1
|
Pal S, Melnik R. Nonlocal models in biology and life sciences: Sources, developments, and applications. Phys Life Rev 2025; 53:24-75. [PMID: 40037217 DOI: 10.1016/j.plrev.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
Mathematical modeling is one of the fundamental techniques for understanding biophysical mechanisms in developmental biology. It helps researchers to analyze complex physiological processes and connect like a bridge between theoretical and experimental observations. Various groups of mathematical models have been studied to analyze these processes, and the nonlocal models are one of them. Nonlocality is important in realistic mathematical models of physical and biological systems when local models fail to capture the essential dynamics and interactions that occur over a range of distances (e.g., cell-cell, cell-tissue adhesions, neural networks, the spread of diseases, intra-specific competition, nanobeams, etc.). This review illustrates different nonlocal mathematical models applied to biology and life sciences. The major focus has been given to sources, developments, and applications of such models. Among other things, a systematic discussion has been provided for the conditions of pattern formations in biological systems of population dynamics. Special attention has also been given to nonlocal interactions on networks, network coupling and integration, including brain dynamics models that provide an important tool to understand neurodegenerative diseases better. In addition, we have discussed nonlocal modeling approaches for cancer stem cells and tumor cells that are widely applied in the cell migration processes, growth, and avascular tumors in any organ. Furthermore, the discussed nonlocal continuum models can go sufficiently smaller scales, including nanotechnology, where classical local models often fail to capture the complexities of nanoscale interactions, applied to build biosensors to sense biomaterial and its concentration. Piezoelectric and other smart materials are among them, and these devices are becoming increasingly important in the digital and physical world that is intrinsically interconnected with biological systems. Additionally, we have reviewed a nonlocal theory of peridynamics, which deals with continuous and discrete media and applies to model the relationship between fracture and healing in cortical bone, tissue growth and shrinkage, and other areas increasingly important in biomedical and bioengineering applications. Finally, we provided a comprehensive summary of emerging trends and highlighted future directions in this rapidly expanding field.
Collapse
Affiliation(s)
- Swadesh Pal
- MS2 Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Canada.
| | - Roderick Melnik
- MS2 Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Canada; BCAM - Basque Center for Applied Mathematics, E-48009, Bilbao, Spain.
| |
Collapse
|
2
|
Zhong Y, Chen Y, Pan M, Li X, Hebelstrup K, Cai J, Zhou Q, Dai T, Cao W, Jiang D. Transport and spatio-temporal conversion of sugar facilitate the formation of spatial gradients of starch in wheat caryopses. Commun Biol 2024; 7:928. [PMID: 39090206 PMCID: PMC11294588 DOI: 10.1038/s42003-024-06625-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Wheat grain starch content displays large variations within different pearling fractions, which affecting the processing quality of corresponding flour, while the underlying mechanism on starch gradient formation is unclear. Here, we show that wheat caryopses acquire sugar through the transfer of cells (TCs), inner endosperm (IE), outer endosperm (OE), and finally aleurone (AL) via micro positron emission tomography-computed tomography (PET-CT). To obtain integrated information on spatial transcript distributions, developing caryopses are laser microdissected into AL, OE, IE, and TC. Most genes encoding carbohydrate transporters are upregulated or specifically expressed, and sugar metabolites are more highly enriched in the TC group than in the AL group, in line with the PET-CT results. Genes encoding enzymes in sucrose metabolism, such as sucrose synthase, beta-fructofuranosidase, glucose-1-phosphate adenylyltransferase show significantly lower expression in AL than in OE and IE, indicating that substrate supply is crucial for the formation of starch gradients. Furthermore, the low expressions of gene encoding starch synthase contribute to low starch content in AL. Our results imply that transcriptional regulation represents an important means of impacting starch distribution in wheat grains and suggests breeding targets for enhancing specially pearled wheat with higher quality.
Collapse
Affiliation(s)
- Yingxin Zhong
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, PR China
| | - Yuhua Chen
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, PR China
| | - Mingsheng Pan
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, PR China
| | - Xiangnan Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kim Hebelstrup
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Jian Cai
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, PR China
| | - Qin Zhou
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, PR China
| | - Tingbo Dai
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, PR China
| | - Weixing Cao
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, PR China
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, PR China.
| |
Collapse
|
3
|
Nguyen TNH, Goux D, Follet-Gueye ML, Bernard S, Padel L, Vicré M, Prud'homme MP, Morvan-Bertrand A. Generation and characterization of two new monoclonal antibodies produced by immunizing mice with plant fructans: New tools for immunolocalization of β-(2 → 1) and β-(2 → 6) fructans. Carbohydr Polym 2024; 327:121682. [PMID: 38171691 DOI: 10.1016/j.carbpol.2023.121682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Fructans are water-soluble polymers of fructose in which fructose units are linked by β-(2 → 1) and/or β-(2 → 6) linkages. In plants, they are synthesized in the vacuole but have also been reported in the apoplastic sap under abiotic stress suggesting that they are involved in plasmalemma protection and in plant-microbial interactions. However, the lack of fructan-specific antibodies currently prevents further study of their role and the associated mechanisms of action, which could be elucidated thanks to their immunolocalization. We report the production of two monoclonal antibodies (named BTM9H2 and BTM15A6) using mice immunization with antigenic compounds prepared from a mixture of plant inulins and levans conjugated to serum albumin. Their specificity towards fructans with β-(2 → 1) and/or β-(2 → 6) linkage has been demonstrated by immuno-dot blot tests on a wide range of carbohydrates. The two mAbs were used for immunocytolocalization of fructans by epifluorescence microscopy in various plant species. Fructan epitopes were specifically detected in fructan-accumulating plants, inside cells as well as on the surface of root tips, confirming both extracellular and intracellular localizations. The two mAbs provide new tools to identify the mechanism of extracellular fructan secretion and explore the roles of fructans in stress resistance and plant-microorganism interactions.
Collapse
Affiliation(s)
- Thi Ngoc Hanh Nguyen
- Normandie Univ, UNICAEN, INRAE, EVA Ecophysiologie Végétale, Agronomie & nutritions NCS, Fédération de Recherche "Normandie Végétal" - FED 4277, 14032 Caen, France; Université de Rouen Normandie, Laboratoire Glyco-MEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France
| | - Didier Goux
- Normandie Univ, UNICAEN, US EMerode, CMAbio(3), 14032 Caen, France.
| | - Marie-Laure Follet-Gueye
- Université de Rouen Normandie, Laboratoire Glyco-MEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France; Normandie Univ, HeRacLeS-PRIMACEN, INSERM US51, CNRS UAR2026, ComUE Normandie Université, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France.
| | - Sophie Bernard
- Université de Rouen Normandie, Laboratoire Glyco-MEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France; Normandie Univ, HeRacLeS-PRIMACEN, INSERM US51, CNRS UAR2026, ComUE Normandie Université, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France.
| | | | - Maïté Vicré
- Université de Rouen Normandie, Laboratoire Glyco-MEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France.
| | - Marie-Pascale Prud'homme
- Normandie Univ, UNICAEN, INRAE, EVA Ecophysiologie Végétale, Agronomie & nutritions NCS, Fédération de Recherche "Normandie Végétal" - FED 4277, 14032 Caen, France.
| | - Annette Morvan-Bertrand
- Normandie Univ, UNICAEN, INRAE, EVA Ecophysiologie Végétale, Agronomie & nutritions NCS, Fédération de Recherche "Normandie Végétal" - FED 4277, 14032 Caen, France.
| |
Collapse
|
4
|
Shanmugaraj N, Rajaraman J, Kale S, Kamal R, Huang Y, Thirulogachandar V, Garibay-Hernández A, Budhagatapalli N, Tandron Moya YA, Hajirezaei MR, Rutten T, Hensel G, Melzer M, Kumlehn J, von Wirén N, Mock HP, Schnurbusch T. Multilayered regulation of developmentally programmed pre-anthesis tip degeneration of the barley inflorescence. THE PLANT CELL 2023; 35:3973-4001. [PMID: 37282730 PMCID: PMC10615218 DOI: 10.1093/plcell/koad164] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/17/2023] [Accepted: 06/04/2023] [Indexed: 06/08/2023]
Abstract
Leaf and floral tissue degeneration is a common feature in plants. In cereal crops such as barley (Hordeum vulgare L.), pre-anthesis tip degeneration (PTD) starts with growth arrest of the inflorescence meristem dome, which is followed basipetally by the degeneration of floral primordia and the central axis. Due to its quantitative nature and environmental sensitivity, inflorescence PTD constitutes a complex, multilayered trait affecting final grain number. This trait appears to be highly predictable and heritable under standardized growth conditions, consistent with a developmentally programmed mechanism. To elucidate the molecular underpinnings of inflorescence PTD, we combined metabolomic, transcriptomic, and genetic approaches to show that barley inflorescence PTD is accompanied by sugar depletion, amino acid degradation, and abscisic acid responses involving transcriptional regulators of senescence, defense, and light signaling. Based on transcriptome analyses, we identified GRASSY TILLERS1 (HvGT1), encoding an HD-ZIP transcription factor, as an important modulator of inflorescence PTD. A gene-edited knockout mutant of HvGT1 delayed PTD and increased differentiated apical spikelets and final spikelet number, suggesting a possible strategy to increase grain number in cereals. We propose a molecular framework that leads to barley PTD, the manipulation of which may increase yield potential in barley and other related cereals.
Collapse
Affiliation(s)
- Nandhakumar Shanmugaraj
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Jeyaraman Rajaraman
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Sandip Kale
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Roop Kamal
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Yongyu Huang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Venkatasubbu Thirulogachandar
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Adriana Garibay-Hernández
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Nagaveni Budhagatapalli
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Yudelsy Antonia Tandron Moya
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Mohammed R Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
- Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Halle 06120,Germany
| |
Collapse
|
5
|
Shi Y, Si D, Zhang X, Chen D, Han Z. Plant fructans: Recent advances in metabolism, evolution aspects and applications for human health. Curr Res Food Sci 2023; 7:100595. [PMID: 37744554 PMCID: PMC10517269 DOI: 10.1016/j.crfs.2023.100595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/26/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023] Open
Abstract
Fructans, fructose polymers, are one of the three major reserve carbohydrate in plants. The nutritional and therapeutic benefits of natural fructans in plants have attracted increasing interest by consumers and food industry. In the course of evolution, many plants have developed the ability of regulating plant fructans metabolism to produce fructans with different structures and chain lengths, which are strongly correlated with their survival in harsh environments. Exploring these evolution-related genes in fructans biosynthesis and de novo domestication of fructans-rich plants based on genome editing is a viable and promising approach to improve human dietary quality and reduce the risk of chronic disease. These advances will greatly facilitate breeding and production of tailor-made fructans as a healthy food ingredient from wild plants such as huangjing (Polygonatum cyrtonema). The purpose of this review is to broaden our knowledge on plant fructans biosynthesis, evolution and benefits to human health.
