1
|
Kijima ST, Sasaki T, Kikushima Y, Inoue D, Sakamoto S, Kondo Y, Inagaki S, Yamaguchi M, Mitsuda N, Oda Y. Control of plasma membrane-associated actin polymerization specifies the pattern of the cell wall in xylem vessels. Nat Commun 2025; 16:1921. [PMID: 40011437 PMCID: PMC11865516 DOI: 10.1038/s41467-025-56866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/25/2025] [Indexed: 02/28/2025] Open
Abstract
Cell wall patterning is central to determining the shape and function of plant cells. Protoxylem and metaxylem vessel cells deposit banded and pitted cell walls, respectively, which enable their distinctive water transport capabilities. Here, we show that the pitted cell wall pattern in metaxylem vessels is specified by transcriptional control of actin polymerization. A newly isolated allele of KNOTTED-LIKE HOMEOBOX TRANSCRIPTION FACTOR 7 (KNAT7) was associated with the formation of banded cell walls in metaxylem vessels. Loss of KNAT7 caused misexpression of FORMIN HOMOLOGY DOMAIN CONTAINING PROTEIN11 (FH11) in the metaxylem, which in turn caused rearrangements of ROP GTPases and microtubules in banded patterns. FH11 function required its plasma membrane anchoring and actin polymerization activity. These results suggest that excessive actin polymerization at the plasma membrane abolishes the pitted cell wall formation and promotes banded cell wall formation in metaxylem vessels. This study unveils the importance of proper control of actin polymerization for cell wall pattern determination.
Collapse
Affiliation(s)
- Saku T Kijima
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
- Global Zero-Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Takema Sasaki
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Yuichiro Kikushima
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Daisuke Inoue
- Faculty of Design, Kyusyu University, 4-9-1 Shiobaru, Minami-ku, Fukuoka, 815-8540, Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
- Global Zero-Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yuki Kondo
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Soichi Inagaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masatoshi Yamaguchi
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
- Global Zero-Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yoshihisa Oda
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.
| |
Collapse
|
2
|
Kolli R. From the archives: Roles of microtubule-associated proteins in organelle movement, tip growth, and phragmoplast architecture. THE PLANT CELL 2024; 37:koae331. [PMID: 39691058 PMCID: PMC11708835 DOI: 10.1093/plcell/koae331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024]
Affiliation(s)
- Renuka Kolli
- The Plant Cell, American Society of Plant Biologists
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Deinum EE. The systems and interactions underpinning complex cell wall patterning. Biochem Soc Trans 2024; 52:2385-2398. [PMID: 39666440 DOI: 10.1042/bst20230642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024]
Abstract
Cell walls can confer amazing properties to plant cells, particularly if they have complex patterns. Complex cell wall patterns in the primary cell wall often lead to complex cell shapes, whereas in the secondary cell wall they lead to advanced material properties that prepare cells for mechanically demanding tasks. Not surprisingly, many of these structures are found in water transporting tissues. In this review, I compare the mechanisms controlling primary and secondary cell wall patterns, with emphasis on water transporting tissues and insights derived from modeling studies. Much of what we know about this is based on complex cell shapes and primary xylem patterns, leading to an emphasis on the Rho-of-plants - cortical microtubule - cellulose microfibril system for secondary cell wall patterning. There is a striking diversity of secondary cell wall patterns with important functional benefits, however, about which we know much less and that may develop in substantially different ways.
Collapse
Affiliation(s)
- Eva E Deinum
- Mathematical and Statistical Methods (Biometris), Plant Science Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
4
|
Hiles R, Rogers A, Jaiswal N, Zhang W, Butchacas J, Merfa MV, Klass T, Barua P, Thirumalaikumar VP, Jacobs JM, Staiger CJ, Helm M, Iyer-Pascuzzi AS. A Ralstonia solanacearum type III effector alters the actin and microtubule cytoskeleton to promote bacterial virulence in plants. PLoS Pathog 2024; 20:e1012814. [PMID: 39724074 PMCID: PMC11723619 DOI: 10.1371/journal.ppat.1012814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 01/10/2025] [Accepted: 12/07/2024] [Indexed: 12/28/2024] Open
Abstract
Cellular responses to biotic stress frequently involve signaling pathways that are conserved across eukaryotes. These pathways include the cytoskeleton, a proteinaceous network that senses external cues at the cell surface and signals to interior cellular components. During biotic stress, dynamic cytoskeletal rearrangements serve as a platform from which early immune-associated processes are organized and activated. Bacterial pathogens of plants and animals use proteins called type III effectors (T3Es) to interfere with host immune signaling, thereby promoting virulence. We previously found that RipU, a T3E from the soilborne phytobacterial pathogen Ralstonia solanacearum, co-localizes with the plant cytoskeleton. Here, we show that RipU from R. solanacearum K60 (RipUK60) associated with and altered the organization of both the actin and microtubule cytoskeleton. We found that pharmacological disruption of the tomato (Solanum lycopersicum) cytoskeleton promoted R. solanacearum K60 colonization. Importantly, tomato plants inoculated with R. solanacearum K60 lacking RipUK60 (ΔripUK60) had reduced wilting symptoms and significantly reduced root colonization when compared to plants inoculated with wild-type R. solanacearum K60. Collectively, our data suggest that R. solanacearum K60 uses the type III effector RipUK60 to remodel cytoskeletal organization, thereby promoting pathogen virulence.
Collapse
Affiliation(s)
- Rachel Hiles
- Department of Botany and Plant Pathology, and Center for Plant Biology, Purdue University, West Lafayette, Indiana, United States of America
| | - Abigail Rogers
- Department of Botany and Plant Pathology, and Center for Plant Biology, Purdue University, West Lafayette, Indiana, United States of America
- EMBRIO Institute, Purdue University, West Lafayette, Indiana, United States of America
| | - Namrata Jaiswal
- Crop Production and Pest Control Research Unit, USDA-ARS: USDA Agricultural Research Service, West Lafayette, Indiana, United States of America
| | - Weiwei Zhang
- Department of Botany and Plant Pathology, and Center for Plant Biology, Purdue University, West Lafayette, Indiana, United States of America
- EMBRIO Institute, Purdue University, West Lafayette, Indiana, United States of America
| | - Jules Butchacas
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Marcus V. Merfa
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Taylor Klass
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Pragya Barua
- Department of Botany and Plant Pathology, and Center for Plant Biology, Purdue University, West Lafayette, Indiana, United States of America
| | - Venkatesh P. Thirumalaikumar
- Department of Botany and Plant Pathology, and Center for Plant Biology, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Jonathan M. Jacobs
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Christopher J. Staiger
- Department of Botany and Plant Pathology, and Center for Plant Biology, Purdue University, West Lafayette, Indiana, United States of America
- EMBRIO Institute, Purdue University, West Lafayette, Indiana, United States of America
| | - Matthew Helm
- Crop Production and Pest Control Research Unit, USDA-ARS: USDA Agricultural Research Service, West Lafayette, Indiana, United States of America
| | - Anjali S. Iyer-Pascuzzi
- Department of Botany and Plant Pathology, and Center for Plant Biology, Purdue University, West Lafayette, Indiana, United States of America
- EMBRIO Institute, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
5
|
Takáč T, Kuběnová L, Šamajová O, Dvořák P, Řehák J, Haberland J, Bundschuh ST, Pechan T, Tomančák P, Ovečka M, Šamaj J. Actin cytoskeleton and plasma membrane aquaporins are involved in different drought response of Arabidopsis rhd2 and der1 root hair mutants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109137. [PMID: 39357201 DOI: 10.1016/j.plaphy.2024.109137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Actin cytoskeleton and reactive oxygen species are principal determinants of root hair polarity and tip growth. Loss of function in RESPIRATORY BURST OXIDASE HOMOLOG C/ROOT HAIR DEFECTIVE 2 (AtRBOHC/RHD2), an NADPH oxidase emitting superoxide to the apoplast, and in ACTIN 2, a vegetative actin isovariant, in rhd2-1 and der1-3 mutants, respectively, lead to similar defects in root hair formation and elongation Since early endosome-mediated polar localization of AtRBOHC/RHD2 depends on actin cytoskeleton, comparing the proteome-wide consequences of both mutations might be of eminent interest. Therefore, we employed a differential proteomic analysis of Arabidopsis rhd2-1 and der1-3 mutants. Both mutants exhibited substantial alterations in abundances of stress-related proteins. Notably, plasma membrane (PM)-localized PIP aquaporins showed contrasting abundance patterns in the mutants compared to wild-types. Drought-responsive proteins were mostly downregulated in rhd2-1 but upregulated in der1-3. Proteomic data suggest that opposite to der1-3, altered vesicular transport in rhd2-1 mutant likely contributes to the deregulation of PM-localized proteins, including PIPs. Moreover, lattice light sheet microscopy revealed reduced actin dynamics in rhd2-1 roots, a finding contrasting with previous reports on der1-3 mutant. Phenotypic experiments demonstrated a drought stress susceptibility in rhd2-1 and resistance in der1-3. Thus, mutations in AtRBOHC/RHD2 and ACTIN2 cause similar root hair defects, but they differently affect the actin cytoskeleton and vesicular transport. Reduced actin dynamics in rhd2-1 mutant is accompanied by alteration of vesicular transport proteins abundance, likely leading to altered protein delivery to PM, including aquaporins, thereby significantly affecting drought stress responses.
Collapse
Affiliation(s)
- Tomáš Takáč
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Lenka Kuběnová
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Olga Šamajová
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Petr Dvořák
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jan Řehák
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jan Haberland
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | | | - Tibor Pechan
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Starkville, MS, United States
| | - Pavel Tomančák
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Miroslav Ovečka
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jozef Šamaj
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic.
| |
Collapse
|
6
|
Saß A, Schneider R. Novel molecular insights into the machinery driving secondary cell wall synthesis and patterning. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102614. [PMID: 39142254 DOI: 10.1016/j.pbi.2024.102614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024]
Abstract
The essential role of water-conducting xylem tissue in plant growth and crop yield is well-established. However, the molecular mechanisms underlying xylem formation and its unique functionality, which is acquired post-mortem, remain poorly understood. Recent advancements in genetic tools and model systems have significantly enhanced the ability to microscopically study xylem development, particularly its distinctive cell wall patterning. Early molecular mechanisms enabling pattern formation have been elucidated and validated through computational models. Despite these advancements, numerous questions remain unresolved but are approachable with current methodologies. This mini-review takes in the latest research findings in xylem cell wall synthesis and patterning and highlights prospective directions for future investigations.
