1
|
Lee YRJ, Liu B. Phosphoregulation of Microtubule Assembly and Disassembly for Phragmoplast Expansion During Plant Cytokinesis. Bioessays 2025; 47:e202500004. [PMID: 40025940 DOI: 10.1002/bies.202500004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Plant cytokinesis results in the formation of the cell plate by the phragmoplast which contains dynamic microtubules serving as the track for the delivery of cell wall builders included in Golgi vesicles. During the centrifugal process of cell plate assembly, new microtubules are assembled and bundled at the leading edge to prepare for vesicle transport while older microtubules are disassembled at the lagging edge upon the completion of vesicle delivery. The turnover of phragmoplast microtubules in this process is thought to be regulated by phosphorylation of the key microtubule bundling factor MAP65. A recent study revealed a surprising role of the α-Aurora kinase, which is typically known for its role in governing the formation of the bipolar spindle apparatus, in phosphorylating the primary microtubule bundler MAP65-3 in Arabidopsis. This phosphorylation positively contributes to the expansion of the phragmoplast. The phragmoplast midzone is also the hub for other cytokinesis-important kinases. It is intriguing how these kinases are targeted and how they may crosstalk with each other to orchestrate the expansion of the phragmoplast.
Collapse
Affiliation(s)
- Yuh-Ru Julie Lee
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California, USA
| | - Bo Liu
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California, USA
| |
Collapse
|
2
|
Yin Z, Gan Y, Chen Y, Kozgunova E, Yi P. The Microtubule Cytoskeleton in Bryophytes. Cytoskeleton (Hoboken) 2025. [PMID: 40040596 DOI: 10.1002/cm.22009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/06/2025]
Abstract
Microtubules (MTs) are essential cytoskeletal elements in all eukaryotes, playing critical roles in cell shape, intercellular organization, cell division, and cell motility. The organization of the MT network has undergone significant changes throughout plant evolution. Some MT structures, such as the preprophase band and phragmoplast, are innovations in plant lineages, while others, including the centriole and flagellum, have been lost over time. Bryophytes, consisting of mosses, liverworts, and hornworts, are the earliest land plants and occupy a key phylogenetic position in the evolution of MT organization. In the past two decades, advances in genomics, genetics, and cell imaging technologies have significantly enhanced our understanding of MT organization and function. Two representative species, Physcomitrium patens (moss) and Marchantia polymorph (liverwort), have become established model organisms, and new models for hornworts are emerging. In this review, we summarize the current knowledge of the MT cytoskeleton, drawing from early electron microscopy studies and recent advances in these emerging models. Our aim is to provide a comprehensive overview of the major MT array types and key factors involved in MT organization in bryophytes, offering insights into MT adaptation during plant evolution.
Collapse
Affiliation(s)
- Zihan Yin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Yirong Gan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Yin Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Elena Kozgunova
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Peishan Yi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
3
|
Yamada M, Matsuyama HJ, Takeda-Kamiya N, Sato M, Toyooka K. Class II kinesin-12 facilitates cell plate formation by transporting cell plate materials in the phragmoplast. NATURE PLANTS 2025; 11:340-358. [PMID: 39905180 DOI: 10.1038/s41477-025-01909-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025]
Abstract
Cell plate formation in plants is a complex process orchestrated by the targeted delivery of Golgi-derived and endosomal vesicles containing cell plate components to the phragmoplast midzone. It has long been hypothesized that vesicles are directionally transported along phragmoplast microtubules by motor proteins. However, the mechanisms governing the accumulation and immobilization of vesicles at the phragmoplast midzone remain elusive, and the motor protein responsible has yet to be identified. Here we show that the plant-specific class II kinesin-12 (kinesin12-II) functions as a motor protein that drives vesicle transport towards the phragmoplast midzone in the moss Physcomitrium patens. In the kinesin12-II mutant, the directional movement of cell plate materials towards the midzone and their retention were abolished, resulting in delayed cell plate formation and phragmoplast disassembly. A macroscopic phenotype arising from kinesin12-II disruption was the impediment to gametophore development. We showed that this defect was attributable to the production of aneuploid and polyploid cells in the early gametophore, where chromosome missegregation and cytokinesis failure occurred. These findings suggest that plant kinesin-12 has evolved to acquire a unique and critical function that facilitates cell plate formation in the presence of phragmoplasts.
Collapse
Affiliation(s)
- Moé Yamada
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.
| | - Hironori J Matsuyama
- Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | | | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | |
Collapse
|
4
|
Cheng F, Wang Y, Peng A, Li S, Chen J, Zheng X, Xiong J, Ding G, Zhang B, Zhai W, Song L, Wei W, Chen L. Identification of candidate genes for leaf size by QTL mapping and transcriptome sequencing in Brassica napus L. BMC Genomics 2025; 26:39. [PMID: 39815180 PMCID: PMC11734557 DOI: 10.1186/s12864-025-11205-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025] Open
Abstract
Leaf is the main photosynthetic organ at the seedling stage of rapeseed and leaf size is a crucial agronomic trait affecting rapeseed yield. Understanding the genetic mechanisms underlying leaf size is therefore important for rapeseed breeding. In this study, QTL mapping for three traits related to leaf size, i.e., leaf width (LW), leaf length (LL) and leaf area (LA), was performed using a recombinant inbred line (RIL) population and four QTLs for LW, two QTLs for LL and four QTLs for LA were detected. Transcriptome analysis revealed that differentially expressed genes (DEGs) were enriched in the GO terms related to microtubules, and the expression level of several genes involved in cell division also showed significant differences. Microscopic analysis suggested that the cell number was the main factor regulating leaf size. Combining QTL mapping and RNA sequencing, four promising candidate genes, including BnaA10G0085600ZS, BnaA10G0156900ZS, BnaC03G0441700ZS, and BnaC08G0410600ZS, were proposed to control leaf size by regulating cell division. The results of QTL, transcriptome analysis, and anatomical observation were highly consistent, collectively revealing that genes related to cell division played a crucial role in regulating the leaf size traits in rapeseed. These findings provided further insights into the genetic mechanism of leaf size and built fundamental theory basis for high-density tolerance breeding in rapeseed.
Collapse
Affiliation(s)
- Fengjie Cheng
- College of Agriculture, Yangtze University, Jingzhou, 434000, China
| | - Yuwen Wang
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Aoyi Peng
- College of Agriculture, Yangtze University, Jingzhou, 434000, China
| | - Shuyu Li
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Jun Chen
- East China University of Technology, Fuzhou, 344000, China
| | - Xiaoxiao Zheng
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Jie Xiong
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Ge Ding
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Bingchao Zhang
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Wen Zhai
- East China University of Technology, Fuzhou, 344000, China
| | - Laiqiang Song
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Wenliang Wei
- College of Agriculture, Yangtze University, Jingzhou, 434000, China.
| | - Lunlin Chen
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
| |
Collapse
|
5
|
Huang CH, Peng FL, Lee YRJ, Liu B. The microtubular preprophase band recruits Myosin XI to the cortical division site to guide phragmoplast expansion during plant cytokinesis. Dev Cell 2024; 59:2333-2346.e6. [PMID: 38848716 DOI: 10.1016/j.devcel.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/22/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
In plant vegetative tissues, cell division employs a mitotic microtubule array called the preprophase band (PPB) that marks the cortical division site. This transient cytoskeletal array imprints the spatial information to be read by the cytokinetic phragmoplast at later stages of mitotic cell division. In Arabidopsis thaliana, we discovered that the PPB recruited the Myosin XI motor MYA1/Myo11F to the cortical division site, where it joined microtubule-associated proteins and motors to form a ring of prominent cytoskeletal assemblies that received the expanding phragmoplast. Such a myosin localization pattern at the cortical division site was dependent on the POK1/2 Kinesin-12 motors. This regulatory function of MYA1/Myo11F in phragmoplast guidance was dependent on intact actin filaments. The discovery of these cytoskeletal motor assemblies pinpoints a mechanism underlying how two dynamic cytoskeletal networks work in concert to govern PPB-dependent division plane orientation in flowering plants.
Collapse
Affiliation(s)
- Calvin Haoyuan Huang
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Felicia Lei Peng
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Bo Liu
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
6
|
Bouchez D, Uyttewaal M, Pastuglia M. Spatiotemporal regulation of plant cell division. CURRENT OPINION IN PLANT BIOLOGY 2024; 79:102530. [PMID: 38631088 DOI: 10.1016/j.pbi.2024.102530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
Plant morphogenesis largely depends on the orientation and rate of cell division and elongation, and their coordination at all levels of organization. Despite recent progresses in the comprehension of pathways controlling division plane determination in plant cells, many pieces are missing to the puzzle. For example, we have a partial comprehension of formation, function and evolutionary significance of the preprophase band, a plant-specific cytoskeletal array involved in premitotic setup of the division plane, as well as the role of the nucleus and its connection to the preprophase band of microtubules. Likewise, several modeling studies point to a strong relationship between cell shape and division geometry, but the emergence of such geometric rules from the molecular and cellular pathways at play are still obscure. Yet, recent imaging technologies and genetic tools hold a lot of promise to tackle these challenges and to revisit old questions with unprecedented resolution in space and time.
