1
|
Tian Z, Wang K, Guo S, Li JX, King-Jones K, Zhu F, Liu W, Wang XP. The PBAP chromatin remodeling complex mediates summer diapause via H3K4me3-driven juvenile hormone regulation in Colaphellus bowringi. Proc Natl Acad Sci U S A 2025; 122:e2422328122. [PMID: 40112108 PMCID: PMC11962415 DOI: 10.1073/pnas.2422328122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
Diapause, a developmental arrest mechanism, helps animals to survive seasonal changes via endocrine regulation. While obligate diapause is genetically programmed, facultative diapause is typically triggered by environmental cues such as photoperiod. In insects, this often leads to reproductive diapause characterized by reduced juvenile hormone (JH) signaling, resulting in ovarian arrest and lipid accumulation. However, the molecular link between photoperiod and hormonal control remains poorly understood. In this study, we investigated the cabbage beetle Colaphellus bowringi as our model system. This species exhibits a photoperiodic response, where short-day (SD) conditions promote reproduction, whereas long-day (LD) conditions induce diapause. Our research identified the PBAP chromatin remodeling complex as a key regulator of LD-induced summer diapause entry. Through RNAi screening of 56 transcriptional regulators that were differentially expressed between SD and LD females, we identified BAP170, a PBAP-specific component, as a key mediator of diapause. Knockdown of bap170 in SD females induced reproductive diapause traits, which were reversed by treatment with methoprene, a JH analog, suggesting that the PBAP complex regulates diapause by influencing JH production. We further demonstrated that the PBAP complex modulates JH biosynthesis via SET1/COMPASS-mediated trimethylation of H3K4. Transcriptome analysis and a second RNAi screen identified calmodulin, a calcium-binding messenger protein gene, as a direct target of PBAP-SET1/COMPASS-H3K4me3 signaling in the corpora allata (CA), the primary source of JH. These findings reveal how the chromatin remodeling machinery translates photoperiod signals into endocrine responses governing seasonal adaptation.
Collapse
Affiliation(s)
- Zhong Tian
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
- Department of Traditional Chinese Medicine, Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Kou Wang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Shuang Guo
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Jia-Xu Li
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, Edmonton, AlbertaT6G 2E9, Canada
| | - Fen Zhu
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Wen Liu
- Department of Biological Sciences, University of Alberta, Edmonton, AlbertaT6G 2E9, Canada
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| |
Collapse
|
2
|
Wang Q, Si C, Tang Q, Zhai Y, He Y, Li J, Feng X, Wang L, Zhou L, Wang L, Chen S, Chen F, Jiang J. The B-box protein CmBBX8 recruits chromatin modifiers CmFDM2/CmSWI3B to induce flowering in summer chrysanthemum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17182. [PMID: 39630875 DOI: 10.1111/tpj.17182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/07/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
The transition from vegetative to reproductive growth is essential for the flowering process of plants. In summer chrysanthemum, CmBBX8 exploits prominence function in floral transition by activating the expression of CmFTL1. However, how CmBBX8 induces CmFTL1 during the photoperiod inductive cycles remains unknown. Here, we show that CmBBX8 interacts with the SGS3-like protein CmFDM2, and the CmFDM2 overexpression strains presented early flowering, while knockdown strains delayed flowering. Additionally, CmFDM2 could bind to the CmFTL1 promoter and activate the expression of CmFTL1, and associate with chromatin remodeling factor CmSWI3B, and CmBBX8 induces flowering dependent on CmFDM2 and CmSWI3B. CmFDM2 also partially depends on CmSWI3B. The CmSWI3B knockdown strains exhibited a significant late flowering phenotype. Interestingly, CmBBX8 also interacts with CmSWI3B. Moreover, the level of H3K27me3 at the CmFTL1 locus was reduced when CmBBX8 and CmFDM2/CmSWI3B occupied the locus to promote chrysanthemum flowering during the photoperiod inductive cycles, which was accompanied by the increasing level of CmFTL1 transcripts. Thus, our work provides novel insights into the gradually increasing level of CmFTL1 for the floral transition through CmBBX8 recruiting chromatin modifiers CmFDM2/CmSWI3B.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Chaona Si
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Qingling Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yiwen Zhai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yuhua He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiayu Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xin Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lijun Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lijie Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Likai Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Dias Lopes C, He X, Ariel F, Pereyra-Bistraín LI, Benhamed M. The MVPs (masterful versatile players): Chromatin factors as pivotal mediators between 3D genome organization and the response to environment. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102599. [PMID: 38991465 DOI: 10.1016/j.pbi.2024.102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024]
Abstract
In recent years, the study of genome dynamics has become a prominent research field due to its influence on understanding the control of gene expression. The study of 3D genome organization has unveiled multiple mechanisms in orchestrating chromosome folding. Growing evidence reveals that these mechanisms are not only important for genome organization, but play a pivotal role in enabling plants to adapt to environmental stimuli. In this review, we provide an overview of the current knowledge concerning epigenetic factors and regulatory elements driving 3D genome dynamics and their responses to external stimuli. We discuss the most recent findings, previous evidence, and explore their implications for future research.
Collapse
Affiliation(s)
- Chloé Dias Lopes
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, 91405, France
| | - Xiaoning He
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, 91405, France
| | - Federico Ariel
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Buenos Aires, Argentina
| | - Leonardo I Pereyra-Bistraín
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, 91405, France; Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), F-91190, Gif-sur-Yvette, France.
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, 91405, France; Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), F-91190, Gif-sur-Yvette, France; Institut Universitaire de France (IUF), Orsay, 91405, France.
| |
Collapse
|
4
|
Wang W, Sung S. Chromatin sensing: integration of environmental signals to reprogram plant development through chromatin regulators. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4332-4345. [PMID: 38436409 PMCID: PMC11263488 DOI: 10.1093/jxb/erae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Chromatin regulation in eukaryotes plays pivotal roles in controlling the developmental regulatory gene network. This review explores the intricate interplay between chromatin regulators and environmental signals, elucidating their roles in shaping plant development. As sessile organisms, plants have evolved sophisticated mechanisms to perceive and respond to environmental cues, orchestrating developmental programs that ensure adaptability and survival. A central aspect of this dynamic response lies in the modulation of versatile gene regulatory networks, mediated in part by various chromatin regulators. Here, we summarized current understanding of the molecular mechanisms through which chromatin regulators integrate environmental signals, influencing key aspects of plant development.
Collapse
Affiliation(s)
- Wenli Wang
- Department of Molecular Biosciences, The University of Texas at Austin, TX 78712, USA
| | - Sibum Sung
- Department of Molecular Biosciences, The University of Texas at Austin, TX 78712, USA
| |
Collapse
|
5
|
Su J, Zeng J, Wang S, Zhang X, Zhao L, Wen S, Zhang F, Jiang J, Chen F. Multi-locus genome-wide association studies reveal the dynamic genetic architecture of flowering time in chrysanthemum. PLANT CELL REPORTS 2024; 43:84. [PMID: 38448703 DOI: 10.1007/s00299-024-03172-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
KEY MESSAGE The dynamic genetic architecture of flowering time in chrysanthemum was elucidated by GWAS. Thirty-six known genes and 14 candidate genes were identified around the stable QTNs and QEIs, among which ERF-1 was highlighted. Flowering time (FT) adaptation is one of the major breeding goals in chrysanthemum, a multipurpose ornamental plant. In order to reveal the dynamic genetic architecture of FT in chrysanthemum, phenotype investigation of ten FT-related traits was conducted on 169 entries in 2 environments. The broad-sense heritability of five non-conditional FT traits, i.e., budding (FBD), visible coloring (VC), early opening (EO), full-bloom (OF) and decay period (DP), ranged from 56.93 to 84.26%, which were higher than that of the five derived conditional FT traits (38.51-75.13%). The phenotypic variation coefficients of OF_EO and DP_OF were relatively large ranging from 30.59 to 36.17%. Based on 375,865 SNPs, the compressed variance component mixed linear model 3VmrMLM was applied for a multi-locus genome-wide association study (GWAS). As a result, 313 quantitative trait nucleotides (QTNs) were identified for the non-conditional FT traits in single-environment analysis, while 119 QTNs and 67 QTN-by-environment interactions (QEIs) were identified in multi-environment analysis. As for the conditional traits, 343 QTNs were detected in single-environment analysis, and 119 QTNs and 83 QEIs were identified in multi- environment analysis. Among the genes around stable QTNs and QEIs, 36 were orthologs of known FT genes in Arabidopsis and other plants; 14 candidates were mined by combining the transcriptomics data and functional annotation, including ERF-1, ACA10, and FOP1. Furthermore, the haplotype analysis of ERF-1 revealed six elite accessions with extreme FBD. Our findings contribute to the understanding of dynamic genetic architecture of FT and provide valuable resources for future chrysanthemum molecular breeding programs.
Collapse
Affiliation(s)
- Jiangshuo Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu Province, China
| | - Junwei Zeng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu Province, China
| | - Siyue Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu Province, China
| | - Xuefeng Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu Province, China
| | - Limin Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu Province, China
| | - Shiyun Wen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu Province, China
| | - Fei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu Province, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu Province, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu Province, China.
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China.
| |
Collapse
|
6
|
Kohli M, Bansal H, Mishra GP, Dikshit HK, Reddappa SB, Roy A, Sinha SK, Shivaprasad K, Kumari N, Kumar A, Kumar RR, Nair RM, Aski M. Genome-wide association studies for earliness, MYMIV resistance, and other associated traits in mungbean ( Vigna radiata L. Wilczek) using genotyping by sequencing approach. PeerJ 2024; 12:e16653. [PMID: 38288464 PMCID: PMC10823994 DOI: 10.7717/peerj.16653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/20/2023] [Indexed: 02/01/2024] Open
Abstract
Yellow mosaic disease (YMD) remains a major constraint in mungbean (Vigna radiata (L.)) production; while short-duration genotypes offer multiple crop cycles per year and help in escaping terminal heat stress, especially during summer cultivation. A comprehensive genotyping by sequencing (GBS)-based genome-wide association studies (GWAS) analysis was conducted using 132 diverse mungbean genotypes for traits like flowering time, YMD resistance, soil plant analysis development (SPAD) value, trichome density, and leaf area. The frequency distribution revealed a wide range of values for all the traits. GBS studies identified 31,953 high-quality single nucleotide polymorphism (SNPs) across all 11 mungbean chromosomes and were used for GWAS. Structure analysis revealed the presence of two genetically distinct populations based on ΔK. The linkage disequilibrium (LD) varied throughout the chromosomes and at r2 = 0.2, the mean LD decay was estimated as 39.59 kb. Two statistical models, mixed linear model (MLM) and Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) identified 44 shared SNPs linked with various candidate genes. Notable candidate genes identified include FPA for flowering time (VRADI10G01470; chr. 10), TIR-NBS-LRR for mungbean yellow mosaic India virus (MYMIV) resistance (VRADI09G06940; chr. 9), E3 ubiquitin-protein ligase RIE1 for SPAD value (VRADI07G28100; chr. 11), WRKY family transcription factor for leaf area (VRADI03G06560; chr. 3), and LOB domain-containing protein 21 for trichomes (VRADI06G04290; chr. 6). In-silico validation of candidate genes was done through digital gene expression analysis using Arabidopsis orthologous (compared with Vigna radiata genome). The findings provided valuable insight for marker-assisted breeding aiming for the development of YMD-resistant and early-maturing mungbean varieties.
