1
|
Kuźma N, Klimek-Chodacka M, Budzyński R, Barański R, Jędrzejuk A. The response of Petunia × atkinsiana 'Pegasus Special Burgundy Bicolor' to mechanical stress encompassing morphological changes as well as physiological and molecular factors. Sci Rep 2025; 15:1583. [PMID: 39794334 PMCID: PMC11724034 DOI: 10.1038/s41598-024-82364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 12/04/2024] [Indexed: 01/13/2025] Open
Abstract
In 1973, Jaffe identified and characterized the phenomenon of thigmomorphogenesis, also referred to as mechanical stress (MS) or mechanical stimulation in plants. Previous studies on petunia plants demonstrated that MS significantly affects growth dynamics. As a response to MS, petunias exhibit increased levels of indole-3-acetic acid (IAA) oxidase and peroxidase, although the active transport of endogenous IAA remains unaffected. Furthermore, earlier research has shown that MS inhibits the synthesis of IAA and gibberellin (GA3), with noticeable effects on the 14th day of mechanical stimulation. The current experiment made on Petunia × atkinsiana 'Pegasus Special Burgundy Bicolor' focused on evaluating the morphological and physiological responses to MS, along with the expression of specific touch-responsive genes such as GH3.1, which is involved in auxin metabolism, and calmodulins (CaMs), playing an important role in stress responses. GH3.1 expression was found to be negatively correlated with IAA synthesis while positively correlated with GAs synthesis and IAA oxidase activity. Variable expression patterns were observed in the calmodulins: CAM53 and CAM81 expression positively correlated with IAA synthesis and plant height, whereas CAM72 expression was positively associated with GAs levels and IAA oxidase activity in plants touched 80× per day, but all of them were negatively related to IAA content and shoot increment, while positively related to GAs synthesis and IAA oxidase activity.
Collapse
Affiliation(s)
- Natalia Kuźma
- Department of Environmental Protection and Dendrology, Institute of Horticultural Sciences, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Magdalena Klimek-Chodacka
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Kraków, Poland
| | - Robert Budzyński
- Department of Artificial Intelligence, Warsaw, Institute of Information Technology, University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Rafał Barański
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Kraków, Poland
| | - Agata Jędrzejuk
- Department of Environmental Protection and Dendrology, Institute of Horticultural Sciences, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland.
| |
Collapse
|
2
|
Wang S, Wu H, Zhang Y, Sun G, Qian W, Qu F, Zhang X, Hu J. Transcriptome Reveals the Regulation of Exogenous Auxin Inducing Rooting of Non-Rooting Callus of Tea Cuttings. Int J Mol Sci 2024; 25:8080. [PMID: 39125650 PMCID: PMC11311428 DOI: 10.3390/ijms25158080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Cuttage is the main propagation method of tea plant cultivars in China. However, some tea softwood cuttings just form an expanded and loose callus at the base, without adventitious root (AR) formation during the propagation period. Meanwhile, exogenous auxin could promote the AR formation of tea plant cuttings, but the regulation mechanism has not yet explained clearly. We conducted this study to elucidate the regulatory mechanism of exogenous auxin-induced adventitious root (AR) formation of such cuttings. The transcriptional expression profile of non-rooting tea calluses in response to exogenous IBA and NAA was analyzed using ONT RNA Seq technology. In total, 56,178 differentially expressed genes (DEGs) were detected, and most of genes were significantly differentially expressed after 12 h of exogenous auxin treatment. Among these DEGs, we further identified 80 DEGs involved in the auxin induction pathway and AR formation. Specifically, 14 auxin respective genes (ARFs, GH3s, and AUX/IAAs), 3 auxin transporters (AUX22), 19 auxin synthesis- and homeostasis-related genes (cytochrome P450 (CYP450) and calmodulin-like protein (CML) genes), and 44 transcription factors (LOB domain-containing protein (LBDs), SCARECROW-LIKE (SCL), zinc finger protein, WRKY, MYB, and NAC) were identified from these DEGs. Moreover, we found most of these DEGs were highly up-regulated at some stage before AR formation, suggesting that they may play a potential role in the AR formation of tea plant cuttings. In summary, this study will provide a theoretical foundation to deepen our understanding of the molecular mechanism of AR formation in tea cuttings induced by auxin during propagation time.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jianhui Hu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (S.W.); (H.W.); (Y.Z.); (G.S.); (W.Q.); (F.Q.); (X.Z.)
| |
Collapse
|
3
|
Holland CK, Jez JM. Fidelity in plant hormone modifications catalyzed by Arabidopsis GH3 acyl acid amido synthetases. J Biol Chem 2024; 300:107421. [PMID: 38815865 PMCID: PMC11253546 DOI: 10.1016/j.jbc.2024.107421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
GRETCHEN HAGEN 3 (GH3) acyl acid amido synthetases conjugate amino acids to acyl acid hormones to either activate or inactivate the hormone molecule. The largest subgroup of GH3 proteins modify the growth-promoting hormone auxin (indole-3-acetic acid; IAA) with the second largest class activating the defense hormone jasmonic acid (JA). The two-step reaction mechanism of GH3 proteins provides a potential proofreading mechanism to ensure fidelity of hormone modification. Examining pyrophosphate release in the first-half reaction of Arabidopsis GH3 proteins that modify IAA (AtGH3.2/YDK2, AtGH3.5/WES1, AtGH3.17/VAS2), JA (AtGH3.11/JAR1), and other acyl acids (AtGH3.7, AtGH3.12/PBS3) indicates that acyl acid-AMP intermediates are hydrolyzed into acyl acid and AMP in the absence of the amino acid, a typical feature of pre-transfer editing mechanisms. Single-turnover kinetic analysis of AtGH3.2/YDK2 and AtGH3.5/WES1 shows that non-cognate acyl acid-adenylate intermediates are more rapidly hydrolyzed than the cognate IAA-adenylate. In contrast, AtGH3.11/JAR1 only adenylates JA, not IAA. While some of the auxin-conjugating GH3 proteins in Arabidopsis (i.e., AtGH3.5/WES1) accept multiple acyl acid substrates, others, like AtGH3.2/YDK2, are specific for IAA; however, both these proteins share similar active site residues. Biochemical analysis of chimeric variants of AtGH3.2/YDK2 and AtGH3.5/WES1 indicates that the C-terminal domain contributes to selection of cognate acyl acid substrates. These findings suggest that the hydrolysis of non-cognate acyl acid-adenylate intermediates, or proofreading, proceeds via a slowed structural switch that provides a checkpoint for fidelity before the full reaction proceeds.
Collapse
Affiliation(s)
- Cynthia K Holland
- Department of Biology, Williams College, Williamstown, Massachusetts; Department of Biology, Washington University in St Louis, St Louis, Missouri
| | - Joseph M Jez
- Department of Biology, Washington University in St Louis, St Louis, Missouri.
| |
Collapse
|
4
|
Cohen JD, Strader LC. An auxin research odyssey: 1989-2023. THE PLANT CELL 2024; 36:1410-1428. [PMID: 38382088 PMCID: PMC11062468 DOI: 10.1093/plcell/koae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
The phytohormone auxin is at times called the master regulator of plant processes and has been shown to be a central player in embryo development, the establishment of the polar axis, early aspects of seedling growth, as well as growth and organ formation during later stages of plant development. The Plant Cell has been key, since the inception of the journal, to developing an understanding of auxin biology. Auxin-regulated plant growth control is accomplished by both changes in the levels of active hormones and the sensitivity of plant tissues to these concentration changes. In this historical review, we chart auxin research as it has progressed in key areas and highlight the role The Plant Cell played in these scientific developments. We focus on understanding auxin-responsive genes, transcription factors, reporter constructs, perception, and signal transduction processes. Auxin metabolism is discussed from the development of tryptophan auxotrophic mutants, the molecular biology of conjugate formation and hydrolysis, indole-3-butyric acid metabolism and transport, and key steps in indole-3-acetic acid biosynthesis, catabolism, and transport. This progress leads to an expectation of a more comprehensive understanding of the systems biology of auxin and the spatial and temporal regulation of cellular growth and development.
Collapse
Affiliation(s)
- Jerry D Cohen
- Department of Horticultural Science and the Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| |
Collapse
|
5
|
Hua B, Wu J, Han X, Bian X, Xu Z, Sun C, Wang R, Zhang W, Liang F, Zhang H, Li S, Li Z, Wu S. Auxin homeostasis is maintained by sly-miR167-SlARF8A/B-SlGH3.4 feedback module in the development of locular and placental tissues of tomato fruits. THE NEW PHYTOLOGIST 2024; 241:1177-1192. [PMID: 37985404 DOI: 10.1111/nph.19391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 10/20/2023] [Indexed: 11/22/2023]
Abstract
The locular gel, produced by the placenta, is important for fruit flavor and seed development in tomato. However, the mechanism underlying locule and placenta development is not fully understood yet. Here, we show that two SlARF transcription factors, SlARF8B and SlARF8A (SlARF8A/B), promote the development of locular and placenta tissues. The expression of both SlARF8A and SlARF8B is repressed by sly-microRNA167 (sly-miR167), allowing for the activation of auxin downstream genes. In slarf8a, slarf8b, and slarf8a/b mutants, the auxin (IAA) levels are decreased, whereas the levels of inactive IAA conjugates including IAA-Ala, IAA-Asp, and IAA-Glu are increased. We further find that SlARF8B directly inhibits the expression of SlGH3.4, an acyl acid amino synthetase that conjugates the amino acids to IAA. Disruption of such auxin balance by the increased expression of SlGH3.4 or SlGH3.2 results in defective locular and placental tissues. Taken together, our findings reveal an important regulatory module constituted by sly-miR167-SlARF8A/B-SlGH3.4 during the development of locular and placenta tissues of tomato fruits.
Collapse
Affiliation(s)
- Bing Hua
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Junqing Wu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoqian Han
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinxin Bian
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhijing Xu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao Sun
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Renyin Wang
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenyan Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Fei Liang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Huimin Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Shuang Li
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Shuang Wu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
6
|
Luo P, Li TT, Shi WM, Ma Q, Di DW. The Roles of GRETCHEN HAGEN3 (GH3)-Dependent Auxin Conjugation in the Regulation of Plant Development and Stress Adaptation. PLANTS (BASEL, SWITZERLAND) 2023; 12:4111. [PMID: 38140438 PMCID: PMC10747189 DOI: 10.3390/plants12244111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
The precise control of free auxin (indole-3-acetic acid, IAA) gradient, which is orchestrated by biosynthesis, conjugation, degradation, hydrolyzation, and transport, is critical for all aspects of plant growth and development. Of these, the GRETCHEN HAGEN 3 (GH3) acyl acid amido synthetase family, pivotal in conjugating IAA with amino acids, has garnered significant interest. Recent advances in understanding GH3-dependent IAA conjugation have positioned GH3 functional elucidation as a hot topic of research. This review aims to consolidate and discuss recent findings on (i) the enzymatic mechanisms driving GH3 activity, (ii) the influence of chemical inhibitor on GH3 function, and (iii) the transcriptional regulation of GH3 and its impact on plant development and stress response. Additionally, we explore the distinct biological functions attributed to IAA-amino acid conjugates.
Collapse
Affiliation(s)
- Pan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Ting-Ting Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Ming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Dong-Wei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Günther J, Halitschke R, Gershenzon J, Burow M. Heterologous expression of PtAAS1 reveals the metabolic potential of the common plant metabolite phenylacetaldehyde for auxin synthesis in planta. PHYSIOLOGIA PLANTARUM 2023; 175:e14078. [PMID: 38148231 DOI: 10.1111/ppl.14078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 12/28/2023]
Abstract
Aromatic aldehydes and amines are common plant metabolites involved in several specialized metabolite biosynthesis pathways. Recently, we showed that the aromatic aldehyde synthase PtAAS1 and the aromatic amino acid decarboxylase PtAADC1 contribute to the herbivory-induced formation of volatile 2-phenylethanol and its glucoside 2-phenylethyl-β-D-glucopyranoside in Populus trichocarpa. To unravel alternative metabolic fates of phenylacetaldehyde and 2-phenylethylamine beyond alcohol and alcohol glucoside formation, we heterologously expressed PtAAS1 and PtAADC1 in Nicotiana benthamiana and analyzed plant extracts using untargeted LC-qTOF-MS and targeted LC-MS/MS analysis. While the metabolomes of PtAADC1-expressing plants did not significantly differ from those of control plants, expression of PtAAS1 resulted in the accumulation of phenylacetic acid (PAA) and PAA-amino acid conjugates, identified as PAA-aspartate and PAA-glutamate. Herbivory-damaged poplar leaves revealed significantly induced accumulation of PAA-Asp, while levels of PAA remained unaltered upon herbivory. Transcriptome analysis showed that members of auxin-amido synthetase GH3 genes involved in the conjugation of auxins with amino acids were significantly upregulated upon herbivory in P. trichocarpa leaves. Overall, our data indicates that phenylacetaldehyde generated by poplar PtAAS1 serves as a hub metabolite linking the biosynthesis of volatile, non-volatile herbivory-induced specialized metabolites, and phytohormones, suggesting that plant growth and defense can be balanced on a metabolic level.