Collapse
Affiliation(s)
| | | | - Xinfeng Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Donghong Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhigang Han
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| |
Collapse
|
6
|
Li N, Li S, Wang Q, Yang S, Hou Y, Gao Y, Zhang X, Zhang M, Chen H. A novel visualization method for the composition analysis of processed garlic by MALDI-TOF imaging mass spectrometry (MSI) and Q-TOF LC-MS/MS. Food Res Int 2023; 168:112746. [PMID: 37120200 DOI: 10.1016/j.foodres.2023.112746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/31/2023]
Abstract
Laba garlic is a kind of vinegar processed garlic (Allium sativum L.) product with multiple health effects. This study applied matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-TOF MSI) and Q-TOF LC-MS/MS for the first time to investigate the garlic tissue spatial distribution changes of low molecular weight compounds during the Laba garlic processing. The distribution characteristics of the compounds were observed in processed and unprocessed garlic including amino acids and derivatives, organosulfur compounds, pigment precursors, polysaccharides and saponins. During Laba garlic processing, some bioactive compounds such as alliin and saponins were lost because they were transformed into other compounds or leached into the acetic acid solution, and some new compounds including pigments-related compounds occurred. This study provided a basis for the spatial distributions and changes of compounds in garlic tissue during Laba garlic processing, which suggested that the bioactivities of garlic might be changed after processing owing to the transformation and change of the constituents.
Collapse
|
7
|
Zhong Y, Chen Y, Pan M, Wang H, Sun J, Chen Y, Cai J, Zhou Q, Wang X, Jiang D. Insights into the Functional Components in Wheat Grain: Spatial Pattern, Underlying Mechanism and Cultivation Regulation. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112192. [PMID: 37299171 DOI: 10.3390/plants12112192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Wheat is a staple crop; its production must achieve both high yield and good quality due to worldwide demands for food security and better quality of life. It has been found that the grain qualities vary greatly within the different layers of wheat kernels. In this paper, the spatial distributions of protein and its components, starch, dietary fiber, and microelements are summarized in detail. The underlying mechanisms regarding the formation of protein and starch, as well as spatial distribution, are discussed from the views of substrate supply and the protein and starch synthesis capacity. The regulating effects of cultivation practices on gradients in composition are identified. Finally, breakthrough solutions for exploring the underlying mechanisms of the spatial gradients of functional components are presented. This paper will provide research perspectives for producing wheat that is both high in yield and of good quality.
Collapse
Affiliation(s)
- Yingxin Zhong
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuhua Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingsheng Pan
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hengtong Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiayu Sun
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Cai
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qin Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Dong Jiang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Chen L, Ganguly DR, Shafik SH, Danila F, Grof CPL, Sharwood RE, Furbank RT. The role of SWEET4 proteins in the post-phloem sugar transport pathway of Setaria viridis sink tissues. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2968-2986. [PMID: 36883216 PMCID: PMC10560085 DOI: 10.1093/jxb/erad076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/06/2023] [Indexed: 05/21/2023]
Abstract
In the developing seeds of all higher plants, filial cells are symplastically isolated from the maternal tissue supplying photosynthate to the reproductive structure. Photoassimilates must be transported apoplastically, crossing several membrane barriers, a process facilitated by sugar transporters. Sugars Will Eventually be Exported Transporters (SWEETs) have been proposed to play a crucial role in apoplastic sugar transport during phloem unloading and the post-phloem pathway in sink tissues. Evidence for this is presented here for developing seeds of the C4 model grass Setaria viridis. Using immunolocalization, SvSWEET4 was detected in various maternal and filial tissues within the seed along the sugar transport pathway, in the vascular parenchyma of the pedicel, and in the xylem parenchyma of the stem. Expression of SvSWEET4a in Xenopus laevis oocytes indicated that it functions as a high-capacity glucose and sucrose transporter. Carbohydrate and transcriptional profiling of Setaria seed heads showed that there were some developmental shifts in hexose and sucrose content and consistent expression of SvSWEET4 homologues. Collectively, these results provide evidence for the involvement of SWEETs in the apoplastic transport pathway of sink tissues and allow a pathway for post-phloem sugar transport into the seed to be proposed.
Collapse
Affiliation(s)
- Lily Chen
- Research School of Biology, ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, New South Wales 2753, Australia
| | - Diep R Ganguly
- Research School of Biology, ARC Centre of Excellence in Plant Energy Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- CSIRO Synthetic Biology Future Science Platform, Canberra, Australian Capital Territory 2601, Australia
| | - Sarah H Shafik
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Florence Danila
- Research School of Biology, ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Christopher P L Grof
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Robert E Sharwood
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, New South Wales 2753, Australia
| | - Robert T Furbank
- Research School of Biology, ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
9
|
Fei M, Jin Y, Hu J, Dotsenko G, Ruan Y, Liu C, Seisenbaeva G, Andersson AAM, Andersson R, Sun C. Achieving of high-diet-fiber barley via managing fructan hydrolysis. Sci Rep 2022; 12:19151. [PMID: 36351972 PMCID: PMC9646770 DOI: 10.1038/s41598-022-21955-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/06/2022] [Indexed: 11/11/2022] Open
Abstract
High fructan content in the grain of cereals is an important trait in agriculture such as environmental resilience and dietary fiber food production. To understand the mechanism in determining final grain fructan content and achieve high fructan cereal, a cross breeding strategy based on fructan synthesis and hydrolysis activities was set up and have achieved barley lines with 11.8% storage fructan in the harvested grain. Our study discovered that high activity of fructan hydrolysis at later grain developmental stage leads to the low fructan content in mature seeds, simultaneously increasing fructan synthesis at early stage and decreasing fructan hydrolysis at later stage through crossing breeding is an efficient way to elevate grain diet-fiber content. A good correlation between fructan and beta glucans was also discovered with obvious interest. Field trials showed that the achieved high fructan barley produced over seven folds higher fructan content than control barley and pull carbon-flux to fructan through decreasing fructan hydrolysis without disruption starch synthesis will probably not bring yield deficiency.
Collapse
Affiliation(s)
- Mingliang Fei
- grid.257160.70000 0004 1761 0331Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128 China ,grid.6341.00000 0000 8578 2742Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences (SLU), P.O. Box 7080, 750 07 Uppsala, Sweden ,grid.257160.70000 0004 1761 0331Key Laboratory of Education Department of Hunan Province On Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China
| | - Yunkai Jin
- grid.6341.00000 0000 8578 2742Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences (SLU), P.O. Box 7080, 750 07 Uppsala, Sweden
| | - Jia Hu
- grid.6341.00000 0000 8578 2742Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences (SLU), P.O. Box 7080, 750 07 Uppsala, Sweden
| | - Gleb Dotsenko
- grid.6341.00000 0000 8578 2742Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, 750 07 Uppsala, Sweden
| | - Ying Ruan
- grid.257160.70000 0004 1761 0331Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128 China ,grid.257160.70000 0004 1761 0331Key Laboratory of Education Department of Hunan Province On Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China
| | - Chunlin Liu
- grid.257160.70000 0004 1761 0331Key Laboratory of Education Department of Hunan Province On Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China ,grid.257160.70000 0004 1761 0331College of Agronomy, Hunan Agricultural University, Changsha, 410128 China
| | - Gulaim Seisenbaeva
- grid.6341.00000 0000 8578 2742Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, 750 07 Uppsala, Sweden
| | - Annica A. M. Andersson
- grid.6341.00000 0000 8578 2742Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, 750 07 Uppsala, Sweden
| | - Roger Andersson
- grid.6341.00000 0000 8578 2742Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, 750 07 Uppsala, Sweden
| | - Chuanxin Sun
- grid.6341.00000 0000 8578 2742Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences (SLU), P.O. Box 7080, 750 07 Uppsala, Sweden
| |
Collapse
|
10
|
Xu C, Abbas HMK, Zhan C, Huang Y, Huang S, Yang H, Wang Y, Yuan H, Luo J, Zeng X. Integrative metabolomic and transcriptomic analyses reveal the mechanisms of Tibetan hulless barley grain coloration. FRONTIERS IN PLANT SCIENCE 2022; 13:1038625. [PMID: 36388537 PMCID: PMC9641248 DOI: 10.3389/fpls.2022.1038625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Cereal grains accumulate anthocyanin during developmental process. The anthocyanin content increases at grain filling stages to develop grain coloration in cereals. However, anthocyanin biosynthesis responsible for grain coloring and its regulatory mechanisms controlled by structural and functional genes remain unclear. Therefore, this study aimed to explore the global map of metabolic changes linked to grain coloration of Tibetan hulless barley (qingke) using an integrative metabolome and transcriptome approach. Grains from three colored qingke cultivars at different developmental stages were considered for molecular and metabolic investigations. A total of 120 differentially accumulated metabolites (DAMs) and 8,327 differentially expressed genes (DEGs) were filtered. DEGs were mainly enriched in the phenylpropanoid and flavonoid pathways. The transcript levels of anthocyanin biosynthesis genes (PAL, C4H, 4CL, CHS, FLS, F3H, F3'H, DFR, ANS, GT, OMT, and MAT) significantly upregulate in colored qingke compared to the non-colored variety. During grain development and maturation, the strong correlation of HvMYC2 expression with anthocyanin contents and anthocyanin biosynthesis genes suggested it as a critical gene in anthocyanin accumulation. Further results confirmed that HvMYC2 could be activated by HvMYB and be a positive regulator of UV-B and cold tolerance in qingke. In addition, verification based on enzymatic assays indicated that six key modifier enzymes could catalyze glycosylation, malonylation, and methylation of anthocyanins, thereby dissecting the major anthocyanin modification pathway in colored qingke. Overall, our study provides global insight into anthocyanin accumulation and the mechanism underlying grain coloration in qingke.
Collapse
Affiliation(s)
- Congping Xu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
- Sanya Nanfan Research Institute of Hainan university, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | | | - Chuansong Zhan
- Sanya Nanfan Research Institute of Hainan university, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Yuxiao Huang
- Sanya Nanfan Research Institute of Hainan university, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Sishu Huang
- Sanya Nanfan Research Institute of Hainan university, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Haizhen Yang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Yulin Wang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Hongjun Yuan
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Jie Luo
- Sanya Nanfan Research Institute of Hainan university, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Xingquan Zeng
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| |
Collapse
|
11
|
Van den Ende W. Different evolutionary pathways to generate plant fructan exohydrolases. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4620-4623. [PMID: 35950463 PMCID: PMC9366321 DOI: 10.1093/jxb/erac305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article comments on: Oku S, Ueno K, Sawazaki Y, Maeda T, Jitsuyama Y, Suzuki T, Onodera S, Fujino K, Shimura H. 2022. Functional characterization and vacuolar localization of fructan exohydrolase derived from onion (Allium cepa). Journal of Experimental Botany 73,4908–4922.