Collapse
Affiliation(s)
- Manju Kohli
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
- Genetics, Indian Agricultural Research Institute, Delhi, Delhi, India
| | - Hina Bansal
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | | | | | | | - Anirban Roy
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - Subodh Kumar Sinha
- Biotechnology, National Institute of Plant Biotechnology, New Delhi, Delhi, India
| | - K.M. Shivaprasad
- Genetics, Indian Agricultural Research Institute, Delhi, Delhi, India
| | - Nikki Kumari
- Genetics, Indian Agricultural Research Institute, Delhi, Delhi, India
| | - Atul Kumar
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - Ranjeet R. Kumar
- Biochemistry, Indian Agricultural Research Institute, New Delhi, Delhi, India
| | | | - Muraleedhar Aski
- Genetics, Indian Agricultural Research Institute, Delhi, Delhi, India
| |
Collapse
|
7
|
Tourdot E, Grob S. Three-dimensional chromatin architecture in plants - General features and novelties. Eur J Cell Biol 2023; 102:151344. [PMID: 37562220 DOI: 10.1016/j.ejcb.2023.151344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Research on the three-dimensional (3D) structure of the genome and its distribution within the nuclear space has made a big leap in the last two decades. Work in the animal field has led to significant advances in our general understanding on eukaryotic genome organization. This did not only bring along insights into how the 3D genome interacts with the epigenetic landscape and the transcriptional machinery but also how 3D genome architecture is relevant for fundamental developmental processes, such as cell differentiation. In parallel, the 3D organization of plant genomes have been extensively studied, which resulted in both congruent and novel findings, contributing to a more complete view on how eukaryotic genomes are organized in multiple dimensions. Plant genomes are remarkably diverse in size, composition, and ploidy. Furthermore, as intrinsically sessile organisms without the possibility to relocate to more favorable environments, plants have evolved an elaborate epigenetic repertoire to rapidly respond to environmental challenges. The diversity in genome organization and the complex epigenetic programs make plants ideal study subjects to acquire a better understanding on universal features and inherent constraints of genome organization. Furthermore, considering a wide range of species allows us to study the evolutionary crosstalk between the various levels of genome architecture. In this article, we aim at summarizing important findings on 3D genome architecture obtained in various plant species. These findings cover many aspects of 3D genome organization on a wide range of levels, from gene loops to topologically associated domains and to global 3D chromosome configurations. We present an overview on plant 3D genome organizational features that resemble those in animals and highlight facets that have only been observed in plants to date.
Collapse
Affiliation(s)
- Edouard Tourdot
- Department of Plant and Microbial Biology, University of Zurich, Switzerland.
| | - Stefan Grob
- Department of Plant and Microbial Biology, University of Zurich, Switzerland.
| |
Collapse
|
8
|
Kumar S, Seem K, Kumar S, Singh A, Krishnan SG, Mohapatra T. DNA methylome analysis provides insights into gene regulatory mechanism for better performance of rice under fluctuating environmental conditions: epigenomics of adaptive plasticity. PLANTA 2023; 259:4. [PMID: 37993704 DOI: 10.1007/s00425-023-04272-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/20/2023] [Indexed: 11/24/2023]
Abstract
MAIN CONCLUSION Roots play an important role in adaptive plasticity of rice under dry/direct-sown conditions. However, hypomethylation of genes in leaves (resulting in up-regulated expression) complements the adaptive plasticity of Nagina-22 under DSR conditions. Rice is generally cultivated by transplanting which requires plenty of water for irrigation. Such a practice makes rice cultivation a challenging task under global climate change and reducing water availability. However, dry-seeded/direct-sown rice (DSR) has emerged as a resource-saving alternative to transplanted rice (TPR). Though some of the well-adapted local cultivars are used for DSR, only limited success has been achieved in developing DSR varieties mainly because of a limited knowledge of adaptability of rice under fluctuating environmental conditions. Based on better morpho-physiological and agronomic performance of Nagina-22 (N-22) under DSR conditions, N-22 and IR-64 were grown by transplanting and direct-sowing and used for whole genome methylome analysis to unravel the epigenetic basis of adaptive plasticity of rice. Comparative methylome and transcriptome analyses indicated a large number (4078) of genes regulated through DNA methylation/demethylation in N-22 under DSR conditions. Gene × environment interactions play important roles in adaptive plasticity of rice under direct-sown conditions. While genes for pectinesterase, LRK10, C2H2 zinc-finger protein, splicing factor, transposable elements, and some of the unannotated proteins were hypermethylated, the genes for regulation of transcription, protein phosphorylation, etc. were hypomethylated in CG context in the root of N-22, which played important roles in providing adaptive plasticity to N-22 under DSR conditions. Hypomethylation leading to up-regulation of gene expression in the leaf complements the adaptive plasticity of N-22 under DSR conditions. Moreover, differential post-translational modification of proteins and chromatin assembly/disassembly through DNA methylation in CHG context modulate adaptive plasticity of N-22. These findings would help developing DSR cultivars for increased water-productivity and ecological efficiency.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Archana Singh
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - S Gopala Krishnan
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
9
|
Chorostecki U, Bologna NG, Ariel F. The plant noncoding transcriptome: a versatile environmental sensor. EMBO J 2023; 42:e114400. [PMID: 37735935 PMCID: PMC10577639 DOI: 10.15252/embj.2023114400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Plant noncoding RNA transcripts have gained increasing attention in recent years due to growing evidence that they can regulate developmental plasticity. In this review article, we comprehensively analyze the relationship between noncoding RNA transcripts in plants and their response to environmental cues. We first provide an overview of the various noncoding transcript types, including long and small RNAs, and how the environment modulates their performance. We then highlight the importance of noncoding RNA secondary structure for their molecular and biological functions. Finally, we discuss recent studies that have unveiled the functional significance of specific long noncoding transcripts and their molecular partners within ribonucleoprotein complexes during development and in response to biotic and abiotic stress. Overall, this review sheds light on the fascinating and complex relationship between dynamic noncoding transcription and plant environmental responses, and highlights the need for further research to uncover the underlying molecular mechanisms and exploit the potential of noncoding transcripts for crop resilience in the context of global warming.
Collapse
Affiliation(s)
- Uciel Chorostecki
- Faculty of Medicine and Health SciencesUniversitat Internacional de CatalunyaBarcelonaSpain
| | - Nicolas G. Bologna
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBBarcelonaSpain
| | - Federico Ariel
- Instituto de Agrobiotecnologia del Litoral, CONICET, FBCBUniversidad Nacional del LitoralSanta FeArgentina
| |
Collapse
|
10
|
Pérez de los Cobos F, Coindre E, Dlalah N, Quilot-Turion B, Batlle I, Arús P, Eduardo I, Duval H. Almond population genomics and non-additive GWAS reveal new insights into almond dissemination history and candidate genes for nut traits and blooming time. HORTICULTURE RESEARCH 2023; 10:uhad193. [PMID: 37927408 PMCID: PMC10623407 DOI: 10.1093/hr/uhad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/14/2023] [Indexed: 11/07/2023]
Abstract
Domestication drastically changed crop genomes, fixing alleles of interest and creating different genetic populations. Genome-wide association studies (GWASs) are a powerful tool to detect these alleles of interest (and so QTLs). In this study, we explored the genetic structure as well as additive and non-additive genotype-phenotype associations in a collection of 243 almond accessions. Our genetic structure analysis strongly supported the subdivision of the accessions into five ancestral groups, all formed by accessions with a common origin. One of these groups was formed exclusively by Spanish accessions, while the rest were mainly formed by accessions from China, Italy, France, and the USA. These results agree with archaeological and historical evidence that separate modern almond dissemination into four phases: Asiatic, Mediterranean, Californian, and southern hemisphere. In total, we found 13 independent QTLs for nut weight, crack-out percentage, double kernels percentage, and blooming time. Of the 13 QTLs found, only one had an additive effect. Through candidate gene analysis, we proposed Prudul26A013473 as a candidate gene responsible for the main QTL found in crack-out percentage, Prudul26A012082 and Prudul26A017782 as candidate genes for the QTLs found in double kernels percentage, and Prudul26A000954 as a candidate gene for the QTL found in blooming time. Our study enhances our knowledge of almond dissemination history and will have a great impact on almond breeding.
Collapse
Affiliation(s)
- Felipe Pérez de los Cobos
- Fruticultura, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Mas Bové, Ctra. Reus-El Morell Km 3,8 43120 Constantí Tarragona, Spain
- Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB. Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | | | | | | | - Ignasi Batlle
- Fruticultura, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Mas Bové, Ctra. Reus-El Morell Km 3,8 43120 Constantí Tarragona, Spain
| | - Pere Arús
- Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB. Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | - Iban Eduardo
- Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB. Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | | |
Collapse
|
11
|
Lin X, Yuan T, Guo H, Guo Y, Yamaguchi N, Wang S, Zhang D, Qi D, Li J, Chen Q, Liu X, Zhao L, Xiao J, Wagner D, Cui S, Zhao H. The regulation of chromatin configuration at AGAMOUS locus by LFR-SYD-containing complex is critical for reproductive organ development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:478-496. [PMID: 37478313 DOI: 10.1111/tpj.16385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/28/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023]
Abstract
Switch defective/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes are evolutionarily conserved, multi-subunit machinery that play vital roles in the regulation of gene expression by controlling nucleosome positioning and occupancy. However, little is known about the subunit composition of SPLAYED (SYD)-containing SWI/SNF complexes in plants. Here, we show that the Arabidopsis thaliana Leaf and Flower Related (LFR) is a subunit of SYD-containing SWI/SNF complexes. LFR interacts directly with multiple SWI/SNF subunits, including the catalytic ATPase subunit SYD, in vitro and in vivo. Phenotypic analyses of lfr-2 mutant flowers revealed that LFR is important for proper filament and pistil development, resembling the function of SYD. Transcriptome profiling revealed that LFR and SYD shared a subset of co-regulated genes. We further demonstrate that the LFR and SYD interdependently activate the transcription of AGAMOUS (AG), a C-class floral organ identity gene, by regulating the occupation of nucleosome, chromatin loop, histone modification, and Pol II enrichment on the AG locus. Furthermore, the chromosome conformation capture (3C) assay revealed that the gene loop at AG locus is negatively correlated with the AG expression level, and LFR-SYD was functional to demolish the AG chromatin loop to promote its transcription. Collectively, these results provide insight into the molecular mechanism of the Arabidopsis SYD-SWI/SNF complex in the control of higher chromatin conformation of the floral identity gene essential to plant reproductive organ development.
Collapse
Affiliation(s)
- Xiaowei Lin
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tingting Yuan
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Hong Guo
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yi Guo
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Nobutoshi Yamaguchi
- Biological Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Shuge Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Dongxia Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Dongmei Qi
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jiayu Li
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qiang Chen
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xinye Liu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Long Zhao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jun Xiao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, 19104-6084, Pennsylvania, USA
| | - Sujuan Cui
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Hongtao Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| |
Collapse
|
12
|
Ma T, Wang S, Sun C, Tian J, Guo H, Cui S, Zhao H. Arabidopsis LFR, a SWI/SNF complex component, interacts with ICE1 and activates ICE1 and CBF3 expression in cold acclimation. FRONTIERS IN PLANT SCIENCE 2023; 14:1097158. [PMID: 37025149 PMCID: PMC10070696 DOI: 10.3389/fpls.2023.1097158] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Low temperatures restrict the growth and geographic distribution of plants, as well as crop yields. Appropriate transcriptional regulation is critical for cold acclimation in plants. In this study, we found that the mutation of Leaf and flower related (LFR), a component of SWI/SNF chromatin remodeling complex (CRC) important for transcriptional regulation in Arabidopsis (Arabidopsis thaliana), resulted in hypersensitivity to freezing stress in plants with or without cold acclimation, and this defect was successfully complemented by LFR. The expression levels of CBFs and COR genes in cold-treated lfr-1 mutant plants were lower than those in wild-type plants. Furthermore, LFR was found to interact directly with ICE1 in yeast and plants. Consistent with this, LFR was able to directly bind to the promoter region of CBF3, a direct target of ICE1. LFR was also able to bind to ICE1 chromatin and was required for ICE1 transcription. Together, these results demonstrate that LFR interacts directly with ICE1 and activates ICE1 and CBF3 gene expression in response to cold stress. Our work enhances our understanding of the epigenetic regulation of cold responses in plants.
