1
|
Porter SS, Dupin SE, Denison RF, Kiers ET, Sachs JL. Host-imposed control mechanisms in legume-rhizobia symbiosis. Nat Microbiol 2024:10.1038/s41564-024-01762-2. [PMID: 39095495 DOI: 10.1038/s41564-024-01762-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/17/2024] [Indexed: 08/04/2024]
Abstract
Legumes are ecologically and economically important plants that contribute to nutrient cycling and agricultural sustainability, features tied to their intimate symbiosis with nitrogen-fixing rhizobia. Rhizobia vary dramatically in quality, ranging from highly growth-promoting to non-beneficial; therefore, legumes must optimize their symbiosis with rhizobia through host mechanisms that select for beneficial rhizobia and limit losses to non-beneficial strains. In this Perspective, we examine the considerable scientific progress made in decoding host control over rhizobia, empirically examining both molecular and cellular mechanisms and their effects on rhizobia symbiosis and its benefits. We consider pre-infection controls, which require the production and detection of precise molecular signals by the legume to attract and select for compatible rhizobia strains. We also discuss post-infection mechanisms that leverage the nodule-level and cell-level compartmentalization of symbionts to enable host control over rhizobia development and proliferation in planta. These layers of host control each contribute to legume fitness by directing host resources towards a narrowing subset of more-beneficial rhizobia.
Collapse
Affiliation(s)
- Stephanie S Porter
- School of Biological Sciences, Washington State University, Vancouver, WA, USA
| | - Simon E Dupin
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - R Ford Denison
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - E Toby Kiers
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joel L Sachs
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
2
|
Saifi F, Biró JB, Horváth B, Vizler C, Laczi K, Rákhely G, Kovács S, Kang M, Li D, Chen Y, Chen R, Domonkos Á, Kaló P. Two members of a Nodule-specific Cysteine-Rich (NCR) peptide gene cluster are required for differentiation of rhizobia in Medicago truncatula nodules. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38923649 DOI: 10.1111/tpj.16871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Legumes have evolved a nitrogen-fixing symbiotic interaction with rhizobia, and this association helps them to cope with the limited nitrogen conditions in soil. The compatible interaction between the host plant and rhizobia leads to the formation of root nodules, wherein internalization and transition of rhizobia into their symbiotic form, termed bacteroids, occur. Rhizobia in the nodules of the Inverted Repeat-Lacking Clade legumes, including Medicago truncatula, undergo terminal differentiation, resulting in elongated and endoreduplicated bacteroids. This transition of endocytosed rhizobia is mediated by a large gene family of host-produced nodule-specific cysteine-rich (NCR) peptides in M. truncatula. Few NCRs have been recently found to be essential for complete differentiation and persistence of bacteroids. Here, we show that a M. truncatula symbiotic mutant FN9285, defective in the complete transition of rhizobia, is deficient in a cluster of NCR genes. More specifically, we show that the loss of the duplicated genes NCR086 and NCR314 in the A17 genotype, found in a single copy in Medicago littoralis R108, is responsible for the ineffective symbiotic phenotype of FN9285. The NCR086 and NCR314 gene pair encodes the same mature peptide but their transcriptional activity varies considerably. Nevertheless, both genes can restore the effective symbiosis in FN9285 indicating that their complementation ability does not depend on the strength of their expression activity. The identification of the NCR086/NCR314 peptide, essential for complete bacteroid differentiation, has extended the list of peptides, from a gene family of several hundred members, that are essential for effective nitrogen-fixing symbiosis in M. truncatula.
Collapse
Affiliation(s)
- Farheen Saifi
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - János Barnabás Biró
- HUN-REN Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
| | - Beatrix Horváth
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Csaba Vizler
- HUN-REN Biological Research Centre, Institute of Biochemistry, Szeged, Hungary
| | - Krisztián Laczi
- HUN-REN Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- HUN-REN Biological Research Centre, Institute of Biophysics, Biological Research Center, Szeged, Hungary
| | - Szilárd Kovács
- HUN-REN Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
| | - Mingming Kang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Dengyao Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yuhui Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Rujin Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Ágota Domonkos
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Péter Kaló
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- HUN-REN Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
| |
Collapse
|
3
|
Semenova MG, Petina AN, Fedorova EE. Autophagy and Symbiosis: Membranes, ER, and Speculations. Int J Mol Sci 2024; 25:2918. [PMID: 38474164 DOI: 10.3390/ijms25052918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The interaction of plants and soil bacteria rhizobia leads to the formation of root nodule symbiosis. The intracellular form of rhizobia, the symbiosomes, are able to perform the nitrogen fixation by converting atmospheric dinitrogen into ammonia, which is available for plants. The symbiosis involves the resource sharing between two partners, but this exchange does not include equivalence, which can lead to resource scarcity and stress responses of one of the partners. In this review, we analyze the possible involvement of the autophagy pathway in the process of the maintenance of the nitrogen-fixing bacteria intracellular colony and the changes in the endomembrane system of the host cell. According to in silico expression analysis, ATG genes of all groups were expressed in the root nodule, and the expression was developmental zone dependent. The analysis of expression of genes involved in the response to carbon or nitrogen deficiency has shown a suboptimal access to sugars and nitrogen in the nodule tissue. The upregulation of several ER stress genes was also detected. Hence, the root nodule cells are under heavy bacterial infection, carbon deprivation, and insufficient nitrogen supply, making nodule cells prone to autophagy. We speculate that the membrane formation around the intracellular rhizobia may be quite similar to the phagophore formation, and the induction of autophagy and ER stress are essential to the success of this process.
Collapse
Affiliation(s)
- Maria G Semenova
- Timiryazev Institute of Plant Physiology, Russian Academy of Science, 127276 Moscow, Russia
| | - Alekandra N Petina
- Timiryazev Institute of Plant Physiology, Russian Academy of Science, 127276 Moscow, Russia
| | - Elena E Fedorova
- Timiryazev Institute of Plant Physiology, Russian Academy of Science, 127276 Moscow, Russia
| |
Collapse
|
4
|
Li Y, Wu Y, Yang Z, Shi R, Zhang L, Feng Z, Wei G, Chou M. The Rpf107 gene, a homolog of LOR, is required for the symbiotic nodulation of Robinia pseudoacacia. PLANTA 2023; 259:6. [PMID: 38001306 DOI: 10.1007/s00425-023-04280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023]
Abstract
MAIN CONCLUSION Rpf107 is involved in the infection process of rhizobia and the maintenance of symbiotic nitrogen fixation in black locust root nodules. The LURP-one related (LOR) protein family plays a pivotal role in mediating plant defense responses against both biotic and abiotic stresses. However, our understanding of its function in the symbiotic interaction between legumes and rhizobia remains limited. Here, Rpf107, a homolog of LOR, was identified in Robinia pseudoacacia (black locust). The subcellular localization of Rpf107 was analyzed, and its function was investigated using RNA interference (RNAi) and overexpression techniques. The subcellular localization assay revealed that Rpf107 was mainly distributed in the plasma membrane and nucleus. Rpf107 silencing prevented rhizobial infection and hampered plant growth. The number of infected cells in the nitrogen fixation zone of the Rpf107-RNAi nodules was also noticeably lower than that in the control nodules. Notably, Rpf107 silencing resulted in bacteroid degradation and the premature aging of nodules. In contrast, the overexpression of Rpf107 delayed the senescence of nodules and prolonged the nitrogen-fixing ability of nodules. These results demonstrate that Rpf107 was involved in the infection of rhizobia and the maintenance of symbiotic nitrogen fixation in black locust root nodules. The findings reveal that a member of the LOR protein family plays a role in leguminous root nodule symbiosis, which is helpful to clarify the functions of plant LOR protein family and fully understand the molecular mechanisms underlying legume-rhizobium symbiosis.
Collapse
Affiliation(s)
- Yuanli Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yuanyuan Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China
- Xiangyang Public Inspection and Testing Center, No.69, Taiziwan Road, Xiangyang, 441000, Hubei Province, People's Republic of China
| | - Ziyi Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Rui Shi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Lu Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Zhao Feng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Gehong Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China
| | - Minxia Chou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
5
|
Zhang D, Wu Q, Zhao Y, Yan Z, Xiao A, Yu H, Cao Y. Dual RNA-Seq Analysis Pinpoints a Balanced Regulation between Symbiosis and Immunity in Medicago truncatula- Sinorhizobium meliloti Symbiotic Nodules. Int J Mol Sci 2023; 24:16178. [PMID: 38003367 PMCID: PMC10671737 DOI: 10.3390/ijms242216178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Legume-rhizobial symbiosis initiates the formation of root nodules, within which rhizobia reside and differentiate into bacteroids to convert nitrogen into ammonium, facilitating plant growth. This process raises a fundamental question: how is plant immunity modulated within nodules when exposed to a substantial number of foreign bacteria? In Medicago truncatula, a mutation in the NAD1 (Nodules with Activated Defense 1) gene exclusively results in the formation of necrotic nodules combined with activated immunity, underscoring the critical role of NAD1 in suppressing immunity within nodules. In this study, we employed a dual RNA-seq transcriptomic technology to comprehensively analyze gene expression from both hosts and symbionts in the nad1-1 mutant nodules at different developmental stages (6 dpi and 10 dpi). We identified 89 differentially expressed genes (DEGs) related to symbiotic nitrogen fixation and 89 DEGs from M. truncatula associated with immunity in the nad1-1 nodules. Concurrently, we identified 27 rhizobial DEGs in the fix and nif genes of Sinorhizobium meliloti. Furthermore, we identified 56 DEGs from S. meliloti that are related to stress responses to ROS and NO. Our analyses of nitrogen fixation-defective plant nad1-1 mutants with overactivated defenses suggest that the host employs plant immunity to regulate the substantial bacterial colonization in nodules. These findings shed light on the role of NAD1 in inhibiting the plant's immune response to maintain numerous rhizobial endosymbiosis in nodules.
Collapse
Affiliation(s)
| | | | | | | | | | - Haixiang Yu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.)
| | - Yangrong Cao
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.)
| |
Collapse
|
6
|
Tsyganova AV, Seliverstova EV, Tsyganov VE. Comparison of the Formation of Plant-Microbial Interface in Pisum sativum L. and Medicago truncatula Gaertn. Nitrogen-Fixing Nodules. Int J Mol Sci 2023; 24:13850. [PMID: 37762151 PMCID: PMC10531038 DOI: 10.3390/ijms241813850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Different components of the symbiotic interface play an important role in providing positional information during rhizobial infection and nodule development: successive changes in cell morphology correspond to subsequent changes in the molecular architecture of the apoplast and the associated surface structures. The localisation and distribution of pectins, xyloglucans, and cell wall proteins in symbiotic nodules of Pisum sativum and Medicago truncatula were studied using immunofluorescence and immunogold analysis in wild-type and ineffective mutant nodules. As a result, the ontogenetic changes in the symbiotic interface in the nodules of both species were described. Some differences in the patterns of distribution of cell wall polysaccharides and proteins between wild-type and mutant nodules can be explained by the activation of defence reaction or premature senescence in mutants. The absence of fucosylated xyloglucan in the cell walls in the P. sativum nodules, as well as its predominant accumulation in the cell walls of uninfected cells in the M. truncatula nodules, and the presence of the rhamnogalacturonan I (unbranched) backbone in meristematic cells in P. sativum can be attributed to the most striking species-specific features of the symbiotic interface.
Collapse
Affiliation(s)
- Anna V. Tsyganova
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg 196608, Russia; (E.V.S.); (V.E.T.)
| | - Elena V. Seliverstova
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg 196608, Russia; (E.V.S.); (V.E.T.)