Collapse
Affiliation(s)
- Jan Günther
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Rayko Halitschke
- Department of Mass Spectrometry and Metabolomics, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jonathan Gershenzon
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Meike Burow
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
8
|
Solanki M, Shukla LI. Recent advances in auxin biosynthesis and homeostasis. 3 Biotech 2023; 13:290. [PMID: 37547917 PMCID: PMC10400529 DOI: 10.1007/s13205-023-03709-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
UNLABELLED The plant proliferation is linked with auxins which in turn play a pivotal role in the rate of growth. Also, auxin concentrations could provide insights into the age, stress, and events leading to flowering and fruiting in the sessile plant kingdom. The role in rejuvenation and plasticity is now evidenced. Interest in plant auxins spans many decades, information from different plant families for auxin concentrations, transcriptional, and epigenetic evidences for gene regulation is evaluated here, for getting an insight into pattern of auxin biosynthesis. This biosynthesis takes place via an tryptophan-independent and tryptophan-dependent pathway. The independent pathway initiated before the tryptophan (trp) production involves indole as the primary substrate. On the other hand, the trp-dependent IAA pathway passes through the indole pyruvic acid (IPyA), indole-3-acetaldoxime (IAOx), and indole acetamide (IAM) pathways. Investigations on trp-dependent pathways involved mutants, namely yucca (1-11), taa1, nit1, cyp79b and cyp79b2, vt2 and crd, and independent mutants of tryptophan, ins are compiled here. The auxin conjugates of the IAA amide and ester-linked mutant gh3, iar, ilr, ill, iamt1, ugt, and dao are remarkable and could facilitate the assimilation of auxins. Efforts are made herein to provide an up-to-date detailed information about biosynthesis leading to plant sustenance. The vast information about auxin biosynthesis and homeostasis is consolidated in this review with a simplified model of auxin biosynthesis with keys and clues for important missing links since auxins can enable the plants to proliferate and override the environmental influence and needs to be probed for applications in sustainable agriculture. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-023-03709-6.
Collapse
Affiliation(s)
- Manish Solanki
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014 India
- Puducherry, India
| | - Lata Israni Shukla
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014 India
| |
Collapse
|
9
|
Wang R, Yu M, Xia J, Ren Z, Xing J, Li C, Xu Q, Cang J, Zhang D. Cold stress triggers freezing tolerance in wheat (Triticum aestivum L.) via hormone regulation and transcription of related genes. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:308-321. [PMID: 36385725 DOI: 10.1111/plb.13489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Low temperatures limit the geographic distribution and yield of plants. Hormones play an important role in coordinating the growth and development of plants and their tolerance to low temperatures. However, the mechanisms by which hormones affect plant resistance to extreme cold stress in the natural environment are still unclear. In this study, two winter wheat varieties with different cold resistances, Dn1 and J22, were used to conduct targeted plant hormone metabolome analysis on the tillering nodes of winter wheat at 5 °C, -10 °C and -25 °C using an LC-ESI-MS/MS system. We screened 39 hormones from 88 plant hormone metabolites and constructed a partial regulatory network of auxin, jasmonic acid and cytokinin. GO analysis and enrichment of KEGG pathways in different metabolites showed that the 'plant hormone signal transduction' pathway was the most common. Our study showed that extreme low temperature increased the most levels of auxin, cytokinin and salicylic acid, and decreased levels of jasmonic acid and abscisic acid, and that levels of auxin, jasmonic acid and cytokinin in Dn1 were higher than those in J22. These changes in hormone levels were associated with changes in gene expression in synthesis, catabolism, transport and signal transduction pathways. These results differ from the previous hormone regulation mechanisms, which were mostly obtained at 4 °C. Our results provide a basis for further understanding the molecular mechanisms by which plant endogenous hormones regulate plant freezing stress tolerance.
Collapse
Affiliation(s)
- R Wang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - M Yu
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - J Xia
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Z Ren
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - J Xing
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - C Li
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Q Xu
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - J Cang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - D Zhang
- College of Life Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
10
|
Analysis of oxidase activity and transcriptomic changes related to cutting propagation of hybrid larch. Sci Rep 2023; 13:1354. [PMID: 36693928 PMCID: PMC9873909 DOI: 10.1038/s41598-023-27779-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Hybrid larch is the main timber and afforestation tree species in Northeast China. To solve the problem of rooting difficulties in larch cutting propagation, enzyme activity determination and transcriptome sequencing were carried out on the rooting tissues at five timepoints after cutting. peroxidase (POD), indole acetic acid oxidase (IAAO) and polyphenol oxidase (PPO) play important roles in the larch rooting process after cutting. A total of 101.20 Gb of clean data was obtained by transcriptome sequencing, and 43,246 unigenes were obtained after further screening and assembly. According to GO analysis and KEGG enrichment analysis, we think that plant hormones play an important role in the rooting process of larch stem cuttings. in the plant hormone signal transduction pathway, a larch gene c141104.graph_c0 that is homologous to the Arabidopsis AUX1 was found to be significantly up-regulated. We suggest that AUX1 may promote IAA transport in larch, thus affecting adventitious root development. According to the results of POD, PPO IAAO indexes and GO analysis, we think s1 and s2 periods may be important periods in the rooting process of larch stem cuttings, so we built a gene regulatory network, a total of 14genes, including LBD, NAC, AP2/ERF, bHLH and etc., may be important in different stages of cutting propagation. As the rooting rate after cutting inhibits the development of larch clone propagation, identifying the genes that regulate rooting could help us to preliminarily understand the molecular mechanism of adventitious root formation and select a better treatment method for cutting propagation.
Collapse
|
11
|
Kalogeropoulou E, Aliferis KA, Tjamos SE, Vloutoglou I, Paplomatas EJ. Combined Transcriptomic and Metabolomic Analysis Reveals Insights into Resistance of Arabidopsis bam3 Mutant against the Phytopathogenic Fungus Fusarium oxysporum. PLANTS (BASEL, SWITZERLAND) 2022; 11:3457. [PMID: 36559570 PMCID: PMC9785915 DOI: 10.3390/plants11243457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The wilt-inducing strains of Fusarium oxysporum are responsible for severe damage to many economically important plant species. The most cost-effective and environmentally safe method for the management of Fusarium wilt is the use of resistant cultivars when they are available. In the present study, the Arabidopsis genotype with disruptions in the β-amylase 3 (BAM3) gene, which encodes the major hydrolytic enzyme that degrades starch to maltose, had significantly lower susceptibility to Fusarium oxysporum f. sp. raphani (For) compared to wild-type (wt) plants. It showed the lowest disease severity and contained reduced quantities of fungal DNA in the plant vascular tissues when analyzed with real-time PCR. Through metabolomic analysis using gas chromatography (GC)-mass spectrometry (MS) and gene-expression analysis by reverse-transcription quantitative PCR (RT-qPCR), we observed that defense responses of Arabidopsis bam3 mutants are associated with starch-degradation enzymes, the corresponding modification of the carbohydrate balance, and alterations in sugar (glucose, sucrose, trehalose, and myo-inositol) and auxin metabolism.
Collapse
Affiliation(s)
- Eleni Kalogeropoulou
- Laboratory of Mycology, Scientific Department of Phytopathology, Benaki Phytopathological Institute, 8 St. Delta Street, 145 61 Athens, Greece
| | - Konstantinos A. Aliferis
- Laboratory of Pesticide Science, Agricultural University of Athens, 75 Iera Odos Street, 118 55 Athens, Greece
| | - Sotirios E. Tjamos
- Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos Street, 118 55 Athens, Greece
| | - Irene Vloutoglou
- Laboratory of Mycology, Scientific Department of Phytopathology, Benaki Phytopathological Institute, 8 St. Delta Street, 145 61 Athens, Greece
| | - Epaminondas J. Paplomatas
- Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos Street, 118 55 Athens, Greece
| |
Collapse
|
12
|
Wang Y, Pang D, Ruan L, Liang J, Zhang Q, Qian Y, Zhang Y, Bai P, Wu L, Cheng H, Cui Q, Wang L, Wei K. Integrated transcriptome and hormonal analysis of naphthalene acetic acid-induced adventitious root formation of tea cuttings (Camellia sinensis). BMC PLANT BIOLOGY 2022; 22:319. [PMID: 35787241 PMCID: PMC9251942 DOI: 10.1186/s12870-022-03701-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Tea plant breeding or cultivation mainly involves propagation via cuttings, which not only ensures the inheritance of the excellent characteristics of the mother plant but also facilitates mechanized management. The formation of adventitious root (AR) determines the success of cutting-based propagation, and auxin is an essential factor involved in this process. To understand the molecular mechanism underlying AR formation in nodal tea cuttings, transcriptome and endogenous hormone analysis was performed on the stem bases of red (mature)- and green (immature)-stem cuttings of 'Echa 1 hao' tea plant as affected by a pulse treatment with naphthalene acetic acid (NAA). RESULTS In this study, NAA significantly promoted AR formation in both red- and green-stem cuttings but slightly reduced callus formation. External application of NAA reduced the levels of endogenous indole-3-acetic acid (IAA) and cytokinin (TZR, trans-zeatin riboside). The number of DEGs (NAA vs. CK) identified in the green-stem cuttings was significantly higher than that in the red-stem cuttings, which corresponded to a higher rooting rate of green-stem cuttings under the NAA treatment. A total of 82 common DEGs were identified as being hormone-related and involved in the auxin, cytokinin, abscisic acid, ethylene, salicylic acid, brassinosteroid, and jasmonic acid pathways. The negative regulation of NAA-induced IAA and GH3 genes may explain the decrease of endogenous IAA. NAA reduced endogenous cytokinin levels and further downregulated the expression of cytokinin signalling-related genes. By the use of weighted gene co-expression network analysis (WGCNA), several hub genes, including three [cellulose synthase (CSLD2), SHAVEN3-like 1 (SVL1), SMALL AUXIN UP RNA (SAUR21)] that are highly related to root development in other crops, were identified that might play important roles in AR formation in tea cuttings. CONCLUSIONS NAA promotes the formation of AR of tea cuttings in coordination with endogenous hormones. The most important endogenous AR inductor, IAA, was reduced in response to NAA. DEGs potentially involved in NAA-mediated AR formation of tea plant stem cuttings were identified via comparative transcriptome analysis. Several hub genes, such as CSLD2, SVL1 and SAUR21, were identified that might play important roles in AR formation in tea cuttings.