Collapse
|
12
|
Lemieszek MK, Komaniecka I, Chojnacki M, Choma A, Rzeski W. Immunomodulatory Properties of Polysaccharide-Rich Young Green Barley ( Hordeum vulgare) Extract and Its Structural Characterization. Molecules 2022; 27:1742. [PMID: 35268844 PMCID: PMC8911554 DOI: 10.3390/molecules27051742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/19/2022] Open
Abstract
Young green barley (YGB) water extract has revealed a beneficial impact on natural killer (NK) cells' ability to recognize and eliminate human colon cancer cells, without any side effects for normal colon epithelial cells. The direct anticancer effect of the tested compounds has been also shown. The mixture of oligosaccharides found in this extract was characterized by chemical analyses and via FT-IR spectroscopy and MALDI-TOF MS techniques. The YGB preparation contained 26.9% of proteins and 64.2% of sugars, mostly glucose (54.7%) and fructose (42.7%), with a small amount of mannose (2.6%) and galactose (less than 0.5%). Mass spectrometry analysis of YGB has shown that fructose oligomers contained from 3 to 19 sugar units. The number of fructans was estimated to be about 10.2% of the dry weight basis of YGB. The presented results suggest the beneficial effect of the consumption of preparations based on young barley on the human body, in the field of colon cancer prevention.
Collapse
Affiliation(s)
- Marta Kinga Lemieszek
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (M.C.); (W.R.)
| | - Iwona Komaniecka
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (I.K.); (A.C.)
| | - Michał Chojnacki
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (M.C.); (W.R.)
| | - Adam Choma
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (I.K.); (A.C.)
| | - Wojciech Rzeski
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (M.C.); (W.R.)
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
13
|
Márquez-López RE, Loyola-Vargas VM, Santiago-García PA. Interaction between fructan metabolism and plant growth regulators. PLANTA 2022; 255:49. [PMID: 35084581 DOI: 10.1007/s00425-022-03826-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
The relationship of fructan to plant growth regulators is clearly more complicated than it looks and is likely related to differences between fructan molecules in size and structure as well as localization. Fructans are a complex group of carbohydrates composed mainly of fructose units linked to a sucrose molecule. Fructans are present in plants as heterogeneous mixtures with diverse molecular structures and mass, different polymerization degrees, and linkage types between fructosyl residues. Like sucrose, they are frequently stored in leaves and other organs, acting as carbohydrate reserves. Fructans are synthesized in the cell vacuole by fructosyltransferase enzymes and catabolized by fructan exohydrolase enzymes. Several publications have shown that fructan metabolism varies with the stage of plant development and in response to the environment. Recent studies have shown a correlation between plant growth regulators (PGR), fructan metabolism, and tolerance to drought and cold. PGR are compounds that profoundly influence the growth and differentiation of plant cells, tissues, and organs. They play a fundamental role in regulating plant responses to developmental and environmental signals. In this review, we summarize the most up-to-date knowledge on the metabolism of fructans and their crosstalk with PGR signaling pathways. We identify areas that require more research to complete our understanding of the role of fructans in plants.
Collapse
Affiliation(s)
- Ruth E Márquez-López
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación Para el Desarrollo Integral Regional - Unidad Oaxaca, C.P. 71230, Santa Cruz Xoxocotlán, Oaxaca, Mexico
| | - Víctor M Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Patricia Araceli Santiago-García
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación Para el Desarrollo Integral Regional - Unidad Oaxaca, C.P. 71230, Santa Cruz Xoxocotlán, Oaxaca, Mexico.
| |
Collapse
|
14
|
Barros KA, Inaba M, Martins AO, Sulpice R. High-Throughput Extraction and Enzymatic Determination of Sugars and Fructans in Fructan-Accumulating Plants. Methods Mol Biol 2022; 2398:107-119. [PMID: 34674172 DOI: 10.1007/978-1-0716-1912-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fructans are carbohydrates present in more than 15% of flowering plants. They represent the major pool of carbohydrates in some species, especially when facing cold or drought. However, the functions of fructans with high or low degrees of polymerization (DP), their diurnal use, and the regulation of their synthesis and degradation in response to stresses still remain unclear. Here we present an enzymatic protocol adapted to 96-well microplates that simultaneously allows the determination of fructans and glucose, fructose, and sucrose. Moreover, the protocol allows to estimate the average DP of the fructans in the samples. The protocol is based on the enzymatic degradation of fructans into glucose and fructose and their subsequent conversion into gluconate 6-phosphate concomitant with the formation of NADH in the presence of ATP.
Collapse
Affiliation(s)
- Kallyne A Barros
- NUI Galway, Plant Systems Biology Laboratory, Ryan Institute, School of Natural Sciences, Galway, Ireland
| | - Masami Inaba
- NUI Galway, Plant Systems Biology Laboratory, Ryan Institute, School of Natural Sciences, Galway, Ireland
| | - Auxiliadora Oliveira Martins
- NUI Galway, Plant Systems Biology Laboratory, Ryan Institute, School of Natural Sciences, Galway, Ireland
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Ronan Sulpice
- NUI Galway, Plant Systems Biology Laboratory, Ryan Institute, School of Natural Sciences, Galway, Ireland.
| |
Collapse
|
15
|
Sun C, Ma S, Li L, Wang D, Liu W, Liu F, Guo L, Wang X. Visualizing the distributions and spatiotemporal changes of metabolites in Panax notoginseng by MALDI mass spectrometry imaging. J Ginseng Res 2021; 45:726-733. [PMID: 34764727 PMCID: PMC8569314 DOI: 10.1016/j.jgr.2021.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Background Panax notoginseng is a highly valued medicinal herb used widely in China and many Asian countries. Its root and rhizome have long been used for the treatment of cardiovascular and hematological diseases. Imaging the spatial distributions and dynamics of metabolites in heterogeneous plant tissues is significant for characterizing the metabolic networks of Panax notoginseng, and this will also provide a highly informative approach to understand the complex molecular changes in the processing of Panax notoginseng. Methods Here, a high-sensitive MALDI-MS imaging method was developed and adopted to visualize the spatial distributions and spatiotemporal changes of metabolites in different botanical parts of Panax notoginseng. Results A wide spectrum of metabolites including notoginsenosides, ginsenosides, amino acids, dencichine, gluconic acid, and low-molecular-weight organic acids were imaged in Panax notoginseng rhizome and root tissues for the first time. Moreover, the spatiotemporal alterations of metabolites during the steaming of Panax notoginseng root were also characterized in this study. And, a series of metabolites such as dencichine, arginine and glutamine that changed with the steaming of Panax notoginseng were successfully screened out and imaged. Conclusion These spatially-resolved metabolite data not only enhance our understanding of the Panax notoginseng metabolic networks, but also provide direct evidence that a serious of metabolic alterations occurred during the steaming of Panax notoginseng.
Collapse
Affiliation(s)
- Chenglong Sun
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shuangshuang Ma
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lili Li
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Daijie Wang
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wei Liu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Feng Liu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lanping Guo
- Resource Center of Chinese Materia Medica, State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao Wang
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
16
|
Chateigner-Boutin AL, Alvarado C, Devaux MF, Durand S, Foucat L, Geairon A, Grélard F, Jamme F, Rogniaux H, Saulnier L, Guillon F. The endosperm cavity of wheat grains contains a highly hydrated gel of arabinoxylan. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110845. [PMID: 33775355 DOI: 10.1016/j.plantsci.2021.110845] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Cereal grains provide a substantial part of the calories for humans and animals. The main quality determinants of grains are polysaccharides (mainly starch but also dietary fibers such as arabinoxylans, mixed-linkage glucans) and proteins synthesized and accumulated during grain development in a specialized storage tissue: the endosperm. In this study, the composition of a structure localized at the interface of the vascular tissues of the maternal plant and the seed endosperm was investigated. This structure is contained in the endosperm cavity where water and nutrients are transferred to support grain filling. While studying the wheat grain development, the cavity content was found to autofluoresce under UV light excitation. Combining multispectral analysis, Fourier-Transform infrared spectroscopy, immunolabeling and laser-dissection coupled with wet chemistry, we identified in the cavity arabinoxylans and hydroxycinnamic acids. The cavity content forms a "gel" in the developing grain, which persists in dry mature grain and during subsequent imbibition. Microscopic magnetic resonance imaging revealed that the gel is highly hydrated. Our results suggest that arabinoxylans are synthesized by the nucellar epidermis, released in the cavity where they form a highly hydrated gel which might contribute to regulate grain hydration.
Collapse
Affiliation(s)
| | | | | | | | - Loïc Foucat
- INRAE, UR BIA, F-44316, Nantes, France; INRAE, BIBS Facility, F-44316, Nantes, France
| | | | - Florent Grélard
- INRAE, UR BIA, F-44316, Nantes, France; INRAE, BIBS Facility, F-44316, Nantes, France
| | - Frédéric Jamme
- DISCO Beamline, SOLEIL Synchrotron, 91192, Gif-sur-Yvette, France
| | - Hélène Rogniaux
- INRAE, UR BIA, F-44316, Nantes, France; INRAE, BIBS Facility, F-44316, Nantes, France
| | | | | |
Collapse
|
17
|
Matros A, Houston K, Tucker MR, Schreiber M, Berger B, Aubert MK, Wilkinson LG, Witzel K, Waugh R, Seiffert U, Burton RA. Genome-wide association study reveals the genetic complexity of fructan accumulation patterns in barley grain. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2383-2402. [PMID: 33421064 DOI: 10.1093/jxb/erab002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/08/2021] [Indexed: 05/27/2023]
Abstract
We profiled the grain oligosaccharide content of 154 two-row spring barley genotypes and quantified 27 compounds, mainly inulin- and neoseries-type fructans, showing differential abundance. Clustering revealed two profile groups where the 'high' set contained greater amounts of sugar monomers, sucrose, and overall fructans, but lower fructosylraffinose. A genome-wide association study (GWAS) identified a significant association for the variability of two fructan types: neoseries-DP7 and inulin-DP9, which showed increased strength when applying a novel compound ratio-GWAS approach. Gene models within this region included three known fructan biosynthesis genes (fructan:fructan 1-fructosyltransferase, sucrose:sucrose 1-fructosyltransferase, and sucrose:fructan 6-fructosyltransferase). Two other genes in this region, 6(G)-fructosyltransferase and vacuolar invertase1, have not previously been linked to fructan biosynthesis and showed expression patterns distinct from those of the other three genes, including exclusive expression of 6(G)-fructosyltransferase in outer grain tissues at the storage phase. From exome capture data, several single nucleotide polymorphisms related to inulin- and neoseries-type fructan variability were identified in fructan:fructan 1-fructosyltransferase and 6(G)-fructosyltransferase genes. Co-expression analyses uncovered potential regulators of fructan biosynthesis including transcription factors. Our results provide the first scientific evidence for the distinct biosynthesis of neoseries-type fructans during barley grain maturation and reveal novel gene candidates likely to be involved in the differential biosynthesis of various types of fructan in barley.
