1
|
Chen X, Li Y, Liu M, Ai G, Zhang X, Wang J, Tian S, Yuan L. A sexually and vegetatively reproducible diploid seedless watermelon inducer via ClHAP2 mutation. NATURE PLANTS 2024; 10:1446-1452. [PMID: 39367255 DOI: 10.1038/s41477-024-01799-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/09/2024] [Indexed: 10/06/2024]
Abstract
Seedless watermelon production relies on triploid cultivation or the application of plant growth regulators. However, challenges such as chromosomal imbalances in triploid varieties and concerns about food safety with growth regulator application impede progress. To tackle these challenges, we developed a sexually and vegetatively reproducible inducer line of diploid seedless watermelon by disrupting the double fertilization process. This innovative approach has enabled the successful induction of diploid seedless watermelon across diverse varieties.
Collapse
Affiliation(s)
- Xiner Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, PR China
| | - Yuxiu Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, PR China
| | - Man Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, PR China
| | - Gongli Ai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, PR China
| | - Xian Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, PR China
| | - Jiafa Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, PR China
| | - Shujuan Tian
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, PR China
| | - Li Yuan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, PR China.
| |
Collapse
|
2
|
Aguirre-López B, Suaste-Olmos F, Peraza-Reyes L. The peroxisome protein translocation machinery is developmentally regulated in the fungus Podospora anserina. Microbiol Spectr 2024; 12:e0213923. [PMID: 38088545 PMCID: PMC10782954 DOI: 10.1128/spectrum.02139-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 11/11/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Sexual reproduction allows eukaryotic organisms to produce genetically diverse progeny. This process relies on meiosis, a reductional division that enables ploidy maintenance and genetic recombination. Meiotic differentiation also involves the renewal of cell functioning to promote offspring rejuvenation. Research in the model fungus Podospora anserina has shown that this process involves a complex regulation of the function and dynamics of different organelles, including peroxisomes. These organelles are critical for meiosis induction and play further significant roles in meiotic development. Here we show that PEX13-a key constituent of the protein conduit through which the proteins defining peroxisome function reach into the organelle-is subject to a developmental regulation that almost certainly involves its selective ubiquitination-dependent removal and that modulates its abundance throughout meiotic development and at different sexual differentiation processes. Our results show that meiotic development involves a complex developmental regulation of the peroxisome protein translocation system.
Collapse
Affiliation(s)
- Beatriz Aguirre-López
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Mexico
| | - Fernando Suaste-Olmos
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Mexico
| | - Leonardo Peraza-Reyes
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Mexico
| |
Collapse
|
3
|
Chen X, Li Y, Ai G, Chen J, Guo D, Zhu Z, Zhu X, Tian S, Wang J, Liu M, Yuan L. Creation of a watermelon haploid inducer line via ClDMP3-mediated single fertilization of the central cell. HORTICULTURE RESEARCH 2023; 10:uhad081. [PMID: 37323231 PMCID: PMC10261877 DOI: 10.1093/hr/uhad081] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 06/17/2023]
Abstract
The use of doubled haploids is one of the most efficient breeding methods in modern agriculture. Irradiation of pollen grains has been shown to induce haploids in cucurbit crops, possibly because it causes preferential fertilization of the central cell over the egg cell. Disruption of the DMP gene is known to induce single fertilization of the central cell, which can lead to the formation of haploids. In the present study, a detailed method of creating a watermelon haploid inducer line via ClDMP3 mutation is described. The cldmp3 mutant induced haploids in multiple watermelon genotypes at rates of up to 1.12%. These haploids were confirmed via fluorescent markers, flow cytometry, molecular markers, and immuno-staining. The haploid inducer created by this method has the potential to greatly advance watermelon breeding in the future.
Collapse
Affiliation(s)
- Xiner Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Yuxiu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Gongli Ai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Jinfan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Dalong Guo
- College of Horticulture and Plant Protection Henan University of Science and Technology, 471000, Luoyang, China
| | - Zhonghou Zhu
- Luoyang Nongfa Agricultural Technology Co., LTD, 471100, Luoyang, China
| | - Xuejie Zhu
- Luoyang Nongfa Agricultural Technology Co., LTD, 471100, Luoyang, China
| | - Shujuan Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shanxi, China
- Shenzhen Research Institute, Northwest A&F University, Shenzhen, 518000, Guangdong, China
| | - Jiafa Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shanxi, China
- Shenzhen Research Institute, Northwest A&F University, Shenzhen, 518000, Guangdong, China
| | - Man Liu
- Corresponding author. E-mail: ,
| | - Li Yuan
- Corresponding author. E-mail: ,
| |
Collapse
|
4
|
Goto-Yamada S, Oikawa K, Yamato KT, Kanai M, Hikino K, Nishimura M, Mano S. Image-Based Analysis Revealing the Molecular Mechanism of Peroxisome Dynamics in Plants. Front Cell Dev Biol 2022; 10:883491. [PMID: 35592252 PMCID: PMC9110829 DOI: 10.3389/fcell.2022.883491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Peroxisomes are present in eukaryotic cells and have essential roles in various biological processes. Plant peroxisomes proliferate by de novo biosynthesis or division of pre-existing peroxisomes, degrade, or replace metabolic enzymes, in response to developmental stages, environmental changes, or external stimuli. Defects of peroxisome functions and biogenesis alter a variety of biological processes and cause aberrant plant growth. Traditionally, peroxisomal function-based screening has been employed to isolate Arabidopsis thaliana mutants that are defective in peroxisomal metabolism, such as lipid degradation and photorespiration. These analyses have revealed that the number, subcellular localization, and activity of peroxisomes are closely related to their efficient function, and the molecular mechanisms underlying peroxisome dynamics including organelle biogenesis, protein transport, and organelle interactions must be understood. Various approaches have been adopted to identify factors involved in peroxisome dynamics. With the development of imaging techniques and fluorescent proteins, peroxisome research has been accelerated. Image-based analyses provide intriguing results concerning the movement, morphology, and number of peroxisomes that were hard to obtain by other approaches. This review addresses image-based analysis of peroxisome dynamics in plants, especially A. thaliana and Marchantia polymorpha.
Collapse
Affiliation(s)
- Shino Goto-Yamada
- Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Kazusato Oikawa
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Katsuyuki T. Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Masatake Kanai
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Kazumi Hikino
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Mikio Nishimura
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Shoji Mano
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
- *Correspondence: Shoji Mano
| |
Collapse
|
5
|
Mei J, Zhou P, Zeng Y, Sun B, Chen L, Ye D, Zhang X. MAP3Kε1/2 Interact with MOB1A/1B and Play Important Roles in Control of Pollen Germination through Crosstalk with JA Signaling in Arabidopsis. Int J Mol Sci 2022; 23:ijms23052683. [PMID: 35269823 PMCID: PMC8910673 DOI: 10.3390/ijms23052683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Restriction of pollen germination before the pollen grain is pollinated to stigma is essential for successful fertilization in angiosperms. However, the mechanisms underlying the process remain poorly understood. Here, we report functional characterization of the MAPKKK kinases, MAP3Kε1 and MAP3Kε2, involve in control of pollen germination in Arabidopsis. The two genes were expressed in different tissues with higher expression levels in the tricellular pollen grains. The map3kε1 map3kε2 double mutation caused abnormal callose accumulation, increasing level of JA and precocious pollen germination, resulting in significantly reduced seed set. Furthermore, the map3kε1 map3kε2 double mutations obviously upregulated the expression levels of genes in JA biosynthesis and signaling. The MAP3Kε1/2 interacted with MOB1A/1B which shared homology with the core components of Hippo singling pathway in yeast. The Arabidopsis mob1a mob1b mutant also exhibited a similar phenotype of precocious pollen germination to that in map3kε1 map3kε2 mutants. Taken together, these results suggested that the MAP3Kεs interacted with MOB1s and played important role in restriction of the precocious pollen germination, possibly through crosstalk with JA signaling and influencing callose accumulation in Arabidopsis.