Collapse
Affiliation(s)
- Annika Saß
- Institute of Biochemistry and Biology, Plant Physiology Department, University of Potsdam, 14476 Potsdam-Golm, Germany; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - René Schneider
- Institute of Biochemistry and Biology, Plant Physiology Department, University of Potsdam, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
7
|
Del Corpo D, Coculo D, Greco M, De Lorenzo G, Lionetti V. Pull the fuzes: Processing protein precursors to generate apoplastic danger signals for triggering plant immunity. PLANT COMMUNICATIONS 2024; 5:100931. [PMID: 38689495 PMCID: PMC11371470 DOI: 10.1016/j.xplc.2024.100931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The apoplast is one of the first cellular compartments outside the plasma membrane encountered by phytopathogenic microbes in the early stages of plant tissue invasion. Plants have developed sophisticated surveillance mechanisms to sense danger events at the cell surface and promptly activate immunity. However, a fine tuning of the activation of immune pathways is necessary to mount a robust and effective defense response. Several endogenous proteins and enzymes are synthesized as inactive precursors, and their post-translational processing has emerged as a critical mechanism for triggering alarms in the apoplast. In this review, we focus on the precursors of phytocytokines, cell wall remodeling enzymes, and proteases. The physiological events that convert inactive precursors into immunomodulatory active peptides or enzymes are described. This review also explores the functional synergies among phytocytokines, cell wall damage-associated molecular patterns, and remodeling, highlighting their roles in boosting extracellular immunity and reinforcing defenses against pests.
Collapse
Affiliation(s)
- Daniele Del Corpo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Daniele Coculo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Marco Greco
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Vincenzo Lionetti
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
8
|
Wannitikul P, Dachphun I, Sakulkoo J, Suttangkakul A, Wonnapinij P, Simister R, Gomez LD, Vuttipongchaikij S. In Vivo Proximity Cross-Linking and Immunoprecipitation of Cell Wall Epitopes Identify Proteins Associated with the Biosynthesis of Matrix Polysaccharides. ACS OMEGA 2024; 9:31438-31454. [PMID: 39072051 PMCID: PMC11270709 DOI: 10.1021/acsomega.4c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024]
Abstract
Identification of proteins involved in cell wall matrix polysaccharide biosynthesis is crucial to understand plant cell wall biology. We utilized in vivo cross-linking and immunoprecipitation with cell wall antibodies that recognized xyloglucan, xylan, mannan, and homogalacturonan to capture proteins associated with matrix polysaccharides in Arabidopsis protoplasts. The use of cross-linkers allowed us to capture proteins actively associated with cell wall polymers, including those directly interacting with glycans via glycan-protein (GP) cross-linkers and those associated with proteins linked to glycans via a protein-protein (PP) cross-linker. Immunoprecipitations led to the identification of 65 Arabidopsis protein IDs localized in the Golgi, ER, plasma membrane, and others without subcellular localization data. Among these, we found several glycosyltransferases directly involved in polysaccharide synthesis, along with proteins related to cell wall modification and vesicle trafficking. Protein interaction networks from DeepAraPPI and AtMAD databases showed interactions between various IDs, including those related to cell-wall-associated proteins and membrane/vesicle trafficking proteins. Gene expression and coexpression analyses supported the presence and relevance of the proteins to the cell wall processes. Reverse genetic studies using T-DNA insertion mutants of selected proteins revealed changes in cell wall composition and saccharification, further supporting their potential roles in cell wall biosynthesis. Overall, our approach represents a novel approach for studying cell wall polysaccharide biosynthesis and associated proteins, providing advantages over traditional immunoprecipitation techniques. This study provides a list of putative proteins associated with different matrix polysaccharides for further investigation and highlights the complexity of cell wall biosynthesis and trafficking within plant cells.
Collapse
Affiliation(s)
- Pitchaporn Wannitikul
- Department
of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
| | - Issariya Dachphun
- Department
of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
| | - Jenjira Sakulkoo
- Department
of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
| | - Anongpat Suttangkakul
- Department
of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Center
of Advanced Studies for Tropical Natural Resources, Kasetsart University, Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Omics
Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Passorn Wonnapinij
- Department
of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Center
of Advanced Studies for Tropical Natural Resources, Kasetsart University, Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Omics
Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Rachael Simister
- CNAP,
Department of Biology, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Leonardo D. Gomez
- CNAP,
Department of Biology, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Supachai Vuttipongchaikij
- Department
of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Center
of Advanced Studies for Tropical Natural Resources, Kasetsart University, Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Omics
Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
9
|
Cullen E, Hay A. Creating an explosion: Form and function in explosive fruit. CURRENT OPINION IN PLANT BIOLOGY 2024; 79:102543. [PMID: 38688200 DOI: 10.1016/j.pbi.2024.102543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 05/02/2024]
Abstract
Adaptations for seed dispersal are found everywhere in nature. However, only a fraction of this diversity is accessible through the study of model organisms. For example, Arabidopsis seeds are released by dehiscent fruit; and although many genes required for dehiscence have been identified, the genetic basis for the vast majority of seed dispersal strategies remains understudied. Explosive fruit generate mechanical forces to launch seeds over a wide area. Recent work indicates that key innovations required for explosive dispersal lie in localised lignin deposition and precise patterns of microtubule-dependent growth in the fruit valves, rather than dehiscence zone structure. These insights come from comparative approaches, which extend the reach of developmental genetics by developing experimental tools in less well-studied species, such as the Arabidopsis relative, Cardamine hirsuta.
Collapse
Affiliation(s)
- Erin Cullen
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Angela Hay
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany.
| |
Collapse
|
10
|
Zhu H, Xu J, Yu K, Wu J, Xu H, Wang S, Wen T. Genome-wide identification of the key kinesin genes during fiber and boll development in upland cotton (Gossypium hirsutum L.). Mol Genet Genomics 2024; 299:38. [PMID: 38517563 DOI: 10.1007/s00438-024-02093-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/11/2023] [Indexed: 03/24/2024]
Abstract
Kinesin is a kind of motor protein, which interacts with microtubule filaments and regulates cellulose synthesis. Cotton fiber is a natural model for studying the cellular development and cellulose synthesis. Therefore, a systematic research of kinesin gene family in cotton (Gossypium spp.) will be beneficial for both understanding the function of kinesin protein and assisting the fiber improvement. Here, we aimed to identify the key kinesin genes present in cotton by combining genome-wide expression profile data, association mapping, and public quantitative trait loci (QTLs) in upland cotton (G. hirsutum L.). Results showed that 159 kinesin genes, including 15 genes of the kinesin-13 gene subfamily, were identified in upland cotton; of which 157 kinesin genes can be traced back to the diploid ancestors, G. raimondii and G. arboreum. Using a combined analysis of public QTLs and genome-wide expression profile information, there were 29 QTLs co-localized together with 28 kinesin genes in upland cotton, including 10 kinesin-13 subfamily genes. Genome-wide expression profile data indicated that, among the 28 co-localized genes, seven kinesin genes were predominantly expressed in fibers or ovules. By association mapping analysis, 30 kinesin genes were significantly associated with three fiber traits, among which a kinesin-13 gene, Ghir_A11G028430, was found to be associated with both cotton boll length and lint weight, and one kinesin-7 gene, Ghir_D04G017880 (Gh_Kinesin7), was significantly associated with fiber strength. In addition, two missense mutations were identified in the motor domain of the Gh_Kinesin7 protein. Overall, the kinesin gene family seemingly plays an important role in cotton fiber and boll development. The exploited kinesin genes will be beneficial for the genetic improvement of fiber quality and yield.
Collapse
Affiliation(s)
- Hong Zhu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Jianzhong Xu
- Stock seed farm of Gao'an, Yichun, 330800, Jiangxi, China
| | - Kanbing Yu
- Xishuangbanna Institute of Agricultural Science, Xishuangbanna Autonomous Prefecture, Yunnan, 666100, China
| | - Jianfei Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Huifang Xu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Shubin Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Tianwang Wen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| |
Collapse
|
11
|
Deinum EE, Jacobs B. Rho of Plants patterning: linking mathematical models and molecular diversity. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1274-1288. [PMID: 37962515 PMCID: PMC10901209 DOI: 10.1093/jxb/erad447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
ROPs (Rho of Plants) are plant specific small GTPases involved in many membrane patterning processes and play important roles in the establishment and communication of cell polarity. These small GTPases can produce a wide variety of patterns, ranging from a single cluster in tip-growing root hairs and pollen tubes to an oriented stripe pattern controlling protoxylem cell wall deposition. For an understanding of what controls these various patterns, models are indispensable. Consequently, many modelling studies on small GTPase patterning exist, often focusing on yeast or animal cells. Multiple patterns occurring in plants, however, require the stable co-existence of multiple active ROP clusters, which does not occur with the most common yeast/animal models. The possibility of such patterns critically depends on the precise model formulation. Additionally, different small GTPases are usually treated interchangeably in models, even though plants possess two types of ROPs with distinct molecular properties, one of which is unique to plants. Furthermore, the shape and even the type of ROP patterns may be affected by the cortical cytoskeleton, and cortex composition and anisotropy differ dramatically between plants and animals. Here, we review insights into ROP patterning from modelling efforts across kingdoms, as well as some outstanding questions arising from these models and recent experimental findings.
Collapse
Affiliation(s)
- Eva E Deinum
- Mathematical and Statistical Methods (Biometris), Plant Science Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Bas Jacobs
- Mathematical and Statistical Methods (Biometris), Plant Science Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
12
|
Zhu H, Xu J, Yu K, Wu J, Xu H, Wang S, Wen T. Genome-wide identification of the key Kinesin genes during fiber and boll development in upland cotton (Gossypium hirsutum L). Mol Genet Genomics 2024; 299:2. [PMID: 38200363 DOI: 10.1007/s00438-023-02087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/11/2023] [Indexed: 01/12/2024]
Abstract
Kinesin is a kind of motor protein, which interacts with microtubule filaments and regulates cellulose synthesis. Cotton fiber is a natural model for studying the cellular development and cellulose synthesis. Therefore, a systematic research of Kinesin gene family in cotton (Gossypium spp.) will be beneficial for both understanding the function of Kinesin protein and assisting the fiber improvement. Here, we aimed to identify the key Kinesin genes present in cotton by combining genome-wide expression profile data, association mapping, and public quantitative trait loci (QTLs) in upland cotton (Gossypium hirsutum L.). Results showed that 159 Kinesin genes, including 15 genes of the Kinesin-13 gene subfamily, were identified in upland cotton; of which 157 Kinesin genes can be traced back to the diploid ancestors, G. raimondii and G. arboreum. Using a combined analysis of public QTLs and genome-wide expression profile information, there were 29 QTLs co-localized together with 28 Kinesin genes in upland cotton, including 10 Kinesin-13 subfamily genes. Genome-wide expression profile data indicated that, among the 28 co-localized genes, seven Kinesin genes were predominantly expressed in fibers or ovules. By association mapping analysis, 30 Kinesin genes were significantly associated with three fiber traits, among which a Kinesin-13 gene, Ghir_A11G028430, was found to be associated with both cotton boll length and lint weight, and one Kinesin-7 gene, Ghir_D04G017880 (Gh_Kinesin7), was significantly associated with fiber strength. In addition, two missense mutations were identified in the motor domain of the Gh_Kinesin7 protein. Overall, the Kinesin gene family seemingly plays an important role in cotton fiber and boll development. The exploited Kinesin genes will be beneficial for the genetic improvement of fiber quality and yield.