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg 194223, Russia
| | - Viktor E. Tsyganov
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg 196608, Russia; (E.V.S.); (V.E.T.)
| |
Collapse
|
7
|
Rodriguez-Furlan C, Borna R, Betz O. RAB7 GTPases as coordinators of plant endomembrane traffic. FRONTIERS IN PLANT SCIENCE 2023; 14:1240973. [PMID: 37662169 PMCID: PMC10470000 DOI: 10.3389/fpls.2023.1240973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023]
Abstract
The ras gene from rat brain (RAB) family of small GTPases is highly conserved among eukaryotes and regulates endomembrane trafficking pathways. RAB7, in particular, has been linked to various processes involved in regulating endocytic and autophagic pathways. Plants have several copies of RAB7 proteins that reflect the intricacy of their endomembrane transport systems. RAB7 activity regulates different pathways of endomembrane trafficking in plants: (1) endocytic traffic to the vacuole; (2) biosynthetic traffic to the vacuole; and (3) recycling from the late endosome to the secretory pathway. During certain developmental and stress related processes another pathway becomes activated (4) autophagic trafficking towards the vacuole that is also regulated by RAB7. RAB7s carry out these functions by interacting with various effector proteins. Current research reveals many unexplored RAB7 functions in connection with stress responses. Thus, this review describes a comprehensive summary of current knowledge of plant RAB7's functions, discusses unresolved challenges, and recommends prospective future research directions.
Collapse
|
8
|
Wang X, Qiu Z, Zhu W, Wang N, Bai M, Kuang H, Cai C, Zhong X, Kong F, Lü P, Guan Y. The NAC transcription factors SNAP1/2/3/4 are central regulators mediating high nitrogen responses in mature nodules of soybean. Nat Commun 2023; 14:4711. [PMID: 37543605 PMCID: PMC10404276 DOI: 10.1038/s41467-023-40392-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 07/26/2023] [Indexed: 08/07/2023] Open
Abstract
Legumes can utilize atmospheric nitrogen via symbiotic nitrogen fixation, but this process is inhibited by high soil inorganic nitrogen. So far, how high nitrogen inhibits N2 fixation in mature nodules is still poorly understood. Here we construct a co-expression network in soybean nodule and find that a dynamic and reversible transcriptional network underlies the high N inhibition of N2 fixation. Intriguingly, several NAC transcription factors (TFs), designated as Soybean Nitrogen Associated NAPs (SNAPs), are amongst the most connected hub TFs. The nodules of snap1/2/3/4 quadruple mutants show less sensitivity to the high nitrogen inhibition of nitrogenase activity and acceleration of senescence. Integrative analysis shows that these SNAP TFs largely influence the high nitrogen transcriptional response through direct regulation of a subnetwork of senescence-associated genes and transcriptional regulators. We propose that the SNAP-mediated transcriptional network may trigger nodule senescence in response to high nitrogen.
Collapse
Affiliation(s)
- Xin Wang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Zhimin Qiu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenjun Zhu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Nan Wang
- School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Mengyan Bai
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huaqin Kuang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chenlin Cai
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiangbin Zhong
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Peitao Lü
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Yuefeng Guan
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
9
|
Yu H, Xiao A, Wu J, Li H, Duan Y, Chen Q, Zhu H, Cao Y. GmNAC039 and GmNAC018 activate the expression of cysteine protease genes to promote soybean nodule senescence. THE PLANT CELL 2023; 35:2929-2951. [PMID: 37177994 PMCID: PMC10396383 DOI: 10.1093/plcell/koad129] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 04/03/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Root nodules are major sources of nitrogen for soybean (Glycine max (L.) Merr.) growth, development, production, and seed quality. Symbiotic nitrogen fixation is time-limited, as the root nodule senesces during the reproductive stage of plant development, specifically during seed development. Nodule senescence is characterized by the induction of senescence-related genes, such as papain-like cysteine proteases (CYPs), which ultimately leads to the degradation of both bacteroids and plant cells. However, how nodule senescence-related genes are activated in soybean is unknown. Here, we identified 2 paralogous NAC transcription factors, GmNAC039 and GmNAC018, as master regulators of nodule senescence. Overexpression of either gene induced soybean nodule senescence with increased cell death as detected using a TUNEL assay, whereas their knockout delayed senescence and increased nitrogenase activity. Transcriptome analysis and nCUT&Tag-qPCR assays revealed that GmNAC039 directly binds to the core motif CAC(A)A and activates the expression of 4 GmCYP genes (GmCYP35, GmCYP37, GmCYP39, and GmCYP45). Similar to GmNAC039 and GmNAC018, overexpression or knockout of GmCYP genes in nodules resulted in precocious or delayed senescence, respectively. These data provide essential insights into the regulatory mechanisms of nodule senescence, in which GmNAC039 and GmNAC018 directly activate the expression of GmCYP genes to promote nodule senescence.
Collapse
Affiliation(s)
- Haixiang Yu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Aifang Xiao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiashan Wu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Haoxing Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yan Duan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qingshan Chen
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, Northeast Agricultural University, Harbin, Heilongjiang 150038, China
| | - Hui Zhu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yangrong Cao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
10
|
Yang J, Zhai N, Chen Y, Wang L, Chen R, Pan H. A signal peptide peptidase is required for ER-symbiosome proximal association and protein secretion. Nat Commun 2023; 14:4355. [PMID: 37468528 DOI: 10.1038/s41467-023-40008-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023] Open
Abstract
During legume-rhizobia symbiosis, differentiation of the symbiosome (engulfed intracellular rhizobia) is necessary for successful nitrogen fixation. To control symbiosome differentiation, host cell subcellular components, e.g., ER (endoplasmic reticulum), must adapt robustly to ensure large-scale host protein secretion to the new organelle. However, the key components controlling the adaption of ER in nodule cells remain elusive. We report that Medicago BID1, a nodule-specific signal peptide peptidase (SPP), is central to ER structural dynamics and host protein secretion. In bid1, symbiosome differentiation is blocked. BID1 localizes specifically to the ER membrane and expresses exclusively in nodule cells with symbiosomes. In the wild type ER forms proximal association structures with symbiosomes, but not in bid1. Consequently, in bid1 excessive ER stress responses are induced and ER-to-symbiosome protein secretion is impaired. In summary, a nodule-specific SPP is necessary for ER-symbiosome proximal association, host protein secretion, and symbiosome differentiation.
Collapse
Affiliation(s)
- Jian Yang
- College of Biology, Hunan University, Changsha, China
| | - Niu Zhai
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Yuhui Chen
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Luying Wang
- College of Biology, Hunan University, Changsha, China
| | - Rujin Chen
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Huairong Pan
- College of Biology, Hunan University, Changsha, China.
| |
Collapse
|
11
|
Rapid Changes to Endomembrane System of Infected Root Nodule Cells to Adapt to Unusual Lifestyle. Int J Mol Sci 2023; 24:ijms24054647. [PMID: 36902077 PMCID: PMC10002930 DOI: 10.3390/ijms24054647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Symbiosis between leguminous plants and soil bacteria rhizobia is a refined type of plant-microbial interaction that has a great importance to the global balance of nitrogen. The reduction of atmospheric nitrogen takes place in infected cells of a root nodule that serves as a temporary shelter for thousands of living bacteria, which, per se, is an unusual state of a eukaryotic cell. One of the most striking features of an infected cell is the drastic changes in the endomembrane system that occur after the entrance of bacteria to the host cell symplast. Mechanisms for maintaining intracellular bacterial colony represent an important part of symbiosis that have still not been sufficiently clarified. This review focuses on the changes that occur in an endomembrane system of infected cells and on the putative mechanisms of infected cell adaptation to its unusual lifestyle.
Collapse
|
12
|
Luo Y, Liu W, Sun J, Zhang ZR, Yang WC. Quantitative proteomics reveals key pathways in the symbiotic interface and the likely extracellular property of soybean symbiosome. J Genet Genomics 2023; 50:7-19. [PMID: 35470091 DOI: 10.1016/j.jgg.2022.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023]
Abstract
An effective symbiosis between legumes and rhizobia relies largely on diverse proteins at the plant-rhizobium interface for material transportation and signal transduction during symbiotic nitrogen fixation. Here, we report a comprehensive proteome atlas of the soybean symbiosome membrane (SM), peribacteroid space (PBS), and root microsomal fraction (RMF) using state-of-the-art label-free quantitative proteomic technology. In total, 1759 soybean proteins with diverse functions are detected in the SM, and 1476 soybean proteins and 369 rhizobial proteins are detected in the PBS. The diversity of SM proteins detected suggests multiple origins of the SM. Quantitative comparative analysis highlights amino acid metabolism and nutrient uptake in the SM, indicative of the key pathways in nitrogen assimilation. The detection of soybean secretory proteins in the PBS and receptor-like kinases in the SM provides evidence for the likely extracellular property of the symbiosome and the potential signaling communication between both symbionts at the symbiotic interface. Our proteomic data provide clues for how some of the sophisticated regulation between soybean and rhizobium at the symbiotic interface is achieved, and suggest approaches for symbiosis engineering.
Collapse
Affiliation(s)
- Yu Luo
- The State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wei Liu
- The State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Juan Sun
- The State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng-Rong Zhang
- The State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Cai Yang
- The State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Saini MR, Chandran LP, Barbadikar KM, Sevanthi AMV, Chawla G, Kaushik M, Mulani E, Phule AS, Govindannagari R, Sonth B, Sinha SK, Sundaram RM, Mandal PK. Understanding plant-microbe interaction of rice and soybean with two contrasting diazotrophic bacteria through comparative transcriptome analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:939395. [PMID: 36483966 PMCID: PMC9724235 DOI: 10.3389/fpls.2022.939395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Understanding the beneficial plant-microbe interactions is becoming extremely critical for deploying microbes imparting plant fitness and achieving sustainability in agriculture. Diazotrophic bacteria have the unique ability to survive without external sources of nitrogen and simultaneously promote host plant growth, but the mechanisms of endophytic interaction in cereals and legumes have not been studied extensively. We have studied the early interaction of two diazotrophic bacteria, Gluconacetobacter diazotrophicus (GAB) and Bradyrhizobium japonicum (BRH), in 15-day-old seedlings of rice and soybean up to 120 h after inoculation (hai) under low-nitrogen medium. Root colonization of GAB in rice was higher than that of BRH, and BRH colonization was higher in soybean roots as observed from the scanning electron microscopy at 120 hai. Peroxidase enzyme was significantly higher at 24 hai but thereafter was reduced sharply in soybean and gradually in rice. The roots of rice and soybean inoculated with GAB and BRH harvested from five time points were pooled, and transcriptome analysis was executed along with control. Two pathways, "Plant pathogen interaction" and "MAPK signaling," were specific to Rice-Gluconacetobacter (RG), whereas the pathways related to nitrogen metabolism and plant hormone signaling were specific to Rice-Bradyrhizobium (RB) in rice. Comparative transcriptome analysis of the root tissues revealed that several plant-diazotroph-specific differentially expressed genes (DEGs) and metabolic pathways of plant-diazotroph-specific transcripts, viz., chitinase, brassinosteroid, auxin, Myeloblastosis (MYB), nodulin, and nitrate transporter (NRT), were common in all plant-diazotroph combinations; three transcripts, viz., nitrate transport accessory protein (NAR), thaumatin, and thionin, were exclusive in rice and another three transcripts, viz., NAC (NAM: no apical meristem, ATAF: Arabidopsis thaliana activating factor, and CUC: cup-shaped cotyledon), ABA (abscisic acid), and ammonium transporter, were exclusive in soybean. Differential expression of these transcripts and reduction in pathogenesis-related (PR) protein expression show the early interaction. Based on the interaction, it can be inferred that the compatibility of rice and soybean is more with GAB and BRH, respectively. We propose that rice is unable to identify the diazotroph as a beneficial microorganism or a pathogen from an early response. So, it expressed the hypersensitivity-related transcripts along with PR proteins. The molecular mechanism of diazotrophic associations of GAB and BRH with rice vis-à-vis soybean will shed light on the basic understanding of host responses to beneficial microorganisms.