Collapse
Affiliation(s)
- Juan Mei
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (J.M.); (P.Z.); (Y.Z.); (B.S.); (L.C.); (D.Y.)
| | - Pengmin Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (J.M.); (P.Z.); (Y.Z.); (B.S.); (L.C.); (D.Y.)
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuejuan Zeng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (J.M.); (P.Z.); (Y.Z.); (B.S.); (L.C.); (D.Y.)
| | - Binyang Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (J.M.); (P.Z.); (Y.Z.); (B.S.); (L.C.); (D.Y.)
| | - Liqun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (J.M.); (P.Z.); (Y.Z.); (B.S.); (L.C.); (D.Y.)
| | - De Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (J.M.); (P.Z.); (Y.Z.); (B.S.); (L.C.); (D.Y.)
| | - Xueqin Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (J.M.); (P.Z.); (Y.Z.); (B.S.); (L.C.); (D.Y.)
- Correspondence: ; Tel./Fax: +86-10-6273-4837
| |
Collapse
|
6
|
Zhang MJ, Zhao TY, Ouyang XK, Zhao XY, Dai X, Gao XQ. Pollen-specific gene SKU5-SIMILAR 13 enhances growth of pollen tubes in the transmitting tract in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:696-710. [PMID: 34626184 DOI: 10.1093/jxb/erab448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Pollen tube growth and penetration in female tissues are essential for the transfer of sperm to the embryo sac during plant pollination. Despite its importance during pollination, little is known about the mechanisms that mediate pollen tube growth in female tissues. In this study, we identified an Arabidopsis thaliana pollen/pollen tube-specific gene, SKU5-SIMILAR 13 (SKS13), which was critical for the growth of pollen tubes in the transmitting tract. The SKS13 protein was distributed throughout the cytoplasm and pollen tube walls at the apical region. In comparison with wild-type pollen tubes, those of the sks13 mutants burst more frequently when grown in vitro. Additionally, the growth of sks13 pollen tubes was retarded in the transmitting tract, thereby resulting in decreased male fertility. The accumulation of pectin and cellulose in the cell wall of sks13 pollen tubes was altered, and the content of jasmonic acid (JA) in sks13 pollen was reduced. The pollen tubes treated with an inhibitor of JA biosynthesis grew much more slowly and had an altered distribution of pectin, which is similar to the pollen tube phenotypes of the SKS13 mutation. Our results suggest that SKS13 is essential for pollen tube growth in the transmitting tract by mediating the biosynthesis of JA that modifies the components of pollen tube cell walls.
Collapse
Affiliation(s)
- Ming Jun Zhang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China271018
| | - Tian Yi Zhao
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China271018
| | - Xiu Ke Ouyang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China271018
| | - Xin-Ying Zhao
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China271018
| | - Xinren Dai
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China100091
| | - Xin-Qi Gao
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China271018
| |
Collapse
|
7
|
Zhou PM, Liang Y, Mei J, Liao HZ, Wang P, Hu K, Chen LQ, Zhang XQ, Ye D. The Arabidopsis AGC kinases NDR2/4/5 interact with MOB1A/1B and play important roles in pollen development and germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1035-1052. [PMID: 33215783 DOI: 10.1111/tpj.15085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/29/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Pollen formation and pollen tube growth are essential for the delivery of male gametes into the female embryo sac for double fertilization. Little is known about the mechanisms that regulate the late developmental process of pollen formation and pollen germination. In this study, we characterized a group of Arabidopsis AGC kinase proteins, NDR2/4/5, involved in pollen development and pollen germination. The NDR2/4/5 genes are mainly expressed in pollen grains at the late developmental stages and in pollen tubes. They function redundantly in pollen formation and pollen germination. At the tricellular stages, the ndr2 ndr4 ndr5 mutant pollen grains exhibit an abnormal accumulation of callose, precocious germination and burst in anthers, leading to a drastic reduction in fertilization and a reduced seed set. NDR2/4/5 proteins can interact with another group of proteins (MOB1A/1B) homologous to the MOB proteins from the Hippo signaling pathway in yeast and animals. The Arabidopsis mob1a mob1b mutant pollen grains also have a phenotype similar to that of ndr2 ndr4 ndr5 pollen grains. These results provide new evidence demonstrating that the Hippo signaling components are conserved in plants and play important roles in sexual plant reproduction.
Collapse
Affiliation(s)
- Peng-Min Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yan Liang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Juan Mei
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hong-Ze Liao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Pu Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ke Hu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Li-Qun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xue-Qin Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - De Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Wang X, Sheng X, Tian X, Zhang Y, Li Y. Organelle movement and apical accumulation of secretory vesicles in pollen tubes of Arabidopsis thaliana depend on class XI myosins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1685-1697. [PMID: 33067901 DOI: 10.1111/tpj.15030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 09/12/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
F-actin and myosin XI play important roles in plant organelle movement. A few myosin XI genes in the genome of Arabidopsis are mainly expressed in mature pollen, which suggests that they may play a crucial role in pollen germination and pollen tube tip growth. In this study, a genetic complementation assay was conducted in a myosin xi-c (myo11c1) myosin xi-e (myo11c2) double mutant, and fluorescence labeling combined with microscopic observation was applied. We found that myosin XI-E (Myo11C2)-green fluorescent protein (GFP) restored the slow pollen tube growth and seed deficiency phenotypes of the myo11c1 myo11c2 double mutant and Myo11C2-GFP partially colocalized with mitochondria, peroxisomes and Golgi stacks. Furthermore, decreased mitochondrial movement and subapical accumulation were detected in myo11c1 myo11c2 double mutant pollen tubes. Fluorescence recovery after photobleaching experiments showed that the fluorescence recoveries of GFP-RabA4d and AtPRK1-GFP at the pollen tube tip of the myo11c1 myo11c2 double mutant were lower than those of the wild type were after photobleaching. These results suggest that Myo11C2 may be associated with mitochondria, peroxisomes and Golgi stacks, and play a crucial role in organelle movement and apical accumulation of secretory vesicles in pollen tubes of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Xingjuan Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaojing Sheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiulin Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
9
|
Rawoof A, Chhapekar SS, Jaiswal V, Brahma V, Kumar N, Ramchiary N. Single-base cytosine methylation analysis in fruits of three Capsicum species. Genomics 2020; 112:3342-3353. [PMID: 32561348 DOI: 10.1016/j.ygeno.2020.04.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/29/2020] [Accepted: 04/11/2020] [Indexed: 11/30/2022]
Abstract
Single-base cytosine methylation analysis across fruits of Capsicum annuum, C. chinense and C. frutescens showed global average methylation ranging from 82.8-89.1%, 77.6-83.9%, and 22.4-25% at CG, CHG and CHH contexts, respectively. High gene-body methylation at CG and CHG was observed across Capsicum species. The C. annuum showed the highest proportion (>80%) of mCs at different genomic regions compared to C. chinense and C. frutescens. Cytosine methylation for transposable-elements were lower in C. frutescens compared to C. annuum and C. chinense. A total of 510,165 CG, 583112 CHG and 277,897 CHH DMRs were identified across three Capsicum species. The differentially methylated regions (DMRs) distribution analysis revealed C. frutescens as more hypo-methylated compared to C. annuum and C. chinense, and also the presence of more intergenic DMRs in Capsicum genome. At CG and CHG context, gene expression and promoter methylation showed inverse correlations. Furthermore, the observed correlation between methylation and expression of genes suggested the potential role of methylation in Capsicum fruit development/ripening.