Collapse
Affiliation(s)
- Hong Zhu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Jianzhong Xu
- Agriculture and Rural Affairs Bureau of Gao'an, Yichun, 330800, Jiangxi, China
| | - Kanbing Yu
- Xishuangbanna Institute of Agricultural Science, Xishuangbanna Autonomous Prefecture, 666100, Yunnan, China
| | - Jianfei Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Huifang Xu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Shubin Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Tianwang Wen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| |
Collapse
|
13
|
Higa T, Kijima ST, Sasaki T, Takatani S, Asano R, Kondo Y, Wakazaki M, Sato M, Toyooka K, Demura T, Fukuda H, Oda Y. Microtubule-associated phase separation of MIDD1 tunes cell wall spacing in xylem vessels in Arabidopsis thaliana. NATURE PLANTS 2024; 10:100-117. [PMID: 38172572 DOI: 10.1038/s41477-023-01593-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/14/2023] [Indexed: 01/05/2024]
Abstract
Properly patterned cell walls specify cellular functions in plants. Differentiating protoxylem and metaxylem vessel cells exhibit thick secondary cell walls in striped and pitted patterns, respectively. Cortical microtubules are arranged in distinct patterns to direct cell wall deposition. The scaffold protein MIDD1 promotes microtubule depletion by interacting with ROP GTPases and KINESIN-13A in metaxylem vessels. Here we show that the phase separation of MIDD1 fine-tunes cell wall spacing in protoxylem vessels in Arabidopsis thaliana. Compared with wild-type, midd1 mutants exhibited narrower gaps and smaller pits in the secondary cell walls of protoxylem and metaxylem vessel cells, respectively. Live imaging of ectopically induced protoxylem vessels revealed that MIDD1 forms condensations along the depolymerizing microtubules, which in turn caused massive catastrophe of microtubules. The MIDD1 condensates exhibited rapid turnover and were susceptible to 1,6-hexanediol. Loss of ROP abolished the condensation of MIDD1 and resulted in narrow cell wall gaps in protoxylem vessels. These results suggest that the microtubule-associated phase separation of MIDD1 facilitates microtubule arrangement to regulate the size of gaps in secondary cell walls. This study reveals a new biological role of phase separation in the fine-tuning of cell wall patterning.
Collapse
Affiliation(s)
- Takeshi Higa
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Japan
| | - Saku T Kijima
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Takema Sasaki
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Shogo Takatani
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Ryosuke Asano
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yohei Kondo
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Mayumi Wakazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Taku Demura
- Center for Digital Green-innovation, Nara Institute of Science and Technology, Ikoma, Japan
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Hiroo Fukuda
- Department of Bioscience and Biotechnology, Faculty of Bioenvironmental Sciences, Kyoto University of Advanced Science, Kameoka, Japan
- Akita Prefectural University, Akita, Japan
| | - Yoshihisa Oda
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.
| |
Collapse
|
14
|
Sasaki T, Saito K, Inoue D, Serk H, Sugiyama Y, Pesquet E, Shimamoto Y, Oda Y. Confined-microtubule assembly shapes three-dimensional cell wall structures in xylem vessels. Nat Commun 2023; 14:6987. [PMID: 37957173 PMCID: PMC10643555 DOI: 10.1038/s41467-023-42487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
Properly patterned deposition of cell wall polymers is prerequisite for the morphogenesis of plant cells. A cortical microtubule array guides the two-dimensional pattern of cell wall deposition. Yet, the mechanism underlying the three-dimensional patterning of cell wall deposition is poorly understood. In metaxylem vessels, cell wall arches are formed over numerous pit membranes, forming highly organized three-dimensional cell wall structures. Here, we show that the microtubule-associated proteins, MAP70-5 and MAP70-1, regulate arch development. The map70-1 map70-5 plants formed oblique arches in an abnormal orientation in pits. Microtubules fit the aperture of developing arches in wild-type cells, whereas microtubules in map70-1 map70-5 cells extended over the boundaries of pit arches. MAP70 caused the bending and bundling of microtubules. These results suggest that MAP70 confines microtubules within the pit apertures by altering the physical properties of microtubules, thereby directing the growth of pit arches in the proper orientation. This study provides clues to understanding how plants develop three-dimensional structure of cell walls.
Collapse
Affiliation(s)
- Takema Sasaki
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Kei Saito
- Department of Chromosome Science, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI University, Mishima, Shizuoka, Japan
| | - Daisuke Inoue
- Factuly of Design, Kyusyu University, Fukuoka, Japan
| | - Henrik Serk
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Yuki Sugiyama
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Edouard Pesquet
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, Umeå, Sweden
- Arrhenius laboratories, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, Stockholm, Sweden
| | - Yuta Shimamoto
- Department of Chromosome Science, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI University, Mishima, Shizuoka, Japan
| | - Yoshihisa Oda
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan.
| |
Collapse
|
15
|
Gonzalez JP, Frandsen KEH, Kesten C. The role of intrinsic disorder in binding of plant microtubule-associated proteins to the cytoskeleton. Cytoskeleton (Hoboken) 2023; 80:404-436. [PMID: 37578201 DOI: 10.1002/cm.21773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/15/2023]
Abstract
Microtubules (MTs) represent one of the main components of the eukaryotic cytoskeleton and support numerous critical cellular functions. MTs are in principle tube-like structures that can grow and shrink in a highly dynamic manner; a process largely controlled by microtubule-associated proteins (MAPs). Plant MAPs are a phylogenetically diverse group of proteins that nonetheless share many common biophysical characteristics and often contain large stretches of intrinsic protein disorder. These intrinsically disordered regions are determinants of many MAP-MT interactions, in which structural flexibility enables low-affinity protein-protein interactions that enable a fine-tuned regulation of MT cytoskeleton dynamics. Notably, intrinsic disorder is one of the major obstacles in functional and structural studies of MAPs and represents the principal present-day challenge to decipher how MAPs interact with MTs. Here, we review plant MAPs from an intrinsic protein disorder perspective, by providing a complete and up-to-date summary of all currently known members, and address the current and future challenges in functional and structural characterization of MAPs.
Collapse
Affiliation(s)
- Jordy Perez Gonzalez
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kristian E H Frandsen
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Christopher Kesten
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
16
|
Li H, Xie J, Gao Y, Wang X, Qin L, Ju W, Roberts JA, Cheng B, Zhang X, Lu X. IQ domain-containing protein ZmIQD27 modulates water transport in maize. PLANT PHYSIOLOGY 2023; 193:1834-1848. [PMID: 37403650 DOI: 10.1093/plphys/kiad390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 07/06/2023]
Abstract
Plant metaxylem vessels provide physical support to promote upright growth and the transport of water and nutrients. A detailed characterization of the molecular network controlling metaxylem development is lacking. However, knowledge of the events that regulate metaxylem development could contribute to the development of germplasm with improved yield. In this paper, we screened an EMS-induced B73 mutant library, which covers 92% of maize (Zea mays) genes, to identify drought-sensitive phenotypes. Three mutants were identified, named iqd27-1, iqd27-2, and iqd27-3, and genetic crosses showed that they were allelic to each other. The causal gene in these 3 mutants encodes the IQ domain-containing protein ZmIQD27. Our study showed that defective metaxylem vessel development likely causes the drought sensitivity and abnormal water transport phenotypes in the iqd27 mutants. ZmIQD27 was expressed in the root meristematic zone where secondary cell wall deposition is initiated, and loss-of-function iqd27 mutants exhibited a microtubular arrangement disorder. We propose that association of functional ZmIQD27 with microtubules is essential for correct targeted deposition of the building blocks for secondary cell wall development in maize.
Collapse
Affiliation(s)
- Haiyan Li
- National Engineering Laboratory of Crop Stress Resistance, School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Jun Xie
- National Engineering Laboratory of Crop Stress Resistance, School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Yongmeng Gao
- National Engineering Laboratory of Crop Stress Resistance, School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Xuemei Wang
- National Engineering Laboratory of Crop Stress Resistance, School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Li Qin
- Institute of Advanced Agricultural Technology, Qilu Normal University, Jinan 250200, China
| | - Wei Ju
- Nanbei Agriculture Technology Co., Ltd., Harbin 150000, China
| | - Jeremy A Roberts
- Faculty of Science and Engineering, School of Biological & Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance, School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiaoduo Lu
- National Engineering Laboratory of Crop Stress Resistance, School of Life Science, Anhui Agricultural University, Hefei 230036, China
- Institute of Advanced Agricultural Technology, Qilu Normal University, Jinan 250200, China
- Lab of Molecular Breeding by Design in Maize Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| |
Collapse
|
17
|
van Spoordonk R, Schneider R, Sampathkumar A. Mechano-chemical regulation of complex cell shape formation: Epidermal pavement cells-A case study. QUANTITATIVE PLANT BIOLOGY 2023; 4:e5. [PMID: 37251797 PMCID: PMC10225270 DOI: 10.1017/qpb.2023.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023]
Abstract
All plant cells are encased by walls, which provide structural support and control their morphology. How plant cells regulate the deposition of the wall to generate complex shapes is a topic of ongoing research. Scientists have identified several model systems, the epidermal pavement cells of cotyledons and leaves being an ideal platform to study the formation of complex cell shapes. These cells indeed grow alternating protrusions and indentations resulting in jigsaw puzzle cell shapes. How and why these cells adopt such shapes has shown to be a challenging problem to solve, notably because it involves the integration of molecular and mechanical regulation together with cytoskeletal dynamics and cell wall modifications. In this review, we highlight some recent progress focusing on how these processes may be integrated at the cellular level along with recent quantitative morphometric approaches.
