1
|
Sáiz-Bonilla M, Li Y, Montes-Serey C, Walley JW, Dinesh-Kumar SP, Pallás V, Navarro JA. The proxiome of a plant viral protein with dual targeting to mitochondria and chloroplasts revealed MAPK cascade and splicing components as proviral factors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70161. [PMID: 40227839 DOI: 10.1111/tpj.70161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/15/2025]
Abstract
The coat protein (CP) of the melon necrotic spot virus (MNSV) is a multifunctional factor localized in the chloroplast, mitochondria, and cytoplasm, playing a critical role in overcoming plant defenses such as RNA silencing (RNAi) and the necrotic hypersensitive response. However, the molecular mechanisms through which CP interferes with plant defenses remain unclear. Identifying viral-host interactors can reveal how viruses exploit fundamental cellular processes and help elucidate viral survival strategies. Here, we employed a TurboID-based proximity labeling approach to identify interactors of both the wild-type MNSV CP and a cytoplasmic CP mutant lacking the dual transit peptide (ΔNtCP). Of the interactors, eight were selected for silencing. Notably, silencing MAP4K SIK1 and NbMAP3Kε1 kinases, and a splicing factor homolog NbSMU2 significantly reduced MNSV accumulation, suggesting a proviral role for these proteins in plants. Yeast two-hybrid and bimolecular fluorescence complementation assays confirmed the CP and ΔNtCP interaction with NbSMU2 and NbMAP3Kε1 but not with NbSIK1, which interacted with NbMAP3Kε1. These findings open up new possibilities for exploring how MNSV CP might modulate gene expression and MAPK, thereby facilitating MNSV infection.
Collapse
Affiliation(s)
- María Sáiz-Bonilla
- Laboratory of Plant Molecular Virology, Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, Davis, California, 95616, USA
| | - Yuanyuan Li
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, Davis, California, 95616, USA
| | - Christian Montes-Serey
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, 50011, USA
| | - Justin W Walley
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, 50011, USA
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, Davis, California, 95616, USA
- The Genome Center, University of California, Davis, Davis, California, 95616, USA
| | - Vicente Pallás
- Laboratory of Plant Molecular Virology, Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Jose A Navarro
- Laboratory of Plant Molecular Virology, Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
2
|
Herath V, Casteel CL, Verchot J. Comprehensive transcriptomic analysis reveals turnip mosaic virus infection and its aphid vector Myzus persicae cause large changes in gene regulatory networks and co-transcription of alternative spliced mRNAs in Arabidopsis thaliana. BMC PLANT BIOLOGY 2025; 25:128. [PMID: 39885390 PMCID: PMC11780806 DOI: 10.1186/s12870-024-06014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/24/2024] [Indexed: 02/01/2025]
Abstract
BACKGROUND Virus infection and herbivory can alter the expression of stress-responsive genes in plants. This study employed high-throughput transcriptomic and alternative splicing analysis to understand the separate and combined impacts on host gene expression in Arabidopsis thaliana by Myzus persicae (green peach aphid), and turnip mosaic virus (TuMV). RESULTS By investigating changes in transcript abundance, the data shows that aphids feeding on virus infected plants intensify the number of differentially expressed stress responsive genes compared to challenge by individual stressors. This study presents evidence that the combination of virus-vector-host interactions induces significant changes in hormone and secondary metabolite biosynthesis, as well as downstream factors involved in feedback loops within hormone signaling pathways. This study also shows that gene expressions are regulated through alternative pre-mRNA splicing and the use of alternative transcription start and termination sites. CONCLUSIONS These combined data suggest that complex genetic changes occur as plants adapt to the combined challenges posed by aphids and the viruses they vector. This study also provides more advanced analyses that could be used in the future to dissect the genetic mechanisms mediating tripartite interactions and inform future breeding programs.
Collapse
Affiliation(s)
- Venura Herath
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Kandy, 20400, Sri Lanka
| | - Clare L Casteel
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
- School of Integrative Plant Science, Section of Plant Pathology & Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
| | - Jeanmarie Verchot
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, 77845, USA.
| |
Collapse
|
3
|
Yang L, Yang L, Zhao C, Bai Z, Xie M, Liu J, Cui X, Bouwmeester K, Liu S. Unravelling alternative splicing patterns in susceptible and resistant Brassica napus lines in response to Xanthomonas campestris infection. BMC PLANT BIOLOGY 2024; 24:1027. [PMID: 39472805 PMCID: PMC11523580 DOI: 10.1186/s12870-024-05728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Rapeseed (Brassica napus L.) is an important oil and industrial crop worldwide. Black rot caused by the bacterial pathogen Xanthomonas campestris pv. campestris (Xcc) is an infectious vascular disease that leads to considerable yield losses in rapeseed. Resistance improvement through genetic breeding is an effective and sustainable approach to control black rot disease in B. napus. However, the molecular mechanisms underlying Brassica-Xcc interactions are not yet fully understood, especially regarding the impact of post-transcriptional gene regulation via alternative splicing (AS). RESULTS In this study, we compared the AS landscapes of a susceptible parental line and two mutagenized B. napus lines with contrasting levels of black rot resistance. Different types of AS events were identified in these B. napus lines at three time points upon Xcc infection, among which intron retention was the most common AS type. A total of 1,932 genes was found to show differential AS patterns between different B. napus lines. Multiple defense-related differential alternative splicing (DAS) hub candidates were pinpointed through an isoform-based co-expression network analysis, including genes involved in pathogen recognition, defense signalling, transcriptional regulation, and oxidation reduction. CONCLUSION This study provides new insights into the potential effects of post-transcriptional regulation on immune responses in B. napus towards Xcc attack. These findings could be beneficial for the genetic improvement of B. napus to achieve durable black rot resistance in the future.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China
- Biosystematics Group, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
- Present Address: School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Lingli Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China
- Present Address: National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chuanji Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China
| | - Zetao Bai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China
| | - Meili Xie
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China
| | - Jie Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China
| | - Xiaobo Cui
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China
| | - Klaas Bouwmeester
- Biosystematics Group, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands.
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China.
| |
Collapse
|
4
|
Lan HH, Lu LM. Characterization of Hibiscus Chlorotic Ringspot Virus-Derived vsiRNAs from Infected Hibiscus rosa-sinensis in China. THE PLANT PATHOLOGY JOURNAL 2024; 40:415-424. [PMID: 39397297 PMCID: PMC11471928 DOI: 10.5423/ppj.oa.06.2024.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 10/15/2024]
Abstract
Lots of progress have been made about pathogen system of Hibiscus rosa-sinensis and hibiscus chlorotic ringspot virus (HCRSV), however, interactions between H. rosa-sinensis and HCRSV remain largely unknown. Hereon, firstly, HCRSV infection in H. rosa-sinensis from Zhangzhou city of China was confirmed by traditional electron microscopy, modern reverse transcription polymerase chain reaction and RNA-seq methods. Secondly, sequence feature analysis showed the full-length sequence of HCRSV-ZZ was 3,909 nucleotides (nt) in length and had a similar genomic structure with other carmovirus. It contains a 5' untranslated region (UTR), followed by seven open reading frames encoding for P28, P23, P81, P8, P9, P38, and P25, and the last a 3-terminal UTR. Thirdly, HCRSV- ZZ-derived vsiRNAs were identified and characterized for the first time from disease H. rosa-sinensis through sRNA-seq to reveal interactions between pathogen ant plant host. It was shown that the majority of HCRSV-ZZ-derived vsiRNAs were 21 nt, 22 nt, and 20 nt, with 21 nt being most abundant. The 5'-terminal nucleotide of HCRSV-ZZ vsiRNAs preferred U and C. HCRSV-ZZ vsiRNAs derived predominantly (72%) from the viral genome positive-strand RNA. The distribution of HCRSV-ZZ vsiRNAs along the viral genome is generally even, with some hot spots and cold spots forming in local regions. These hot spots and cold spots could be corresponded to the regions of stem loop secondary structures forming in HCRSV-ZZ genome by nucleotide paring. Taken together, our findings certify HCRSV infection in H. rosa-sinensis and provide an insight into interaction between HCRSV and H. rosa-sinensis and contribute to the prevention and treatment of this virus.