Collapse
Affiliation(s)
- David Bouchez
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles 78000, France.
| | - Magalie Uyttewaal
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles 78000, France
| | - Martine Pastuglia
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles 78000, France
| |
Collapse
|
7
|
Deng X, Xiao Y, Tang X, Liu B, Lin H. Arabidopsis α-Aurora kinase plays a role in cytokinesis through regulating MAP65-3 association with microtubules at phragmoplast midzone. Nat Commun 2024; 15:3779. [PMID: 38710684 PMCID: PMC11074315 DOI: 10.1038/s41467-024-48238-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
The α-Aurora kinase is a crucial regulator of spindle microtubule organization during mitosis in plants. Here, we report a post-mitotic role for α-Aurora in reorganizing the phragmoplast microtubule array. In Arabidopsis thaliana, α-Aurora relocated from spindle poles to the phragmoplast midzone, where it interacted with the microtubule cross-linker MAP65-3. In a hypomorphic α-Aurora mutant, MAP65-3 was detected on spindle microtubules, followed by a diffuse association pattern across the phragmoplast midzone. Simultaneously, phragmoplast microtubules remained belatedly in a solid disk array before transitioning to a ring shape. Microtubules at the leading edge of the matured phragmoplast were often disengaged, accompanied by conspicuous retentions of MAP65-3 at the phragmoplast interior edge. Specifically, α-Aurora phosphorylated two residues towards the C-terminus of MAP65-3. Mutation of these residues to alanines resulted in an increased association of MAP65-3 with microtubules within the phragmoplast. Consequently, the expansion of the phragmoplast was notably slower compared to wild-type cells or cells expressing a phospho-mimetic variant of MAP65-3. Moreover, mimicking phosphorylation reinstated disrupted MAP65-3 behaviors in plants with compromised α-Aurora function. Overall, our findings reveal a mechanism in which α-Aurora facilitates cytokinesis progression through phosphorylation-dependent restriction of MAP65-3 associating with microtubules at the phragmoplast midzone.
Collapse
Affiliation(s)
- Xingguang Deng
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.
| | - Yu Xiao
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Xiaoya Tang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Bo Liu
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA.
| | - Honghui Lin
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Fábián A, Péntek BK, Soós V, Sági L. Heat stress during male meiosis impairs cytoskeletal organization, spindle assembly and tapetum degeneration in wheat. FRONTIERS IN PLANT SCIENCE 2024; 14:1314021. [PMID: 38259921 PMCID: PMC10800805 DOI: 10.3389/fpls.2023.1314021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024]
Abstract
The significance of heat stress in agriculture is ever-increasing with the progress of global climate changes. Due to a negative effect on the yield of staple crops, including wheat, the impairment of plant reproductive development triggered by high ambient temperature became a restraint in food production. Although the heat sensitivity of male meiosis and the following gamete development in wheat has long been recognized, a detailed structural characterization combined with a comprehensive gene expression analysis has not been done about this phenomenon. We demonstrate here that heat stress severely alters the cytoskeletal configuration, triggers the failure of meiotic division in wheat. Moreover, it changes the expression of genes related to gamete development in male meiocytes and the tapetum layer in a genotype-dependent manner. 'Ellvis', a heat-tolerant winter wheat cultivar, showed high spikelet fertility rate and only scarce structural aberrations upon exposure to high temperature. In addition, heat shock genes and genes involved in scavenging reactive oxygen species were significantly upregulated in 'Ellvis', and the expression of meiosis-specific and major developmental genes showed high stability in this cultivar. In the heat-sensitive 'Mv 17-09', however, genes participating in cytoskeletal fiber nucleation, the spindle assembly checkpoint genes, and tapetum-specific developmental regulators were downregulated. These alterations may be related to the decreased cytoskeleton content, frequent micronuclei formation, and the erroneous persistence of the tapetum layer observed in the sensitive genotype. Our results suggest that understanding the heat-sensitive regulation of these gene functions would be an essential contribution to the development of new, heat-tolerant cultivars.
Collapse
Affiliation(s)
- Attila Fábián
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | | | - Vilmos Soós
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
| | - László Sági
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
| |
Collapse
|
9
|
Mehlhorn D, Wallmeroth N, Berendzen KW, Grefen C. 2 in 1 Vectors Improve in Planta BiFC and FRET Analysis. Methods Mol Biol 2024; 2772:149-168. [PMID: 38411812 DOI: 10.1007/978-1-0716-3710-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Protein-protein interactions (PPIs) play vital roles in all subcellular processes, and a number of tools have been developed for their detection and analysis. Each method has its unique set of benefits and drawbacks that need to be considered prior application. In fact, researchers are spoilt for choice when it comes to deciding which method to use for the initial detection of a PPI and which to corroborate the findings. With constant improvements in microscope development, the possibilities of techniques to study PPIs in vivo, and in real time, are continuously enhanced and expanded. Here, we describe three common approaches, their recent improvements incorporating a 2-in-1 cloning approach, and their application in plant cell biology: ratiometric bimolecular fluorescence complementation (rBiFC), FRET acceptor photobleaching (FRET-AB), and fluorescent lifetime imaging (FRET-FLIM), using Nicotiana benthamiana leaves and Arabidopsis thaliana cell culture protoplasts as transient expression systems.
Collapse
Affiliation(s)
- Dietmar Mehlhorn
- Molecular & Cellular Botany, Ruhr-University Bochum, Bochum, Germany
| | - Niklas Wallmeroth
- Centre for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Kenneth W Berendzen
- Centre for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
10
|
Müller S. Update: on selected ROP cell polarity mechanisms in plant cell morphogenesis. PLANT PHYSIOLOGY 2023; 193:26-41. [PMID: 37070572 DOI: 10.1093/plphys/kiad229] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/20/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
The unequal (asymmetric) distribution of cell structures and proteins within a cell is designated as cell polarity. Cell polarity is a crucial prerequisite for morphogenetic processes such as oriented cell division and directed cell expansion. Rho-related GTPase from plants (ROPs) are required for cellular morphogenesis through the reorganization of the cytoskeleton and vesicle transport in various tissues. Here, I review recent advances in ROP-dependent tip growth, vesicle transport, and tip architecture. I report on the regulatory mechanisms of ROP upstream regulators found in different cell types. It appears that these regulators assemble in nanodomains with specific lipid compositions and recruit ROPs for activation in a stimulus-dependent manner. Current models link mechanosensing/mechanotransduction to ROP polarity signaling involved in feedback mechanisms via the cytoskeleton. Finally, I discuss ROP signaling components that are upregulated by tissue-specific transcription factors and exhibit specific localization patterns during cell division, clearly suggesting ROP signaling in division plane alignment.
Collapse
Affiliation(s)
- Sabine Müller
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
11
|
Nan Q, Liang H, Mendoza J, Liu L, Fulzele A, Wright A, Bennett EJ, Rasmussen CG, Facette MR. The OPAQUE1/DISCORDIA2 myosin XI is required for phragmoplast guidance during asymmetric cell division in maize. THE PLANT CELL 2023; 35:2678-2693. [PMID: 37017144 PMCID: PMC10291028 DOI: 10.1093/plcell/koad099] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Formative asymmetric divisions produce cells with different fates and are critical for development. We show the maize (Zea mays) myosin XI protein, OPAQUE1 (O1), is necessary for asymmetric divisions during maize stomatal development. We analyzed stomatal precursor cells before and during asymmetric division to determine why o1 mutants have abnormal division planes. Cell polarization and nuclear positioning occur normally in the o1 mutant, and the future site of division is correctly specified. The defect in o1 becomes apparent during late cytokinesis, when the phragmoplast forms the nascent cell plate. Initial phragmoplast guidance in o1 is normal; however, as phragmoplast expansion continues o1 phragmoplasts become misguided. To understand how O1 contributes to phragmoplast guidance, we identified O1-interacting proteins. Maize kinesins related to the Arabidopsis thaliana division site markers PHRAGMOPLAST ORIENTING KINESINs (POKs), which are also required for correct phragmoplast guidance, physically interact with O1. We propose that different myosins are important at multiple steps of phragmoplast expansion, and the O1 actin motor and POK-like microtubule motors work together to ensure correct late-stage phragmoplast guidance.
Collapse
Affiliation(s)
- Qiong Nan
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Hong Liang
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Janette Mendoza
- Department of Botany, University of New Mexico, Albuquerque, NM 87131, USA
| | - Le Liu
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Amit Fulzele
- Division of Biological Sciences, University of California, Riverside, CA 92093, USA
| | - Amanda Wright
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Eric J Bennett
- Division of Biological Sciences, University of California, Riverside, CA 92093, USA
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Michelle R Facette
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
12
|
Dahiya P, Bürstenbinder K. The making of a ring: Assembly and regulation of microtubule-associated proteins during preprophase band formation and division plane set-up. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102366. [PMID: 37068357 DOI: 10.1016/j.pbi.2023.102366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 06/10/2023]
Abstract
The preprophase band (PPB) is a transient cytokinetic structure that marks the future division plane at the onset of mitosis. The PPB forms a dense cortical ring of mainly microtubules, actin filaments, endoplasmic reticulum, and associated proteins that encircles the nucleus of mitotic cells. After PPB disassembly, the positional information is preserved by the cortical division zone (CDZ). The formation of the PPB and its contribution to timely CDZ set-up involves activities of functionally distinct microtubule-associated proteins (MAPs) that interact physically and genetically to support robust division plane orientation in plants. Recent studies identified two types of plant-specific MAPs as key regulators of PPB formation, the TON1 RECRUITMENT MOTIF (TRM) and IQ67 DOMAIN (IQD) families. Both families share hallmarks of disordered scaffold proteins. Interactions of IQDs and TRMs with multiple binding partners, including the microtubule severing KATANIN1, may provide a molecular framework to coordinate PPB formation, maturation, and disassembly.
Collapse
Affiliation(s)
- Pradeep Dahiya
- Leibniz Institute of Plant Biochemistry, Dept. of Molecular Signal Processing, 06120 Halle/Saale, Germany
| | - Katharina Bürstenbinder
- Leibniz Institute of Plant Biochemistry, Dept. of Molecular Signal Processing, 06120 Halle/Saale, Germany.
| |
Collapse
|
13
|
Bellinger MA, Uyehara AN, Allsman L, Martinez P, McCarthy MC, Rasmussen CG. Cortical microtubules contribute to division plane positioning during telophase in maize. THE PLANT CELL 2023; 35:1496-1512. [PMID: 36753568 PMCID: PMC10118269 DOI: 10.1093/plcell/koad033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Cell divisions are accurately positioned to generate cells of the correct size and shape. In plant cells, the new cell wall is built in the middle of the cell by vesicles trafficked along an antiparallel microtubule and a microfilament array called the phragmoplast. The phragmoplast expands toward a specific location at the cell cortex called the division site, but how it accurately reaches the division site is unclear. We observed microtubule arrays that accumulate at the cell cortex during the telophase transition in maize (Zea mays) leaf epidermal cells. Before the phragmoplast reaches the cell cortex, these cortical-telophase microtubules transiently interact with the division site. Increased microtubule plus end capture and pausing occur when microtubules contact the division site-localized protein TANGLED1 or other closely associated proteins. Microtubule capture and pausing align the cortical microtubules perpendicular to the division site during telophase. Once the phragmoplast reaches the cell cortex, cortical-telophase microtubules are incorporated into the phragmoplast primarily by parallel bundling. The addition of microtubules into the phragmoplast promotes fine-tuning of the positioning at the division site. Our hypothesis is that division site-localized proteins such as TANGLED1 organize cortical microtubules during telophase to mediate phragmoplast positioning at the final division plane.