Collapse
Affiliation(s)
- Abdul Rawoof
- School of Life Sciences, Laboratory of Translational and Evolutionary Genomics, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sushil Satish Chhapekar
- School of Life Sciences, Laboratory of Translational and Evolutionary Genomics, Jawaharlal Nehru University, New Delhi 110067, India
| | - Vandana Jaiswal
- School of Life Sciences, Laboratory of Translational and Evolutionary Genomics, Jawaharlal Nehru University, New Delhi 110067, India; Biotechnology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur, Himachal Pradhesh, India
| | - Vijaya Brahma
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nitin Kumar
- School of Life Sciences, Laboratory of Translational and Evolutionary Genomics, Jawaharlal Nehru University, New Delhi 110067, India; Department of Bioengineering and Technology, Gauhati University, Gopinath Boroloi Nagar, Guwahati 7810014, Assam, India
| | - Nirala Ramchiary
- School of Life Sciences, Laboratory of Translational and Evolutionary Genomics, Jawaharlal Nehru University, New Delhi 110067, India; Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi 110042, India.
| |
Collapse
|
10
|
He Y, Song Q, Wu Y, Ye S, Chen S, Chen H. TMT-Based Quantitative Proteomic Analysis Reveals the Crucial Biological Pathways Involved in Self-Incompatibility Responses in Camellia oleifera. Int J Mol Sci 2020; 21:ijms21061987. [PMID: 32183315 PMCID: PMC7139391 DOI: 10.3390/ijms21061987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 12/25/2022] Open
Abstract
Camellia oleifera is a valuable woody oil plant belonging to the Theaceae, Camellia oil extracted from the seed is an excellent edible oil source. Self-incompatibility (SI) in C. oleifera results in low fruit set, and our knowledge about the mechanism remains limited. In the present study, the Tandem mass tag (TMT) based quantitative proteomics was employed to analyze the dynamic change of proteins response to self- and cross-pollinated in C. oleifera. A total of 6,616 quantified proteins were detected, and differentially abundant proteins (DAPs) analysis identified a large number of proteins. Combined analysis of differentially expressed genes (DEGs) and DAPs of self- and cross-pollinated pistils based on transcriptome and proteome data revealed that several candidate genes or proteins involved in SI of C. oleifera, including polygalacturonase inhibitor, UDP-glycosyltransferase 92A1-like, beta-D-galactosidase, S-adenosylmethionine synthetase, xyloglucan endotransglucosylase/hydrolase, ABC transporter G family member 36-like, and flavonol synthase. Venn diagram analysis identified 11 proteins that may participate in pollen tube growth in C. oleifera. Our data also revealed that the abundance of proteins related to peroxisome was altered in responses to SI in C. oleifera. Moreover, the pathway of lipid metabolism-related, flavonoid biosynthesis and splicesome were reduced in self-pollinated pistils by the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. In summary, the results of the present study lay the foundation for learning the regulatory mechanism underlying SI responses as well as provides valuable protein resources for the construction of self-compatibility C. oleifera through genetic engineering in the future.
Collapse
Affiliation(s)
- Yifan He
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; (Y.H.); (Q.S.); (Y.W.); (S.Y.); (S.C.)
- Forestry College, Oil Tea Research Center of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Qianqian Song
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; (Y.H.); (Q.S.); (Y.W.); (S.Y.); (S.C.)
- Forestry College, Oil Tea Research Center of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Yuefeng Wu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; (Y.H.); (Q.S.); (Y.W.); (S.Y.); (S.C.)
- Forestry College, Oil Tea Research Center of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Shutao Ye
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; (Y.H.); (Q.S.); (Y.W.); (S.Y.); (S.C.)
- Forestry College, Oil Tea Research Center of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Shipin Chen
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; (Y.H.); (Q.S.); (Y.W.); (S.Y.); (S.C.)
- Forestry College, Oil Tea Research Center of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hui Chen
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; (Y.H.); (Q.S.); (Y.W.); (S.Y.); (S.C.)
- Forestry College, Oil Tea Research Center of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
- Correspondence: ; Tel.: +86-139-5034-3791
| |
Collapse
|
11
|
Pentatricopeptide repeat protein MID1 modulates nad2 intron 1 splicing and Arabidopsis development. Sci Rep 2020; 10:2008. [PMID: 32029763 PMCID: PMC7005036 DOI: 10.1038/s41598-020-58495-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
As one of the best-studied RNA binding proteins in plant, pentatricopeptide repeats (PPRs) protein are mainly targeted to mitochondria and/or chloroplasts for RNA processing to regulate the biogenesis and function of the organelles, but its molecular mechanism and role in development remain to be further revealed. Here, we identified a mitochondria-localized P-type small PPR protein, MITOCHONDRION-MEDIATED GROWTH DEFECT 1 (MID1) that is crucial for Arabidopsis development. Mutation in MID1 causes retarded embryo development and stunted plant growth with defects in cell expansion and proliferation. Molecular experiments showed that MID1 is required for the splicing of the nad2 intron 1 in mitochondria. Consistently, mid1 plants display significant reduction in the abundance and activity of mitochondrial respiration complex I, accompanied by abnormal mitochondrial morphology and energy metabolism. Furthermore, MID1 is associated with other trans-factors involved in NICOTINAMIDE ADENINE DINUCLEOTIDE HYDROGEN (NADH) DEHYDROGENASE SUBUNIT 2 (nad2) intron 1 splicing, and interacts directly with itself and MITOCHONDRIAL STABILITY FACTOR 1 (MTSF1). This suggests that MID1 most likely functions as a dimer for nad2 intron 1 splicing. Together, we characterized a novel PPR protein MID1 for nad2 intron 1 splicing.
Collapse
|
12
|
Dhaka N, Sharma S, Vashisht I, Kandpal M, Sharma MK, Sharma R. Small RNA profiling from meiotic and post-meiotic anthers reveals prospective miRNA-target modules for engineering male fertility in sorghum. Genomics 2019; 112:1598-1610. [PMID: 31521711 DOI: 10.1016/j.ygeno.2019.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/30/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023]
Abstract
Understanding male gametophyte development is essential to augment hybrid production in sorghum. Although small RNAs are known to critically influence anther/pollen development, their roles in sorghum reproduction have not been deciphered yet. Here, we report small RNA profiling and high-confidence annotation of microRNAs (miRNAs) from meiotic and post-meiotic anthers in sorghum. We identified 262 miRNAs (82 known and 180 novel), out of which 58 (35 known and 23 novel) exhibited differential expression between two stages. Out of 35 differentially expressed known miRNAs, 13 are known to regulate anther/pollen development in other plant species. We also demonstrated conserved spatiotemporal patterns of 21- and 24-nt phasiRNAs and their respective triggers, miR2118 and miR2275, in sorghum anthers as evidenced in other monocots. miRNA target identification yielded 5622 modules, of which 46 modules comprising 16 known and 8 novel miRNA families with 38 target genes are prospective candidates for engineering male fertility in grasses.