Collapse
Affiliation(s)
- Han-hong Lan
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Colleges and Universities, School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Luan-mei Lu
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Colleges and Universities, School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| |
Collapse
|
5
|
Du K, Peng D, Wu J, Zhu Y, Jiang T, Wang P, Chen X, Jiang S, Li X, Cao Z, Fan Z, Zhou T. Maize splicing-mediated mRNA surveillance impeded by sugarcane mosaic virus-coded pathogenic protein NIa-Pro. SCIENCE ADVANCES 2024; 10:eadn3010. [PMID: 39178251 PMCID: PMC11343020 DOI: 10.1126/sciadv.adn3010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/22/2024] [Indexed: 08/25/2024]
Abstract
The eukaryotic mRNA surveillance pathway, a pivotal guardian of mRNA fidelity, stands at the nexus of diverse biological processes, including antiviral immunity. Despite the recognized function of splicing factors on mRNA fate, the intricate interplay shaping the mRNA surveillance pathway remains elusive. We illustrate that the conserved splicing factor U2 snRNP auxiliary factor large subunit B (U2AF65B) modulates splicing of mRNA surveillance complex, contributing to transcriptomic homeostasis in maize. The functionality of the mRNA surveillance pathway requires ZmU2AF65B-mediated normal splicing of upstream frameshift 3 (ZmUPF3) pre-mRNA, encoding a core factor in this pathway. Intriguingly, sugarcane mosaic virus (SCMV)-coded nuclear inclusion protein a protease (NIa-Pro) hinders the splicing function of ZmU2AF65B. Furthermore, NIa-Pro disrupts ZmU2AF65B binding to ZmUPF3 pre-mRNA, leading to dysregulated splicing of ZmUPF3 transcripts and, consequently, impairing mRNA surveillance, thus facilitating viral infection. Together, this study establishes that splicing governs the mRNA surveillance pathway and identifies a pathogenic protein capable of disrupting this regulation to compromise RNA immunity.
Collapse
Affiliation(s)
- Kaitong Du
- State Key Laboratory of Maize Bio-breeding and Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Dezhi Peng
- State Key Laboratory of Maize Bio-breeding and Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Jiqiu Wu
- State Key Laboratory of Maize Bio-breeding and Department of Plant Pathology, China Agricultural University, Beijing 100193, China
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Yabing Zhu
- BGI Tech Solutions Co. Ltd. BGI-Shenzhen, Shenzhen, China
| | - Tong Jiang
- State Key Laboratory of Maize Bio-breeding and Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Pei Wang
- State Key Laboratory of Maize Bio-breeding and Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xi Chen
- State Key Laboratory of Maize Bio-breeding and Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Sanjie Jiang
- BGI Tech Solutions Co. Ltd. BGI-Shenzhen, Shenzhen, China
| | - Xiangdong Li
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Zhiyan Cao
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Zaifeng Fan
- State Key Laboratory of Maize Bio-breeding and Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Tao Zhou
- State Key Laboratory of Maize Bio-breeding and Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Liu F, Cai S, Dai L, Ai N, Feng G, Wang N, Zhang W, Liu K, Zhou B. SR45a plays a key role in enhancing cotton resistance to Verticillium dahliae by alternative splicing of immunity genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:137-152. [PMID: 38569053 DOI: 10.1111/tpj.16750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Alternative splicing (AS) of pre-mRNAs increases the diversity of transcriptome and proteome and plays fundamental roles in plant development and stress responses. However, the prevalent changes in AS events and the regulating mechanisms of plants in response to pathogens remain largely unknown. Here, we show that AS changes are an important mechanism conferring cotton immunity to Verticillium dahliae (Vd). GauSR45a, encoding a serine/arginine-rich RNA binding protein, was upregulated expression and underwent AS in response to Vd infection in Gossypium australe, a wild diploid cotton species highly resistant to Vd. Silencing GauSR45a substantially reduced the splicing ratio of Vd-induced immune-associated genes, including GauBAK1 (BRI1-associated kinase 1) and GauCERK1 (chitin elicitor receptor kinase 1). GauSR45a binds to the GAAGA motif that is commonly found in the pre-mRNA of genes essential for PTI, ETI, and defense. The binding between GauSR45a and the GAAGA motif in the pre-mRNA of BAK1 was enhanced by two splicing factors of GauU2AF35B and GauU1-70 K, thereby facilitating exon splicing; silencing either AtU2AF35B or AtU1-70 K decreased the resistance to Vd in transgenic GauSR45a Arabidopsis. Overexpressing the short splicing variant of BAK1GauBAK1.1 resulted in enhanced Verticillium wilt resistance rather than the long one GauBAK1.2. Vd-induced far more AS events were in G. barbadense (resistant tetraploid cotton) than those in G. hirsutum (susceptible tetraploid cotton) during Vd infection, indicating resistance divergence in immune responses at a genome-wide scale. We provided evidence showing a fundamental mechanism by which GauSR45a enhances cotton resistance to Vd through global regulation of AS of immunity genes.
Collapse
Affiliation(s)
- Fujie Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production cosponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- Institue of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50#, Nanjing, 210014, China
| | - Sheng Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production cosponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- Nanjing Forestry University, 159 Longpan Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Lingjun Dai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production cosponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Nijiang Ai
- Xinjiang Production and Construction Corps, Shihezi Agricultural Science Research Institute, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Guoli Feng
- Xinjiang Production and Construction Corps, Shihezi Agricultural Science Research Institute, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Ningshan Wang
- Xinjiang Production and Construction Corps, Shihezi Agricultural Science Research Institute, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production cosponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Kang Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production cosponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production cosponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| |
Collapse
|
7
|
Li C, Krishnan S, Zhang M, Hu D, Meng D, Riedelsberger J, Dougherty L, Xu K, Piñeros MA, Cheng L. Alternative Splicing Underpins the ALMT9 Transporter Function for Vacuolar Malic Acid Accumulation in Apple. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310159. [PMID: 38514904 PMCID: PMC11165477 DOI: 10.1002/advs.202310159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Vacuolar malic acid accumulation largely determines fruit acidity, a key trait for the taste and flavor of apple and other fleshy fruits. Aluminum-activated malate transporter 9 (ALMT9/Ma1) underlies a major genetic locus, Ma, for fruit acidity in apple, but how the protein transports malate across the tonoplast is unclear. Here, it is shown that overexpression of the coding sequence of Ma1 (Ma1α) drastically decreases fruit acidity in "Royal Gala" apple, leading to uncovering alternative splicing underpins Ma1's function. Alternative splicing generates two isoforms: Ma1β is 68 amino acids shorter with much lower expression than the full-length protein Ma1α. Ma1β does not transport malate itself but interacts with the functional Ma1α to form heterodimers, creating synergy with Ma1α for malate transport in a threshold manner (When Ma1β/Ma1α ≥ 1/8). Overexpression of Ma1α triggers feedback inhibition on the native Ma1 expression via transcription factor MYB73, decreasing the Ma1β level well below the threshold that leads to significant reductions in Ma1 function and malic acid accumulation in fruit. Overexpression of Ma1α and Ma1β or genomic Ma1 increases both isoforms proportionally and enhances fruit malic acid accumulation. These findings reveal an essential role of alternative splicing in ALMT9-mediated malate transport underlying apple fruit acidity.
Collapse
Affiliation(s)
- Chunlong Li
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhan430070China
| | | | - Mengxia Zhang
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Dagang Hu
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Dong Meng
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Janin Riedelsberger
- Center for Bioinformatics, Simulation and Modeling, Department of Bioinformatics, Faculty of EngineeringUniversity of TalcaTalca3460000Chile
| | - Laura Dougherty
- Horticulture Section, School of Integrative Plant Science, New York State Agricultural Experiment StationCornell UniversityGenevaNY14456USA
| | - Kenong Xu
- Horticulture Section, School of Integrative Plant Science, New York State Agricultural Experiment StationCornell UniversityGenevaNY14456USA
| | - Miguel A. Piñeros
- Plant Biology Section, School of Integrative Plant Science and Robert W. Holley Center for Agriculture and HealthUSDA‐ARS Cornell UniversityIthacaNY14853USA
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| |
Collapse
|
8
|
Manasseh R, Sathuvalli V, Pappu HR. Transcriptional and functional predictors of potato virus Y-induced tuber necrosis in potato ( Solanum tuberosum). FRONTIERS IN PLANT SCIENCE 2024; 15:1369846. [PMID: 38638354 PMCID: PMC11024271 DOI: 10.3389/fpls.2024.1369846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/26/2024] [Indexed: 04/20/2024]
Abstract
Introduction Potato (Solanum tuberosum L.), the fourth most important food crop in the world, is affected by several viral pathogens with potato virus Y (PVY) having the greatest economic impact. At least nine biologically distinct variants of PVY are known to infect potato. These include the relatively new recombinant types named PVY-NTN and PVYN-Wi, which induce tuber necrosis in susceptible cultivars. To date, the molecular plant-virus interactions underlying this pathogenicity have not been fully characterized. We hypothesized that this necrotic behavior is supported by transcriptional and functional signatures that are unique to PVY-NTN and PVYN-Wi. Methods To test this hypothesis, transcriptional responses of cv. Russet Burbank, a PVY susceptible cultivar, to three PVY strains PVY-O, PVY-NTN, and PVYN-Wi were studied using mRNA-Seq. A haploid-resolved genome assembly for tetraploid potato was used for bioinformatics analysis. Results The study revealed 36 GO terms and nine KEGG 24 pathways that overlapped across the three PVY strains, making them generic features of PVY susceptibility in potato. Ten GO terms and three KEGG pathways enriched for PVY-NTN and PVYN-Wi only, which made them candidate functional signatures associated with PVY-induced tuber necrosis in potato. In addition, five other pathways were enriched for PVYNTN or PVYN-Wi. One carbon pool by folate was enriched exclusively in response to PVY-NTN infection; PVYN-Wi infection specifically impacted cutin, suberine and wax biosynthesis, phenylalanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and monoterpenoid biosynthesis. Discussion Results suggest that PVYN-Wi-induced necrosis may be mechanistically distinguishable from that of PVY-NTN. Our study provides a basis for understanding the mechanism underlying the development of PVY-induced tuber necrosis in potato.