Collapse
Affiliation(s)
| | - René Schneider
- Institute of Biochemistry and Biology, Plant Physiology Department, University of Potsdam, Potsdam, Germany
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
18
|
Mi Q, Pang H, Luan F, Gao P, Liu S. Integrated analysis of biparental and natural populations reveals CRIB domain-containing protein underlying seed coat crack trait in watermelon. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:95. [PMID: 37014431 DOI: 10.1007/s00122-023-04320-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/07/2023] [Indexed: 06/19/2023]
Abstract
The scc locus of the watermelon seed coat crack trait was fine mapped on chromosome 3. Cla97C03G056110 (annotated as CRIB domain-containing protein) was regarded as the most likely candidate gene Seed coat crack (scc) is a special characteristic of watermelon compared with other cucurbit crops. However, information regarding the genetic basis of this trait is limited. We conducted a genetic analysis of six generations derived from PI 192938 (scc) and Cream of Saskatchewan (COS) (non-scc) parental lines and found that the scc trait was regulated by a single recessive gene through two years. Bulk segregant analysis sequencing (BSA-seq) and initial mapping placed the scc locus into an 808.8 kb region on chromosome 3. Evaluation of another 1152 F2 plants narrowed the scc locus to a 277.11 kb region containing 37 candidate genes. Due to the lack of molecular markers in the fine-mapping interval, we extracted the genome sequence variations in this 277.11 kb region with in silico BSA among seventeen re-sequenced lines (6 scc and 11 non-scc) and finally delimited the scc locus to an 8.34 kb region with only one candidate gene Cla97C03G056110 (CRIB domain-containing protein). Three single nucleotide polymorphism loci in the promoter region of Cla97C03G056110 altered cis-acting elements that were highly correlated with the nature watermelon panel. The expression of Cla97C03G056110 in seed coat tissue was higher in non-scc than in scc lines and was specifically expressed in seed coat compared with fruit flesh.
Collapse
Affiliation(s)
- Qi Mi
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China
| | - Hongqian Pang
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China
| | - Feishi Luan
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China.
| | - Peng Gao
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China.
| | - Shi Liu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China.
| |
Collapse
|
19
|
Kim MH, Cho JS, Tran TNA, Nguyen TTT, Park EJ, Im JH, Han KH, Lee H, Ko JH. Comparative functional analysis of PdeNAC2 and AtVND6 in the tracheary element formation. TREE PHYSIOLOGY 2023:tpad042. [PMID: 37014763 DOI: 10.1093/treephys/tpad042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Tracheary elements (i.e., vessel elements and tracheids) are highly specialized, non-living cells present in the water-conducting xylem tissue. In angiosperms, proteins in the VASCULAR-RELATED NAC-DOMAIN (VND) subgroup of the NAC transcription factor family (e.g., AtVND6) are required for the differentiation of vessel elements through transcriptional regulation of genes responsible for secondary cell wall (SCW) formation and programmed cell death (PCD). Gymnosperms, however, produce only tracheids, the mechanism of which remains elusive. Here, we report functional characteristics of PdeNAC2, a VND homolog in Pinus densiflora, as a key regulator of tracheid formation. Interestingly, our molecular genetic analyses show that PdeNAC2 can induce the formation of vessel element-like cells in angiosperm plants, demonstrated by transgenic overexpression of either native or NAC domain-swapped synthetic genes of PdeNAC2 and AtVND6 in both Arabidopsis and hybrid poplar. Subsequently, genome-wide identification of direct target genes of PdeNAC2 and AtVND6 revealed 138 and 174 genes as putative direct targets, respectively, but only 17 genes were identified as common direct targets. Further analyses have found that PdeNAC2 does not control some AtVND6-dependent vessel differentiation genes in angiosperm plants, such as AtVRLK1, LBD15/30, and pit-forming ROP signaling genes. Collectively, our results suggest that different target gene repertoires of PdeNAC2 and AtVND6 may contribute to the evolution of tracheary elements.
Collapse
Affiliation(s)
- Min-Ha Kim
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jin-Seong Cho
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Thi Ngoc Anh Tran
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Thi Thu Tram Nguyen
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eung-Jun Park
- Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Jong-Hee Im
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
| | - Kyung-Hwan Han
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- Department of Forestry, Michigan State University, East Lansing, MI 48824, USA
| | - Hyoshin Lee
- Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
20
|
Hsiao AS, Huang JY. Microtubule Regulation in Plants: From Morphological Development to Stress Adaptation. Biomolecules 2023; 13:biom13040627. [PMID: 37189374 DOI: 10.3390/biom13040627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
Microtubules (MTs) are essential elements of the eukaryotic cytoskeleton and are critical for various cell functions. During cell division, plant MTs form highly ordered structures, and cortical MTs guide the cell wall cellulose patterns and thus control cell size and shape. Both are important for morphological development and for adjusting plant growth and plasticity under environmental challenges for stress adaptation. Various MT regulators control the dynamics and organization of MTs in diverse cellular processes and response to developmental and environmental cues. This article summarizes the recent progress in plant MT studies from morphological development to stress responses, discusses the latest techniques applied, and encourages more research into plant MT regulation.
Collapse
|
21
|
Li E, Zhang YL, Qin Z, Xu M, Qiao Q, Li S, Li SW, Zhang Y. Signaling network controlling ROP-mediated tip growth in Arabidopsis and beyond. PLANT COMMUNICATIONS 2023; 4:100451. [PMID: 36114666 PMCID: PMC9860187 DOI: 10.1016/j.xplc.2022.100451] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/24/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Cell polarity operates across a broad range of spatial and temporal scales and is essential for specific biological functions of polarized cells. Tip growth is a special type of polarization in which a single and unique polarization site is established and maintained, as for the growth of root hairs and pollen tubes in plants. Extensive studies in past decades have demonstrated that the spatiotemporal localization and activity of Rho of Plants (ROPs), the only class of Rho GTPases in plants, are critical for tip growth. ROPs are switched on or off by different factors to initiate dynamic intracellular activities, leading to tip growth. Recent studies have also uncovered several feedback modules for ROP signaling. In this review, we summarize recent progress on ROP signaling in tip growth, focusing on molecular mechanisms that underlie the dynamic distribution and activity of ROPs in Arabidopsis. We also highlight feedback modules that control ROP-mediated tip growth and provide a perspective for building a complex ROP signaling network. Finally, we provide an evolutionary perspective for ROP-mediated tip growth in Physcomitrella patens and during plant-rhizobia interaction.
Collapse
Affiliation(s)
- En Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Yu-Ling Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zheng Qin
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Meng Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Qian Qiao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shan-Wei Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
22
|
Lan M, Liu X, Kang E, Fu Y, Zhu L. ARK2 stabilizes the plus-end of microtubules and promotes microtubule bundling in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:100-116. [PMID: 36169006 DOI: 10.1111/jipb.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Microtubule dynamics and organization are important for plant cell morphogenesis and development. The microtubule-based motor protein kinesins are mainly responsible for the transport of some organelles and vesicles, although several have also been shown to regulate microtubule organization. The ARMADILLO REPEAT KINESIN (ARK) family is a plant-specific motor protein subfamily that consists of three members (ARK1, ARK2, and ARK3) in Arabidopsis thaliana. ARK2 has been shown to participate in root epidermal cell morphogenesis. However, whether and how ARK2 associates with microtubules needs further elucidation. Here, we demonstrated that ARK2 co-localizes with microtubules and facilitates microtubule bundling in vitro and in vivo. Pharmacological assays and microtubule dynamics analyses indicated that ARK2 stabilizes cortical microtubules. Live-cell imaging revealed that ARK2 moves along cortical microtubules in a processive mode and localizes both at the plus-end and the sidewall of microtubules. ARK2 therefore tracks and stabilizes the growing plus-ends of microtubules, which facilitates the formation of parallel microtubule bundles.
Collapse
Affiliation(s)
- Miao Lan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xianan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Erfang Kang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lei Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
23
|
Feiguelman G, Cui X, Sternberg H, Hur EB, Higa T, Oda Y, Fu Y, Yalovsky S. Microtubule-associated ROP interactors affect microtubule dynamics and modulate cell wall patterning and root hair growth. Development 2022; 149:279331. [PMID: 36314989 PMCID: PMC9845754 DOI: 10.1242/dev.200811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022]
Abstract
Rho of plant (ROP) proteins and the interactor of constitutively active ROP (ICR) family member ICR5/MIDD1 have been implicated to function as signaling modules that regulate metaxylem secondary cell wall patterning. Yet, loss-of-function mutants of ICR5 and its closest homologs have not been studied and, hence, the functions of these ICR family members are not fully established. Here, we studied the functions of ICR2 and its homolog ICR5. We show that ICR2 is a microtubule-associated protein that affects microtubule dynamics. Secondary cell wall pits in the metaxylem of Arabidopsis icr2 and icr5 single mutants and icr2 icr5 double mutants are smaller than those in wild-type Col-0 seedlings; however, they are remarkably denser, implying a complex function of ICRs in secondary cell wall patterning. ICR5 has a unique function in protoxylem secondary cell wall patterning, whereas icr2, but not icr5, mutants develop split root hairs, demonstrating functional diversification. Taken together, our results show that ICR2 and ICR5 have unique and cooperative functions as microtubule-associated proteins and as ROP effectors.
Collapse
Affiliation(s)
- Gil Feiguelman
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Xiankui Cui
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hasana Sternberg
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eliran Ben Hur
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Takeshi Higa
- Department of Gene Phenomics and Function, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Yoshihisa Oda
- Department of Gene Phenomics and Function, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan,Department of Genetics, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China,Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, Beijing 100193, China
| | - Shaul Yalovsky
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel,Author for correspondence (; )
| |
Collapse
|
24
|
Chen G, Xuan W, Zhao P, Yao X, Peng C, Tian Y, Ye J, Wang B, He J, Chi W, Yu J, Ge Y, Li J, Dai Z, Xu D, Wang C, Wan J. OsTUB1 confers salt insensitivity by interacting with Kinesin13A to stabilize microtubules and ion transporters in rice. THE NEW PHYTOLOGIST 2022; 235:1836-1852. [PMID: 35643887 DOI: 10.1111/nph.18282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Salt stress is one of the major environmental factors limiting plant growth and development. Although microtubule (MT) organization is known to be involved in response to salt stress, few tubulin genes have been identified that confer salt insensitivity in plants. In this study, we identified a MT encoding gene, OsTUB1, that increased the survival rate of rice plants under salt stress by stabilizing MT organization and ion transporters. We found that OsTUB1 interacted with Kinesin13A protein, which was essential for OsTUB1-regulated MT organization under salt stress. Further molecular evidence revealed that a OsTUB1-Kinesin13A complex protected rice from salt stress by sustaining membrane-localized Na+ transporter OsHKT1;5, a key regulator of ionic homeostasis. Our results shed light on the function of tubulin and kinesin in regulating MT organization and stabilizing Na+ transporters and Na+ flux at the plasma membrane in rice. The identification of the OsTUB1-Kinesin13A complex provides novel genes for salt insensitivity rice breeding in areas with high soil salinity.
