiting translation. The failure of tdm1 mutants to terminate meiosis can be overcome by chemical inhibition of translation. We propose that TDM1-containing P-bodies down-regulate expression of meiotic transcripts to facilitate transition of cell fates to postmeiotic gametophyte differentiation.
Collapse
Affiliation(s)
- Albert Cairo
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic
| | - Anna Vargova
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic
| | - Neha Shukla
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic
| | - Claudio Capitao
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OAW), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Pavlina Mikulkova
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic
| | - Sona Valuchova
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic
| | - Jana Pecinkova
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic
| | - Petra Bulankova
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OAW), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Karel Riha
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
7
|
Saroha A, Pal D, Gomashe SS, Akash, Kaur V, Ujjainwal S, Rajkumar S, Aravind J, Radhamani J, Kumar R, Chand D, Sengupta A, Wankhede DP. Identification of QTNs Associated With Flowering Time, Maturity, and Plant Height Traits in Linum usitatissimum L. Using Genome-Wide Association Study. Front Genet 2022; 13:811924. [PMID: 35774513 PMCID: PMC9237403 DOI: 10.3389/fgene.2022.811924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/02/2022] [Indexed: 12/21/2022] Open
Abstract
Early flowering, maturity, and plant height are important traits for linseed to fit in rice fallows, for rainfed agriculture, and for economically viable cultivation. Here, Multi-Locus Genome-Wide Association Study (ML-GWAS) was undertaken in an association mapping panel of 131 accessions, genotyped using 68,925 SNPs identified by genotyping by sequencing approach. Phenotypic evaluation data of five environments comprising 3 years and two locations were used. GWAS was performed for three flowering time traits including days to 5%, 50%, and 95% flowering, days to maturity, and plant height by employing five ML-GWAS methods: FASTmrEMMA, FASTmrMLM, ISIS EM-BLASSO, mrMLM, and pLARmEB. A total of 335 unique QTNs have been identified for five traits across five environments. 109 QTNs were stable as observed in ≥2 methods and/or environments, explaining up to 36.6% phenotypic variance. For three flowering time traits, days to maturity, and plant height, 53, 30, and 27 stable QTNs, respectively, were identified. Candidate genes having roles in flower, pollen, embryo, seed and fruit development, and xylem/phloem histogenesis have been identified. Gene expression of candidate genes for flowering and plant height were studied using transcriptome of an early maturing variety Sharda (IC0523807). The present study unravels QTNs/candidate genes underlying complex flowering, days to maturity, and plant height traits in linseed.
Collapse
|
8
|
De Jaeger-Braet J, Krause L, Buchholz A, Schnittger A. Heat stress reveals a specialized variant of the pachytene checkpoint in meiosis of Arabidopsis thaliana. THE PLANT CELL 2022; 34:433-454. [PMID: 34718750 PMCID: PMC8846176 DOI: 10.1093/plcell/koab257] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/14/2021] [Indexed: 05/25/2023]
Abstract
Plant growth and fertility strongly depend on environmental conditions such as temperature. Remarkably, temperature also influences meiotic recombination and thus, the current climate change will affect the genetic make-up of plants. To better understand the effects of temperature on meiosis, we followed male meiocytes in Arabidopsis thaliana by live cell imaging under three temperature regimes: at 21°C; at heat shock conditions of 30°C and 34°C; after an acclimatization phase of 1 week at 30°C. This work led to a cytological framework of meiotic progression at elevated temperature. We determined that an increase from 21°C to 30°C speeds up meiosis with specific phases being more amenable to heat than others. An acclimatization phase often moderated this effect. A sudden increase to 34°C promoted a faster progression of early prophase compared to 21°C. However, the phase in which cross-overs mature was prolonged at 34°C. Since mutants involved in the recombination pathway largely did not show the extension of this phase at 34°C, we conclude that the delay is recombination-dependent. Further analysis also revealed the involvement of the ATAXIA TELANGIECTASIA MUTATED kinase in this prolongation, indicating the existence of a pachytene checkpoint in plants, yet in a specialized form.
Collapse
Affiliation(s)
- Joke De Jaeger-Braet
- Department of Developmental Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| | - Linda Krause
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anika Buchholz
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arp Schnittger
- Department of Developmental Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
9
|
Blasio F, Prieto P, Pradillo M, Naranjo T. Genomic and Meiotic Changes Accompanying Polyploidization. PLANTS (BASEL, SWITZERLAND) 2022; 11:125. [PMID: 35009128 PMCID: PMC8747196 DOI: 10.3390/plants11010125] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 05/04/2023]
Abstract
Hybridization and polyploidy have been considered as significant evolutionary forces in adaptation and speciation, especially among plants. Interspecific gene flow generates novel genetic variants adaptable to different environments, but it is also a gene introgression mechanism in crops to increase their agronomical yield. An estimate of 9% of interspecific hybridization has been reported although the frequency varies among taxa. Homoploid hybrid speciation is rare compared to allopolyploidy. Chromosome doubling after hybridization is the result of cellular defects produced mainly during meiosis. Unreduced gametes, which are formed at an average frequency of 2.52% across species, are the result of altered spindle organization or orientation, disturbed kinetochore functioning, abnormal cytokinesis, or loss of any meiotic division. Meiotic changes and their genetic basis, leading to the cytological diploidization of allopolyploids, are just beginning to be understood especially in wheat. However, the nature and mode of action of homoeologous recombination suppressor genes are poorly understood in other allopolyploids. The merger of two independent genomes causes a deep modification of their architecture, gene expression, and molecular interactions leading to the phenotype. We provide an overview of genomic changes and transcriptomic modifications that particularly occur at the early stages of allopolyploid formation.
Collapse
Affiliation(s)
- Francesco Blasio
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4048, 14080 Cordova, Spain;
| | - Mónica Pradillo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| | - Tomás Naranjo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| |
Collapse
|
10
|
Prusicki MA, Balboni M, Sofroni K, Hamamura Y, Schnittger A. Caught in the Act: Live-Cell Imaging of Plant Meiosis. FRONTIERS IN PLANT SCIENCE 2021; 12:718346. [PMID: 34992616 PMCID: PMC8724559 DOI: 10.3389/fpls.2021.718346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Live-cell imaging is a powerful method to obtain insights into cellular processes, particularly with respect to their dynamics. This is especially true for meiosis, where chromosomes and other cellular components such as the cytoskeleton follow an elaborate choreography over a relatively short period of time. Making these dynamics visible expands understanding of the regulation of meiosis and its underlying molecular forces. However, the analysis of meiosis by live-cell imaging is challenging; specifically in plants, a temporally resolved understanding of chromosome segregation and recombination events is lacking. Recent advances in live-cell imaging now allow the analysis of meiotic events in plants in real time. These new microscopy methods rely on the generation of reporter lines for meiotic regulators and on the establishment of ex vivo culture and imaging conditions, which stabilize the specimen and keep it alive for several hours or even days. In this review, we combine an overview of the technical aspects of live-cell imaging in plants with a summary of outstanding questions that can now be addressed to promote live-cell imaging in Arabidopsis and other plant species and stimulate ideas on the topics that can be addressed in the context of plant meiotic recombination.
Collapse
Affiliation(s)
| | | | | | | | - Arp Schnittger
- Department of Developmental Biology, Institute for Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
11
|
A CENH3 mutation promotes meiotic exit and restores fertility in SMG7-deficient Arabidopsis. PLoS Genet 2021; 17:e1009779. [PMID: 34591845 PMCID: PMC8509889 DOI: 10.1371/journal.pgen.1009779] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/12/2021] [Accepted: 08/16/2021] [Indexed: 01/21/2023] Open
Abstract
Meiosis in angiosperm plants is followed by mitotic divisions to form multicellular haploid gametophytes. Termination of meiosis and transition to gametophytic development is, in Arabidopsis, governed by a dedicated mechanism that involves SMG7 and TDM1 proteins. Mutants carrying the smg7-6 allele are semi-fertile due to reduced pollen production. We found that instead of forming tetrads, smg7-6 pollen mother cells undergo multiple rounds of chromosome condensation and spindle assembly at the end of meiosis, resembling aberrant attempts to undergo additional meiotic divisions. A suppressor screen uncovered a mutation in centromeric histone H3 (CENH3) that increased fertility and promoted meiotic exit in smg7-6 plants. The mutation led to inefficient splicing of the CENH3 mRNA and a substantial decrease of CENH3, resulting in smaller centromeres. The reduced level of CENH3 delayed formation of the mitotic spindle but did not have an apparent effect on plant growth and development. We suggest that impaired spindle re-assembly at the end of meiosis limits aberrant divisions in smg7-6 plants and promotes formation of tetrads and viable pollen. Furthermore, the mutant with reduced level of CENH3 was very inefficient haploid inducer indicating that differences in centromere size is not the key determinant of centromere-mediated genome elimination. Meiosis is a reductional cell division that halves number of chromosomes during two successive rounds of chromosome segregation without intervening DNA replication. Such mode of chromosome segregation requires extensive reprogramming of the cell division machinery at the entry to meiosis, and inactivation of the meiotic program upon the formation of haploid spores. Here we showed that Arabidopsis partially deficient in the RNA decay factor SMG7 fail to exit meiosis and continue with attempts to undergo additional cycles of post-meiotic chromosome segregations without genome replication. This results in a reduced number of viable pollen and diminished fertility. To find genes involved in meiotic exit, we performed a suppressor screen for the SMG7-deicient plants that re-gain fertility. We found that reducing the amount of centromeric histone partially restores pollen formation and fertility in smg7 mutants. This is likely due to inefficient formation of centromere-microtubule interactions that impairs spindle reassembly and re-entry into aberrant rounds of post-meiotic chromosome segregation.
Collapse
|
12
|
Wang Y, van Rengs WMJ, Zaidan MWAM, Underwood CJ. Meiosis in crops: from genes to genomes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6091-6109. [PMID: 34009331 PMCID: PMC8483783 DOI: 10.1093/jxb/erab217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/14/2021] [Indexed: 05/06/2023]
Abstract
Meiosis is a key feature of sexual reproduction. During meiosis homologous chromosomes replicate, recombine, and randomly segregate, followed by the segregation of sister chromatids to produce haploid cells. The unique genotypes of recombinant gametes are an essential substrate for the selection of superior genotypes in natural populations and in plant breeding. In this review we summarize current knowledge on meiosis in diverse monocot and dicot crop species and provide a comprehensive resource of cloned meiotic mutants in six crop species (rice, maize, wheat, barley, tomato, and Brassica species). Generally, the functional roles of meiotic proteins are conserved between plant species, but we highlight notable differences in mutant phenotypes. The physical lengths of plant chromosomes vary greatly; for instance, wheat chromosomes are roughly one order of magnitude longer than those of rice. We explore how chromosomal distribution for crossover recombination can vary between species. We conclude that research on meiosis in crops will continue to complement that in Arabidopsis, and alongside possible applications in plant breeding will facilitate a better understanding of how the different stages of meiosis are controlled in plant species.