Collapse
Affiliation(s)
- Yongxin Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China
| | - Dandan Pang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai, 666201, China
| | - Li Ruan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China
| | - Jinbo Liang
- Tea Research Institute of Enshi Academy of Agricultural Sciences, Enshi, 445000, China
| | - Qiang Zhang
- Tea Research Institute of Enshi Academy of Agricultural Sciences, Enshi, 445000, China
| | - Yinhong Qian
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China
| | - Yazhen Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China
| | - Peixian Bai
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China
| | - Liyun Wu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China
| | - Hao Cheng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China
| | - Qingmei Cui
- Tea Research Institute of Enshi Academy of Agricultural Sciences, Enshi, 445000, China.
| | - Liyuan Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China.
| | - Kang Wei
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China.
| |
Collapse
|
13
|
Wang N, Fan X, Lin Y, Li Z, Wang Y, Zhou Y, Meng W, Peng Z, Zhang C, Ma J. Alkaline Stress Induces Different Physiological, Hormonal and Gene Expression Responses in Diploid and Autotetraploid Rice. Int J Mol Sci 2022; 23:ijms23105561. [PMID: 35628377 PMCID: PMC9142035 DOI: 10.3390/ijms23105561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Saline−alkaline stress is a critical abiotic stress that negatively affects plants’ growth and development. Considerably higher enhancements in plant tolerance to saline−alkaline stress have often been observed in polyploid plants compared to their diploid relatives, the underlying mechanism of which remains elusive. In this study, we explored the variations in morphological and physiological characteristics, phytohormones, and genome-wide gene expression between an autotetraploid rice and its diploid relative in response to alkaline stress. It was observed that the polyploidization in the autotetraploid rice imparted a higher level of alkaline tolerance than in its diploid relative. An eclectic array of physiological parameters commonly used for abiotic stress, such as proline, soluble sugars, and malondialdehyde, together with the activities of some selected antioxidant enzymes, was analyzed at five time points in the first 24 h following the alkaline stress treatment between the diploid and autotetraploid rice. Phytohormones, such as abscisic acid and indole-3-acetic acid were also comparatively evaluated between the two types of rice with different ploidy levels under alkaline stress. Transcriptomic analysis revealed that gene expression patterns were altered in accordance with the variations in the cellular levels of phytohormones between diploid and autotetraploid plants upon alkaline stress. In particular, the expression of genes related to peroxide and transcription factors was substantially upregulated in autotetraploid plants compared to diploid plants in response to the alkaline stress treatment. In essence, diploid and autotetraploid rice plants exhibited differential gene expression patterns in response to the alkaline stress, which may shed more light on the mechanism underpinning the ameliorated plant tolerance to alkaline stress following genome duplication.
Collapse
Affiliation(s)
- Ningning Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (Y.L.); (Z.L.); (Y.W.); (Y.Z.); (W.M.); (C.Z.)
| | - Xuhong Fan
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China;
| | - Yujie Lin
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (Y.L.); (Z.L.); (Y.W.); (Y.Z.); (W.M.); (C.Z.)
| | - Zhe Li
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (Y.L.); (Z.L.); (Y.W.); (Y.Z.); (W.M.); (C.Z.)
| | - Yingkai Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (Y.L.); (Z.L.); (Y.W.); (Y.Z.); (W.M.); (C.Z.)
| | - Yiming Zhou
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (Y.L.); (Z.L.); (Y.W.); (Y.Z.); (W.M.); (C.Z.)
| | - Weilong Meng
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (Y.L.); (Z.L.); (Y.W.); (Y.Z.); (W.M.); (C.Z.)
| | - Zhanwu Peng
- Information Center, Jilin Agricultural University, Changchun 130000, China;
| | - Chunying Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (Y.L.); (Z.L.); (Y.W.); (Y.Z.); (W.M.); (C.Z.)
| | - Jian Ma
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (Y.L.); (Z.L.); (Y.W.); (Y.Z.); (W.M.); (C.Z.)
- Correspondence: ; Tel.: +86-431-845332776
| |
Collapse
|
14
|
Jez JM. Connecting primary and specialized metabolism: Amino acid conjugation of phytohormones by GRETCHEN HAGEN 3 (GH3) acyl acid amido synthetases. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102194. [PMID: 35219141 DOI: 10.1016/j.pbi.2022.102194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
GRETCHEN HAGEN 3 (GH3) acyl acid amido synthetases catalyze the ATP-dependent conjugation of phytohormones with amino acids. Traditionally, GH3 proteins are associated with synthesis of the bioactive jasmonate hormone (+)-7- iso -jasmonoyl-l-isoleucine (JA-Ile) and conjugation of indole-3-acetic acid (IAA) with amino acids that tag the hormone for degradation and/or storage. Modifications of JA and IAA by GH3 acyl acid amido synthetases help maintain phytohormones homeostasis. Recent studies broaden the roles of GH3 proteins to include the regulation of JA biosynthesis; the modification of other auxins (i.e., phenylacetic acid and indole-3-butyric acid); the conjugation of auxinic herbicides, such as 4-dichlorophenoxyacetic acid, 4-(2,4-dichlorophenoxy)butyric acid, and dicamba; and the missing step in the isochorismate pathway for the biosynthesis of salicylic acid. The GH3 protein family joins the growing number of versatile enzyme families that blur the line between primary and specialized metabolism for an increasing range of biology functions.
Collapse
Affiliation(s)
- Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130 USA.
| |
Collapse
|
15
|
Iqbal MA, Miyamoto K, Yumoto E, Parveen S, Mutanda I, Inafuku M, Oku H. Plant hormone profile and control over isoprene biosynthesis in a tropical tree Ficus septica. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:492-501. [PMID: 35050526 DOI: 10.1111/plb.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Plant hormone signalling and the circadian clock have been implicated in the transcriptional control of isoprene biosynthesis. To gain more insight into the hormonal control of isoprene biosynthesis, the present study measured plant hormone concentrations in jasmonic acid (JA)-treated leaves of our previous model study, examined their relationship with gene expression of isoprene synthase (IspS) and hormone signalling transcription factors. Of the plant hormones, IAA and JA-Ile and their related transcription factors (MYC2 and SAUR21) were significantly correlated with IspS gene expression. Concentrations of cytokinins, isopentenyladenine (iP), trans-zeatin riboside (tZR) and cis-zeatin riboside (cZR), were similarly significantly correlated with IspS expression. However, there was no significant correlation between their related transcription factor (ARR-B) and IspS expression. The circadian clock-related gene PRR7, but not the transcription factor LHY, was highly correlated with IspS expression. These results suggest that the hormonal balance between JA-Ile and IAA plays a central role in transcriptional regulation of IspS through the transcription factors MYC2 and SAUR21, the early auxin responsive genes. The putative cis-acting elements for SAUR on the IspS promoter (TGTCNN and CATATG), in addition to the G-box for MYC2, support the above proposal. These results provide insightful information on the core components of plant hormone-related regulation of IspS under coordination with the circadian clock genes.
Collapse
Affiliation(s)
- Md A Iqbal
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - K Miyamoto
- Department of Biosciences, Teikyo University, Utsunomiya, Tochigi, Japan
| | - E Yumoto
- Advanced Instrumental Analysis Center, Teikyo University, Tochigi, Japan
| | - S Parveen
- Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - I Mutanda
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, Jiangsu, China
| | - M Inafuku
- Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - H Oku
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
16
|
Wojtaczka P, Ciarkowska A, Starzynska E, Ostrowski M. The GH3 amidosynthetases family and their role in metabolic crosstalk modulation of plant signaling compounds. PHYTOCHEMISTRY 2022; 194:113039. [PMID: 34861536 DOI: 10.1016/j.phytochem.2021.113039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 05/08/2023]
Abstract
The Gretchen Hagen 3 (GH3) genes encoding proteins belonging to the ANL superfamily are widespread in the plant kingdom. The ANL superfamily consists of three groups of adenylating enzymes: aryl- and acyl-CoA synthetases, firefly luciferase, and amino acid-activating adenylation domains of the nonribosomal peptide synthetases (NRPS). GH3s are cytosolic, acidic amidosynthetases of the firefly luciferase group that conjugate auxins, jasmonates, and benzoate derivatives to a wide group of amino acids. In contrast to auxins, which amide conjugates mainly serve as a storage pool of inactive phytohormone or are involved in the hormone degradation process, conjugation of jasmonic acid (JA) results in biologically active phytohormone jasmonyl-isoleucine (JA-Ile). Moreover, GH3s modulate salicylic acid (SA) concentration by conjugation of its precursor, isochorismate. GH3s, as regulators of the phytohormone level, are crucial for normal plant development as well as plant defense response to different abiotic and biotic stress factors. Surprisingly, recent studies indicate that FIN219/JAR1/GH3.11, one of the GH3 proteins, may act not only as an enzyme but is also able to interact with tau-class glutathione S-transferase (GSTU) and constitutive photomorphogenic 1 (COP1) proteins and regulate light and stress signaling pathways. The aim of this work is to summarize our current knowledge of the GH3 family.
Collapse
Affiliation(s)
- Patrycja Wojtaczka
- Department of Biochemistry, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland
| | - Anna Ciarkowska
- Department of Biochemistry, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland
| | - Ewelina Starzynska
- Department of Biochemistry, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland
| | - Maciej Ostrowski
- Department of Biochemistry, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland.
| |
Collapse
|
17
|
Zhang C, Cui L, Fang J. Genome-wide association study of the candidate genes for grape berry shape-related traits. BMC PLANT BIOLOGY 2022; 22:42. [PMID: 35057757 PMCID: PMC8772106 DOI: 10.1186/s12870-022-03434-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In the breeding of new horticultural crops, fruit shape is an important selection characteristic. A variety of fruit shapes appeared during the gradual process of selection and domestication. However, few studies have been conducted on grape berry shape, especially studies related to mining candidate genes. To discover candidate genes related to grape berry shape, the present study first took the berry shape parameters analyzed by Tomato Analyzer as the target traits and used a genome-wide association analysis to analyze candidate genes. RESULTS In total, 122 single-nucleotide polymorphism (SNP) loci had significant correlations with multiple berry shape traits in both years, and some candidate genes were further mined. These genes were mainly related to LRR receptor-like serine/threonine-protein kinase (At1g05700 and At1g07650), transcription factors (GATA transcription factor 23-like, transcription factor VIP1, transcription initiation factor TFIID, and MADS-box transcription factor 6), ubiquitin ligases (F-box protein SKIP19 and RING finger protein 44), and plant hormones (indole-3-acetic acid-amido synthetase GH3.6 and ethylene-responsive transcription factor ERF061). In addition, some important SNP loci were associated with multiple berry-shape traits. The study further revealed some genes that control multiple traits simultaneously, indicating that these berry shape traits are subject to the coordinated regulation of some genes in controlling berry shape. CONCLUSIONS In the present work, we identified interesting genetic determinants of grape berry shape-related traits. The identification of molecular markers that are closely related to these berry-shape traits is of great significance for breeding specific berry-shaped grape varieties.
Collapse
Affiliation(s)
- Chuan Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Liwen Cui
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
18
|
Liang Y, Xiao X, Guo Z, Peng C, Zeng P, Wang X. Co-application of indole-3-acetic acid/gibberellin and oxalic acid for phytoextraction of cadmium and lead with Sedum alfredii Hance from contaminated soil. CHEMOSPHERE 2021; 285:131420. [PMID: 34256202 DOI: 10.1016/j.chemosphere.2021.131420] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/09/2021] [Accepted: 06/30/2021] [Indexed: 05/22/2023]
Abstract
Exogenous application of plant-growth promoting substances in combination with chelators is a common way to enhance the phytoextraction of heavy metals. A pot experiment was used to explore the influences of indole-3-acetic acid (IAA)/gibberellin (GA3) alone or together with oxalic acid (OA) on the growth, physiological response, and nutrient contents of hyperaccumulator Sedum alfredii Hance, and cadmium (Cd) and lead (Pb) phytoextraction efficiency. The results showed that a foliar spray of IAA/GA3 alone or together with OA increased plant growth. The largest shoot biomass with increase by 29.7% was produced by the 50 μmol L-1 IAA combined with 2.5 mmol kg-1 OA (50I+2.5OA) treatment as compared with the control treatment (CK). The presence of IAA and GA3 enhanced the chlorophyll a, carotenoid, and potassium contents in leaves and decreased the malondialdehyde content. The Cd content in leaf and the translocation factor (TFshoot) value from 50I+2.5OA treatment was increased by 4.29% and 21.4%, and the Pb content in stem and shoot, and the TFshoot of Pb after applying 50 μmol L-1 GA3 combined with 2.5 mmol kg-1 OA was enhanced by 32.5%, 13.4%, and 57.6%, compared with CK, respectively. The optimal Cd and Pb phytoextraction efficiency occurred from 50I+2.5OA treatment with increase by 82.4% and 79.3% as compared with CK, respectively. Therefore, the results showed that a combined application of 50 μmol L-1 IAA and 2.5 mmol kg-1 OA could effectively enhance S. alfredii Hance phytoremediation of Cd and Pb co-contaminated soil.