Collapse
Affiliation(s)
- Gaoming Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pingzhi Zhao
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiangmei Yao
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chao Peng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Yunlu Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Jian Ye
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Baoxiang Wang
- Lianyungang Academy of Agricultural Science, Lianyungang, Jiangsu Province, 222000, China
| | - Jun He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Wenchao Chi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Jun Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Yuwei Ge
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Jin Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Zhaoyang Dai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Dayong Xu
- Lianyungang Academy of Agricultural Science, Lianyungang, Jiangsu Province, 222000, China
| | - Chunming Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
25
|
Emonet A, Hay A. Development and diversity of lignin patterns. PLANT PHYSIOLOGY 2022; 190:31-43. [PMID: 35642915 PMCID: PMC9434266 DOI: 10.1093/plphys/kiac261] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/09/2022] [Indexed: 05/27/2023]
Abstract
Different patterns of lignified cell walls are associated with diverse functions in a variety of plant tissues. These functions rely on the stiffness and hydrophobicity that lignin polymers impart to the cell wall. The precise pattern of subcellular lignin deposition is critical for the structure-function relationship in each lignified cell type. Here, we describe the role of xylem vessels as water pipes, Casparian strips as apoplastic barriers, and the role of asymmetrically lignified endocarp b cells in exploding seed pods. We highlight similarities and differences in the genetic mechanisms underpinning local lignin deposition in these diverse cell types. By bringing together examples from different developmental contexts and different plant species, we propose that comparative approaches can benefit our understanding of lignin patterning mechanisms.
Collapse
Affiliation(s)
- Aurélia Emonet
- Max Planck Institute for Plant Breeding Research, Cologne, North Rhine-Westphalia, 50829, Germany
| | | |
Collapse
|
26
|
Hasi Q, Kakimoto T. ROP Interactive Partners are Involved in the Control of Cell Division Patterns in Arabidopsis Leaves. PLANT & CELL PHYSIOLOGY 2022; 63:1130-1139. [PMID: 35779003 DOI: 10.1093/pcp/pcac089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 06/19/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Animal Rho GTP-binding proteins and their plant counterparts, Rho of plants (ROPs), regulate cell polarity, but they do so through different effector proteins. A class of ROP effectors, interactor of constitutive active ROPs (ICRs)/ROP interactive partners (RIPs), has been implicated in diverse biological processes; however, there are limited analyses of RIP loss-of-function mutants. Here, we report an analysis of the functions of the Arabidopsis thaliana RIPs in the leaf epidermis. Green Fluorescent Protein (GFP) fusion proteins of all the RIPs colocalized to cortical microtubules. RIP1, RIP3 and RIP4, but not RIP2 and RIP5, colocalized with the preprophase band (PPB), spindles and phragmoplasts. RIP2 and RIP5 did not colocalize with the PPB, spindles or phragmoplasts even when they were expressed under a promoter active in proliferative cells, indicating that there are differences among RIP protein properties. The overexpression of RIP1 or RIP4 resulted in the fragmentation of cortical microtubules, and the rip1 2 3 4 5 quintuple mutant showed increased growth rate of microtubules at their plus ends compared with the wild type. The rip1 2 3 4 5 mutant leaves and petals were narrow, which was explained by the decreased cell number along the transverse axis compared with that of the wild type. The rip1 2 3 4 5 mutant leaf epidermis possessed fewer PPBs oriented close to the long axis of the leaf compared with wild type, indicating the involvement of RIPs in cell division plane regulation and leaf shape determination.
Collapse
Affiliation(s)
- Qimuge Hasi
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
| | - Tatsuo Kakimoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
| |
Collapse
|
27
|
Antreich SJ, Huss JC, Xiao N, Singh A, Gierlinger N. The walnut shell network: 3D visualisation of symplastic and apoplastic transport routes in sclerenchyma tissue. PLANTA 2022; 256:49. [PMID: 35881249 PMCID: PMC9325819 DOI: 10.1007/s00425-022-03960-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/06/2022] [Indexed: 05/16/2023]
Abstract
High symplastic connectivity via pits was linked to the lignification of the developing walnut shell. With maturation, this network lessened, whereas apoplastic intercellular space remained and became relevant for shell drying. The shell of the walnut (Juglans regia) sclerifies within several weeks. This fast secondary cell wall thickening and lignification of the shell tissue might need metabolites from the supporting husk tissue. To reveal the transport capacity of the walnut shell tissue and its connection to the husk, we visualised the symplastic and apoplastic transport routes during shell development by serial block face-SEM and 3D reconstruction. We found an extensive network of pit channels connecting the cells within the shell tissue, but even more towards the husk tissue. Each pit channel ended in a pit field, which was occupied by multiple plasmodesmata passing through the middle lamella. During shell development, secondary cell wall formation progressed towards the interior of the cell, leaving active pit channels open. In contrast, pit channels, which had no plasmodesmata connection to a neighbouring cell, got filled by cellulose layers from the inner cell wall lamellae. A comparison with other nut species showed that an extended network during sclerification seemed to be linked to high cell wall lignification and that the connectivity between cells got reduced with maturation. In contrast, intercellular spaces between cells remained unchanged during the entire sclerification process, allowing air and water to flow through the walnut shell tissue when mature. The connectivity between inner tissue and environment was essential during shell drying in the last month of nut development to avoid mould formation. The findings highlight how connectivity and transport work in developing walnut shell tissue and how finally in the mature state these structures influence shell mechanics, permeability, conservation and germination.
Collapse
Affiliation(s)
- Sebastian J Antreich
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, 1190, Vienna, Austria.
| | - Jessica C Huss
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Nannan Xiao
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Adya Singh
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Notburga Gierlinger
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| |
Collapse
|
28
|
Current Understanding of the Genetics and Molecular Mechanisms Regulating Wood Formation in Plants. Genes (Basel) 2022; 13:genes13071181. [PMID: 35885964 PMCID: PMC9319765 DOI: 10.3390/genes13071181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Unlike herbaceous plants, woody plants undergo volumetric growth (a.k.a. secondary growth) through wood formation, during which the secondary xylem (i.e., wood) differentiates from the vascular cambium. Wood is the most abundant biomass on Earth and, by absorbing atmospheric carbon dioxide, functions as one of the largest carbon sinks. As a sustainable and eco-friendly energy source, lignocellulosic biomass can help address environmental pollution and the global climate crisis. Studies of Arabidopsis and poplar as model plants using various emerging research tools show that the formation and proliferation of the vascular cambium and the differentiation of xylem cells require the modulation of multiple signals, including plant hormones, transcription factors, and signaling peptides. In this review, we summarize the latest knowledge on the molecular mechanism of wood formation, one of the most important biological processes on Earth.
Collapse
|
29
|
Abstract
In contrast to well-studied fungal and animal cells, plant cells assemble bipolar spindles that exhibit a great deal of plasticity in the absence of structurally defined microtubule-organizing centers like the centrosome. While plants employ some evolutionarily conserved proteins to regulate spindle morphogenesis and remodeling, many essential spindle assembly factors found in vertebrates are either missing or not required for producing the plant bipolar microtubule array. Plants also produce proteins distantly related to their fungal and animal counterparts to regulate critical events such as the spindle assembly checkpoint. Plant spindle assembly initiates with microtubule nucleation on the nuclear envelope followed by bipolarization into the prophase spindle. After nuclear envelope breakdown, kinetochore fibers are assembled and unified into the spindle apparatus with convergent poles. Of note, compared to fungal and animal systems, relatively little is known about how plant cells remodel the spindle microtubule array during anaphase. Uncovering mitotic functions of novel proteins for spindle assembly in plants will illuminate both common and divergent mechanisms employed by different eukaryotic organisms to segregate genetic materials.
Collapse
Affiliation(s)
- Bo Liu
- Department of Plant Biology, University of California, Davis, California, USA; ,
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, California, USA; ,
| |
Collapse
|
30
|
Zhang Y, Dong G, Chen F, Xiong E, Liu H, Jiang Y, Xiong G, Ruan B, Qian Q, Zeng D, Ma D, Yu Y, Wu L. The kinesin-13 protein BR HYPERSENSITIVE 1 is a negative brassinosteroid signaling component regulating rice growth and development. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1751-1766. [PMID: 35258682 DOI: 10.1007/s00122-022-04067-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Phytohormones performed critical roles in regulating plant architecture and thus determine grain yield in rice. However, the roles of brassinosteroids (BRs) compared to other phytohormones in shaping rice architecture are less studied. In this study, we report that BR hypersensitive1 (BHS1) plays a negative role in BR signaling and regulate rice architecture. BHS1 encodes the kinesin-13a protein and regulates grain length. We found that bhs1 was hypersensitive to BR, while BHS1-overexpression was less sensitive to BR compare to WT. BHS1 was down-regulated at RNA and protein level upon exogenous BR treatment, and proteasome inhibitor MG132 delayed the BHS1 degradation, indicating that both the transcriptional and posttranscriptional regulation machineries are involved in BHS1-mediated regulation of plant growth and development. Furthermore, we found that the BR-induced degradation of BHS1 was attenuated in Osbri1 and Osbak1 mutants, but not in Osbzr1 and Oslic mutants. Together, these results suggest that BHS1 is a novel component which is involved in negative regulation of the BR signaling downstream player of BRI1.
Collapse
Affiliation(s)
- Yanli Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Guojun Dong
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Fei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Erhui Xiong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Huijie Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Yaohuang Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Guosheng Xiong
- Plant Phenomics Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Banpu Ruan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Qian Qian
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dali Zeng
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dianrong Ma
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanchun Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China.
| | - Limin Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China.
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou, 310036, China.
| |
Collapse
|
31
|
Xu H, Giannetti A, Sugiyama Y, Zheng W, Schneider R, Watanabe Y, Oda Y, Persson S. Secondary cell wall patterning-connecting the dots, pits and helices. Open Biol 2022; 12:210208. [PMID: 35506204 PMCID: PMC9065968 DOI: 10.1098/rsob.210208] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 04/07/2022] [Indexed: 01/04/2023] Open
Abstract
All plant cells are encased in primary cell walls that determine plant morphology, but also protect the cells against the environment. Certain cells also produce a secondary wall that supports mechanically demanding processes, such as maintaining plant body stature and water transport inside plants. Both these walls are primarily composed of polysaccharides that are arranged in certain patterns to support cell functions. A key requisite for patterned cell walls is the arrangement of cortical microtubules that may direct the delivery of wall polymers and/or cell wall producing enzymes to certain plasma membrane locations. Microtubules also steer the synthesis of cellulose-the load-bearing structure in cell walls-at the plasma membrane. The organization and behaviour of the microtubule array are thus of fundamental importance to cell wall patterns. These aspects are controlled by the coordinated effort of small GTPases that probably coordinate a Turing's reaction-diffusion mechanism to drive microtubule patterns. Here, we give an overview on how wall patterns form in the water-transporting xylem vessels of plants. We discuss systems that have been used to dissect mechanisms that underpin the xylem wall patterns, emphasizing the VND6 and VND7 inducible systems, and outline challenges that lay ahead in this field.