Collapse
Affiliation(s)
- Andrea Matros
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, South Australia, Australia
| | - Kelly Houston
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Miriam Schreiber
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK
| | - Bettina Berger
- Australian Plant Phenomics Facility, The Plant Accelerator, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, South Australia, Australia
| | - Matthew K Aubert
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Laura G Wilkinson
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Katja Witzel
- Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Brandenburg, Germany
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Udo Seiffert
- Australian Plant Phenomics Facility, The Plant Accelerator, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, South Australia, Australia
- Biosystems Engineering, Fraunhofer IFF, Magdeburg, Saxony-Anhalt, Germany
| | - Rachel A Burton
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
18
|
Call L, Haider E, D'Amico S, Reiter E, Grausgruber H. Synthesis and accumulation of amylase-trypsin inhibitors and changes in carbohydrate profile during grain development of bread wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2021; 21:113. [PMID: 33627080 PMCID: PMC7905651 DOI: 10.1186/s12870-021-02886-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Recent studies indicate that amylase-trypsin inhibitors (ATIs) and certain carbohydrates referred to as FODMAPs (fermentable oligo-, di-, monosaccharides and polyols) play an important role in promoting wheat sensitivity. Hitherto, no study has investigated the accumulation of ATIs during the development of the wheat caryopsis. We collected caryopses of common wheat cv. 'Arnold' at eight different grain developmental stages to study compositional changes in ATI and FODMAP content. RESULTS The harvested caryopses were analysed for their size, protein and carbohydrate concentrations. ATIs were further characterized by MALDI-TOF MS, and their trypsin inhibition was evaluated by an enzymatic assay. The results showed that ATI accumulation started about 1 week after anthesis and subsequently increased steadily until physiological maturity. However, the biological activity of ATIs in terms of enzyme inhibition was not detectable before about 4 weeks after anthesis. Carbohydrate analysis revealed the abundance of short-chain fructans in early stages of grain development, whereas non-water-soluble carbohydrates increased during later developmental stages. CONCLUSIONS The results provide new insights into the complex metabolisms during grain filling and maturation, with particular emphasis on the ATI content as well as the inhibitory potential towards trypsin. The time lag between ATI accumulation and development of their biological activity is possibly attributed to the assembling of ATIs to dimers and tetramers, which seems to be crucial for their inhibitory potential.
Collapse
Affiliation(s)
- Lisa Call
- Institute of Animal Nutrition and Feeding, AGES - Austrian Agency for Health and Food Safety, Spargelfeldstr. 191, 1220, Vienna, Austria
- Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Elisabeth Haider
- Institute of Animal Nutrition and Feeding, AGES - Austrian Agency for Health and Food Safety, Spargelfeldstr. 191, 1220, Vienna, Austria
| | - Stefano D'Amico
- Institute of Animal Nutrition and Feeding, AGES - Austrian Agency for Health and Food Safety, Spargelfeldstr. 191, 1220, Vienna, Austria
| | - Elisabeth Reiter
- Institute of Animal Nutrition and Feeding, AGES - Austrian Agency for Health and Food Safety, Spargelfeldstr. 191, 1220, Vienna, Austria
| | - Heinrich Grausgruber
- Department of Crop Sciences, BOKU - University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz-Str. 24, 3430, Tulln an der Donau, Austria.
| |
Collapse
|
19
|
Wei Y, Xiong S, Zhang Z, Meng X, Wang L, Zhang X, Yu M, Yu H, Wang X, Ma X. Localization, Gene Expression, and Functions of Glutamine Synthetase Isozymes in Wheat Grain ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:580405. [PMID: 33633754 PMCID: PMC7901976 DOI: 10.3389/fpls.2021.580405] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/07/2021] [Indexed: 06/08/2023]
Abstract
Glutamine synthetase (GS) plays a major role in plant nitrogen metabolism, but the roles of individual GS isoforms in grains are unknown. Here, the localization and expression of individual TaGS isozymes in wheat grain were probed with TaGS isoenzyme-specific antibodies, and the nitrogen metabolism of grain during the grain filling stage were investigated. Immunofluorescence revealed that TaGS1;1, TaGS1;3, and TaGS2 were expressed in different regions of the embryo. In grain transporting tissues, TaGS1;2 was localized in vascular bundle; TaGS1;2 and TaGS1;1 were in chalaza and placentochalaza; TaGS1;1 and TaGS1;3 were in endosperm transfer cells; and TaGS1;3 and TaGS2 were in aleurone layer. GS exhibited maximum activity and expression at 8 days after flowering (DAF) with peak glutamine content in grains; from then, NH 4 + increased largely from NO 3 - reduction, glutamate dehydrogenase (GDH) aminating activity increased continuously, and the activities of GS and glutamate synthase (GOGAT) decreased, while only TaGS1;3 kept a stable expression in different TaGS isozymes. Hence, GS-GOGAT cycle and GDH play different roles in NH 4 + assimilation of grain in different stages of grain development; TaGS1;3, located in aleurone layer and endosperm transfer cells, plays a key role in Gln into endosperm for gluten synthesis. At 30 DAF, grain amino acids are mainly transported from maternal phloem.
Collapse
Affiliation(s)
- Yihao Wei
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Shuping Xiong
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zhiyong Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xiaodan Meng
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Lulu Wang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xiaojiao Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Meiqin Yu
- Department of Biochemistry and Molecular Biology, College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Haidong Yu
- Department of Biochemistry and Molecular Biology, College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Xiaochun Wang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Department of Biochemistry and Molecular Biology, College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Xinming Ma
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
20
|
Nowicka A, Kovacik M, Tokarz B, Vrána J, Zhang Y, Weigt D, Doležel J, Pecinka A. Dynamics of endoreduplication in developing barley seeds. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:268-282. [PMID: 33005935 DOI: 10.1093/jxb/eraa453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Seeds are complex biological systems comprising three genetically distinct tissues: embryo, endosperm, and maternal tissues (including seed coats and pericarp) nested inside one another. Cereal grains represent a special type of seeds, with the largest part formed by the endosperm, a specialized triploid tissue ensuring embryo protection and nourishment. We investigated dynamic changes in DNA content in three of the major seed tissues from the time of pollination up to the dry seed. We show that the cell cycle is under strict developmental control in different seed compartments. After an initial wave of active cell division, cells switch to endocycle and most endoreduplication events are observed in the endosperm and seed maternal tissues. Using different barley cultivars, we show that there is natural variation in the kinetics of this process. During the terminal stages of seed development, specific and selective loss of endoreduplicated nuclei occurs in the endosperm. This is accompanied by reduced stability of the nuclear genome, progressive loss of cell viability, and finally programmed cell death. In summary, our study shows that endopolyploidization and cell death are linked phenomena that frame barley grain development.
Collapse
Affiliation(s)
- Anna Nowicka
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
- The Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Krakow, Poland
| | - Martin Kovacik
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Barbara Tokarz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow, Poland
| | - Jan Vrána
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Yueqi Zhang
- Research School Biology (RSB), University of Western Australia (UWA), Crawley, Perth, Australia
| | - Dorota Weigt
- Department of Genetics and Plant Breeding, Poznan University of Life Sciences, Poznan, Poland
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Ales Pecinka
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| |
Collapse
|
21
|
Pérez-López AV, Simpson J, Clench MR, Gomez-Vargas AD, Ordaz-Ortiz JJ. Localization and Composition of Fructans in Stem and Rhizome of Agave tequilana Weber var. azul. FRONTIERS IN PLANT SCIENCE 2021; 11:608850. [PMID: 33552101 PMCID: PMC7855178 DOI: 10.3389/fpls.2020.608850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/28/2020] [Indexed: 05/03/2023]
Abstract
Methodology combining mass spectrometry imaging (MSI) with ion mobility separation (IMS) has emerged as a biological imaging technique due to its versatility, sensitivity and label-free approach. This technique has been shown to separate isomeric compounds such as lipids, amino acids, carboxylic acids and carbohydrates. This report describes mass spectrometry imaging in combination with traveling-wave ion mobility separation and matrix-assisted laser desorption/ionization (MALDI). Positive ionization mode was used to locate fructans on tissue printed sections of Agave rhizome and stem tissue and distinguished fructan isoforms. Here we show the location of fructans ranging from DP3 to DP17 to be differentially abundant across the stem tissue and for the first time, experimental collision cross sections of endogenous fructan structures have been collected, revealing at least two isoforms for fructans of DP4, DP5, DP6, DP7, DP8, DP10, and DP11. This demonstrates that complex fructans such as agavins can be located and their isoforms resolved using a combination of MALDI, IMS, and MSI, without the need for extraction or derivatization. Use of this methodology uncovered patterns of fructan localization consistent with functional differences where higher DP fructans are found toward the central section of the stem supporting a role in long term carbohydrate storage whereas lower DP fructans are concentrated in the highly vascularized central core of rhizomes supporting a role in mobilization of carbohydrates from the mother plant to developing offsets. Tissue specific patterns of expression of genes encoding enzymes involved in fructan metabolism are consistent with fructan structures and localization.
Collapse
Affiliation(s)
| | - June Simpson
- Department of Genetic Engineering, CINVESTAV Unidad Irapuato, Irapuato, Mexico
| | - Malcolm R. Clench
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | | | - José J. Ordaz-Ortiz
- Metabolomics and Mass Spectrometry Laboratory, National Laboratory of Genomics for Biodiversity, Unidad de Genómica Avanzada (CINVESTAV), Irapuato, Mexico
| |
Collapse
|
22
|
Zhang G, Zhang G, Zeng X, Xu Q, Wang Y, Yuan H, Zhang Y, Nyima T. Quantitative Proteome Profiling Provides Insight into the Proteins Associated with β-Glucan Accumulation in Hull-less Barley Grains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:568-583. [PMID: 33371680 DOI: 10.1021/acs.jafc.0c05284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The hull-less barley (Qingke) is widely planted as a staple food crop in the Tibetan area, China, and the grains contains high content of β-glucan (BG). The mechanisms of BG synthesis and accumulation in qingke has not been studied at the protein level. This study characterized the proteins associated with BG synthesis and accumulation during qingke seed development. The proteome profiles of qingke seeds taken at 20, 30, and 40 days after flowering were compared using the TMT-based quantitative proteomics. A total of 4283 proteins were identified, with 759 being differentially expressed (DEPs) throughout seed development. Comparisons of protein expression pattern, functions, and pathway enrichment tests highlight cell wall modification, carbon and energy metabolism, polysaccharide metabolism, post-transcriptional modifications, and vesicular transport as critical biological processes related to qingke BG accumulation. Furthermore, induction of starch synthase, starch branching enzyme, pectin acetyl esterases, beta-glucosidases, beta-amylases, 1,4-beta-xylan, xyloglucan, α-amylase inhibitors, and glycosyltransferases underpinned BG synthesis. The results also indicated that the proteins involved in glycolytic, gluconeogenesis, and glyoxylate bypass pathways provided energy and reducing power for BG storage. Parallel reaction monitoring (PRM) and quantitative real-time PCR (qPCR) analyses confirmed the expression profile of the proteins obtained by TMT-based proteomics. The current results provided an insight into the mechanisms of BG synthesis and accumulation during qingke seed development.