Collapse
Affiliation(s)
- Yazhong Wang
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| | - Willem M J van Rengs
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| | - Mohd Waznul Adly Mohd Zaidan
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| | - Charles J Underwood
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| |
Collapse
|
13
|
Zhang X, Huang Q, Wang P, Liu F, Luo M, Li X, Wang Z, Wan L, Yang G, Hong D. A 24,482-bp deletion is associated with increased seed weight in Brassica napus L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2653-2669. [PMID: 34002254 DOI: 10.1007/s00122-021-03850-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
A major QTL for seed weight was fine-mapped in rapeseed, and a 24,482-bp deletion likely mediates the effect through multiple pathways. Exploration of the genes controlling seed weight is critical to the improvement of crop yield and elucidation of the mechanisms underlying seed formation in rapeseed (Brassica napus L.). We previously identified the quantitative trait locus (QTL) qSW.C9 for the thousand-seed weight (TSW) in a double haploid population constructed from F1 hybrids between the parental accessions HZ396 and Y106. Here, we confirmed the phenotypic effects associated with qSW.C9 in BC3F2 populations and fine-mapped the candidate causal locus to a 266-kb interval. Sequence and expression analyses revealed that a 24,482-bp deletion in HZ396 containing six predicted genes most likely underlies qSW.C9. Differential gene expression analysis and cytological observations suggested that qSW.C9 affects both cell proliferation and cell expansion through multiple signaling pathways. After genotyping of a rapeseed diversity panel to define the haplotype structure, it could be concluded that the selection of germplasm with two specific markers may be effective in improving the seed weight of rapeseed. This study provides a solid foundation for the identification of the causal gene of qSW.C9 and offers a promising target for the breeding of higher-yielding rapeseed.
Collapse
Affiliation(s)
- Xiaohui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qiyang Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Feiyang Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Mudan Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhuanrong Wang
- Institute of Crops, Wuhan Academy of Agricultural Sciences, Wuhan, 430065, Hubei, China
| | - Lili Wan
- Institute of Crops, Wuhan Academy of Agricultural Sciences, Wuhan, 430065, Hubei, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
14
|
Orr JN, Waugh R, Colas I. Ubiquitination in Plant Meiosis: Recent Advances and High Throughput Methods. FRONTIERS IN PLANT SCIENCE 2021; 12:667314. [PMID: 33897750 PMCID: PMC8058418 DOI: 10.3389/fpls.2021.667314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/15/2021] [Indexed: 06/06/2023]
Abstract
Meiosis is a specialized cell division which is essential to sexual reproduction. The success of this highly ordered process involves the timely activation, interaction, movement, and removal of many proteins. Ubiquitination is an extraordinarily diverse post-translational modification with a regulatory role in almost all cellular processes. During meiosis, ubiquitin localizes to chromatin and the expression of genes related to ubiquitination appears to be enhanced. This may be due to extensive protein turnover mediated by proteasomal degradation. However, degradation is not the only substrate fate conferred by ubiquitination which may also mediate, for example, the activation of key transcription factors. In plant meiosis, the specific roles of several components of the ubiquitination cascade-particularly SCF complex proteins, the APC/C, and HEI10-have been partially characterized indicating diverse roles in chromosome segregation, recombination, and synapsis. Nonetheless, these components remain comparatively poorly understood to their counterparts in other processes and in other eukaryotes. In this review, we present an overview of our understanding of the role of ubiquitination in plant meiosis, highlighting recent advances, remaining challenges, and high throughput methods which may be used to overcome them.
Collapse
Affiliation(s)
- Jamie N. Orr
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- School of Agriculture and Wine, University of Adelaide, Adelaide, SA, Australia
| | - Isabelle Colas
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| |
Collapse
|
15
|
Sofroni K, Takatsuka H, Yang C, Dissmeyer N, Komaki S, Hamamura Y, Böttger L, Umeda M, Schnittger A. CDKD-dependent activation of CDKA;1 controls microtubule dynamics and cytokinesis during meiosis. J Cell Biol 2021; 219:151917. [PMID: 32609301 PMCID: PMC7401817 DOI: 10.1083/jcb.201907016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/17/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Precise control of cytoskeleton dynamics and its tight coordination with chromosomal events are key to cell division. This is exemplified by formation of the spindle and execution of cytokinesis after nuclear division. Here, we reveal that the central cell cycle regulator CYCLIN DEPENDENT KINASE A;1 (CDKA;1), the Arabidopsis homologue of Cdk1 and Cdk2, partially in conjunction with CYCLIN B3;1 (CYCB3;1), is a key regulator of the microtubule cytoskeleton in meiosis. For full CDKA;1 activity, the function of three redundantly acting CDK-activating kinases (CAKs), CDKD;1, CDKD;2, and CDKD;3, is necessary. Progressive loss of these genes in combination with a weak loss-of-function mutant in CDKA;1 allowed a fine-grained dissection of the requirement of cell-cycle kinase activity for meiosis. Notably, a moderate reduction of CDKA;1 activity converts the simultaneous cytokinesis in Arabidopsis, i.e., one cytokinesis separating all four meiotic products concurrently into two successive cytokineses with cell wall formation after the first and second meiotic division, as found in many monocotyledonous species.
Collapse
Affiliation(s)
- Kostika Sofroni
- University of Hamburg, Department of Developmental Biology, Hamburg, Germany
| | - Hirotomo Takatsuka
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Nara, Japan
| | - Chao Yang
- University of Hamburg, Department of Developmental Biology, Hamburg, Germany
| | - Nico Dissmeyer
- Department of Plant Physiology, University of Osnabrück, Osnabrück, Germany
| | - Shinichiro Komaki
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Nara, Japan
| | - Yuki Hamamura
- University of Hamburg, Department of Developmental Biology, Hamburg, Germany
| | - Lev Böttger
- University of Hamburg, Department of Developmental Biology, Hamburg, Germany
| | - Masaaki Umeda
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Nara, Japan
| | - Arp Schnittger
- University of Hamburg, Department of Developmental Biology, Hamburg, Germany
| |
Collapse
|
16
|
Saleme MDLS, Andrade IR, Eloy NB. The Role of Anaphase-Promoting Complex/Cyclosome (APC/C) in Plant Reproduction. FRONTIERS IN PLANT SCIENCE 2021; 12:642934. [PMID: 33719322 PMCID: PMC7943633 DOI: 10.3389/fpls.2021.642934] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/03/2021] [Indexed: 05/06/2023]
Abstract
Most eukaryotic species propagate through sexual reproduction that requires male and female gametes. In flowering plants, it starts through a single round of DNA replication (S phase) and two consecutive chromosome segregation (meiosis I and II). Subsequently, haploid mitotic divisions occur, which results in a male gametophyte (pollen grain) and a female gametophyte (embryo sac) formation. In order to obtain viable gametophytes, accurate chromosome segregation is crucial to ensure ploidy stability. A precise gametogenesis progression is tightly regulated in plants and is controlled by multiple mechanisms to guarantee a correct evolution through meiotic cell division and sexual differentiation. In the past years, research in the field has shown an important role of the conserved E3-ubiquitin ligase complex, Anaphase-Promoting Complex/Cyclosome (APC/C), in this process. The APC/C is a multi-subunit complex that targets proteins for degradation via proteasome 26S. The functional characterization of APC/C subunits in Arabidopsis, which is one of the main E3 ubiquitin ligase that controls cell cycle, has revealed that all subunits investigated so far are essential for gametophytic development and/or embryogenesis.
Collapse
|
17
|
Aarabi F, Naake T, Fernie AR, Hoefgen R. Coordinating Sulfur Pools under Sulfate Deprivation. TRENDS IN PLANT SCIENCE 2020; 25:1227-1239. [PMID: 32800669 DOI: 10.1016/j.tplants.2020.07.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 05/22/2023]
Abstract
Plants display manifold metabolic changes on sulfate deficiency (S deficiency) with all sulfur-containing pools of primary and secondary metabolism affected. O-Acetylserine (OAS), whose levels are rapidly altered on S deficiency, is correlated tightly with novel regulators of plant sulfur metabolism that have key roles in balancing plant sulfur pools, including the Sulfur Deficiency Induced genes (SDI1 and SDI2), More Sulfur Accumulation1 (MSA1), and GGCT2;1. Despite the importance of OAS in the coordination of S pools under stress, mechanisms of OAS perception and signaling have remained elusive. Here, we put particular focus on the general OAS-responsive genes but also elaborate on the specific roles of SDI1 and SDI2 genes, which downregulate the glucosinolate (GSL) pool size. We also highlight the key open questions in sulfur partitioning.
Collapse
Affiliation(s)
- Fayezeh Aarabi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Thomas Naake
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
18
|
Sexual reproduction potential implied by functional analysis of SPO11 in Phaeodactylum tricornutum. Gene 2020; 757:144929. [PMID: 32622990 DOI: 10.1016/j.gene.2020.144929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/19/2020] [Accepted: 06/27/2020] [Indexed: 01/05/2023]
Abstract
Phaeodactylum tricornutum is a model microalgae that is widely used to study diatom physiology and ecology. Since the meiotic process and sexual cycle have never been observed directly, P. tricornutum has been considered to be an asexual species. However, phylogenetic analysis of the P. tricornutum genome has revealed a series of meiosis-specific gene homologues in this species. We identified two copies of differently transcribed SPO11 homologs that contain the conserved motifs of Winged-helix and Toprim domains. The homolog PtSPO11-3 interacts with TopoVIB in yeast two-hybrid analysis, whereas the homolog PtSPO11-2 could rescue the sporulation defect of a Spo11 yeast mutant strain. PtSPO11-2 was also found to be significantly up-regulated at low temperatures in P. tricornutum and its key catalytic residue was important to the homolog's function in sporulation. The results herein provide positive clue that meiosis and sexual reproduction could exist in this diatom.