Collapse
Affiliation(s)
- Huizhen Xu
- School of Biosciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alessandro Giannetti
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Yuki Sugiyama
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Wenna Zheng
- School of Biosciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - René Schneider
- Institute of Biochemistry and Biology, Plant Physiology Department, University of Potsdam, 14476 Potsdam, Germany
| | - Yoichiro Watanabe
- Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Yoshihisa Oda
- Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Staffan Persson
- School of Biosciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
32
|
Cornelis S, Hazak O. Understanding the root xylem plasticity for designing resilient crops. PLANT, CELL & ENVIRONMENT 2022; 45:664-676. [PMID: 34971462 PMCID: PMC9303747 DOI: 10.1111/pce.14245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Xylem is the main route for transporting water, minerals and a myriad of signalling molecules within the plant. With its onset during early embryogenesis, the development of the xylem relies on hormone gradients, the activity of unique transcription factors, the distribution of mobile microRNAs, and receptor-ligand pathways. These regulatory mechanisms are often interconnected and together contribute to the plasticity of this water-conducting tissue. Environmental stresses, such as drought and salinity, have a great impact on xylem patterning. A better understanding of how the structural properties of the xylem are regulated in normal and stress conditions will be instrumental in developing crops of the future. In addition, vascular wilt pathogens that attack the xylem are becoming increasingly problematic. Further knowledge of xylem development in response to these pathogens will bring new solutions against these diseases. In this review, we summarize recent findings on the molecular mechanisms of xylem formation that largely come from Arabidopsis research with additional insights from tomato and monocot species. We emphasize the impact of abiotic factors and pathogens on xylem plasticity and the urgent need to uncover the underlying mechanisms. Finally, we discuss the multidisciplinary approach to model xylem capacities in crops.
Collapse
Affiliation(s)
- Salves Cornelis
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Ora Hazak
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| |
Collapse
|
33
|
Wang H, Yang H, Wen Z, Gao C, Gao Y, Tian Y, Xu Z, Liu X, Persson S, Zhang B, Zhou Y. Xylan-based nanocompartments orchestrate plant vessel wall patterning. NATURE PLANTS 2022; 8:295-306. [PMID: 35318447 DOI: 10.1038/s41477-022-01113-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Nanoclustering of biomacromolecules allows cells to efficiently orchestrate biological processes. The plant cell wall is a highly organized polysaccharide network but is heterogeneous in chemistry and structure. However, polysaccharide-based nanocompartments remain ill-defined. Here, we identify a xylan-rich nanodomain at pit borders of xylem vessels. We show that these nanocompartments maintain distinct wall patterns by anchoring cellulosic nanofibrils at the pit borders, critically supporting vessel robustness, water transport and leaf transpiration. The nanocompartments are produced by the activity of IRREGULAR XYLEM (IRX)10 and its homologues, which we show are de novo xylan synthases. Our study hence outlines a mechanism of how xylans are synthesized, how they assemble into nanocompartments and how the nanocompartments sustain cell wall pit patterning to support efficient water transport throughout the plant body.
Collapse
Affiliation(s)
- Hang Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Hanlei Yang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhao Wen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chengxu Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yihong Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanbao Tian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zuopeng Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Xiangling Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Staffan Persson
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
34
|
Arabidopsis pavement cell shape formation involves spatially confined ROPGAP regulators. Curr Biol 2022; 32:532-544.e7. [PMID: 35085497 DOI: 10.1016/j.cub.2021.12.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/16/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022]
Abstract
In many plant species, pavement cell development relies on the coordinated formation of interdigitating lobes and indentations. Polarity signaling via the activity of antagonistic Rho-related GTPases from plants (ROPs) was implicated in pavement cell development, but the spatiotemporal regulation remained unclear. Here, we report on the role of the PLECKSTRIN HOMOLOGY GTPase ACTIVATING PROTEINS (PHGAPS) during multipolar growth in pavement cell shape establishment. Loss of function in phgap1phgap2 double mutants severely affected the shape of Arabidopsis leaf epidermal pavement cells. Predominantly, PHGAPs interacted with ROP2 and displayed a distinct and microtubule-dependent enrichment along the anticlinal cell face and transfacial boundary of pavement cell indentation regions. This localization was established upon undulation initiation and was maintained throughout the expansion of the cell. Our data suggest that PHGAP1/REN2 and PHGAP2/REN3 are key players in the establishment of ROP2 activity gradients and underscore the importance of locally controlled ROP activity for the orchestrated establishment of multipolarity in epidermal cells.
Collapse
|
35
|
Zhu Y, Li L. Multi-layered Regulation of Plant Cell Wall Thickening. PLANT & CELL PHYSIOLOGY 2021; 62:1867-1873. [PMID: 34698856 DOI: 10.1093/pcp/pcab152] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Plants need to develop thickened cell walls with appropriate localization through precise regulation during the process of growth and development in order to support their body weight and to build long distance transportation systems. Wall thickening is achieved through a multitude of regulatory networks in various tissues under changeable environments. In this mini-review, we summarize current understanding of the regulatory pathways and mechanisms involved in cell wall thickening. Regulation of cell wall thickening is not only mechanistically essential to understand the plant structure accretion but also has applicable significance to plant cell wall biomass utilization.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
36
|
Sternberg H, Buriakovsky E, Bloch D, Gutman O, Henis YI, Yalovsky S. Formation of self-organizing functionally distinct Rho of plants domains involves a reduced mobile population. PLANT PHYSIOLOGY 2021; 187:2485-2508. [PMID: 34618086 PMCID: PMC8644358 DOI: 10.1093/plphys/kiab385] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Rho family proteins are central to the regulation of cell polarity in eukaryotes. Rho of Plants-Guanyl nucleotide Exchange Factor (ROPGEF) can form self-organizing polar domains following co-expression with an Rho of Plants (ROP) and an ROP GTPase-Activating Protein (ROPGAP). Localization of ROPs in these domains has not been demonstrated, and the mechanisms underlying domain formation and function are not well understood. Here we show that six different ROPs form self-organizing domains when co-expressed with ROPGEF3 and GAP1 in Nicotiana benthamiana or Arabidopsis (Arabidopsis thaliana). Domain formation was associated with ROP-ROPGEF3 association, reduced ROP mobility, as revealed by time-lapse imaging and Fluorescence Recovery After Photobleaching beam size analysis, and was independent of Rho GTP Dissociation Inhibitor mediated recycling. The domain formation depended on the ROPs' activation/inactivation cycles and interaction with anionic lipids via a C-terminal polybasic domain. Coexpression with the microtubule-associated protein ROP effector INTERACTOR OF CONSTITUTIVELY ACTIVE ROP 1 (ICR1) revealed differential function of the ROP domains in the ability to recruit ICR1. Taken together, the results reveal mechanisms underlying self-organizing ROP domain formation and function.
Collapse
Affiliation(s)
- Hasana Sternberg
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ella Buriakovsky
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daria Bloch
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Orit Gutman
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yoav I Henis
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shaul Yalovsky
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
37
|
Kamon E, Ohtani M. Xylem vessel cell differentiation: A best model for new integrative cell biology? CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102135. [PMID: 34768235 DOI: 10.1016/j.pbi.2021.102135] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 05/22/2023]
Abstract
Xylem vessels transport water and essential low-molecular-weight compounds throughout vascular plants. To achieve maximum performance as conductive tissues, xylem vessel cells undergo secondary cell wall deposition and programmed cell death to produce a hollow tube-like structure with a rigid outer shell. This unique process has been explored in detail from a cell biology and molecular biology perspective, culminating in the identification of the master transcriptional switches of xylem vessel cell differentiation, the VASCULAR-RELATED NAC-DOMAIN (VND) proteins. High-resolution analyses of xylem vessel cell differentiation have since accelerated and are now moving toward single cell-level dissection from a variety of directions. In this review, we introduce the current model of xylem vessel cell differentiation and discuss possible future directions in this field.
Collapse
Affiliation(s)
- Eri Kamon
- Department of Integrated Sciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Misato Ohtani
- Department of Integrated Sciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan.
| |
Collapse
|
38
|
Zeng Z, Li F, Huang R, Wang Y, Liu T. Phosphoproteome analysis reveals an extensive phosphorylation of proteins associated with bast fiber growth in ramie. BMC PLANT BIOLOGY 2021; 21:473. [PMID: 34656094 PMCID: PMC8520194 DOI: 10.1186/s12870-021-03252-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Phosphorylation modification, one of the most common post-translational modifications of proteins, widely participates in the regulation of plant growth and development. Fibers extracted from the stem bark of ramie are important natural textile fibers; however, the role of phosphorylation modification in the growth of ramie fibers is largely unknown. RESULTS Here, we report a phosphoproteome analysis for the barks from the top and middle section of ramie stems, in which the fiber grows at different stages. A total of 10,320 phosphorylation sites from 9,170 unique phosphopeptides that were assigned to 3,506 proteins was identified, and 458 differentially phosphorylated sites from 323 proteins were detected in the fiber developmental barks. Twelve differentially phosphorylated proteins were the homologs of Arabidopsis fiber growth-related proteins. We further focused on the function of the differentially phosphorylated KNOX protein whole_GLEAN_10029667, and found that this protein dramatically repressed the fiber formation in Arabidopsis. Additionally, using a yeast two-hybridization assay, we identified a kinase and a phosphatase that interact with whole_GLEAN_10029667, indicating that they potentially target this KNOX protein to regulate its phosphorylation level. CONCLUSION The finding of this study provided insights into the involvement of phosphorylation modification in ramie fiber growth, and our functional characterization of whole_GLEAN_10029667 provide the first evidence to indicate the involvement of phosphorylation modification in the regulation of KNOX protein function in plants.