Collapse
Affiliation(s)
- Marschal A Bellinger
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Aimee N Uyehara
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Lindy Allsman
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Pablo Martinez
- Biochemistry Graduate Group, University of California, Riverside, CA 92508, USA
| | | | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
- Biochemistry Graduate Group, University of California, Riverside, CA 92508, USA
| |
Collapse
|
14
|
Yadav A. Charting the course of asymmetric cell division in maize: The crucial role of OPAQUE1 in guiding the phragmoplast. THE PLANT CELL 2023:koad104. [PMID: 37032442 DOI: 10.1093/plcell/koad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Affiliation(s)
- Arpita Yadav
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists, USA
- Biology Department, University of Massachusetts Amherst, MA 01003, USA
| |
Collapse
|
15
|
Uyehara AN, Rasmussen CG. Redundant mechanisms in division plane positioning. Eur J Cell Biol 2023; 102:151308. [PMID: 36921356 DOI: 10.1016/j.ejcb.2023.151308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Redundancies in plant cell division contribute to the maintenance of proper division plane orientation. Here we highlight three types of redundancy: 1) Temporal redundancy, or correction of earlier defects that results in proper final positioning, 2) Genetic redundancy, or functional compensation by homologous genes, and 3) Synthetic redundancy, or redundancy within or between pathways that contribute to proper division plane orientation. Understanding the types of redundant mechanisms involved provides insight into current models of division plane orientation and opens up new avenues for exploration.
Collapse
Affiliation(s)
- Aimee N Uyehara
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, USA
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, USA.
| |
Collapse
|
16
|
Müller S. Assessment of Spindle Shape Control by Spindle Poleward Flux Measurements and FRAP Bulk Analysis. Methods Mol Biol 2023; 2604:113-125. [PMID: 36773229 DOI: 10.1007/978-1-0716-2867-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
In plants, the segregation of genetic material is achieved by an acentrosomal, mitotic spindle. This macromolecular machinery consists of different microtubule subpopulations and interacting proteins. The majority of what we know about the assembly and shape control of the mitotic spindle arose from vertebrate model systems. The dynamic properties of the individual tubulin polymers are crucial for the accurate assembly of the spindle array and are modulated by microtubule-associated motor and non-motor proteins. The mitotic spindle relies on a phenomenon called poleward microtubule flux that is critical to establish spindle shape, chromosome alignment, and segregation. This flux is under control of the non-motor microtubule-associated proteins and force-generating motors. Despite the large number of (plant-specific) kinesin motor proteins expressed during mitosis, their mitotic roles remain largely elusive. Moreover, reports on mitotic spindle formation and shape control in higher plants are scarce. In this chapter, an overview of the basic principles and methods concerning live imaging of prometa- and metaphase spindles and the analysis of spindle microtubule flux using fluorescence recovery after photobleaching is provided.
Collapse
Affiliation(s)
- Sabine Müller
- Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
17
|
van der Zanden SY, Jongsma MLM, Neefjes ACM, Berlin I, Neefjes J. Maintaining soluble protein homeostasis between nuclear and cytoplasmic compartments across mitosis. Trends Cell Biol 2023; 33:18-29. [PMID: 35778326 DOI: 10.1016/j.tcb.2022.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 12/27/2022]
Abstract
The nuclear envelope (NE) is central to the architecture of eukaryotic cells, both as a physical barrier separating the nucleus from the cytoplasm and as gatekeeper of selective transport between them. However, in open mitosis, the NE fragments to allow for spindle formation and segregation of chromosomes, resulting in intermixing of nuclear and cytoplasmic soluble fractions. Recent studies have shed new light on the mechanisms driving reinstatement of soluble proteome homeostasis following NE reformation in daughter cells. Here, we provide an overview of how mitotic cells confront this challenge to ensure continuity of basic cellular functions across generations and elaborate on the implications for the proteasome - a macromolecular machine that functions in both cytoplasmic and nuclear compartments.
Collapse
Affiliation(s)
- Sabina Y van der Zanden
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center LUMC, 2333, ZC, Leiden, The Netherlands
| | - Marlieke L M Jongsma
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center LUMC, 2333, ZC, Leiden, The Netherlands
| | - Anna C M Neefjes
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center LUMC, 2333, ZC, Leiden, The Netherlands
| | - Ilana Berlin
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center LUMC, 2333, ZC, Leiden, The Netherlands.
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center LUMC, 2333, ZC, Leiden, The Netherlands.
| |
Collapse
|
18
|
Zhang D, Spiegelhalder RP, Abrash EB, Nunes TDG, Hidalgo I, Anleu Gil MX, Jesenofsky B, Lindner H, Bergmann DC, Raissig MT. Opposite polarity programs regulate asymmetric subsidiary cell divisions in grasses. eLife 2022; 11:e79913. [PMID: 36537077 PMCID: PMC9767456 DOI: 10.7554/elife.79913] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Grass stomata recruit lateral subsidiary cells (SCs), which are key to the unique stomatal morphology and the efficient plant-atmosphere gas exchange in grasses. Subsidiary mother cells (SMCs) strongly polarise before an asymmetric division forms a SC. Yet apart from a proximal polarity module that includes PANGLOSS1 (PAN1) and guides nuclear migration, little is known regarding the developmental processes that form SCs. Here, we used comparative transcriptomics of developing wild-type and SC-less bdmute leaves in the genetic model grass Brachypodium distachyon to identify novel factors involved in SC formation. This approach revealed BdPOLAR, which forms a novel, distal polarity domain in SMCs that is opposite to the proximal PAN1 domain. Both polarity domains are required for the formative SC division yet exhibit various roles in guiding pre-mitotic nuclear migration and SMC division plane orientation, respectively. Nonetheless, the domains are linked as the proximal domain controls polarisation of the distal domain. In summary, we identified two opposing polarity domains that coordinate the SC division, a process crucial for grass stomatal physiology.
Collapse
Affiliation(s)
- Dan Zhang
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | | | - Emily B Abrash
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Tiago DG Nunes
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Inés Hidalgo
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | | | - Barbara Jesenofsky
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Heike Lindner
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
- Institute of Plant Sciences, University of BernBernSwitzerland
| | - Dominique C Bergmann
- Department of Biology, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Michael T Raissig
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
- Institute of Plant Sciences, University of BernBernSwitzerland
| |
Collapse
|
19
|
Feiguelman G, Cui X, Sternberg H, Hur EB, Higa T, Oda Y, Fu Y, Yalovsky S. Microtubule-associated ROP interactors affect microtubule dynamics and modulate cell wall patterning and root hair growth. Development 2022; 149:279331. [PMID: 36314989 PMCID: PMC9845754 DOI: 10.1242/dev.200811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022]
Abstract
Rho of plant (ROP) proteins and the interactor of constitutively active ROP (ICR) family member ICR5/MIDD1 have been implicated to function as signaling modules that regulate metaxylem secondary cell wall patterning. Yet, loss-of-function mutants of ICR5 and its closest homologs have not been studied and, hence, the functions of these ICR family members are not fully established. Here, we studied the functions of ICR2 and its homolog ICR5. We show that ICR2 is a microtubule-associated protein that affects microtubule dynamics. Secondary cell wall pits in the metaxylem of Arabidopsis icr2 and icr5 single mutants and icr2 icr5 double mutants are smaller than those in wild-type Col-0 seedlings; however, they are remarkably denser, implying a complex function of ICRs in secondary cell wall patterning. ICR5 has a unique function in protoxylem secondary cell wall patterning, whereas icr2, but not icr5, mutants develop split root hairs, demonstrating functional diversification. Taken together, our results show that ICR2 and ICR5 have unique and cooperative functions as microtubule-associated proteins and as ROP effectors.
Collapse
Affiliation(s)
- Gil Feiguelman
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Xiankui Cui
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hasana Sternberg
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eliran Ben Hur
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Takeshi Higa
- Department of Gene Phenomics and Function, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Yoshihisa Oda
- Department of Gene Phenomics and Function, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan,Department of Genetics, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China,Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, Beijing 100193, China
| | - Shaul Yalovsky
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel,Author for correspondence (; )
| |
Collapse
|
20
|
Mills AM, Morris VH, Rasmussen CG. The localization of PHRAGMOPLAST ORIENTING KINESIN1 at the division site depends on the microtubule-binding proteins TANGLED1 and AUXIN-INDUCED IN ROOT CULTURES9 in Arabidopsis. THE PLANT CELL 2022; 34:4583-4599. [PMID: 36005863 PMCID: PMC9614452 DOI: 10.1093/plcell/koac266] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/08/2022] [Indexed: 05/04/2023]
Abstract
Proper plant growth and development require spatial coordination of cell divisions. Two unrelated microtubule-binding proteins, TANGLED1 (TAN1) and AUXIN-INDUCED IN ROOT CULTURES9 (AIR9), are together required for normal growth and division plane orientation in Arabidopsis (Arabidopsis thaliana). The tan1 air9 double mutant has synthetic growth and division plane orientation defects, while single mutants lack obvious defects. Here we show that the division site-localized protein, PHRAGMOPLAST ORIENTING KINESIN1 (POK1), was aberrantly lost from the division site during metaphase and telophase in the tan1 air9 mutant. Since TAN1 and POK1 interact via the first 132 amino acids of TAN1 (TAN11-132), we assessed the localization and function of TAN11-132 in the tan1 air9 double mutant. TAN11-132 rescued tan1 air9 mutant phenotypes and localized to the division site during telophase. However, replacing six amino-acid residues within TAN11-132, which disrupted the POK1-TAN1 interaction in the yeast-two-hybrid system, caused loss of both rescue and division site localization of TAN11-132 in the tan1 air9 mutant. Full-length TAN1 with the same alanine substitutions had defects in phragmoplast guidance and reduced TAN1 and POK1 localization at the division site but rescued most tan1 air9 mutant phenotypes. Together, these data suggest that TAN1 and AIR9 are required for POK1 localization, and yet unknown proteins may stabilize TAN1-POK1 interactions.