Collapse
Affiliation(s)
- Yuqin Liang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xiyuan Xiao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Zhaohui Guo
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Chi Peng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Peng Zeng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xiaoyan Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| |
Collapse
|
19
|
Clayton-Cuch D, Yu L, Shirley N, Bradley D, Bulone V, Böttcher C. Auxin Treatment Enhances Anthocyanin Production in the Non-Climacteric Sweet Cherry ( Prunus avium L.). Int J Mol Sci 2021; 22:10760. [PMID: 34639100 PMCID: PMC8509301 DOI: 10.3390/ijms221910760] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 01/21/2023] Open
Abstract
Abscisic acid (ABA) is a key signaling molecule promoting ripening of non-climacteric fruits such as sweet cherry (Prunus avium L.). To shed light on the role of other hormones on fruit development, ripening and anthocyanin production, the synthetic auxin 1-naphthaleneacetic acid (NAA) was applied to sweet cherry trees during the straw-color stage of fruit development. NAA-treated fruits exhibited higher concentrations of 1-aminocyclopropane-1-carboxylic acid (ACC) and ABA-glucose ester (ABA-GE), which are a precursor of ethylene and a primary storage form of ABA, respectively. Consistent with these observations, transcript levels of genes encoding ACC synthase and ACC oxidase, both involved in ethylene biosynthesis, were increased after 6 days of NAA treatment, and both ABA concentration and expression of the regulator gene of ABA biosynthesis (NCED1 encoding 9-cis-epoxycarotenoid dioxygenase) were highest during early fruit ripening. In addition, transcript levels of key anthocyanin regulatory, biosynthetic and transport genes were significantly upregulated upon fruit exposure to NAA. This was accompanied by an increased anthocyanin concentration and fruit weight whilst fruit firmness and cracking index decreased. Altogether our data suggest that NAA treatment alters ethylene production, which in turn induces ripening in sweet cherry and enhanced anthocyanin production, possibly through ABA metabolism. The results from our study highlight the potential to use a single NAA treatment for manipulation of cherry ripening.
Collapse
Affiliation(s)
- Daniel Clayton-Cuch
- Adelaide Glycomics, Waite Campus, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5064, Australia; (D.C.-C.); (L.Y.); (N.S.)
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Waite Campus, Glen Osmond, SA 5064, Australia
| | - Long Yu
- Adelaide Glycomics, Waite Campus, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5064, Australia; (D.C.-C.); (L.Y.); (N.S.)
| | - Neil Shirley
- Adelaide Glycomics, Waite Campus, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5064, Australia; (D.C.-C.); (L.Y.); (N.S.)
| | - David Bradley
- Agilent Technologies Australia Pty Ltd., Mulgrave, Melbourne, VIC 3170, Australia;
| | - Vincent Bulone
- Adelaide Glycomics, Waite Campus, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5064, Australia; (D.C.-C.); (L.Y.); (N.S.)
- Department of Chemistry, Division of Glycoscience, Royal Institute of Technology (KTH), School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Centre, 10691 Stockholm, Sweden
| | - Christine Böttcher
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Waite Campus, Glen Osmond, SA 5064, Australia
| |
Collapse
|
20
|
Méndez-Hernández HA, Quintana-Escobar AO, Uc-Chuc MA, Loyola-Vargas VM. Genome-Wide Analysis, Modeling, and Identification of Amino Acid Binding Motifs Suggest the Involvement of GH3 Genes during Somatic Embryogenesis of Coffea canephora. PLANTS 2021; 10:plants10102034. [PMID: 34685847 PMCID: PMC8539013 DOI: 10.3390/plants10102034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 11/23/2022]
Abstract
Auxin plays a central role in growth and plant development. To maintain auxin homeostasis, biological processes such as biosynthesis, transport, degradation, and reversible conjugation are essential. The Gretchen Hagen 3 (GH3) family genes codify for the enzymes that esterify indole-3-acetic acid (IAA) to various amino acids, which is a key process in the induction of somatic embryogenesis (SE). The GH3 family is one of the principal families of early response to auxin genes, exhibiting IAA-amido synthetase activity to maintain optimal levels of free auxin in the cell. In this study, we carried out a systematic identification of the GH3 gene family in the genome of Coffea canephora, determining a total of 18 CcGH3 genes. Analysis of the genetic structures and phylogenetic relationships of CcGH3 genes with GH3 genes from other plant species revealed that they could be clustered in two major categories with groups 1 and 2 of the GH3 family of Arabidopsis. We analyzed the transcriptome expression profiles of the 18 CcGH3 genes using RNA-Seq analysis-based data and qRT-PCR during the different points of somatic embryogenesis induction. Furthermore, the endogenous quantification of free and conjugated indole-3-acetic acid (IAA) suggests that the various members of the CcGH3 genes play a crucial role during the embryogenic process of C. canephora. Three-dimensional modeling of the selected CcGH3 proteins showed that they consist of two domains: an extensive N-terminal domain and a smaller C-terminal domain. All proteins analyzed in the present study shared a unique conserved structural topology. Additionally, we identified conserved regions that could function to bind nucleotides and specific amino acids for the conjugation of IAA during SE in C. canephora. These results provide a better understanding of the C. canephora GH3 gene family for further exploration and possible genetic manipulation.
Collapse
|
21
|
Tahir MM, Chen S, Ma X, Li S, Zhang X, Shao Y, Shalmani A, Zhao C, Bao L, Zhang D. Transcriptome analysis reveals the promotive effect of potassium by hormones and sugar signaling pathways during adventitious roots formation in the apple rootstock. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:123-136. [PMID: 34038809 DOI: 10.1016/j.plaphy.2021.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Apples are economically valuable and widely consumed fruits. The adventitious roots (ARs) formation is gridlock for apple trees mass propagation. The possible function of multiple hormones and sugar signaling pathways regulating ARs formation has not been completely understood in apple. In this study, B9 stem cuttings were treated with KCl treatment, where the highest root numbers (220) and maximum root length of 731.2 cm were noticed in KCl-treated cuttings, which were 98.2% and 215% higher than control cuttings. The content of endogenous hormones: IAA, ZR, JA, GA, and ABA were detected higher in response to KCl at most time-points. To figure out the molecular mechanisms underlying this effect, we investigated transcriptome analysis. In total, 4631 DEGs were determined, from which about 202 DEGs were considerably enriched in pathways associated with hormone signaling, sugar metabolism, root development, and cell cycle-related and were thereupon picked out on their potential involvements in ARs formation. Though, IAA accumulation and up-regulation of various genes contribute to induce AR formation. These results suggest that AR formation is a complex biological process in apple rootstocks, influenced mainly by the auxin signaling pathway and sugar metabolism.
Collapse
Affiliation(s)
- Muhammad Mobeen Tahir
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Shiyue Chen
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Xiaoyan Ma
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Shaohuan Li
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Xiaoyun Zhang
- College of Agriculture, The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization in Xinjiang Production and Construction Group, Shihezi University, 832003, Shihezi, Xinjiang, China
| | - Yun Shao
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Abdullah Shalmani
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Caiping Zhao
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Lu Bao
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China.
| | - Dong Zhang
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China.
| |
Collapse
|
22
|
Abstract
Molecular genetic and structural studies have revealed the mechanisms of fundamental components of key auxin regulatory pathways consisting of auxin biosynthesis, transport, and signaling. Chemical biology methods applied in auxin research have been greatly expanded through the understanding of auxin regulatory pathways. Many small-molecule modulators of auxin metabolism, transport, and signaling have been generated on the basis of the outcomes of genetic and structural studies on auxin regulatory pathways. These chemical modulators are now widely used as essential tools for dissecting auxin biology in diverse plants. This review covers the structures, primary targets, modes of action, and applications of chemical tools in auxin biosynthesis, transport, and signaling.
Collapse
Affiliation(s)
- Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama City 700-0005, Japan
| |
Collapse
|
23
|
Jeong J, Park S, Im JH, Yi H. Genome-wide identification of GH3 genes in Brassica oleracea and identification of a promoter region for anther-specific expression of a GH3 gene. BMC Genomics 2021; 22:22. [PMID: 33407107 PMCID: PMC7789250 DOI: 10.1186/s12864-020-07345-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/22/2020] [Indexed: 01/07/2023] Open
Abstract
Background The Gretchen Hagen 3 (GH3) genes encode acyl acid amido synthetases, many of which have been shown to modulate the amount of active plant hormones or their precursors. GH3 genes, especially Group III subgroup 6 GH3 genes, and their expression patterns in economically important B. oleracea var. oleracea have not been systematically identified. Results As a first step to understand regulation and molecular functions of Group III subgroup 6 GH3 genes, 34 GH3 genes including four subgroup 6 genes were identified in B. oleracea var. oleracea. Synteny found around subgroup 6 GH3 genes in B. oleracea var. oleracea and Arabidopsis thaliana indicated that these genes are evolutionarily related. Although expression of four subgroup 6 GH3 genes in B. oleracea var. oleracea is not induced by auxin, gibberellic acid, or jasmonic acid, the genes show different organ-dependent expression patterns. Among subgroup 6 GH3 genes in B. oleracea var. oleracea, only BoGH3.13–1 is expressed in anthers when microspores, polarized microspores, and bicellular pollens are present, similar to two out of four syntenic A. thaliana subgroup 6 GH3 genes. Detailed analyses of promoter activities further showed that BoGH3.13–1 is expressed in tapetal cells and pollens in anther, and also expressed in leaf primordia and floral abscission zones. Conclusions Sixty-two base pairs (bp) region (− 340 ~ − 279 bp upstream from start codon) and about 450 bp region (− 1489 to − 1017 bp) in BoGH3.13–1 promoter are important for expressions in anther and expressions in leaf primordia and floral abscission zones, respectively. The identified anther-specific promoter region can be used to develop male sterile transgenic Brassica plants. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07345-9.
Collapse
Affiliation(s)
- Jiseong Jeong
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sunhee Park
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jeong Hui Im
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hankuil Yi
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
24
|
Dong A, Yang Y, Liu S, Zenda T, Liu X, Wang Y, Li J, Duan H. Comparative proteomics analysis of two maize hybrids revealed drought-stress tolerance mechanisms. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1805015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Anyi Dong
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Yatong Yang
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Songtao Liu
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Tinashe Zenda
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Xinyue Liu
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Yafei Wang
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Jiao Li
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Huijun Duan
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| |
Collapse
|
25
|
Hu S, Zhang M, Yang Y, Xuan W, Zou Z, Arkorful E, Chen Y, Ma Q, Jeyaraj A, Chen X, Li X. A novel insight into nitrogen and auxin signaling in lateral root formation in tea plant [Camellia sinensis (L.) O. Kuntze]. BMC PLANT BIOLOGY 2020; 20:232. [PMID: 32448156 PMCID: PMC7247184 DOI: 10.1186/s12870-020-02448-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 05/17/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Tea plant (Camellia sinensis) is one of the most popular non-alcoholic beverages worldwide. In tea, lateral roots (LRs) are the main organ responsible for the absorption of moisture and mineral nutrients from the soil. Lateral roots formation and development are regulated by the nitrogen and auxin signaling pathways. In order to understand the role of auxin and nitrogen signaling in LRs formation and development, transcriptome analysis was employed to investigate the differentially expressed genes involved in lateral roots of tea plants treated with indole-3-butyric acid (IBA), N-1-naphthylphthalamic acid (NPA), low and high concentrations of nitrogen. RESULTS A total of 296 common differentially expressed genes were identified and annotated to four signaling pathways, including nitrogen metabolism, plant hormone signal transduction, glutathione metabolism and transcription factors. RNA-sequencing results revealed that majority of differentially expressed genes play important roles in nitrogen metabolism and hormonal signal transduction. Low nitrogen condition induced the biosynthesis of auxin and accumulation of transcripts, thereby, regulating lateral roots formation. Furthermore, metabolism of cytokinin and ethylene biosynthesis were also involved in lateral roots development. Transcription factors like MYB genes also contributed to lateral roots formation of tea plants through secondary cell wall biosynthesis. Reversed phase ultra performance liquid chromatography (RP-UPLC) results showed that the auxin concentration increased with the decreased nitrogen level in lateral roots. Thus, tea plant lateral roots formation could be induced by low nitrogen concentration via auxin biosynthesis and accumulation. CONCLUSION This study provided insights into the mechanisms associated with nitrogen and auxin signaling pathways in LRs formation and provides information on the efficient utilization of nitrogen in tea plant at the genetic level.