Collapse
Affiliation(s)
- Manish Ranjan Saini
- Indian Council of Agricultural Research (ICAR) National Institute for Plant Biotechnology, New Delhi, India
- Kalinga Institute of Industrial Technology (KIIT) School of Biotechnology, KIIT University, Bhubaneswar, India
| | | | | | - Amitha Mithra V. Sevanthi
- Indian Council of Agricultural Research (ICAR) National Institute for Plant Biotechnology, New Delhi, India
| | - Gautam Chawla
- Division of Nematology, ICAR- Indian Agriculture Research Institute, New Delhi, India
| | - Megha Kaushik
- Indian Council of Agricultural Research (ICAR) National Institute for Plant Biotechnology, New Delhi, India
| | - Ekta Mulani
- Indian Council of Agricultural Research (ICAR) National Institute for Plant Biotechnology, New Delhi, India
| | | | | | - Bandeppa Sonth
- ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - Subodh Kumar Sinha
- Indian Council of Agricultural Research (ICAR) National Institute for Plant Biotechnology, New Delhi, India
| | | | - Pranab Kumar Mandal
- Indian Council of Agricultural Research (ICAR) National Institute for Plant Biotechnology, New Delhi, India
| |
Collapse
|
14
|
nKCBP controls central vacuole formation for symbiosome development. NATURE PLANTS 2022; 8:1218-1219. [PMID: 36333590 DOI: 10.1038/s41477-022-01262-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
15
|
Zhang X, Wang Q, Wu J, Qi M, Zhang C, Huang Y, Wang G, Wang H, Tian J, Yu Y, Chen D, Li Y, Wang D, Zhang Y, Xue Y, Kong Z. A legume kinesin controls vacuole morphogenesis for rhizobia endosymbiosis. NATURE PLANTS 2022; 8:1275-1288. [PMID: 36316454 DOI: 10.1038/s41477-022-01261-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Symbioses between legumes and rhizobia require establishment of the plant-derived symbiosome membrane, which surrounds the rhizobia and accommodates the symbionts by providing an interface for nutrient and signal exchange. The host cytoskeleton and endomembrane trafficking systems play central roles in the formation of a functional symbiotic interface for rhizobia endosymbiosis; however, the underlying mechanisms remain largely unknown. Here we demonstrate that the nodulation-specific kinesin-like calmodulin-binding protein (nKCBP), a plant-specific microtubule-based kinesin motor, controls central vacuole morphogenesis in symbiotic cells in Medicago truncatula. Phylogenetic analysis further indicated that nKCBP duplication occurs solely in legumes of the clade that form symbiosomes. Knockout of nKCBP results in central vacuole deficiency, defective symbiosomes and abolished nitrogen fixation. nKCBP decorates linear particles along microtubules, and crosslinks microtubules with the actin cytoskeleton, to control central vacuole formation by modulating vacuolar vesicle fusion in symbiotic cells. Together, our findings reveal that rhizobia co-opted nKCBP to achieve symbiotic interface formation by regulating cytoskeletal assembly and central vacuole morphogenesis during nodule development.
Collapse
Affiliation(s)
- Xiaxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Qi Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jingxia Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Meifang Qi
- State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
| | - Chen Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yige Huang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Huan Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Juan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Dasong Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Dong Wang
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Yijing Zhang
- State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
| | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- Houji Laboratory in Shanxi Province, Academy of Agronomy, Shanxi Agricultural University, Taiyuan, China.
| |
Collapse
|
16
|
Sodium Accumulation in Infected Cells and Ion Transporters Mistargeting in Nodules of Medicago truncatula: Two Ugly Items That Hinder Coping with Salt Stress Effects. Int J Mol Sci 2022; 23:ijms231810618. [PMID: 36142539 PMCID: PMC9505113 DOI: 10.3390/ijms231810618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
The maintenance of intracellular nitrogen-fixing bacteria causes changes in proteins’ location and in gene expression that may be detrimental to the host cell fitness. We hypothesized that the nodule’s high vulnerability toward salt stress might be due to alterations in mechanisms involved in the exclusion of Na+ from the host cytoplasm. Confocal and electron microscopy immunolocalization analyses of Na+/K+ exchangers in the root nodule showed the plasma membrane (MtNHX7) and endosome/tonoplast (MtNHX6) signal in non-infected cells; however, in mature infected cells the proteins were depleted from their target membranes and expelled to vacuoles. This mistargeting suggests partial loss of the exchanger’s functionality in these cells. In the mature part of the nodule 7 of the 20 genes encoding ion transporters, channels, and Na+/K+ exchangers were either not expressed or substantially downregulated. In nodules from plants subjected to salt treatments, low temperature-scanning electron microscopy and X-ray microanalysis revealed the accumulation of 5–6 times more Na+ per infected cell versus non-infected one. Hence, the infected cells’ inability to withstand the salt may be the integral result of preexisting defects in the localization of proteins involved in Na+ exclusion and the reduced expression of key genes of ion homeostasis, resulting in premature senescence and termination of symbiosis.
Collapse
|
17
|
Jardinaud MF, Fromentin J, Auriac MC, Moreau S, Pecrix Y, Taconnat L, Cottret L, Aubert G, Balzergue S, Burstin J, Carrere S, Gamas P. MtEFD and MtEFD2: Two transcription factors with distinct neofunctionalization in symbiotic nodule development. PLANT PHYSIOLOGY 2022; 189:1587-1607. [PMID: 35471237 PMCID: PMC9237690 DOI: 10.1093/plphys/kiac177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/21/2022] [Indexed: 05/31/2023]
Abstract
Rhizobium-legume nitrogen-fixing symbiosis involves the formation of a specific organ, the root nodule, which provides bacteria with the proper cellular environment for atmospheric nitrogen fixation. Coordinated differentiation of plant and bacterial cells is an essential step of nodule development, for which few transcriptional regulators have been characterized. Medicago truncatula ETHYLENE RESPONSE FACTOR REQUIRED FOR NODULE DIFFERENTIATION (MtEFD) encodes an APETALA2/ETHYLENE RESPONSIVE FACTOR (ERF) transcription factor, the mutation of which leads to both hypernodulation and severe defects in nodule development. MtEFD positively controls a negative regulator of cytokinin signaling, the RESPONSE REGULATOR 4 (MtRR4) gene. Here we showed that that the Mtefd-1 mutation affects both plant and bacterial endoreduplication in nodules, as well as the expression of hundreds of genes in young and mature nodules, upstream of known regulators of symbiotic differentiation. MtRR4 expressed with the MtEFD promoter complemented Mtefd-1 hypernodulation but not the nodule differentiation phenotype. Unexpectedly, a nonlegume homolog of MtEFD, AtERF003 in Arabidopsis (Arabidopsis thaliana), could efficiently complement both phenotypes of Mtefd-1, in contrast to the MtEFD paralog MtEFD2 expressed in the root and nodule meristematic zone. A domain swap experiment showed that MtEFD2 differs from MtEFD by its C-terminal fraction outside the DNA binding domain. Furthermore, clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9 (CRISPR-Cas9) mutagenesis of MtEFD2 led to a reduction in the number of nodules formed in Mtefd-1, with downregulation of a set of genes, including notably NUCLEAR FACTOR-YA1 (MtNF-YA1) and MtNF-YB16, which are essential for nodule meristem establishment. We, therefore, conclude that nitrogen-fixing symbiosis recruited two proteins originally expressed in roots, MtEFD and MtEFD2, with distinct functions and neofunctionalization processes for each of them.
Collapse
Affiliation(s)
| | | | | | - Sandra Moreau
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | | | | | - Ludovic Cottret
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Grégoire Aubert
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | | | - Judith Burstin
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Sébastien Carrere
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | | |
Collapse
|
18
|
Yuyama I, Higuchi T, Mezaki T, Tashiro H, Ikeo K. Metatranscriptomic Analysis of Corals Inoculated With Tolerant and Non-Tolerant Symbiont Exposed to High Temperature and Light Stress. Front Physiol 2022; 13:806171. [PMID: 35480050 PMCID: PMC9037784 DOI: 10.3389/fphys.2022.806171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Algal symbionts of corals can influence host stress resistance; for example, in the Pacific Ocean, whereas Cladocopium (C-type) is generally dominant in corals, Durusdinium (D-type) is found in more heat-resistant corals. Thus, the presence of D-type symbiont likely increases coral heat tolerance, and this symbiotic relationship potentially provides a hint to increase the stress tolerance of coral–algal symbioses. In this study, transcriptome profiles of Cladocopium- and Durusdinium-harboring Acropora solitaryensis (C-coral and D-coral, respectively) and algal photosystem functioning (Fv/Fm) under bleaching conditions (high temperature and light stress) were compared. Stress treatment caused algal photoinhibition that the Fv/Fm value of Symbiodiniaceae was immediately reduced. The transcriptome analysis of corals revealed that genes involved in the following processes were detected: endoplasmic reticulum (ER) stress, mitophagy, apoptosis, endocytosis, metabolic processes (acetyl-CoA, chitin metabolic processes, etc.), and the PI3K-AKT pathway were upregulated, while DNA replication and the calcium signaling pathway were downregulated in both C- and D-corals. These results suggest that unrepaired DNA and protein damages were accumulated in corals under high temperature and light stress. Additionally, some differentially expressed genes (DEGs) were specific to C- or D-corals, which includes genes involved in transient receptor potential (TRP) channels and vitamin B metabolic processes. Algal transcriptome analysis showed the increased expression of gene encoding photosystem and molecular chaperone especially in D-type symbiont. The transcriptome data imply a possible difference in the stress reactions on C-type and D-type symbionts. The results reveal the basic process of coral heat/light stress response and symbiont-type-specific coral transcriptional responses, which provides a perspective on the mechanisms that cause differences in coral stress tolerance.
Collapse
Affiliation(s)
- Ikuko Yuyama
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- *Correspondence: Ikuko Yuyama
| | - Tomihiko Higuchi
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Takuma Mezaki
- Kuroshio Biological Research Foundation, Otsuki, Japan
| | - Hisako Tashiro
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Kazuho Ikeo
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| |
Collapse
|
19
|
Jiménez-Mejía R, Medina-Estrada RI, Carballar-Hernández S, Orozco-Mosqueda MDC, Santoyo G, Loeza-Lara PD. Teamwork to Survive in Hostile Soils: Use of Plant Growth-Promoting Bacteria to Ameliorate Soil Salinity Stress in Crops. Microorganisms 2022; 10:150. [PMID: 35056599 PMCID: PMC8781547 DOI: 10.3390/microorganisms10010150] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/30/2022] Open
Abstract
Plants and their microbiomes, including plant growth-promoting bacteria (PGPB), can work as a team to reduce the adverse effects of different types of stress, including drought, heat, cold, and heavy metals stresses, as well as salinity in soils. These abiotic stresses are reviewed here, with an emphasis on salinity and its negative consequences on crops, due to their wide presence in cultivable soils around the world. Likewise, the factors that stimulate the salinity of soils and their impact on microbial diversity and plant physiology were also analyzed. In addition, the saline soils that exist in Mexico were analyzed as a case study. We also made some proposals for a more extensive use of bacterial bioinoculants in agriculture, particularly in developing countries. Finally, PGPB are highly relevant and extremely helpful in counteracting the toxic effects of soil salinity and improving crop growth and production; therefore, their use should be intensively promoted.
Collapse
Affiliation(s)
- Rafael Jiménez-Mejía
- Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo (UCEMICH), Sahuayo 59103, Mexico; (R.J.-M.); (R.I.M.-E.); (S.C.-H.)
| | - Ricardo I. Medina-Estrada
- Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo (UCEMICH), Sahuayo 59103, Mexico; (R.J.-M.); (R.I.M.-E.); (S.C.-H.)
| | - Santos Carballar-Hernández
- Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo (UCEMICH), Sahuayo 59103, Mexico; (R.J.-M.); (R.I.M.-E.); (S.C.-H.)
| | - Ma. del Carmen Orozco-Mosqueda
- Facultad de Agrobiología “Presidente Juárez”, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Uruapan 60170, Mexico;
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58030, Mexico;
| | - Pedro D. Loeza-Lara
- Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo (UCEMICH), Sahuayo 59103, Mexico; (R.J.-M.); (R.I.M.-E.); (S.C.-H.)
| |
Collapse
|
20
|
Maurel C, Tournaire-Roux C, Verdoucq L, Santoni V. Hormonal and environmental signaling pathways target membrane water transport. PLANT PHYSIOLOGY 2021; 187:2056-2070. [PMID: 35235672 PMCID: PMC8644278 DOI: 10.1093/plphys/kiab373] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/13/2021] [Indexed: 05/04/2023]
Abstract
Plant water transport and its molecular components including aquaporins are responsive, across diverse time scales, to an extremely wide array of environmental and hormonal signals. These include water deficit and abscisic acid (ABA) but also more recently identified stimuli such as peptide hormones or bacterial elicitors. The present review makes an inventory of corresponding signalling pathways. It identifies some main principles, such as the central signalling role of ROS, with a dual function of aquaporins in water and hydrogen peroxide transport, the importance of aquaporin phosphorylation that is targeted by multiple classes of protein kinases, and the emerging role of lipid signalling. More studies including systems biology approaches are now needed to comprehend how plant water transport can be adjusted in response to combined stresses.