Collapse
Affiliation(s)
- Namrata Dhaka
- Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| | - Shalini Sharma
- Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| | - Ira Vashisht
- Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| | - Manu Kandpal
- Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| | - Manoj Kumar Sharma
- Crop Genetics & Informatics Group, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| | - Rita Sharma
- Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India.
| |
Collapse
|
13
|
Corpas FJ, Del Río LA, Palma JM. Plant peroxisomes at the crossroad of NO and H 2 O 2 metabolism. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:803-816. [PMID: 30609289 DOI: 10.1111/jipb.12772] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Plant peroxisomes are subcellular compartments involved in many biochemical pathways during the life cycle of a plant but also in the mechanism of response against adverse environmental conditions. These organelles have an active nitro-oxidative metabolism under physiological conditions but this could be exacerbated under stress situations. Furthermore, peroxisomes have the capacity to proliferate and also undergo biochemical adaptations depending on the surrounding cellular status. An important characteristic of peroxisomes is that they have a dynamic metabolism of reactive nitrogen and oxygen species (RNS and ROS) which generates two key molecules, nitric oxide (NO) and hydrogen peroxide (H2 O2 ). These molecules can exert signaling functions by means of post-translational modifications that affect the functionality of target molecules like proteins, peptides or fatty acids. This review provides an overview of the endogenous metabolism of ROS and RNS in peroxisomes with special emphasis on polyamine and uric acid metabolism as well as the possibility that these organelles could be a source of signal molecules involved in the functional interconnection with other subcellular compartments.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| | - Luis A Del Río
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| |
Collapse
|
14
|
Burkhart SE, Llinas RJ, Bartel B. PEX16 contributions to peroxisome import and metabolism revealed by viable Arabidopsis pex16 mutants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:853-870. [PMID: 30761735 PMCID: PMC6613983 DOI: 10.1111/jipb.12789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
Peroxisomes rely on peroxins (PEX proteins) for biogenesis, importing membrane and matrix proteins, and fission. PEX16, which is implicated in peroxisomal membrane protein targeting and forming nascent peroxisomes from the endoplasmic reticulum (ER), is unusual among peroxins because it is inserted co-translationally into the ER and localizes to both ER and peroxisomal membranes. PEX16 mutations in humans, yeast, and plants confer some common peroxisomal defects; however, apparent functional differences have impeded the development of a unified model for PEX16 action. The only reported pex16 mutant in plants, the Arabidopsis shrunken seed1 mutant, is inviable, complicating analysis of PEX16 function after embryogenesis. Here, we characterized two viable Arabidopsis pex16 alleles that accumulate negligible PEX16 protein levels. Both mutants displayed impaired peroxisome function - slowed consumption of stored oil bodies, decreased import of matrix proteins, and increased peroxisome size. Moreover, one pex16 allele exhibited reduced growth that could be alleviated by an external fixed carbon source, decreased responsiveness to peroxisomally processed hormone precursors, and worsened or improved peroxisome function in combination with other pex mutants. Because the mutations impact different regions of the PEX16 gene, these viable pex16 alleles allow assessment of the importance of Arabidopsis PEX16 and its functional domains.
Collapse
|
15
|
Pan R, Liu J, Hu J. Peroxisomes in plant reproduction and seed-related development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:784-802. [PMID: 30578613 DOI: 10.1111/jipb.12765] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/18/2018] [Indexed: 05/21/2023]
Abstract
Peroxisomes are small multi-functional organelles essential for plant development and growth. Plant peroxisomes play various physiological roles, including phytohormone biosynthesis, lipid catabolism, reactive oxygen species metabolism and many others. Mutant analysis demonstrated key roles for peroxisomes in plant reproduction, seed development and germination and post-germinative seedling establishment; however, the underlying mechanisms remain to be fully elucidated. This review summarizes findings that reveal the importance and complexity of the role of peroxisomes in the pertinent processes. The β-oxidation pathway plays a central role, whereas other peroxisomal pathways are also involved. Understanding the biochemical and molecular mechanisms of these peroxisomal functions will be instrumental to the improvement of crop plants.
Collapse
Affiliation(s)
- Ronghui Pan
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jun Liu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Plant Biology Department, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
16
|
Long YP, Xie DJ, Zhao YY, Shi DQ, Yang WC. BICELLULAR POLLEN 1 is a modulator of DNA replication and pollen development in Arabidopsis. THE NEW PHYTOLOGIST 2019; 222:588-603. [PMID: 30484867 DOI: 10.1111/nph.15610] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
During male gametogenesis in Arabidopsis, the haploid microspore undergoes an asymmetric division to produce a vegetative and a generative cell, the latter of which continues to divide symmetrically to form two sperms. This simple system couples cell cycle with cell fate specification. Here we addressed the role of DNA replication in male gametogenesis using a mutant bicellular pollen 1 (bice1), which produces bicellular, rather than tricellular, pollen grains as in the wild-type plant at anthesis. The mutation prolonged DNA synthesis of the generative cell, which resulted in c. 40% of pollen grains arrested at the two-nucleate stage. The extended S phase did not impact the cell fate of the generative cell as shown by cell-specific markers. BICE1 encodes a plant homolog of human D123 protein that is required for G1 progression, but the underlying mechanism is unknown. Here we showed that BICE1 interacts with MCM4 and MCM7 of the pre-replication complex. Consistently, double mutations in BICE1 and MCM4, or MCM7, also led to bicellular pollen and condensed chromosomes. These suggest that BICE1 plays a role in modulating DNA replication via interaction with MCM4 and MCM7.
Collapse
Affiliation(s)
- Yan-Ping Long
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, East Lincui Road, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| | - Dong-Jiang Xie
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, East Lincui Road, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| | - Yan-Yan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, East Lincui Road, Beijing, 100101, China
| | - Dong-Qiao Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, East Lincui Road, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, East Lincui Road, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| |
Collapse
|
17
|
Dai SY, Hsu WH, Yang CH. The Gene ANTHER DEHISCENCE REPRESSOR (ADR) Controls Male Fertility by Suppressing the ROS Accumulation and Anther Cell Wall Thickening in Arabidopsis. Sci Rep 2019; 9:5112. [PMID: 30911018 PMCID: PMC6434047 DOI: 10.1038/s41598-019-41382-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 03/07/2019] [Indexed: 11/22/2022] Open
Abstract
Male sterility in plants is caused by various stimuli such as hormone changes, stress, cytoplasmic alterations and nuclear gene mutations. The gene ANTHER DEHISCENCE REPRESSOR (ADR), which is involved in regulating male sterility in Arabidopsis, was functionally analyzed in this study. In ADR::GUS flowers, strong GUS activity was detected in the anthers of young flower buds but was low in mature flowers. ADR + GFP fusion proteins, which can be modified by N-myristoylation, were targeted to peroxisomes. Ectopic expression of ADR in transgenic Arabidopsis plants resulted in male sterility due to anther indehiscence. The defect in anther dehiscence in 35S::ADR flowers is due to the reduction of ROS accumulation, alteration of the secondary thickening in the anther endothecium and suppression of the expression of NST1 and NST2, which are required for anther dehiscence through regulation of secondary wall thickening in anther endothecial cells. This defect could be rescued by external application of hydrogen peroxide (H2O2). These results demonstrated that ADR must be N-myristoylated and targeted to the peroxisome during the early stages of flower development to negatively regulate anther dehiscence by suppressing ROS accumulation and NST1/NST2 expression.
Collapse
Affiliation(s)
- Shu-Yu Dai
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan, 40227, ROC
| | - Wei-Han Hsu
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan, 40227, ROC
| | - Chang-Hsien Yang
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan, 40227, ROC.