Collapse
|
13
|
BRM Complex in Arabidopsis Adopts ncBAF-like Composition and Requires BRD Subunits for Assembly and Stability. Int J Mol Sci 2023; 24:ijms24043917. [PMID: 36835328 PMCID: PMC9967331 DOI: 10.3390/ijms24043917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
ATP-dependent SWI/SNF chromatin remodelling complexes are conserved multi-subunit assemblies that control genome activity. Functions of SWI/SNF complexes in plant development and growth have been well established, but the architecture of particular assemblies is unclear. In this study, we elucidate the organization of Arabidopsis SWI/SNF complexes formed around a BRM catalytic subunit, and define the requirement of bromodomain-containing proteins BRD1/2/13 for the formation and stability of the entire complex. Using affinity purification followed by mass spectrometry, we identify a set of BRM-associated subunits and demonstrate that the BRM complexes strongly resemble mammalian non-canonical BAF complexes. Furthermore, we identify BDH1 and 2 proteins as components of the BRM complex and, using mutant analyses, show that BDH1/2 are important for vegetative and generative development, as well as hormonal responses. We further show that BRD1/2/13 represent unique subunits of the BRM complexes, and their depletion severely affects the integrity of the complex, resulting in the formation of residual assemblies. Finally, analyses of BRM complexes after proteasome inhibition revealed the existence of a module consisting of the ATPase, ARP, and BDH proteins, assembled with other subunits in a BRD-dependent manner. Together, our results suggest modular organization of plant SWI/SNF complexes and provide a biochemical explanation for mutant phenotypes.
Collapse
|
14
|
Nguyen NH, Vu NT, Cheong JJ. Transcriptional Stress Memory and Transgenerational Inheritance of Drought Tolerance in Plants. Int J Mol Sci 2022; 23:12918. [PMID: 36361708 PMCID: PMC9654142 DOI: 10.3390/ijms232112918] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2023] Open
Abstract
Plants respond to drought stress by producing abscisic acid, a chemical messenger that regulates gene expression and thereby expedites various physiological and cellular processes including the stomatal operation to mitigate stress and promote tolerance. To trigger or suppress gene transcription under drought stress conditions, the surrounding chromatin architecture must be converted between a repressive and active state by epigenetic remodeling, which is achieved by the dynamic interplay among DNA methylation, histone modifications, loop formation, and non-coding RNA generation. Plants can memorize chromatin status under drought conditions to enable them to deal with recurrent stress. Furthermore, drought tolerance acquired during plant growth can be transmitted to the next generation. The epigenetically modified chromatin architectures of memory genes under stressful conditions can be transmitted to newly developed cells by mitotic cell division, and to germline cells of offspring by overcoming the restraints on meiosis. In mammalian cells, the acquired memory state is completely erased and reset during meiosis. The mechanism by which plant cells overcome this resetting during meiosis to transmit memory is unclear. In this article, we review recent findings on the mechanism underlying transcriptional stress memory and the transgenerational inheritance of drought tolerance in plants.
Collapse
Affiliation(s)
- Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City 700000, Vietnam
| | - Nam Tuan Vu
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
| | - Jong-Joo Cheong
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
15
|
Kyung J, Jeon M, Lee I. Recent advances in the chromatin-based mechanism of FLOWERING LOCUS C repression through autonomous pathway genes. FRONTIERS IN PLANT SCIENCE 2022; 13:964931. [PMID: 36035698 PMCID: PMC9411803 DOI: 10.3389/fpls.2022.964931] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Proper timing of flowering, a phase transition from vegetative to reproductive development, is crucial for plant fitness. The floral repressor FLOWERING LOCUS C (FLC) is the major determinant of flowering in Arabidopsis thaliana. In rapid-cycling A. thaliana accessions, which bloom rapidly, FLC is constitutively repressed by autonomous pathway (AP) genes, regardless of photoperiod. Diverse AP genes have been identified over the past two decades, and most of them repress FLC through histone modifications. However, the detailed mechanism underlying such modifications remains unclear. Several recent studies have revealed novel mechanisms to control FLC repression in concert with histone modifications. This review summarizes the latest advances in understanding the novel mechanisms by which AP proteins regulate FLC repression, including changes in chromatin architecture, RNA polymerase pausing, and liquid-liquid phase separation- and ncRNA-mediated gene silencing. Furthermore, we discuss how each mechanism is coupled with histone modifications in FLC chromatin.
Collapse
Affiliation(s)
- Jinseul Kyung
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, South Korea
| | - Myeongjune Jeon
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, South Korea
| | - Ilha Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, South Korea
| |
Collapse
|
16
|
Guo X, Luo Z, Zhang M, Huang L, Wang H, Li Y, Qiao X, Li A, Wu B. The spatiotemporal regulations of epicatechin biosynthesis under normal flowering and the continuous inflorescence removal treatment in Fagopyrum dibotrys. BMC PLANT BIOLOGY 2022; 22:379. [PMID: 35906545 PMCID: PMC9336051 DOI: 10.1186/s12870-022-03761-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Flowering is a critical physiological change that interferes with not only biomass yield but also secondary metabolism, such as the biosynthesis of flavonoids, in rhizome/root plants. The continuous inflorescence removal (CIR) treatment is frequently conducted to weaken this effect. Fagopyrum dibotrys (D.Don) H.Hara (Golden buckwheat) is a kind of rhizome medicinal plant rich in flavonoids and is widely used for the treatment of lung diseases. The CIR treatment is usually conducted in F. dibotrys because of its excessive reproductive growth. To uncover the molecular mechanisms, comprehensive analysis was performed using metabolome and transcriptome data obtained from normally bloomed and the CIR treated plants. RESULTS Metabolome results demonstrated that in the rhizomes of F. dibotrys, its bioactive compound called epicatechin has higher amount than most of the detected precursors. Compared with the normally bloomed plants, the level of epicatechin in the rhizomes of the CIR group increased by 25% at the withering stage. Based on 96 samples of the control and the CIR groups at 4 flowering stages for 4 tissues, RNA-Seq results revealed a 3 ~ 5 times upregulations of all the key enzyme genes involved in the biosynthesis of epicatechin in both time (from the bud stage to the withering stage) and spatial dimensions (from the top of branch to rhizome) under the CIR treatment compared to normal flowering. Integrated analysis of LC-MS/MS and transcriptome revealed the key roles of several key enzyme genes besides anthocyanidin reductase (ANR). A total of 93 transcription factors were identified to co-expressed with the genes in epicatechin biosynthetic pathway. The flowering activator SQUAMOSA promoter-binding protein like (SPLs) exhibited opposite spatiotemporal expression patterns to that of the epicatechin pathway genes; SPL3 could significantly co-express with all the key enzyme genes rather than the flowering repressor DELLA. Weighted gene co-expression network analysis (WGCNA) further confirmed the correlations among chalcone synthases (CHSs), chalcone isomerases (CHIs), ANRs, SPLs and other transcription factors. CONCLUSIONS SPL3 might dominantly mediate the effect of normal flowering and the CIR treatment on the biosynthesis of epicatechin in rhizomes mainly through the negative regulations of its key enzyme genes including CHS, CHI and ANR.
Collapse
Affiliation(s)
- Xinwei Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Zuliang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Min Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Linfang Huang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Hui Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
- Institute of Sericulture, Chengde Medical University, Chengde, 067000, China
| | - Yuting Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xu Qiao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Ailian Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Bin Wu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
17
|
Bylino OV, Ibragimov AN, Digilio FA, Giordano E, Shidlovskii YV. Application of the 3C Method to Study the Developmental Genes in Drosophila Larvae. Front Genet 2022; 13:734208. [PMID: 35910225 PMCID: PMC9335292 DOI: 10.3389/fgene.2022.734208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
A transition from one developmental stage to another is accompanied by activation of developmental programs and corresponding gene ensembles. Changes in the spatial conformation of the corresponding loci are associated with this activation and can be investigated with the help of the Chromosome Conformation Capture (3C) methodology. Application of 3C to specific developmental stages is a sophisticated task. Here, we describe the use of the 3C method to study the spatial organization of developmental loci in Drosophila larvae. We critically analyzed the existing protocols and offered our own solutions and the optimized protocol to overcome limitations. To demonstrate the efficiency of our procedure, we studied the spatial organization of the developmental locus Dad in 3rd instar Drosophila larvae. Differences in locus conformation were found between embryonic cells and living wild-type larvae. We also observed the establishment of novel regulatory interactions in the presence of an adjacent transgene upon activation of its expression in larvae. Our work fills the gap in the application of the 3C method to Drosophila larvae and provides a useful guide for establishing 3C on an animal model.
Collapse
Affiliation(s)
- Oleg V. Bylino
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Airat N. Ibragimov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Ennio Giordano
- Department of Biology, Università di Napoli Federico II, Naples, Italy
| | - Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- *Correspondence: Yulii V. Shidlovskii,
| |
Collapse
|
18
|
Domb K, Wang N, Hummel G, Liu C. Spatial Features and Functional Implications of Plant 3D Genome Organization. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:173-200. [PMID: 35130445 DOI: 10.1146/annurev-arplant-102720-022810] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The advent of high-throughput sequencing-based methods for chromatin conformation, accessibility, and immunoprecipitation assays has been a turning point in 3D genomics. Altogether, these new tools have been pushing upward the interpretation of pioneer cytogenetic evidence for a higher order in chromatin packing. Here, we review the latest development in our understanding of plant spatial genome structures and different levels of organization and discuss their functional implications. Then, we spotlight the complexity of organellar (i.e., mitochondria and plastids) genomes and discuss their 3D packing into nucleoids. Finally, we propose unaddressed research axes to investigate functional links between chromatin-like dynamics and transcriptional regulation within organellar nucleoids.
Collapse
Affiliation(s)
- Katherine Domb
- Institute of Biology, University of Hohenheim, Stuttgart, Germany;
| | - Nan Wang
- Institute of Biology, University of Hohenheim, Stuttgart, Germany;
| | - Guillaume Hummel
- Institute of Biology, University of Hohenheim, Stuttgart, Germany;
| | - Chang Liu
- Institute of Biology, University of Hohenheim, Stuttgart, Germany;
| |
Collapse
|
19
|
Yamaguchi N. The epigenetic mechanisms regulating floral hub genes and their potential for manipulation. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1277-1287. [PMID: 34752611 DOI: 10.1093/jxb/erab490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Gene regulatory networks formed by transcription factors play essential roles in the regulation of gene expression during plant reproductive development. These networks integrate endogenous, phytohormonal, and environmental cues. Molecular genetic, biochemical, and chemical analyses performed mainly in Arabidopsis have identified network hub genes and revealed the contributions of individual components to these networks. Here, I outline current understanding of key epigenetic regulatory circuits identified by research on plant reproduction, and highlight significant recent examples of genetic engineering and chemical applications to modulate the epigenetic regulation of gene expression. Furthermore, I discuss future prospects for applying basic plant science to engineer useful floral traits in a predictable manner as well as the potential side effects.