Collapse
Affiliation(s)
- Guoqiang Zhang
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
- Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet 850002, China
| | - Guoping Zhang
- Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou 310058, China
| | - Xingquan Zeng
- State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet 850002, China
| | - Qijun Xu
- State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet 850002, China
| | - Yulin Wang
- State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet 850002, China
| | - Hongjun Yuan
- State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet 850002, China
| | - Yuhong Zhang
- State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet 850002, China
| | - Tashi Nyima
- State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet 850002, China
| |
Collapse
|
23
|
Zhan L, Huang X, Xue J, Liu H, Xiong C, Wang J, Nie Z. MALDI-TOF/TOF tandem mass spectrometry imaging reveals non-uniform distribution of disaccharide isomers in plant tissues. Food Chem 2020; 338:127984. [PMID: 33092001 DOI: 10.1016/j.foodchem.2020.127984] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022]
Abstract
Mass spectrometry imaging (MSI) is a powerful technique for investigating the biomolecular locations within tissues. However, the isomeric compounds are rarely distinguished due to inability of MSI to differentiate isomers in the probing area. Coupling tandem mass spectrometry with MSI can facilitate differentiating isomeric compounds. Here MALDI-TOF/TOF tandem mass spectrometry imaging approach was applied to probing the spatial distributions of isomeric disaccharides in plant tissues. First, MS/MS imaging analysis of disaccharide-matrix droplet spots demonstrated the feasibility of distinguishing isomeric species in tissues, by measuring the relative intensity of specific fragments. Then, tandem MS imaging of disaccharides in onion bulb tissues indicated that sucrose and other unknown non-sucrose disaccharides exhibit heterogeneous locations throughout the tissues. This method enables us to image disaccharide isomers differentially in biological tissues, and to discover new saccharide species in plant. This work also emphasizes the necessity of considering isobaric compounds when interpreting MSI results.
Collapse
Affiliation(s)
- Lingpeng Zhan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xi Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jinjuan Xue
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Caiqiao Xiong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jiyun Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; National Center for Mass Spectrometry in Beijing, Beijing 100190, China.
| |
Collapse
|
24
|
Witzel K, Matros A. Fructans Are Differentially Distributed in Root Tissues of Asparagus. Cells 2020; 9:E1943. [PMID: 32842694 PMCID: PMC7565981 DOI: 10.3390/cells9091943] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/23/2022] Open
Abstract
Inulin- and neoseries-type fructans [fructooligosaccharides (FOS) and fructopolysaccharides] accumulate in storage roots of asparagus (Asparagus officinalis L.), which continue to grow throughout the lifespan of this perennial plant. However, little is known about the storage of fructans at the spatial level in planta, and the degree of control by the plant is largely uncertain. We have utilized mass spectrometry imaging (MSI) to resolve FOS distribution patterns in asparagus roots (inner, middle, and outer tissues). Fructan and proteome profiling were further applied to validate the differential abundance of various fructan structures and to correlate observed tissue-specific metabolite patterns with the abundance of related fructan biosynthesis enzymes. Our data revealed an increased abundance of FOS with higher degree of polymerization (DP > 5) and of fructopolysaccharides (DP11 to DP17) towards the inner root tissues. Three isoforms of fructan:fructan 6G-fructosyltransferase (6G-FFT), forming 6G-kestose with a β (2-6) linkage using sucrose as receptor and 1-kestose as donor, were similarly detected in all three root tissues. In contrast, one ß-fructofuranosidase, which likely exhibits fructan:fructan 1-fructosyltransferase (1-FFT) activity, showed very high abundance in the inner tissues and lower levels in the outer tissues. We concluded a tight induction of the biosynthesis of fructans with DP > 5, following a gradient from the outer root cortex to the inner vascular tissues, which also correlates with high levels of sucrose metabolism in inner tissues, observed in our study.
Collapse
Affiliation(s)
- Katja Witzel
- Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, 14979 Brandenburg, Germany;
| | - Andrea Matros
- ARC Centre of Excellence in Plant Energy Biology, Food and Wine, School of Agriculture, University of Adelaide, Urrbrae, SA 5064, Australia
| |
Collapse
|
25
|
Sun C, Liu W, Ma S, Zhang M, Geng Y, Wang X. Development of a high-coverage matrix-assisted laser desorption/ionization mass spectrometry imaging method for visualizing the spatial dynamics of functional metabolites in Salvia miltiorrhiza Bge. J Chromatogr A 2020; 1614:460704. [DOI: 10.1016/j.chroma.2019.460704] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
|
26
|
Lim WL, Collins HM, Byrt CS, Lahnstein J, Shirley NJ, Aubert MK, Tucker MR, Peukert M, Matros A, Burton RA. Overexpression of HvCslF6 in barley grain alters carbohydrate partitioning plus transfer tissue and endosperm development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:138-153. [PMID: 31536111 PMCID: PMC6913740 DOI: 10.1093/jxb/erz407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/06/2019] [Indexed: 05/05/2023]
Abstract
In cereal grain, sucrose is converted into storage carbohydrates: mainly starch, fructan, and mixed-linkage (1,3;1,4)-β-glucan (MLG). Previously, endosperm-specific overexpression of the HvCslF6 gene in hull-less barley was shown to result in high MLG and low starch content in mature grains. Morphological changes included inwardly elongated aleurone cells, irregular cell shapes of peripheral endosperm, and smaller starch granules of starchy endosperm. Here we explored the physiological basis for these defects by investigating how changes in carbohydrate composition of developing grain impact mature grain morphology. Augmented MLG coincided with increased levels of soluble carbohydrates in the cavity and endosperm at the storage phase. Transcript levels of genes relating to cell wall, starch, sucrose, and fructan metabolism were perturbed in all tissues. The cell walls of endosperm transfer cells (ETCs) in transgenic grain were thinner and showed reduced mannan labelling relative to the wild type. At the early storage phase, ruptures of the non-uniformly developed ETCs and disorganization of adjacent endosperm cells were observed. Soluble sugars accumulated in the developing grain cavity, suggesting a disturbance of carbohydrate flow from the cavity towards the endosperm, resulting in a shrunken mature grain phenotype. Our findings demonstrate the importance of regulating carbohydrate partitioning in maintenance of grain cellularization and filling processes.
Collapse
Affiliation(s)
- Wai Li Lim
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Helen M Collins
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Caitlin S Byrt
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- Present address: Australian Research Council Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Jelle Lahnstein
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Neil J Shirley
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Matthew K Aubert
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Matthew R Tucker
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Manuela Peukert
- Applied Biochemistry Group, Leibniz Institute of Plant Genetics and Crop Plant Research Stadt Seeland, Gatersleben, Germany
- Present address: Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Meat, Kulmbach, Bavaria, Germany
| | - Andrea Matros
- Applied Biochemistry Group, Leibniz Institute of Plant Genetics and Crop Plant Research Stadt Seeland, Gatersleben, Germany
- Present address: Australian Research Council Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Rachel A Burton
- Australian Research Council Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- Correspondence:
| |
Collapse
|
27
|
A spatially-resolved approach to visualize the distribution and biosynthesis of flavones in Scutellaria baicalensis Georgi. J Pharm Biomed Anal 2019; 179:113014. [PMID: 31812804 DOI: 10.1016/j.jpba.2019.113014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 01/21/2023]
Abstract
Imaging the spatial distributions and dynamics of flavones in heterogeneous plant tissues is significant for our understanding of plant metabolism. Here, we proposed a spatially-resolved approach to map the locations and biosynthesis of flavones in S. baicalensis. A total of 11 flavones, 5 flavone glycosides, 6 carbohydrates, and a variety of flavone synthesis-related metabolites were imaged. Most of these flavone-related metabolites presented stronger ion intensities in root phloem. The biosynthetic network of flavones and their glycosides in S. baicalensis were visualized for the first time. Moreover, we characterized the region-specific activities of four crucial enzymes in flavone synthesis pathway, including l-phenylalanine ammonia-lyase, cinnamate 4-hydroxylase, 4-coumarate coenzyme A ligase, and flavone synthase. In line with the spatial characteristic of flavones, all these four enzymes exhibit higher activity in the root phloem of S. baicalensis. The combination of spatially-resolved metabolites and enzymes information greatly broadens our understanding of flavone biosynthetic network.
Collapse
|
28
|
Le TDQ, Alvarado C, Girousse C, Legland D, Chateigner-Boutin AL. Use of X-ray micro computed tomography imaging to analyze the morphology of wheat grain through its development. PLANT METHODS 2019; 15:84. [PMID: 31384289 PMCID: PMC6668075 DOI: 10.1186/s13007-019-0468-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/23/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Wheat is one of the most important staple source in the world for human consumption, animal feed and industrial raw materials. To deal with the global and increasing population demand, enhancing crop yield by increasing the final weight of individual grain is considered as a feasible solution. Morphometric analysis of wheat grain plays an important role in tracking and understanding developmental processes by assessing potential impacts on grains properties, size and shape that are major determinants of final grain weight. X-ray micro computed tomography (μCT) is a very powerful non-invasive imaging tool that is able to acquire 3D images of an individual grain, enabling to assess the morphology of wheat grain and of its different compartments. Our objective is to quantify changes of morphology during growth stages of wheat grain from 3D μCT images. METHODS 3D μCT images of wheat grains were acquired at various development stages ranging from 60 to 310 degree days after anthesis. We developed robust methods for the identification of outer and inner tissues within the grains, and the extraction of morphometric features using 3D μCT images. We also developed a specific workflow for the quantification of the shape of the grain crease. RESULTS The different compartments of the grain could be semi-automatically segmented. Variations of volumes of the compartments adequately describe the different stages of grain developments. The evolution of voids within wheat grain reflects lysis of outer tissues and growth of inner tissues. The crease shape could be quantified for each grain and averaged for each stage of development, helping us understand the genesis of the grain shape. CONCLUSION This work shows that μCT acquisitions and image processing methodologies are powerful tools to extract morphometric parameters of developing wheat grain. The results of quantitative analysis revealed remarkable features of wheat grain growth. Further work will focus on building a computational model of wheat grain growth based on real 3D imaging data.
Collapse
Affiliation(s)
| | | | - Christine Girousse
- UMR GDEC, INRA, Université Clermont-Auvergne, 63000 Clermont-Ferrand, France
| | | | | |
Collapse
|
29
|
Xue C, Matros A, Mock HP, Mühling KH. Protein Composition and Baking Quality of Wheat Flour as Affected by Split Nitrogen Application. FRONTIERS IN PLANT SCIENCE 2019; 10:642. [PMID: 31156690 PMCID: PMC6530357 DOI: 10.3389/fpls.2019.00642] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/29/2019] [Indexed: 05/23/2023]
Abstract
Baking quality of wheat flour is determined by grain protein concentration (GPC) and its composition and is highly influenced by environmental factors such as nitrogen (N) fertilization management. This study investigated the effect of split N application on grain protein composition and baking quality of two winter wheat cultivars, Tobak and JB Asano, belonging to different baking quality classes. Bread loaf volumes in both cultivars were enhanced by split N application. In contrast, GPC was only significantly increased in JB Asano. Comparative 2-DE revealed that the relative volumes of 21 and 28 unique protein spots were significantly changed by split N application in Tobak and JB Asano, respectively. Specifically, the alterations in relative abundance of certain proteins, i.e., globulins, LMW-GS, α-, and γ-gliadins as well as α-amylase/trypsin inhibitors were more sensitive to split N application. Furthermore, certain proteins identified as globulins and alpha-amylase inhibitors were changed in both wheat cultivars under split N application. These results implied that the functions of these unique proteins might have played important roles in affecting baking quality of wheat flour, especially for cultivars (i.e., Tobak in the present study) the baking quality of which is less dependent on GPC.