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, 40227, ROC.
| |
Collapse
|
18
|
Jia PF, Li HJ, Yang WC. Analysis of Peroxisome Biogenesis in Pollen by Confocal Microscopy and Transmission Electron Microscopy. Methods Mol Biol 2018; 1669:173-180. [PMID: 28936658 DOI: 10.1007/978-1-4939-7286-9_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Peroxisome is an essential single-membrane bound organelle in most eukaryotic cells and functions in diverse cellular processes. De novo formation, division, and turnover of peroxisomes contribute to its biogenesis, morphology, and population regulation. In plants, peroxisome plays multiple roles, including metabolism, development, and stress response. Defective peroxisome biogenesis and development retard plant growth, adaption, and reproduction. Through tracing the subcellular localization of fluorescent reporter tagged matrix protein of peroxisome, fluorescence microscopy is a reliable and fast way to detect peroxisome biogenesis. Further fine-structural observation of peroxisome by TEM enables researchers to observe the detailed ultrastructure of its morphology and spatial contact with other organelles. Pollen grain is a specialized structure where two small sperm cells are enclosed in the cytoplasm of a large vegetative cell. Two features make pollen grain a good system to study peroxisome biogenesis: indispensable requirement of peroxisome for germination on the stigma and homogeneity. Here, we describe the methods of studying peroxisome biogenesis in Arabidopsis pollen grains by fluorescent live-imaging with confocal laser scanning microscopy (CLSM) and by DAB-staining based transmission electron microscopy (TEM).
Collapse
Affiliation(s)
- Peng-Fei Jia
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Hong-Ju Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
19
|
Abstract
Plant oxylipins form a constantly growing group of signaling molecules that comprise oxygenated fatty acids and metabolites derived therefrom. In the last decade, the understanding of biosynthesis, metabolism, and action of oxylipins, especially jasmonates, has dramatically improved. Additional mechanistic insights into the action of enzymes and insights into signaling pathways have been deepened for jasmonates. For other oxylipins, such as the hydroxy fatty acids, individual signaling properties and cross talk between different oxylipins or even with additional phytohormones have recently been described. This review summarizes recent understanding of the biosynthesis, regulation, and function of oxylipins.
Collapse
Affiliation(s)
- Claus Wasternack
- Laboratory of Growth Regulators and Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, CZ 78371 Olomouc, Czech Republic
- On leave from Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany;
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, 37077 Goettingen, Germany;
| |
Collapse
|
20
|
A pex1 missense mutation improves peroxisome function in a subset of Arabidopsis pex6 mutants without restoring PEX5 recycling. Proc Natl Acad Sci U S A 2018; 115:E3163-E3172. [PMID: 29555730 DOI: 10.1073/pnas.1721279115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Peroxisomes are eukaryotic organelles critical for plant and human development because they house essential metabolic functions, such as fatty acid β-oxidation. The interacting ATPases PEX1 and PEX6 contribute to peroxisome function by recycling PEX5, a cytosolic receptor needed to import proteins targeted to the peroxisomal matrix. Arabidopsis pex6 mutants exhibit low PEX5 levels and defects in peroxisomal matrix protein import, oil body utilization, peroxisomal metabolism, and seedling growth. These defects are hypothesized to stem from impaired PEX5 retrotranslocation leading to PEX5 polyubiquitination and consequent degradation of PEX5 via the proteasome or of the entire organelle via autophagy. We recovered a pex1 missense mutation in a screen for second-site suppressors that restore growth to the pex6-1 mutant. Surprisingly, this pex1-1 mutation ameliorated the metabolic and physiological defects of pex6-1 without restoring PEX5 levels. Similarly, preventing autophagy by introducing an atg7-null allele partially rescued pex6-1 physiological defects without restoring PEX5 levels. atg7 synergistically improved matrix protein import in pex1-1 pex6-1, implying that pex1-1 improves peroxisome function in pex6-1 without impeding autophagy of peroxisomes (i.e., pexophagy). pex1-1 differentially improved peroxisome function in various pex6 alleles but worsened the physiological and molecular defects of a pex26 mutant, which is defective in the tether anchoring the PEX1-PEX6 hexamer to the peroxisome. Our results support the hypothesis that, beyond PEX5 recycling, PEX1 and PEX6 have additional functions in peroxisome homeostasis and perhaps in oil body utilization.
Collapse
|
21
|
Zhang H, Zhang TT, Liu H, Shi DY, Wang M, Bie XM, Li XG, Zhang XS. Thioredoxin-Mediated ROS Homeostasis Explains Natural Variation in Plant Regeneration. PLANT PHYSIOLOGY 2018; 176:2231-2250. [PMID: 28724620 PMCID: PMC5841725 DOI: 10.1104/pp.17.00633] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/17/2017] [Indexed: 05/18/2023]
Abstract
Plant regeneration is fundamental to basic research and agricultural applications. The regeneration capacity of plants varies largely in different genotypes, but the reason for this variation remains elusive. Here, we identified a novel thioredoxin DCC1 in determining the capacity of shoot regeneration among Arabidopsis (Arabidopsis thaliana) natural variation. Loss of function of DCC1 resulted in inhibited shoot regeneration. DCC1 was expressed mainly in the inner tissues of the callus and encoded a functional thioredoxin that was localized in the mitochondria. DCC1 protein interacted directly with CARBONIC ANHYDRASE2 (CA2), which is an essential subunit of the respiratory chain NADH dehydrogenase complex (Complex I). DCC1 regulated Complex I activity via redox modification of CA2 protein. Mutation of DCC1 or CA2 led to reduced Complex I activity and triggered mitochondrial reactive oxygen species (ROS) production. The increased ROS level regulated shoot regeneration by repressing expression of the genes involved in multiple pathways. Furthermore, linkage disequilibrium analysis indicated that DCC1 was a major determinant of the natural variation in shoot regeneration among Arabidopsis ecotypes. Thus, our study uncovers a novel regulatory mechanism by which thioredoxin-dependent redox modification regulates de novo shoot initiation via the modulation of ROS homeostasis and provides new insights into improving the capacity of plant regeneration.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Ting Ting Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Hui Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - De Ying Shi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Meng Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xiao Min Bie
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xing Guo Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
22
|
Kao YT, Gonzalez KL, Bartel B. Peroxisome Function, Biogenesis, and Dynamics in Plants. PLANT PHYSIOLOGY 2018; 176:162-177. [PMID: 29021223 PMCID: PMC5761812 DOI: 10.1104/pp.17.01050] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/09/2017] [Indexed: 05/19/2023]
Abstract
Recent advances highlight understanding of the diversity of peroxisome contributions to plant biology and the mechanisms through which these essential organelles are generated.