Collapse
|
19
|
Pérez‐López E, Hossain MM, Tu J, Waldner M, Todd CD, Kusalik AJ, Wei Y, Bonham‐Smith PC. Transcriptome Analysis Identifies Plasmodiophora brassicae Secondary Infection Effector Candidates. J Eukaryot Microbiol 2020; 67:337-351. [PMID: 31925980 PMCID: PMC7317818 DOI: 10.1111/jeu.12784] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 12/15/2019] [Accepted: 01/04/2020] [Indexed: 12/17/2022]
Abstract
Plasmodiophora brassicae (Wor.) is an obligate intracellular plant pathogen affecting Brassicas worldwide. Identification of effector proteins is key to understanding the interaction between P. brassicae and its susceptible host plants. To date, there is very little information available on putative effector proteins secreted by P. brassicae during a secondary infection of susceptible host plants, resulting in root gall production. A bioinformatics pipeline approach to RNA-Seq data from Arabidopsis thaliana (L.) Heynh. root tissues at 17, 20, and 24 d postinoculation (dpi) identified 32 small secreted P. brassicae proteins (SSPbPs) that were highly expressed over this secondary infection time frame. Functional signal peptides were confirmed for 31 of the SSPbPs, supporting the accuracy of the pipeline designed to identify secreted proteins. Expression profiles at 0, 2, 5, 7, 14, 21, and 28 dpi verified the involvement of some of the SSPbPs in secondary infection. For seven of the SSPbPs, a functional domain was identified using Blast2GO and 3D structure analysis and domain functionality was confirmed for SSPbP22, a kinase localized to the cytoplasm and nucleus.
Collapse
Affiliation(s)
- Edel Pérez‐López
- Department of BiologyUniversity of SaskatchewanSaskatoonSKS7N 5E2Canada
| | | | - Jiangying Tu
- Agriculture and Agri‐food CanadaSaskatoon Research CentreSaskatoonSKS7N 0X2Canada
| | - Matthew Waldner
- Department of Computer ScienceUniversity of SaskatchewanSaskatoonSKS7N 5C9Canada
| | | | - Anthony J. Kusalik
- Department of Computer ScienceUniversity of SaskatchewanSaskatoonSKS7N 5C9Canada
| | - Yangdou Wei
- Department of BiologyUniversity of SaskatchewanSaskatoonSKS7N 5E2Canada
| | | |
Collapse
|
20
|
Yang C, Sofroni K, Wijnker E, Hamamura Y, Carstens L, Harashima H, Stolze SC, Vezon D, Chelysheva L, Orban‐Nemeth Z, Pochon G, Nakagami H, Schlögelhofer P, Grelon M, Schnittger A. The Arabidopsis Cdk1/Cdk2 homolog CDKA;1 controls chromosome axis assembly during plant meiosis. EMBO J 2020; 39:e101625. [PMID: 31556459 PMCID: PMC6996576 DOI: 10.15252/embj.2019101625] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
Meiosis is key to sexual reproduction and genetic diversity. Here, we show that the Arabidopsis cyclin-dependent kinase Cdk1/Cdk2 homolog CDKA;1 is an important regulator of meiosis needed for several aspects of meiosis such as chromosome synapsis. We identify the chromosome axis protein ASYNAPTIC 1 (ASY1), the Arabidopsis homolog of Hop1 (homolog pairing 1), essential for synaptonemal complex formation, as a target of CDKA;1. The phosphorylation of ASY1 is required for its recruitment to the chromosome axis via ASYNAPTIC 3 (ASY3), the Arabidopsis reductional division 1 (Red1) homolog, counteracting the disassembly activity of the AAA+ ATPase PACHYTENE CHECKPOINT 2 (PCH2). Furthermore, we have identified the closure motif in ASY1, typical for HORMA domain proteins, and provide evidence that the phosphorylation of ASY1 regulates the putative self-polymerization of ASY1 along the chromosome axis. Hence, the phosphorylation of ASY1 by CDKA;1 appears to be a two-pronged mechanism to initiate chromosome axis formation in meiosis.
Collapse
Affiliation(s)
- Chao Yang
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| | - Kostika Sofroni
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| | - Erik Wijnker
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
- Present address:
Laboratory of GeneticsWageningen University & ResearchWageningenThe Netherlands
| | - Yuki Hamamura
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| | - Lena Carstens
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
- Present address:
Plant Developmental Biology & Plant PhysiologyKiel UniversityKielGermany
| | - Hirofumi Harashima
- RIKEN Center for Sustainable Resource ScienceYokohamaJapan
- Present address:
Solution Research LaboratoryAS ONE CorporationKawasakiku, KawasakiJapan
| | | | - Daniel Vezon
- Institut Jean‐Pierre BourginINRAAgroParisTechCNRSUniversité Paris‐SaclayVersaillesFrance
| | - Liudmila Chelysheva
- Institut Jean‐Pierre BourginINRAAgroParisTechCNRSUniversité Paris‐SaclayVersaillesFrance
| | - Zsuzsanna Orban‐Nemeth
- Department of Chromosome BiologyMax F. Perutz LaboratoriesVienna BiocenterUniversity of ViennaViennaAustria
- Present address:
Institute of Molecular PathologyVienna BiocenterViennaAustria
| | - Gaëtan Pochon
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| | | | - Peter Schlögelhofer
- Department of Chromosome BiologyMax F. Perutz LaboratoriesVienna BiocenterUniversity of ViennaViennaAustria
| | - Mathilde Grelon
- Institut Jean‐Pierre BourginINRAAgroParisTechCNRSUniversité Paris‐SaclayVersaillesFrance
| | - Arp Schnittger
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| |
Collapse
|
21
|
Xu R, Xu J, Wang L, Niu B, Copenhaver GP, Ma H, Zheng B, Wang Y. The Arabidopsis anaphase-promoting complex/cyclosome subunit 8 is required for male meiosis. THE NEW PHYTOLOGIST 2019; 224:229-241. [PMID: 31230348 PMCID: PMC6771777 DOI: 10.1111/nph.16014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/03/2019] [Indexed: 05/07/2023]
Abstract
Faithful chromosome segregation is required for both mitotic and meiotic cell divisions and is regulated by multiple mechanisms including the anaphase-promoting complex/cyclosome (APC/C), which is the largest known E3 ubiquitin-ligase complex and has been implicated in regulating chromosome segregation in both mitosis and meiosis in animals. However, the role of the APC/C during plant meiosis remains largely unknown. Here, we show that Arabidopsis APC8 is required for male meiosis. We used a combination of genetic analyses, cytology and immunolocalisation to define the function of AtAPC8 in male meiosis. Meiocytes from apc8-1 plants exhibit several meiotic defects including improper alignment of bivalents at metaphase I, unequal chromosome segregation during anaphase II, and subsequent formation of polyads. Immunolocalisation using an antitubulin antibody showed that APC8 is required for normal spindle morphology. We also observed mitotic defects in apc8-1, including abnormal sister chromatid segregation and microtubule morphology. Our results demonstrate that Arabidopsis APC/C is required for meiotic chromosome segregation and that APC/C-mediated regulation of meiotic chromosome segregation is a conserved mechanism among eukaryotes.
Collapse
Affiliation(s)
- Rong‐Yan Xu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological EngineeringInstitute of Plant BiologySchool of Life SciencesFudan UniversityShanghai200438China
- Shanghai Chenshan Plant Science Research CenterChinese Academy of SciencesChenshan Botanical GardenShanghai201602China
| | - Jing Xu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological EngineeringInstitute of Plant BiologySchool of Life SciencesFudan UniversityShanghai200438China
| | - Liudan Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological EngineeringInstitute of Plant BiologySchool of Life SciencesFudan UniversityShanghai200438China
| | - Baixiao Niu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological EngineeringInstitute of Plant BiologySchool of Life SciencesFudan UniversityShanghai200438China
- Key Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhou225009China
| | - Gregory P. Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome SciencesUniversity of North Carolina at Chapel HillChapel HillNC27599‐3280USA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina School of MedicineChapel HillNC27599‐3280USA
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological EngineeringInstitute of Plant BiologySchool of Life SciencesFudan UniversityShanghai200438China
- Center for Evolutionary BiologyInstitutes of Biomedical SciencesSchool of Life SciencesFudan UniversityShanghai200433China
| | - Binglian Zheng
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological EngineeringInstitute of Plant BiologySchool of Life SciencesFudan UniversityShanghai200438China
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological EngineeringInstitute of Plant BiologySchool of Life SciencesFudan UniversityShanghai200438China
| |
Collapse
|
22
|
Advances Towards How Meiotic Recombination Is Initiated: A Comparative View and Perspectives for Plant Meiosis Research. Int J Mol Sci 2019; 20:ijms20194718. [PMID: 31547623 PMCID: PMC6801837 DOI: 10.3390/ijms20194718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
Meiosis is an essential cell-division process for ensuring genetic diversity across generations. Meiotic recombination ensures the accuracy of genetic interchange between homolous chromosomes and segregation of parental alleles. Programmed DNA double-strand breaks (DSBs), catalyzed by the evolutionarily conserved topoisomerase VIA (a subunit of the archaeal type II DNA topoisomerase)-like enzyme Spo11 and several other factors, is a distinctive feature of meiotic recombination initiation. The meiotic DSB formation and its regulatory mechanisms are similar among species, but certain aspects are distinct. In this review, we introduced the cumulative knowledge of the plant proteins crucial for meiotic DSB formation and technical advances in DSB detection. We also summarized the genome-wide DSB hotspot profiles for different model organisms. Moreover, we highlighted the classical views and recent advances in our knowledge of the regulatory mechanisms that ensure the fidelity of DSB formation, such as multifaceted kinase-mediated phosphorylation and the consequent high-dimensional changes in chromosome structure. We provided an overview of recent findings concerning DSB formation, distribution and regulation, all of which will help us to determine whether meiotic DSB formation is evolutionarily conserved or varies between plants and other organisms.
Collapse
|
23
|
Prusicki MA, Keizer EM, van Rosmalen RP, Komaki S, Seifert F, Müller K, Wijnker E, Fleck C, Schnittger A. Live cell imaging of meiosis in Arabidopsis thaliana. eLife 2019; 8:e42834. [PMID: 31107238 PMCID: PMC6559805 DOI: 10.7554/elife.42834] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 05/17/2019] [Indexed: 11/13/2022] Open
Abstract
To follow the dynamics of meiosis in the model plant Arabidopsis, we have established a live cell imaging setup to observe male meiocytes. Our method is based on the concomitant visualization of microtubules (MTs) and a meiotic cohesin subunit that allows following five cellular parameters: cell shape, MT array, nucleus position, nucleolus position, and chromatin condensation. We find that the states of these parameters are not randomly associated and identify 11 cellular states, referred to as landmarks, which occur much more frequently than closely related ones, indicating that they are convergence points during meiotic progression. As a first application of our system, we revisited a previously identified mutant in the meiotic A-type cyclin TARDY ASYNCHRONOUS MEIOSIS (TAM). Our imaging system enabled us to reveal both qualitatively and quantitatively altered landmarks in tam, foremost the formation of previously not recognized ectopic spindle- or phragmoplast-like structures that arise without attachment to chromosomes.