Collapse
Affiliation(s)
- Christophe Maurel
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
- Author for Communication:
| | | | - Lionel Verdoucq
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Véronique Santoni
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
21
|
Booth NJ, Smith PMC, Ramesh SA, Day DA. Malate Transport and Metabolism in Nitrogen-Fixing Legume Nodules. Molecules 2021; 26:6876. [PMID: 34833968 PMCID: PMC8618214 DOI: 10.3390/molecules26226876] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022] Open
Abstract
Legumes form a symbiosis with rhizobia, a soil bacterium that allows them to access atmospheric nitrogen and deliver it to the plant for growth. Biological nitrogen fixation occurs in specialized organs, termed nodules, that develop on the legume root system and house nitrogen-fixing rhizobial bacteroids in organelle-like structures termed symbiosomes. The process is highly energetic and there is a large demand for carbon by the bacteroids. This carbon is supplied to the nodule as sucrose, which is broken down in nodule cells to organic acids, principally malate, that can then be assimilated by bacteroids. Sucrose may move through apoplastic and/or symplastic routes to the uninfected cells of the nodule or be directly metabolised at the site of import within the vascular parenchyma cells. Malate must be transported to the infected cells and then across the symbiosome membrane, where it is taken up by bacteroids through a well-characterized dct system. The dicarboxylate transporters on the infected cell and symbiosome membranes have been functionally characterized but remain unidentified. Proteomic and transcriptomic studies have revealed numerous candidates, but more work is required to characterize their function and localise the proteins in planta. GABA, which is present at high concentrations in nodules, may play a regulatory role, but this remains to be explored.
Collapse
Affiliation(s)
- Nicholas J. Booth
- College of Science & Engineering, Flinders University, GPO Box 5100, Adelaide, SA 5001, Australia; (N.J.B.); (S.A.R.)
| | | | - Sunita A. Ramesh
- College of Science & Engineering, Flinders University, GPO Box 5100, Adelaide, SA 5001, Australia; (N.J.B.); (S.A.R.)
| | - David A. Day
- College of Science & Engineering, Flinders University, GPO Box 5100, Adelaide, SA 5001, Australia; (N.J.B.); (S.A.R.)
| |
Collapse
|
22
|
Li H, Schilderink S, Cao Q, Kulikova O, Bisseling T. Plant-specific histone deacetylases are essential for early and late stages of Medicago nodule development. PLANT PHYSIOLOGY 2021; 186:1591-1605. [PMID: 33744928 PMCID: PMC8260124 DOI: 10.1093/plphys/kiab140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/18/2021] [Indexed: 05/22/2023]
Abstract
Legume and rhizobium species can establish a nitrogen-fixing nodule symbiosis. Previous studies have shown that several transcription factors that play a role in (lateral) root development are also involved in nodule development. Chromatin remodeling factors, like transcription factors, are key players in regulating gene expression. However, studies have not investigated whether chromatin remodeling genes that are essential for root development are also involved in nodule development. Here, we studied the role of Medicago (Medicago truncatula) histone deacetylases (MtHDTs) in nodule development. Arabidopsis (Arabidopsis thaliana) orthologs of HDTs have been shown to play a role in root development. MtHDT expression is induced in nodule primordia and is maintained in the nodule meristem and infection zone. Conditional, nodule-specific knockdown of MtHDT expression by RNAi blocks nodule primordium development. A few nodules may still form, but their nodule meristems are smaller, and rhizobial colonization of the cells derived from the meristem is markedly reduced. Although the HDTs are expressed during nodule and root development, transcriptome analyses indicate that HDTs control the development of each organ in a different manner. During nodule development, the MtHDTs positively regulate 3-hydroxy-3-methylglutaryl coenzyme a reductase 1 (MtHMGR1). Decreased expression of MtHMGR1 is sufficient to explain the inhibition of primordium formation.
Collapse
Affiliation(s)
- Huchen Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing 102206, China
| | - Stefan Schilderink
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Present address: St. Bonifatius College, Burgemeester Fockema Andreaelaan 7–9, 3582 KA Utrecht, The Netherlands
| | - Qingqin Cao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing 102206, China
| | - Olga Kulikova
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ton Bisseling
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Author for communication:
| |
Collapse
|
23
|
Gavrin A, Loughlin PC, Brear E, Griffith OW, Bedon F, Suter Grotemeyer M, Escudero V, Reguera M, Qu Y, Mohd-Noor SN, Chen C, Osorio MB, Rentsch D, González-Guerrero M, Day DA, Smith PMC. Soybean Yellow Stripe-like 7 is a symbiosome membrane peptide transporter important for nitrogen fixation. PLANT PHYSIOLOGY 2021; 186:581-598. [PMID: 33619553 PMCID: PMC8154080 DOI: 10.1093/plphys/kiab044] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 01/21/2021] [Indexed: 05/05/2023]
Abstract
Legumes form a symbiosis with rhizobia that convert atmospheric nitrogen (N2) to ammonia and provide it to the plant in return for a carbon and nutrient supply. Nodules, developed as part of the symbiosis, harbor rhizobia that are enclosed in a plant-derived symbiosome membrane (SM) to form an organelle-like structure called the symbiosome. In mature nodules exchanges between the symbionts occur across the SM. Here we characterize Yellow Stripe-like 7 (GmYSL7), a Yellow stripe-like family member localized on the SM in soybean (Glycine max) nodules. It is expressed specifically in infected cells with expression peaking soon after nitrogenase becomes active. Unlike most YSL family members, GmYSL7 does not transport metals complexed with phytosiderophores. Rather, it transports oligopeptides of between four and 12 amino acids. Silencing GmYSL7 reduces nitrogenase activity and blocks infected cell development so that symbiosomes contain only a single bacteroid. This indicates the substrate of YSL7 is required for proper nodule development, either by promoting symbiosome development directly or by preventing inhibition of development by the plant. RNAseq of nodules where GmYSL7 was silenced suggests that the plant initiates a defense response against rhizobia with genes encoding proteins involved in amino acid export downregulated and some transcripts associated with metal homeostasis altered. These changes may result from the decrease in nitrogen fixation upon GmYSL7 silencing and suggest that the peptide(s) transported by GmYSL7 monitor the functional state of the bacteroids and regulate nodule metabolism and transport processes accordingly. Further work to identify the physiological substrate for GmYSL7 will allow clarification of this role.
Collapse
Affiliation(s)
- Aleksandr Gavrin
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Patrick C Loughlin
- School of Life and Environmental Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ella Brear
- School of Life and Environmental Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Oliver W Griffith
- Department of Biological Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Frank Bedon
- School of Life Sciences, La Trobe University, Bundoora, Victoria 3083, Australia
| | | | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Maria Reguera
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Yihan Qu
- School of Life and Environmental Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Siti N Mohd-Noor
- School of Life and Environmental Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Chi Chen
- School of Life and Environmental Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Marina Borges Osorio
- School of Life Sciences, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Doris Rentsch
- IPS, Molecular Plant Physiology, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - David A Day
- College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, Australia
| | | |
Collapse
|
24
|
Sudhakaran S, Thakral V, Padalkar G, Rajora N, Dhiman P, Raturi G, Sharma Y, Tripathi DK, Deshmukh R, Sharma TR, Sonah H. Significance of solute specificity, expression, and gating mechanism of tonoplast intrinsic protein during development and stress response in plants. PHYSIOLOGIA PLANTARUM 2021; 172:258-274. [PMID: 33723851 DOI: 10.1111/ppl.13386] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Tonoplast intrinsic proteins (TIPs), belonging to the aquaporin family, are transmembrane channels located mostly at the tonoplast of plant cells. The TIPs are known to transport water and many other small solutes such as ammonia, urea, hydrogen peroxide, and glycerol. In the present review, phylogenetic distribution, structure, transport dynamics, gating mechanism, sub-cellular localization, tissue-specific expression, and co-expression of TIPs are discussed to define their versatile role in plants. Based on the phylogenetic distribution, TIPs are classified into five distinct groups with aromatic-arginine (Ar/R) selectivity filters, typical pore-morphology, and tissue-specific gene expression patterns. The tissue-specific expression of TIPs is conserved among diverse plant species, more particularly for TIP3s, which are expressed exclusively in seeds. Studying TIP3 evolution will help to understand seed development and germination. The solute specificity of TIPs plays an imperative role in physiological processes like stomatal movement and vacuolar sequestration as well as in alleviating environmental stress. TIPs also play an important role in growth and developmental processes like radicle protrusion, anther dehiscence, seed germination, cell elongation, and expansion. The gating mechanism of TIPs regulates the solute flow in response to external signals, which helps to maintain the physiological functions of the cell. The information provided in this review is a base to explore TIP's potential in crop improvement programs.
Collapse
Affiliation(s)
- Sreeja Sudhakaran
- Division of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Vandana Thakral
- Division of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Gunashri Padalkar
- Division of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Nitika Rajora
- Division of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Pallavi Dhiman
- Division of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Gaurav Raturi
- Division of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Yogesh Sharma
- Division of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Durgesh K Tripathi
- Amity Institute of Organic Agriculture (AIOA), Amity University Uttar Pradesh, Noida, India
| | - Rupesh Deshmukh
- Division of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, India
| | - Humira Sonah
- Division of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| |
Collapse
|
25
|
Liu J, Rasing M, Zeng T, Klein J, Kulikova O, Bisseling T. NIN is essential for development of symbiosomes, suppression of defence and premature senescence in Medicago truncatula nodules. THE NEW PHYTOLOGIST 2021; 230:290-303. [PMID: 33471433 PMCID: PMC7986424 DOI: 10.1111/nph.17215] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/30/2020] [Indexed: 05/29/2023]
Abstract
NIN (NODULE INCEPTION) is a transcription factor that plays a key role during root nodule initiation. However, its role in later nodule developmental stages is unclear. Both NIN mRNA and protein accumulated at the highest level in the proximal part of the infection zone in Medicago truncatula nodules. Two nin weak allele mutants, nin-13/16, form a rather normal nodule infection zone, whereas a fixation zone is not formed. Instead, a zone with defence responses and premature senescence occurred and symbiosome development gets arrested. Mutations in nin-13/16 resulted in a truncated NIN lacking the conserved PB1 domain. However, this did not cause the nodule phenotype as nin mutants expressing NINΔPB1 formed wild-type-like nodule. The phenotype is likely to be caused by reduced NIN mRNA levels in the cytoplasm. Transcriptome analyses of nin-16 nodules showed that expression levels of defence/senescence-related genes are markedly increased, whereas the levels of defence suppressing genes are reduced. Although defence/senescence seems well suppressed in the infection zone, the transcriptome is already markedly changed in the proximal part of infection zone. In addition to its function in infection and nodule organogenesis, NIN also plays a major role at the transition from infection to fixation zone in establishing a functional symbiosis.