Collapse
Affiliation(s)
- Yun-Ting Kao
- Department of Biosciences, Rice University, Houston, Texas 77005
| | - Kim L Gonzalez
- Department of Biosciences, Rice University, Houston, Texas 77005
| | - Bonnie Bartel
- Department of Biosciences, Rice University, Houston, Texas 77005
| |
Collapse
|
23
|
Gonzalez KL, Fleming WA, Kao YT, Wright ZJ, Venkova SV, Ventura MJ, Bartel B. Disparate peroxisome-related defects in Arabidopsis pex6 and pex26 mutants link peroxisomal retrotranslocation and oil body utilization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:110-128. [PMID: 28742939 PMCID: PMC5605450 DOI: 10.1111/tpj.13641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/22/2017] [Accepted: 07/18/2017] [Indexed: 05/29/2023]
Abstract
Catabolism of fatty acids stored in oil bodies is essential for seed germination and seedling development in Arabidopsis. This fatty acid breakdown occurs in peroxisomes, organelles that sequester oxidative reactions. Import of peroxisomal enzymes is facilitated by peroxins including PEX5, a receptor that delivers cargo proteins from the cytosol to the peroxisomal matrix. After cargo delivery, a complex of the PEX1 and PEX6 ATPases and the PEX26 tail-anchored membrane protein removes ubiquitinated PEX5 from the peroxisomal membrane. We identified Arabidopsis pex6 and pex26 mutants by screening for inefficient seedling β-oxidation phenotypes. The mutants displayed distinct defects in growth, response to a peroxisomally metabolized auxin precursor, and peroxisomal protein import. The low PEX5 levels in these mutants were increased by treatment with a proteasome inhibitor or by combining pex26 with peroxisome-associated ubiquitination machinery mutants, suggesting that ubiquitinated PEX5 is degraded by the proteasome when the function of PEX6 or PEX26 is reduced. Combining pex26 with mutations that increase PEX5 levels either worsened or improved pex26 physiological and molecular defects, depending on the introduced lesion. Moreover, elevating PEX5 levels via a 35S:PEX5 transgene exacerbated pex26 defects and ameliorated the defects of only a subset of pex6 alleles, implying that decreased PEX5 is not the sole molecular deficiency in these mutants. We found peroxisomes clustered around persisting oil bodies in pex6 and pex26 seedlings, suggesting a role for peroxisomal retrotranslocation machinery in oil body utilization. The disparate phenotypes of these pex alleles may reflect unanticipated functions of the peroxisomal ATPase complex.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bonnie Bartel
- Corresponding author: Bonnie Bartel, Department of Biosciences, MS-140, Rice University, 6100 Main St., Houston TX, USA. Phone: 713-348-5602, Fax: 713-348-5154;
| |
Collapse
|
24
|
Rinaldi MA, Fleming WA, Gonzalez KL, Park J, Ventura MJ, Patel AB, Bartel B. The PEX1 ATPase Stabilizes PEX6 and Plays Essential Roles in Peroxisome Biology. PLANT PHYSIOLOGY 2017; 174:2231-2247. [PMID: 28600347 PMCID: PMC5543962 DOI: 10.1104/pp.17.00548] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/07/2017] [Indexed: 05/29/2023]
Abstract
A variety of metabolic pathways are sequestered in peroxisomes, conserved organelles that are essential for human and plant survival. Peroxin (PEX) proteins generate and maintain peroxisomes. The PEX1 ATPase facilitates recycling of the peroxisome matrix protein receptor PEX5 and is the most commonly affected peroxin in human peroxisome biogenesis disorders. Here, we describe the isolation and characterization of, to our knowledge, the first Arabidopsis (Arabidopsis thaliana) pex1 missense alleles: pex1-2 and pex1-3pex1-2 displayed peroxisome-related defects accompanied by reduced PEX1 and PEX6 levels. These pex1-2 defects were exacerbated by growth at high temperature and ameliorated by growth at low temperature or by PEX6 overexpression, suggesting that PEX1 enhances PEX6 stability and vice versa. pex1-3 conferred embryo lethality when homozygous, confirming that PEX1, like several other Arabidopsis peroxins, is essential for embryogenesis. pex1-3 displayed symptoms of peroxisome dysfunction when heterozygous; this semidominance is consistent with PEX1 forming a heterooligomer with PEX6 that is poisoned by pex1-3 subunits. Blocking autophagy partially rescued PEX1/pex1-3 defects, including the restoration of normal peroxisome size, suggesting that increasing peroxisome abundance can compensate for the deficiencies caused by pex1-3 and that the enlarged peroxisomes visible in PEX1/pex1-3 may represent autophagy intermediates. Overexpressing PEX1 in wild-type plants impaired growth, suggesting that excessive PEX1 can be detrimental. Our genetic, molecular, and physiological data support the heterohexamer model of PEX1-PEX6 function in plants.
Collapse
Affiliation(s)
- Mauro A Rinaldi
- Department of BioSciences, Rice University, Houston, Texas 77005
| | | | - Kim L Gonzalez
- Department of BioSciences, Rice University, Houston, Texas 77005
| | - Jaeseok Park
- Department of BioSciences, Rice University, Houston, Texas 77005
| | | | - Ashish B Patel
- Department of BioSciences, Rice University, Houston, Texas 77005
| | - Bonnie Bartel
- Department of BioSciences, Rice University, Houston, Texas 77005
| |
Collapse
|
25
|
Deb R, Nagotu S. Versatility of peroxisomes: An evolving concept. Tissue Cell 2017; 49:209-226. [DOI: 10.1016/j.tice.2017.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 02/04/2023]
|
26
|
Huang H, Liu B, Liu L, Song S. Jasmonate action in plant growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1349-1359. [PMID: 28158849 DOI: 10.1093/jxb/erw495] [Citation(s) in RCA: 354] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phytohormones, including jasmonates (JAs), gibberellin, ethylene, abscisic acid, and auxin, integrate endogenous developmental cues with environmental signals to regulate plant growth, development, and defense. JAs are well- recognized lipid-derived stress hormones that regulate plant adaptations to biotic stresses, including herbivore attack and pathogen infection, as well as abiotic stresses, including wounding, ozone, and ultraviolet radiation. An increasing number of studies have shown that JAs also have functions in a remarkable number of plant developmental events, including primary root growth, reproductive development, and leaf senescence. Since the 1980s, details of the JA biosynthesis pathway, signaling pathway, and crosstalk during plant growth and development have been elucidated. Here, we summarize recent advances and give an updated overview of JA action and crosstalk in plant growth and development.
Collapse
Affiliation(s)
- Huang Huang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bei Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Liangyu Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
27
|
Wasternack C, Song S. Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1303-1321. [PMID: 27940470 DOI: 10.1093/jxb/erw443] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/07/2016] [Indexed: 05/21/2023]
Abstract
The lipid-derived phytohormone jasmonate (JA) regulates plant growth, development, secondary metabolism, defense against insect attack and pathogen infection, and tolerance to abiotic stresses such as wounding, UV light, salt, and drought. JA was first identified in 1962, and since the 1980s many studies have analyzed the physiological functions, biosynthesis, distribution, metabolism, perception, signaling, and crosstalk of JA, greatly expanding our knowledge of the hormone's action. In response to fluctuating environmental cues and transient endogenous signals, the occurrence of multilayered organization of biosynthesis and inactivation of JA, and activation and repression of the COI1-JAZ-based perception and signaling contributes to the fine-tuning of JA responses. This review describes the JA biosynthetic enzymes in terms of gene families, enzymatic activity, location and regulation, substrate specificity and products, the metabolic pathways in converting JA to activate or inactivate compounds, JA signaling in perception, and the co-existence of signaling activators and repressors.
Collapse
Affiliation(s)
- Claus Wasternack
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Institute of Experimental Botany AS CR, Šlechtitelu 11, CZ 78371 Olomouc, Czech Republic
| | - Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
28
|
Chen N, Teng XL, Xiao XG. Subcellular Localization of a Plant Catalase-Phenol Oxidase, AcCATPO, from Amaranthus and Identification of a Non-canonical Peroxisome Targeting Signal. FRONTIERS IN PLANT SCIENCE 2017; 8:1345. [PMID: 28824680 PMCID: PMC5539789 DOI: 10.3389/fpls.2017.01345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/18/2017] [Indexed: 05/03/2023]
Abstract
AcCATPO is a plant catalase-phenol oxidase recently identified from red amaranth. Its physiological function remains unexplored. As the starting step of functional analysis, here we report its subcellular localization and a non-canonical targeting signal. Commonly used bioinformatics programs predicted a peroxisomal localization for AcCATPO, but failed in identification of canonical peroxisomal targeting signals (PTS). The C-terminal GFP tagging led the fusion protein AcCATPO-GFP to the cytosol and the nucleus, but N-terminal tagging directed the GFP-AcCATPO to peroxisomes and nuclei, in transgenic tobacco. Deleting the tripeptide (PTM) at the extreme C-terminus almost ruled out the peroxisomal localization of GFP-AcCATPOΔ3, and removing the C-terminal decapeptide completely excluded peroxisomes as the residence of GFP-AcCATPOΔ10. Furthermore, this decapeptide as a targeting signal could import GFP-10aa to the peroxisome exclusively. Taken together, these results demonstrate that AcCATPO is localized to the peroxisome and the nucleus, and its peroxisomal localization is attributed to a non-canonical PTS1, the C-terminal decapeptide which contains an internal SRL motif and a conserved tripeptide P-S/T-I/M at the extreme of C-terminus. This work may further the study as to the physiological function of AcCATPO, especially clarify its involvement in betalain biosynthesis, and provide a clue to elucidate more non-canonic PTS.