Collapse
Affiliation(s)
- Alison M Mills
- Graduate Group in Biochemistry and Molecular Biology, University of California, Riverside, California, USA
| | - Victoria H Morris
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, California, USA
| | - Carolyn G Rasmussen
- Graduate Group in Biochemistry and Molecular Biology, University of California, Riverside, California, USA
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, California, USA
| |
Collapse
|
21
|
Mills AM, Rasmussen CG. Defects in division plane positioning in the root meristematic zone affect cell organization in the differentiation zone. J Cell Sci 2022; 135:jcs260127. [PMID: 36074053 PMCID: PMC9658997 DOI: 10.1242/jcs.260127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022] Open
Abstract
Cell-division-plane orientation is critical for plant and animal development and growth. TANGLED1 (TAN1) and AUXIN-INDUCED IN ROOT CULTURES 9 (AIR9) are division-site-localized microtubule-binding proteins required for division-plane positioning. The single mutants tan1 and air9 of Arabidopsis thaliana have minor or no noticeable phenotypes, but the tan1 air9 double mutant has synthetic phenotypes including stunted growth, misoriented divisions and aberrant cell-file rotation in the root differentiation zone. These data suggest that TAN1 plays a role in non-dividing cells. To determine whether TAN1 is required in elongating and differentiating cells in the tan1 air9 double mutant, we limited its expression to actively dividing cells using the G2/M-specific promoter of the syntaxin KNOLLE (pKN:TAN1-YFP). Unexpectedly, in addition to rescuing division-plane defects, expression of pKN:TAN1-YFP rescued root growth and cell file rotation defects in the root-differentiation zone in tan1 air9 double mutants. This suggests that defects that occur in the meristematic zone later affect the organization of elongating and differentiating cells.
Collapse
Affiliation(s)
| | - Carolyn G. Rasmussen
- Graduate Group in Biochemistry and Molecular Biology
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
22
|
Glanc M. Plant cell division from the perspective of polarity. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5361-5371. [PMID: 35604840 DOI: 10.1093/jxb/erac227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The orientation of cell division is a major determinant of plant morphogenesis. In spite of considerable efforts over the past decades, the precise mechanism of division plane selection remains elusive. The majority of studies on the topic have addressed division orientation from either a predominantly developmental or a cell biological perspective. Thus, mechanistic insights into the links between developmental and cellular factors affecting division orientation are particularly lacking. Here, I review recent progress in the understanding of cell division orientation in the embryo and primary root meristem of Arabidopsis from both developmental and cell biological standpoints. I offer a view of multilevel polarity as a central aspect of cell division: on the one hand, the division plane is a readout of tissue- and organism-wide polarities; on the other hand, the cortical division zone can be seen as a transient polar subcellular plasma membrane domain. Finally, I argue that a polarity-focused conceptual framework and the integration of developmental and cell biological approaches hold great promise to unravel the mechanistic basis of plant cell division orientation in the near future.
Collapse
Affiliation(s)
- Matouš Glanc
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
23
|
Cai G. The legacy of kinesins in the pollen tube thirty years later. Cytoskeleton (Hoboken) 2022; 79:8-19. [PMID: 35766009 PMCID: PMC9542081 DOI: 10.1002/cm.21713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/06/2022] [Accepted: 06/27/2022] [Indexed: 11/10/2022]
Abstract
The pollen tube is fundamental in the reproduction of seed plants. Particularly in angiosperms, we now have much information about how it grows, how it senses extracellular signals, and how it converts them into a directional growth mechanism. The expansion of the pollen tube is also related to dynamic cytoplasmic processes based on the cytoskeleton (such as polymerization/depolymerization of microtubules and actin filaments) or motor activity along with the two cytoskeletal systems and is dependent on motor proteins. While a considerable amount of information is available for the actomyosin system in the pollen tube, the role of microtubules in the transport of organelles or macromolecular structures is still quite uncertain despite that 30 years ago the first work on the presence of kinesins in the pollen tube was published. Since then, progress has been made in elucidating the role of kinesins in plant cells. However, their role within the pollen tube is still enigmatic. In this review, I will postulate some roles of kinesins in the pollen tube 30 years after their initial discovery based on information obtained in other plant cells in the meantime. The most concrete hypotheses predict that kinesins in the pollen tube enable the short movement of specific organelles or contribute to generative cell or sperm cell transport, as well as mediate specific steps in the process of endocytosis.
Collapse
Affiliation(s)
- Giampiero Cai
- Dipartimento Scienze della Vita, Università di Siena, via Mattioli 4, Siena, Italy
| |
Collapse
|
24
|
Yi P, Goshima G. Division site determination during asymmetric cell division in plants. THE PLANT CELL 2022; 34:2120-2139. [PMID: 35201345 PMCID: PMC9134084 DOI: 10.1093/plcell/koac069] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/20/2022] [Indexed: 05/19/2023]
Abstract
During development, both animals and plants exploit asymmetric cell division (ACD) to increase tissue complexity, a process that usually generates cells dissimilar in size, morphology, and fate. Plants lack the key regulators that control ACD in animals. Instead, plants have evolved two unique cytoskeletal structures to tackle this problem: the preprophase band (PPB) and phragmoplast. The assembly of the PPB and phragmoplast and their contributions to division plane orientation have been extensively studied. However, how the division plane is positioned off the cell center during asymmetric division is poorly understood. Over the past 20 years, emerging evidence points to a critical role for polarly localized membrane proteins in this process. Although many of these proteins are species- or cell type specific, and the molecular mechanism underlying division asymmetry is not fully understood, common features such as morphological changes in cells, cytoskeletal dynamics, and nuclear positioning have been observed. In this review, we provide updates on polarity establishment and nuclear positioning during ACD in plants. Together with previous findings about symmetrically dividing cells and the emerging roles of developmental cues, we aim to offer evolutionary insight into a common framework for asymmetric division-site determination and highlight directions for future work.
Collapse
Affiliation(s)
- Peishan Yi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Gohta Goshima
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba 517-0004, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya Aichi 464-8602, Japan
| |
Collapse
|
25
|
Spindle motility skews division site determination during asymmetric cell division in Physcomitrella. Nat Commun 2022; 13:2488. [PMID: 35513464 PMCID: PMC9072379 DOI: 10.1038/s41467-022-30239-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 04/21/2022] [Indexed: 01/09/2023] Open
Abstract
Asymmetric cell division (ACD) underlies the development of multicellular organisms. In animal ACD, the cell division site is determined by active spindle-positioning mechanisms. In contrast, it is considered that the division site in plants is determined prior to mitosis by the microtubule-actin belt known as the preprophase band (PPB) and that the localization of the mitotic spindle is typically static and does not govern the division plane. However, in some plant species, ACD occurs in the absence of PPB. Here, we isolate a hypomorphic mutant of the conserved microtubule-associated protein TPX2 in the moss Physcomitrium patens (Physcomitrella) and observe spindle motility during PPB-independent cell division. This defect compromises the position of the division site and produces inverted daughter cell sizes in the first ACD of gametophore (leafy shoot) development. The phenotype is rescued by restoring endogenous TPX2 function and, unexpectedly, by depolymerizing actin filaments. Thus, we identify an active spindle-positioning mechanism that, reminiscent of acentrosomal ACD in animals, involves microtubules and actin filaments, and sets the division site in plants.
Collapse
|
26
|
Arabidopsis pavement cell shape formation involves spatially confined ROPGAP regulators. Curr Biol 2022; 32:532-544.e7. [PMID: 35085497 DOI: 10.1016/j.cub.2021.12.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/16/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022]
Abstract
In many plant species, pavement cell development relies on the coordinated formation of interdigitating lobes and indentations. Polarity signaling via the activity of antagonistic Rho-related GTPases from plants (ROPs) was implicated in pavement cell development, but the spatiotemporal regulation remained unclear. Here, we report on the role of the PLECKSTRIN HOMOLOGY GTPase ACTIVATING PROTEINS (PHGAPS) during multipolar growth in pavement cell shape establishment. Loss of function in phgap1phgap2 double mutants severely affected the shape of Arabidopsis leaf epidermal pavement cells. Predominantly, PHGAPs interacted with ROP2 and displayed a distinct and microtubule-dependent enrichment along the anticlinal cell face and transfacial boundary of pavement cell indentation regions. This localization was established upon undulation initiation and was maintained throughout the expansion of the cell. Our data suggest that PHGAP1/REN2 and PHGAP2/REN3 are key players in the establishment of ROP2 activity gradients and underscore the importance of locally controlled ROP activity for the orchestrated establishment of multipolarity in epidermal cells.