Collapse
Affiliation(s)
- Maria A Prusicki
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| | - Emma M Keizer
- Department of Agrotechnology and Food SciencesWageningen UniversityWageningenThe Netherlands
| | - Rik P van Rosmalen
- Department of Agrotechnology and Food SciencesWageningen UniversityWageningenThe Netherlands
| | - Shinichiro Komaki
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| | - Felix Seifert
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| | - Katja Müller
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| | - Erik Wijnker
- Department of Plant Science, Laboratory of GeneticsWageningen University and ResearchWageningenThe Netherlands
| | - Christian Fleck
- Department of Agrotechnology and Food SciencesWageningen UniversityWageningenThe Netherlands
| | - Arp Schnittger
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| |
Collapse
|
24
|
Capitao C, Shukla N, Wandrolova A, Mittelsten Scheid O, Riha K. Functional Characterization of SMG7 Paralogs in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:1602. [PMID: 30459790 PMCID: PMC6232500 DOI: 10.3389/fpls.2018.01602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/17/2018] [Indexed: 05/07/2023]
Abstract
SMG7 proteins are evolutionary conserved across eukaryotes and primarily known for their function in nonsense mediated RNA decay (NMD). In contrast to other NMD factors, SMG7 proteins underwent independent expansions during evolution indicating their propensity to adopt novel functions. Here we characterized SMG7 and SMG7-like (SMG7L) paralogs in Arabidopsis thaliana. SMG7 retained its role in NMD and additionally appears to have acquired another function in meiosis. We inactivated SMG7 by CRISPR/Cas9 mutagenesis and showed that, in contrast to our previous report, SMG7 is not an essential gene in Arabidopsis. Furthermore, our data indicate that the N-terminal phosphoserine-binding domain is required for both NMD and meiosis. Phenotypic analysis of SMG7 and SMG7L double mutants did not indicate any functional redundancy between the two genes, suggesting neofunctionalization of SMG7L. Finally, protein sequence comparison together with a phenotyping of T-DNA insertion mutants identified several conserved regions specific for SMG7 that may underlie its role in NMD and meiosis. This information provides a framework for deciphering the non-canonical functions of SMG7-family proteins.
Collapse
Affiliation(s)
- Claudio Capitao
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Neha Shukla
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Aneta Wandrolova
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Karel Riha
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- *Correspondence: Karel Riha,
| |
Collapse
|
25
|
Analysis of the meiotic transcriptome reveals the genes related to the regulation of pollen abortion in cytoplasmic male-sterile pepper (Capsicum annuum L.). Gene 2017; 641:8-17. [PMID: 29031775 DOI: 10.1016/j.gene.2017.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 01/23/2023]
Abstract
CMS, which refers to the inability to generate functional pollen grains while still producing a normal gynoecium, has been widely used for pepper hybrid seed production. Pepper line 8214A is an excellent CMS line exhibiting 100% male sterility and superior economic characteristics. A TUNEL assay revealed the nuclear DNA is damaged in 8214A PMCs during meiosis. TEM images indicated that the 8214A PMCs exhibited asynchronous meiosis after prophase I, and some PMCs degraded prematurely with morphological features typical of PCD. Additionally, at the end of meiosis, the 8214A PMCs formed abnormal non-tetrahedral tetrads that degraded in situ. To identify the genes involved in the pollen abortion of line 8214A, the transcriptional profiles of the 8214A and the 8214B anthers (i.e., from the fertile maintainer line) during meiosis were analyzed using an RNA-seq approach. A total of 1355 genes were determined to be differentially expressed, including 424 and 931 up- and down- regulated genes, respectively, in the 8214A anthers during meiosis relative to the expression levels in the 8214B. The expression levels of ubiquitin ligase and cell cycle-related genes were apparently down-regulated, while the expression of methyltransferase genes was up-regulated in the 8214A anthers during meiosis, which likely contributed to the PCD of these PMCs during meiosis. Thus, our results may be useful for revealing the molecular mechanism regulating the pollen abortion of CMS pepper.
Collapse
|
26
|
Liu XQ, Liu ZQ, Yu CY, Dong JG, Hu SW, Xu AX. TGMS in Rapeseed ( Brassica napus) Resulted in Aberrant Transcriptional Regulation, Asynchronous Microsporocyte Meiosis, Defective Tapetum, and Fused Sexine. FRONTIERS IN PLANT SCIENCE 2017; 8:1268. [PMID: 28775729 PMCID: PMC5517502 DOI: 10.3389/fpls.2017.01268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
The thermo-sensitive genic male sterility (TGMS) line SP2S is a spontaneous rapeseed mutation with several traits that are favorable for the production of two-line hybrids. To uncover the key cellular events and genetic regulation associated with TGMS expression, a combined study using cytological observation, transcriptome profiling, and gene expression analysis was conducted for SP2S and its near-isogenic line SP2F grown under warm conditions. Asynchronous microsporocyte meiosis and abnormal tapetal plastids and elaioplasts were demonstrated in the anther of SP2S. The tetrad microspore did not undergo mitosis before the cytoplasm degenerated. Delayed degradation of the tetrad wall, which led to tetrad microspore aggregation, resulted in postponement of sexine (outer layer of pollen exine) formation and sexine fusion in the tetrad. The nexine (foot layer of exine) was also absent. The delay of tetrad wall degradation and abnormality of the exine structure suggested that the defective tapetum lost important functions. Based on transcriptomic comparisons between young flower buds of SP2S and SP2F plants, a total of 465 differentially expressed transcripts (DETs) were identified, including 303 up-regulated DETs and 162 down-regulated DETs in SP2S. Several genes encoding small RNA degrading nuclease 2, small RNA 2'-O-methyltransferase, thioredoxin reductase 2, regulatory subunit A alpha isoform of serine/threonine-protein phosphatase 2A, glycine rich protein 1A, transcription factor bHLH25, leucine-rich repeat receptor kinase At3g14840 like, and fasciclin-like arabinogalactan proteins FLA19 and FLA20 were greatly depressed in SP2S. Interestingly, a POLLENLESS3-LIKE 2 gene encoding the Arabidopsis MS5 homologous protein, which is necessary for microsporocyte meiosis, was down-regulated in SP2S. Other genes that were up-regulated in SP2S encoded glucanase A6, ethylene-responsive transcription factor 1A-like, pollen-specific SF3, stress-associated endoplasmic reticulum protein 2, WRKY transcription factors and pentatricopeptide repeat (PPR) protein At1g07590. The tapetum-development-related genes, including BnEMS1, BnDYT1, and BnAMS, were slightly up-regulated in 3-mm-long flower buds or their anthers, and their downstream genes, BnMS1 and BnMYB80, which affect callose dissolution and exine formation, were greatly up-regulated in SP2S. This aberrant genetic regulation corresponded well with the cytological abnormalities. The results suggested that expression of TGMS associates with complex transcriptional regulation.
Collapse
Affiliation(s)
| | | | - Cheng-Yu Yu
- Department of Plant Science and Technology, College of Agronomy, Northwest A&F UniversityYangling, China
| | | | | | | |
Collapse
|
27
|
Glazinska P, Wojciechowski W, Kulasek M, Glinkowski W, Marciniak K, Klajn N, Kesy J, Kopcewicz J. De novo Transcriptome Profiling of Flowers, Flower Pedicels and Pods of Lupinus luteus (Yellow Lupine) Reveals Complex Expression Changes during Organ Abscission. FRONTIERS IN PLANT SCIENCE 2017; 8:641. [PMID: 28512462 PMCID: PMC5412092 DOI: 10.3389/fpls.2017.00641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/10/2017] [Indexed: 05/03/2023]
Abstract
Yellow lupine (Lupinus luteus L., Taper c.), a member of the legume family (Fabaceae L.), has an enormous practical importance. Its excessive flower and pod abscission represents an economic drawback, as proper flower and seed formation and development is crucial for the plant's productivity. Generative organ detachment takes place at the basis of the pedicels, within a specialized group of cells collectively known as the abscission zone (AZ). During plant growth these cells become competent to respond to specific signals that trigger separation and lead to the abolition of cell wall adhesion. Little is known about the molecular network controlling the yellow lupine organ abscission. The aim of our study was to establish the divergences and similarities in transcriptional networks in the pods, flowers and flower pedicels abscised or maintained on the plant, and to identify genes playing key roles in generative organ abscission in yellow lupine. Based on de novo transcriptome assembly, we identified 166,473 unigenes representing 219,514 assembled unique transcripts from flowers, flower pedicels and pods undergoing abscission and from control organs. Comparison of the cDNA libraries from dropped and control organs helped in identifying 1,343, 2,933 and 1,491 differentially expressed genes (DEGs) in the flowers, flower pedicels and pods, respectively. In DEG analyses, we focused on genes involved in phytohormonal regulation, cell wall functioning and metabolic pathways. Our results indicate that auxin, ethylene and gibberellins are some of the main factors engaged in generative organ abscission. Identified 28 DEGs common for all library comparisons are involved in cell wall functioning, protein metabolism, water homeostasis and stress response. Interestingly, among the common DEGs we also found an miR169 precursor, which is the first evidence of micro RNA engaged in abscission. A KEGG pathway enrichment analysis revealed that the identified DEGs were predominantly involved in carbohydrate and amino acid metabolism, but some other pathways were also targeted. This study represents the first comprehensive transcriptome-based characterization of organ abscission in L. luteus and provides a valuable data source not only for understanding the abscission signaling pathway in yellow lupine, but also for further research aimed at improving crop yields.
Collapse
Affiliation(s)
- Paulina Glazinska
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus UniversityTorun, Poland
| | - Waldemar Wojciechowski
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus UniversityTorun, Poland
| | - Milena Kulasek
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
| | - Wojciech Glinkowski
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
| | - Katarzyna Marciniak
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus UniversityTorun, Poland
| | - Natalia Klajn
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
| | - Jacek Kesy
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
| | - Jan Kopcewicz
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
| |
Collapse
|
28
|
Aarabi F, Kusajima M, Tohge T, Konishi T, Gigolashvili T, Takamune M, Sasazaki Y, Watanabe M, Nakashita H, Fernie AR, Saito K, Takahashi H, Hubberten HM, Hoefgen R, Maruyama-Nakashita A. Sulfur deficiency-induced repressor proteins optimize glucosinolate biosynthesis in plants. SCIENCE ADVANCES 2016; 2:e1601087. [PMID: 27730214 PMCID: PMC5055385 DOI: 10.1126/sciadv.1601087] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/31/2016] [Indexed: 05/21/2023]
Abstract
Glucosinolates (GSLs) in the plant order of the Brassicales are sulfur-rich secondary metabolites that harbor antipathogenic and antiherbivory plant-protective functions and have medicinal properties, such as carcinopreventive and antibiotic activities. Plants repress GSL biosynthesis upon sulfur deficiency (-S); hence, field performance and medicinal quality are impaired by inadequate sulfate supply. The molecular mechanism that links -S to GSL biosynthesis has remained understudied. We report here the identification of the -S marker genes sulfur deficiency induced 1 (SDI1) and SDI2 acting as major repressors controlling GSL biosynthesis in Arabidopsis under -S condition. SDI1 and SDI2 expression negatively correlated with GSL biosynthesis in both transcript and metabolite levels. Principal components analysis of transcriptome data indicated that SDI1 regulates aliphatic GSL biosynthesis as part of -S response. SDI1 was localized to the nucleus and interacted with MYB28, a major transcription factor that promotes aliphatic GSL biosynthesis, in both yeast and plant cells. SDI1 inhibited the transcription of aliphatic GSL biosynthetic genes by maintaining the DNA binding composition in the form of an SDI1-MYB28 complex, leading to down-regulation of GSL biosynthesis and prioritization of sulfate usage for primary metabolites under sulfur-deprived conditions.