Collapse
Affiliation(s)
- Richard Manasseh
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Vidyasagar Sathuvalli
- Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR, United States
| | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
9
|
Shamnas v M, Singh A, Kumar A, Mishra GP, Sinha SK. Exitrons: offering new roles to retained introns-the novel regulators of protein diversity and utility. AOB PLANTS 2024; 16:plae014. [PMID: 38566894 PMCID: PMC10985678 DOI: 10.1093/aobpla/plae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Exitrons are exonic introns. This subclass of intron retention alternative splicing does not contain a Pre-Terminating stop Codon. Therefore, when retained, they are always a part of a protein. Intron retention is a frequent phenomenon predominantly found in plants, which results in either the degradation of the transcripts or can serve as a stable intermediate to be processed upon induction by specific signals or the cell status. Interestingly, exitrons have coding ability and may confer additional attributes to the proteins that retain them. Therefore, exitron-containing and exitron-spliced isoforms will be a driving force for creating protein diversity in the proteome of an organism. This review establishes a basic understanding of exitron, discussing its genesis, key features, identification methods and functions. We also try to depict its other potential roles. The present review also aims to provide a fundamental background to those who found such exitronic sequences in their gene(s) and to speculate the future course of studies.
Collapse
Affiliation(s)
- Muhammed Shamnas v
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Akanksha Singh
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
- Department of Botany and Plant Pathology, Lilly Hall of Life Sciences, Purdue University, West Lafayette 47906, Indiana, USA
| | - Anuj Kumar
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Gyan Prakash Mishra
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - Subodh Kumar Sinha
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| |
Collapse
|
10
|
Luha R, Rana V, Vainstein A, Kumar V. Nonsense-mediated mRNA decay pathway in plants under stress: general gene regulatory mechanism and advances. PLANTA 2024; 259:51. [PMID: 38289504 DOI: 10.1007/s00425-023-04317-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/23/2023] [Indexed: 02/01/2024]
Abstract
MAIN CONCLUSION Nonsense-mediated mRNA decay in eukaryotes is vital to cellular homeostasis. Further knowledge of its putative role in plant RNA metabolism under stress is pivotal to developing fitness-optimizing strategies. Nonsense-mediated mRNA decay (NMD), part of the mRNA surveillance pathway, is an evolutionarily conserved form of gene regulation in all living organisms. Degradation of mRNA-bearing premature termination codons and regulation of physiological RNA levels highlight NMD's role in shaping the cellular transcriptome. Initially regarded as purely a tool for cellular RNA quality control, NMD is now considered to mediate various aspects of plant developmental processes and responses to environmental changes. Here we offer a basic understanding of NMD in eukaryotes by explaining the concept of premature termination codon recognition and NMD complex formation. We also provide a detailed overview of the NMD mechanism and its role in gene regulation. The potential role of effectors, including ABCE1, in ribosome recycling during the translation process is also explained. Recent reports of alternatively spliced variants of corresponding genes targeted by NMD in Arabidopsis thaliana are provided in tabular format. Detailed figures are also provided to clarify the NMD concept in plants. In particular, accumulating evidence shows that NMD can serve as a novel alternative strategy for genetic manipulation and can help design RNA-based therapies to combat stress in plants. A key point of emphasis is its function as a gene regulatory mechanism as well as its dynamic regulation by environmental and developmental factors. Overall, a detailed molecular understanding of the NMD mechanism can lead to further diverse applications, such as improving cellular homeostasis in living organisms.
Collapse
Affiliation(s)
- Rashmita Luha
- Department of Botany, School for Basic Sciences, Central University of Punjab, Bathinda, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science Bangalore, Bangaluru, India
| | - Varnika Rana
- Department of Botany, School for Basic Sciences, Central University of Punjab, Bathinda, India
| | - Alexander Vainstein
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Vinay Kumar
- Department of Botany, School for Basic Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
11
|
Scholthof HB, Scholthof KBG. Plant virology: an RNA treasure trove. TRENDS IN PLANT SCIENCE 2023; 28:1277-1289. [PMID: 37495453 DOI: 10.1016/j.tplants.2023.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/12/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023]
Abstract
Key principles pertaining to RNA biology not infrequently have their origins in plant virology. Examples have arisen from studies on viral RNA-intrinsic properties and the infection process from gene expression, replication, movement, and defense evasion to biotechnological applications. Since RNA is at the core of the central dogma in molecular biology, how plant virology assisted in the reinforcement or adaptations of this concept, while at other instances shook up elements of the doctrine, is discussed. Moreover, despite the negative effects of viral diseases in agriculture worldwide, plant viruses can be considered a scientific treasure trove. Today they remain tools of discovery for biotechnology, studying evolution, cell biology, and host-microbe interactions.
Collapse
Affiliation(s)
- Herman B Scholthof
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station TX 77843, USA.
| | - Karen-Beth G Scholthof
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station TX 77843, USA
| |
Collapse
|
12
|
Chen L, Xu Z, Huang J, Shu H, Hui Y, Zhu D, Wu Y, Dong S, Wu Z. Plant immunity suppressor SKRP encodes a novel RNA-binding protein that targets exon 3' end of unspliced RNA. THE NEW PHYTOLOGIST 2023; 240:1467-1483. [PMID: 37658678 DOI: 10.1111/nph.19236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
The regulatory roles of RNA splicing in plant immunity are emerging but still largely obscure. We reported previously that Phytophthora pathogen effector Avr3c targets a soybean protein SKRP (serine/lysine/arginine-rich protein) to impair soybean basal immunity by regulating host pre-mRNA alternative splicing, while the biochemical nature of SKRP remains unknown. Here, by using Arabidopsis as a model, we studied the mechanism of SKRP in regulating pre-mRNA splicing and plant immunity. AtSKRP confers impaired plant immunity against Phytophthora capsici and associates with spliceosome component PRP8 and splicing factor SR45, which positively and negatively regulate plant immunity, respectively. Enhanced crosslinking and immunoprecipitation followed by high-throughput sequencing (eCLIP-seq) showed AtSKRP is a novel RNA-binding protein that targets exon 3' end of unspliced RNA. Such position-specific binding of SKRP is associated with its activity in suppressing intron retention, including at positive immune regulatory genes UBP25 and RAR1. In addition, we found AtSKRP self-interact and forms oligomer, and these properties are associated with its function in plant immunity. Overall, our findings reveal that the immune repressor SKRP is a spliceosome-associated protein that targets exon 3' end to regulate pre-mRNA splicing in Arabidopsis.
Collapse
Affiliation(s)
- Ling Chen
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhihui Xu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Huang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haidong Shu
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yufan Hui
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Danling Zhu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yufeng Wu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhe Wu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
13
|
Dwivedi SL, Quiroz LF, Reddy ASN, Spillane C, Ortiz R. Alternative Splicing Variation: Accessing and Exploiting in Crop Improvement Programs. Int J Mol Sci 2023; 24:15205. [PMID: 37894886 PMCID: PMC10607462 DOI: 10.3390/ijms242015205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Alternative splicing (AS) is a gene regulatory mechanism modulating gene expression in multiple ways. AS is prevalent in all eukaryotes including plants. AS generates two or more mRNAs from the precursor mRNA (pre-mRNA) to regulate transcriptome complexity and proteome diversity. Advances in next-generation sequencing, omics technology, bioinformatics tools, and computational methods provide new opportunities to quantify and visualize AS-based quantitative trait variation associated with plant growth, development, reproduction, and stress tolerance. Domestication, polyploidization, and environmental perturbation may evolve novel splicing variants associated with agronomically beneficial traits. To date, pre-mRNAs from many genes are spliced into multiple transcripts that cause phenotypic variation for complex traits, both in model plant Arabidopsis and field crops. Cataloguing and exploiting such variation may provide new paths to enhance climate resilience, resource-use efficiency, productivity, and nutritional quality of staple food crops. This review provides insights into AS variation alongside a gene expression analysis to select for novel phenotypic diversity for use in breeding programs. AS contributes to heterosis, enhances plant symbiosis (mycorrhiza and rhizobium), and provides a mechanistic link between the core clock genes and diverse environmental clues.