Collapse
|
27
|
Naramoto S, Hata Y, Fujita T, Kyozuka J. The bryophytes Physcomitrium patens and Marchantia polymorpha as model systems for studying evolutionary cell and developmental biology in plants. THE PLANT CELL 2022; 34:228-246. [PMID: 34459922 PMCID: PMC8773975 DOI: 10.1093/plcell/koab218] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/25/2021] [Indexed: 05/03/2023]
Abstract
Bryophytes are nonvascular spore-forming plants. Unlike in flowering plants, the gametophyte (haploid) generation of bryophytes dominates the sporophyte (diploid) generation. A comparison of bryophytes with flowering plants allows us to answer some fundamental questions raised in evolutionary cell and developmental biology. The moss Physcomitrium patens was the first bryophyte with a sequenced genome. Many cell and developmental studies have been conducted in this species using gene targeting by homologous recombination. The liverwort Marchantia polymorpha has recently emerged as an excellent model system with low genomic redundancy in most of its regulatory pathways. With the development of molecular genetic tools such as efficient genome editing, both P. patens and M. polymorpha have provided many valuable insights. Here, we review these advances with a special focus on polarity formation at the cell and tissue levels. We examine current knowledge regarding the cellular mechanisms of polarized cell elongation and cell division, including symmetric and asymmetric cell division. We also examine the role of polar auxin transport in mosses and liverworts. Finally, we discuss the future of evolutionary cell and developmental biological studies in plants.
Collapse
Affiliation(s)
| | - Yuki Hata
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Tomomichi Fujita
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
28
|
Gu Y, Rasmussen CG. Cell biology of primary cell wall synthesis in plants. THE PLANT CELL 2022; 34:103-128. [PMID: 34613413 PMCID: PMC8774047 DOI: 10.1093/plcell/koab249] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/01/2021] [Indexed: 05/07/2023]
Abstract
Building a complex structure such as the cell wall, with many individual parts that need to be assembled correctly from distinct sources within the cell, is a well-orchestrated process. Additional complexity is required to mediate dynamic responses to environmental and developmental cues. Enzymes, sugars, and other cell wall components are constantly and actively transported to and from the plasma membrane during diffuse growth. Cell wall components are transported in vesicles on cytoskeletal tracks composed of microtubules and actin filaments. Many of these components, and additional proteins, vesicles, and lipids are trafficked to and from the cell plate during cytokinesis. In this review, we first discuss how the cytoskeleton is initially organized to add new cell wall material or to build a new cell wall, focusing on similarities during these processes. Next, we discuss how polysaccharides and enzymes that build the cell wall are trafficked to the correct location by motor proteins and through other interactions with the cytoskeleton. Finally, we discuss some of the special features of newly formed cell walls generated during cytokinesis.
Collapse
Affiliation(s)
- Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521
| |
Collapse
|
29
|
Lebecq A, Fangain A, Boussaroque A, Caillaud MC. Dynamic apico-basal enrichment of the F-actin during cytokinesis in Arabidopsis cells embedded in their tissues. QUANTITATIVE PLANT BIOLOGY 2022; 3:e4. [PMID: 37077960 PMCID: PMC10095810 DOI: 10.1017/qpb.2022.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/23/2021] [Accepted: 12/22/2021] [Indexed: 05/03/2023]
Abstract
Cell division is a tightly regulated mechanism, notably in tissues where malfunctions can lead to tumour formation or developmental defects. This is particularly true in land plants, where cells cannot relocate and therefore cytokinesis determines tissue topology. In plants, cell division is executed in radically different manners than in animals, with the appearance of new structures and the disappearance of ancestral mechanisms. Whilst F-actin and microtubules closely co-exist, recent studies mainly focused on the involvement of microtubules in this key process. Here, we used a root tracking system to image the spatio-temporal dynamics of both F-actin reporters and cell division markers in dividing cells embedded in their tissues. In addition to the F-actin accumulation at the phragmoplast, we observed and quantified a dynamic apico-basal enrichment of F-actin from the prophase/metaphase transition until the end of the cytokinesis.
Collapse
Affiliation(s)
- Alexis Lebecq
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
| | - Aurélie Fangain
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
| | - Alice Boussaroque
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
| | - Marie-Cécile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
- Author for correspondence: M.-C. Caillaud, E-mail:
| |
Collapse
|
30
|
Sternberg H, Buriakovsky E, Bloch D, Gutman O, Henis YI, Yalovsky S. Formation of self-organizing functionally distinct Rho of plants domains involves a reduced mobile population. PLANT PHYSIOLOGY 2021; 187:2485-2508. [PMID: 34618086 PMCID: PMC8644358 DOI: 10.1093/plphys/kiab385] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Rho family proteins are central to the regulation of cell polarity in eukaryotes. Rho of Plants-Guanyl nucleotide Exchange Factor (ROPGEF) can form self-organizing polar domains following co-expression with an Rho of Plants (ROP) and an ROP GTPase-Activating Protein (ROPGAP). Localization of ROPs in these domains has not been demonstrated, and the mechanisms underlying domain formation and function are not well understood. Here we show that six different ROPs form self-organizing domains when co-expressed with ROPGEF3 and GAP1 in Nicotiana benthamiana or Arabidopsis (Arabidopsis thaliana). Domain formation was associated with ROP-ROPGEF3 association, reduced ROP mobility, as revealed by time-lapse imaging and Fluorescence Recovery After Photobleaching beam size analysis, and was independent of Rho GTP Dissociation Inhibitor mediated recycling. The domain formation depended on the ROPs' activation/inactivation cycles and interaction with anionic lipids via a C-terminal polybasic domain. Coexpression with the microtubule-associated protein ROP effector INTERACTOR OF CONSTITUTIVELY ACTIVE ROP 1 (ICR1) revealed differential function of the ROP domains in the ability to recruit ICR1. Taken together, the results reveal mechanisms underlying self-organizing ROP domain formation and function.
Collapse
Affiliation(s)
- Hasana Sternberg
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ella Buriakovsky
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daria Bloch
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Orit Gutman
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yoav I Henis
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shaul Yalovsky
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
31
|
Wang J, Li X, Guo T, Dzievit MJ, Yu X, Liu P, Price KP, Yu J. Genetic dissection of seasonal vegetation index dynamics in maize through aerial based high-throughput phenotyping. THE PLANT GENOME 2021; 14:e20155. [PMID: 34596348 DOI: 10.1002/tpg2.20155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Plant phenotyping under field conditions plays an important role in agricultural research. Efficient and accurate high-throughput phenotyping strategies enable a better connection between genotype and phenotype. Unmanned aerial vehicle-based high-throughput phenotyping platforms (UAV-HTPPs) provide novel opportunities for large-scale proximal measurement of plant traits with high efficiency, high resolution, and low cost. The objective of this study was to use time series normalized difference vegetation index (NDVI) extracted from UAV-based multispectral imagery to characterize its pattern across development and conduct genetic dissection of NDVI in a large maize population. The time series NDVI data from the multispectral sensor were obtained at five time points across the growing season for 1,752 diverse maize accessions with a UAV-HTPP. Cluster analysis of the acquired measurements classified 1,752 maize accessions into two groups with distinct NDVI developmental trends. To capture the dynamics underlying these static observations, penalized-splines (P-splines) model was used to obtain genotype-specific curve parameters. Genome-wide association study (GWAS) using static NDVI values and curve parameters as phenotypic traits detected signals significantly associated with the traits. Additionally, GWAS using the projected NDVI values from the P-splines models revealed the dynamic change of genetic effects, indicating the role of gene-environment interplay in controlling NDVI across the growing season. Our results demonstrated the utility of ultra-high spatial resolution multispectral imagery, as that acquired using a UAV-based remote sensing, for genetic dissection of NDVI.
Collapse
Affiliation(s)
- Jinyu Wang
- Dep. of Agronomy, Iowa State Univ., Ames, IA, 50011, USA
| | - Xianran Li
- Dep. of Agronomy, Iowa State Univ., Ames, IA, 50011, USA
| | - Tingting Guo
- Dep. of Agronomy, Iowa State Univ., Ames, IA, 50011, USA
| | | | - Xiaoqing Yu
- Dep. of Agronomy, Iowa State Univ., Ames, IA, 50011, USA
| | - Peng Liu
- Dep. of Statistics, Iowa State Univ., Ames, IA, 50011, USA
| | | | - Jianming Yu
- Dep. of Agronomy, Iowa State Univ., Ames, IA, 50011, USA
| |
Collapse
|
32
|
Li Z, Sela A, Fridman Y, Garstka L, Höfte H, Savaldi-Goldstein S, Wolf S. Optimal BR signalling is required for adequate cell wall orientation in the Arabidopsis root meristem. Development 2021; 148:273348. [PMID: 34739031 PMCID: PMC8627601 DOI: 10.1242/dev.199504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022]
Abstract
Plant brassinosteroid hormones (BRs) regulate growth in part through altering the properties of the cell wall, the extracellular matrix of plant cells. Conversely, feedback signalling from the wall connects the state of cell wall homeostasis to the BR receptor complex and modulates BR activity. Here, we report that both pectin-triggered cell wall signalling and impaired BR signalling result in altered cell wall orientation in the Arabidopsis root meristem. Furthermore, both depletion of endogenous BRs and exogenous supply of BRs triggered these defects. Cell wall signalling-induced alterations in the orientation of newly placed walls appear to occur late during cytokinesis, after initial positioning of the cortical division zone. Tissue-specific perturbations of BR signalling revealed that the cellular malfunction is unrelated to previously described whole organ growth defects. Thus, tissue type separates the pleiotropic effects of cell wall/BR signals and highlights their importance during cell wall placement. Summary: Both increased and reduced BR signalling strength results in altered cell wall orientation in the Arabidopsis root, uncoupled from whole-root growth control.