Collapse
Affiliation(s)
- Fayezeh Aarabi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Miyuki Kusajima
- Faculty of Bioscience, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-town, Fukui 910-1195, Japan
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tomokazu Konishi
- Department of Bioresource Sciences, Akita Prefectural University, Shimoshinjyo-Nakano, Akita 010-0195, Japan
| | - Tamara Gigolashvili
- Botanical Institute, University of Cologne, Biocenter, Zuelpicher Str. 47 B, 50674 Cologne, Germany
| | - Makiko Takamune
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yoko Sasazaki
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mutsumi Watanabe
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Hideo Nakashita
- Faculty of Bioscience, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-town, Fukui 910-1195, Japan
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Kazuki Saito
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Hideki Takahashi
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Hans-Michael Hubberten
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Akiko Maruyama-Nakashita
- Faculty of Bioscience, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-town, Fukui 910-1195, Japan
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Graduate School of Agricultural Science, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
29
|
Yan X, Zeng X, Wang S, Li K, Yuan R, Gao H, Luo J, Liu F, Wu Y, Li Y, Zhu L, Wu G. Aberrant Meiotic Prophase I Leads to Genic Male Sterility in the Novel TE5A Mutant of Brassica napus. Sci Rep 2016; 6:33955. [PMID: 27670217 PMCID: PMC5037387 DOI: 10.1038/srep33955] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/05/2016] [Indexed: 12/15/2022] Open
Abstract
Genic male sterility (GMS) has already been extensively utilized for hybrid rapeseed production. TE5A is a novel thermo-sensitive dominant GMS line in Brassica napus, however, its mechanisms of GMS remain largely unclear. Histological and Transmission electron microscopy (TEM) analyses of anthers showed that the male gamete development of TE5A was arrested at meiosis prophase I. EdU uptake of S-phase meiocytes revealed that the TE5A mutant could accomplish DNA replication, however, chromosomal and fluorescence in situ hybridization (FISH) analyses of TE5A showed that homologous chromosomes could not pair, synapse, condense and form bivalents. We then analyzed the transcriptome differences between young floral buds of sterile plants and its near-isogenic fertile plants through RNA-Seq. A total of 3,841 differentially expressed genes (DEGs) were obtained, some of which were associated with homologous chromosome behavior and cell cycle control during meiosis. Dynamic expression changes of selected candidate DEGs were then analyzed at different anther developmental stages. The present study not only demonstrated that the TE5A mutant had defects in meiotic prophase I via detailed cytological analysis, but also provided a global insight into GMS-associated DEGs and elucidated the mechanisms of GMS in TE5A through RNA-Seq.
Collapse
Affiliation(s)
- Xiaohong Yan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Xinhua Zeng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Shasha Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Keqi Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Rong Yuan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Hongfei Gao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Junling Luo
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Fang Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Yuhua Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Yunjing Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Li Zhu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Gang Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| |
Collapse
|
30
|
Cifuentes M, Jolivet S, Cromer L, Harashima H, Bulankova P, Renne C, Crismani W, Nomura Y, Nakagami H, Sugimoto K, Schnittger A, Riha K, Mercier R. TDM1 Regulation Determines the Number of Meiotic Divisions. PLoS Genet 2016; 12:e1005856. [PMID: 26871453 PMCID: PMC4752240 DOI: 10.1371/journal.pgen.1005856] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 01/20/2016] [Indexed: 11/18/2022] Open
Abstract
Cell cycle control must be modified at meiosis to allow two divisions to follow a single round of DNA replication, resulting in ploidy reduction. The mechanisms that ensure meiosis termination at the end of the second and not at the end of first division are poorly understood. We show here that Arabidopsis thaliana TDM1, which has been previously shown to be essential for meiotic termination, interacts directly with the Anaphase-Promoting Complex. Further, mutations in TDM1 in a conserved putative Cyclin-Dependant Kinase (CDK) phosphorylation site (T16-P17) dominantly provoked premature meiosis termination after the first division, and the production of diploid spores and gametes. The CDKA;1-CYCA1.2/TAM complex, which is required to prevent premature meiotic exit, phosphorylated TDM1 at T16 in vitro. Finally, while CYCA1;2/TAM was previously shown to be expressed only at meiosis I, TDM1 is present throughout meiosis. These data, together with epistasis analysis, lead us to propose that TDM1 is an APC/C component whose function is to ensure meiosis termination at the end of meiosis II, and whose activity is inhibited at meiosis I by CDKA;1-TAM-mediated phosphorylation to prevent premature meiotic exit. This provides a molecular mechanism for the differential decision of performing an additional round of division, or not, at the end of meiosis I and II, respectively. Meiosis is a fundamental process for sexually reproducing organisms that creates genetic diversity within populations. A key feature of meiosis is the reduction of the number of chromosomes, from two sets to one set, prior to fertilization. This reduction in chromosome number is due to two cell divisions following a single round of DNA replication. In this study, we analysed the mechanism which controls the number of cell divisions, ensuring that meiotic termination occurs after the second meiotic division, and not at the end of the first division. We used the model plant Arabidopsis thaliana to show that the gene TDM1 has a central role in regulating meiotic cell divisions. The integrity of the gene affects whether one, two or three meiotic divisions will occur. We further explain the relationship between TDM1 and its regulator the cyclin TAM, and how they work together to produce reproductive cells with a reduced number of chromosomes. This tightly controlled mechanism ensures the transmission of the correct number of chromosomes from one generation to the next.
Collapse
Affiliation(s)
- Marta Cifuentes
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Sylvie Jolivet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Laurence Cromer
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Hirofumi Harashima
- RIKEN Center for Sustainable Resource Science, Suehiro, Tsurumi, Yokohama, Japan
| | - Petra Bulankova
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Charlotte Renne
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Wayne Crismani
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Yuko Nomura
- RIKEN Center for Sustainable Resource Science, Suehiro, Tsurumi, Yokohama, Japan
| | - Hirofumi Nakagami
- RIKEN Center for Sustainable Resource Science, Suehiro, Tsurumi, Yokohama, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Suehiro, Tsurumi, Yokohama, Japan
| | - Arp Schnittger
- University of Hamburg, Biozentrum Klein Flottbek, Department of Developmental Biology, Hamburg, Germany
| | - Karel Riha
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna, Austria
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice, Brno, Czech Republic
| | - Raphael Mercier
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
- * E-mail:
| |
Collapse
|
31
|
Li S, Chen L, Zhang L, Li X, Liu Y, Wu Z, Dong F, Wan L, Liu K, Hong D, Yang G. BnaC9.SMG7b Functions as a Positive Regulator of the Number of Seeds per Silique in Brassica napus by Regulating the Formation of Functional Female Gametophytes. PLANT PHYSIOLOGY 2015; 169:2744-60. [PMID: 26494121 PMCID: PMC4677898 DOI: 10.1104/pp.15.01040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/21/2015] [Indexed: 05/02/2023]
Abstract
Number of seeds per silique (NSS) is an important determinant of seed yield potential in Brassicaceae crops, and it is controlled by naturally occurring quantitative trait loci. We previously mapped a major quantitative trait locus, qSS.C9, on the C9 chromosome that controls NSS in Brassica napus. To gain a better understanding of how qSS.C9 controls NSS in B. napus, we isolated this locus through a map-based cloning strategy. qSS.C9 encodes a predicted small protein with 119 amino acids, designated as BnaC9.SMG7b, that shows homology with the Ever ShorterTelomere1 tertratricopeptide repeats and Ever Shorter Telomere central domains of Arabidopsis (Arabidopsis thaliana) SUPPRESSOR WITH MORPHOGENETIC EFFECTS ON GENITALIA7 (SMG7). BnaC9.SMG7b plays a role in regulating the formation of functional female gametophyte, thus determining the formation of functional megaspores and then mature ovules. Natural loss or artificial knockdown of BnaC9.SMG7b significantly reduces the number of functional ovules per silique and thus, results in decreased seed number, indicating that qSS.C9 is a positive regulator of NSS in B. napus. Sequence and function analyses show that BnaC9.SMG7b experiences a subfunctionalization process that causes loss of function in nonsense-mediated mRNA decay, such as in Arabidopsis SMG7. Haplotype analysis in 84 accessions showed that the favorable BnaC9.SMG7b alleles are prevalent in modern B. napus germplasms, suggesting that this locus has been a major selection target of B. napus improvement. Our results represent the first step toward unraveling the molecular mechanism that controls the natural variation of NSS in B. napus.
Collapse
Affiliation(s)
- Shipeng Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (S.L., L.C., L.Z., X.L., Y.L., Z.W., F.D., L.W., K.L., D.H., G.Y.); andCollege of Crop Science, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China (L.Z.)
| | - Lei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (S.L., L.C., L.Z., X.L., Y.L., Z.W., F.D., L.W., K.L., D.H., G.Y.); andCollege of Crop Science, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China (L.Z.)
| | - Liwu Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (S.L., L.C., L.Z., X.L., Y.L., Z.W., F.D., L.W., K.L., D.H., G.Y.); andCollege of Crop Science, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China (L.Z.)
| | - Xi Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (S.L., L.C., L.Z., X.L., Y.L., Z.W., F.D., L.W., K.L., D.H., G.Y.); andCollege of Crop Science, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China (L.Z.)
| | - Ying Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (S.L., L.C., L.Z., X.L., Y.L., Z.W., F.D., L.W., K.L., D.H., G.Y.); andCollege of Crop Science, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China (L.Z.)
| | - Zhikun Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (S.L., L.C., L.Z., X.L., Y.L., Z.W., F.D., L.W., K.L., D.H., G.Y.); andCollege of Crop Science, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China (L.Z.)
| | - Faming Dong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (S.L., L.C., L.Z., X.L., Y.L., Z.W., F.D., L.W., K.L., D.H., G.Y.); andCollege of Crop Science, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China (L.Z.)
| | - Lili Wan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (S.L., L.C., L.Z., X.L., Y.L., Z.W., F.D., L.W., K.L., D.H., G.Y.); andCollege of Crop Science, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China (L.Z.)
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (S.L., L.C., L.Z., X.L., Y.L., Z.W., F.D., L.W., K.L., D.H., G.Y.); andCollege of Crop Science, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China (L.Z.)