Collapse
Affiliation(s)
- Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
20
|
Kumar S, Kaur S, Seem K, Kumar S, Mohapatra T. Understanding 3D Genome Organization and Its Effect on Transcriptional Gene Regulation Under Environmental Stress in Plant: A Chromatin Perspective. Front Cell Dev Biol 2021; 9:774719. [PMID: 34957106 PMCID: PMC8692796 DOI: 10.3389/fcell.2021.774719] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/23/2021] [Indexed: 01/17/2023] Open
Abstract
The genome of a eukaryotic organism is comprised of a supra-molecular complex of chromatin fibers and intricately folded three-dimensional (3D) structures. Chromosomal interactions and topological changes in response to the developmental and/or environmental stimuli affect gene expression. Chromatin architecture plays important roles in DNA replication, gene expression, and genome integrity. Higher-order chromatin organizations like chromosome territories (CTs), A/B compartments, topologically associating domains (TADs), and chromatin loops vary among cells, tissues, and species depending on the developmental stage and/or environmental conditions (4D genomics). Every chromosome occupies a separate territory in the interphase nucleus and forms the top layer of hierarchical structure (CTs) in most of the eukaryotes. While the A and B compartments are associated with active (euchromatic) and inactive (heterochromatic) chromatin, respectively, having well-defined genomic/epigenomic features, TADs are the structural units of chromatin. Chromatin architecture like TADs as well as the local interactions between promoter and regulatory elements correlates with the chromatin activity, which alters during environmental stresses due to relocalization of the architectural proteins. Moreover, chromatin looping brings the gene and regulatory elements in close proximity for interactions. The intricate relationship between nucleotide sequence and chromatin architecture requires a more comprehensive understanding to unravel the genome organization and genetic plasticity. During the last decade, advances in chromatin conformation capture techniques for unravelling 3D genome organizations have improved our understanding of genome biology. However, the recent advances, such as Hi-C and ChIA-PET, have substantially increased the resolution, throughput as well our interest in analysing genome organizations. The present review provides an overview of the historical and contemporary perspectives of chromosome conformation capture technologies, their applications in functional genomics, and the constraints in predicting 3D genome organization. We also discuss the future perspectives of understanding high-order chromatin organizations in deciphering transcriptional regulation of gene expression under environmental stress (4D genomics). These might help design the climate-smart crop to meet the ever-growing demands of food, feed, and fodder.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Simardeep Kaur
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | |
Collapse
|
21
|
Zhang X, Wang T. Plant 3D Chromatin Organization: Important Insights from Chromosome Conformation Capture Analyses of the Last 10 Years. PLANT & CELL PHYSIOLOGY 2021; 62:1648-1661. [PMID: 34486654 PMCID: PMC8664644 DOI: 10.1093/pcp/pcab134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/25/2021] [Accepted: 09/01/2021] [Indexed: 05/05/2023]
Abstract
Over the past few decades, eukaryotic linear genomes and epigenomes have been widely and extensively studied for understanding gene expression regulation. More recently, the three-dimensional (3D) chromatin organization was found to be important for determining genome functionality, finely tuning physiological processes for appropriate cellular responses. With the development of visualization techniques and chromatin conformation capture (3C)-based techniques, increasing evidence indicates that chromosomal architecture characteristics and chromatin domains with different epigenetic modifications in the nucleus are correlated with transcriptional activities. Subsequent studies have further explored the intricate interplay between 3D genome organization and the function of interacting regions. In this review, we summarize spatial distribution patterns of chromatin, including chromatin positioning, configurations and domains, with a particular focus on the effect of a unique form of interaction between varieties of factors that shape the 3D genome conformation in plants. We further discuss the methods, advantages and limitations of various 3C-based techniques, highlighting the applications of these technologies in plants to identify chromatin domains, and address their dynamic changes and functional implications in evolution, and adaptation to development and changing environmental conditions. Moreover, the future implications and emerging research directions of 3D genome organization are discussed.
Collapse
Affiliation(s)
- Xinxin Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, P. R. China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, P. R. China
| | - Tianzuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100093, P. R. China
| |
Collapse
|
22
|
Jian Y, Shim WB, Ma Z. Multiple functions of SWI/SNF chromatin remodeling complex in plant-pathogen interactions. STRESS BIOLOGY 2021; 1:18. [PMID: 37676626 PMCID: PMC10442046 DOI: 10.1007/s44154-021-00019-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/22/2021] [Indexed: 09/08/2023]
Abstract
The SWI/SNF chromatin remodeling complex utilizes the energy of ATP hydrolysis to facilitate chromatin access and plays essential roles in DNA-based events. Studies in animals, plants and fungi have uncovered sophisticated regulatory mechanisms of this complex that govern development and various stress responses. In this review, we summarize the composition of SWI/SNF complex in eukaryotes and discuss multiple functions of the SWI/SNF complex in regulating gene transcription, mRNA splicing, and DNA damage response. Our review further highlights the importance of SWI/SNF complex in regulating plant immunity responses and fungal pathogenesis. Finally, the potentials in exploiting chromatin remodeling for management of crop disease are presented.
Collapse
Affiliation(s)
- Yunqing Jian
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Won-Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
23
|
Kumar S. SWI/SNF (BAF) complexes: From framework to a functional role in endothelial mechanotransduction. CURRENT TOPICS IN MEMBRANES 2021; 87:171-198. [PMID: 34696885 DOI: 10.1016/bs.ctm.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Endothelial cells (ECs) are constantly subjected to an array of mechanical cues, especially shear stress, due to their luminal placement in the blood vessels. Blood flow can regulate various aspects of endothelial biology and pathophysiology by regulating the endothelial processes at the transcriptomic, proteomic, miRNomic, metabolomics, and epigenomic levels. ECs sense, respond, and adapt to altered blood flow patterns and shear profiles by specialized mechanisms of mechanosensing and mechanotransduction, resulting in qualitative and quantitative differences in their gene expression. Chromatin-regulatory proteins can regulate transcriptional activation by modifying the organization of nucleosomes at promoters, enhancers, silencers, insulators, and locus control regions. Recent research efforts have illustrated that SWI/SNF (SWItch/Sucrose Non-Fermentable) or BRG1/BRM-associated factor (BAF) complex regulates DNA accessibility and chromatin structure. Since the discovery, the gene-regulatory mechanisms of the BAF complex associated with chromatin remodeling have been intensively studied to investigate its role in diverse disease phenotypes. Thus far, it is evident that (1) the SWI/SNF complex broadly regulates the activity of transcriptional enhancers to control lineage-specific differentiation and (2) mutations in the BAF complex proteins lead to developmental disorders and cancers. It is unclear if blood flow can modulate the activity of SWI/SNF complex to regulate EC differentiation and reprogramming. This review emphasizes the integrative role of SWI/SNF complex from a structural and functional standpoint with a special reference to cardiovascular diseases (CVDs). The review also highlights how regulation of this complex by blood flow can lead to the discovery of new therapeutic interventions for the treatment of endothelial dysfunction in vascular diseases.
Collapse
Affiliation(s)
- Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|
24
|
Yu X, Martin PGP, Zhang Y, Trinidad JC, Xu F, Huang J, Thum KE, Li K, Zhao S, Gu Y, Wang X, Michaels SD. The BORDER family of negative transcription elongation factors regulates flowering time in Arabidopsis. Curr Biol 2021; 31:5377-5384.e5. [PMID: 34666004 DOI: 10.1016/j.cub.2021.09.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/20/2021] [Accepted: 09/27/2021] [Indexed: 11/27/2022]
Abstract
Transcription initiation has long been considered a primary regulatory step in gene expression. Recent work, however, shows that downstream events, such as transcription elongation, can also play important roles.1-3 A well-characterized example from animals is promoter-proximal pausing, where transcriptionally engaged Pol II accumulates 30-50 bp downstream of the transcription start site (TSS) and is thought to enable rapid gene activation.2 Plants do not make widespread use of promoter-proximal pausing; however, in a phenomenon known as 3' pausing, a significant increase in Pol II is observed near the transcript end site (TES) of many genes.4-6 Previous work has shown that 3' pausing is promoted by the BORDER (BDR) family of negative transcription elongation factors. Here we show that BDR proteins play key roles in gene repression. Consistent with BDR proteins acting to slow or pause elongating Pol II, BDR-repressed genes are characterized by high levels of Pol II occupancy, yet low levels of mRNA. The BDR proteins physically interact with FPA,7 one of approximately two dozen genes collectively referred to as the autonomous floral-promotion pathway,8 which are necessary for the repression of the flowering time gene FLOWERING LOCUS C (FLC).9-11 In early-flowering strains, FLC expression is repressed by repressive histone modifications, such as histone H3 lysine 27 trimethylation (H3K27me3), thereby allowing the plants to flower early. These results suggest that the repression of transcription elongation by BDR proteins may allow for the temporary pausing of transcription or facilitate the long-term repression of genes by repressive histone modifications.
Collapse
Affiliation(s)
- Xuhong Yu
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA.
| | - Pascal G P Martin
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA
| | - Yixiang Zhang
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Jonathan C Trinidad
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA; Laboratory for Biological Mass Spectrometry, Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA
| | - Feifei Xu
- Institute of Nuclear Agricultural Sciences, Key Laboratory for Nuclear Agricultural Sciences of Zhejiang Province and Ministry of Agriculture and Rural Affairs, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jie Huang
- Center for Genomics and Bioinformatics, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA
| | - Karen E Thum
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA
| | - Ke Li
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA
| | - ShuZhen Zhao
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yangnan Gu
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xingjun Wang
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Scott D Michaels
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA.
| |
Collapse
|
25
|
Grob S. Three-dimensional chromosome organization in flowering plants. Brief Funct Genomics 2021; 19:83-91. [PMID: 31680170 DOI: 10.1093/bfgp/elz024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022] Open
Abstract
Research on plant three-dimensional (3D) genome architecture made rapid progress over the past 5 years. Numerous Hi-C interaction data sets were generated in a wide range of plant species, allowing for a comprehensive overview on 3D chromosome folding principles in the plant kingdom. Plants lack important genes reported to be vital for chromosome folding in animals. However, similar 3D structures such as topologically associating domains and chromatin loops were identified. Recent studies in Arabidopsis thaliana revealed how chromosomal regions are positioned within the nucleus by determining their association with both, the nuclear periphery and the nucleolus. Additionally, many plant species exhibit high-frequency interactions among KNOT entangled elements, which are associated with safeguarding the genome from invasive DNA elements. Many of the recently published Hi-C data sets were generated to aid de novo genome assembly and remain to date little explored. These data sets represent a valuable resource for future comparative studies, which may lead to a more profound understanding of the evolution of 3D chromosome organization in plants.
Collapse
Affiliation(s)
- Stefan Grob
- Institute of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| |
Collapse
|
26
|
Beyond the Genetic Pathways, Flowering Regulation Complexity in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22115716. [PMID: 34071961 PMCID: PMC8198774 DOI: 10.3390/ijms22115716] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Flowering is one of the most critical developmental transitions in plants’ life. The irreversible change from the vegetative to the reproductive stage is strictly controlled to ensure the progeny’s success. In Arabidopsis thaliana, seven flowering genetic pathways have been described under specific growth conditions. However, the evidence condensed here suggest that these pathways are tightly interconnected in a complex multilevel regulatory network. In this review, we pursue an integrative approach emphasizing the molecular interactions among the flowering regulatory network components. We also consider that the same regulatory network prevents or induces flowering phase change in response to internal cues modulated by environmental signals. In this sense, we describe how during the vegetative phase of development it is essential to prevent the expression of flowering promoting genes until they are required. Then, we mention flowering regulation under suboptimal growing temperatures, such as those in autumn and winter. We next expose the requirement of endogenous signals in flowering, and finally, the acceleration of this transition by long-day photoperiod and temperature rise signals allowing A. thaliana to bloom in spring and summer seasons. With this approach, we aim to provide an initial systemic view to help the reader integrate this complex developmental process.