Collapse
Affiliation(s)
- Shunkai Hu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mi Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yiqing Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Xuan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhongwei Zou
- Department of Plant Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Emmanuel Arkorful
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingping Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Anburaj Jeyaraj
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinghui Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
26
|
Pinto RT, Freitas NC, Máximo WPF, Cardoso TB, Prudente DDO, Paiva LV. Genome-wide analysis, transcription factor network approach and gene expression profile of GH3 genes over early somatic embryogenesis in Coffea spp. BMC Genomics 2019; 20:812. [PMID: 31694532 PMCID: PMC6836404 DOI: 10.1186/s12864-019-6176-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/07/2019] [Indexed: 01/25/2023] Open
Abstract
Background Coffee production relies on plantations with varieties from Coffea arabica and Coffea canephora species. The first, the most representative in terms of coffee consumption, is mostly propagated by seeds, which leads to management problems regarding the plantations maintenance, harvest and processing of grains. Therefore, an efficient clonal propagation process is required for this species cultivation, which is possible by reaching a scalable and cost-effective somatic embryogenesis protocol. A key process on somatic embryogenesis induction is the auxin homeostasis performed by Gretchen Hagen 3 (GH3) proteins through amino acid conjugation. In this study, the GH3 family members were identified on C. canephora genome, and by performing analysis related to gene and protein structure and transcriptomic profile on embryogenic tissues, we point a GH3 gene as a potential regulator of auxin homeostasis during early somatic embryogenesis in C. arabica plants. Results We have searched within the published C. canephora genome and found 17 GH3 family members. We checked the conserved domains for GH3 proteins and clustered the members in three main groups according to phylogenetic relationships. We identified amino acids sets in four GH3 proteins that are related to acidic amino acid conjugation to auxin, and using a transcription factor (TF) network approach followed by RT-qPCR we analyzed their possible transcriptional regulators and expression profiles in cells with contrasting embryogenic potential in C. arabica. The CaGH3.15 expression pattern is the most correlated with embryogenic potential and with CaBBM, a C. arabica ortholog of a major somatic embryogenesis regulator. Conclusion Therefore, one out of the GH3 members may be influencing on coffee somatic embryogenesis by auxin conjugation with acidic amino acids, which leads to the phytohormone degradation. It is an indicative that this gene can serve as a molecular marker for coffee cells with embryogenic potential and needs to be further studied on how much determinant it is for this process. This work, together with future studies, can support the improvement of coffee clonal propagation through in vitro derived somatic embryos.
Collapse
Affiliation(s)
- Renan Terassi Pinto
- Department of Chemistry, Federal University of Lavras, Lavras, MG, 37200000, Brazil
| | | | | | | | | | - Luciano Vilela Paiva
- Department of Chemistry, Federal University of Lavras, Lavras, MG, 37200000, Brazil.
| |
Collapse
|
27
|
Holland CK, Westfall CS, Schaffer JE, De Santiago A, Zubieta C, Alvarez S, Jez JM. Brassicaceae-specific Gretchen Hagen 3 acyl acid amido synthetases conjugate amino acids to chorismate, a precursor of aromatic amino acids and salicylic acid. J Biol Chem 2019; 294:16855-16864. [PMID: 31575658 DOI: 10.1074/jbc.ra119.009949] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/29/2019] [Indexed: 11/06/2022] Open
Abstract
To modulate responses to developmental or environmental cues, plants use Gretchen Hagen 3 (GH3) acyl acid amido synthetases to conjugate an amino acid to a plant hormone, a reaction that regulates free hormone concentration and downstream responses. The model plant Arabidopsis thaliana has 19 GH3 proteins, of which 8 have confirmed biochemical functions. One Brassicaceae-specific clade of GH3 proteins was predicted to use benzoate as a substrate and includes AtGH3.7 and AtGH3.12/PBS3. Previously identified as a 4-hydroxybenzoic acid-glutamate synthetase, AtGH3.12/PBS3 influences pathogen defense responses through salicylic acid. Recent work has shown that AtGH3.12/PBS3 uses isochorismate as a substrate, forming an isochorismate-glutamate conjugate that converts into salicylic acid. Here, we show that AtGH3.7 and AtGH3.12/PBS3 can also conjugate chorismate to cysteine and glutamate, which act as precursors to aromatic amino acids and salicylic acid, respectively. The X-ray crystal structure of AtGH3.12/PBS3 in complex with AMP and chorismate at 1.94 Å resolution, along with site-directed mutagenesis, revealed how the active site potentially accommodates this substrate. Examination of Arabidopsis knockout lines indicated that the gh3.7 mutants do not alter growth and showed no increased susceptibility to the pathogen Pseudomonas syringae, unlike gh3.12 mutants, which were more susceptible than WT plants, as was the gh3.7/gh3.12 double mutant. The findings of our study suggest that GH3 proteins can use metabolic precursors of aromatic amino acids as substrates.
Collapse
Affiliation(s)
- Cynthia K Holland
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Corey S Westfall
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Jason E Schaffer
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | | | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire & Végétale, University Grenoble Alpes, CNRS, CEA, INRA, IRIG, Grenoble, France
| | - Sophie Alvarez
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska 68583
| | - Joseph M Jez
- Department of Biology, Washington University, St. Louis, Missouri 63130
| |
Collapse
|
28
|
Wei K, Ruan L, Wang L, Cheng H. Auxin-Induced Adventitious Root Formation in Nodal Cuttings of Camellia sinensis. Int J Mol Sci 2019; 20:E4817. [PMID: 31569758 PMCID: PMC6801801 DOI: 10.3390/ijms20194817] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/12/2019] [Accepted: 09/26/2019] [Indexed: 02/01/2023] Open
Abstract
Adventitious root (AR) formation is essential for the successful propagation of Camellia sinensis and auxins play promotive effects on this process. Nowadays, the mechanism of auxin-induced AR formation in tea cuttings is widely studied. However, a lack of global view of the underlying mechanism has largely inhibited further studies. In this paper, recent advances including endogenous hormone changes, nitric oxide (NO) and hydrogen peroxide (H2O2) signals, secondary metabolism, cell wall reconstruction, and mechanisms involved in auxin signaling are reviewed. A further time course analysis of transcriptome changes in tea cuttings during AR formation is also suggested to deepen our understanding. The purpose of this paper is to offer an overview on the most recent developments especially on those key aspects affected by auxins and that play important roles in AR formation in tea plants.
Collapse
Affiliation(s)
- Kang Wei
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China.
| | - Li Ruan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China.
| | - Liyuan Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China.
| | - Hao Cheng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China.
| |
Collapse
|
29
|
Xiang G, Ma W, Gao S, Jin Z, Yue Q, Yao Y. Transcriptomic and phosphoproteomic profiling and metabolite analyses reveal the mechanism of NaHCO 3-induced organic acid secretion in grapevine roots. BMC PLANT BIOLOGY 2019; 19:383. [PMID: 31481025 PMCID: PMC6724372 DOI: 10.1186/s12870-019-1990-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/27/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Organic acid secretion is a widespread physiological response of plants to alkalinity. However, the characteristics and underlying mechanism of the alkali-induced secretion of organic acids are poorly understood. RESULTS Oxalate was the main organic acid synthesized and secreted in grapevine (a hybrid of Vitis amurensis, V. berlandieri and V. riparia) roots, while acetate synthesis and malate secretion were also promoted under NaHCO3 stress. NaHCO3 stress enhanced the H+ efflux rate of grapevine roots, which is related to the plasma membrane H+-ATPase activity. Transcriptomic profiling revealed that carbohydrate metabolism was the most significantly altered biological process under NaHCO3 stress; a total of seven genes related to organic acid metabolism were significantly altered, including two phosphoenolpyruvate carboxylases and phosphoenolpyruvate carboxylase kinases. Additionally, the expression levels of five ATP-binding cassette transporters, particularly ATP-binding cassette B19, and two Al-activated malate transporter 2 s were substantially upregulated by NaHCO3 stress. Phosphoproteomic profiling demonstrated that the altered phosphoproteins were primarily related to binding, catalytic activity and transporter activity in the context of their molecular functions. The phosphorylation levels of phosphoenolpyruvate carboxylase 3, two plasma membrane H+-ATPases 4 and ATP-binding cassette B19 and pleiotropic drug resistance 12 were significantly increased. Additionally, the inhibition of ethylene synthesis and perception completely blocked NaHCO3-induced organic acid secretion, while the inhibition of indoleacetic acid synthesis reduced NaHCO3-induced organic acid secretion. CONCLUSIONS Our results demonstrated that oxalate was the main organic acid produced under alkali stress and revealed the necessity of ethylene in mediating organic acid secretion. Additionally, we further identified several candidate genes and phosphoproteins responsible for organic acid metabolism and secretion.
Collapse
Affiliation(s)
- Guangqing Xiang
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Wanyun Ma
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Shiwei Gao
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Zhongxin Jin
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Qianyu Yue
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Yuxin Yao
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
30
|
Casanova-Sáez R, Voß U. Auxin Metabolism Controls Developmental Decisions in Land Plants. TRENDS IN PLANT SCIENCE 2019; 24:741-754. [PMID: 31230894 DOI: 10.1016/j.tplants.2019.05.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 05/03/2023]
Abstract
Unlike animals, whose body plans are set during embryo development, plants maintain the ability to initiate new organs throughout their life cycle. Auxin is a key regulator of almost all aspects of plant development, including morphogenesis and adaptive responses. Cellular auxin concentrations influence whether a cell will divide, grow, or differentiate, thereby contributing to organ formation, growth, and ultimately plant shape. Auxin gradients are established and maintained by a tightly regulated interplay between metabolism, signalling, and transport. Auxin is synthesised, stored, and inactivated by a multitude of parallel pathways that are all tightly regulated. Here we summarise the remarkable progress that has been achieved in identifying some key components of these pathways and the genetic complexity underlying their precise regulation.
Collapse
Affiliation(s)
- Rubén Casanova-Sáez
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden.
| | - Ute Voß
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| |
Collapse
|
31
|
Recent Advances in Hormonal Regulation and Cross-Talk during Non-Climacteric Fruit Development and Ripening. HORTICULTURAE 2019. [DOI: 10.3390/horticulturae5020045] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fleshy fruits are characterized by having a developmentally and genetically controlled, highly intricate ripening process, leading to dramatic modifications in fruit size, texture, color, flavor, and aroma. Climacteric fruits such as tomato, pear, banana, and melon show a ripening-associated increase in respiration and ethylene production and these processes are well-documented. In contrast, the hormonal mechanism of fruit development and ripening in non-climacteric fruit, such as strawberry, grape, raspberry, and citrus, is not well characterized. However, recent studies have shown that non-climacteric fruit development and ripening, involves the coordinated action of different hormones, such as abscisic acid (ABA), auxin, gibberellins, ethylene, and others. In this review, we discuss and evaluate the recent research findings concerning the hormonal regulation of non-climacteric fruit development and ripening and their cross-talk by taking grape, strawberry, and raspberry as reference fruit species.