Collapse
Affiliation(s)
| | - Luis Felipe Quiroz
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053 Alnarp, SE, Sweden
| |
Collapse
|
14
|
Su CF, Das D, Muhammad Aslam M, Xie JQ, Li XY, Chen MX. Eukaryotic splicing machinery in the plant-virus battleground. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1793. [PMID: 37198737 DOI: 10.1002/wrna.1793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/24/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
Plant virual infections are mainly caused by plant-virus parasitism which affects ecological communities. Some viruses are highly pathogen specific that can infect only specific plants, while some can cause widespread harm, such as tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV). After a virus infects the host, undergoes a series of harmful effects, including the destruction of host cell membrane receptors, changes in cell membrane components, cell fusion, and the production of neoantigens on the cell surface. Therefore, competition between the host and the virus arises. The virus starts gaining control of critical cellular functions of the host cells and ultimately affects the fate of the targeted host plants. Among these critical cellular processes, alternative splicing (AS) is an essential posttranscriptional regulation process in RNA maturation, which amplify host protein diversity and manipulates transcript abundance in response to plant pathogens. AS is widespread in nearly all human genes and critical in regulating animal-virus interactions. In particular, an animal virus can hijack the host splicing machinery to re-organize its compartments for propagation. Changes in AS are known to cause human disease, and various AS events have been reported to regulate tissue specificity, development, tumour proliferation, and multi-functionality. However, the mechanisms underlying plant-virus interactions are poorly understood. Here, we summarize the current understanding of how viruses interact with their plant hosts compared with humans, analyze currently used and putative candidate agrochemicals to treat plant-viral infections, and finally discussed the potential research hotspots in the future. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Chang-Feng Su
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Debatosh Das
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences & Technology, University of Missouri, Columbia, Missouri, USA
| | - Mehtab Muhammad Aslam
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences & Technology, University of Missouri, Columbia, Missouri, USA
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ji-Qin Xie
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| | - Xiang-Yang Li
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Mo-Xian Chen
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
15
|
Márquez-Molins J, Villalba-Bermell P, Corell-Sierra J, Pallás V, Gomez G. Integrative time-scale and multi-omics analysis of host responses to viroid infection. PLANT, CELL & ENVIRONMENT 2023. [PMID: 37378473 DOI: 10.1111/pce.14647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/18/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Viroids are circular RNAs of minimal complexity compelled to subvert plant-regulatory networks to accomplish their infectious process. Studies focused on the response to viroid-infection have mostly addressed specific regulatory levels and considered specifics infection-times. Thus, much remains to be done to understand the temporal evolution and complex nature of viroid-host interactions. Here we present an integrative analysis of the temporal evolution of the genome-wide alterations in cucumber plants infected with hop stunt viroid (HSVd) by integrating differential host transcriptome, sRNAnome and methylome. Our results support that HSVd promotes the redesign of the cucumber regulatory-pathways predominantly affecting specific regulatory layers at different infection-phases. The initial response was characterised by a reconfiguration of the host-transcriptome by differential exon-usage, followed by a progressive transcriptional downregulation modulated by epigenetic changes. Regarding endogenous small RNAs, the alterations were limited and mainly occurred at the late stage. Significant host-alterations were predominantly related to the downregulation of transcripts involved in plant-defence mechanisms, the restriction of pathogen-movement and the systemic spreading of defence signals. We expect that these data constituting the first comprehensive temporal-map of the plant-regulatory alterations associated with HSVd infection could contribute to elucidate the molecular basis of the yet poorly known host-response to viroid-induced pathogenesis.
Collapse
Affiliation(s)
- Joan Márquez-Molins
- Department of Molecular Interactions and Regulation, Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC), Universitat de València (UV), Parc Científic, Paterna, Spain
- Department of Virologia Molecular y Evolutiva de Plantas, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, Valencia, Spain
| | - Pascual Villalba-Bermell
- Department of Molecular Interactions and Regulation, Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC), Universitat de València (UV), Parc Científic, Paterna, Spain
| | - Julia Corell-Sierra
- Department of Molecular Interactions and Regulation, Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC), Universitat de València (UV), Parc Científic, Paterna, Spain
| | - Vicente Pallás
- Department of Virologia Molecular y Evolutiva de Plantas, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, Valencia, Spain
| | - Gustavo Gomez
- Department of Molecular Interactions and Regulation, Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC), Universitat de València (UV), Parc Científic, Paterna, Spain
| |
Collapse
|
16
|
Misra CS, Sousa AGG, Barros PM, Kermanov A, Becker JD. Cell-type-specific alternative splicing in the Arabidopsis germline. PLANT PHYSIOLOGY 2023; 192:85-101. [PMID: 36515615 PMCID: PMC10152659 DOI: 10.1093/plphys/kiac574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 09/30/2022] [Accepted: 11/23/2022] [Indexed: 05/03/2023]
Abstract
During sexual reproduction in flowering plants, the two haploid sperm cells (SCs) embedded within the cytoplasm of a growing pollen tube are carried to the embryo sac for double fertilization. Pollen development in flowering plants is a dynamic process that encompasses changes at transcriptome and epigenome levels. While the transcriptome of pollen and SCs in Arabidopsis (Arabidopsis thaliana) is well documented, previous analyses have mostly been based on gene-level expression. In-depth transcriptome analysis, particularly the extent of alternative splicing (AS) at the resolution of SC and vegetative nucleus (VN), is still lacking. Therefore, we performed RNA-seq analysis to generate a spliceome map of Arabidopsis SCs and VN isolated from mature pollen grains. Based on our de novo transcriptome assembly, we identified 58,039 transcripts, including 9,681 novel transcripts, of which 2,091 were expressed in SCs and 3,600 in VN. Four hundred and sixty-eight genes were regulated both at gene and splicing levels, with many having functions in mRNA splicing, chromatin modification, and protein localization. Moreover, a comparison with egg cell RNA-seq data uncovered sex-specific regulation of transcription and splicing factors. Our study provides insights into a gamete-specific AS landscape at unprecedented resolution.
Collapse
Affiliation(s)
- Chandra Shekhar Misra
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | | | - Pedro M Barros
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
| | - Anton Kermanov
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Jörg D Becker
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| |
Collapse
|
17
|
Muhammad S, Xu X, Zhou W, Wu L. Alternative splicing: An efficient regulatory approach towards plant developmental plasticity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1758. [PMID: 35983878 DOI: 10.1002/wrna.1758] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/28/2022] [Accepted: 07/19/2022] [Indexed: 05/13/2023]
Abstract
Alternative splicing (AS) is a gene regulatory mechanism that plants adapt to modulate gene expression (GE) in multiple ways. AS generates alternative isoforms of the same gene following various development and environmental stimuli, increasing transcriptome plasticity and proteome complexity. AS controls the expression levels of certain genes and regulates GE networks that shape plant adaptations through nonsense-mediated decay (NMD). This review intends to discuss AS modulation, from interaction with noncoding RNAs to the established roles of splicing factors (SFs) in response to endogenous and exogenous cues. We aim to gather such studies that highlight the magnitude and impact of AS, which are not always clear from individual articles, when AS is increasing in individual genes and at a global level. This work also anticipates making plant researchers know that AS is likely to occur in their investigations and that dynamic changes in AS and their effects must be frequently considered. We also review our understanding of AS-mediated posttranscriptional modulation of plant stress tolerance and discuss its potential application in crop improvement in the future. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Processing > Splicing Mechanisms RNA-Based Catalysis > RNA Catalysis in Splicing and Translation.