Collapse
|
27
|
Han R, Wong AJY, Tang Z, Truco MJ, Lavelle DO, Kozik A, Jin Y, Michelmore RW. Drone phenotyping and machine learning enable discovery of loci regulating daily floral opening in lettuce. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2979-2994. [PMID: 33681981 DOI: 10.1093/jxb/erab081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Flower opening and closure are traits of reproductive importance in all angiosperms because they determine the success of self- and cross-pollination. The temporal nature of this phenotype rendered it a difficult target for genetic studies. Cultivated and wild lettuce, Lactuca spp., have composite inflorescences that open only once. An L. serriola×L. sativa F6 recombinant inbred line (RIL) population differed markedly for daily floral opening time. This population was used to map the genetic determinants of this trait; the floral opening time of 236 RILs was scored using time-course image series obtained by drone-based phenotyping on two occasions. Floral pixels were identified from the images using a support vector machine with an accuracy >99%. A Bayesian inference method was developed to extract the peak floral opening time for individual genotypes from the time-stamped image data. Two independent quantitative trait loci (QTLs; Daily Floral Opening 2.1 and qDFO8.1) explaining >30% of the phenotypic variation in floral opening time were discovered. Candidate genes with non-synonymous polymorphisms in coding sequences were identified within the QTLs. This study demonstrates the power of combining remote sensing, machine learning, Bayesian statistics, and genome-wide marker data for studying the genetics of recalcitrant phenotypes.
Collapse
Affiliation(s)
- Rongkui Han
- The Genome Center, University of California Davis, CA 95616, USA
- The Plant Biology Graduate Group, University of California, Davis, CA 95616, USA
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Andy J Y Wong
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Zhehan Tang
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Maria J Truco
- The Genome Center, University of California Davis, CA 95616, USA
| | - Dean O Lavelle
- The Genome Center, University of California Davis, CA 95616, USA
| | - Alexander Kozik
- The Genome Center, University of California Davis, CA 95616, USA
| | - Yufang Jin
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Richard W Michelmore
- The Genome Center, University of California Davis, CA 95616, USA
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
28
|
Huang CY, Rangel DS, Qin X, Bui C, Li R, Jia Z, Cui X, Jin H. The chromatin-remodeling protein BAF60/SWP73A regulates the plant immune receptor NLRs. Cell Host Microbe 2021; 29:425-434.e4. [PMID: 33548199 DOI: 10.1016/j.chom.2021.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/02/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
In both plant and animal innate immune responses, surveillance of pathogen infection is mediated by membrane-associated receptors and intracellular nucleotide-binding domain and leucine-rich-repeat receptors (NLRs). Homeostasis of NLRs is under tight multilayered regulation to avoid over-accumulation or over-activation, which often leads to autoimmune responses that have detrimental effects on growth and development. How NLRs are regulated epigenetically at the chromatin level remains unclear. Here, we report that SWP73A, an ortholog of the mammalian switch/sucrose nonfermentable (SWI/SNF) chromatin-remodeling protein BAF60, suppresses the expression of NLRs either directly by binding to the NLR promoters or indirectly by affecting the alternative splicing of some NLRs through the suppression of cell division cycle 5 (CDC5), a key regulator of RNA splicing. Upon infection, bacteria-induced small RNAs silence SWP73A to activate a group of NLRs and trigger robust immune responses. SWP73A may function as a H3K9me2 reader to enhance transcription suppression.
Collapse
Affiliation(s)
- Chien-Yu Huang
- Department of Microbiology & Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521-0122, USA
| | - Diana Sánchez Rangel
- Department of Microbiology & Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521-0122, USA; Cátedra CONACyT en la red de Estudios Moleculares Avanzados del Instituto de Ecología A.C. (INECOL), Carretera antigua a Coatepec 351, El Haya, Xalapa, Veracruz 91070, México
| | - Xiaobo Qin
- Department of Microbiology & Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521-0122, USA
| | - Christine Bui
- Department of Microbiology & Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521-0122, USA
| | - Ruidong Li
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Xinping Cui
- Department of Statistics, University of California, Riverside, CA 92521, USA
| | - Hailing Jin
- Department of Microbiology & Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521-0122, USA.
| |
Collapse
|
29
|
Diaz S, Ariza-Suarez D, Izquierdo P, Lobaton JD, de la Hoz JF, Acevedo F, Duitama J, Guerrero AF, Cajiao C, Mayor V, Beebe SE, Raatz B. Genetic mapping for agronomic traits in a MAGIC population of common bean (Phaseolus vulgaris L.) under drought conditions. BMC Genomics 2020; 21:799. [PMID: 33198642 PMCID: PMC7670608 DOI: 10.1186/s12864-020-07213-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 11/05/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Common bean is an important staple crop in the tropics of Africa, Asia and the Americas. Particularly smallholder farmers rely on bean as a source for calories, protein and micronutrients. Drought is a major production constraint for common bean, a situation that will be aggravated with current climate change scenarios. In this context, new tools designed to understand the genetic basis governing the phenotypic responses to abiotic stress are required to improve transfer of desirable traits into cultivated beans. RESULTS A multiparent advanced generation intercross (MAGIC) population of common bean was generated from eight Mesoamerican breeding lines representing the phenotypic and genotypic diversity of the CIAT Mesoamerican breeding program. This population was assessed under drought conditions in two field trials for yield, 100 seed weight, iron and zinc accumulation, phenology and pod harvest index. Transgressive segregation was observed for most of these traits. Yield was positively correlated with yield components and pod harvest index (PHI), and negative correlations were found with phenology traits and micromineral contents. Founder haplotypes in the population were identified using Genotyping by Sequencing (GBS). No major population structure was observed in the population. Whole Genome Sequencing (WGS) data from the founder lines was used to impute genotyping data for GWAS. Genetic mapping was carried out with two methods, using association mapping with GWAS, and linkage mapping with haplotype-based interval screening. Thirteen high confidence QTL were identified using both methods and several QTL hotspots were found controlling multiple traits. A major QTL hotspot located on chromosome Pv01 for phenology traits and yield was identified. Further hotspots affecting several traits were observed on chromosomes Pv03 and Pv08. A major QTL for seed Fe content was contributed by MIB778, the founder line with highest micromineral accumulation. Based on imputed WGS data, candidate genes are reported for the identified major QTL, and sequence changes were identified that could cause the phenotypic variation. CONCLUSIONS This work demonstrates the importance of this common bean MAGIC population for genetic mapping of agronomic traits, to identify trait associations for molecular breeding tool design and as a new genetic resource for the bean research community.
Collapse
Affiliation(s)
- Santiago Diaz
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Daniel Ariza-Suarez
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Paulo Izquierdo
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Present Address: Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Juan David Lobaton
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Present Address: School of Environmental and Rural Sciences, University of New England, Armidale, SA, Australia
| | - Juan Fernando de la Hoz
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Present Address: Bioinformatics Interdepartmental Ph.D. Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Fernando Acevedo
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Jorge Duitama
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Present Address: Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Alberto F Guerrero
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Cesar Cajiao
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Victor Mayor
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Present Address: Progeny Breeding, Madrid, Colombia
| | - Stephen E Beebe
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Bodo Raatz
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia.
| |
Collapse
|
30
|
Gagliardi D, Manavella PA. Short-range regulatory chromatin loops in plants. THE NEW PHYTOLOGIST 2020; 228:466-471. [PMID: 32353900 DOI: 10.1111/nph.16632] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
In all eukaryotic organisms, gene expression correlates with the condensation state of the chromatin. Highly packed genome regions, known as heterochromatins, are associated with repressed loci, whereas euchromatic regions represent a relaxed state of the chromatin actively transcribed. However, even in these active regions, associations between chromatin domains dynamically modify genome topology and alter gene expression. Long-range interaction within and between chromosomes determines chromatin domains that help to coordinate transcriptional events. On the other hand, short-range chromatin interactions emerged as dynamic mechanisms regulating the expression of specific loci. Our current capacity to decipher genome topology at high resolution allowed us to identify numerous cases of short-range regulatory chromatin interactions, which are reviewed in this Insight article.
Collapse
Affiliation(s)
- Delfina Gagliardi
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Pablo A Manavella
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| |
Collapse
|
31
|
Bäurle I, Trindade I. Chromatin regulation of somatic abiotic stress memory. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5269-5279. [PMID: 32076719 DOI: 10.1093/jxb/eraa098] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/19/2020] [Indexed: 05/20/2023]
Abstract
In nature, plants are often subjected to periods of recurrent environmental stress that can strongly affect their development and productivity. To cope with these conditions, plants can remember a previous stress, which allows them to respond more efficiently to a subsequent stress, a phenomenon known as priming. This ability can be maintained at the somatic level for a few days or weeks after the stress is perceived, suggesting that plants can store information of a past stress during this recovery phase. While the immediate responses to a single stress event have been extensively studied, knowledge on priming effects and how stress memory is stored is still scarce. At the molecular level, memory of a past condition often involves changes in chromatin structure and organization, which may be maintained independently from transcription. In this review, we will summarize the most recent developments in the field and discuss how different levels of chromatin regulation contribute to priming and plant abiotic stress memory.
Collapse
Affiliation(s)
- Isabel Bäurle
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Inês Trindade
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
32
|
Pontvianne F, Grob S. Three-dimensional nuclear organization in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2020; 133:479-488. [PMID: 32240449 DOI: 10.1007/s10265-020-01185-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/19/2020] [Indexed: 05/22/2023]
Abstract
In recent years, the study of plant three-dimensional nuclear architecture received increasing attention. Enabled by technological advances, our knowledge on nuclear architecture has greatly increased and we can now access large data sets describing its manifold aspects. The principles of nuclear organization in plants do not significantly differ from those in animals. Plant nuclear organization comprises various scales, ranging from gene loops to topologically associating domains to nuclear compartmentalization. However, whether plant three-dimensional chromosomal features also exert similar functions as in animals is less clear. This review discusses recent advances in the fields of three-dimensional chromosome folding and nuclear compartmentalization and describes a novel silencing mechanism, which is closely linked to nuclear architecture.
Collapse
Affiliation(s)
- Frédéric Pontvianne
- UPVD, LGDP, UMR5096, Université de Perpignan, Perpignan, France.
- CNRS, LGDP, UMR5096, Université de Perpignan, Perpignan, France.
| | - Stefan Grob
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
33
|
Yang J, Chang Y, Qin Y, Chen D, Zhu T, Peng K, Wang H, Tang N, Li X, Wang Y, Liu Y, Li X, Xie W, Xiong L. A lamin-like protein OsNMCP1 regulates drought resistance and root growth through chromatin accessibility modulation by interacting with a chromatin remodeller OsSWI3C in rice. THE NEW PHYTOLOGIST 2020; 227:65-83. [PMID: 32129897 DOI: 10.1111/nph.16518] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/18/2020] [Indexed: 05/28/2023]
Abstract
Lamin proteins in animals are implicated in important nuclear functions, including chromatin organization, signalling transduction, gene regulation and cell differentiation. Nuclear Matrix Constituent Proteins (NMCPs) are lamin analogues in plants, but their regulatory functions remain largely unknown. We report that OsNMCP1 is localized at the nuclear periphery in rice (Oryza sativa) and induced by drought stress. OsNMCP1 overexpression resulted in a deeper and thicker root system, and enhanced drought resistance compared to the wild-type control. An assay for transposase accessible chromatin with sequencing (ATAC-seq) analysis revealed that OsNMCP1-overexpression altered chromatin accessibility in hundreds of genes related to drought resistance and root growth, including OsNAC10, OsERF48, OsSGL, SNAC1 and OsbZIP23. OsNMCP1 can interact with SWITCH/SUCROSE NONFERMENTING (SWI/SNF) chromatin remodelling complex subunit OsSWI3C. The reported drought resistance or root growth-related genes that were positively regulated by OsNMCP1 were negatively regulated by OsSWI3C under drought stress conditions, and OsSWI3C overexpression led to decreased drought resistance. We propose that the interaction between OsNMCP1 and OsSWI3C under drought stress conditions may lead to the release of OsSWI3C from the SWI/SNF gene silencing complex, thus changing chromatin accessibility in the genes related to root growth and drought resistance.