Collapse
Affiliation(s)
- Jieyu Liu
- Laboratory of Molecular BiologyDepartment of Plant SciencesGraduate School Experimental Plant SciencesWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Menno Rasing
- Laboratory of Molecular BiologyDepartment of Plant SciencesGraduate School Experimental Plant SciencesWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Tian Zeng
- Laboratory of Molecular BiologyDepartment of Plant SciencesGraduate School Experimental Plant SciencesWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Joël Klein
- Laboratory of Molecular BiologyDepartment of Plant SciencesGraduate School Experimental Plant SciencesWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Olga Kulikova
- Laboratory of Molecular BiologyDepartment of Plant SciencesGraduate School Experimental Plant SciencesWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Ton Bisseling
- Laboratory of Molecular BiologyDepartment of Plant SciencesGraduate School Experimental Plant SciencesWageningen University & ResearchWageningen6708 PBthe Netherlands
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing University of AgricultureBeijing102206China
| |
Collapse
|
26
|
Windari EA, Ando M, Mizoguchi Y, Shimada H, Ohira K, Kagaya Y, Higashiyama T, Takayama S, Watanabe M, Suwabe K. Two aquaporins, SIP1;1 and PIP1;2, mediate water transport for pollen hydration in the Arabidopsis pistil. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:77-87. [PMID: 34177327 PMCID: PMC8215469 DOI: 10.5511/plantbiotechnology.20.1207a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/07/2020] [Indexed: 06/13/2023]
Abstract
Pollination is the crucial initial step that brings together the male and female gametophytes, and occurs at the surface of the stigmatic papilla cell in Arabidopsis thaliana. After pollen recognition, pollen hydration is initiated as a second critical step to activate desiccated mature pollen grains for germination, and thus water transport from pistil to pollen is essential for this process. In this study, we report a novel aquaporin-mediated water transport process in the papilla cell as a control mechanism for pollen hydration. Coupled with a time-series imaging analysis of pollination and a reverse genetic analysis using T-DNA insertion Arabidopsis mutants, we found that two aquaporins, the ER-bound SIP1;1 and the plasma membrane-bound PIP1;2, are key players in water transport from papilla cell to pollen during pollination. In wild type plant, hydration speed reached its maximal value within 5 min after pollination, remained high until 10-15 min. In contrast, sip1;1 and pip1;2 mutants showed no rapid increase of hydration speed, but instead a moderate increase during ∼25 min after pollination. Pollen of sip1;1 and pip1;2 mutants had normal viability without any functional defects for pollination, indicating that decelerated pollen hydration is due to a functional defect on the female side in sip1;1 and pip1;2 mutants. In addition, sip1;1 pip1;2 double knockout mutant showed a similar impairment of pollen hydration to individual single mutants, suggesting that their coordinated regulation is critical for proper water transport, in terms of speed and amount, in the pistil to accomplish successful pollen hydration.
Collapse
Affiliation(s)
- Endang Ayu Windari
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Mei Ando
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Yohei Mizoguchi
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Hiroto Shimada
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Keima Ohira
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Yasuaki Kagaya
- Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514-8507, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Seiji Takayama
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masao Watanabe
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Keita Suwabe
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| |
Collapse
|
27
|
Han Y, Li R, Liu Y, Fan S, Wan S, Zhang X, Li G. The Major Intrinsic Protein Family and Their Function Under Salt-Stress in Peanut. Front Genet 2021; 12:639585. [PMID: 33719349 PMCID: PMC7943621 DOI: 10.3389/fgene.2021.639585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/22/2021] [Indexed: 01/18/2023] Open
Abstract
Peanut (Arachis hypogaea) is an important oil crop cultivated across the world. Abiotic stresses are the major constraint factors that defect its yield, especially in the rainfed peanut cultivation areas. Aquaporins are proteins that form a large family of more than 30 members in higher plants and play key roles in plant water balance under abiotic stress conditions. To comprehensively understand the functions of aquaporins in peanut, we identified their family genome-wide and characterized the phylogenetics, gene structure, and the conserved motif of the selective filter. In total, 64 aquaporin isoforms were identified, the NIPs were firstly categorized into NIP1s and NIP2s groups based on the phylogenetic analysis and the selective filter structure classification system. Further, we analyzed the gene expression pattern under the salt-stress conditions and found that a TIP3 member is strongly induced by salt stress, which in turn contributed to improved seed germination under salt stress when expressed in Arabidopsis. Our study thus provides comprehensive profiles on the MIP superfamily and their expression and function under salt-stress conditions. We believe that our findings will facilitate the better understanding of the roles of aquaporins in peanuts under salt salt-stress conditions.
Collapse
Affiliation(s)
- Yan Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, China
| | - Rongchong Li
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Bio-technology Research Center, Shandong Academy of Agricultural Sciences, Ji'nan, China
| | - Yiyang Liu
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Bio-technology Research Center, Shandong Academy of Agricultural Sciences, Ji'nan, China
| | - Shoujin Fan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, China
| | - Shubo Wan
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Bio-technology Research Center, Shandong Academy of Agricultural Sciences, Ji'nan, China
| | - Xuejie Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, China
| | - Guowei Li
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Bio-technology Research Center, Shandong Academy of Agricultural Sciences, Ji'nan, China
| |
Collapse
|
28
|
Fedorova EE, Coba de la Peña T, Lara-Dampier V, Trifonova NA, Kulikova O, Pueyo JJ, Lucas MM. Potassium content diminishes in infected cells of Medicago truncatula nodules due to the mislocation of channels MtAKT1 and MtSKOR/GORK. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1336-1348. [PMID: 33130893 PMCID: PMC7904148 DOI: 10.1093/jxb/eraa508] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/03/2020] [Indexed: 05/26/2023]
Abstract
Rhizobia establish a symbiotic relationship with legumes that results in the formation of root nodules, where bacteria encapsulated by a membrane of plant origin (symbiosomes), convert atmospheric nitrogen into ammonia. Nodules are more sensitive to ionic stresses than the host plant itself. We hypothesize that such a high vulnerability might be due to defects in ion balance in the infected tissue. Low temperature SEM (LTSEM) and X-ray microanalysis of Medicago truncatula nodules revealed a potassium (K+) decrease in symbiosomes and vacuoles during the life span of infected cells. To clarify K+ homeostasis in the nodule, we performed phylogenetic and gene expression analyses, and confocal and electron microscopy localization of two key plant Shaker K+ channels, AKT1 and SKOR/GORK. Phylogenetic analyses showed that the genome of some legume species, including the Medicago genus, contained one SKOR/GORK and one AKT1 gene copy, while other species contained more than one copy of each gene. Localization studies revealed mistargeting and partial depletion of both channels from the plasma membrane of M. truncatula mature nodule-infected cells that might compromise ion transport. We propose that root nodule-infected cells have defects in K+ balance due to mislocation of some plant ion channels, as compared with non-infected cells. The putative consequences are discussed.
Collapse
Affiliation(s)
- Elena E Fedorova
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Moscow, Russia
| | - Teodoro Coba de la Peña
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile
| | | | - Natalia A Trifonova
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Moscow, Russia
| | | | - José J Pueyo
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
| | | |
Collapse
|
29
|
Multiple sensors provide spatiotemporal oxygen regulation of gene expression in a Rhizobium-legume symbiosis. PLoS Genet 2021; 17:e1009099. [PMID: 33539353 PMCID: PMC7888657 DOI: 10.1371/journal.pgen.1009099] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/17/2021] [Accepted: 12/04/2020] [Indexed: 01/04/2023] Open
Abstract
Regulation by oxygen (O2) in rhizobia is essential for their symbioses with plants and involves multiple O2 sensing proteins. Three sensors exist in the pea microsymbiont Rhizobium leguminosarum Rlv3841: hFixL, FnrN and NifA. At low O2 concentrations (1%) hFixL signals via FxkR to induce expression of the FixK transcription factor, which activates transcription of downstream genes. These include fixNOQP, encoding the high-affinity cbb3-type terminal oxidase used in symbiosis. In free-living Rlv3841, the hFixL-FxkR-FixK pathway was active at 1% O2, and confocal microscopy showed hFixL-FxkR-FixK activity in the earliest stages of Rlv3841 differentiation in nodules (zones I and II). Work on Rlv3841 inside and outside nodules showed that the hFixL-FxkR-FixK pathway also induces transcription of fnrN at 1% O2 and in the earliest stages of Rlv3841 differentiation in nodules. We confirmed past findings suggesting a role for FnrN in fixNOQP expression. However, unlike hFixL-FxkR-FixK, Rlv3841 FnrN was only active in the near-anaerobic zones III and IV of pea nodules. Quantification of fixNOQP expression in nodules showed this was driven primarily by FnrN, with minimal direct hFixL-FxkR-FixK induction. Thus, FnrN is key for full symbiotic expression of fixNOQP. Without FnrN, nitrogen fixation was reduced by 85% in Rlv3841, while eliminating hFixL only reduced fixation by 25%. The hFixL-FxkR-FixK pathway effectively primes the O2 response by increasing fnrN expression in early differentiation (zones I-II). In zone III of mature nodules, near-anaerobic conditions activate FnrN, which induces fixNOQP transcription to the level required for wild-type nitrogen fixation activity. Modelling and transcriptional analysis indicates that the different O2 sensitivities of hFixL and FnrN lead to a nuanced spatiotemporal pattern of gene regulation in different nodule zones in response to changing O2 concentration. Multi-sensor O2 regulation is prevalent in rhizobia, suggesting the fine-tuned control this enables is common and maximizes the effectiveness of the symbioses. Rhizobia are soil bacteria that form a symbiosis with legume plants. In exchange for shelter from the plant, rhizobia provide nitrogen fertilizer, produced by nitrogen fixation. Fixation is catalysed by the nitrogenase enzyme, which is inactivated by oxygen. To prevent this, plants house rhizobia in root nodules, which create a low oxygen environment. However, rhizobia need oxygen, and must adapt to survive the low oxygen concentration in the nodule. Key to this is regulating their genes based on oxygen concentration. We studied one Rhizobium species which uses three different protein sensors of oxygen, each turning on at a different oxygen concentration. As the bacteria get deeper inside the plant nodule and the oxygen concentration drops, each sensor switches on in turn. Our results also show that the first sensor to turn on, hFixL, primes the second sensor, FnrN. This prepares the rhizobia for the core region of the nodule where oxygen concentration is lowest and most nitrogen fixation takes place. If both sensors are removed, the bacteria cannot fix nitrogen. Many rhizobia have several oxygen sensing proteins, so using multiple sensors is likely a common strategy enabling rhizobia to adapt to low oxygen precisely and in stages during symbiosis.
Collapse
|
30
|
Day DA, Smith PMC. Iron Transport across Symbiotic Membranes of Nitrogen-Fixing Legumes. Int J Mol Sci 2021; 22:E432. [PMID: 33406726 PMCID: PMC7794740 DOI: 10.3390/ijms22010432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/30/2022] Open
Abstract
Iron is an essential nutrient for the legume-rhizobia symbiosis and nitrogen-fixing bacteroids within root nodules of legumes have a very high demand for the metal. Within the infected cells of nodules, the bacteroids are surrounded by a plant membrane to form an organelle-like structure called the symbiosome. In this review, we focus on how iron is transported across the symbiosome membrane and accessed by the bacteroids.
Collapse
Affiliation(s)
- David A. Day
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | | |
Collapse
|
31
|
Brear EM, Bedon F, Gavrin A, Kryvoruchko IS, Torres-Jerez I, Udvardi MK, Day DA, Smith PMC. GmVTL1a is an iron transporter on the symbiosome membrane of soybean with an important role in nitrogen fixation. THE NEW PHYTOLOGIST 2020; 228:667-681. [PMID: 32533710 DOI: 10.1111/nph.16734] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/27/2020] [Indexed: 05/07/2023]
Abstract
Legumes establish symbiotic relationships with soil bacteria (rhizobia), housed in nodules on roots. The plant supplies carbon substrates and other nutrients to the bacteria in exchange for fixed nitrogen. The exchange occurs across a plant-derived symbiosome membrane (SM), which encloses rhizobia to form a symbiosome. Iron supplied by the plant is crucial for rhizobial enzyme nitrogenase that catalyses nitrogen fixation, but the SM iron transporter has not been identified. We use yeast complementation, real-time PCR and proteomics to study putative soybean (Glycine max) iron transporters GmVTL1a and GmVTL1b and have characterized the role of GmVTL1a using complementation in plant mutants, hairy root transformation and microscopy. GmVTL1a and GmVTL1b are members of the vacuolar iron transporter family and homologous to Lotus japonicus SEN1 (LjSEN1), which is essential for nitrogen fixation. GmVTL1a expression is enhanced in nodule infected cells and both proteins are localized to the SM. GmVTL1a transports iron in yeast and restores nitrogen fixation when expressed in the Ljsen1 mutant. Three GmVTL1a amino acid substitutions that block nitrogen fixation in Ljsen1 plants reduce iron transport in yeast. We conclude GmVTL1a is responsible for transport of iron across the SM to bacteroids and plays a crucial role in the nitrogen-fixing symbiosis.