Collapse
Affiliation(s)
- Cheng Xue
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, China
- Faculty of Agricultural and Nutritional Sciences, Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, Germany
| | - Andrea Matros
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Hans-Peter Mock
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Karl-Hermann Mühling
- Faculty of Agricultural and Nutritional Sciences, Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, Germany
| |
Collapse
|
30
|
Schnurbusch T. Wheat and barley biology: Towards new frontiers. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:198-203. [PMID: 30694021 DOI: 10.1111/jipb.12782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Thorsten Schnurbusch
- Independent HEISENBERG-Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| |
Collapse
|
31
|
|
32
|
Kırtel O, Versluys M, Van den Ende W, Toksoy Öner E. Fructans of the saline world. Biotechnol Adv 2018; 36:1524-1539. [DOI: 10.1016/j.biotechadv.2018.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
|
33
|
Van den Ende W. Novel fructan exohydrolase: unique properties and applications for human health. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4227-4231. [PMID: 30124951 PMCID: PMC6093494 DOI: 10.1093/jxb/ery268] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
34
|
Qin L, Zhang Y, Liu Y, He H, Han M, Li Y, Zeng M, Wang X. Recent advances in matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) for in situ analysis of endogenous molecules in plants. PHYTOCHEMICAL ANALYSIS : PCA 2018; 29:351-364. [PMID: 29667236 DOI: 10.1002/pca.2759] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/01/2018] [Accepted: 02/04/2018] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Mass spectrometry imaging (MSI) as a label-free and powerful imaging technique enables in situ evaluation of a tissue metabolome and/or proteome, becoming increasingly popular in the detection of plant endogenous molecules. OBJECTIVE The characterisation of structure and spatial information of endogenous molecules in plants are both very important aspects to better understand the physiological mechanism of plant organism. METHODS Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a commonly-used tissue imaging technique, which requires matrix to assist in situ detection of a variety of molecules on the surface of a tissue section. In previous studies, MALDI-MSI was mostly used for the detection of molecules from animal tissue sections, compared to plant samples due to cell structural limitations, such as plant cuticles, epicuticular waxes, and cell walls. Despite the enormous progress that has been made in tissue imaging, there is still a challenge for MALDI-MSI suitable for the imaging of endogenous compounds in plants. RESULTS This review summarises the recent advances in MALDI-MSI, focusing on the application of in situ detection of endogenous molecules in different plant organs, i.e. root, stem, leaf, flower, fruit, and seed. CONCLUSION Further improvements on instrumentation sensitivity, matrix selection, image processing and sample preparation will expand the application of MALDI-MSI in plant research.
Collapse
Affiliation(s)
- Liang Qin
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Yawen Zhang
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Yaqin Liu
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Huixin He
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Manman Han
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Yanyan Li
- The Hospital of Minzu University of China, Minzu University of China, Beijing, P. R. China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Centre of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Xiaodong Wang
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| |
Collapse
|
35
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
36
|
Pommerrenig B, Ludewig F, Cvetkovic J, Trentmann O, Klemens PAW, Neuhaus HE. In Concert: Orchestrated Changes in Carbohydrate Homeostasis Are Critical for Plant Abiotic Stress Tolerance. PLANT & CELL PHYSIOLOGY 2018; 59:1290-1299. [PMID: 29444312 DOI: 10.1093/pcp/pcy037] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 06/08/2023]
Abstract
The sessile lifestyle of higher plants is accompanied by their remarkable ability to tolerate unfavorable environmental conditions. This is because, during evolution, plants developed a sophisticated repertoire of molecular and metabolic reactions to cope with changing biotic and abiotic challenges. In particular, the abiotic factors light intensity and ambient temperature are characterized by altering their amplitude within comparably short periods of time and are causative for onset of dynamic plant responses. These rapid responses in plants are also classified as 'acclimation reactions' which differ, due to their reversibility and duration, from non-reversible 'adaptation reactions'. In this review, we demonstrate the remarkable importance of stress-induced changes in carbohydrate homeostasis of plants exposed to high light or low temperatures. These changes represent a co-ordinated process comprising modifications of (i) the concentrations of selected sugars; (ii) starch turnover; (iii) intracellular sugar compartmentation; and (iv) corresponding gene expression patterns. The critical importance of these individual processes has been underlined in the recent past by the analyses of a large number of mutant plants. The outcome of these analyses raised our understanding of acclimation processes in plants per se but might even become instrumental to develop new concepts for directed breeding approaches with the aim to increase abiotic stress tolerance of crop species, which in most cases have high stress sensitivity. The latter direction of plant research is of special importance since abiotic stress stimuli strongly impact on crop productivity and are expected to become even more pronounced because of human activities which alter environmental conditions rapidly.
Collapse
Affiliation(s)
- Benjamin Pommerrenig
- University of Kaiserslautern, Plant Physiology, Erwin-Schrödinger-Str, Kaiserslautern, Germany
| | - Frank Ludewig
- Department of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, Erlangen, Germany
| | - Jelena Cvetkovic
- University of Kaiserslautern, Plant Physiology, Erwin-Schrödinger-Str, Kaiserslautern, Germany
| | - Oliver Trentmann
- University of Kaiserslautern, Plant Physiology, Erwin-Schrödinger-Str, Kaiserslautern, Germany
| | - Patrick A W Klemens
- University of Kaiserslautern, Plant Physiology, Erwin-Schrödinger-Str, Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- University of Kaiserslautern, Plant Physiology, Erwin-Schrödinger-Str, Kaiserslautern, Germany
| |
Collapse
|
37
|
Shabrangy A, Roustan V, Reipert S, Weidinger M, Roustan PJ, Stoger E, Weckwerth W, Ibl V. Using RT-qPCR, Proteomics, and Microscopy to Unravel the Spatio-Temporal Expression and Subcellular Localization of Hordoindolines Across Development in Barley Endosperm. FRONTIERS IN PLANT SCIENCE 2018; 9:775. [PMID: 29951075 PMCID: PMC6008550 DOI: 10.3389/fpls.2018.00775] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/22/2018] [Indexed: 05/20/2023]
Abstract
Hordeum vulgare (barley) hordoindolines (HINs), HINa, HINb1, and HINb2, are orthologous proteins of wheat puroindolines (PINs) that are small, basic, cysteine-rich seed-specific proteins and responsible for grain hardness. Grain hardness is, next to its protein content, a major quality trait. In barley, HINb is most highly expressed in the mid-stage developed endosperm and is associated with both major endosperm texture and grain hardness. However, data required to understand the spatio-temporal dynamics of HIN transcripts and HIN protein regulation during grain filling processes are missing. Using reverse transcription quantitative PCR (RT-qPCR) and proteomics, we analyzed HIN transcript and HIN protein abundance from whole seeds (WSs) at four [6 days after pollination (dap), 10, 12, and ≥20 dap] as well as from aleurone, subaleurone, and starchy endosperm at two (12 and ≥20 dap) developmental stages. At the WS level, results from RT-qPCR, proteomics, and western blot showed a continuous increase of HIN transcript and HIN protein abundance across these four developmental stages. Miroscopic studies revealed HIN localization mainly at the vacuolar membrane in the aleurone, at protein bodies (PBs) in subaleurone and at the periphery of starch granules in the starchy endosperm. Laser microdissetion (LMD) proteomic analyses identified HINb2 as the most prominent HIN protein in starchy endosperm at ≥20 dap. Additionally, our quantification data revealed a poor correlation between transcript and protein levels of HINs in subaleurone during development. Here, we correlated data achieved by RT-qPCR, proteomics, and microscopy that reveal different expression and localization pattern of HINs in each layer during barley endosperm development. This indicates a contribution of each tissue to the regulation of HINs during grain filling. The effect of the high protein abundance of HINs in the starchy endosperm and their localization at the periphery of starch granules at late development stages at the cereal-based end-product quality is discussed. Understanding the spatio-temporal regulated HINs is essential to improve barley quality traits for high end-product quality, as hard texture of the barley grain is regulated by the ratio between HINb/HINa.
Collapse
Affiliation(s)
- Azita Shabrangy
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Valentin Roustan
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Siegfried Reipert
- Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Vienna, Austria
| | - Marieluise Weidinger
- Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Vienna, Austria
| | - Pierre-Jean Roustan
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Eva Stoger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Verena Ibl
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
38
|
Versluys M, Kirtel O, Toksoy Öner E, Van den Ende W. The fructan syndrome: Evolutionary aspects and common themes among plants and microbes. PLANT, CELL & ENVIRONMENT 2018; 41:16-38. [PMID: 28925070 DOI: 10.1111/pce.13070] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/30/2017] [Accepted: 09/09/2017] [Indexed: 05/13/2023]
Abstract
Fructans are multifunctional fructose-based water soluble carbohydrates found in all biological kingdoms but not in animals. Most research has focused on plant and microbial fructans and has received a growing interest because of their practical applications. Nevertheless, the origin of fructan production, the so-called "fructan syndrome," is still unknown. Why fructans only occur in a limited number of plant and microbial species remains unclear. In this review, we provide an overview of plant and microbial fructan research with a focus on fructans as an adaptation to the environment and their role in (a)biotic stress tolerance. The taxonomical and biogeographical distribution of fructans in both kingdoms is discussed and linked (where possible) to environmental factors. Overall, the fructan syndrome may be related to water scarcity and differences in physicochemical properties, for instance, water retaining characteristics, at least partially explain why different fructan types with different branching levels are found in different species. Although a close correlation between environmental stresses and fructan production is quite clear in plants, this link seems to be missing in microbes. We hypothesize that this can be at least partially explained by differential evolutionary timeframes for plants and microbes, combined with potential redundancy effects.