Collapse
Affiliation(s)
- Jun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Chang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yonghua Qin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- South-Central University for Nationalities, Wuhan, 430074, China
| | - Dijun Chen
- Department for Plant Cell and Molecular Biology (AG Kaufmann) Institute for Biology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Tao Zhu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Kaiqing Peng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Huaijun Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Ning Tang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaokai Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yusen Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yinmeng Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
34
|
Concia L, Veluchamy A, Ramirez-Prado JS, Martin-Ramirez A, Huang Y, Perez M, Domenichini S, Rodriguez Granados NY, Kim S, Blein T, Duncan S, Pichot C, Manza-Mianza D, Juery C, Paux E, Moore G, Hirt H, Bergounioux C, Crespi M, Mahfouz MM, Bendahmane A, Liu C, Hall A, Raynaud C, Latrasse D, Benhamed M. Wheat chromatin architecture is organized in genome territories and transcription factories. Genome Biol 2020; 21:104. [PMID: 32349780 PMCID: PMC7189446 DOI: 10.1186/s13059-020-01998-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/12/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Polyploidy is ubiquitous in eukaryotic plant and fungal lineages, and it leads to the co-existence of several copies of similar or related genomes in one nucleus. In plants, polyploidy is considered a major factor in successful domestication. However, polyploidy challenges chromosome folding architecture in the nucleus to establish functional structures. RESULTS We examine the hexaploid wheat nuclear architecture by integrating RNA-seq, ChIP-seq, ATAC-seq, Hi-C, and Hi-ChIP data. Our results highlight the presence of three levels of large-scale spatial organization: the arrangement into genome territories, the diametrical separation between facultative and constitutive heterochromatin, and the organization of RNA polymerase II around transcription factories. We demonstrate the micro-compartmentalization of transcriptionally active genes determined by physical interactions between genes with specific euchromatic histone modifications. Both intra- and interchromosomal RNA polymerase-associated contacts involve multiple genes displaying similar expression levels. CONCLUSIONS Our results provide new insights into the physical chromosome organization of a polyploid genome, as well as on the relationship between epigenetic marks and chromosome conformation to determine a 3D spatial organization of gene expression, a key factor governing gene transcription in polyploids.
Collapse
Affiliation(s)
- Lorenzo Concia
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Orsay, France
| | - Alaguraj Veluchamy
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Juan S Ramirez-Prado
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Orsay, France
| | | | - Ying Huang
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Orsay, France
| | - Magali Perez
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Orsay, France
| | - Severine Domenichini
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Orsay, France
| | | | - Soonkap Kim
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Thomas Blein
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Orsay, France
| | - Susan Duncan
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UG, UK
| | - Clement Pichot
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Orsay, France
| | - Deborah Manza-Mianza
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Orsay, France
| | - Caroline Juery
- INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039, Clermont-Ferrand, France
| | - Etienne Paux
- INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039, Clermont-Ferrand, France
| | - Graham Moore
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Heribert Hirt
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Orsay, France
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Catherine Bergounioux
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Orsay, France
| | - Martin Crespi
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Orsay, France
| | - Magdy M Mahfouz
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Orsay, France
| | - Chang Liu
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Anthony Hall
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UG, UK
| | - Cécile Raynaud
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Orsay, France
| | - David Latrasse
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Orsay, France
| | - Moussa Benhamed
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Orsay, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
35
|
Thouly C, Le Masson M, Lai X, Carles CC, Vachon G. Unwinding BRAHMA Functions in Plants. Genes (Basel) 2020; 11:genes11010090. [PMID: 31941094 PMCID: PMC7017052 DOI: 10.3390/genes11010090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
The ATP-dependent Switch/Sucrose non-fermenting (SWI/SNF) chromatin remodeling complex (CRC) regulates the transcription of many genes by destabilizing interactions between DNA and histones. In plants, BRAHMA (BRM), one of the two catalytic ATPase subunits of the complex, is the closest homolog of the yeast and animal SWI2/SNF2 ATPases. We summarize here the advances describing the roles of BRM in plant development as well as its recently reported chromatin-independent role in pri-miRNA processing in vitro and in vivo. We also enlighten the roles of plant-specific partners that physically interact with BRM. Three main types of partners can be distinguished: (i) DNA-binding proteins such as transcription factors which mostly cooperate with BRM in developmental processes, (ii) enzymes such as kinases or proteasome-related proteins that use BRM as substrate and are often involved in response to abiotic stress, and (iii) an RNA-binding protein which is involved with BRM in chromatin-independent pri-miRNA processing. This overview contributes to the understanding of the central position occupied by BRM within regulatory networks controlling fundamental biological processes in plants.
Collapse
|
36
|
Zhang H, Zheng R, Wang Y, Zhang Y, Hong P, Fang Y, Li G, Fang Y. The effects of Arabidopsis genome duplication on the chromatin organization and transcriptional regulation. Nucleic Acids Res 2019; 47:7857-7869. [PMID: 31184697 PMCID: PMC6736098 DOI: 10.1093/nar/gkz511] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/26/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022] Open
Abstract
Autopolyploidy is widespread in higher plants and important for agricultural yield and quality. However, the effects of genome duplication on the chromatin organization and transcriptional regulation are largely unknown in plants. Using High-throughput Chromosome Conformation Capture (Hi-C), we showed that autotetraploid Arabidopsis presented more inter-chromosomal interactions and fewer short-range chromatin interactions compared with its diploid progenitor. In addition, genome duplication contributed to the switching of some loose and compact structure domains with altered H3K4me3 and H3K27me3 histone modification status. 539 genes were identified with altered transcriptions and chromatin interactions in autotetraploid Arabidopsis. Especially, we found that genome duplication changed chromatin looping and H3K27me3 histone modification in Flowering Locus C. We propose that genome doubling modulates the transcription genome-wide by changed chromatin interactions and at the specific locus by altered chromatin loops and histone modifications.
Collapse
Affiliation(s)
- Hui Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ruiqin Zheng
- National Key Laboratory of Crop Genetic Improvement, Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunlong Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ping Hong
- National Key Laboratory of Crop Genetic Improvement, Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaping Fang
- National Key Laboratory of Crop Genetic Improvement, Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuda Fang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
37
|
Armaleo D, Müller O, Lutzoni F, Andrésson ÓS, Blanc G, Bode HB, Collart FR, Dal Grande F, Dietrich F, Grigoriev IV, Joneson S, Kuo A, Larsen PE, Logsdon JM, Lopez D, Martin F, May SP, McDonald TR, Merchant SS, Miao V, Morin E, Oono R, Pellegrini M, Rubinstein N, Sanchez-Puerta MV, Savelkoul E, Schmitt I, Slot JC, Soanes D, Szövényi P, Talbot NJ, Veneault-Fourrey C, Xavier BB. The lichen symbiosis re-viewed through the genomes of Cladonia grayi and its algal partner Asterochloris glomerata. BMC Genomics 2019; 20:605. [PMID: 31337355 PMCID: PMC6652019 DOI: 10.1186/s12864-019-5629-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Lichens, encompassing 20,000 known species, are symbioses between specialized fungi (mycobionts), mostly ascomycetes, and unicellular green algae or cyanobacteria (photobionts). Here we describe the first parallel genomic analysis of the mycobiont Cladonia grayi and of its green algal photobiont Asterochloris glomerata. We focus on genes/predicted proteins of potential symbiotic significance, sought by surveying proteins differentially activated during early stages of mycobiont and photobiont interaction in coculture, expanded or contracted protein families, and proteins with differential rates of evolution. RESULTS A) In coculture, the fungus upregulated small secreted proteins, membrane transport proteins, signal transduction components, extracellular hydrolases and, notably, a ribitol transporter and an ammonium transporter, and the alga activated DNA metabolism, signal transduction, and expression of flagellar components. B) Expanded fungal protein families include heterokaryon incompatibility proteins, polyketide synthases, and a unique set of G-protein α subunit paralogs. Expanded algal protein families include carbohydrate active enzymes and a specific subclass of cytoplasmic carbonic anhydrases. The alga also appears to have acquired by horizontal gene transfer from prokaryotes novel archaeal ATPases and Desiccation-Related Proteins. Expanded in both symbionts are signal transduction components, ankyrin domain proteins and transcription factors involved in chromatin remodeling and stress responses. The fungal transportome is contracted, as are algal nitrate assimilation genes. C) In the mycobiont, slow-evolving proteins were enriched for components involved in protein translation, translocation and sorting. CONCLUSIONS The surveyed genes affect stress resistance, signaling, genome reprogramming, nutritional and structural interactions. The alga carries many genes likely transferred horizontally through viruses, yet we found no evidence of inter-symbiont gene transfer. The presence in the photobiont of meiosis-specific genes supports the notion that sexual reproduction occurs in Asterochloris while they are free-living, a phenomenon with implications for the adaptability of lichens and the persistent autonomy of the symbionts. The diversity of the genes affecting the symbiosis suggests that lichens evolved by accretion of many scattered regulatory and structural changes rather than through introduction of a few key innovations. This predicts that paths to lichenization were variable in different phyla, which is consistent with the emerging consensus that ascolichens could have had a few independent origins.
Collapse
Affiliation(s)
| | - Olaf Müller
- Department of Biology, Duke University, Durham, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, USA
| | | | - Ólafur S. Andrésson
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Guillaume Blanc
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Helge B. Bode
- Molekulare Biotechnologie, Fachbereich Biowissenschaften & Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Frank R. Collart
- Argonne National Laboratory, Biosciences Division, Argonne, & Department of Bioengineering, University of Illinois at Chicago, Chicago, USA
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Center (SBiK-F), Frankfurt am Main, Germany
| | - Fred Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, USA
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, USA
- Department of Plant and Microbial Biology, University of California – Berkeley, Berkeley, USA
| | - Suzanne Joneson
- Department of Biology, Duke University, Durham, USA
- College of General Studies, University of Wisconsin - Milwaukee at Waukesha, Waukesha, USA
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, Walnut Creek, USA
| | - Peter E. Larsen
- Argonne National Laboratory, Biosciences Division, Argonne, & Department of Bioengineering, University of Illinois at Chicago, Chicago, USA
| | | | | | - Francis Martin
- INRA, Université de Lorraine, Interactions Arbres-Microorganismes, INRA-Nancy, Champenoux, France
| | - Susan P. May
- Department of Biology, Duke University, Durham, USA
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, USA
| | - Tami R. McDonald
- Department of Biology, Duke University, Durham, USA
- Department of Biology, St. Catherine University, St. Paul, USA
| | - Sabeeha S. Merchant
- Department of Plant and Microbial Biology, University of California – Berkeley, Berkeley, USA
- Department of Molecular and Cell Biology, University of California – Berkeley, Berkeley, USA
| | - Vivian Miao
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Emmanuelle Morin
- INRA, Université de Lorraine, Interactions Arbres-Microorganismes, INRA-Nancy, Champenoux, France
| | - Ryoko Oono
- Department of Ecology, Evolution, and Marine Biology, University of California - Santa Barbara, Santa Barbara, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, and DOE Institute for Genomics and Proteomics, University of California, Los Angeles, USA
| | - Nimrod Rubinstein
- National Evolutionary Synthesis Center, Durham, USA
- Calico Life Sciences LLC, South San Francisco, USA
| | | | | | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Center (SBiK-F), Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Fachbereich Biowissenschaften, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jason C. Slot
- College of Food, Agricultural, and Environmental Sciences, Department of Plant Pathology, The Ohio State University, Columbus, USA
| | - Darren Soanes
- College of Life & Environmental Sciences, University of Exeter, Exeter, UK
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | | | - Claire Veneault-Fourrey
- INRA, Université de Lorraine, Interactions Arbres-Microorganismes, INRA-Nancy, Champenoux, France
- Université de Lorraine, INRA, Interactions Arbres-Microorganismes, Faculté des Sciences et Technologies, Vandoeuvre les Nancy Cedex, France
| | - Basil B. Xavier
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
38
|
Torres ES, Deal RB. The histone variant H2A.Z and chromatin remodeler BRAHMA act coordinately and antagonistically to regulate transcription and nucleosome dynamics in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:144-162. [PMID: 30742338 PMCID: PMC7259472 DOI: 10.1111/tpj.14281] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/28/2018] [Accepted: 12/18/2018] [Indexed: 05/17/2023]
Abstract
Plants adapt to environmental changes by regulating transcription and chromatin organization. The histone H2A variant H2A.Z and the SWI2/SNF2 ATPase BRAHMA (BRM) have overlapping roles in positively and negatively regulating environmentally responsive genes in Arabidopsis, but the extent of this overlap was uncharacterized. Both factors have been associated with various changes in nucleosome positioning and stability in different contexts, but their specific roles in transcriptional regulation and chromatin organization need further characterization. We show that H2A.Z and BRM co-localize at thousands of sites, where they interact both cooperatively and antagonistically in transcriptional repression and activation of genes involved in development and responses to environmental stimuli. We identified eight classes of genes that show distinct relationships between H2A.Z and BRM with respect to their roles in transcription. These include activating and silencing transcription both redundantly and antagonistically. We found that H2A.Z contributes to a range of different nucleosome properties, while BRM stabilizes nucleosomes where it binds and destabilizes or repositions flanking nucleosomes. We also found that, at many genes regulated by both BRM and H2A.Z, both factors overlap with binding sites of the light-regulated transcription factor FAR1-Related Sequence 9 (FRS9) and that a subset of these FRS9 binding sites are dependent on H2A.Z and BRM for accessibility. Collectively, we comprehensively characterized the antagonistic and cooperative contributions of H2A.Z and BRM to transcriptional regulation, and illuminated several interrelated roles in chromatin organization. The variability observed in their individual functions implies that both BRM and H2A.Z have more context-dependent roles than previously assumed.