Collapse
Affiliation(s)
- Sajid Muhammad
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute of Zhejiang University, Sanya, Hainan, China
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoli Xu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weijun Zhou
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liang Wu
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute of Zhejiang University, Sanya, Hainan, China
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Kumar K, Sinha SK, Maity U, Kirti PB, Kumar KRR. Insights into established and emerging roles of SR protein family in plants and animals. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1763. [PMID: 36131558 DOI: 10.1002/wrna.1763] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 05/13/2023]
Abstract
Splicing of pre-mRNA is an essential part of eukaryotic gene expression. Serine-/arginine-rich (SR) proteins are highly conserved RNA-binding proteins present in all metazoans and plants. SR proteins are involved in constitutive and alternative splicing, thereby regulating the transcriptome and proteome diversity in the organism. In addition to their role in splicing, SR proteins are also involved in mRNA export, nonsense-mediated mRNA decay, mRNA stability, and translation. Due to their pivotal roles in mRNA metabolism, SR proteins play essential roles in normal growth and development. Hence, any misregulation of this set of proteins causes developmental defects in both plants and animals. SR proteins from the animal kingdom are extensively studied for their canonical and noncanonical functions. Compared with the animal kingdom, plant genomes harbor more SR protein-encoding genes and greater diversity of SR proteins, which are probably evolved for plant-specific functions. Evidence from both plants and animals confirms the essential role of SR proteins as regulators of gene expression influencing cellular processes, developmental stages, and disease conditions. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Kundan Kumar
- Department of Biotechnology, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Shubham Kumar Sinha
- Department of Biotechnology, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Upasana Maity
- Department of Biotechnology, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | | | | |
Collapse
|
19
|
Hao K, Yang M, Cui Y, Jiao Z, Gao X, Du Z, Wang Z, An M, Xia Z, Wu Y. Transcriptomic and Functional Analyses Reveal the Different Roles of Vitamins C, E, and K in Regulating Viral Infections in Maize. Int J Mol Sci 2023; 24:ijms24098012. [PMID: 37175719 PMCID: PMC10178231 DOI: 10.3390/ijms24098012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Maize lethal necrosis (MLN), one of the most important maize viral diseases, is caused by maize chlorotic mottle virus (MCMV) infection in combination with a potyvirid, such as sugarcane mosaic virus (SCMV). However, the resistance mechanism of maize to MLN remains largely unknown. In this study, we obtained isoform expression profiles of maize after SCMV and MCMV single and synergistic infection (S + M) via comparative analysis of SMRT- and Illumina-based RNA sequencing. A total of 15,508, 7567, and 2378 differentially expressed isoforms (DEIs) were identified in S + M, MCMV, and SCMV libraries, which were primarily involved in photosynthesis, reactive oxygen species (ROS) scavenging, and some pathways related to disease resistance. The results of virus-induced gene silencing (VIGS) assays revealed that silencing of a vitamin C biosynthesis-related gene, ZmGalDH or ZmAPX1, promoted viral infections, while silencing ZmTAT or ZmNQO1, the gene involved in vitamin E or K biosynthesis, inhibited MCMV and S + M infections, likely by regulating the expressions of pathogenesis-related (PR) genes. Moreover, the relationship between viral infections and expression of the above four genes in ten maize inbred lines was determined. We further demonstrated that the exogenous application of vitamin C could effectively suppress viral infections, while vitamins E and K promoted MCMV infection. These findings provide novel insights into the gene regulatory networks of maize in response to MLN, and the roles of vitamins C, E, and K in conditioning viral infections in maize.
Collapse
Affiliation(s)
- Kaiqiang Hao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Miaoren Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yakun Cui
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhiyuan Jiao
- State Kay Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xinran Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhichao Du
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhiping Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Mengnan An
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zihao Xia
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
20
|
Laskar P, Hazra A, Pal A, Kundu A. Deciphering the role of alternative splicing as modulators of defense response in the MYMIV- Vigna mungo pathosystem. PHYSIOLOGIA PLANTARUM 2023; 175:e13922. [PMID: 37114622 DOI: 10.1111/ppl.13922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 06/19/2023]
Abstract
Alternative splicing (AS) is a crucial regulatory mechanism that impacts transcriptome and proteome complexity under stressful situations. Although its role in abiotic stresses is somewhat understood, our understanding of the mechanistic regulation of pre-mRNA splicing in plant-pathogen interaction is meagre. To comprehend this unexplored immune reprogramming mechanism, transcriptome profiles of Mungbean Yellow Mosaic India Virus (MYMIV)-resistant and susceptible Vigna mungo genotypes were analysed for AS genes that may underlie the resistance mechanism. Results revealed a repertoire of AS-isoforms accumulated during pathogenic infestation, with intron retention being the most common AS mechanism. Identification of 688 differential alternatively spliced (DAS) genes in the resistant host elucidates its robust antiviral response, whereas 322 DAS genes were identified in the susceptible host. Enrichment analyses confirmed DAS transcripts pertaining to stress, signalling, and immune system pathways have undergone maximal perturbations. Additionally, a strong regulation of the splicing factors has been observed both at transcriptional and post-transcriptional levels. qPCR validation of candidate DAS transcripts with induced expression upon MYMIV-infection demonstrated a competent immune response in the resistant background. The AS-impacted genes resulted either in partial/complete loss of functional domains or altered sensitivity to miRNA-mediated gene silencing. A complex regulatory module, miR7517-ATAF2, has been identified in an aberrantly spliced ATAF2 isoform that exposes an intronic miR7517 binding site, thereby suppressing the negative regulator to enhance defense reaction. The present study establishes AS as a non-canonical immune reprogramming mechanism that operates in parallel, thereby offering an alternative strategy for developing yellow mosaic-resistant V. mungo cultivars. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Parbej Laskar
- Plant Genomics and Bioinformatics Laboratory, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata
| | - Anjan Hazra
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata
- Present Address: Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata
| | - Amita Pal
- Division of Plant Biology, Bose Institute, Kolkata
| | - Anirban Kundu
- Plant Genomics and Bioinformatics Laboratory, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata
| |
Collapse
|
21
|
Shen Y, Qin Z, Ren G, Deng P, Ji W, Jiao C, Wu L. Complexity and regulation of age-dependent alternative splicing in Brachypodium distachyon. PLANT PHYSIOLOGY 2023:kiad223. [PMID: 37067917 DOI: 10.1093/plphys/kiad223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Alternative splicing (AS) is a gene regulatory mechanism that generates multiple transcripts of the same gene precursor by the spliceosome complex, promoting messenger RNA complexity and proteome diversity. Although AS is extensively studied in response to environmental stresses, whether it mediates age-dependent development and how it is adjusted by growth transitions are largely unknown. Here, we comprehensively explored the AS landscape at different development stages in the grass model plant Brachypodium (Brachypodium distachyon). We identified abundant coding genes and non-coding transcripts subject to dynamic AS regulation during juvenile, adult, and reproductive transitions. Moreover, we revealed that SC35-LIKE SPLICING FACTOR 33 (SCL33), a serine/arginine-rich splicing factor in spliceosomes, plays a redundant and antagonistic role with its putative paralog, SCL33L, in regulating intron assembly across distinct developmental stages. In addition, we determined global AS variations in microRNA156 (miR156)-overproducing plants, in which growth transitions are delayed, and found that SPLs were regulated by miR156 in intron retention alteration in addition to mRNA clearance and translation inhibition manners. Finally, we demonstrated a complex regulatory process of age-dependent AS events in B. distachyon that were coincidently or separately regulated by miR156 and SCL33/SCL33L. These results illustrate a substantial -machinery of AS that mediates phase transitions in plants.
Collapse
Affiliation(s)
- Yuxin Shen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan, 572000, China
| | - Zhengrui Qin
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan, 572000, China
| | - Gaojie Ren
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Pingchuan Deng
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Chen Jiao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Liang Wu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan, 572000, China
| |
Collapse
|
22
|
Wu Q, Cui Y, Jin X, Wang G, Yan L, Zhong C, Yu M, Li W, Wang Y, Wang L, Wang H, Dang C, Zhang X, Chen Y, Zhang P, Zhao X, Wu J, Fu D, Xia L, Nevo E, Vogel J, Huo N, Li D, Gu YQ, Jackson AO, Zhang Y, Liu Z. The CC-NB-LRR protein BSR1 from Brachypodium confers resistance to Barley stripe mosaic virus in gramineous plants by recognising TGB1 movement protein. THE NEW PHYTOLOGIST 2022; 236:2233-2248. [PMID: 36059081 DOI: 10.1111/nph.18457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Although some nucleotide binding, leucine-rich repeat immune receptor (NLR) proteins conferring resistance to specific viruses have been identified in dicot plants, NLR proteins involved in viral resistance have not been described in monocots. We have used map-based cloning to isolate the CC-NB-LRR (CNL) Barley stripe mosaic virus (BSMV) resistance gene barley stripe resistance 1 (BSR1) from Brachypodium distachyon Bd3-1 inbred line. Stable BSR1 transgenic Brachypodium line Bd21-3, barley (Golden Promise) and wheat (Kenong 199) plants developed resistance against BSMV ND18 strain. Allelic variation analyses indicated that BSR1 is present in several Brachypodium accessions collected from countries in the Middle East. Protein domain swaps revealed that the intact LRR domain and the C-terminus of BSR1 are required for resistance. BSR1 interacts with the BSMV ND18 TGB1 protein in planta and shows temperature-sensitive antiviral resistance. The R390 and T392 residues of TGB1ND (ND18 strain) and the G196 and K197 residues within the BSR1 P-loop motif are key amino acids required for immune activation. BSR1 is the first cloned virus resistance gene encoding a typical CNL protein in monocots, highlighting the utility of the Brachypodium model for isolation and analysis of agronomically important genes for crop improvement.