Collapse
Affiliation(s)
- Maxime Versluys
- Laboratory of Molecular Plant Biology, KU Leuven, Leuven, Belgium
| | - Onur Kirtel
- Industrial Biotechnology and Systems Biology Research Group, Bioengineering Department, Marmara University, Istanbul, 34722, Turkey
| | - Ebru Toksoy Öner
- Industrial Biotechnology and Systems Biology Research Group, Bioengineering Department, Marmara University, Istanbul, 34722, Turkey
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
39
|
Jin Y, Fei M, Rosenquist S, Jin L, Gohil S, Sandström C, Olsson H, Persson C, Höglund AS, Fransson G, Ruan Y, Åman P, Jansson C, Liu C, Andersson R, Sun C. A Dual-Promoter Gene Orchestrates the Sucrose-Coordinated Synthesis of Starch and Fructan in Barley. MOLECULAR PLANT 2017; 10:1556-1570. [PMID: 29126994 DOI: 10.1016/j.molp.2017.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/25/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Sequential carbohydrate synthesis is important for plant survival because it guarantees energy supplies for growth and development during plant ontogeny and reproduction. Starch and fructan are two important carbohydrates in many flowering plants and in human diets. Understanding this coordinated starch and fructan synthesis and unraveling how plants allocate photosynthates and prioritize different carbohydrate synthesis for survival could lead to improvements to cereals in agriculture for the purposes of greater food security and production quality. Here, we report a system from a single gene in barley employing two alternative promoters, one intronic/exonic, to generate two sequence-overlapping but functionally opposing transcription factors, in sensing sucrose, potentially via sucrose/glucose/fructose/trehalose 6-phosphate signaling. The system employs an autoregulatory mechanism in perceiving a sucrose-controlled trans activity on one promoter and orchestrating the coordinated starch and fructan synthesis by competitive transcription factor binding on the other promoter. As a case in point for the physiological roles of the system, we have demonstrated that this multitasking system can be exploited in breeding barley with tailored amounts of fructan to produce healthy food ingredients. The identification of an intron/exon-spanning promoter in a hosting gene, resulting in proteins with distinct functions, adds to the complexity of plant genomes.
Collapse
Affiliation(s)
- Yunkai Jin
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China; Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, 75007 Uppsala, Sweden
| | - Mingliang Fei
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China; Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, 75007 Uppsala, Sweden; Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Sara Rosenquist
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, 75007 Uppsala, Sweden
| | - Lu Jin
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China; Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, 75007 Uppsala, Sweden
| | - Suresh Gohil
- Department of Chemistry and Biotechnology, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, 750 07 Uppsala, Sweden
| | - Corine Sandström
- Department of Chemistry and Biotechnology, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, 750 07 Uppsala, Sweden
| | - Helena Olsson
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, 75007 Uppsala, Sweden
| | - Cecilia Persson
- The Swedish NMR Centre at University of Gothenburg, Box 465, 405 30 Gothenburg, Sweden
| | - Anna-Stina Höglund
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, 75007 Uppsala, Sweden
| | - Gunnel Fransson
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7051, 750 07 Uppsala, Sweden
| | - Ying Ruan
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Per Åman
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7051, 750 07 Uppsala, Sweden
| | - Christer Jansson
- The Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory, P.O. Box 999, K8-93, Richland, WA 99352, USA
| | - Chunlin Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China.
| | - Roger Andersson
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7051, 750 07 Uppsala, Sweden
| | - Chuanxin Sun
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, 75007 Uppsala, Sweden.
| |
Collapse
|
40
|
Radchuk V, Riewe D, Peukert M, Matros A, Strickert M, Radchuk R, Weier D, Steinbiß HH, Sreenivasulu N, Weschke W, Weber H. Down-regulation of the sucrose transporters HvSUT1 and HvSUT2 affects sucrose homeostasis along its delivery path in barley grains. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4595-4612. [PMID: 28981782 PMCID: PMC5853522 DOI: 10.1093/jxb/erx266] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/03/2017] [Indexed: 05/05/2023]
Abstract
Sucrose transport and partitioning are crucial for seed filling. While many plasma-membrane-localised sucrose transporters (SUT1 family members) have been analysed in seeds, the functions of vacuolar SUT2 members are still obscure. In barley grains, expression of HvSUT1 and HvSUT2 overlap temporally and spatially, suggesting concerted functions to regulate sucrose homeostasis. Using HvSUT2-RNAi plants, we found that grains were also deficient in HvSUT1 expression and seemingly sucrose-limited during mid-to-late grain filling. Transgenic endosperms accumulated less starch and dry weight, although overall sucrose and hexose contents were higher. Comprehensive transcript and metabolite profiling revealed that genes related to glycolysis, the tricarboxylic acid cycle, starch and amino acid synthesis, grain maturation, and abscisic acid signalling were down-regulated together with most glycolytic intermediates and amino acids. Sucrose was increased along the sucrose delivery route in the nucellar projection, the endosperm transfer cells, and the starchy endosperm, indicating that suppressed transporter activity diminished sucrose efflux from vacuoles, which generated sugar deficiency in the cytoplasm. Thus, endosperm vacuoles may buffer sucrose concentrations to regulate homeostasis at grain filling. Transcriptional changes revealed that limited endosperm sucrose initiated sugar starvation responses, such as sugar recycling from starch, hemicelluloses and celluloses together with vacuolar protein degradation, thereby supporting formation of nucleotide sugars. Barley endosperm cells can thus suppress certain pathways to retrieve resources to maintain essential cell functions.
Collapse
Affiliation(s)
- Volodymyr Radchuk
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - David Riewe
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - Manuela Peukert
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - Andrea Matros
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - Marc Strickert
- Computational Intelligence—FB12 Informatik, Philipps University, Marburg, Germany
| | - Ruslana Radchuk
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - Diana Weier
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | | | - Nese Sreenivasulu
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - Winfriede Weschke
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - Hans Weber
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| |
Collapse
|
41
|
Wei H, Zhao H, Su T, Bausewein A, Greiner S, Harms K, Rausch T. Chicory R2R3-MYB transcription factors CiMYB5 and CiMYB3 regulate fructan 1-exohydrolase expression in response to abiotic stress and hormonal cues. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4323-4338. [PMID: 28922763 PMCID: PMC5853547 DOI: 10.1093/jxb/erx210] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/31/2017] [Indexed: 05/17/2023]
Abstract
In the biennial Cichorium intybus, inulin-type fructans accumulate in the taproot during the first year. Upon cold or drought exposure, fructans are degraded by fructan exohydrolases, affecting inulin yield and degree of polymerization. While stress-induced expression of 1-FEH genes has been thoroughly explored, the transcriptional network mediating these responses has remained unknown. In this study, several R2R3-MYB transcriptional regulators were analysed for their possible involvement in 1-FEH regulation via transient transactivation of 1-FEH target promoters and for in vivo co-expression with target genes under different stress and hormone treatments. CiMYB3 and CiMYB5 selectively enhanced promoter activities of 1-FEH1, 1-FEH2a, and 1-FEH2b genes, without affecting promoter activities of fructosyltransferase genes. Both factors recognized the MYB-core motifs (C/TNGTTA/G) that are abundantly present in 1-FEH promoters. In chicory hairy root cultures, CiMYB5 displayed co-expression with its target genes in response to different abiotic stress and phytohormone treatments, whereas correlations with CiMYB3 expression were less consistent. Oligofructan levels indicated that the metabolic response, while depending on the balance of the relative expression levels of fructan exohydrolases and fructosyltransferases, could be also affected by differential subcellular localization of different FEH isoforms. The results indicate that in chicory hairy root cultures CiMYB5 and CiMYB3 act as positive regulators of the fructan degradation pathway.
Collapse
Affiliation(s)
- Hongbin Wei
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Hongbo Zhao
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Anja Bausewein
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Steffen Greiner
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | | | - Thomas Rausch
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
42
|
Wei H, Bausewein A, Greiner S, Dauchot N, Harms K, Rausch T. CiMYB17, a stress-induced chicory R2R3-MYB transcription factor, activates promoters of genes involved in fructan synthesis and degradation. THE NEW PHYTOLOGIST 2017; 215:281-298. [PMID: 28452060 DOI: 10.1111/nph.14563] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/03/2017] [Indexed: 05/13/2023]
Abstract
In Cichorium intybus, inulin metabolism is mediated by fructan-active enzymes (FAZYs): sucrose:sucrose 1-fructosyltransferase (1-SST), fructan:fructan 1-fructosyltransferase (1-FFT), and fructan 1-exohydrolases 1, 2a and 2b (1-FEH1, -2a and -2b), respectively. While these enzymes have been rigorously characterized, the transcriptional network orchestrating their development- and stress-related expression has remained largely unknown. Here, the possible role of R2R3-MYB transcription factors in FAZY regulation was explored via bioinformatic identification of R2R3-MYBs (using an RNA sequencing (RNAseq) database), studies of co-expression of these factors with target genes, in vivo transient transactivation assays of FAZY target promoters (dual luciferase assay), and a yeast one-hybrid assay investigating the specificity of the binding of these factors to cis-elements. The chicory MYB transcription factor CiMYB17 specifically activated promoters of 1-SST and 1-FFT by binding to the consensus DNA-motif DTTHGGT. Unexpectedly, CiMYB17 also activated promoters of fructan exohydrolase genes. The stimulatory effect on promoter activities of sucrose transporter and cell wall invertase genes points to a general role in regulating the source-sink relationship. Co-induction of CiMYB17 with 1-SST and 1-FFT (and, less consistently, with 1-FEH1/2) in nitrogen-starved or abscisic acid (ABA)-treated chicory seedlings and in salt-stressed chicory hairy roots supports a role in stress-induced fructan metabolism, including de novo fructan synthesis and trimming of pre-existing fructans, whereas the reduced expression of CiMYB17 in developing taproots excludes a role in fructan accumulation under normal growth conditions.
Collapse
Affiliation(s)
- Hongbin Wei
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, D-69120, Germany
| | - Anja Bausewein
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, D-69120, Germany
| | - Steffen Greiner
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, D-69120, Germany
| | - Nicolas Dauchot
- Research Unit in Plant Biology, University of Namur, B-5000, Namur, Belgium
| | - Karsten Harms
- ZAFES, SÜDZUCKER AG Mannheim-Ochsenfurt, Obrigheim, D-67283, Germany
| | - Thomas Rausch
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, D-69120, Germany
| |
Collapse
|
43
|
Peukert M, Lim WL, Seiffert U, Matros A. Mass Spectrometry Imaging of Metabolites in Barley Grain Tissues. ACTA ACUST UNITED AC 2016; 1:574-591. [DOI: 10.1002/cppb.20037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Manuela Peukert
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne; Cologne Germany
| | - Wai Li Lim
- Australian Research Council Centre of Excellence in Plant Cell Walls (ARC CoE), University of Adelaide; Urrbrae Australia
| | - Udo Seiffert
- Biosystems Engineering, Fraunhofer Institute for Factory Operation and Automation IFF; Magdeburg Germany
| | - Andrea Matros
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Applied Biochemistry Group; Gatersleben Germany
| |
Collapse
|
44
|
Shahryar N, Maali-Amiri R. Metabolic acclimation of tetraploid and hexaploid wheats by cold stress-induced carbohydrate accumulation. JOURNAL OF PLANT PHYSIOLOGY 2016; 204:44-53. [PMID: 27500556 DOI: 10.1016/j.jplph.2016.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/13/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
Metabolic acclimation of plants to cold stress may be of great importance for their growth, survival and crop productivity. The accumulation carbohydrates associated with cold tolerance (CT), transcript levels for genes encoding related enzymes along with damage indices were comparatively studied in three genotypes of bread and durum wheats differing in sensitivity. Two (Norstar, bread wheat and Gerdish, durum wheat) were tolerant and the other, SRN (durum wheat), was susceptible to cold stress. During cold stress (-5°C for 24h), the contents of electrolyte leakage index (ELI) in Norstar and then Gerdish plants were lower than that of SRN plants, particularly in cold acclimated (CA) plants (4°C for 14days), confirming lethal temperature 50 (LT50) under field conditions. Increased carbohydrate abundances in the cases of sucrose, glucose, fructose, hexose phosphates, fructan, raffinose, arabinose resulted in different intensities of oxidative stress in bread (Norstar) plants compared to durum plants (SRN and Gerdish) plants as well as in CA plants compared to non-acclimated (NA) ones under cold, indicating metabolic/regulatory capacity along with a decrease in ELI content and enhanced defense activities. A significant decrease in these carbohydrates, particularly sucrose, under cold in NA plants showed an elevated level of cell damage (confirmed by ELI) compared to CA plants. On the other hand, an increase in hexose phosphates, particularly in NA plants, indicated sucrose degradation along with greater production of glucose and fructose compared to CA plants. Under such conditions, a significant increase in transcript levels of sucrose synthase and acidic invertase confirmed these results. Under cold, the high ABA-containing genotypes like Norstar and then Gerdish, which were obvious in CA plants, partly induced relative acclimation of cells for acquisition of CT compared to SRN. These results reveal an important role of carbohydrate metabolism in creating CT in durum wheats (particularly in Gerdish) as well as bread wheat with possible responsive components in metabolic and transcript levels.