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (S.L., L.C., L.Z., X.L., Y.L., Z.W., F.D., L.W., K.L., D.H., G.Y.); andCollege of Crop Science, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China (L.Z.)
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China (S.L., L.C., L.Z., X.L., Y.L., Z.W., F.D., L.W., K.L., D.H., G.Y.); andCollege of Crop Science, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China (L.Z.)
| |
Collapse
|
32
|
Li J, Dukowic-Schulze S, Lindquist IE, Farmer AD, Kelly B, Li T, Smith AG, Retzel EF, Mudge J, Chen C. The plant-specific protein FEHLSTART controls male meiotic entry, initializing meiotic synchronization in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:659-71. [PMID: 26382719 DOI: 10.1111/tpj.13026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/28/2015] [Accepted: 09/02/2015] [Indexed: 05/15/2023]
Abstract
Meiosis marks the transition from the sporophyte to the gametophyte generation in the life cycle of flowering plants, and creates genetic variations through homologous recombination. In most flowering plants, meiosis is highly synchronized within each anther, which is significant for efficient fertilization. To date, little is known about the molecular mechanisms of entry into meiosis and exit from it, and only a few genes in Arabidopsis have been characterized with a role in regulating meiotic progression. In this study, we report the functional characterization of a plant-specific basic helix-loop-helix (bHLH) protein, FEHLSTART (FST), a defect in which leads to premature meiotic entry and asynchronous meiosis, and results in decreased seed yield. Investigation of the time course of meiosis showed that the onset of leptotene, the first stage of prophase I, frequently occurred earlier in fst-1 than in the wild type. Asynchronous meiosis followed, which could manifest in the disruption of regular spindle structures and symmetric cell divisions in fst-1 mutants during the meiosis I/II transition. In accordance with frequently accelerated meiotic entry, whole-transcriptome analysis of fst-1 anthers undergoing meiosis revealed that 19 circadian rhythm genes were affected and 47 pollen-related genes were prematurely expressed at a higher level. Taken together, we propose that FST is required for normal meiotic entry and the establishment of meiotic synchrony.
Collapse
Affiliation(s)
- Junhua Li
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St Paul, MN, 55108, USA
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Stefanie Dukowic-Schulze
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St Paul, MN, 55108, USA
| | - Ingrid E Lindquist
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM, 87505, USA
| | - Andrew D Farmer
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM, 87505, USA
| | - Bridget Kelly
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St Paul, MN, 55108, USA
| | - Tao Li
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St Paul, MN, 55108, USA
| | - Alan G Smith
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St Paul, MN, 55108, USA
| | - Ernest F Retzel
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM, 87505, USA
| | - Joann Mudge
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM, 87505, USA
| | - Changbin Chen
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St Paul, MN, 55108, USA
| |
Collapse
|
33
|
Andreuzza S, Nishal B, Singh A, Siddiqi I. The Chromatin Protein DUET/MMD1 Controls Expression of the Meiotic Gene TDM1 during Male Meiosis in Arabidopsis. PLoS Genet 2015; 11:e1005396. [PMID: 26348709 PMCID: PMC4562639 DOI: 10.1371/journal.pgen.1005396] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 06/26/2015] [Indexed: 11/18/2022] Open
Abstract
Meiosis produces haploid cells essential for sexual reproduction. In yeast, entry into meiosis activates transcription factors which trigger a transcriptional cascade that results in sequential co-expression of early, middle and late meiotic genes. However, these factors are not conserved, and the factors and regulatory mechanisms that ensure proper meiotic gene expression in multicellular eukaryotes are poorly understood. Here, we report that DUET/MMD1, a PHD finger protein essential for Arabidopsis male meiosis, functions as a transcriptional regulator in plant meiosis. We find that DUET-PHD binds H3K4me2 in vitro, and show that this interaction is critical for function during meiosis. We also show that DUET is required for proper microtubule organization during meiosis II, independently of its function in meiosis I. Remarkably, DUET protein shows stage-specific expression, confined to diplotene. We identify two genes TDM1 and JAS with critical functions in cell cycle transitions and spindle organization in male meiosis, as DUET targets, with TDM1 being a direct target. Thus, DUET is required to regulate microtubule organization and cell cycle transitions during male meiosis, and functions as a direct transcription activator of the meiotic gene TDM1. Expression profiling showed reduced expression of a subset comprising about 12% of a known set of meiosis preferred genes in the duet mutant. Our results reveal the action of DUET as a transcriptional regulator during male meiosis in plants, and suggest that transcription of meiotic genes is under stagewise control in plants as in yeast. Meiosis is a critical event in sexual reproduction. During meiosis, chromosomes recombine and segregate twice consecutively to produce haploid daughter cells, which differentiate into gametes. In humans, errors in meiosis are the leading causes of congenital birth defects. In plants, bypassing the meiotic program can lead to production of clonal seeds that retain hybrid traits that otherwise segregate. Thus, understanding the controls of meiosis has major implications for both health and crop improvement. How meiotic gene expression is regulated in multicellular eukaryotes to promote entry into and progression through the meiotic program is poorly understood. Here we identify DUET, a protein essential for male meiosis in the model plant Arabidopsis thaliana, as a regulator of meiotic gene expression. We found that DUET is required for proper expression of JAS and TDM1. These genes function in male meiosis, and regulate spindle organization during meiosis II and cell cycle transitions, respectively. Expression of DUET at the end of prophase coincides with the onset of TDM1 expression, and DUET directly binds TDM1, indicating TDM1 is a direct target of DUET. Our results provide an initial framework for further elucidating the developmental and molecular controls of meiotic gene expression in plants.
Collapse
Affiliation(s)
- Sébastien Andreuzza
- Centre for Cellular and Molecular Biology (CSIR), Hyderabad, India
- * E-mail: (SA); (IS)
| | - Bindu Nishal
- Centre for Cellular and Molecular Biology (CSIR), Hyderabad, India
| | - Aparna Singh
- Centre for Cellular and Molecular Biology (CSIR), Hyderabad, India
| | - Imran Siddiqi
- Centre for Cellular and Molecular Biology (CSIR), Hyderabad, India
- * E-mail: (SA); (IS)
| |
Collapse
|
34
|
Ronceret A, Vielle-Calzada JP. Meiosis, unreduced gametes, and parthenogenesis: implications for engineering clonal seed formation in crops. PLANT REPRODUCTION 2015; 28:91-102. [PMID: 25796397 DOI: 10.1007/s00497-015-0262-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/09/2015] [Indexed: 05/18/2023]
Abstract
Meiosis and unreduced gametes. Sexual flowering plants produce meiotically derived cells that give rise to the male and female haploid gametophytic phase. In the ovule, usually a single precursor (the megaspore mother cell) undergoes meiosis to form four haploid megaspores; however, numerous mutants result in the formation of unreduced gametes, sometimes showing female specificity, a phenomenon reminiscent of the initiation of gametophytic apomixis. Here, we review the developmental events that occur during female meiosis and megasporogenesis at the light of current possibilities to engineer unreduced gamete formation. We also provide an overview of the current understanding of mechanisms leading to parthenogenesis and discuss some of the conceptual implications for attempting the induction of clonal seed production in cultivated plants.
Collapse
Affiliation(s)
- Arnaud Ronceret
- Group of Reproductive Development and Apomixis, UGA Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, CP 36821, Irapuato, Guanajuato, Mexico
| | | |
Collapse
|
35
|
Mercier R, Mézard C, Jenczewski E, Macaisne N, Grelon M. The molecular biology of meiosis in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:297-327. [PMID: 25494464 DOI: 10.1146/annurev-arplant-050213-035923] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Meiosis is the cell division that reshuffles genetic information between generations. Recently, much progress has been made in understanding this process; in particular, the identification and functional analysis of more than 80 plant genes involved in meiosis have dramatically deepened our knowledge of this peculiar cell division. In this review, we provide an overview of advancements in the understanding of all aspects of plant meiosis, including recombination, chromosome synapsis, cell cycle control, chromosome distribution, and the challenge of polyploidy.
Collapse
Affiliation(s)
- Raphaël Mercier
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France; , , , ,
| | | | | | | | | |
Collapse
|
36
|
Wang Y, Yang M. Loss-of-function mutants and overexpression lines of the Arabidopsis cyclin CYCA1;2/Tardy Asynchronous Meiosis exhibit different defects in prophase-i meiocytes but produce the same meiotic products. PLoS One 2014; 9:e113348. [PMID: 25402453 PMCID: PMC4234643 DOI: 10.1371/journal.pone.0113348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/23/2014] [Indexed: 11/19/2022] Open
Abstract
In Arabidopsis, loss-of-function mutations in the A-type cyclin CYCA1;2/TARDY ASYNCHRONOUS MEIOSIS (TAM) gene lead to the production of abnormal meiotic products including triads and dyads. Here we report that overexpression of TAM by the ASK1:TAM transgene also led to the production of triads and dyads in meiosis, as well as shriveled seeds, in a dominant fashion. However, the partial loss-of-function mutant tam-1, an ASK1:TAM line, and the wild type differed in dynamic changes in chromosome thread thickness from zygotene to diplotene. We also found that the pericentromeric heterochromatin regions in male meiocytes in tam-1 and tam-2 (a null allele) frequently formed a tight cluster at the pachytene and diplotene stages, in contrast to the infrequent occurrences of such clusters in the wild type and the ASK1:TAM line. Immunolocalization studies of the chromosome axial component ASY1 revealed that ASY1 was highly expressed at the appropriate male meiotic stages but not localized to the chromosomes in tam-2. The level of ASY1, however, was greatly reduced in another ASK1:TAM line with much overexpressed TAM. Our results indicate that the reduction and increase in the activity of TAM differentially affect chromosomal morphology and the action of ASY1 in prophase I. Based on these results, we propose that either the different meiotic defects or a common defect such as missing ASY1 on the chromosomal axes triggers a hitherto uncharacterized cell cycle checkpoint in the male meiocytes in the tam mutants and ASK1:TAM lines, leading to the production of the same abnormal meiotic products.