Collapse
|
29
|
Kao YT, Fleming WA, Ventura MJ, Bartel B. Genetic Interactions between PEROXIN12 and Other Peroxisome-Associated Ubiquitination Components. PLANT PHYSIOLOGY 2016; 172:1643-1656. [PMID: 27650450 PMCID: PMC5100787 DOI: 10.1104/pp.16.01211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/15/2016] [Indexed: 05/28/2023]
Abstract
Most eukaryotic cells require peroxisomes, organelles housing fatty acid β-oxidation and other critical metabolic reactions. Peroxisomal matrix proteins carry peroxisome-targeting signals that are recognized by one of two receptors, PEX5 or PEX7, in the cytosol. After delivering the matrix proteins to the organelle, these receptors are removed from the peroxisomal membrane or matrix. Receptor retrotranslocation not only facilitates further rounds of matrix protein import but also prevents deleterious PEX5 retention in the membrane. Three peroxisome-associated ubiquitin-protein ligases in the Really Interesting New Gene (RING) family, PEX2, PEX10, and PEX12, facilitate PEX5 retrotranslocation. However, the detailed mechanism of receptor retrotranslocation remains unclear in plants. We identified an Arabidopsis (Arabidopsis thaliana) pex12 Glu-to-Lys missense allele that conferred severe peroxisomal defects, including impaired β-oxidation, inefficient matrix protein import, and decreased growth. We compared this pex12-1 mutant to other peroxisome-associated ubiquitination-related mutants and found that RING peroxin mutants displayed elevated PEX5 and PEX7 levels, supporting the involvement of RING peroxins in receptor ubiquitination in Arabidopsis. Also, we observed that disruption of any Arabidopsis RING peroxin led to decreased PEX10 levels, as seen in yeast and mammals. Peroxisomal defects were exacerbated in RING peroxin double mutants, suggesting distinct roles of individual RING peroxins. Finally, reducing function of the peroxisome-associated ubiquitin-conjugating enzyme PEX4 restored PEX10 levels and partially ameliorated the other molecular and physiological defects of the pex12-1 mutant. Future biochemical analyses will be needed to determine whether destabilization of the RING peroxin complex observed in pex12-1 stems from PEX4-dependent ubiquitination on the pex12-1 ectopic Lys residue.
Collapse
Affiliation(s)
- Yun-Ting Kao
- Biochemistry and Cell Biology Program, Department of BioSciences, Rice University, Houston, Texas 77005 (Y.-T.K., W.A.F., M.J.V., B.B.)
| | - Wendell A Fleming
- Biochemistry and Cell Biology Program, Department of BioSciences, Rice University, Houston, Texas 77005 (Y.-T.K., W.A.F., M.J.V., B.B.)
| | - Meredith J Ventura
- Biochemistry and Cell Biology Program, Department of BioSciences, Rice University, Houston, Texas 77005 (Y.-T.K., W.A.F., M.J.V., B.B.)
| | - Bonnie Bartel
- Biochemistry and Cell Biology Program, Department of BioSciences, Rice University, Houston, Texas 77005 (Y.-T.K., W.A.F., M.J.V., B.B.)
| |
Collapse
|
30
|
Ju Y, Guo L, Cai Q, Ma F, Zhu QY, Zhang Q. Arabidopsis JINGUBANG Is a Negative Regulator of Pollen Germination That Prevents Pollination in Moist Environments. THE PLANT CELL 2016; 28:2131-2146. [PMID: 27468890 PMCID: PMC5059805 DOI: 10.1105/tpc.16.00401] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/05/2016] [Accepted: 07/23/2016] [Indexed: 05/14/2023]
Abstract
The molecular mechanism of pollen germination and pollen tube growth has been revealed in detail during the last decade, while the mechanism that suspends pollen grains in a dormant state is largely unclear. Here, we identified the JINGUBANG (JGB) gene by screening pollen-specific genes for those that are unnecessary for pollen germination. We showed that the pollen of the jgb loss-of-function mutant exhibited hyperactive germination in sucrose-only medium and inside the anther, while this phenotype was rescued by the transgenic expression of JGB in jgb plants. JGB contains seven WD40 repeats and is highly conserved in flowering plants. Overexpression of JGB inhibits pollen germination. These results indicate that JGB is a novel negative regulator of pollen germination. In addition, we found that jasmonic acid (JA) abundance was significantly elevated in jgb pollen, while exogenous application of methyl jasmonate rescued the inhibition of pollen germination in plants overexpressing JGB Based on the molecular features of JGB and on the finding that it interacts with a known JA biosynthesis-related transcription factor, TCP4, we propose that JGB, together with TCP4, forms a regulatory complex that controls pollen JA synthesis, ensuring pollination in moist environments.
Collapse
Affiliation(s)
- Yan Ju
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Liang Guo
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qiang Cai
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Fei Ma
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qiao-Yun Zhu
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Quan Zhang
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
31
|
Gao XQ, Liu CZ, Li DD, Zhao TT, Li F, Jia XN, Zhao XY, Zhang XS. The Arabidopsis KINβγ Subunit of the SnRK1 Complex Regulates Pollen Hydration on the Stigma by Mediating the Level of Reactive Oxygen Species in Pollen. PLoS Genet 2016; 12:e1006228. [PMID: 27472382 PMCID: PMC4966946 DOI: 10.1371/journal.pgen.1006228] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/08/2016] [Indexed: 12/25/2022] Open
Abstract
Pollen–stigma interactions are essential for pollen germination. The highly regulated process of pollen germination includes pollen adhesion, hydration, and germination on the stigma. However, the internal signaling of pollen that regulates pollen–stigma interactions is poorly understood. KINβγ is a plant-specific subunit of the SNF1-related protein kinase 1 complex which plays important roles in the regulation of plant development. Here, we showed that KINβγ was a cytoplasm- and nucleus-localized protein in the vegetative cells of pollen grains in Arabidopsis. The pollen of the Arabidopsis kinβγ mutant could not germinate on stigma, although it germinated normally in vitro. Further analysis revealed the hydration of kinβγ mutant pollen on the stigma was compromised. However, adding water to the stigma promoted the germination of the mutant pollen in vivo, suggesting that the compromised hydration of the mutant pollen led to its defective germination. In kinβγ mutant pollen, the structure of the mitochondria and peroxisomes was destroyed, and their numbers were significantly reduced compared with those in the wild type. Furthermore, we found that the kinβγ mutant exhibited reduced levels of reactive oxygen species (ROS) in pollen. The addition of H2O2in vitro partially compensated for the reduced water absorption of the mutant pollen, and reducing ROS levels in pollen by overexpressing Arabidopsis CATALASE 3 resulted in compromised hydration of pollen on the stigma. These results indicate that Arabidopsis KINβγ is critical for the regulation of ROS levels by mediating the biogenesis of mitochondria and peroxisomes in pollen, which is required for pollen–stigma interactions during pollination. After landing on the stigma, pollen grains germinate and create pollen tubes following adhesion and hydration processes, during which pollen–stigma interactions determine whether the pollen grains can germinate on the stigma. In recent years, the interaction mechanisms between the pollen and stigma have been studied extensively at the cellular and molecular level in self-incompatibility systems. However, few studies have focused on pollen–stigma interactions during self-compatible pollination. Arabidopsis thaliana provides an excellent system to study the interaction mechanisms between the pollen and stigma during self-compatible pollination. KINβγ is a plant-specific subunit of the SNF1-related protein kinase 1 complex. In this study, we identified an Arabidopsis kinβγ mutant showing defective pollen germination on the surface of the stigma but not on the culture medium, which resulted from the compromised hydration of pollen on the stigma. Further analysis revealed that the biogenesis of mitochondria and peroxisomes was impaired in this mutant, which reduced the levels of reactive oxygen species (ROS) in pollen. Application of H2O2 recovered the capability of pollen to undergo hydration in vitro. These results suggest that ROS signaling is involved in the regulation of pollen–stigma interactions during pollination. This study provides new insights into the mechanism underlying pollen–stigma interactions in self-compatible plant species.