Collapse
|
32
|
Yu D, Qanmber G, Lu L, Wang L, Li J, Yang Z, Liu Z, Li Y, Chen Q, Mendu V, Li F, Yang Z. Genome-wide analysis of cotton GH3 subfamily II reveals functional divergence in fiber development, hormone response and plant architecture. BMC PLANT BIOLOGY 2018; 18:350. [PMID: 30541440 PMCID: PMC6291927 DOI: 10.1186/s12870-018-1545-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 11/20/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND Auxin-induced genes regulate many aspects of plant growth and development. The Gretchen Hagen 3 (GH3) gene family, one of three major early auxin-responsive families, is ubiquitous in the plant kingdom and its members function as regulators in modulating hormonal homeostasis, and stress adaptations. Specific Auxin-amido synthetase activity of GH3 subfamily II genes is reported to reversibly inactivate or fully degrade excess auxin through the formation of amino acid conjugates. Despite these crucial roles, to date, genome-wide analysis of the GH3 gene family has not been reported in cotton. RESULTS We identified a total of 10 GH3 subfamily II genes in G. arboreum, 10 in G. raimondii, and 20 in G. hirsutum, respectively. Bioinformatic analysis showed that cotton GH3 genes are conserved with the established GH3s in plants. Expression pattern analysis based on RNA-seq data and qRT-PCR revealed that 20 GhGH3 genes were differentially expressed in a temporally and spatially specific manner, indicating their diverse functions in growth and development. We further summarized the organization of promoter regulatory elements and monitored their responsiveness to treatment with IAA (indole-3-acetic acid), SA (salicylic acid), GA (gibberellic acid) and BL (brassinolide) by qRT-PCR in roots and stems. These hormones seemed to regulate the expression of GH3 genes in both a positive and a negative manner while certain members likely have higher sensitivity to all four hormones. Further, we tested the expression of GhGH3 genes in the BR-deficient mutant pag1 and the corresponding wild-type (WT) of CCRI24. The altered expression reflected the true responsiveness to BL and further suggested possible reasons, at least in part, responsible for the dramatic dwarf and shriveled phenotypes of pag1. CONCLUSION We comprehensively identified GH3 subfamily II genes in cotton. GhGH3s are differentially expressed in various tissues/organs/stages. Their response to IAA, SA, BL and GA and altered expression in pag1 suggest that some GhGH3 genes might be simultaneously involved in multiple hormone signaling pathways. Taken together, our results suggest that members of the GhGH3 gene family could be possible candidate genes for mechanistic study and applications in cotton fiber development in addition to the reconstruction of plant architecture.
Collapse
Affiliation(s)
- Daoqian Yu
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agricultural University, Urumqi, 830052 China
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Lili Lu
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agricultural University, Urumqi, 830052 China
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Lingling Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Jie Li
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agricultural University, Urumqi, 830052 China
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Zhaoen Yang
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agricultural University, Urumqi, 830052 China
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Zhao Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Yi Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Quanjia Chen
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agricultural University, Urumqi, 830052 China
| | - Venugopal Mendu
- Fiber and Biopolymer Research Institute (FBRI), Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409 USA
| | - Fuguang Li
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agricultural University, Urumqi, 830052 China
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000 China
| | - Zuoren Yang
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agricultural University, Urumqi, 830052 China
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000 China
| |
Collapse
|
33
|
Chiu LW, Heckert MJ, You Y, Albanese N, Fenwick T, Siehl DL, Castle LA, Tao Y. Members of the GH3 Family of Proteins Conjugate 2,4-D and Dicamba with Aspartate and Glutamate. PLANT & CELL PHYSIOLOGY 2018; 59:2366-2380. [PMID: 30101323 DOI: 10.1093/pcp/pcy160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Auxin homeostasis is a highly regulated process that must be maintained to allow auxin to exert critical growth and developmental controls. Auxin conjugase and hydrolase family proteins play important roles in auxin homeostasis through means of storage, activation, inactivation, response inhibition and degradation of auxins in plants. We systematically evaluated 60 GRETCHEN HAGEN3 (GH3) proteins from diverse plant species for amino acid conjugation activity with the known substrates jasmonic acid (JA), IAA and 4-hydroxybenzoate (4-HBA). While our results largely confirm that Group II conjugases prefer IAA, we observed no clear substrate preference among Group III proteins, and only three of 11 Group I proteins showed the expected preference for JA, indicating that sequence similarity does not always predict substrate specificity. Such a sequence-substrate relationship held true when sequence similarity at the acyl acid-binding site was used for grouping. Several GH3 proteins could catalyze formation of the potentially degradation-destined aspartate (Asp) and glutamate (Glu) conjugates of IAA and the synthetic auxins 2,4-D and dicamba. We found that 2,4-D-Asp/Glu conjugates, but not dicamba and IAA conjugates, were hydrolyzed in Arabidopsis and soybean by AtILL5- and AtIAR3-like amidohydrolases, releasing free 2,4-D in plant cells when conjugates were exogenously applied to seedlings. Dicamba-Asp or dicamba-Glu conjugates were not hydrolyzed in vivo in infiltrated plants nor in vitro with recombinant amidohydrolases. These findings could open the door for exploration of a dicamba herbicide tolerance strategy through conjugation.
Collapse
Affiliation(s)
- Li-Wei Chiu
- Trait Discovery & Technology, DuPont Pioneer, 4010 Point Eden Way, Hayward, CA, USA
| | - Matthew J Heckert
- Trait Discovery & Technology, DuPont Pioneer, 4010 Point Eden Way, Hayward, CA, USA
| | - You You
- Trait Discovery & Technology, DuPont Pioneer, 4010 Point Eden Way, Hayward, CA, USA
| | - Nicholas Albanese
- Trait Discovery & Technology, DuPont Pioneer, 4010 Point Eden Way, Hayward, CA, USA
| | - Tamara Fenwick
- Trait Discovery & Technology, DuPont Pioneer, 4010 Point Eden Way, Hayward, CA, USA
| | - Daniel L Siehl
- Trait Discovery & Technology, DuPont Pioneer, 4010 Point Eden Way, Hayward, CA, USA
| | - Linda A Castle
- Trait Discovery & Technology, DuPont Pioneer, 4010 Point Eden Way, Hayward, CA, USA
| | - Yumin Tao
- Trait Discovery & Technology, DuPont Pioneer, 4010 Point Eden Way, Hayward, CA, USA
| |
Collapse
|
34
|
Sravankumar T, Naik N, Kumar R. A ripening-induced SlGH3-2 gene regulates fruit ripening via adjusting auxin-ethylene levels in tomato (Solanum lycopersicum L.). PLANT MOLECULAR BIOLOGY 2018; 98:455-469. [PMID: 30367324 DOI: 10.1007/s11103-018-0790-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/17/2018] [Indexed: 05/21/2023]
Abstract
Silencing of SlGH3-2 in tomato alters auxin and ethylene levels during fruit ripening and cause reduced lycopene accumulation in the transgenic fruits. While auxin's role during fleshy fruit ripening is widely acknowledged to be important, the physiological functions of several ripening-induced genes, especially those involved in the maintenance of cellular auxin homeostasis, largely remain under-explored. In the present study, the updated inventory shows that 24 members constitute the Gretchen-Hagen 3 (GH3) gene family in tomato. Their characterization using an expression profiling approach revealed that SlGH3-2, a member of the group II IAA-amido synthetase, is strongly induced at the commencement of fruit ripening. Phylogenetic analysis and homology modeling revealed that SlGH3-2 is the closest homolog of pepper CcGH3 and grapevine VvGH3-1. Expression profiling revealed that the mRNA level of SlGH3-2 is inhibited in ripening mutants such as ripening-inhibitor (rin) and Never-ripe (Nr). Whereas both auxin and ethylene were found to act as positive regulators of its transcript accumulation. The fruits of 35S::SlGH3-2 RNAi lines exhibited prolonged shelf-life. Both ethylene production and lycopene accumulation were affected in the fruits of SlGH3-2 silenced lines. These observations were corroborated by the altered expression of key ethylene and carotenoid biosynthesis genes such as ACS2 and PSY1, respectively, in the RNAi lines. Additionally, the SlGH3-2 silenced line fruits had higher IAA and IBA levels at the ripening stages, and showed increased transcript accumulation of several known auxin-induced SlIAA and SlGH3 genes. Altogether, the present study suggests that SlGH3-2 influences fruit ripening in tomato via modulating ethylene and auxin crosstalk, especially during the early phase.
Collapse
Affiliation(s)
- Thula Sravankumar
- Plant Translational Research Laboratory, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - NandKiran Naik
- Plant Translational Research Laboratory, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rahul Kumar
- Plant Translational Research Laboratory, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
35
|
Fukui K, Hayashi KI. Manipulation and Sensing of Auxin Metabolism, Transport and Signaling. PLANT & CELL PHYSIOLOGY 2018; 59:1500-1510. [PMID: 29668988 DOI: 10.1093/pcp/pcy076] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/09/2018] [Indexed: 05/26/2023]
Abstract
The plant hormone auxin is involved in virtually every aspect of plant growth and development. A chemical genetic approach has greatly contributed to the identification of important genes in auxin biosynthesis, transport and signaling. Molecular genetic technologies and structural information for auxin regulatory components have accelerated the identification and characterization of many novel small molecule modulators in auxin biology. These modulators have been widely utilized to dissect auxin responses. Here we provide an overview of the structure, primary target, in planta activity and application of small molecule modulators in auxin biology.
Collapse
Affiliation(s)
- Kosuke Fukui
- Department of Biochemistry, Okayama University of Science, Okayama City, Japan
| | - Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama City, Japan
| |
Collapse
|
36
|
Transcriptome Analysis Reveals Multiple Hormones, Wounding and Sugar Signaling Pathways Mediate Adventitious Root Formation in Apple Rootstock. Int J Mol Sci 2018; 19:ijms19082201. [PMID: 30060517 PMCID: PMC6121287 DOI: 10.3390/ijms19082201] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 11/16/2022] Open
Abstract
Adventitious roots (AR) play an important role in the vegetative propagation of apple rootstocks. The potential role of hormone, wounding, and sugar signalling pathways in mediating AR formation has not been adequately explored and the whole co-expression network in AR formation has not been well established in apple. In order to identify the molecular mechanisms underlying AR formation in 'T337' apple rootstocks, transcriptomic changes that occur during four stages of AR formation (0, 3, 9 and 16 days) were analyzed using high-throughput sequencing. A total of 4294 differentially expressed genes were identified. Approximately 446 genes related to hormones, wounding, sugar signaling, root development, and cell cycle induction pathways were subsequently selected based on their potential to be involved in AR formation. RT-qPCR validation of 47 genes with known functions exhibited a strong positive correlation with the RNA-seq data. Interestingly, most of the candidate genes involved in AR formation that were identified by transcriptomic sequencing showed auxin-responsive expression patterns in an exogenous Indole-3-butyric acid (IBA)-treatment assay: Indicating that endogenous and exogenous auxin plays key roles in regulating AR formation via similar signalling pathways to some extent. In general, AR formation in apple rootstocks is a complex biological process which is mainly influenced by the auxin signaling pathway. In addition, multiple hormones-, wounding- and sugar-signaling pathways interact with the auxin signaling pathway and mediate AR formation in apple rootstocks.
Collapse
|
37
|
Sherp AM, Westfall CS, Alvarez S, Jez JM. Arabidopsis thaliana GH3.15 acyl acid amido synthetase has a highly specific substrate preference for the auxin precursor indole-3-butyric acid. J Biol Chem 2018; 293:4277-4288. [PMID: 29462792 DOI: 10.1074/jbc.ra118.002006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/05/2018] [Indexed: 12/29/2022] Open
Abstract
Various phytohormones control plant growth and development and mediate biotic and abiotic stress responses. Gretchen Hagen 3 (GH3) acyl acid amido synthetases are plant enzymes that typically conjugate amino acids to indole-3-acetic acid (IAA) or jasmonic acid (JA) to inactivate or activate these phytohormones, respectively; however, the physiological and biological roles of many of these enzymes remain unclear. Using a biochemical approach, we found that the Arabidopsis thaliana GH3.15 (AtGH3.15) preferentially uses indole-3-butyric acid (IBA) and glutamine as substrates. The X-ray crystal structure of the AtGH3.15·AMP complex, modeling of IBA in the active site, and biochemical analysis of site-directed mutants provide insight on active site features that lead to AtGH3.15's preference for IBA. Assay-based in planta analysis of AtGH3.15-overexpressing lines indicated that their root elongation and lateral root density were resistant to IBA treatment but not to treatment with either IAA or JA. These findings suggest that AtGH3.15 may play a role in auxin homeostasis by modulating the levels of IBA for peroxisomal conversion to IAA. Analysis of AtGH3.15 promoter-driven yellow fluorescent protein reporter lines revealed that AtGH3.15 is expressed at significant levels in seedlings, roots, and parts of the siliques. We conclude that AtGH3.15 is unique in the GH3 protein family for its role in modifying IBA in auxin homeostasis and that it is the first GH3 protein shown to primarily modify a plant growth regulator other than IAA and JA.