Collapse
Affiliation(s)
- E. Shannon Torres
- Department of Biology, Emory University, Atlanta, GA 30322
- Graduate Program in Genetics and Molecular Biology of the Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322
| | - Roger B. Deal
- Department of Biology, Emory University, Atlanta, GA 30322
| |
Collapse
|
39
|
Zheng Y, Liu X. Review: Chromatin organization in plant and animal stem cell maintenance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:173-179. [PMID: 30824049 DOI: 10.1016/j.plantsci.2018.12.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/16/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Stem cells have self-renewal capacity and can differentiate into specialized cell types. Although the origin, form and differentiated destinations of stem cells differ between animals and plants, they are regulated by similar epigenetic mechanisms during differentiation. There is increasing evidence that the three-dimensional (3D) genome organization plays important roles in gene expression regulation during stem cell differentiation. In plant cells, however, studies related to chromatin interaction in gene expression regulation are just beginning and will be a hot topic in the future. In this review, we summarized the similarities of plant and animal stem cell niches and their function in stem cell maintenance, the roles of chromatin conformation changes in regulating gene expression and recent findings about chromatin organization in plant cells at genome-wide and loci-specific levels.
Collapse
Affiliation(s)
- Yan Zheng
- National Marine Data and Information Service, Tianjin 300100, China; Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Rd, Shijiazhuang, 050021 China
| | - Xigang Liu
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Rd, Shijiazhuang, 050021 China.
| |
Collapse
|
40
|
Wang L, Zhou CM, Mai YX, Li LZ, Gao J, Shang GD, Lian H, Han L, Zhang TQ, Tang HB, Ren H, Wang FX, Wu LY, Liu XL, Wang CS, Chen EW, Zhang XN, Liu C, Wang JW. A spatiotemporally regulated transcriptional complex underlies heteroblastic development of leaf hairs in Arabidopsis thaliana. EMBO J 2019; 38:embj.2018100063. [PMID: 30842098 DOI: 10.15252/embj.2018100063] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 02/08/2019] [Accepted: 02/15/2019] [Indexed: 11/09/2022] Open
Abstract
Heteroblasty refers to a phenomenon that a plant produces morphologically or functionally different lateral organs in an age-dependent manner. In the model plant Arabidopsis thaliana, the production of trichomes (epidermal leaf hairs) on the abaxial (lower) side of leaves is a heteroblastic mark for the juvenile-to-adult transition. Here, we show that the heteroblastic development of abaxial trichomes is regulated by a spatiotemporally regulated complex comprising the leaf abaxial fate determinant (KAN1) and the developmental timer (miR172-targeted AP2-like proteins). We provide evidence that a short-distance chromatin loop brings the downstream enhancer element into close association with the promoter elements of GL1, which encodes a MYB transcription factor essential for trichome initiation. During juvenile phase, the KAN1-AP2 repressive complex binds to the downstream sequence of GL1 and represses its expression through chromatin looping. As plants age, the gradual reduction in AP2-like protein levels leads to decreased amount of the KAN1-AP2 complex, thereby licensing GL1 expression and the abaxial trichome initiation. Our results thus reveal a novel molecular mechanism by which a heteroblastic trait is governed by integrating age and leaf polarity cue in plants.
Collapse
Affiliation(s)
- Long Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Chuan-Miao Zhou
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yan-Xia Mai
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Ling-Zi Li
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Jian Gao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Guang-Dong Shang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Heng Lian
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Lin Han
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Tian-Qi Zhang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Hong-Bo Tang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Hang Ren
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Fu-Xiang Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Lian-Yu Wu
- ShanghaiTech University, Shanghai, China
| | | | - Chang-Sheng Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Er-Wang Chen
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Xue-Ning Zhang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Chang Liu
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China .,ShanghaiTech University, Shanghai, China
| |
Collapse
|
41
|
Li Z, Jiang D, He Y. FRIGIDA establishes a local chromosomal environment for FLOWERING LOCUS C mRNA production. NATURE PLANTS 2018; 4:836-846. [PMID: 30224662 DOI: 10.1038/s41477-018-0250-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 08/13/2018] [Indexed: 05/08/2023]
Abstract
FRIGIDA (FRI) upregulates the expression of the potent floral repressor FLOWERING LOCUS C (FLC) to confer the winter-annual growth habit in Arabidopsis thaliana: accelerated transition to flowering after prolonged cold exposure (vernalization). Here, we show that FRI, histone acetyltransferases, the histone methyltransferase COMPASS-like and other chromatin modifiers are part of a FRI-containing supercomplex enriched in a region around the FLC transcription start site (TSS) to promote its expression. Several FRI partners are also enriched in a 3' region flanking FLC and, together with FRI, they function to increase the frequency of physical association of the region around TSS with the 3' region and promote the expression of both sense FLC and antisense non-coding RNAs. Our results show that the FRI supercomplex establishes a local chromosomal environment at FLC with active chromatin modifications and topology to promote transcriptional activation, fast elongation and efficient pre-messenger RNA splicing, leading to a high-level production of FLC mRNAs.
Collapse
Affiliation(s)
- Zicong Li
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Danhua Jiang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuehui He
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, China.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
42
|
Liu SL, Wang XH, Gao YG, Zhao Y, Zhang AH, Xu YH, Zhang LX. Transcriptomic analysis identifies differentially expressed genes (DEGs) associated with bolting and flowering in Saposhnikovia divaricata. Chin J Nat Med 2018; 16:446-455. [PMID: 30047466 DOI: 10.1016/s1875-5364(18)30078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Indexed: 10/28/2022]
Abstract
Saposhnikovia divaricata is a valuable Chinese medicinal herb; the transformation from vegetative growth to reproductive growth may lead to the decrease of its pharmacological activities. Therefore, the study of bolting and flowering for Saposhnikovia divaricata is warranted. The present study aimed to reveal differentially expressed genes (DEGs) and regularity of expression during the bolting and flowering process, and the results of this study might provide a theoretical foundation for the suppression of early bolting for future research and practical application. Three sample groups, early flowering, flower bud differentiation, and late flowering (groups A, B, and C, respectively) were selected. Transcriptomic analysis identified 67, 010 annotated unigenes, among which 50, 165 were differentially expressed including 16, 108 in A vs B, and 17, 459 in B vs C, respectively. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway functional classification analysis were performed on these differentially expressed genes, and five important pathways were significantly impacted (P ≤ 0.01): plant circadian rhythm, other glycan degradation, oxidative phosphorylation, plant hormone signal transduction, and starch and sucrose metabolism. Plant hormone signal transduction might play an important role in the bolting and flowering process. The differentially expressed indole-3-acetic acid (IAA) gene showed significant down-regulation during bolting and flowering, while the transport inhibitor response 1 (TIR1) gene showed no significant change during the bolting process. The expression of flowering related genes FLC, LYF, and AP1 also showed a greater difference at different development stages. In conclusion, we speculate that the decrease in auxin concentration is not caused by the degrading effect of TIR1 but by an alternative mechanism.
Collapse
Affiliation(s)
- Shuang-Li Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Xiao-Hui Wang
- Research Center of Agricultural Environment and Resources, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Yu-Gang Gao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ai-Hua Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yong-Hua Xu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Lian-Xue Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
43
|
Guo L, Cao X, Liu Y, Li J, Li Y, Li D, Zhang K, Gao C, Dong A, Liu X. A chromatin loop represses WUSCHEL expression in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:1083-1097. [PMID: 29660180 DOI: 10.1111/tpj.13921] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 05/27/2023]
Abstract
WUSCHEL (WUS) is critical for plant meristem maintenance and determinacy in Arabidopsis, and the regulation of its spatiotemporal expression patterns is complex. We previously found that AGAMOUS (AG), a key MADS-domain transcription factor in floral organ identity and floral meristem determinacy, can directly suppress WUS expression through the recruitment of the Polycomb group (PcG) protein TERMINAL FLOWER 2 (TFL2, also known as LIKE HETEROCHROMATIN PROTEIN 1, LHP1) at the WUS locus; however, the mechanism by which WUS is repressed remains unclear. Here, using chromosome conformation capture (3C) and chromatin immunoprecipitation 3C, we found that two specific regions flanking the WUS gene body bound by AG and TFL2 form a chromatin loop that is directly promoted by AG during flower development in a manner independent of the physical distance and sequence content of the intervening region. Moreover, AG physically interacts with TFL2, and TFL2 binding to the chromatin loop is dependent on AG. Transgenic and CRISPR/Cas9-edited lines showed that the WUS chromatin loop represses gene expression by blocking the recruitment of RNA polymerase II at the locus. The findings uncover the WUS chromatin loop as another regulatory mechanism controlling WUS expression, and also shed light on the factors required for chromatin conformation change and their recruitment.