Collapse
Affiliation(s)
- Zhenni Li
- Department of Cell Biology, Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Ayala Sela
- Plant Biology Laboratory, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yulia Fridman
- Plant Biology Laboratory, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Lucía Garstka
- Department of Cell Biology, Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Herman Höfte
- Department of Development, Signalling, and Modelling, Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | | | - Sebastian Wolf
- Department of Cell Biology, Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.,Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, D-72076 Tübingen, Germany
| |
Collapse
|
33
|
The Arabidopsis thaliana Kinesin-5 AtKRP125b Is a Processive, Microtubule-Sliding Motor Protein with Putative Plant-Specific Functions. Int J Mol Sci 2021; 22:ijms222111361. [PMID: 34768803 PMCID: PMC8583919 DOI: 10.3390/ijms222111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/02/2022] Open
Abstract
The formation and maintenance of the mitotic spindle during cell division requires several microtubule-interacting motor proteins. Members of the kinesin-5 family play an essential role in the bipolar organization of the spindle. These highly conserved, homotetrameric proteins cross-link anti-parallel microtubules and slide them apart to elongate the spindle during the equal separation of chromosomes. Whereas vertebrate kinesin-5 proteins are well studied, knowledge about the biochemical properties and the function of plant kinesin-5 proteins is still limited. Here, we characterized the properties of AtKRP125b, one of four kinesin-5 proteins in Arabidopsis thaliana. In in vitro motility assays, AtKRP125b displayed the archetypal characteristics of a kinesin-5 protein, a low velocity of about 20 nm·s−1, and a plus end-directed, processive movement. Moreover, AtKRP125b was able to cross-link microtubules and to slide them apart, as required for developing and maintaining the mitotic spindle. In line with such a function, GFP-AtKRP125b fusion proteins were predominantly detected in the nucleus when expressed in Arabidopsis thaliana leaf protoplasts or Nicotiana benthamiana epidermis cells and analyzed by confocal microscopy. However, we also detected GFP signals in the cytoplasm, suggesting additional functions. By generating and analyzing AtKRP125b promoter-reporter lines, we showed that the AtKRP125b promoter was active in the vascular tissue of roots, lateral roots, cotyledons, and true leaves. Remarkably, we could not detect promoter activity in meristematic tissues. Taken together, our biochemical data support a role of AtKRP125b in mitosis, but it may also have additional functions outside the nucleus and during interphase.
Collapse
|
34
|
Zhang L, Smertenko T, Fahy D, Koteyeva N, Moroz N, Kuchařová A, Novák D, Manoilov E, Smertenko P, Galva C, Šamaj J, Kostyukova AS, Sedbrook JC, Smertenko A. Analysis of formin functions during cytokinesis using specific inhibitor SMIFH2. PLANT PHYSIOLOGY 2021; 186:945-963. [PMID: 33620500 PMCID: PMC8195507 DOI: 10.1093/plphys/kiab085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/03/2021] [Indexed: 05/10/2023]
Abstract
The phragmoplast separates daughter cells during cytokinesis by constructing the cell plate, which depends on interaction between cytoskeleton and membrane compartments. Proteins responsible for these interactions remain unknown, but formins can link cytoskeleton with membranes and several members of formin protein family localize to the cell plate. Progress in functional characterization of formins in cytokinesis is hindered by functional redundancies within the large formin gene family. We addressed this limitation by employing Small Molecular Inhibitor of Formin Homology 2 (SMIFH2), a small-molecule inhibitor of formins. Treatment of tobacco (Nicotiana tabacum) tissue culture cells with SMIFH2 perturbed localization of actin at the cell plate; slowed down both microtubule polymerization and phragmoplast expansion; diminished association of dynamin-related proteins with the cell plate independently of actin and microtubules; and caused cell plate swelling. Another impact of SMIFH2 was shortening of the END BINDING1b (EB1b) and EB1c comets on the growing microtubule plus ends in N. tabacum tissue culture cells and Arabidopsis thaliana cotyledon epidermis cells. The shape of the EB1 comets in the SMIFH2-treated cells resembled that of the knockdown mutant of plant Xenopus Microtubule-Associated protein of 215 kDa (XMAP215) homolog MICROTUBULE ORGANIZATION 1/GEMINI 1 (MOR1/GEM1). This outcome suggests that formins promote elongation of tubulin flares on the growing plus ends. Formins AtFH1 (A. thaliana Formin Homology 1) and AtFH8 can also interact with EB1. Besides cytokinesis, formins function in the mitotic spindle assembly and metaphase to anaphase transition. Our data suggest that during cytokinesis formins function in: (1) promoting microtubule polymerization; (2) nucleating F-actin at the cell plate; (3) retaining dynamin-related proteins at the cell plate; and (4) remodeling of the cell plate membrane.
Collapse
Affiliation(s)
- Laining Zhang
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Tetyana Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Deirdre Fahy
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Nuria Koteyeva
- Laboratory of Anatomy and Morphology, Komarov Botanical Institute of Russian Academy of Sciences, St. Petersburg 197376, Russia
| | - Natalia Moroz
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - Anna Kuchařová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
| | - Dominik Novák
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
| | - Eduard Manoilov
- V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv, Ukraine
| | - Petro Smertenko
- V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv, Ukraine
| | - Charitha Galva
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
| | - Alla S. Kostyukova
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - John C. Sedbrook
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| |
Collapse
|
35
|
Kumari P, Dahiya P, Livanos P, Zergiebel L, Kölling M, Poeschl Y, Stamm G, Hermann A, Abel S, Müller S, Bürstenbinder K. IQ67 DOMAIN proteins facilitate preprophase band formation and division-plane orientation. NATURE PLANTS 2021; 7:739-747. [PMID: 34031540 DOI: 10.1038/s41477-021-00923-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 04/16/2021] [Indexed: 05/26/2023]
Abstract
Spatiotemporal control of cell division is essential for the growth and development of multicellular organisms. In plant cells, proper cell plate insertion during cytokinesis relies on the premitotic establishment of the division plane at the cell cortex. Two plant-specific cytoskeleton arrays, the preprophase band (PPB) and the phragmoplast, play important roles in division-plane orientation and cell plate formation, respectively1. Microtubule organization and dynamics and their communication with membranes at the cortex and cell plate are coordinated by multiple, mostly distinct microtubule-associated proteins2. How division-plane selection and establishment are linked, however, is still unknown. Here, we report members of the Arabidopsis IQ67 DOMAIN (IQD) family3 as microtubule-targeted proteins that localize to the PPB and phragmoplast and additionally reside at the cell plate and a polarized cortical region including the cortical division zone (CDZ). IQDs physically interact with PHRAGMOPLAST ORIENTING KINESIN (POK) proteins4,5 and PLECKSTRIN HOMOLOGY GTPase ACTIVATING (PHGAP) proteins6, which are core components of the CDZ1. The loss of IQD function impairs PPB formation and affects CDZ recruitment of POKs and PHGAPs, resulting in division-plane positioning defects. We propose that IQDs act as cellular scaffolds that facilitate PPB formation and CDZ set-up during symmetric cell division.
Collapse
Affiliation(s)
- Pratibha Kumari
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Pradeep Dahiya
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Pantelis Livanos
- Department of Developmental Genetics, Center for Plant Molecular Biology (ZMBP), Tübingen, Germany
| | - Luise Zergiebel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Malte Kölling
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Yvonne Poeschl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Gina Stamm
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Arvid Hermann
- Department of Developmental Genetics, Center for Plant Molecular Biology (ZMBP), Tübingen, Germany
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Sabine Müller
- Department of Developmental Genetics, Center for Plant Molecular Biology (ZMBP), Tübingen, Germany
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany.
| |
Collapse
|
36
|
Martinez P, Dixit R, Balkunde RS, Zhang A, O'Leary SE, Brakke KA, Rasmussen CG. TANGLED1 mediates microtubule interactions that may promote division plane positioning in maize. J Cell Biol 2021; 219:151878. [PMID: 32568386 PMCID: PMC7401798 DOI: 10.1083/jcb.201907184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/17/2019] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
The microtubule cytoskeleton serves as a dynamic structural framework for mitosis in eukaryotic cells. TANGLED1 (TAN1) is a microtubule-binding protein that localizes to the division site and mitotic microtubules and plays a critical role in division plane orientation in plants. Here, in vitro experiments demonstrate that TAN1 directly binds microtubules, mediating microtubule zippering or end-on microtubule interactions, depending on their contact angle. Maize tan1 mutant cells improperly position the preprophase band (PPB), which predicts the future division site. However, cell shape–based modeling indicates that PPB positioning defects are likely a consequence of abnormal cell shapes and not due to TAN1 absence. In telophase, colocalization of growing microtubules ends from the phragmoplast with TAN1 at the division site suggests that TAN1 interacts with microtubule tips end-on. Together, our results suggest that TAN1 contributes to microtubule organization to ensure proper division plane orientation.
Collapse
Affiliation(s)
- Pablo Martinez
- Biochemistry and Molecular Biology Graduate Program, University of California, Riverside, CA
| | - Ram Dixit
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO
| | - Rachappa S Balkunde
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO
| | - Antonia Zhang
- Department of Biochemistry, University of California, Riverside, CA
| | - Seán E O'Leary
- Biochemistry and Molecular Biology Graduate Program, University of California, Riverside, CA.,Department of Biochemistry, University of California, Riverside, CA
| | - Kenneth A Brakke
- Department of Mathematics, Susquehanna University, Selinsgrove, PA
| | - Carolyn G Rasmussen
- Biochemistry and Molecular Biology Graduate Program, University of California, Riverside, CA.,Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA
| |
Collapse
|
37
|
Herrmann A, Livanos P, Zimmermann S, Berendzen K, Rohr L, Lipka E, Müller S. KINESIN-12E regulates metaphase spindle flux and helps control spindle size in Arabidopsis. THE PLANT CELL 2021; 33:27-43. [PMID: 33751090 PMCID: PMC8136872 DOI: 10.1093/plcell/koaa003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/23/2020] [Indexed: 06/12/2023]
Abstract
The bipolar mitotic spindle is a highly conserved structure among eukaryotes that mediates chromosome alignment and segregation. Spindle assembly and size control are facilitated by force-generating microtubule-dependent motor proteins known as kinesins. In animals, kinesin-12 cooperates with kinesin-5 to produce outward-directed forces necessary for spindle assembly. In plants, the relevant molecular mechanisms for spindle formation are poorly defined. While an Arabidopsis thaliana kinesin-5 ortholog has been identified, the kinesin-12 ortholog in plants remains elusive. In this study, we provide experimental evidence for the function of Arabidopsis KINESIN-12E in spindle assembly. In kinesin-12e mutants, a delay in spindle assembly is accompanied by the reduction of spindle size, demonstrating that KINESIN-12E contributes to mitotic spindle architecture. Kinesin-12E localization is mitosis-stage specific, beginning with its perinuclear accumulation during prophase. Upon nuclear envelope breakdown, KINESIN-12E decorates subpopulations of microtubules in the spindle and becomes progressively enriched in the spindle midzone. Furthermore, during cytokinesis, KINESIN-12E shares its localization at the phragmoplast midzone with several functionally diversified Arabidopsis KINESIN-12 members. Changes in the kinetochore and in prophase and metaphase spindle dynamics occur in the absence of KINESIN-12E, suggest it might play an evolutionarily conserved role during spindle formation similar to its spindle-localized animal kinesin-12 orthologs.