Collapse
Affiliation(s)
- Qiuhong Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Science, Beijing, 100101, China
| | - Yu Cui
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Guoxin Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Lijie Yan
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Chenchen Zhong
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Meihua Yu
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wenli Li
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ling Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hao Wang
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Chen Dang
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xinyu Zhang
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yongxing Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Science, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Panpan Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Science, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofei Zhao
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jiajie Wu
- College of Agronomy, Shandong Agriculture University, Taian, 271018, China
| | - Daolin Fu
- College of Agronomy, Shandong Agriculture University, Taian, 271018, China
| | - Lanqin Xia
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Eviatar Nevo
- Institute of Evolution, Haifa University, Haifa, 31905, Israel
| | - John Vogel
- Joint Genome Institute, DOE, Walnut Creek, CA, 94598, USA
| | - Naxin Huo
- USDA-ARS Western Regional Research Center, Albany, CA, 94710, USA
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yong Q Gu
- USDA-ARS Western Regional Research Center, Albany, CA, 94710, USA
| | - Andrew O Jackson
- Department of Plant and Microbiology, University of California, Berkeley, CA, 94720, USA
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Science, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
23
|
Zhang Y, Yang X, Van de Peer Y, Chen J, Marchal K, Shi T. Evolution of isoform-level gene expression patterns across tissues during lotus species divergence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:830-846. [PMID: 36123806 PMCID: PMC7613771 DOI: 10.1111/tpj.15984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/09/2022] [Indexed: 05/03/2023]
Abstract
Both gene duplication and alternative splicing (AS) drive the functional diversity of gene products in plants, yet the relative contributions of the two key mechanisms to the evolution of gene function are largely unclear. Here, we studied AS in two closely related lotus plants, Nelumbo lutea and Nelumbo nucifera, and the outgroup Arabidopsis thaliana, for both single-copy and duplicated genes. We show that most splicing events evolved rapidly between orthologs and that the origin of lineage-specific splice variants or isoforms contributed to gene functional changes during species divergence within Nelumbo. Single-copy genes contain more isoforms, have more AS events conserved across species, and show more complex tissue-dependent expression patterns than their duplicated counterparts. This suggests that expression divergence through isoforms is a mechanism to extend the expression breadth of genes with low copy numbers. As compared to isoforms of local, small-scale duplicates, isoforms of whole-genome duplicates are less conserved and display a less conserved tissue bias, pointing towards their contribution to subfunctionalization. Through comparative analysis of isoform expression networks, we identified orthologous genes of which the expression of at least some of their isoforms displays a conserved tissue bias across species, indicating a strong selection pressure for maintaining a stable expression pattern of these isoforms. Overall, our study shows that both AS and gene duplication contributed to the diversity of gene function during the evolution of lotus.
Collapse
Affiliation(s)
- Yue Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingyu Yang
- Wuhan Institute of Landscape Architecture, Wuhan 430081, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, and VIB Center for Plant Systems Biology, Ghent 9052, Belgium
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinming Chen
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- Corresponding author details: Jinming Chen: ; Kathleen Marchal: ; Tao Shi:
| | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, and VIB Center for Plant Systems Biology, Ghent 9052, Belgium
- Department of Information Technology, IDLab, IMEC, Ghent University, Ghent 9052, Belgium
- Corresponding author details: Jinming Chen: ; Kathleen Marchal: ; Tao Shi:
| | - Tao Shi
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- Corresponding author details: Jinming Chen: ; Kathleen Marchal: ; Tao Shi:
| |
Collapse
|
24
|
Rawoof A, Ahmad I, Islam K, Momo J, Kumar A, Jaiswal V, Ramchiary N. Integrated omics analysis identified genes and their splice variants involved in fruit development and metabolites production in Capsicum species. Funct Integr Genomics 2022; 22:1189-1209. [PMID: 36173582 DOI: 10.1007/s10142-022-00902-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/27/2022]
Abstract
To date, several transcriptomic studies during fruit development have been reported; however, no comprehensive integrated study on expression diversity, alternative splicing, and metabolomic profiling was reported in Capsicum. This study analyzed RNA-seq data and untargeted metabolomic profiling from early green (EG), mature green (MG), and breaker (Br) fruit stages from two Capsicum species, i.e., C. annuum (Cann) and C. frutescens (Cfrut) from Northeast India. A total of 117,416 and 96,802 alternatively spliced events (AltSpli-events) were identified from Cann and Cfrut, respectively. Among AltSpli-events, intron retention (IR; 32.2% Cann and 25.75% Cfrut) followed by alternative acceptor (AA; 15.4% Cann and 18.9% Cfrut) were the most abundant in Capsicum. Around 7600 genes expressed in at least one fruit stage of Cann and Cfrut were AltSpli. The study identified spliced variants of genes including transcription factors (TFs) potentially involved in fruit development/ripening (Aux/IAA 16-like, ETR, SGR1, ARF, CaGLK2, ETR, CaAGL1, MADS-RIN, FUL1, SEPALLATA1), carotenoid (PDS, CA1, CCD4, NCED3, xanthoxin dehydrogenase, CaERF82, CabHLH100, CaMYB3R-1, SGR1, CaWRKY28, CaWRKY48, CaWRKY54), and capsaicinoids or flavonoid biosynthesis (CaMYB48, CaWRKY51), which were significantly differentially spliced (DS) between consecutive Capsicum fruit stages. Also, this study observed that differentially expressed isoforms (DEiso) from 38 genes with differentially spliced events (DSE) were significantly enriched in various metabolic pathways such as starch and sucrose metabolism, amino acid metabolism, cysteine cutin suberin and wax biosynthesis, and carotenoid biosynthesis. Furthermore, the metabolomic profiling revealed that metabolites from aforementioned pathways such as carbohydrates (mainly sugars such as D-fructose, D-galactose, maltose, and sucrose), organic acids (carboxylic acids), and peptide groups significantly altered during fruit development. Taken together, our findings could help in alternative splicing-based targeted studies of candidate genes involved in fruit development and ripening in Capsicum crop.
Collapse
Affiliation(s)
- Abdul Rawoof
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ilyas Ahmad
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Khushbu Islam
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - John Momo
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ajay Kumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - Vandana Jaiswal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Nirala Ramchiary
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
25
|
Zhang L, Liu Y, Wang Q, Wang C, Lv S, Wang Y, Wang J, Wang Y, Yuan J, Zhang H, Kang Z, Ji W. An alternative splicing isoform of wheat TaYRG1 resistance protein activates immunity by interacting with dynamin-related proteins. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5474-5489. [PMID: 35652375 DOI: 10.1093/jxb/erac245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Wheat (Triticum aestivum) is a commercially important crop and its production is seriously threatened by the fungal pathogen Puccinia striiformis f. sp. tritici West (Pst). Resistance (R) genes are critical factors that facilitate plant immune responses. Here, we report a wheat R gene NB-ARC-LRR ortholog, TaYRG1, that is associated with distinct alternative splicing events in wheat infected by Pst. The native splice variant, TaYRG1.6, encodes internal-motif-deleted polypeptides with the same N- and C-termini as TaYRG1.1, resulting in gain of function. Transient expression of protein variants in Nicotiana benthamiana showed that the NB and ARC domains, and TaYRG1.6 (half LRR domain), stimulate robust elicitor-independent cell death based on a signal peptide, although the activity was negatively modulated by the CC and complete LRR domains. Furthermore, molecular genetic analyses indicated that TaYRG1.6 enhanced resistance to Pst in wheat. Moreover, we provide multiple lines of evidence that TaYRG1.6 interacts with a dynamin-related protein, TaDrp1. Proteome profiling suggested that the TaYRG1.6-TaDrp1-DNM complex in the membrane trafficking systems may trigger cell death by mobilizing lipid and kinase signaling in the endocytosis pathway. Our findings reveal a unique mechanism by which TaYRG1 activates cell death and enhances disease resistance by reconfiguring protein structure through alternative splicing.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanming Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiaohui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Chao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Shikai Lv
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanzhen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yajuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jing Yuan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
26
|
Jin X. Regulatory Network of Serine/Arginine-Rich (SR) Proteins: The Molecular Mechanism and Physiological Function in Plants. Int J Mol Sci 2022; 23:ijms231710147. [PMID: 36077545 PMCID: PMC9456285 DOI: 10.3390/ijms231710147] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 12/05/2022] Open
Abstract
Serine/arginine-rich (SR) proteins are a type of splicing factor. They play significant roles in constitutive and alternative pre-mRNA splicing, and are involved in post-splicing activities, such as mRNA nuclear export, nonsense-mediated mRNA decay, mRNA translation, and miRNA biogenesis. In plants, SR proteins function under a complex regulatory network by protein–protein and RNA–protein interactions between SR proteins, other splicing factors, other proteins, or even RNAs. The regulatory networks of SR proteins are complex—they are regulated by the SR proteins themselves, they are phosphorylated and dephosphorylated through interactions with kinase, and they participate in signal transduction pathways, whereby signaling cascades can link the splicing machinery to the exterior environment. In a complex network, SR proteins are involved in plant growth and development, signal transduction, responses to abiotic and biotic stresses, and metabolism. Here, I review the current status of research on plant SR proteins, construct a model of SR proteins function, and ask many questions about SR proteins in plants.