Collapse
Affiliation(s)
- Ashley M Sherp
- From the Department of Biology, Washington University, St. Louis, Missouri 63130 and
| | - Corey S Westfall
- From the Department of Biology, Washington University, St. Louis, Missouri 63130 and
| | - Sophie Alvarez
- the Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68588
| | - Joseph M Jez
- From the Department of Biology, Washington University, St. Louis, Missouri 63130 and
| |
Collapse
|
38
|
Ma Q, Grones P, Robert S. Auxin signaling: a big question to be addressed by small molecules. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:313-328. [PMID: 29237069 PMCID: PMC5853230 DOI: 10.1093/jxb/erx375] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/16/2017] [Indexed: 05/20/2023]
Abstract
Providing a mechanistic understanding of the crucial roles of the phytohormone auxin has been an important and coherent aspect of plant biology research. Since its discovery more than a century ago, prominent advances have been made in the understanding of auxin action, ranging from metabolism and transport to cellular and transcriptional responses. However, there is a long road ahead before a thorough understanding of its complex effects is achieved, because a lot of key information is still missing. The availability of an increasing number of technically advanced scientific tools has boosted the basic discoveries in auxin biology. A plethora of bioactive small molecules, consisting of the synthetic auxin-like herbicides and the more specific auxin-related compounds, developed as a result of the exploration of chemical space by chemical biology, have made the tool box for auxin research more comprehensive. This review mainly focuses on the compounds targeting the auxin co-receptor complex, demonstrates the various ways to use them, and shows clear examples of important basic knowledge obtained by their usage. Application of these precise chemical tools, together with an increasing amount of structural information for the major components in auxin action, will certainly aid in strengthening our insights into the complexity and diversity of auxin response.
Collapse
Affiliation(s)
- Qian Ma
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Sweden
| | - Peter Grones
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Sweden
| | | |
Collapse
|
39
|
Gu A, Meng C, Chen Y, Wei L, Dong H, Lu Y, Wang Y, Chen X, Zhao J, Shen S. Coupling Seq-BSA and RNA-Seq Analyses Reveal the Molecular Pathway and Genes Associated with Heading Type in Chinese Cabbage. Front Genet 2017; 8:176. [PMID: 29312432 PMCID: PMC5733010 DOI: 10.3389/fgene.2017.00176] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/24/2017] [Indexed: 02/04/2023] Open
Abstract
In Chinese cabbage, heading type is a key agricultural trait of significant economic importance. Using a natural microspore-derived doubled haploid plant, we generated self-crossed progeny with overlapping or outward curling head morphotypes. Sequencing-based bulked segregant analysis (Seq-BSA) revealed a candidate region of 0.52 Mb (A06: 1,824,886~2,347,097 bp) containing genes enriched for plant hormone signal transduction. RNA Sequencing (RNA-Seq) analysis supported the hormone pathway enrichment leading to the identification of two key candidate genes, BrGH3.12 and BrABF1. The regulated homologous genes and the relationship between genes in this pathway were also revealed. Expression of BrGH3.12 varied significantly in the apical portion of the leaf, consistent with the morphological differences between overlapping and outward curling leaves. Transcript levels of BrABF1 in the top, middle and basal segments of the leaf were significantly different between the two types. The two morphotypes contained different concentrations of IAA in the apical portion of their leaves while levels of ABA differed significantly between plant types in the top, middle, and basal leaf segments. Results from Seq-BSA, RNA-Seq and metabolite analyses all support a role for IAA and ABA in heading type formation. These findings increase our understanding of the molecular basis for pattern formation of the leafy head in Chinese cabbage and will contribute to future work developing more desirable leafy head patterns.
Collapse
Affiliation(s)
- AiXia Gu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Chuan Meng
- Economic Crop Research Institute, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - YueQi Chen
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Lai Wei
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Hui Dong
- Shijiazhuang Pomology Institute, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yin Lu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - YanHua Wang
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - XuePing Chen
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - JianJun Zhao
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - ShuXing Shen
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
40
|
Damodaran S, Westfall CS, Kisely BA, Jez JM, Subramanian S. Nodule-Enriched GRETCHEN HAGEN 3 Enzymes Have Distinct Substrate Specificities and Are Important for Proper Soybean Nodule Development. Int J Mol Sci 2017; 18:E2547. [PMID: 29182530 PMCID: PMC5751150 DOI: 10.3390/ijms18122547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 11/16/2022] Open
Abstract
Legume root nodules develop as a result of a symbiotic relationship between the plant and nitrogen-fixing rhizobia bacteria in soil. Auxin activity is detected in different cell types at different stages of nodule development; as well as an enhanced sensitivity to auxin inhibits, which could affect nodule development. While some transport and signaling mechanisms that achieve precise spatiotemporal auxin output are known, the role of auxin metabolism during nodule development is unclear. Using a soybean root lateral organ transcriptome data set, we identified distinct nodule enrichment of three genes encoding auxin-deactivating GRETCHEN HAGEN 3 (GH3) indole-3-acetic acid (IAA) amido transferase enzymes: GmGH3-11/12, GmGH3-14 and GmGH3-15. In vitro enzymatic assays showed that each of these GH3 proteins preferred IAA and aspartate as acyl and amino acid substrates, respectively. GmGH3-15 showed a broad substrate preference, especially with different forms of auxin. Promoter:GUS expression analysis indicated that GmGH3-14 acts primarily in the root epidermis and the nodule primordium where as GmGH3-15 might act in the vasculature. Silencing the expression of these GH3 genes in soybean composite plants led to altered nodule numbers, maturity, and size. Our results indicate that these GH3s are needed for proper nodule maturation in soybean, but the precise mechanism by which they regulate nodule development remains to be explained.
Collapse
Affiliation(s)
- Suresh Damodaran
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA.
| | - Corey S Westfall
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - Brian A Kisely
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA.
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - Senthil Subramanian
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA.
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
41
|
Mackelprang R, Okrent RA, Wildermuth MC. Preference of Arabidopsis thaliana GH3.5 acyl amido synthetase for growth versus defense hormone acyl substrates is dictated by concentration of amino acid substrate aspartate. PHYTOCHEMISTRY 2017; 143:19-28. [PMID: 28743075 DOI: 10.1016/j.phytochem.2017.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/29/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
The GH3 family of adenylating enzymes conjugate acyl substrates such as the growth hormone indole-3-acetic acid (IAA) to amino acids via a two-step reaction of acyl substrate adenylation followed by amino acid conjugation. Arabidopsis thaliana GH3.5 was previously shown to be unusual in that it could adenylate both IAA and the defense hormone salicylic acid (SA, 2-hydroxybenzoate). Our detailed studies of the kinetics of GH3.5 on a variety of auxin and benzoate substrates provides insight into the acyl preference and reaction mechanism of GH3.5. For example, we found GH3.5 activity on substituted benzoates is not defined by the substitution position as it is for GH3.12/PBS3. Most importantly, we show that GH3.5 strongly prefers Asp as the amino acid conjugate and that the concentration of Asp dictates the functional activity of GH3.5 on IAA vs. SA. Not only is Asp used in amino acid biosynthesis, but it also plays an important role in nitrogen mobilization and in the production of downstream metabolites, including pipecolic acid which propagates defense systemically. During active growth, [IAA] and [Asp] are high and the catalytic efficiency (kcat/Km) of GH3.5 for IAA is 360-fold higher than with SA. GH3.5 is expressed under these conditions and conversion of IAA to inactive IAA-Asp would provide fine spatial and temporal control over local auxin developmental responses. By contrast, [SA] is dramatically elevated in response to (hemi)-biotrophic pathogens which also induce GH3.5 expression. Under these conditions, [Asp] is low and GH3.5 has equal affinity (Km) for SA and IAA with similar catalytic efficiencies. However, the concentration of IAA tends to be very low, well below the Km for IAA. Therefore, GH3.5 catalyzed formation of SA-Asp would occur, fine-tuning localized defensive responses through conversion of active free SA to SA-Asp. Taken together, we show how GH3.5, with dual activity on IAA and SA, can integrate cellular metabolic status via Asp to provide fine control of growth vs. defense outcomes and hormone homeostasis.
Collapse
Affiliation(s)
- Rebecca Mackelprang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | - Rachel A Okrent
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | - Mary C Wildermuth
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA.
| |
Collapse
|
42
|
Fu Q, Zhang J, Borchardt D, Schlenk D, Gan J. Direct Conjugation of Emerging Contaminants in Arabidopsis: Indication for an Overlooked Risk in Plants? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6071-6081. [PMID: 28502169 DOI: 10.1021/acs.est.6b06266] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Agricultural use of treated wastewater, biosolids, and animal wastes introduces a multitude of contaminants of emerging concerns (CECs) into the soil-plant system. The potential for food crops to accumulate CECs depends largely on their metabolism in plants, which at present is poorly understood. Here, we evaluated the metabolism of naproxen and ibuprofen, two of the most-used human drugs from the Profen family, in Arabidopsis thaliana cells and the Arabidopsis plant. The complementary use of high-resolution mass spectrometry and 14C labeling allowed the characterization of both free and conjugated metabolites, as well as nonextractable residues. Naproxen and ibuprofen, in their parent form, were conjugated quickly and directly with glutamic acid and glutamine, and further with peptides, in A. thaliana cells. For example, after 120 h, the metabolites of naproxen accounted for >90% of the extractable chemical mass, while the intact parent itself was negligible. The structures of glutamate and glutamine conjugates were confirmed using synthesized standards and further verified in whole plants. Amino acid conjugates may easily deconjugate, releasing the parent molecule. This finding highlights the possibility that the bioactivity of such CECs may be effectively preserved through direct conjugation, a previously overlooked risk. Many other CECs are also carboxylic acids, such as the profens. Therefore, direct conjugation may be a common route for plant metabolism of these CECs, making it imperative to consider conjugates when assessing their risks.
Collapse
Affiliation(s)
- Qiuguo Fu
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
| | - Jianbo Zhang
- Department of Health Sciences and Technology, ETH Zürich , 8092 Zürich, Switzerland
| | | | | | | |
Collapse
|
43
|
Urano K, Maruyama K, Jikumaru Y, Kamiya Y, Yamaguchi-Shinozaki K, Shinozaki K. Analysis of plant hormone profiles in response to moderate dehydration stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:17-36. [PMID: 27995695 DOI: 10.1111/tpj.13460] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 05/19/2023]
Abstract
Plant responses to dehydration stress are mediated by highly complex molecular systems involving hormone signaling and metabolism, particularly the major stress hormone abscisic acid (ABA) and ABA-dependent gene expression. To understand the roles of plant hormones and their interactions during dehydration, we analyzed the plant hormone profiles with respect to dehydration responses in Arabidopsis thaliana wild-type (WT) plants and ABA biosynthesis mutants (nced3-2). We developed a procedure for moderate dehydration stress, and then investigated temporal changes in the profiles of ABA, jasmonic acid isoleucine (JA-Ile), salicylic acid (SA), cytokinin (trans-zeatin, tZ), auxin (indole-acetic acid, IAA), and gibberellin (GA4 ), along with temporal changes in the expression of key genes involved in hormone biosynthesis. ABA levels increased in a bi-phasic pattern (at the early and late phases) in response to moderate dehydration stress. JA-Ile levels increased slightly in WT plants and strongly increased in nced3-2 mutant plants at 72 h after the onset of dehydration. The expression profiles of dehydration-inducible genes displayed temporal responses in an ABA-dependent manner. The early phase of ABA accumulation correlated with the expression of touch-inducible genes and was independent of factors involved in the major ABA regulatory pathway, including the ABA-responsive element-binding (AREB/ABF) transcription factor. JA-Ile, SA, and tZ were negatively regulated during the late dehydration response phase. Transcriptome analysis revealed important roles for hormone-related genes in metabolism and signaling during dehydration-induced plant responses.