Collapse
Affiliation(s)
- Yixing Wang
- Department of Botany, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Ming Yang
- Department of Botany, Oklahoma State University, Stillwater, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
37
|
Hao M, Luo J, Zeng D, Zhang L, Ning S, Yuan Z, Yan Z, Zhang H, Zheng Y, Feuillet C, Choulet F, Yen Y, Zhang L, Liu D. QTug.sau-3B is a major quantitative trait locus for wheat hexaploidization. G3 (BETHESDA, MD.) 2014; 4:1943-53. [PMID: 25128436 PMCID: PMC4199700 DOI: 10.1534/g3.114.013078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/12/2014] [Indexed: 11/18/2022]
Abstract
Meiotic nonreduction resulting in unreduced gametes is thought to be the predominant mechanism underlying allopolyploid formation in plants. Until now, however, its genetic base was largely unknown. The allohexaploid crop common wheat (Triticum aestivum L.), which originated from hybrids of T. turgidum L. with Aegilops tauschii Cosson, provides a model to address this issue. Our observations of meiosis in pollen mother cells from T. turgidum×Ae. tauschii hybrids indicated that first division restitution, which exhibited prolonged cell division during meiosis I, was responsible for unreduced gamete formation. A major quantitative trait locus (QTL) for this trait, named QTug.sau-3B, was detected on chromosome 3B in two T. turgidum×Ae. tauschii haploid populations. This QTL is situated between markers Xgwm285 and Xcfp1012 and covered a genetic distance of 1 cM in one population. QTug.sau-3B is a haploid-dependent QTL because it was not detected in doubled haploid populations. Comparative genome analysis indicated that this QTL was close to Ttam-3B, a collinear homolog of tam in wheat. Although the relationship between QTug.sau-3B and Ttam requires further study, high frequencies of unreduced gametes may be related to reduced expression of Ttam in wheat.
Collapse
Affiliation(s)
- Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan 611130, People's Republic of China
| | - Jiangtao Luo
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan 611130, People's Republic of China
| | - Deying Zeng
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan 611130, People's Republic of China
| | - Li Zhang
- Institute of Ecological Forestry, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan 611130, People's Republic of China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan 611130, People's Republic of China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan 611130, People's Republic of China
| | - Zehong Yan
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan 611130, People's Republic of China
| | - Huaigang Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, People's Republic of China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan 611130, People's Republic of China
| | - Catherine Feuillet
- INRA University Blaise Pascal, Joint Research Unit 1095 Genetics Diversity and Ecophysiology of Cereals, Clermont-Ferrand 63039, France
| | - Frédéric Choulet
- INRA University Blaise Pascal, Joint Research Unit 1095 Genetics Diversity and Ecophysiology of Cereals, Clermont-Ferrand 63039, France
| | - Yang Yen
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota 57007
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan 611130, People's Republic of China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan 611130, People's Republic of China Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, People's Republic of China
| |
Collapse
|
38
|
Jha AK, Wang Y, Hercyk BS, Shin HS, Chen R, Yang M. The role for CYCLIN A1;2/TARDY ASYNCHRONOUS MEIOSIS in differentiated cells in Arabidopsis. PLANT MOLECULAR BIOLOGY 2014; 85:81-94. [PMID: 24430502 DOI: 10.1007/s11103-013-0170-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/24/2013] [Indexed: 05/10/2023]
Abstract
The Arabidopsis A1-type cyclin, CYCA1;2, also named TARDY ASYNCHRONOUS MEIOSIS (TAM), is known for its positive role in meiotic cell cycle progression, but its function in other cells has not been characterized. This paper reports the role of CYCA1;2/TAM in differentiated cells in vegetative organs. The pattern of CYCA1;2/TAM expression was investigated by promoter and protein fusions using the β-glucuronidase and the green fluorescent protein, respectively. The relevance of the promoter region used in these gene fusion constructs was verified by the effective complementation of the phenotype of the diploid null allele, tam-2 2C by a genomic fragment containing the wild-type coding region of CYCA1;2/TAM and the promoter region. CYCA1;2/TAM expression was found primarily in non-proliferating cells such as guard cells, trichomes, and mesophyll cells, and in vascular tissue. In two types of overexpression lines, one containing the CYCA1;2/TAM transgene driven by the ARABIDOPSIS SKP1-LIKE1 (ASK1) promoter and the other CYCA1;2/TAM-GFP driven by the cauliflower mosaic virus 35S promoter, the largest differences between the transgene transcript levels were approximately 72- and 45-folds, respectively, but the TAM-GFP signal levels in the mesophyll and stomata in the 35S:TAM-GFP lines only differ slightly. Furthermore, the GFP signals in the mesophyll and stomata in the TAM:TAM-GFP and 35S:TAM-GFP lines were all at similarly low levels. These results indicate that the CYCA1;2/TAM protein is likely maintained at low levels in these cells through post-transcriptional regulation. Loss of function in CYCA1;2/TAM resulted in increases in the nuclear size in both trichomes and guard cells. Surprisingly, overexpression of CYCA1;2/TAM led to similar increases. The large increases in trichome nuclear size likely reflected ploidy increases while the moderate increases in guard cell nuclear size did not justify for a ploidy increase. These nuclear size increases were not clearly correlated with trichome branch number increases and guard cell size increases, respectively. These results suggest that cellular homeostasis of the CYCA1;2/TAM protein is linked to the control of nuclear sizes in trichomes and guard cells.
Collapse
Affiliation(s)
- Ajay K Jha
- 301 Physical Science, Department of Botany, Oklahoma State University, Stillwater, OK, 74078, USA
| | | | | | | | | | | |
Collapse
|
39
|
Knoll A, Schröpfer S, Puchta H. The RTR complex as caretaker of genome stability and its unique meiotic function in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:33. [PMID: 24575106 PMCID: PMC3921566 DOI: 10.3389/fpls.2014.00033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/25/2014] [Indexed: 05/02/2023]
Abstract
The RTR complex consisting of a RecQ helicase, a type IA topoisomerase and the structural protein RMI1 is involved in the processing of DNA recombination intermediates in all eukaryotes. In Arabidopsis thaliana the complex partners RECQ4A, topoisomerase 3α and RMI1 have been shown to be involved in DNA repair and in the suppression of homologous recombination in somatic cells. Interestingly, mutants of AtTOP3A and AtRMI1 are also sterile due to extensive chromosome breakage in meiosis I, a phenotype that seems to be specific for plants. Although both proteins are essential for meiotic recombination it is still elusive on what kind of intermediates they are acting on. Recent data indicate that the pattern of non-crossover (NCO)-associated meiotic gene conversion (GC) differs between plants and other eukaryotes, as less NCOs in comparison to crossovers (CO) could be detected in Arabidopsis. This indicates that NCOs happen either more rarely in plants or that the conversion tract length is significantly shorter than in other organisms. As the TOP3α/RMI1-mediated dissolution of recombination intermediates results exclusively in NCOs, we suggest that the peculiar GC pattern found in plants is connected to the unique role, members of the RTR complex play in plant meiosis.
Collapse
Affiliation(s)
| | | | - Holger Puchta
- *Correspondence: Holger Puchta, Botanical Institute II, Karlsruhe Institute of Technology, Hertzstraße 16, 76187 Karlsruhe, Germany e-mail:
| |
Collapse
|
40
|
Wijnker E, Schnittger A. Control of the meiotic cell division program in plants. PLANT REPRODUCTION 2013; 26:143-58. [PMID: 23852379 PMCID: PMC3747318 DOI: 10.1007/s00497-013-0223-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/23/2013] [Indexed: 05/02/2023]
Abstract
While the question of why organisms reproduce sexually is still a matter of controversy, it is clear that the foundation of sexual reproduction is the formation of gametes with half the genomic DNA content of a somatic cell. This reduction in genomic content is accomplished through meiosis that, in contrast to mitosis, comprises two subsequent chromosome segregation steps without an intervening S phase. In addition, meiosis generates new allele combinations through the compilation of new sets of homologous chromosomes and the reciprocal exchange of chromatid segments between homologues. Progression through meiosis relies on many of the same, or at least homologous, cell cycle regulators that act in mitosis, e.g., cyclin-dependent kinases and the anaphase-promoting complex/cyclosome. However, these mitotic control factors are often differentially regulated in meiosis. In addition, several meiosis-specific cell cycle genes have been identified. We here review the increasing knowledge on meiotic cell cycle control in plants. Interestingly, plants appear to have relaxed cell cycle checkpoints in meiosis in comparison with animals and yeast and many cell cycle mutants are viable. This makes plants powerful models to study meiotic progression and allows unique modifications to their meiotic program to develop new plant-breeding strategies.
Collapse
Affiliation(s)
- Erik Wijnker
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
- Trinationales Institut für Pflanzenforschung, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| | - Arp Schnittger
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
- Trinationales Institut für Pflanzenforschung, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
41
|
Bulankova P, Akimcheva S, Fellner N, Riha K. Identification of Arabidopsis meiotic cyclins reveals functional diversification among plant cyclin genes. PLoS Genet 2013; 9:e1003508. [PMID: 23671425 PMCID: PMC3649987 DOI: 10.1371/journal.pgen.1003508] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/26/2013] [Indexed: 11/18/2022] Open
Abstract
Meiosis is a modified cell division in which a single S-phase is followed by two rounds of chromosome segregation resulting in the production of haploid gametes. The meiotic mode of chromosome segregation requires extensive remodeling of the basic cell cycle machinery and employment of unique regulatory mechanisms. Cyclin-dependent kinases (CDKs) and cyclins represent an ancient molecular module that drives and regulates cell cycle progression. The cyclin gene family has undergone a massive expansion in angiosperm plants, but only a few cyclins were thoroughly characterized. In this study we performed a systematic immunolocalization screen to identify Arabidopsis thaliana A- and B-type cyclins expressed in meiosis. Many of these cyclins exhibit cell-type-specific expression in vegetative tissues and distinct subcellular localization. We found six A-type cyclins and a single B-type cyclin (CYCB3;1) to be expressed in male meiosis. Mutant analysis revealed that these cyclins contribute to distinct meiosis-related processes. While A2 cyclins are important for chromosome segregation, CYCB3;1 prevents ectopic cell wall formation. We further show that cyclin SDS does not contain a D-box and is constitutively expressed throughout meiosis. Analysis of plants carrying cyclin SDS with an introduced D-box motif determined that, in addition to its function in recombination, SDS acts together with CYCB3;1 in suppressing unscheduled cell wall synthesis. Our phenotypic and expression data provide extensive evidence that multiplication of cyclins is in plants accompanied by functional diversification. The alteration of haploid and diploid cell generations during the sexual life cycle requires meiosis, a specialized cell division that enables the formation of haploid gametes from diploid cells. Meiosis occurs only once during the life cycle, and the transition from the mitotic to meiotic mode of chromosome partitioning requires extensive remodeling of the cell cycle machinery. The cell cycle progression is driven by cyclin-dependent kinases and associated cyclins that regulate CDK activity and confer substrate specificity. Cyclin gene families have undergone a massive expansion in plants, which has raised the question of whether some of these cyclins evolved specific meiotic functions. We systematically analyzed two cyclin gene families in Arabidopsis to identify plant cyclins that are meiotically expressed. We found in total eight cyclins to be expressed in male meiotic cells, and functional characterization revealed their involvement in diverse meiotic processes. Interestingly, none of the cyclins appear to be essential for meiotic progression, indicating that plant meiosis is governed by unorthodox cell cycle regulators.