Collapse
Affiliation(s)
- Xiaoli Jin
- Departmeng of Agronomy, College of Agriculture and Biotechnology, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
27
|
Chen S, Hou J, Fu Y, Li H. Genome-wide identification of YABBY transcription factors in Brachypodium distachyon and functional characterization of Bd DROOPING LEAF. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:13-24. [PMID: 35640497 DOI: 10.1016/j.plaphy.2022.05.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
YABBY transcription factors (TFs) are plant-specific and are characterized by a C2-C2 zinc finger domain at the N-terminus and a YABBY domain at the C-terminus. In this study, eight YABBY genes were identified in the Brachypodium distachyon genome and were unevenly distributed across four chromosomes. Phylogenetic analysis classified BdYABBYs into FIL/YAB3, YAB2, CRC, and INO clades. Sixty-two putative cis-elements were identified in BdYABBY gene putative promoters, among them, CAAT-box, TATA-box, MYB, MYC, ARE, and Box_4 were shared by all. BdYABBY genes are highly expressed in inflorescences, and abiotic stresses regulate their expression. In addition, three transcripts of BdDL were identified. Over-expression in Arabidopsis has shown their different functions in reproductive development, as well as in response to cold stress. Our study lays the foundation for the functional elucidation of BdYABBY genes.
Collapse
Affiliation(s)
- Shoukun Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712000, Shaanxi, China.
| | - Jiayuan Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712000, Shaanxi, China.
| | - Yanan Fu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712000, Shaanxi, China.
| | - Haifeng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712000, Shaanxi, China.
| |
Collapse
|
28
|
Qu A, Bai Y, Zhang X, Zeng J, Pu F, Wu L, Xu P, Zhou T. Tissue-Specific Analysis of Alternative Splicing Events and Differential Isoform Expression in Large Yellow Croaker (Larimichthys crocea) After Cryptocaryon irritans Infection. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:640-654. [PMID: 35624193 DOI: 10.1007/s10126-022-10133-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The large yellow croaker (Larimichthys crocea) is one of the most important mariculture fish in China. Recently, cryptocaryonosis caused by Cryptocryon irritans infection has brought huge economic losses and threatens the healthy and sustainable development of the L. crocea industry. However, the molecular mechanism and regulation process for L. crocea resistance to C. irritans infection has not been fully researched. Alternative splicing (AS) is an important post-transcriptional regulatory mechanism that allows cells to produce transcriptional and proteomic diversity. The results of AS are tissue dependent, and the expression of tissue-specific transcription subtype genes is determined by AS and transcriptional regulation. However, studies on the tissue specificity of AS events in L. crocea following infection with C. irritans have not been performed. In this study, the L. crocea were artificially infected with C. irritans; their skin and gill were collected at 0 h, 24 h, 48 h, 72 h, and 96 h post infection. After sequencing and differential expression analysis, a set of 452, 692, 934, 711, 534, and 297 differential alternative splicing (DAS) events were identified in 0 h, 12 h, 24 h, 48 h, 72 h, and 96 h post infection respectively. Furthermore, 4160 differentially expressed isoforms (DEIs) and 4209 DEI genes were identified from all time point groups. GO enrichment and pathway analysis indicated that many genes of DAS and DEIs were rich in immune-related GO terms and KEGG pathways, such as the Toll and Imd signaling pathway, NOD-like receptor signaling pathway, TNF signaling pathway, and TNF signaling pathway. Among hub DEI genes, alternative splicing-related genes (cwc25, prpf8, and sf3a3), skin function-related gene (fa2h), and oxygen deprivation-related gene (hyo1) were found in DEI genes. This study provided insight into the temporal change of DAS and DEIs between skin and gill of L. crocea against C. irritans infection and revealed that these differences might play immune-related roles in the infection process.
Collapse
Affiliation(s)
- Ang Qu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yulin Bai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Xinyi Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Junjia Zeng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Fei Pu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Linni Wu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Peng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Tao Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China.
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
29
|
Tang C, Xu Q, Zhao J, Yue M, Wang J, Wang X, Kang Z, Wang X. A rust fungus effector directly binds plant pre-mRNA splice site to reprogram alternative splicing and suppress host immunity. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1167-1181. [PMID: 35247281 PMCID: PMC9129083 DOI: 10.1111/pbi.13800] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/26/2022] [Accepted: 02/15/2022] [Indexed: 05/26/2023]
Abstract
Alternative splicing (AS) is a crucial post-transcriptional regulatory mechanism in plant resistance. However, whether and how plant pathogens target splicing in their host remains mostly unknown. For example, although infection by Puccinia striiformis f. sp. tritici (Pst), a pathogenic fungus that severely affects the yield of wheat worldwide, has been shown to significantly influence the levels of alternatively spliced transcripts in the host, the mechanisms that govern this process, and its functional consequence have not been examined. Here, we identified Pst_A23 as a new Pst arginine-rich effector that localizes to host nuclear speckles, nuclear regions enriched in splicing factors. We demonstrated that transient expression of Pst_A23 suppresses plant basal defence dependent on the Pst_A23 nuclear speckle localization and that this protein plays an important role in virulence, stable silencing of which improves wheat stripe rust resistance. Remarkably, RNA-Seq data revealed that AS patterns of 588 wheat genes are altered in Pst_A23-overexpressing lines compared to control plants. To further examine the direct relationship between Pst_A23 and AS, we confirmed direct binding between two RNA motifs predicted from these altered splicing sites and Pst_A23 in vitro. The two RNA motifs we chose occur in the cis-element of TaXa21-H and TaWRKY53, and we validated that Pst_A23 overexpression results in decreased functional transcripts of TaXa21-H and TaWRKY53 while silencing of TaXa21-H and TaWRKY53 impairs wheat resistance to Pst. Overall, this represents formal evidence that plant pathogens produce 'splicing' effectors, which regulate host pre-mRNA splicing by direct engagement of the splicing sites, thereby interfering with host immunity.
Collapse
Affiliation(s)
- Chunlei Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Qiang Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Jinren Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Mingxing Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Jianfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Xiaodong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| |
Collapse
|
30
|
Huang M, Jiang Y, Qin R, Jiang D, Chang D, Tian Z, Li C, Wang C. Full-Length Transcriptional Analysis of the Same Soybean Genotype With Compatible and Incompatible Reactions to Heterodera glycines Reveals Nematode Infection Activating Plant Defense Response. FRONTIERS IN PLANT SCIENCE 2022; 13:866322. [PMID: 35665156 PMCID: PMC9158574 DOI: 10.3389/fpls.2022.866322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/22/2022] [Indexed: 06/04/2023]
Abstract
Full-length transcriptome sequencing with long reads is a powerful tool to analyze transcriptional and post-transcriptional events; however, it has not been applied on soybean (Glycine max). Here, a comparative full-length transcriptome analysis was performed on soybean genotype 09-138 infected with soybean cyst nematode (SCN, Heterodera glycines) race 4 (SCN4, incompatible reaction) and race 5 (SCN5, compatible reaction) using Oxford Nanopore Technology. Each of 9 full-length samples collected 8 days post inoculation with/without nematodes generated an average of 6.1 GB of clean data and a total of 65,038 transcript sequences. After redundant transcripts were removed, 1,117 novel genes and 41,096 novel transcripts were identified. By analyzing the sequence structure of the novel transcripts, a total of 28,759 complete open reading frame (ORF) sequences, 5,337 transcription factors, 288 long non-coding RNAs, and 40,090 novel transcripts with function annotation were predicted. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of differentially expressed genes (DEGs) revealed that growth hormone, auxin-activated signaling pathway and multidimensional cell growth, and phenylpropanoid biosynthesis pathway were enriched by infection with both nematode races. More DEGs associated with stress response elements, plant-hormone signaling transduction pathway, and plant-pathogen interaction pathway with more upregulation were found in the incompatible reaction with SCN4 infection, and more DEGs with more upregulation involved in cell wall modification and carbohydrate bioprocess were detected in the compatible reaction with SCN5 infection when compared with each other. Among them, overlapping DEGs with a quantitative difference was triggered. The combination of protein-protein interaction with DEGs for the first time indicated that nematode infection activated the interactions between transcription factor WRKY and VQ (valine-glutamine motif) to contribute to soybean defense. The knowledge of the SCN-soybean interaction mechanism as a model will present more understanding of other plant-nematode interactions.