Collapse
Affiliation(s)
- Xin-Qi Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Chang Zhen Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Dan Dan Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Ting Ting Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Fei Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Xiao Na Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Xin-Ying Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- * E-mail:
| |
Collapse
|
32
|
Paul P, Röth S, Schleiff E. Importance of organellar proteins, protein translocation and vesicle transport routes for pollen development and function. PLANT REPRODUCTION 2016; 29:53-65. [PMID: 26874709 DOI: 10.1007/s00497-016-0274-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/18/2016] [Indexed: 05/27/2023]
Abstract
Protein translocation. Cellular homeostasis strongly depends on proper distribution of proteins within cells and insertion of membrane proteins into the destined membranes. The latter is mediated by organellar protein translocation and the complex vesicle transport system. Considering the importance of protein transport machineries in general it is foreseen that these processes are essential for pollen function and development. However, the information available in this context is very scarce because of the current focus on deciphering the fundamental principles of protein transport at the molecular level. Here we review the significance of protein transport machineries for pollen development on the basis of pollen-specific organellar proteins as well as of genetic studies utilizing mutants of known organellar proteins. In many cases these mutants exhibit morphological alterations highlighting the requirement of efficient protein transport and translocation in pollen. Furthermore, expression patterns of genes coding for translocon subunits and vesicle transport factors in Arabidopsis thaliana are summarized. We conclude that with the exception of the translocation systems in plastids-the composition and significance of the individual transport systems are equally important in pollen as in other cell types. Apparently for plastids only a minimal translocon, composed of only few subunits, exists in the envelope membranes during maturation of pollen. However, only one of the various transport systems known from thylakoids seems to be required for the function of the "simple thylakoid system" existing in pollen plastids. In turn, the vesicle transport system is as complex as seen for other cell types as it is essential, e.g., for pollen tube formation.
Collapse
Affiliation(s)
- Puneet Paul
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany
| | - Sascha Röth
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany.
- Cluster of Excellence Frankfurt, Goethe University, 60438, Frankfurt Am Main, Germany.
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, 60438, Frankfurt Am Main, Germany.
| |
Collapse
|
33
|
Cross LL, Ebeed HT, Baker A. Peroxisome biogenesis, protein targeting mechanisms and PEX gene functions in plants. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:850-62. [DOI: 10.1016/j.bbamcr.2015.09.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 12/16/2022]
|
34
|
Shi J, Cui M, Yang L, Kim YJ, Zhang D. Genetic and Biochemical Mechanisms of Pollen Wall Development. TRENDS IN PLANT SCIENCE 2015; 20:741-753. [PMID: 26442683 DOI: 10.1016/j.tplants.2015.07.010] [Citation(s) in RCA: 264] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/26/2015] [Accepted: 07/31/2015] [Indexed: 05/18/2023]
Abstract
The pollen wall is a specialized extracellular cell wall matrix that surrounds male gametophytes and plays an essential role in plant reproduction. Uncovering the mechanisms that control the synthesis and polymerization of the precursors of pollen wall components has been a major research focus in plant biology. We review current knowledge on the genetic and biochemical mechanisms underlying pollen wall development in eudicot model Arabidopsis thaliana and monocot model rice (Oryza sativa), focusing on the genes involved in the biosynthesis, transport, and assembly of various precursors of pollen wall components. The conserved and divergent aspects of the genes involved as well as their regulation are addressed. Current challenges and future perspectives are also highlighted.
Collapse
Affiliation(s)
- Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Meihua Cui
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Li Yang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yu-Jin Kim
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Department of Oriental Medicinal Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Youngin, 446-701, South Korea
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; School of Agriculture, Food, and Wine, University of Adelaide, South Australia 5064, Australia.
| |
Collapse
|
35
|
Baker A, Paudyal R. The life of the peroxisome: from birth to death. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:39-47. [PMID: 25261594 DOI: 10.1016/j.pbi.2014.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 07/24/2014] [Accepted: 09/05/2014] [Indexed: 06/03/2023]
Abstract
Peroxisomes are dynamic and metabolically plastic organelles. Their multiplicity of functions impacts on many aspects of plant development and survival. New functions for plant peroxisomes such as in the synthesis of biotin, ubiquinone and phylloquinone are being uncovered and their role in generating reactive oxygen species (ROS) and reactive nitrogen species (RNS) as signalling hubs in defence and development is becoming appreciated. Understanding of the biogenesis of peroxisomes, mechanisms of import and turnover of their protein complement, and the wholesale destruction of the organelle by specific autophagic processes is giving new insight into the ways that plants can adjust peroxisome function in response to changing needs.
Collapse
Affiliation(s)
- Alison Baker
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Rupesh Paudyal
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
36
|
Woodward AW, Fleming WA, Burkhart SE, Ratzel SE, Bjornson M, Bartel B. A viable Arabidopsis pex13 missense allele confers severe peroxisomal defects and decreases PEX5 association with peroxisomes. PLANT MOLECULAR BIOLOGY 2014; 86:201-214. [PMID: 25008153 PMCID: PMC4142595 DOI: 10.1007/s11103-014-0223-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 07/01/2014] [Indexed: 05/29/2023]
Abstract
Peroxisomes are organelles that catabolize fatty acids and compartmentalize other oxidative metabolic processes in eukaryotes. Using a forward-genetic screen designed to recover severe peroxisome-defective mutants, we isolated a viable allele of the peroxisome biogenesis gene PEX13 with striking peroxisomal defects. The pex13-4 mutant requires an exogenous source of fixed carbon for pre-photosynthetic development and is resistant to the protoauxin indole-3-butyric acid. Delivery of peroxisome-targeted matrix proteins depends on the PEX5 receptor docking with PEX13 at the peroxisomal membrane, and we found severely reduced import of matrix proteins and less organelle-associated PEX5 in pex13-4 seedlings. Moreover, pex13-4 physiological and molecular defects were partially ameliorated when PEX5 was overexpressed, suggesting that PEX5 docking is partially compromised in this mutant and can be improved by increasing PEX5 levels. Because previously described Arabidopsis pex13 alleles either are lethal or confer only subtle defects, the pex13-4 mutant provides valuable insight into plant peroxisome receptor docking and matrix protein import.
Collapse
Affiliation(s)
- Andrew W. Woodward
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA. Department of Biology, University of Mary Hardin-Baylor, Belton, TX 76513, USA
| | - Wendell A. Fleming
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | - Sarah E. Burkhart
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | - Sarah E. Ratzel
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | - Marta Bjornson
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | - Bonnie Bartel
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| |
Collapse
|