Collapse
Affiliation(s)
- Lin Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050021, China
| | - Xiuwei Cao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050021, China
| | - Yuhao Liu
- State Key Laboratory of Genetic Engineering, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jun Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongpeng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050021, China
| | - Dongming Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050021, China
| | - Ke Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050021, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Xigang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050021, China
| |
Collapse
|
44
|
Shinkai Y, Kuramochi M, Doi M. Regulation of chromatin states and gene expression during HSN neuronal maturation is mediated by EOR-1/PLZF, MAU-2/cohesin loader, and SWI/SNF complex. Sci Rep 2018; 8:7942. [PMID: 29786685 PMCID: PMC5962631 DOI: 10.1038/s41598-018-26149-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/01/2018] [Indexed: 01/03/2023] Open
Abstract
Newborn neurons mature by distinct and sequential steps through the timely induction of specific gene expression programs in concert with epigenetic changes. However, it has been difficult to investigate the relationship between gene expression and epigenetic changes at a single-cell resolution during neuronal maturation. In this study, we investigated the maturation of hermaphrodite-specific neurons (HSNs) in C. elegans, which provided the link between chromatin dynamics, gene expression, and the degree of neuronal maturation at a single-cell resolution. Our results demonstrated that chromatin composition in the promoter region of several genes acting for neuronal terminal maturation was modulated at an early developmental stage, and is dependent on the function of the transcription factor EOR-1/PLZF and the cohesin loader MAU-2/MAU2. Components of the SWI/SNF chromatin remodeling complex were also required for the proper expression of terminal maturation genes. Epistasis analyses suggested that eor-1 functions with mau-2 and swsn-1 in the same genetic pathway to regulate the maturation of HSNs. Collectively, our study provides a novel approach to analyze neuronal maturation and proposes that predefined epigenetic modifications, mediated by EOR-1, MAU-2, and the SWI/SNF complex, are important for the preparation of future gene expression programs in neuronal terminal maturation.
Collapse
Affiliation(s)
- Yoichi Shinkai
- Molecular Neurobiology Research Group and DAI-Lab, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Masahiro Kuramochi
- Molecular Neurobiology Research Group and DAI-Lab, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8566, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa City, Chiba, 277-8561, Japan
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Chiba, 277-8565, Japan
| | - Motomichi Doi
- Molecular Neurobiology Research Group and DAI-Lab, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| |
Collapse
|
45
|
Hasegawa J, Sakamoto T, Fujimoto S, Yamashita T, Suzuki T, Matsunaga S. Auxin decreases chromatin accessibility through the TIR1/AFBs auxin signaling pathway in proliferative cells. Sci Rep 2018; 8:7773. [PMID: 29773913 PMCID: PMC5958073 DOI: 10.1038/s41598-018-25963-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/02/2018] [Indexed: 11/09/2022] Open
Abstract
Chromatin accessibility is closely associated with chromatin functions such as gene expression, DNA replication, and maintenance of DNA integrity. However, the relationship between chromatin accessibility and plant hormone signaling has remained elusive. Here, based on the correlation between chromatin accessibility and DNA damage, we used the sensitivity to DNA double strand breaks (DSBs) as an indicator of chromatin accessibility and demonstrated that auxin regulates chromatin accessibility through the TIR1/AFBs signaling pathway in proliferative cells. Treatment of proliferating plant cells with an inhibitor of the TIR1/AFBs auxin signaling pathway, PEO-IAA, caused chromatin loosening, indicating that auxin signaling functions to decrease chromatin accessibility. In addition, a transcriptome analysis revealed that several histone H4 genes and a histone chaperone gene, FAS1, are positively regulated through the TIR1/AFBs signaling pathway, suggesting that auxin plays a role in promoting nucleosome assembly. Analysis of the fas1 mutant of Arabidopsis thaliana confirmed that FAS1 is required for the auxin-dependent decrease in chromatin accessibility. These results suggest that the positive regulation of chromatin-related genes mediated by the TIR1/AFBs auxin signaling pathway enhances nucleosome assembly, resulting in decreased chromatin accessibility in proliferative cells.
Collapse
Affiliation(s)
- Junko Hasegawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Takuya Sakamoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Satoru Fujimoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Tomoe Yamashita
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
46
|
Nascimento M, Nascimento ACC, Silva FFE, Barili LD, do Vale NM, Carneiro JE, Cruz CD, Carneiro PCS, Serão NVL. Quantile regression for genome-wide association study of flowering time-related traits in common bean. PLoS One 2018; 13:e0190303. [PMID: 29300788 PMCID: PMC5754186 DOI: 10.1371/journal.pone.0190303] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/12/2017] [Indexed: 01/10/2023] Open
Abstract
Flowering is an important agronomic trait. Quantile regression (QR) can be used to fit models for all portions of a probability distribution. In Genome-wide association studies (GWAS), QR can estimate SNP (Single Nucleotide Polymorphism) effects on each quantile of interest. The objectives of this study were to estimate genetic parameters and to use QR to identify genomic regions for phenological traits (Days to first flower-DFF; Days for flowering-DTF; Days to end of flowering-DEF) in common bean. A total of 80 genotypes of common beans, with 3 replicates were raised at 4 locations and seasons. Plants were genotyped for 384 SNPs. Traditional single-SNP and 9 QR models, ranging from equally spaced quantiles (τ) 0.1 to 0.9, were used to associate SNPs to phenotype. Heritabilities were moderate high, ranging from 0.32 to 0.58. Genetic and phenotypic correlations were all high, averaging 0.66 and 0.98, respectively. Traditional single-SNP GWAS model was not able to find any SNP-trait association. On the other hand, when using QR methodology considering one extreme quantile (τ = 0.1) we found, respectively 1 and 7, significant SNPs associated for DFF and DTF. Significant SNPs were found on Pv01, Pv02, Pv03, Pv07, Pv10 and Pv11 chromosomes. We investigated potential candidate genes in the region around these significant SNPs. Three genes involved in the flowering pathways were identified, including Phvul.001G214500, Phvul.007G229300 and Phvul.010G142900.1 on Pv01, Pv07 and Pv10, respectively. These results indicate that GWAS-based QR was able to enhance the understanding on genetic architecture of phenological traits (DFF and DTF) in common bean.
Collapse
Affiliation(s)
- Moysés Nascimento
- Department of Statistics, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Ana Carolina Campana Nascimento
- Department of Statistics, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | | | - Leiri Daiane Barili
- Department of Plant Sciences, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Naine Martins do Vale
- Department of Plant Sciences, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Cosme Damião Cruz
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | |
Collapse
|
47
|
Ojolo SP, Cao S, Priyadarshani SVGN, Li W, Yan M, Aslam M, Zhao H, Qin Y. Regulation of Plant Growth and Development: A Review From a Chromatin Remodeling Perspective. FRONTIERS IN PLANT SCIENCE 2018; 9:1232. [PMID: 30186301 PMCID: PMC6113404 DOI: 10.3389/fpls.2018.01232] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 08/03/2018] [Indexed: 05/04/2023]
Abstract
In eukaryotes, genetic material is packaged into a dynamic but stable nucleoprotein structure called chromatin. Post-translational modification of chromatin domains affects the expression of underlying genes and subsequently the identity of cells by conveying epigenetic information from mother to daughter cells. SWI/SNF chromatin remodelers are ATP-dependent complexes that modulate core histone protein polypeptides, incorporate variant histone species and modify nucleotides in DNA strands within the nucleosome. The present review discusses the SWI/SNF chromatin remodeler family, its classification and recent advancements. We also address the involvement of SWI/SNF remodelers in regulating vital plant growth and development processes such as meristem establishment and maintenance, cell differentiation, organ initiation, flower morphogenesis and flowering time regulation. Moreover, the role of chromatin remodelers in key phytohormone signaling pathways is also reviewed. The information provided in this review may prompt further debate and investigations aimed at understanding plant-specific epigenetic regulation mediated by chromatin remodeling under continuously varying plant growth conditions and global climate change.
Collapse
Affiliation(s)
- Simon P. Ojolo
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shijiang Cao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - S. V. G. N. Priyadarshani
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weimin Li
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Maokai Yan
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohammad Aslam
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Heming Zhao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Qin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Yuan Qin, ;
| |
Collapse
|
48
|
Abstract
Our understanding of the epigenetic mechanisms that regulate gene expression has been largely increased in recent years by the development and refinement of different techniques. This has revealed that gene transcription is highly influenced by epigenetic mechanisms, i.e., those that do not involve changes in the genome sequence, but rather in nuclear architecture, chromosome conformation and histone and DNA modifications. Our understanding of how these different levels of epigenetic regulation interact with each other and with classical transcription-factor based gene regulation to influence gene transcription has just started to emerge. This review discusses the latest advances in unraveling the complex interactions between different types of epigenetic regulation and transcription factor activity, with special attention to the approaches that can be used to study these interactions.
Collapse
Affiliation(s)
- Marian Bemer
- Department of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands.
| |
Collapse
|
49
|
Abstract
Dynamic reshuffling of the chromatin landscape is a recurrent theme orchestrated in many, if not all, plant developmental transitions and adaptive responses. Spatiotemporal variations of the chromatin properties on regulatory genes and on structural genomic elements trigger the establishment of distinct transcriptional contexts, which in some instances can epigenetically be inherited. Studies on plant cell plasticity during the differentiation of stem cells, including gametogenesis, or the specialization of vegetative cells in various organs, as well as the investigation of allele-specific gene regulation have long been impaired by technical challenges in generating specific chromatin profiles in complex or hardly accessible cell populations. Recent advances in increasing the sensitivity of genome-enabled technologies and in the isolation of specific cell types have allowed for overcoming such limitations. These developments hint at multilevel regulatory events ranging from nucleosome accessibility and composition to higher order chromatin organization and genome topology. Uncovering the large extent to which chromatin dynamics and epigenetic processes influence gene expression is therefore not surprisingly revolutionizing current views on plant molecular genetics and (epi)genomics as well as their perspectives in eco-evolutionary biology. Here, we introduce current methodologies to probe genome-wide chromatin variations for which protocols are detailed in this book chapter, with an emphasis on the plant model species Arabidopsis.
Collapse
|
50
|
Archacki R, Yatusevich R, Buszewicz D, Krzyczmonik K, Patryn J, Iwanicka-Nowicka R, Biecek P, Wilczynski B, Koblowska M, Jerzmanowski A, Swiezewski S. Arabidopsis SWI/SNF chromatin remodeling complex binds both promoters and terminators to regulate gene expression. Nucleic Acids Res 2017; 45:3116-3129. [PMID: 27994035 PMCID: PMC5389626 DOI: 10.1093/nar/gkw1273] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/08/2016] [Indexed: 12/23/2022] Open
Abstract
ATP-dependent chromatin remodeling complexes are important regulators of gene expression in Eukaryotes. In plants, SWI/SNF-type complexes have been shown critical for transcriptional control of key developmental processes, growth and stress responses. To gain insight into mechanisms underlying these roles, we performed whole genome mapping of the SWI/SNF catalytic subunit BRM in Arabidopsis thaliana, combined with transcript profiling experiments. Our data show that BRM occupies thousands of sites in Arabidopsis genome, most of which located within or close to genes. Among identified direct BRM transcriptional targets almost equal numbers were up- and downregulated upon BRM depletion, suggesting that BRM can act as both activator and repressor of gene expression. Interestingly, in addition to genes showing canonical pattern of BRM enrichment near transcription start site, many other genes showed a transcription termination site-centred BRM occupancy profile. We found that BRM-bound 3΄ gene regions have promoter-like features, including presence of TATA boxes and high H3K4me3 levels, and possess high antisense transcriptional activity which is subjected to both activation and repression by SWI/SNF complex. Our data suggest that binding to gene terminators and controlling transcription of non-coding RNAs is another way through which SWI/SNF complex regulates expression of its targets.
Collapse
Affiliation(s)
- Rafal Archacki
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Warsaw 02-096, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Ruslan Yatusevich
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Daniel Buszewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Katarzyna Krzyczmonik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Jacek Patryn
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Warsaw 02-096, Poland.,College of Inter-FacultyIndividual Studies in Mathematics and Natural Sciences, Warsaw 02-089, Poland
| | - Roksana Iwanicka-Nowicka
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Warsaw 02-096, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Przemyslaw Biecek
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics,University of Warsaw, Warsaw 02-097, Poland.,Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw 00-662, Poland
| | - Bartek Wilczynski
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics,University of Warsaw, Warsaw 02-097, Poland
| | - Marta Koblowska
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Warsaw 02-096, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Andrzej Jerzmanowski
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Warsaw 02-096, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Szymon Swiezewski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|