Collapse
Affiliation(s)
- Ella M Brear
- School of Life and Environmental Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Frank Bedon
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Aleksandr Gavrin
- School of Life and Environmental Science, The University of Sydney, Sydney, NSW, 2006, Australia
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Igor S Kryvoruchko
- Noble Research Institute, Ardmore, OK, 73401, USA
- Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | | | | | - David A Day
- College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Penelope M C Smith
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Bundoora, VIC, 3083, Australia
| |
Collapse
|
32
|
Singh RK, Deshmukh R, Muthamilarasan M, Rani R, Prasad M. Versatile roles of aquaporin in physiological processes and stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:178-189. [PMID: 32078896 DOI: 10.1016/j.plaphy.2020.02.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 05/21/2023]
Abstract
Aquaporins are pore-forming transmembrane proteins that facilitate the movement of water and many other small neutral solutes across the cells and intracellular compartments. Plants exhibits high diversity in aquaporin isoforms and broadly classified into five different subfamilies on the basis of phylogenetic distribution and subcellular occurrence: plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), nodulin 26-like proteins (NIPs), small basic intrinsic proteins (SIPs) and uncharacterized intrinsic proteins (XIPs). The gating mechanism of aquaporin channels is tightly regulated by post-translational modifications such as phosphorylation, methylation, acetylation, glycosylation, and deamination. Aquaporin expression and transport functions are also modulated by the various phytohormones-mediated signalling in plants. Combined physiology and transcriptome analysis revealed the role of aquaporins in regulating hydraulic conductance in roots and leaves. The present review mainly focused on aquaporin functional activity during solute transport, plant development, abiotic stress response, and plant-microbe symbiosis. Genetically modified plants overexpressing aquaporin-encoding genes display improved agronomic and abiotic stress tolerance.
Collapse
Affiliation(s)
- Roshan Kumar Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute, Mohali, 140306, Chandigarh, India
| | | | - Rekha Rani
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
33
|
van Schadewijk R, Krug JR, Shen D, Sankar Gupta KBS, Vergeldt FJ, Bisseling T, Webb AG, Van As H, Velders AH, de Groot HJM, Alia A. Magnetic Resonance Microscopy at Cellular Resolution and Localised Spectroscopy of Medicago truncatula at 22.3 Tesla. Sci Rep 2020; 10:971. [PMID: 31969628 PMCID: PMC6976659 DOI: 10.1038/s41598-020-57861-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/18/2019] [Indexed: 01/30/2023] Open
Abstract
Interactions between plants and the soil’s microbial & fungal flora are crucial for the health of soil ecosystems and food production. Microbe-plant interactions are difficult to investigate in situ due to their intertwined relationship involving morphology and metabolism. Here, we describe an approach to overcome this challenge by elucidating morphology and the metabolic profile of Medicago truncatula root nodules using Magnetic Resonance (MR) Microscopy, at the highest magnetic field strength (22.3 T) currently available for imaging. A home-built solenoid RF coil with an inner diameter of 1.5 mm was used to study individual root nodules. A 3D imaging sequence with an isotropic resolution of (7 μm)3 was able to resolve individual cells, and distinguish between cells infected with rhizobia and uninfected cells. Furthermore, we studied the metabolic profile of cells in different sections of the root nodule using localised MR spectroscopy and showed that several metabolites, including betaine, asparagine/aspartate and choline, have different concentrations across nodule zones. The metabolite spatial distribution was visualised using chemical shift imaging. Finally, we describe the technical challenges and outlook towards future in vivo MR microscopy of nodules and the plant root system.
Collapse
Affiliation(s)
- Remco van Schadewijk
- Solid-state NMR, Leiden Institute of Chemistry, Faculty of Science, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Julia R Krug
- Laboratory of Biophysics, Wageningen University & Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands.,Laboratory of BioNanoTechnology, Wageningen University & Research, Bornse Weilanden 9, Wageningen, 6708 WG, The Netherlands
| | - Defeng Shen
- Laboratory of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Karthick B S Sankar Gupta
- Solid-state NMR, Leiden Institute of Chemistry, Faculty of Science, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Frank J Vergeldt
- Laboratory of Biophysics, Wageningen University & Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Ton Bisseling
- Laboratory of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Andrew G Webb
- C.J. Gorter Center for High Field MRI, Radiology department, Leiden University Medical Centre, Leiden University, Leiden, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Henk Van As
- Laboratory of Biophysics, Wageningen University & Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Aldrik H Velders
- Laboratory of BioNanoTechnology, Wageningen University & Research, Bornse Weilanden 9, Wageningen, 6708 WG, The Netherlands
| | - Huub J M de Groot
- Solid-state NMR, Leiden Institute of Chemistry, Faculty of Science, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - A Alia
- Solid-state NMR, Leiden Institute of Chemistry, Faculty of Science, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands. .,Institute for Medical Physics and Biophysics, Leipzig University, Härtelstraße 16/18, Leipzig, 04107, Germany.
| |
Collapse
|
34
|
Shen D, Bisseling T. The Evolutionary Aspects of Legume Nitrogen-Fixing Nodule Symbiosis. Results Probl Cell Differ 2020; 69:387-408. [PMID: 33263880 DOI: 10.1007/978-3-030-51849-3_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nitrogen-fixing root nodule symbiosis can sustain the development of the host plants under nitrogen-limiting conditions. Such symbiosis occurs only in a clade of angiosperms known as the nitrogen-fixing clade (NFC). It has long been proposed that root nodule symbiosis evolved several times (in parallel) in the NFC. Two recent phylogenomic studies compared the genomes of nodulating and related non-nodulating species across the four orders of the NFC and found that genes essential for nodule formation are lost or pseudogenized in the non-nodulating species. As these symbiosis genes are specifically involved in the symbiotic interaction, it means that the presence of pseudogenes and the loss of symbiosis genes strongly suggest that their ancestor, which still had functional genes, most likely had a symbiosis with nitrogen-fixing bacteria. These findings agree with the hypothesis that nodulation evolved once at the common ancestor of the NFC, and challenge the hypothesis of parallel evolution. In this chapter, we will cover the current understandings on actinorhizal-type and legume nodule development, and discuss the evolution of the legume nodule type.
Collapse
Affiliation(s)
- Defeng Shen
- Laboratory of Molecular Biology, Graduate School Experimental Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Ton Bisseling
- Laboratory of Molecular Biology, Graduate School Experimental Plant Sciences, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
35
|
Roy S, Liu W, Nandety RS, Crook A, Mysore KS, Pislariu CI, Frugoli J, Dickstein R, Udvardi MK. Celebrating 20 Years of Genetic Discoveries in Legume Nodulation and Symbiotic Nitrogen Fixation. THE PLANT CELL 2020; 32:15-41. [PMID: 31649123 PMCID: PMC6961631 DOI: 10.1105/tpc.19.00279] [Citation(s) in RCA: 386] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/17/2019] [Accepted: 10/24/2019] [Indexed: 05/13/2023]
Abstract
Since 1999, various forward- and reverse-genetic approaches have uncovered nearly 200 genes required for symbiotic nitrogen fixation (SNF) in legumes. These discoveries advanced our understanding of the evolution of SNF in plants and its relationship to other beneficial endosymbioses, signaling between plants and microbes, the control of microbial infection of plant cells, the control of plant cell division leading to nodule development, autoregulation of nodulation, intracellular accommodation of bacteria, nodule oxygen homeostasis, the control of bacteroid differentiation, metabolism and transport supporting symbiosis, and the control of nodule senescence. This review catalogs and contextualizes all of the plant genes currently known to be required for SNF in two model legume species, Medicago truncatula and Lotus japonicus, and two crop species, Glycine max (soybean) and Phaseolus vulgaris (common bean). We also briefly consider the future of SNF genetics in the era of pan-genomics and genome editing.
Collapse
Affiliation(s)
- Sonali Roy
- Noble Research Institute, Ardmore, Oklahoma 73401
| | - Wei Liu
- Noble Research Institute, Ardmore, Oklahoma 73401
| | | | - Ashley Crook
- College of Science, Clemson University, Clemson, South Carolina 29634
| | | | | | - Julia Frugoli
- College of Science, Clemson University, Clemson, South Carolina 29634
| | - Rebecca Dickstein
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton Texas 76203
| | | |
Collapse
|
36
|
Zhang S, Kondorosi É, Kereszt A. An anthocyanin marker for direct visualization of plant transformation and its use to study nitrogen-fixing nodule development. JOURNAL OF PLANT RESEARCH 2019; 132:695-703. [PMID: 31325057 PMCID: PMC6713694 DOI: 10.1007/s10265-019-01126-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/16/2019] [Indexed: 05/22/2023]
Abstract
The development and functioning of the nitrogen fixing symbiosis between legume plants and soil bacteria collectively called rhizobia requires continuous chemical dialogue between the partners using different molecules such as flavonoids, lipo-chitooligosaccharides, polysaccharides and peptides. Agrobacterium rhizogenes mediated hairy root transformation of legumes is widely used to study the function of plant genes involved in the process. The identification of transgenic plant tissues is based on antibiotics/herbicide selection and/or the detection of different reporter genes that usually require special equipment such as fluorescent microscopes or destructive techniques and chemicals to visualize enzymatic activity. Here, we developed and efficiently used in hairy root experiments binary vectors containing the MtLAP1 gene driven by constitutive and tissue-specific promoters that facilitate the production of purple colored anthocyanins in transgenic tissues and thus allowing the identification of transformed roots by naked eye. Anthocyanin producing roots were able to establish effective symbiosis with rhizobia. Moreover, it was shown that species-specific allelic variations and a mutation preventing posttranslational acetyl modification of an essential nodule-specific cysteine-rich peptide, NCR169, do not affect the symbiotic interaction of Medicago truncatula cv. Jemalong with Sinorhizobium medicae strain WSM419. Based on the experiments, it could be concluded that it is preferable to use the vectors with tissue-specific promoters that restrict anthocyanin production to the root vasculature for studying biotic interactions of the roots such as symbiotic nitrogen fixation or mycorrhizal symbiosis.
Collapse
Affiliation(s)
- Senlei Zhang
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári körút 62, 6726, Szeged, Hungary
| | - Éva Kondorosi
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári körút 62, 6726, Szeged, Hungary
| | - Attila Kereszt
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári körút 62, 6726, Szeged, Hungary.
| |
Collapse
|
37
|
Rodríguez-López J, López AH, Estrada-Navarrete G, Sánchez F, Díaz-Camino C. The Noncanonical Heat Shock Protein PvNod22 Is Essential for Infection Thread Progression During Rhizobial Endosymbiosis in Common Bean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:939-948. [PMID: 30893001 DOI: 10.1094/mpmi-02-19-0041-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the establishment of plant-rhizobial symbiosis, the plant hosts express nodulin proteins during root nodule organogenesis. A limited number of nodulins have been characterized, and these perform essential functions in root nodule development and metabolism. Most nodulins are expressed in the nodule and at lower levels in other plant tissues. Previously, we isolated Nodulin 22 (PvNod22) from a common bean (Phaseolus vulgaris L.) cDNA library derived from Rhizobium-infected roots. PvNod22 is a noncanonical, endoplasmic reticulum (ER)-localized, small heat shock protein that confers protection against oxidative stress when overexpressed in Escherichia coli. Virus-induced gene silencing of PvNod22 resulted in necrotic lesions in the aerial organs of P. vulgaris plants cultivated under optimal conditions, activation of the ER-unfolded protein response (UPR), and, finally, plant death. Here, we examined the expression of PvNod22 in common bean plants during the establishment of rhizobial endosymbiosis and its relationship with two cellular processes associated with plant immunity, the UPR and autophagy. In the RNA interference lines, numerous infection threads stopped their progression before reaching the cortex cell layer of the root, and nodules contained fewer nitrogen-fixing bacteroids. Collectively, our results suggest that PvNod22 has a nonredundant function during legume-rhizobia symbiosis associated with infection thread elongation, likely by sustaining protein homeostasis in the ER.