Collapse
Affiliation(s)
- Kaoru Urano
- RIKEN Center for Sustainable Resource Science (CSRS), 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Kyonoshin Maruyama
- Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
| | - Yusuke Jikumaru
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuji Kamiya
- RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | | | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science (CSRS), 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| |
Collapse
|
44
|
Fu Q, Ye Q, Zhang J, Richards J, Borchardt D, Gan J. Diclofenac in Arabidopsis cells: Rapid formation of conjugates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 222:383-392. [PMID: 28012668 DOI: 10.1016/j.envpol.2016.12.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/20/2016] [Accepted: 12/04/2016] [Indexed: 06/06/2023]
Abstract
Pharmaceutical and personal care products (PPCPs) are continuously introduced into the soil-plant system, through practices such as agronomic use of reclaimed water and biosolids containing these trace contaminants. Plants may accumulate PPCPs from soil, serving as a conduit for human exposure. Metabolism likely controls the final accumulation of PPCPs in plants, but is in general poorly understood for emerging contaminants. In this study, we used diclofenac as a model compound, and employed 14C tracing, and time-of-flight (TOF) and triple quadruple (QqQ) mass spectrometers to unravel its metabolism pathways in Arabidopsis thaliana cells. We further validated the primary metabolites in Arabidopsis seedlings. Diclofenac was quickly taken up into A. thaliana cells. Phase I metabolism involved hydroxylation and successive oxidation and cyclization reactions. However, Phase I metabolites did not accumulate appreciably; they were instead rapidly conjugated with sulfate, glucose, and glutamic acid through Phase II metabolism. In particular, diclofenac parent was directly conjugated with glutamic acid, with acyl-glutamatyl-diclofenac accounting for >70% of the extractable metabolites after 120-h incubation. In addition, at the end of incubation, >40% of the spiked diclofenac was in the non-extractable form, suggesting extensive sequestration into cell matter. The rapid formation of non-extractable residue and dominance of diclofenac-glutamate conjugate uncover previously unknown metabolism pathways for diclofenac. In particular, the rapid conjugation of parent highlights the need to consider conjugates of emerging contaminants in higher plants, and their biological activity and human health implications.
Collapse
Affiliation(s)
- Qiuguo Fu
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States; Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China.
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Jianbo Zhang
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Jaben Richards
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Dan Borchardt
- Chemistry Department, University of California, Riverside, CA 92521, United States
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| |
Collapse
|
45
|
Structural basis of jasmonate-amido synthetase FIN219 in complex with glutathione S-transferase FIP1 during the JA signal regulation. Proc Natl Acad Sci U S A 2017; 114:E1815-E1824. [PMID: 28223489 DOI: 10.1073/pnas.1609980114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Far-red (FR) light-coupled jasmonate (JA) signaling is necessary for plant defense and development. FR insensitive 219 (FIN219) is a member of the Gretchen Hagen 3 (GH3) family of proteins in Arabidopsis and belongs to the adenylate-forming family of enzymes. It directly controls biosynthesis of jasmonoyl-isoleucine in JA-mediated defense responses and interacts with FIN219-interacting protein 1 (FIP1) under FR light conditions. FIN219 and FIP1 are involved in FR light signaling and are regulators of the interplay between light and JA signaling. However, how their interactions affect plant physiological functions remains unclear. Here, we demonstrate the crystal structures of FIN219-FIP1 while binding with substrates at atomic resolution. Our results show an unexpected FIN219 conformation and demonstrate various differences between this protein and other members of the GH3 family. We show that the rotated C-terminal domain of FIN219 alters ATP binding and the core structure of the active site. We further demonstrate that this unique FIN219-FIP1 structure is crucial for increasing FIN219 activity and determines the priority of substrate binding. We suggest that the increased FIN219 activity resulting from the complex form, a conformation for domain switching, allows FIN219 to switch to its high-affinity mode and thereby enhances JA signaling under continuous FR light conditions.
Collapse
|
46
|
Arabidopsis thaliana GH3.5 acyl acid amido synthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis. Proc Natl Acad Sci U S A 2016; 113:13917-13922. [PMID: 27849615 DOI: 10.1073/pnas.1612635113] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In Arabidopsis thaliana, the acyl acid amido synthetase Gretchen Hagen 3.5 (AtGH3.5) conjugates both indole-3-acetic acid (IAA) and salicylic acid (SA) to modulate auxin and pathogen response pathways. To understand the molecular basis for the activity of AtGH3.5, we determined the X-ray crystal structure of the enzyme in complex with IAA and AMP. Biochemical analysis demonstrates that the substrate preference of AtGH3.5 is wider than originally described and includes the natural auxin phenylacetic acid (PAA) and the potential SA precursor benzoic acid (BA). Residues that determine IAA versus BA substrate preference were identified. The dual functionality of AtGH3.5 is unique to this enzyme although multiple IAA-conjugating GH3 proteins share nearly identical acyl acid binding sites. In planta analysis of IAA, PAA, SA, and BA and their respective aspartyl conjugates were determined in wild-type and overexpressing lines of A thaliana This study suggests that AtGH3.5 conjugates auxins (i.e., IAA and PAA) and benzoates (i.e., SA and BA) to mediate crosstalk between different metabolic pathways, broadening the potential roles for GH3 acyl acid amido synthetases in plants.
Collapse
|
47
|
Ostrowski M, Mierek-Adamska A, Porowińska D, Goc A, Jakubowska A. Cloning and biochemical characterization of indole-3-acetic acid-amino acid synthetase PsGH3 from pea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 107:9-20. [PMID: 27235647 DOI: 10.1016/j.plaphy.2016.05.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/18/2016] [Accepted: 05/18/2016] [Indexed: 06/05/2023]
Abstract
Phytohormone conjugation is one of the mechanisms that maintains a proper hormonal homeostasis and that is necessary for the realization of physiological responses. Gretchen Hagen 3 (GH3) acyl acid amido synthetases convert indole-3-acetic acid (IAA) to IAA-amino acid conjugates by ATP-dependent reactions. IAA-aspartate (IAA-Asp) exists as a predominant amide conjugate of auxin in pea tissues and acts as an intermediate during IAA catabolism. Here we report a novel recombinant indole-3-acetic acid-amido synthetase in Pisum sativum. In silico analysis shows that amino acid sequence of PsGH3 has the highest homology to Medicago truncatula GH3.3. The recombinant His-tag-PsGH3 fusion protein has been obtained in E. coli cells and is a soluble monomeric polypeptide with molecular mass of 69.18 kDa. The PsGH3 was purified using Ni(2+)-affinity chromatography and native PAGE. Kinetic analysis indicates that the enzyme strongly prefers IAA and L-aspartate as substrates for conjugation revealing Km(ATP) = 0.49 mM, Km(L-Asp) = 2.2 mM, and Km(IAA) = 0.28 mM. Diadenosine pentaphosphate (Ap5A) competes with ATP for catalytic site and diminishes the PsGH3 affinity toward ATP approximately 1.11-fold indicating Ki = 8.5 μM. L-Tryptophan acts as an inhibitor of IAA-amido synthesizing activity by competition with L-aspartate. Inorganic pyrophosphatase (PPase) hydrolyzing pyrophosphate to two phosphate ions, potentiates IAA-Asp synthetase activity of PsGH3. Our results demonstrate that PsGH3 is a novel enzyme that is involved in auxin metabolism in pea seeds.
Collapse
Affiliation(s)
- Maciej Ostrowski
- Department of Biochemistry, Nicolaus Copernicus University, Torun, Lwowska 1, Poland.
| | | | - Dorota Porowińska
- Department of Biochemistry, Nicolaus Copernicus University, Torun, Lwowska 1, Poland
| | - Anna Goc
- Department of Genetics, Nicolaus Copernicus University, Torun, Lwowska 1, Poland
| | - Anna Jakubowska
- Department of Biochemistry, Nicolaus Copernicus University, Torun, Lwowska 1, Poland
| |
Collapse
|
48
|
Eyer L, Vain T, Pařízková B, Oklestkova J, Barbez E, Kozubíková H, Pospíšil T, Wierzbicka R, Kleine-Vehn J, Fránek M, Strnad M, Robert S, Novak O. 2,4-D and IAA Amino Acid Conjugates Show Distinct Metabolism in Arabidopsis. PLoS One 2016; 11:e0159269. [PMID: 27434212 PMCID: PMC4951038 DOI: 10.1371/journal.pone.0159269] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/29/2016] [Indexed: 11/19/2022] Open
Abstract
The herbicide 2,4-D exhibits an auxinic activity and therefore can be used as a synthetic and traceable analog to study auxin-related responses. Here we identified that not only exogenous 2,4-D but also its amide-linked metabolite 2,4-D-Glu displayed an inhibitory effect on plant growth via the TIR1/AFB auxin-mediated signaling pathway. To further investigate 2,4-D metabolite conversion, identity and activity, we have developed a novel purification procedure based on the combination of ion exchange and immuno-specific sorbents combined with a sensitive liquid chromatography-mass spectrometry method. In 2,4-D treated samples, 2,4-D-Glu and 2,4-D-Asp were detected at 100-fold lower concentrations compared to 2,4-D levels, showing that 2,4-D can be metabolized in the plant. Moreover, 2,4-D-Asp and 2,4-D-Glu were identified as reversible forms of 2,4-D homeostasis that can be converted to free 2,4-D. This work paves the way to new studies of auxin action in plant development.
Collapse
Affiliation(s)
- Luděk Eyer
- Department of Virology, Veterinary Research Institute, Brno, Czech Republic
| | - Thomas Vain
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Barbora Pařízková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS & Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Jana Oklestkova
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS & Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Elke Barbez
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Hana Kozubíková
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Tomáš Pospíšil
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Roksana Wierzbicka
- Department of Virology, Veterinary Research Institute, Brno, Czech Republic
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Milan Fránek
- Department of Virology, Veterinary Research Institute, Brno, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS & Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Stéphanie Robert
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
- * E-mail: (ON); (SR)
| | - Ondrej Novak
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS & Faculty of Science of Palacký University, Olomouc, Czech Republic
- * E-mail: (ON); (SR)
| |
Collapse
|
49
|
Liu K, Wang J, Li H, Zhong J, Feng S, Pan Y, Yuan C. Identification, Expression and IAA-Amide Synthetase Activity Analysis of Gretchen Hagen 3 in Papaya Fruit ( Carica papaya L.) during Postharvest Process. FRONTIERS IN PLANT SCIENCE 2016; 7:1555. [PMID: 27812360 PMCID: PMC5071377 DOI: 10.3389/fpls.2016.01555] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/03/2016] [Indexed: 05/20/2023]
Abstract
Auxin plays essential roles in plant development. Gretchen Hagen 3 (GH3) genes belong to a major auxin response gene family and GH3 proteins conjugate a range of acylsubstrates to alter the levels of hormones. Currently, the role of GH3 genes in postharvest physiological regulation of ripening and softening processes in papaya fruit is unclear. In this study, we identified seven CpGH3 genes in a papaya genome database. The CpGH3.1a, CpGH3.1b, CpGH3.5, CpGH3.6, and CpGH3.9 proteins were identified as indole-3-acetic acid (IAA)-specific amido synthetases. We analyzed the changes in IAA-amido synthetase activity using aspartate as a substrate for conjugation and found a large increase (over 5-fold) during the postharvest stages. Ascorbic acid (AsA) application can extend the shelf life of papaya fruit. Our data showed that AsA treatment regulates postharvest fruit maturation processes by promoting endogenous IAA levels. Our findings demonstrate the important role of GH3 genes in the regulation of auxin-associated postharvest physiology in papaya.
Collapse
Affiliation(s)
- Kaidong Liu
- Life Science and Technology School, Lingnan Normal UniversityZhanjiang, China
- *Correspondence: Kaidong Liu
| | - Jinxiang Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agriculture UniversityGuangzhou, China
- College of Agriculture and Root Biology Center, South China Agricultural UniversityGuangzhou, China
| | - Haili Li
- Life Science and Technology School, Lingnan Normal UniversityZhanjiang, China
| | - Jundi Zhong
- Life Science and Technology School, Lingnan Normal UniversityZhanjiang, China
| | - Shaoxian Feng
- Life Science and Technology School, Lingnan Normal UniversityZhanjiang, China
| | - Yaoliang Pan
- Life Science and Technology School, Lingnan Normal UniversityZhanjiang, China
| | - Changchun Yuan
- Life Science and Technology School, Lingnan Normal UniversityZhanjiang, China
- Changchun Yuan
| |
Collapse
|
50
|
Transcriptome profiling of indole-3-butyric acid-induced adventitious root formation in softwood cuttings of the Catalpa bungei variety ‘YU-1’ at different developmental stages. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0352-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|