Collapse
Affiliation(s)
- Zheng Zeng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Fu Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Renyan Huang
- Hunan Institute of Plant protection, Changsha, 410205, China
| | - Yanzhou Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Touming Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.
| |
Collapse
|
39
|
Chukhchin DG, Vashukova K, Novozhilov E. Bordered Pit Formation in Cell Walls of Spruce Tracheids. PLANTS 2021; 10:plants10091968. [PMID: 34579500 PMCID: PMC8469699 DOI: 10.3390/plants10091968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/02/2022]
Abstract
The process of pit formation in plants still has various questions unaddressed and unknown, which opens up many interesting and new research opportunities. The aim of this work was elucidation of the mechanism for the formation of bordered pits of the spruce (Picea abies (L.) Karst.) tracheid with exosomes participation and mechanical deformation of the cell wall. Sample sections were prepared from spruce stem samples after cryomechanical destruction with liquid nitrogen. The study methods included scanning electron microscopy and enzymatic treatment. Enzymatic treatment of the elements of the bordered pit made it possible to clarify the localization of cellulose and pectin. SEM images of intermediate stages of bordered pit formation in the radial and tangential directions were obtained. An asynchronous mechanism of formation of bordered-pit pairs in tracheids is proposed. The formation of the pit pair begins from the side of the initiator cell and is associated with enzymatic hydrolysis of the secondary cell wall and subsequent mechanical deformation of the primary cell walls. Enzymatic hydrolysis of the S1 layer of the secondary cell wall is carried out by exosome-delivered endoglucanases.
Collapse
|
40
|
Kaack L, Weber M, Isasa E, Karimi Z, Li S, Pereira L, Trabi CL, Zhang Y, Schenk HJ, Schuldt B, Schmidt V, Jansen S. Pore constrictions in intervessel pit membranes provide a mechanistic explanation for xylem embolism resistance in angiosperms. THE NEW PHYTOLOGIST 2021; 230:1829-1843. [PMID: 33595117 DOI: 10.1111/nph.17282] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/09/2021] [Indexed: 05/27/2023]
Abstract
Embolism spreading in angiosperm xylem occurs via mesoporous pit membranes between vessels. Here, we investigate how the size of pore constrictions in pit membranes is related to pit membrane thickness and embolism resistance. Pit membranes were modelled as multiple layers to investigate how pit membrane thickness and the number of intervessel pits per vessel determine pore constriction sizes, the probability of encountering large pores, and embolism resistance. These estimations were complemented by measurements of pit membrane thickness, embolism resistance, and number of intervessel pits per vessel in stem xylem (n = 31, 31 and 20 species, respectively). The modelled constriction sizes in pit membranes decreased with increasing membrane thickness, explaining the measured relationship between pit membrane thickness and embolism resistance. The number of pits per vessel affected constriction size and embolism resistance much less than pit membrane thickness. Moreover, a strong relationship between modelled and measured embolism resistance was observed. Pore constrictions provide a mechanistic explanation for why pit membrane thickness determines embolism resistance, which suggests that hydraulic safety can be uncoupled from hydraulic efficiency. Although embolism spreading remains puzzling and encompasses more than pore constriction sizes, angiosperms are unlikely to have leaky pit membranes, which enables tensile transport of water.
Collapse
Affiliation(s)
- Lucian Kaack
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Matthias Weber
- Institute of Stochastics, Ulm University, Helmholtzstraße 18, Ulm, D-89069, Germany
| | - Emilie Isasa
- Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, Würzburg, D-97082, Germany
| | - Zohreh Karimi
- Department of Biology, Faculty of Sciences, Golestan University, Shahid Beheshti St., Gorgan, 15759-49138, Iran
| | - Shan Li
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Luciano Pereira
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Christophe L Trabi
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Ya Zhang
- College of Life Sciences, Anhui Normal University, Beijingdong Road 1, Wuhu, 241000, China
| | - H Jochen Schenk
- Department of Biological Science, California State University Fullerton, Fullerton, CA, 92834-6850, USA
| | - Bernhard Schuldt
- Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, Würzburg, D-97082, Germany
| | - Volker Schmidt
- Institute of Stochastics, Ulm University, Helmholtzstraße 18, Ulm, D-89069, Germany
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| |
Collapse
|
41
|
Subcellular coordination of plant cell wall synthesis. Dev Cell 2021; 56:933-948. [PMID: 33761322 DOI: 10.1016/j.devcel.2021.03.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/13/2021] [Accepted: 02/27/2021] [Indexed: 01/08/2023]
Abstract
Organelles of the plant cell cooperate to synthesize and secrete a strong yet flexible polysaccharide-based extracellular matrix: the cell wall. Cell wall composition varies among plant species, across cell types within a plant, within different regions of a single cell wall, and in response to intrinsic or extrinsic signals. This diversity in cell wall makeup is underpinned by common cellular mechanisms for cell wall production. Cellulose synthase complexes function at the plasma membrane and deposit their product into the cell wall. Matrix polysaccharides are synthesized by a multitude of glycosyltransferases in hundreds of mobile Golgi stacks, and an extensive set of vesicle trafficking proteins govern secretion to the cell wall. In this review, we discuss the different subcellular locations at which cell wall synthesis occurs, review the molecular mechanisms that control cell wall biosynthesis, and examine how these are regulated in response to different perturbations to maintain cell wall homeostasis.
Collapse
|
42
|
Li E, Zhang YL, Shi X, Li H, Yuan X, Li S, Zhang Y. A positive feedback circuit for ROP-mediated polar growth. MOLECULAR PLANT 2021; 14:395-410. [PMID: 33271334 DOI: 10.1016/j.molp.2020.11.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/12/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Tip growth is a special type of polarized growth in which a single and unique polarization site is established and maintained. Rho of Plants (ROP) proteins, which represent the only class of Rho GTPases in plants, regulate tip growth. The dynamic and asymmetric distribution of ROPs is critical for the establishment and maintenance of tip growth, and requires at least one positive feedback loop, which is still elusive. Here, we report a positive feedback circuit essential for tip growth of root hairs, in which ROPs, ROP activators and effectors, and AGC1.5 subfamily kinases are interconnected by sequential oligomerization and phosphorylation. AGC1.5 subfamily kinases interact with and phosphorylate two guanine nucleotide exchange factors (GEFs) of ROPs, RopGEF4 and RopGEF10. They also interact with two ROP effectors, ICR2/RIP3 and MIDD1/RIP4, which bridge active ROPs with AGC1.5. Functional loss of the AGC1.5 subfamily kinases or ICR2 and MIDD1 compromised root hair growth due to reduced ROP signaling. We found that asymmetric targeting of RopGEF4 and RopGEF10 is controlled by AGC1.5-dependent phosphorylation. Interestingly, we discovered that the ROP effectors recruit AGC1.5 to active ROP domains at the plasma membrane during root hair growth and are critical for AGC1.5-dependent phosphorylation of RopGEFs. Given the large number of AGC kinases in plants, this positive feedback circuit may be a universal theme for plant cell polar growth.
Collapse
Affiliation(s)
- En Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yu-Ling Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xuelian Shi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xuefeng Yuan
- Shandong Province Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
43
|
Schneider R, Klooster KV, Picard KL, van der Gucht J, Demura T, Janson M, Sampathkumar A, Deinum EE, Ketelaar T, Persson S. Long-term single-cell imaging and simulations of microtubules reveal principles behind wall patterning during proto-xylem development. Nat Commun 2021; 12:669. [PMID: 33510146 PMCID: PMC7843992 DOI: 10.1038/s41467-021-20894-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/22/2020] [Indexed: 01/23/2023] Open
Abstract
Plants are the tallest organisms on Earth; a feature sustained by solute-transporting xylem vessels in the plant vasculature. The xylem vessels are supported by strong cell walls that are assembled in intricate patterns. Cortical microtubules direct wall deposition and need to rapidly re-organize during xylem cell development. Here, we establish long-term live-cell imaging of single Arabidopsis cells undergoing proto-xylem trans-differentiation, resulting in spiral wall patterns, to understand microtubule re-organization. We find that the re-organization requires local microtubule de-stabilization in band-interspersing gaps. Using microtubule simulations, we recapitulate the process in silico and predict that spatio-temporal control of microtubule nucleation is critical for pattern formation, which we confirm in vivo. By combining simulations and live-cell imaging we further explain how the xylem wall-deficient and microtubule-severing KATANIN contributes to microtubule and wall patterning. Hence, by combining quantitative microscopy and modelling we devise a framework to understand how microtubule re-organization supports wall patterning. Plant cell wall formation is directed by cortical microtubules, which produce complex patterns needed to support xylem vessels. Here, the authors perform live-cell imaging and simulations of Arabidopsis cells during proto-xylem differentiation to show how local microtubule dynamics control pattern formation.
Collapse
Affiliation(s)
- René Schneider
- School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia.,Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Kris Van't Klooster
- Laboratory of Cell Biology, Wageningen University, Wageningen, The Netherlands.,Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
| | - Kelsey L Picard
- School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia.,School of Natural Sciences, University of Tasmania, Hobart, 7001, TAS, Australia
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
| | - Taku Demura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Marcel Janson
- Laboratory of Cell Biology, Wageningen University, Wageningen, The Netherlands
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Eva E Deinum
- Mathematical and Statistical Methods (Biometris), Wageningen University, Wageningen, The Netherlands.
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University, Wageningen, The Netherlands.
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia. .,Department for Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark. .,Copenhagen Plant Science Center, University of Copenhagen, 1871, Frederiksberg C, Denmark. .,Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
44
|
Zhang B, Gao Y, Zhang L, Zhou Y. The plant cell wall: Biosynthesis, construction, and functions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:251-272. [PMID: 33325153 DOI: 10.1111/jipb.13055] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 05/19/2023]
Abstract
The plant cell wall is composed of multiple biopolymers, representing one of the most complex structural networks in nature. Hundreds of genes are involved in building such a natural masterpiece. However, the plant cell wall is the least understood cellular structure in plants. Due to great progress in plant functional genomics, many achievements have been made in uncovering cell wall biosynthesis, assembly, and architecture, as well as cell wall regulation and signaling. Such information has significantly advanced our understanding of the roles of the cell wall in many biological and physiological processes and has enhanced our utilization of cell wall materials. The use of cutting-edge technologies such as single-molecule imaging, nuclear magnetic resonance spectroscopy, and atomic force microscopy has provided much insight into the plant cell wall as an intricate nanoscale network, opening up unprecedented possibilities for cell wall research. In this review, we summarize the major advances made in understanding the cell wall in this era of functional genomics, including the latest findings on the biosynthesis, construction, and functions of the cell wall.