Collapse
Affiliation(s)
- Jonathan Rodríguez-López
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Alejandrina Hernández López
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Georgina Estrada-Navarrete
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Federico Sánchez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Claudia Díaz-Camino
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
38
|
Wang R, Wang M, Chen K, Wang S, Mur LAJ, Guo S. Exploring the Roles of Aquaporins in Plant⁻Microbe Interactions. Cells 2018; 7:E267. [PMID: 30545006 PMCID: PMC6316839 DOI: 10.3390/cells7120267] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/23/2018] [Accepted: 12/06/2018] [Indexed: 11/16/2022] Open
Abstract
Aquaporins (AQPs) are membrane channel proteins regulating the flux of water and other various small solutes across membranes. Significant progress has been made in understanding the roles of AQPs in plants' physiological processes, and now their activities in various plant⁻microbe interactions are receiving more attention. This review summarizes the various roles of different AQPs during interactions with microbes which have positive and negative consequences on the host plants. In positive plant⁻microbe interactions involving rhizobia, arbuscular mycorrhizae (AM), and plant growth-promoting rhizobacteria (PGPR), AQPs play important roles in nitrogen fixation, nutrient transport, improving water status, and increasing abiotic stress tolerance. For negative interactions resulting in pathogenesis, AQPs help plants resist infections by preventing pathogen ingress by influencing stomata opening and influencing defensive signaling pathways, especially through regulating systemic acquired resistance. Interactions with bacterial or viral pathogens can be directly perturbed through direct interaction of AQPs with harpins or replicase. However, whilst these observations indicate the importance of AQPs, further work is needed to develop a fuller mechanistic understanding of their functions.
Collapse
Affiliation(s)
- Ruirui Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Min Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Kehao Chen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Shiyu Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Luis Alejandro Jose Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK.
| | - Shiwei Guo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
39
|
Kagda MS, Vu AL, Ah-Fong AMV, Judelson HS. Phosphagen kinase function in flagellated spores of the oomycete Phytophthora infestans integrates transcriptional regulation, metabolic dynamics and protein retargeting. Mol Microbiol 2018; 110:296-308. [PMID: 30137656 DOI: 10.1111/mmi.14108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2018] [Indexed: 11/30/2022]
Abstract
Flagellated spores play important roles in the infection of plants and animals by many eukaryotic microbes. The oomycete Phytophthora infestans, which causes potato blight, expresses two phosphagen kinases (PKs). These enzymes store energy in taurocyamine, and are hypothesized to resolve spatial and temporal imbalances between rates of ATP creation and use in zoospores. A dimeric PK is found at low levels in vegetative mycelia, but high levels in ungerminated sporangia and zoospores. In contrast, a monomeric PK protein is at similar levels in all tissues, although is transcribed primarily in mycelia. Subcellular localization studies indicate that the monomeric PK is mitochondrial. In contrast, the dimeric PK is cytoplasmic in mycelia and sporangia but is retargeted to flagellar axonemes during zoosporogenesis. This supports a model in which PKs shuttle energy from mitochondria to and through flagella. Metabolite analysis indicates that deployment of the flagellar PK is coordinated with a large increase in taurocyamine, synthesized by sporulation-induced enzymes that were lost during the evolution of zoospore-lacking oomycetes. Thus, PK function is enabled by coordination of the transcriptional, metabolic and protein targeting machinery during the life cycle. Since plants lack PKs, the enzymes may be useful targets for inhibitors of oomycete plant pathogens.
Collapse
Affiliation(s)
- Meenakshi S Kagda
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Andrea L Vu
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Audrey M V Ah-Fong
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
40
|
Stonoha-Arther C, Wang D. Tough love: accommodating intracellular bacteria through directed secretion of antimicrobial peptides during the nitrogen-fixing symbiosis. CURRENT OPINION IN PLANT BIOLOGY 2018; 44:155-163. [PMID: 29778978 DOI: 10.1016/j.pbi.2018.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/20/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
The symbiosis formed by nitrogen-fixing bacteria with plant hosts mainly in the legume family involves a very intimate interaction. Within the symbiotic organ (the nodule) the bacteria are fully internalized by the host cell to become an intracellular organelle surrounded by a host-derived membrane. This arrangement is probably necessary for the efficient provision of energy and the sequestration of free oxygen molecules, two conditions required for sustained nitrogen fixation. Recent advances made in model legume species, such as Medicago truncatula, are beginning to uncover the genetic components allowing rhizobia to access the host cytoplasm and establish chronic intracellular infections without overt detrimental effects. It is now known that the rhizobial compartment in M. truncatula cells, the symbiosome, retains some features of the extracellular space as the target for a redirected host protein secretory pathway. A set of vesicle trafficking proteins function specifically in symbiotic cells to ensure the faithful delivery of secretory proteins to the intracellular bacteria, or bacteroid. This system is co-opted from the more ancient association with arbuscular mycorrhizal fungi found in most land plants, highlighting the evolutionary origin of the legume-rhizobia symbiosis. In some legume lineages, this heightened capability to process secretory proteins is needed to deliver a large number of symbiosis-specific antimicrobial peptides to the bacteria. Known as NCR peptides, these molecules transform bacteroids into a state of terminal differentiation, where the microbe loses its ability to proliferate outside their host. Numbering in their hundreds, these peptides manipulate various aspects of rhizobial biology, and affect the outcome of this symbiosis in complex ways. The extreme size of the NCR peptide family seems to be the result of an evolutionary conflict between the two partners to extract maximum benefit from each other.
Collapse
Affiliation(s)
| | - Dong Wang
- Plant Biology Graduate Program, University of Massachusetts Amherst, MA 01003, USA; Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, MA 01003, USA.
| |
Collapse
|
41
|
Lang C, Smith LS, Haney CH, Long SR. Characterization of Novel Plant Symbiosis Mutants Using a New Multiple Gene-Expression Reporter Sinorhizobium meliloti Strain. FRONTIERS IN PLANT SCIENCE 2018; 9:76. [PMID: 29467773 PMCID: PMC5808326 DOI: 10.3389/fpls.2018.00076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/15/2018] [Indexed: 06/08/2023]
Abstract
The formation of nitrogen fixing root nodules by Medicago truncatula and Sinorhizobium meliloti requires communication between both organisms and coordinated differentiation of plant and bacterial cells. After an initial signal exchange, the bacteria invade the tissue of the growing nodule via plant-derived tubular structures, called infection threads. The bacteria are released from the infection threads into invasion-competent plant cells, where they differentiate into nitrogen-fixing bacteroids. Both organisms undergo dramatic transcriptional, metabolic and morphological changes during nodule development. To identify plant processes that are essential for the formation of nitrogen fixing nodules after nodule development has been initiated, large scale mutageneses have been conducted to discover underlying plant symbiosis genes. Such screens yield numerous uncharacterized plant lines with nitrogen fixation deficient nodules. In this study, we report construction of a S. meliloti strain carrying four distinct reporter constructs to reveal stages of root nodule development. The strain contains a constitutively expressed lacZ reporter construct; a PexoY-mTFP fusion that is expressed in infection threads but not in differentiated bacteroids; a PbacA-mcherry construct that is expressed in infection threads and during bacteroid differentiation; and a PnifH-uidA construct that is expressed during nitrogen fixation. We used this strain together with fluorescence microscopy to study nodule development over time in wild type nodules and to characterize eight plant mutants from a fast neutron bombardment screen. Based on the signal intensity and the localization patterns of the reporter genes, we grouped mutants with similar phenotypes and placed them in a developmental context.
Collapse
Affiliation(s)
| | | | | | - Sharon R. Long
- Gilbert Lab, Department of Biology, Stanford University, Stanford, CA, United States
| |
Collapse
|
42
|
Coba de la Peña T, Fedorova E, Pueyo JJ, Lucas MM. The Symbiosome: Legume and Rhizobia Co-evolution toward a Nitrogen-Fixing Organelle? FRONTIERS IN PLANT SCIENCE 2018; 8:2229. [PMID: 29403508 PMCID: PMC5786577 DOI: 10.3389/fpls.2017.02229] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/19/2017] [Indexed: 05/21/2023]
Abstract
In legume nodules, symbiosomes containing endosymbiotic rhizobial bacteria act as temporary plant organelles that are responsible for nitrogen fixation, these bacteria develop mutual metabolic dependence with the host legume. In most legumes, the rhizobia infect post-mitotic cells that have lost their ability to divide, although in some nodules cells do maintain their mitotic capacity after infection. Here, we review what is currently known about legume symbiosomes from an evolutionary and developmental perspective, and in the context of the different interactions between diazotroph bacteria and eukaryotes. As a result, it can be concluded that the symbiosome possesses organelle-like characteristics due to its metabolic behavior, the composite origin and differentiation of its membrane, the retargeting of host cell proteins, the control of microsymbiont proliferation and differentiation by the host legume, and the cytoskeletal dynamics and symbiosome segregation during the division of rhizobia-infected cells. Different degrees of symbiosome evolution can be defined, specifically in relation to rhizobial infection and to the different types of nodule. Thus, our current understanding of the symbiosome suggests that it might be considered a nitrogen-fixing link in organelle evolution and that the distinct types of legume symbiosomes could represent different evolutionary stages toward the generation of a nitrogen-fixing organelle.
Collapse
Affiliation(s)
- Teodoro Coba de la Peña
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile
| | - Elena Fedorova
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Moscow, Russia
| | - José J Pueyo
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
| | | |
Collapse
|
43
|
Tsyganova AV, Kitaeva AB, Tsyganov VE. Cell differentiation in nitrogen-fixing nodules hosting symbiosomes. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:47-57. [PMID: 32291020 DOI: 10.1071/fp16377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/25/2017] [Indexed: 06/11/2023]
Abstract
The nitrogen-fixing nodule is a unique ecological niche for rhizobia, where microaerobic conditions support functioning of the main enzyme of nitrogen fixation, nitrogenase, which is highly sensitive to oxygen. To accommodate bacteria in a symbiotic nodule, the specialised infected cells increase in size owing to endoreduplication and are able to shelter thousands of bacteria. Bacteria are isolated from the cytoplasm of the plant cell by a membrane-bound organelle-like structure termed the symbiosome. It is enclosed by a symbiosome membrane, mainly of plant origin but with some inclusion of bacterial proteins. Within the symbiosome, bacterial cells differentiate into bacteroids a form that is specialised for nitrogen fixation. In this review, we briefly summarise recent advances in studies of differentiation both of symbiosomes and of the infected cells that accommodate them. We will consider the role of CCS52A, DNA topoisomerase VI, tubulin cytoskeleton rearrangements in differentiation of infected cells, the fate of the vacuole, and the distribution of symbiosomes in the infected cells. We will also consider differentiation of symbiosomes, paying attention to the role of NCR peptides, vesicular transport to symbiosomes, and mutant analysis of symbiosome development in model and crop legumes. Finally, we conclude that mechanisms involved in redistribution organelles, including the symbiosomes, clearly merit much more attention.
Collapse
Affiliation(s)
- Anna V Tsyganova
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Podbelsky chaussee 3, 196608, Pushkin 8, Saint-Petersburg, Russia
| | - Anna B Kitaeva
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Podbelsky chaussee 3, 196608, Pushkin 8, Saint-Petersburg, Russia
| | - Viktor E Tsyganov
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Podbelsky chaussee 3, 196608, Pushkin 8, Saint-Petersburg, Russia
| |
Collapse
|
44
|
Brillada C, Rojas-Pierce M. Vacuolar trafficking and biogenesis: a maturation in the field. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:77-81. [PMID: 28865974 DOI: 10.1016/j.pbi.2017.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/20/2017] [Accepted: 08/15/2017] [Indexed: 05/24/2023]
Abstract
The vacuole is a prominent organelle that is essential for plant viability. The vacuole size, and its role in ion homeostasis, protein degradation and storage, place significant demands for trafficking of vacuolar cargo along the endomembrane system. Recent studies indicate that sorting of vacuolar cargo initiates at the ER and Golgi, but not the trans-Golgi network/early endosome, as previously thought. Furthermore, maturation of the trans-Golgi network into pre-vacuolar compartments seems to contribute to a major route for plant vacuolar traffic that works by bulk flow and ends with membrane fusion between the pre-vacuolar compartment and the tonoplast. Here we summarize recent evidence that indicates conserved and plant-specific mechanisms involved in sorting and trafficking of proteins to this major organelle.