Collapse
Affiliation(s)
- Arvid Herrmann
- University of Tübingen, Center for Plant Molecular Biology - Developmental Genetics, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Pantelis Livanos
- University of Tübingen, Center for Plant Molecular Biology - Developmental Genetics, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Steffi Zimmermann
- University of Tübingen, Center for Plant Molecular Biology - Developmental Genetics, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Kenneth Berendzen
- University of Tübingen, Center for Plant Molecular Biology - Developmental Genetics, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Leander Rohr
- University of Tübingen, Center for Plant Molecular Biology - Developmental Genetics, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Elisabeth Lipka
- University of Tübingen, Center for Plant Molecular Biology - Developmental Genetics, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Sabine Müller
- University of Tübingen, Center for Plant Molecular Biology - Developmental Genetics, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| |
Collapse
|
38
|
Serra L, Robinson S. Plant cell divisions: variations from the shortest symmetric path. Biochem Soc Trans 2020; 48:2743-2752. [PMID: 33336690 PMCID: PMC7752081 DOI: 10.1042/bst20200529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023]
Abstract
In plants, the spatial arrangement of cells within tissues and organs is a direct consequence of the positioning of the new cell walls during cell division. Since the nineteenth century, scientists have proposed rules to explain the orientation of plant cell divisions. Most of these rules predict the new wall will follow the shortest path passing through the cell centroid halving the cell into two equal volumes. However, in some developmental contexts, divisions deviate significantly from this rule. In these situations, mechanical stress, hormonal signalling, or cell polarity have been described to influence the division path. Here we discuss the mechanism and subcellular structure required to define the cell division placement then we provide an overview of the situations where division deviates from the shortest symmetric path.
Collapse
Affiliation(s)
- Léo Serra
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, U.K
| | - Sarah Robinson
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, U.K
| |
Collapse
|
39
|
Hertig C, Melzer M, Rutten T, Erbe S, Hensel G, Kumlehn J, Weschke W, Weber H, Thiel J. Barley HISTIDINE KINASE 1 (HvHK1) coordinates transfer cell specification in the young endosperm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1869-1884. [PMID: 32530511 DOI: 10.1111/tpj.14875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Cereal endosperm represents the most important source of the world's food; nevertheless, the molecular mechanisms underlying cell and tissue differentiation in cereal grains remain poorly understood. Endosperm cellularization commences at the maternal-filial intersection of grains and generates endosperm transfer cells (ETCs), a cell type with a prominent anatomy optimized for efficient nutrient transport. Barley HISTIDINE KINASE1 (HvHK1) was identified as a receptor component with spatially restricted expression in the syncytial endosperm where ETCs emerge. Here, we demonstrate its function in ETC fate acquisition using RNA interference-mediated downregulation of HvHK1. Repression of HvHK1 impairs cell specification in the central ETC region and the development of transfer cell morphology, and consecutively defects differentiation of adjacent endosperm tissues. Coinciding with reduced expression of HvHK1, disturbed cell plate formation and fusion were observed at the initiation of endosperm cellularization, revealing that HvHK1 triggers initial cytokinesis of ETCs. Cell-type-specific RNA sequencing confirmed loss of transfer cell identity, compromised cell wall biogenesis and reduced transport capacities in aberrant cells and elucidated two-component signaling and hormone pathways that are mediated by HvHK1. Gene regulatory network modeling was used to specify the direct targets of HvHK1; this predicted non-canonical auxin signaling elements as the main regulatory links governing cellularization of ETCs, potentially through interaction with type-B response regulators. This work provides clues to previously unknown molecular mechanisms directing ETC specification, a process with fundamental impact on grain yield in cereals.
Collapse
Affiliation(s)
- Christian Hertig
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Michael Melzer
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Twan Rutten
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Stephan Erbe
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Götz Hensel
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Jochen Kumlehn
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Winfriede Weschke
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Hans Weber
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Johannes Thiel
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| |
Collapse
|
40
|
Galindo-Trigo S, Grand TM, Voigt CA, Smith LM. A malectin domain kinesin functions in pollen and seed development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1828-1841. [PMID: 31950166 PMCID: PMC7094084 DOI: 10.1093/jxb/eraa023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/13/2020] [Indexed: 05/25/2023]
Abstract
The kinesin family is greatly expanded in plants compared with animals and, with more than a third up-regulated in expression during cell division, it has been suggested that this expansion facilitated complex plant-specific cytoskeletal rearrangements. The cell cycle-regulated kinesins include two with an N-terminal malectin domain, a protein domain that has been shown to bind polysaccharides and peptides when found extracellularly in receptor-like kinases. Although malectin domain kinesins are evolutionarily deep rooted, their function in plants remains unclear. Here we show that loss of MALECTIN DOMAIN KINESIN 2 (MDKIN2) results in stochastic developmental defects in pollen, embryo, and endosperm. High rates of seed abnormalities and abortion occur in mdkin2 mutants through a partial maternal effect. No additive effect or additional developmental defects were noted in mdkin1 mdkin2 double mutants. MDKIN2 is expressed in regions of cell division throughout the plant. Subcellular localization of MDKIN2 indicates a role in cell division, with a possible secondary function in the nuclei. Our results reveal a non-essential but important role for a malectin domain kinesin during development in plants.
Collapse
Affiliation(s)
- Sergio Galindo-Trigo
- Department of Animal and Plant Sciences and The Plant Production and Protection (P3) Centre, University of Sheffield, Western Bank, Sheffield, UK
| | - Thomas M Grand
- Department of Animal and Plant Sciences and The Plant Production and Protection (P3) Centre, University of Sheffield, Western Bank, Sheffield, UK
| | - Christian A Voigt
- Department of Animal and Plant Sciences and The Plant Production and Protection (P3) Centre, University of Sheffield, Western Bank, Sheffield, UK
| | - Lisa M Smith
- Department of Animal and Plant Sciences and The Plant Production and Protection (P3) Centre, University of Sheffield, Western Bank, Sheffield, UK
| |
Collapse
|
41
|
Lundgren MR, Fleming AJ. Cellular perspectives for improving mesophyll conductance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:845-857. [PMID: 31854030 PMCID: PMC7065256 DOI: 10.1111/tpj.14656] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/11/2019] [Indexed: 05/04/2023]
Abstract
After entering the leaf, CO2 faces an intricate pathway to the site of photosynthetic fixation embedded within the chloroplasts. The efficiency of CO2 flux is hindered by a number of structural and biochemical barriers which, together, define the ease of flow of the gas within the leaf, termed mesophyll conductance. Previous authors have identified the key elements of this pathway, raising the prospect of engineering the system to improve CO2 flux and, thus, to increase leaf photosynthetic efficiency. In this review, we provide a perspective on the potential for improving the individual elements that contribute to this complex parameter. We lay particular emphasis on generation of the cellular architecture of the leaf which sets the initial boundaries of a number of mesophyll conductance parameters, incorporating an overview of the molecular transport processes which have been proposed as major facilitators of CO2 flux across structural boundaries along the pathway. The review highlights the research areas where future effort might be invested to increase our fundamental understanding of mesophyll conductance and leaf function and, consequently, to enable translation of these findings to improve the efficiency of crop photosynthesis.
Collapse
Affiliation(s)
| | - Andrew J. Fleming
- Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| |
Collapse
|
42
|
Buschmann H, Müller S. Update on plant cytokinesis: rule and divide. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:97-105. [PMID: 31542698 DOI: 10.1016/j.pbi.2019.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/28/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Many decisions made during plant development depend on the placement of the cytokinetic wall. Cytokinesis involves the biogenesis of the cell plate that progresses centrifugally and until the fusion of the cell plate with the parental cell wall. The phragmoplast facilitates the growth of the cell plate and directs it's insertion at the cell cortex by a mechanism known as phragmoplast guidance. Communication between the phragmoplast and its destination, the cortical division zone, however, is not well understood. The preprophase band predicts the site of cell plate fusion, seemingly controlling the site of the cortical division zone establishment, but recent results suggest the role of this cytoskeletal array to be rather subtle. This is indirectly supported by certain types of phragmoplast-driven cell division in mosses and algae, which lack preprophase bands. In this review article, we summarize recent insight concerning phragmoplast expansion and guidance.
Collapse
Affiliation(s)
| | - Sabine Müller
- Center for Plant Molecular Biology, University of Tübingen, Germany.
| |
Collapse
|
43
|
Phragmoplast Orienting Kinesin 2 Is a Weak Motor Switching between Processive and Diffusive Modes. Biophys J 2019; 115:375-385. [PMID: 30021112 DOI: 10.1016/j.bpj.2018.06.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 11/20/2022] Open
Abstract
Plant development and morphology relies on the accurate insertion of new cell walls during cytokinesis. However, how a plant cell correctly orients a new wall is poorly understood. Two kinesin class-12 members, phragmoplast orienting kinesin 1 (POK1) and POK2, are involved in the process, but how these molecular machines work is not known. Here, we used in vivo and single-molecule in vitro measurements to determine how Arabidopsis thaliana POK2 motors function mechanically. We found that POK2 is a very weak, on average plus-end-directed, moderately fast kinesin. Interestingly, POK2 switches between processive and diffusive modes characterized by an exclusive-state mean-squared-displacement analysis. Our results support a model that POK motors push against peripheral microtubules of the phragmoplast for its guidance. This pushing model may mechanically explain the conspicuous narrowing of the division site. Together, our findings provide mechanical insight into how active motors accurately position new cell walls in plants.