Collapse
Affiliation(s)
- Negin Shahryar
- Department of Agronomy and Plant Breeding, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran; Department of Agronomy and Plant Breeding, Faculty of Agriculture, Science and Research Campus, Azad Islamic University, Karaj Branch, 31876-44511, Karaj, Iran
| | - Reza Maali-Amiri
- Department of Agronomy and Plant Breeding, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran.
| |
Collapse
|
45
|
Dong Y, Li B, Aharoni A. More than Pictures: When MS Imaging Meets Histology. TRENDS IN PLANT SCIENCE 2016; 21:686-698. [PMID: 27155743 DOI: 10.1016/j.tplants.2016.04.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/29/2016] [Accepted: 04/07/2016] [Indexed: 05/28/2023]
Abstract
Attaining high-resolution spatial information is a recurrent challenge in biological research, particularly in the case of small-molecule distribution. Mass spectrometry imaging (MSI) is an innovative molecular histology technique that could provide such information. It allows in situ and label-free measurement of both the abundance and distribution of a variety of molecules at the tissue or single cell level. The application of MSI in plant research has received considerable attention; thus, in this review, we describe the current state of MSI in plants. In particular, we present an overview of MSI approaches, highlight the recent technical and methodological developments, and discuss a range of applications contributing to the field of plant science.
Collapse
Affiliation(s)
- Yonghui Dong
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Bin Li
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
46
|
Label-free proteome profiling reveals developmental-dependent patterns in young barley grains. J Proteomics 2016; 143:106-121. [DOI: 10.1016/j.jprot.2016.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/16/2016] [Accepted: 04/11/2016] [Indexed: 12/17/2022]
|
47
|
Sharma KD, Nayyar H. Regulatory Networks in Pollen Development under Cold Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:402. [PMID: 27066044 PMCID: PMC4814731 DOI: 10.3389/fpls.2016.00402] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/14/2016] [Indexed: 05/18/2023]
Abstract
Cold stress modifies anthers' metabolic pathways to induce pollen sterility. Cold-tolerant plants, unlike the susceptible ones, produce high proportion of viable pollen. Anthers in susceptible plants, when exposed to cold stress, increase abscisic acid (ABA) metabolism and reduce ABA catabolism. Increased ABA negatively regulates expression of tapetum cell wall bound invertase and monosaccharide transport genes resulting in distorted carbohydrate pool in anther. Cold-stress also reduces endogenous levels of the bioactive gibberellins (GAs), GA4 and GA7, in susceptible anthers by repression of the GA biosynthesis genes. Here, we discuss recent findings on mechanisms of cold susceptibility in anthers which determine pollen sterility. We also discuss differences in regulatory pathways between cold-stressed anthers of susceptible and tolerant plants that decide pollen sterility or viability.
Collapse
Affiliation(s)
- Kamal D. Sharma
- Department of Agricultural Biotechnology, Chaudhary Sarwan Kumar Himachal Pradesh Agricultural UniversityPalampur, India
| | - Harsh Nayyar
- Department of Botany, Panjab UniversityChandigarh, India
| |
Collapse
|
48
|
Van den Ende W, Coopman M, Vergauwen R, Van Laere A. Presence of Inulin-Type Fructo-Oligosaccharides and Shift from Raffinose Family Oligosaccharide to Fructan Metabolism in Leaves of Boxtree (Buxus sempervirens). FRONTIERS IN PLANT SCIENCE 2016; 7:209. [PMID: 26973663 PMCID: PMC4771763 DOI: 10.3389/fpls.2016.00209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 02/06/2016] [Indexed: 05/26/2023]
Abstract
Fructans are known to occur in 15% of flowering plants and their accumulation is often associated with stress responses. Typically, particular fructan types occur within particular plant families. The family of the Buxaceae, harboring Pachysandra terminalis, an accumulator of graminan- and levan-type fructans, also harbors boxtree (Buxus sempervirens), a cold and drought tolerant species. Surprisingly, boxtree leaves do not accumulate the expected graminan- and levan-type fructans, but small inulin fructo-oligosaccharides (FOS: 1-kestotriose and nystose) and raffinose family oligosaccharides (RFOs: raffinose and stachyose) instead. The seasonal variation in concentrations of glucose, fructose, sucrose, FOS and RFOs were followed. Raffinose and stachyose peaked during the winter months, while FOS peaked at a very narrow time-interval in spring, immediately preceded by a prominent sucrose accumulation. Sucrose may function as a reserve carbohydrate in winter and early spring leaves. The switch from RFO to fructan metabolism in spring strongly suggests that fructans and RFOs fulfill distinct roles in boxtree leaves. RFOs may play a key role in the cold acclimation of winter leaves while temporal fructan biosynthesis in spring might increase sink strength to sustain the formation of new shoots.
Collapse
|
49
|
Peukert M, Thiel J, Mock HP, Marko D, Weschke W, Matros A. Spatiotemporal Dynamics of Oligofructan Metabolism and Suggested Functions in Developing Cereal Grains. FRONTIERS IN PLANT SCIENCE 2016; 6:1245. [PMID: 26834760 PMCID: PMC4717867 DOI: 10.3389/fpls.2015.01245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 12/21/2015] [Indexed: 05/21/2023]
Abstract
Oligofructans represent one of the most important groups of sucrose-derived water-soluble carbohydrates in the plant kingdom. In cereals, oligofructans accumulate in above ground parts of the plants (stems, leaves, seeds) and their biosynthesis leads to the formation of both types of glycosidic linkages [β(2,1); β(2,6)-fructans] or mixed patterns. In recent studies, tissue- and development- specific distribution patterns of the various oligofructan types in cereal grains have been shown, which are possibly related to the different phases of grain development, such as cellular differentiation of grain tissues and storage product accumulation. Here, we summarize the current knowledge about oligofructan biosynthesis and accumulation kinetics in cereal grains. We focus on the spatiotemporal dynamics and regulation of oligofructan biosynthesis and accumulation in developing barley grains (deduced from a combination of metabolite, transcript and proteome analyses). Finally, putative physiological functions of oligofructans in developing grains are discussed.
Collapse
Affiliation(s)
- Manuela Peukert
- Applied Biochemistry Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK-Gatersleben)Gatersleben, Germany
- University of CologneCologne, Germany
| | - Johannes Thiel
- Plant Architecture Group, IPK-GaterslebenGatersleben, Germany
| | - Hans-Peter Mock
- Applied Biochemistry Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK-Gatersleben)Gatersleben, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, University of ViennaVienna, Austria
| | | | - Andrea Matros
- Applied Biochemistry Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK-Gatersleben)Gatersleben, Germany
| |
Collapse
|
50
|
Wei H, Bausewein A, Steininger H, Su T, Zhao H, Harms K, Greiner S, Rausch T. Linking Expression of Fructan Active Enzymes, Cell Wall Invertases and Sucrose Transporters with Fructan Profiles in Growing Taproot of Chicory ( Cichorium intybus): Impact of Hormonal and Environmental Cues. FRONTIERS IN PLANT SCIENCE 2016; 7:1806. [PMID: 27994611 PMCID: PMC5136560 DOI: 10.3389/fpls.2016.01806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/16/2016] [Indexed: 05/05/2023]
Abstract
In chicory taproot, the inulin-type fructans serve as carbohydrate reserve. Inulin metabolism is mediated by fructan active enzymes (FAZYs): sucrose:sucrose 1-fructosyltransferase (1-SST; fructan synthesis), fructan:fructan-1-fructosyltransferase (1-FFT; fructan synthesis and degradation), and fructan 1-exohydrolases (1-FEH1/2a/2b; fructan degradation). In developing taproot, fructan synthesis is affected by source-to-sink sucrose transport and sink unloading. In the present study, expression of FAZYs, sucrose transporter and CWI isoforms, vacuolar invertase and sucrose synthase was determined in leaf blade, petiole and taproot of young chicory plants (taproot diameter: 2 cm) and compared with taproot fructan profiles for the following scenarios: (i) N-starvation, (ii) abscisic acid (ABA) treatment, (iii) ethylene treatment (via 1-aminoyclopropane-1-carboxylic acid [ACC]), and (iv) cold treatment. Both N-starvation and ABA treatment induced an increase in taproot oligofructans. However, while under N-starvation this increase reflected de novo synthesis, under ABA treatment gene expression profiles indicated a role for both de novo synthesis and degradation of long-chain fructans. Conversely, under ACC and cold treatment oligofructans slightly decreased, correlating with reduced expression of 1-SST and 1-FFT and increased expression of FEHs and VI. Distinct SUT and CWI expression profiles were observed, indicating a functional alignment of SUT and CWI expression with taproot fructan metabolism under different source-sink scenarios.
Collapse
Affiliation(s)
- Hongbin Wei
- Plant Molecular Physiology, Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelberg, Germany
| | - Anja Bausewein
- Plant Molecular Physiology, Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelberg, Germany
| | - Heike Steininger
- Plant Molecular Physiology, Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelberg, Germany
| | - Tao Su
- Plant Molecular Physiology, Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelberg, Germany
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry UniversityNanjing, China
| | - Hongbo Zhao
- Plant Molecular Physiology, Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelberg, Germany
- College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Karsten Harms
- ZAFES, Südzucker AG Mannheim/OchsenfurtObrigheim, Germany
| | - Steffen Greiner
- Plant Molecular Physiology, Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelberg, Germany
| | - Thomas Rausch
- Plant Molecular Physiology, Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelberg, Germany
- *Correspondence: Thomas Rausch,
| |
Collapse
|