Collapse
Affiliation(s)
- Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yihong Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
45
|
Sun J, Zhang M, Qi X, Doyle C, Zheng H. Armadillo-repeat kinesin1 interacts with Arabidopsis atlastin RHD3 to move ER with plus-end of microtubules. Nat Commun 2020; 11:5510. [PMID: 33139737 PMCID: PMC7606470 DOI: 10.1038/s41467-020-19343-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
In living cells, dynamics of the endoplasmic reticulum (ER) are driven by the cytoskeleton motor machinery as well as the action of ER-shaping proteins such as atlastin GTPases including RHD3 in Arabidopsis. It is not known if the two systems interplay, and, if so, how they do. Here we report the identification of ARK1 (Armadillo-Repeat Kinesin1) via a genetic screen for enhancers of the rhd3 mutant phenotype. In addition to defects in microtubule dynamics, ER organization is also defective in mutants lacking a functional ARK1. In growing root hair cells, ARK1 comets predominantly localize on the growing-end of microtubules and partially overlap with RHD3 in the cortex of the subapical region. ARK1 co-moves with RHD3 during tip growth of root hair cells. We show that there is a functional interdependence between ARK1 and RHD3. ARK1 physically interacts with RHD3 via its armadillo domain (ARM). In leaf epidermal cells where a polygonal ER network can be resolved, ARK1, but not ARK1ΔARM, moves together with RHD3 to pull an ER tubule toward another and stays with the newly formed 3-way junction of the ER for a while. We conclude that ARK1 acts together with RHD3 to move the ER on microtubules to generate a fine ER network.
Collapse
Affiliation(s)
- Jiaqi Sun
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | - Mi Zhang
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China
| | - Xingyun Qi
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
- Department of Biology, Rutgers University, Camden, NJ, 08103, USA
| | - Caitlin Doyle
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | - Huanquan Zheng
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada.
| |
Collapse
|
46
|
Miguel VN, Ribichich KF, Giacomelli JI, Chan RL. Key role of the motor protein Kinesin 13B in the activity of homeodomain-leucine zipper I transcription factors. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6282-6296. [PMID: 32882705 DOI: 10.1093/jxb/eraa379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
The sunflower (Helianthus annuus) homeodomain-leucine zipper I transcription factor HaHB11 conferred differential phenotypic features when it was expressed in Arabidopsis, alfalfa, and maize plants. Such differences were increased biomass, seed yield, and tolerance to flooding. To elucidate the molecular mechanisms leading to such traits and identify HaHB11-interacting proteins, a yeast two-hybrid screening of an Arabidopsis cDNA library was carried out using HaHB11 as bait. The sole protein identified with high confidence as interacting with HaHB11 was Kinesin 13B. The interaction was confirmed by bimolecular fluorescence complementation and by yeast two-hybrid assay. Kinesin 13B also interacted with AtHB7, the Arabidopsis closest ortholog of HaHB11. Histochemical analyses revealed an overlap between the expression patterns of the three genes in hypocotyls, apical meristems, young leaves, vascular tissue, axillary buds, cauline leaves, and cauline leaf nodes at different developmental stages. AtKinesin 13B mutants did not exhibit a differential phenotype when compared with controls; however, both HaHB11 and AtHB7 overexpressor plants lost, partially or totally, their differential phenotypic characteristics when crossed with such mutants. Altogether, the results indicated that Kinesin 13B is essential for the homeodomain-leucine zipper transcription factors I to exert their functions, probably via regulation of the intracellular distribution of these transcription factors by the motor protein.
Collapse
Affiliation(s)
- Virginia Natali Miguel
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Karina Fabiana Ribichich
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Jorge Ignacio Giacomelli
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Raquel Lia Chan
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| |
Collapse
|
47
|
Jacobs B, Molenaar J, Deinum EE. Robust banded protoxylem pattern formation through microtubule-based directional ROP diffusion restriction. J Theor Biol 2020; 502:110351. [PMID: 32505828 DOI: 10.1016/j.jtbi.2020.110351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/07/2020] [Accepted: 05/27/2020] [Indexed: 12/28/2022]
Abstract
In plant vascular tissue development, different cell wall patterns are formed, offering different mechanical properties optimised for different growth stages. Critical in these patterning processes are Rho of Plants (ROP) proteins, a class of evolutionarily conserved small GTPase proteins responsible for local membrane domain formation in many organisms. While te spotted metaxylem pattern can easily be understood as a result of a Turing-style reaction-diffusion mechanism, it remains an open question how the consistent orientation of evenly spaced bands and spirals as found in protoxylem is achieved. We hypothesise that this orientation results from an interaction between ROPs and an array of transversely oriented cortical microtubules that acts as a directional diffusion barrier. Here, we explore this hypothesis using partial differential equation models with anisotropic ROP diffusion and show that a horizontal microtubule array acting as a vertical diffusion barrier to active ROP can yield a horizontally banded ROP pattern. We then study the underlying mechanism in more detail, finding that it can only orient curved pattern features but not straight lines. This implies that, once formed, banded and spiral patterns cannot be reoriented by this mechanism. Finally, we observe that ROPs and microtubules together only form ultimately static patterns if the interaction is implemented with sufficient biological realism.
Collapse
Affiliation(s)
- Bas Jacobs
- Biometris, Department for Mathematical and Statistical Methods, Wageningen University, Wageningen, The Netherlands
| | - Jaap Molenaar
- Biometris, Department for Mathematical and Statistical Methods, Wageningen University, Wageningen, The Netherlands
| | - Eva E Deinum
- Biometris, Department for Mathematical and Statistical Methods, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
48
|
McCollum C, Engelhardt S, Weiss L, Hückelhoven R. ROP INTERACTIVE PARTNER b Interacts with RACB and Supports Fungal Penetration into Barley Epidermal Cells. PLANT PHYSIOLOGY 2020; 184:823-836. [PMID: 32665335 PMCID: PMC7536699 DOI: 10.1104/pp.20.00742] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Rho of Plants (ROP) G-proteins are key components of cell polarization processes in plant development. The barley (Hordeum vulgare) ROP protein RACB is a susceptibility factor in the interaction of barley with the barley powdery mildew fungus Blumeria graminis f. sp. hordei (Bgh). RACB also drives polar cell development, and this function might be coopted during the formation of fungal haustoria in barley epidermal cells. To understand RACB signaling during the interaction of barley with Bgh, we searched for potential downstream interactors of RACB. Here, we show that ROP INTERACTIVE PARTNER b (RIPb; synonym: INTERACTOR OF CONSTITUTIVE ACTIVE ROP b) directly interacts with RACB in yeast and in planta. Overexpression of RIPb supports the susceptibility of barley to Bgh RIPb further interacts with itself at microtubules. However, the interaction with activated RACB largely takes place at the plasma membrane. Both RIPb and RACB are recruited to the site of fungal attack around the neck of developing haustoria, suggesting locally enhanced ROP activity. We further assigned different functions to different domains of the RIPb protein. The N-terminal coiled-coil CC1 domain is required for microtubule localization, while the C-terminal coiled-coil CC2 domain is sufficient to interact with RACB and to fulfill a function in susceptibility at the plasma membrane. Hence, RIPb appears to be localized at microtubules and is then recruited by activated RACB for a function at the plasma membrane during formation of the haustorial complex.
Collapse
Affiliation(s)
- Christopher McCollum
- Phytopathology, School of Life Science Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Stefan Engelhardt
- Phytopathology, School of Life Science Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Lukas Weiss
- Phytopathology, School of Life Science Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Ralph Hückelhoven
- Phytopathology, School of Life Science Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
49
|
Smertenko T, Turner G, Fahy D, Brew-Appiah RAT, Alfaro-Aco R, de Almeida Engler J, Sanguinet KA, Smertenko A. Brachypodium distachyon MAP20 functions in metaxylem pit development and contributes to drought recovery. THE NEW PHYTOLOGIST 2020; 227:1681-1695. [PMID: 31863702 DOI: 10.1111/nph.16383] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Pits are regions in the cell walls of plant tracheary elements that lack secondary walls. Each pit consists of a space within the secondary wall called a pit chamber, and a modified primary wall called the pit membrane. The pit membrane facilitates transport of solutions between vessel cells and restricts embolisms during drought. Here we analyzed the role of an angiosperm-specific TPX2-like microtubule protein MAP20 in pit formation using Brachypodium distachyon as a model system. Live cell imaging was used to analyze the interaction of MAP20 with microtubules and the impact of MAP20 on microtubule dynamics. MAP20-specific antibody was used to study expression and localization of MAP20 in different cell types during vascular bundle development. We used an artificial microRNAs (amiRNA) knockdown approach to determine the function of MAP20. MAP20 is expressed during the late stages of vascular bundle development and localizes around forming pits and under secondary cell wall thickenings in metaxylem cells. MAP20 suppresses microtubule depolymerization; however, unlike the animal TPX2 counterpart, MAP20 does not cooperate with the γ-tubulin ring complex in microtubule nucleation. Knockdown of MAP20 causes bigger pits, thinner pit membranes, perturbed vasculature development, lower reproductive potential and higher drought susceptibility. We conclude that MAP20 may contribute to drought adaptation by modulating pit size and pit membrane thickness in metaxylem.
Collapse
Affiliation(s)
- Tetyana Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Glenn Turner
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Deirdre Fahy
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Rhoda A T Brew-Appiah
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Raymundo Alfaro-Aco
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Janice de Almeida Engler
- Institut Sophia Agrobiotech, Institut National de la Recherche Agronomique, Université Côte d'Azur, Centre National de la Recherche Scientifique, 06903, Sophia-Antipolis, France
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
50
|
Abstract
Cell polarity in plants operates across a broad range of spatial and temporal scales to control processes from acute cell growth to systemic hormone distribution. Similar to other eukaryotes, plants generate polarity at both the subcellular and tissue levels, often through polarization of membrane-associated protein complexes. However, likely due to the constraints imposed by the cell wall and their extremely plastic development, plants possess novel polarity molecules and mechanisms highly tuned to environmental inputs. Considerable progress has been made in identifying key plant polarity regulators, but detailed molecular understanding of polarity mechanisms remains incomplete in plants. Here, we emphasize the striking similarities in the conceptual frameworks that generate polarity in both animals and plants. To this end, we highlight how novel, plant-specific proteins engage in common themes of positive feedback, dynamic intracellular trafficking, and posttranslational regulation to establish polarity axes in development. We end with a discussion of how environmental signals control intrinsic polarity to impact postembryonic organogenesis and growth.
Collapse
Affiliation(s)
- Andrew Muroyama
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305-5020, USA; .,Department of Biology, Stanford University, Stanford, California 94305-5020, USA
| | - Dominique Bergmann
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305-5020, USA; .,Department of Biology, Stanford University, Stanford, California 94305-5020, USA
| |
Collapse
|