Collapse
|
44
|
Müller S, Livanos P. Plant Kinesin-12: Localization Heterogeneity and Functional Implications. Int J Mol Sci 2019; 20:ijms20174213. [PMID: 31466291 PMCID: PMC6747500 DOI: 10.3390/ijms20174213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 01/17/2023] Open
Abstract
Kinesin-12 family members are characterized by an N-terminal motor domain and the extensive presence of coiled-coil domains. Animal orthologs display microtubule plus-end directed motility, bundling of parallel and antiparallel microtubules, plus-end stabilization, and they play a crucial role in spindle assembly. In plants, kinesin-12 members mediate a number of developmental processes including male gametophyte, embryo, seedling, and seed development. At the cellular level, they participate in critical events during cell division. Several kinesin-12 members localize to the phragmoplast midzone, interact with isoforms of the conserved microtubule cross-linker MICROTUBULE-ASSOCIATED PROTEIN 65 (MAP65) family, and are required for phragmoplast stability and expansion, as well as for proper cell plate development. Throughout cell division, a subset of kinesin-12 reside, in addition or exclusively, at the cortical division zone and mediate the accurate guidance of the phragmoplast. This review aims to summarize the current knowledge on kinesin-12 in plants and shed some light onto the heterogeneous localization and domain architecture, which potentially conceals functional diversification.
Collapse
Affiliation(s)
- Sabine Müller
- Center for Plant Molecular Biology, Auf der Morgenstelle 32, 72076 Tübingen, Germany.
| | - Pantelis Livanos
- Center for Plant Molecular Biology, Auf der Morgenstelle 32, 72076 Tübingen, Germany.
| |
Collapse
|
45
|
Abstract
Plant cells divide their cytoplasmic content by forming a new membrane compartment, the cell plate, via a rerouting of the secretory pathway toward the division plane aided by a dynamic cytoskeletal apparatus known as the phragmoplast. The phragmoplast expands centrifugally and directs the cell plate to the preselected division site at the plasma membrane to fuse with the parental wall. The division site is transiently decorated by the cytoskeletal preprophase band in preprophase and prophase, whereas a number of proteins discovered over the last decade reside continuously at the division site and provide a lasting spatial reference for phragmoplast guidance. Recent studies of membrane fusion at the cell plate have revealed the contribution of functionally conserved eukaryotic proteins to distinct stages of cell plate biogenesis and emphasize the coupling of cell plate formation with phragmoplast expansion. Together with novel findings concerning preprophase band function and the setup of the division site, cytokinesis and its spatial control remain an open-ended field with outstanding and challenging questions to resolve.
Collapse
Affiliation(s)
- Pantelis Livanos
- Department of Developmental Genetics, Center for Plant Molecular Biology, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany; ,
| | - Sabine Müller
- Department of Developmental Genetics, Center for Plant Molecular Biology, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany; ,
| |
Collapse
|
46
|
Plant cell division - defining and finding the sweet spot for cell plate insertion. Curr Opin Cell Biol 2019; 60:9-18. [PMID: 30999231 DOI: 10.1016/j.ceb.2019.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/09/2019] [Accepted: 03/12/2019] [Indexed: 12/13/2022]
Abstract
The plant microtubules form unique arrays using acentrosomal microtubule nucleation pathways, yet utilizing evolutionary conserved centrosomal proteins. In cytokinesis, a multi-component cytoskeletal apparatus, the phragmoplast mediates the biosynthesis of the new cell plate by dynamic centrifugal expansion, a process that demands exquisite coordination of microtubule turnover and endomembrane trafficking. At the same time, the phragmoplast is guided to meet with the parental wall at a cortical site that is predefined before mitotic entry and transiently marked by the preprophase band of microtubules. The cortical division zone maintains positional information of the selected division plane for the entire duration of cell division and for the guidance of the phragmoplast during cytokinesis. Its establishment is an essential requirement for normal plant organogenesis, due to the confinement of cells by rigid cell walls.
Collapse
|
47
|
Gorshkov O, Chernova T, Mokshina N, Gogoleva N, Suslov D, Tkachenko A, Gorshkova T. Intrusive Growth of Phloem Fibers in Flax Stem: Integrated Analysis of miRNA and mRNA Expression Profiles. PLANTS (BASEL, SWITZERLAND) 2019; 8:E47. [PMID: 30791461 PMCID: PMC6409982 DOI: 10.3390/plants8020047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/21/2022]
Abstract
Phloem fibers are important elements of plant architecture and the target product of many fiber crops. A key stage in fiber development is intrusive elongation, the mechanisms of which are largely unknown. Integrated analysis of miRNA and mRNA expression profiles in intrusivelygrowing fibers obtained by laser microdissection from flax (Linum usitatissimum L.) stem revealed all 124 known flax miRNA from 23 gene families and the potential targets of differentially expressed miRNAs. A comparison of the expression between phloem fibers at different developmental stages, and parenchyma and xylem tissues demonstrated that members of miR159, miR166, miR167, miR319, miR396 families were down-regulated in intrusively growing fibers. Some putative target genes of these miRNA families, such as those putatively encoding growth-regulating factors, an argonaute family protein, and a homeobox-leucine zipper family protein were up-regulated in elongating fibers. miR160, miR169, miR390, and miR394 showed increased expression. Changes in the expression levels of miRNAs and their target genes did not match expectations for the majority of predicted target genes. Taken together, poorly understood intrusive fiber elongation, the key process of phloem fiber development, was characterized from a miRNA-target point of view, giving new insights into its regulation.
Collapse
Affiliation(s)
- Oleg Gorshkov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia.
| | - Tatyana Chernova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia.
| | - Natalia Mokshina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia.
| | - Natalia Gogoleva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia.
- Laboratory of Extreme Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlyovskaya Str., 18, 420021 Kazan, Russia.
| | - Dmitry Suslov
- Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universiteskaya emb., 7/9, 199034 Saint Petersburg, Russia.
| | - Alexander Tkachenko
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Universiteskaya emb., 7/9, 199034 Saint Petersburg, Russia.
| | - Tatyana Gorshkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia.
| |
Collapse
|
48
|
Tang H, de Keijzer J, Overdijk EJR, Sweep E, Steentjes M, Vermeer JEM, Janson ME, Ketelaar T. Exocyst subunit Sec6 is positioned by microtubule overlaps in the moss phragmoplast prior to cell plate membrane arrival. J Cell Sci 2019; 132:jcs222430. [PMID: 30635445 DOI: 10.1242/jcs.222430] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022] Open
Abstract
During plant cytokinesis a radially expanding membrane-enclosed cell plate is formed from fusing vesicles that compartmentalizes the cell in two. How fusion is spatially restricted to the site of cell plate formation is unknown. Aggregation of cell-plate membrane starts near regions of microtubule overlap within the bipolar phragmoplast apparatus of the moss Physcomitrella patens Since vesicle fusion generally requires coordination of vesicle tethering and subsequent fusion activity, we analyzed the subcellular localization of several subunits of the exocyst, a tethering complex active during plant cytokinesis. We found that the exocyst complex subunit Sec6 but not the Sec3 or Sec5 subunits localized to microtubule overlap regions in advance of cell plate construction in moss. Moreover, Sec6 exhibited a conserved physical interaction with an ortholog of the Sec1/Munc18 protein KEULE, an important regulator for cell-plate membrane vesicle fusion in Arabidopsis Recruitment of the P. patens protein KEULE and vesicles to the early cell plate was delayed upon Sec6 gene silencing. Our findings, thus, suggest that vesicle-vesicle fusion is, in part, enabled by a pool of exocyst subunits at microtubule overlaps, which is recruited independently of vesicle delivery.
Collapse
Affiliation(s)
- Han Tang
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jeroen de Keijzer
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Elysa J R Overdijk
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Els Sweep
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Maikel Steentjes
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Joop E M Vermeer
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Marcel E Janson
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
49
|
Collum TD, Lutton E, Raines CD, Dardick C, Culver JN. Identification of phloem-associated translatome alterations during leaf development in Prunus domestica L. HORTICULTURE RESEARCH 2019; 6:16. [PMID: 30729006 PMCID: PMC6355854 DOI: 10.1038/s41438-018-0092-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 06/01/2023]
Abstract
Phloem plays a fundamental role in plants by transporting hormones, nutrients, proteins, RNAs, and carbohydrates essential for plant growth and development. However, the identity of the underlying phloem genes and pathways remain enigmatic especially in agriculturally important perennial crops, in part, due to the technical difficulty of phloem sampling. Here, we used two phloem-specific promoters and a translating ribosome affinity purification (TRAP) strategy to characterize the phloem translatome during leaf development at 2, 4, and 6 weeks post vernalization in plum (Prunus domestica L.). Results provide insight into the changing phloem processes that occur during leaf development. These processes included the early activation of DNA replication genes that are likely involved in phloem cell division during leaf expansion, as well as the upregulation of phloem genes associated with sink to source conversion, induction of defense processes, and signaling for reproduction. Combined these results reveal the dynamics of phloem gene expression during leaf development and establish the TRAP system as a powerful tool for studying phloem-specific functions and responses in trees.
Collapse
Affiliation(s)
- Tamara D. Collum
- Institute for Bioscience and Biotechnology Research, College Park, MD USA
| | - Elizabeth Lutton
- USDA-ARS, Appalachian Fruit Research Laboratory, Kearneysville, WV USA
| | - C. Douglas Raines
- USDA-ARS, Appalachian Fruit Research Laboratory, Kearneysville, WV USA
| | | | - James N. Culver
- Institute for Bioscience and Biotechnology Research, College Park, MD USA
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD USA
| |
Collapse
|
50
|
Facette MR, Rasmussen CG, Van Norman JM. A plane choice: coordinating timing and orientation of cell division during plant development. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:47-55. [PMID: 30261337 DOI: 10.1016/j.pbi.2018.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Michelle R Facette
- Department of Biology, University of Massachusetts, Amherst, MA, United States.
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, CA, United States.
| | - Jaimie M Van Norman
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, CA, United States.
| |
Collapse
|