Collapse
Affiliation(s)
- Carla Brillada
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Marcela Rojas-Pierce
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
45
|
Gu Y, Zavaliev R, Dong X. Membrane Trafficking in Plant Immunity. MOLECULAR PLANT 2017; 10:1026-1034. [PMID: 28698057 PMCID: PMC5673114 DOI: 10.1016/j.molp.2017.07.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/02/2017] [Accepted: 07/03/2017] [Indexed: 05/20/2023]
Abstract
Plants employ sophisticated mechanisms to interact with pathogenic as well as beneficial microbes. Of those, membrane trafficking is key in establishing a rapid and precise response. Upon interaction with pathogenic microbes, surface-localized immune receptors undergo endocytosis for signal transduction and activity regulation while cell wall components, antimicrobial compounds, and defense proteins are delivered to pathogen invasion sites through polarized secretion. To sustain mutualistic associations, host cells also reprogram the membrane trafficking system to accommodate invasive structures of symbiotic microbes. Here, we provide an analysis of recent advances in understanding the roles of secretory and endocytic membrane trafficking pathways in plant immune activation. We also discuss strategies deployed by adapted microbes to manipulate these pathways to subvert or inhibit plant defense.
Collapse
Affiliation(s)
- Yangnan Gu
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA.
| | - Raul Zavaliev
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
46
|
Gavrin A, Kulikova O, Bisseling T, Fedorova EE. Interface Symbiotic Membrane Formation in Root Nodules of Medicago truncatula: the Role of Synaptotagmins MtSyt1, MtSyt2 and MtSyt3. FRONTIERS IN PLANT SCIENCE 2017; 8:201. [PMID: 28265280 PMCID: PMC5316549 DOI: 10.3389/fpls.2017.00201] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/02/2017] [Indexed: 05/23/2023]
Abstract
UNLABELLED Symbiotic bacteria (rhizobia) are maintained and conditioned to fix atmospheric nitrogen in infected cells of legume root nodules. Rhizobia are confined to the asymmetrical protrusions of plasma membrane (PM): infection threads (IT), cell wall-free unwalled droplets and symbiosomes. These compartments rapidly increase in surface and volume due to the microsymbiont expansion, and remarkably, the membrane resources of the host cells are targeted to interface membrane quite precisely. We hypothesized that the change in the membrane tension around the expanding microsymbionts creates a vector for membrane traffic toward the symbiotic interface. To test this hypothesis, we selected calcium sensors from the group of synaptotagmins: MtSyt1, Medicago truncatula homolog of AtSYT1 from Arabidopsis thaliana known to be involved in membrane repair, and two other homologs expressed in root nodules: MtSyt2 and MtSyt3. Here we show that MtSyt1, MtSyt2, and MtSyt3 are expressed in the expanding cells of the meristem, zone of infection and proximal cell layers of zone of nitrogen fixation (MtSyt1, MtSyt3). All three GFP-tagged proteins delineate the interface membrane of IT and unwalled droplets and create a subcompartments of PM surrounding these structures. The localization of MtSyt1 by EM immunogold labeling has shown the signal on symbiosome membrane and endoplasmic reticulum (ER). To specify the role of synaptotagmins in interface membrane formation, we compared the localization of MtSyt1, MtSyt3 and exocyst subunit EXO70i, involved in the tethering of post-Golgi secretory vesicles and operational in tip growth. The localization of EXO70i in root nodules and arbusculated roots was strictly associated with the tips of IT and the tips of arbuscular fine branches, but the distribution of synaptotagmins on membrane subcompartments was broader and includes lateral parts of IT, the membrane of unwalled droplets as well as the symbiosomes. The double silencing of synaptotagmins caused a delay in rhizobia release and blocks symbiosome maturation confirming the functional role of synaptotagmins. IN CONCLUSION synaptotagmin-dependent membrane fusion along with tip-targeted exocytosis is operational in the formation of symbiotic interface.
Collapse
Affiliation(s)
- Aleksandr Gavrin
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen UniversityWageningen, Netherlands
- Sainsbury Laboratory, University of CambridgeCambridge, UK
| | - Olga Kulikova
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen UniversityWageningen, Netherlands
| | - Ton Bisseling
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen UniversityWageningen, Netherlands
| | - Elena E. Fedorova
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen UniversityWageningen, Netherlands
| |
Collapse
|
47
|
Gemperline E, Keller C, Jayaraman D, Maeda J, Sussman MR, Ané JM, Li L. Examination of Endogenous Peptides in Medicago truncatula Using Mass Spectrometry Imaging. J Proteome Res 2016; 15:4403-4411. [PMID: 27726374 DOI: 10.1021/acs.jproteome.6b00471] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plant science is an important, rapidly developing area of study. Within plant science, one area of study that has grown tremendously with recent technological advances, such as mass spectrometry, is the field of plant-omics; however, plant peptidomics is relatively underdeveloped in comparison with proteomics and metabolomics. Endogenous plant peptides can act as signaling molecules and have been shown to affect cell division, development, nodulation, reproduction, symbiotic associations, and defense reactions. There is a growing need to uncover the role of endogenous peptides on a molecular level. Mass spectrometric imaging (MSI) is a valuable tool for biological analyses as it allows for the detection of thousands of analytes in a single experiment and also displays spatial information for the detected analytes. Despite the prediction of a large number of plant peptides, their detection and imaging with spatial localization and chemical specificity is currently lacking. Here we analyzed the endogenous peptides and proteins in Medicago truncatula using matrix-assisted laser desorption/ionization (MALDI)-MSI. Hundreds of endogenous peptides and protein fragments were imaged, with interesting peptide spatial distribution changes observed between plants in different developmental stages.
Collapse
Affiliation(s)
- Erin Gemperline
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Caitlin Keller
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Dhileepkumar Jayaraman
- Department of Agronomy, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Junko Maeda
- Department of Agronomy, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Michael R Sussman
- Department of Biochemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Bacteriology, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| |
Collapse
|
48
|
Vukašinović N, Žárský V. Tethering Complexes in the Arabidopsis Endomembrane System. Front Cell Dev Biol 2016; 4:46. [PMID: 27243010 PMCID: PMC4871884 DOI: 10.3389/fcell.2016.00046] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/02/2016] [Indexed: 12/30/2022] Open
Abstract
Targeting of endomembrane transport containers is of the utmost importance for proper land plant growth and development. Given the immobility of plant cells, localized membrane vesicle secretion and recycling are amongst the main processes guiding proper cell, tissue and whole plant morphogenesis. Cell wall biogenesis and modification are dependent on vectorial membrane traffic, not only during normal development, but also in stress responses and in plant defense against pathogens and/or symbiosis. It is surprising how little we know about these processes in plants, from small GTPase regulation to the tethering complexes that act as their effectors. Tethering factors are single proteins or protein complexes mediating first contact between the target membrane and arriving membrane vesicles. In this review we focus on the tethering complexes of the best-studied plant model—Arabidopsis thaliana. Genome-based predictions indicate the presence of all major tethering complexes in plants that are known from a hypothetical last eukaryotic common ancestor (LECA). The evolutionary multiplication of paralogs of plant tethering complex subunits has produced the massively expanded EXO70 family, indicating a subfunctionalization of the terminal exocytosis machinery in land plants. Interpretation of loss of function (LOF) mutant phenotypes has to consider that related, yet clearly functionally-specific complexes often share some common core subunits. It is therefore impossible to conclude with clarity which version of the complex is responsible for the phenotypic deviations observed. Experimental interest in the analysis of plant tethering complexes is growing and we hope to contribute with this review by attracting even more attention to this fascinating field of plant cell biology.
Collapse
Affiliation(s)
- Nemanja Vukašinović
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University Prague, Czech Republic
| | - Viktor Žárský
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University Prague, Czech Republic
| |
Collapse
|
49
|
Gavrin A, Chiasson D, Ovchinnikova E, Kaiser BN, Bisseling T, Fedorova EE. VAMP721a and VAMP721d are important for pectin dynamics and release of bacteria in soybean nodules. THE NEW PHYTOLOGIST 2016; 210:1011-21. [PMID: 26790563 DOI: 10.1111/nph.13837] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
In root nodules rhizobia enter host cells via infection threads. The release of bacteria to a host cell is possible from cell wall-free regions of the infection thread. We hypothesized that the VAMP721d and VAMP721e exocytotic pathway, identified before in Medicago truncatula, has a role in the local modification of cell wall during the release of rhizobia. To clarify the role of VAMP721d and VAMP721e we used Glycine max, a plant with a determinate type of nodule. The localization of the main polysaccharide compounds of primary cell walls was analysed in control vs nodules with partially silenced GmVAMP721d. The silencing of GmVAMP721d blocked the release of rhizobia. Instead of rhizobia-containing membrane compartments - symbiosomes - the infected cells contained big clusters of bacteria embedded in a matrix of methyl-esterified and de-methyl-esterified pectin. These clusters were surrounded by a membrane. We found that GmVAMP721d-positive vesicles were not transporting methyl-esterified pectin. We hypothesized that they may deliver the enzymes involved in pectin turnover. Subsequently, we found that GmVAMP721d is partly co-localized with pectate lyase. Therefore, the biological role of VAMP721d may be explained by its action in delivering pectin-modifying enzymes to the site of release.
Collapse
Affiliation(s)
- Aleksandr Gavrin
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen University, 6708 PB, Wageningen, the Netherlands
| | - David Chiasson
- School of Agriculture Food and Wine, The University of Adelaide, Adelaide, SA, 5050, Australia
| | - Evgenia Ovchinnikova
- School of Agriculture Food and Wine, The University of Adelaide, Adelaide, SA, 5050, Australia
| | - Brent N Kaiser
- School of Agriculture Food and Wine, The University of Adelaide, Adelaide, SA, 5050, Australia
| | - Ton Bisseling
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen University, 6708 PB, Wageningen, the Netherlands
| | - Elena E Fedorova
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen University, 6708 PB, Wageningen, the Netherlands
| |
Collapse
|
50
|
An antimicrobial peptide essential for bacterial survival in the nitrogen-fixing symbiosis. Proc Natl Acad Sci U S A 2015; 112:15238-43. [PMID: 26598690 DOI: 10.1073/pnas.1500123112] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the nitrogen-fixing symbiosis between legume hosts and rhizobia, the bacteria are engulfed by a plant cell membrane to become intracellular organelles. In the model legume Medicago truncatula, internalization and differentiation of Sinorhizobium (also known as Ensifer) meliloti is a prerequisite for nitrogen fixation. The host mechanisms that ensure the long-term survival of differentiating intracellular bacteria (bacteroids) in this unusual association are unclear. The M. truncatula defective nitrogen fixation4 (dnf4) mutant is unable to form a productive symbiosis, even though late symbiotic marker genes are expressed in mutant nodules. We discovered that in the dnf4 mutant, bacteroids can apparently differentiate, but they fail to persist within host cells in the process. We found that the DNF4 gene encodes NCR211, a member of the family of nodule-specific cysteine-rich (NCR) peptides. The phenotype of dnf4 suggests that NCR211 acts to promote the intracellular survival of differentiating bacteroids. The greatest expression of DNF4 was observed in the nodule interzone II-III, where bacteroids undergo differentiation. A translational fusion of DNF4 with GFP localizes to the peribacteroid space, and synthetic NCR211 prevents free-living S. meliloti from forming colonies, in contrast to mock controls, suggesting that DNF4 may interact with bacteroids directly or indirectly for its function. Our findings indicate that a successful symbiosis requires host effectors that not only induce bacterial differentiation, but also that maintain intracellular bacteroids during the host-symbiont interaction. The discovery of NCR211 peptides that maintain bacterial survival inside host cells has important implications for improving legume crops.
Collapse
|