Collapse
Affiliation(s)
- Petra Bulankova
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna, Austria
| | | | - Nicole Fellner
- Campus Science Support Facilities, Electron Microscopy Facility, Vienna, Austria
| | - Karel Riha
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna, Austria
- * E-mail:
| |
Collapse
|
42
|
Abstract
Meiosis is at the heart of Mendelian heredity. Recently, much progress has been made in the understanding of this process, in various organisms. In the last 15 years, the functional characterization of numerous genes involved in meiosis has dramatically deepened our knowledge of key events, including recombination, the cell cycle, and chromosome distribution. Through a constantly advancing tool set and knowledge base, a number of advances have been made that will allow manipulation of meiosis from a plant breeding perspective. This review focuses on the aspects of meiosis that can be tinkered with to create and propagate new varieties. We would like to dedicate this review to the memory of Simon W. Chan (1974-2012) (http://www.plb.ucdavis.edu/labs/srchan/).
Collapse
|
43
|
Makkena S, Lee E, Sack FD, Lamb RS. The R2R3 MYB transcription factors FOUR LIPS and MYB88 regulate female reproductive development. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5545-58. [PMID: 22915737 PMCID: PMC3444271 DOI: 10.1093/jxb/ers209] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Gamete formation is an important step in the life cycle of sexually reproducing organisms. In flowering plants, haploid spores are formed after the meiotic division of spore mother cells. These spores develop into male and female gametophytes containing gametes after undergoing mitotic divisions. In the female, the megaspore mother cell undergoes meiosis forming four megaspores, of which one is functional and three degenerate. The megaspore then undergoes three mitotic cycles thus generating an embryo sac with eight nuclei. The embryo sac undergoes cellularization to form the mature seven-celled female gametophyte. Entry into and progression through meiosis is essential for megasporogenesis and subsequent megagametogenesis, but control of this process is not well understood. FOUR LIPS (FLP) and its paralogue MYB88, encoding R2R3 MYB transcription factors, have been extensively studied for their role in limiting the terminal division in stomatal development by direct regulation of the expression of cell cycle genes. Here it is demonstrated that FLP and MYB88 also regulate female reproduction. Both FLP and MYB88 are expressed during ovule development and their loss significantly increases the number of ovules produced by the placenta. Despite the presence of excess ovules, single and double mutants exhibit reduced seed set due to reduced female fertility. The sterility results at least in part from defective meiotic entry and progression. Therefore, FLP and MYB88 are important regulators of entry into megasporogenesis, and probably act via the regulation of cell cycle genes.
Collapse
Affiliation(s)
- Srilakshmi Makkena
- Plant Cellular and Molecular Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Molecular Genetics, The Ohio State University,Columbus, OH 43210, USA
| | - Eunkyoung Lee
- Department of Botany, The University of British ColumbiaVancouver, BC, Canada V6T 1Z4
| | - Fred D. Sack
- Department of Botany, The University of British ColumbiaVancouver, BC, Canada V6T 1Z4
| | - Rebecca S. Lamb
- Department of Molecular Genetics, The Ohio State University,Columbus, OH 43210, USA
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Cromer L, Heyman J, Touati S, Harashima H, Araou E, Girard C, Horlow C, Wassmann K, Schnittger A, De Veylder L, Mercier R. OSD1 promotes meiotic progression via APC/C inhibition and forms a regulatory network with TDM and CYCA1;2/TAM. PLoS Genet 2012; 8:e1002865. [PMID: 22844260 PMCID: PMC3406007 DOI: 10.1371/journal.pgen.1002865] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/12/2012] [Indexed: 11/29/2022] Open
Abstract
Cell cycle control is modified at meiosis compared to mitosis, because two divisions follow a single DNA replication event. Cyclin-dependent kinases (CDKs) promote progression through both meiosis and mitosis, and a central regulator of their activity is the APC/C (Anaphase Promoting Complex/Cyclosome) that is especially required for exit from mitosis. We have shown previously that OSD1 is involved in entry into both meiosis I and meiosis II in Arabidopsis thaliana; however, the molecular mechanism by which OSD1 controls these transitions has remained unclear. Here we show that OSD1 promotes meiotic progression through APC/C inhibition. Next, we explored the functional relationships between OSD1 and the genes known to control meiotic cell cycle transitions in Arabidopsis. Like osd1, cyca1;2/tam mutation leads to a premature exit from meiosis after the first division, while tdm mutants perform an aberrant third meiotic division after normal meiosis I and II. Remarkably, while tdm is epistatic to tam, osd1 is epistatic to tdm. We further show that the expression of a non-destructible CYCA1;2/TAM provokes, like tdm, the entry into a third meiotic division. Finally, we show that CYCA1;2/TAM forms an active complex with CDKA;1 that can phosphorylate OSD1 in vitro. We thus propose that a functional network composed of OSD1, CYCA1;2/TAM, and TDM controls three key steps of meiotic progression, in which OSD1 is a meiotic APC/C inhibitor. In the life cycle of sexual organisms, a specialized cell division—meiosis—reduces the number of chromosomes from two sets (2n, diploid) to one set (n, haploid), while fertilization restores the original chromosome number. Meiosis reduces ploidy because it consists of two cellular divisions following a single DNA replication. In this study, we analyze the function of a group of genes that collectively controls the entry into the first meiotic division, the entry into the second meiotic division, and the exit from meiosis in the model plant Arabidopsis thaliana. We revealed a complex regulation network that controls these three key transitions.
Collapse
Affiliation(s)
- Laurence Cromer
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Versailles, France
| | - Jefri Heyman
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Sandra Touati
- UMPC University of Paris 6, UMR7622, Paris, France
- CNRS, UMR7622, Laboratoire de Biologie du Développement, Paris, France
| | - Hirofumi Harashima
- IBMP, UPR2357 du CNRS, Strasbourg, France
- Trinationales Institut fuer Pflanzenforschung, Strasbourg, France
| | - Emilie Araou
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Versailles, France
| | - Chloe Girard
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Versailles, France
| | - Christine Horlow
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Versailles, France
| | - Katja Wassmann
- UMPC University of Paris 6, UMR7622, Paris, France
- CNRS, UMR7622, Laboratoire de Biologie du Développement, Paris, France
| | - Arp Schnittger
- IBMP, UPR2357 du CNRS, Strasbourg, France
- Trinationales Institut fuer Pflanzenforschung, Strasbourg, France
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Raphael Mercier
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Versailles, France
- * E-mail:
| |
Collapse
|
45
|
Riehs-Kearnan N, Gloggnitzer J, Dekrout B, Jonak C, Riha K. Aberrant growth and lethality of Arabidopsis deficient in nonsense-mediated RNA decay factors is caused by autoimmune-like response. Nucleic Acids Res 2012; 40:5615-24. [PMID: 22379136 PMCID: PMC3384318 DOI: 10.1093/nar/gks195] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 12/22/2022] Open
Abstract
Nonsense-mediated RNA decay (NMD) is an evolutionarily conserved RNA quality control mechanism that eliminates transcripts containing nonsense mutations. NMD has also been shown to affect the expression of numerous genes, and inactivation of this pathway is lethal in higher eukaryotes. However, despite relatively detailed knowledge of the molecular basis of NMD, our understanding of its physiological functions is still limited and the underlying causes of lethality are unknown. In this study, we examined the importance of NMD in plants by analyzing an allelic series of Arabidopsis thaliana mutants impaired in the core NMD components SMG7 and UPF1. We found that impaired NMD elicits a pathogen defense response which appears to be proportional to the extent of NMD deficiency. We also demonstrate that developmental aberrations and lethality of the strong smg7 and upf1 alleles are caused by constitutive pathogen response upregulation. Disruption of pathogen signaling suppresses the lethality of the upf1-3 null allele and growth defects associated with SMG7 dysfunction. Interestingly, infertility and abortive meiosis observed in smg7 mutants is not coupled with impaired NMD suggesting a broader function of SMG7 in cellular metabolism. Taken together, our results uncover a major physiological consequence of NMD deficiency in Arabidopsis and revealed multifaceted roles of SMG7 in plant growth and development.
Collapse
Affiliation(s)
| | | | | | | | - Karel Riha
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
46
|
Nowack M, Harashima H, Dissmeyer N, Zhao X, Bouyer D, Weimer A, De Winter F, Yang F, Schnittger A. Genetic Framework of Cyclin-Dependent Kinase Function in Arabidopsis. Dev Cell 2012; 22:1030-40. [DOI: 10.1016/j.devcel.2012.02.015] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 12/15/2011] [Accepted: 02/29/2012] [Indexed: 10/28/2022]
|
47
|
Heyman J, Van den Daele H, De Wit K, Boudolf V, Berckmans B, Verkest A, Kamei CLA, De Jaeger G, Koncz C, De Veylder L. Arabidopsis ULTRAVIOLET-B-INSENSITIVE4 maintains cell division activity by temporal inhibition of the anaphase-promoting complex/cyclosome. THE PLANT CELL 2011; 23:4394-410. [PMID: 22167059 PMCID: PMC3269873 DOI: 10.1105/tpc.111.091793] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit ubiquitin ligase that regulates progression through the cell cycle by marking key cell division proteins for destruction. To ensure correct cell cycle progression, accurate timing of APC/C activity is important, which is obtained through its association with both activating and inhibitory subunits. However, although the APC/C is highly conserved among eukaryotes, no APC/C inhibitors are known in plants. Recently, we have identified ULTRAVIOLET-B-INSENSITIVE4 (UVI4) as a plant-specific component of the APC/C. Here, we demonstrate that UVI4 uses conserved APC/C interaction motifs to counteract the activity of the CELL CYCLE SWITCH52 A1 (CCS52A1) activator subunit, inhibiting the turnover of the A-type cyclin CYCA2;3. UVI4 is expressed in an S phase-dependent fashion, likely through the action of E2F transcription factors. Correspondingly, uvi4 mutant plants failed to accumulate CYCA2;3 during the S phase and prematurely exited the cell cycle, triggering the onset of the endocycle. We conclude that UVI4 regulates the temporal inactivation of APC/C during DNA replication, allowing CYCA2;3 to accumulate above the level required for entering mitosis, and thereby regulates the meristem size and plant growth rate.
Collapse
Affiliation(s)
- Jefri Heyman
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
| | - Hilde Van den Daele
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
| | - Kevin De Wit
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
| | - Véronique Boudolf
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
| | - Barbara Berckmans
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
| | - Aurine Verkest
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
| | - Claire Lessa Alvim Kamei
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
| | - Csaba Koncz
- Max-Planck-Institut für Züchtungsforschung, D–50829 Cologne, Germany
- Institute of Plant Biology, Biological Research Center of Hungarian Academy of Sciences, H–6723 Szeged, Hungary
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
- Address correspondence to
| |
Collapse
|