Collapse
Affiliation(s)
- Minghui Huang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Ye Jiang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Heilongjiang Academy of Agricultural Sciences, Daqing, China
| | - Ruifeng Qin
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Heilongjiang Academy of Agricultural Sciences, Daqing, China
| | - Dan Jiang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Heilongjiang Academy of Agricultural Sciences, Daqing, China
| | - Doudou Chang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Heilongjiang Academy of Agricultural Sciences, Daqing, China
| | - Zhongyan Tian
- Heilongjiang Academy of Agricultural Sciences, Daqing, China
| | - Chunjie Li
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Congli Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| |
Collapse
|
31
|
Li YH, Yang YY, Wang ZG, Chen Z. Emerging Function of Ecotype-Specific Splicing in the Recruitment of Commensal Microbiome. Int J Mol Sci 2022; 23:4860. [PMID: 35563250 PMCID: PMC9100151 DOI: 10.3390/ijms23094860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 12/20/2022] Open
Abstract
In recent years, host-microbiome interactions in both animals and plants has emerged as a novel research area for studying the relationship between host organisms and their commensal microbial communities. The fitness advantages of this mutualistic interaction can be found in both plant hosts and their associated microbiome, however, the driving forces mediating this beneficial interaction are poorly understood. Alternative splicing (AS), a pivotal post-transcriptional mechanism, has been demonstrated to play a crucial role in plant development and stress responses among diverse plant ecotypes. This natural variation of plants also has an impact on their commensal microbiome. In this article, we review the current progress of plant natural variation on their microbiome community, and discuss knowledge gaps between AS regulation of plants in response to their intimately related microbiota. Through the impact of this article, an avenue could be established to study the biological mechanism of naturally varied splicing isoforms on plant-associated microbiome assembly.
Collapse
Affiliation(s)
- Yue-Han Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, China; (Y.-H.L.); (Y.-Y.Y.)
- School of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar 161006, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar 161006, China
| | - Yuan-You Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, China; (Y.-H.L.); (Y.-Y.Y.)
| | - Zhi-Gang Wang
- School of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar 161006, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar 161006, China
| | - Zhuo Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, China; (Y.-H.L.); (Y.-Y.Y.)
| |
Collapse
|
32
|
ASTool: An Easy-to-Use Tool to Accurately Identify Alternative Splicing Events from Plant RNA-Seq Data. Int J Mol Sci 2022; 23:ijms23084079. [PMID: 35456896 PMCID: PMC9031537 DOI: 10.3390/ijms23084079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/16/2022] Open
Abstract
Alternative splicing (AS) is an essential co-transcriptional regulatory mechanism in eukaryotes. The accumulation of plant RNA-Seq data provides an unprecedented opportunity to investigate the global landscape of plant AS events. However, most existing AS identification tools were originally designed for animals, and their performance in plants was not rigorously benchmarked. In this work, we developed a simple and easy-to-use bioinformatics tool named ASTool for detecting AS events from plant RNA-Seq data. As an exon-based method, ASTool can detect 4 major AS types, including intron retention (IR), exon skipping (ES), alternative 5′ splice sites (A5SS), and alternative 3′ splice sites (A3SS). Compared with existing tools, ASTool revealed a favorable performance when tested in simulated RNA-Seq data, with both recall and precision values exceeding 95% in most cases. Moreover, ASTool also showed a competitive computational speed and consistent detection results with existing tools when tested in simulated or real plant RNA-Seq data. Considering that IR is the most predominant AS type in plants, ASTool allowed the detection and visualization of novel IR events based on known splice sites. To fully present the functionality of ASTool, we also provided an application example of ASTool in processing real RNA-Seq data of Arabidopsis in response to heat stress.
Collapse
|
33
|
Genome-Wide Profiling of Alternative Splicing and Gene Fusion during Rice Black-Streaked Dwarf Virus Stress in Maize (Zea mays L.). Genes (Basel) 2022; 13:genes13030456. [PMID: 35328010 PMCID: PMC8955601 DOI: 10.3390/genes13030456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 12/26/2022] Open
Abstract
Rice black-streaked dwarf virus (RBSDV) causes maize rough dwarf disease (MRDD), which is a viral disease that significantly affects maize yields worldwide. Plants tolerate stress through transcriptional reprogramming at the alternative splicing (AS), transcriptional, and fusion gene (FG) levels. However, it is unclear whether and how AS and FG interfere with transcriptional reprogramming in MRDD. In this study, we performed global profiling of AS and FG on maize response to RBSDV and compared it with transcriptional changes. There are approximately 1.43 to 2.25 AS events per gene in maize infected with RBSDV. GRMZM2G438622 was only detected in four AS modes (A3SS, A5SS, RI, and SE), whereas GRMZM2G059392 showed downregulated expression and four AS events. A total of 106 and 176 FGs were detected at two time points, respectively, including six differentially expressed genes and five differentially spliced genes. The gene GRMZM2G076798 was the only FG that occurred at two time points and was involved in two FG events. Among these, 104 GOs were enriched, indicating that nodulin-, disease resistance-, and chloroplastic-related genes respond to RBSDV stress in maize. These results provide new insights into the mechanisms underlying post-transcriptional and transcriptional regulation of maize response to RBSDV stress.
Collapse
|
34
|
Pootakham W, Sonthirod C, Naktang C, Kongkachana W, Sangsrakru D, U‐thoomporn S, Maknual C, Meepol W, Promchoo W, Maprasop P, Phormsin N, Tangphatsornruang S. A chromosome‐scale reference genome assembly of yellow mangrove (
Bruguiera parviflora
) reveals a whole genome duplication event associated with the Rhizophoraceae lineage. Mol Ecol Resour 2022; 22:1939-1953. [DOI: 10.1111/1755-0998.13587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Wirulda Pootakham
- National Omics Center National Science and Technology Development Agency (NSTDA) Pathum Thani Thailand
| | - Chutima Sonthirod
- National Omics Center National Science and Technology Development Agency (NSTDA) Pathum Thani Thailand
| | - Chaiwat Naktang
- National Omics Center National Science and Technology Development Agency (NSTDA) Pathum Thani Thailand
| | - Wasitthee Kongkachana
- National Omics Center National Science and Technology Development Agency (NSTDA) Pathum Thani Thailand
| | - Duangjai Sangsrakru
- National Omics Center National Science and Technology Development Agency (NSTDA) Pathum Thani Thailand
| | - Sonicha U‐thoomporn
- National Omics Center National Science and Technology Development Agency (NSTDA) Pathum Thani Thailand
| | - Chatree Maknual
- Department of Marine and Coastal Resources 120 The Government Complex, Chaengwatthana Rd. Thung Song Hong, Bangkok 10210 Thailand
| | - Wijarn Meepol
- Department of Marine and Coastal Resources 120 The Government Complex, Chaengwatthana Rd. Thung Song Hong, Bangkok 10210 Thailand
| | - Waratthaya Promchoo
- Department of Marine and Coastal Resources 120 The Government Complex, Chaengwatthana Rd. Thung Song Hong, Bangkok 10210 Thailand
| | - Pasin Maprasop
- Department of Marine and Coastal Resources 120 The Government Complex, Chaengwatthana Rd. Thung Song Hong, Bangkok 10210 Thailand
| | - Nawin Phormsin
- Department of Marine and Coastal Resources 120 The Government Complex, Chaengwatthana Rd. Thung Song Hong, Bangkok 10210 Thailand
| | | |
Collapse
|
35
|
Wang S, Xue M, He C, Shen D, Jiang C, Zhao H, Niu D. AtMC1 Associates With LSM4 to Regulate Plant Immunity Through Modulating Pre-mRNA Splicing. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1423-1432. [PMID: 34515495 DOI: 10.1094/mpmi-07-21-0197-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Alternative splicing of pre-mRNAs is an important gene regulatory mechanism shaping the transcriptome. AtMC1 is an Arabidopsis thaliana type I metacaspase that positively regulates the hypersensitive response. Here, we found that AtMC1 is involved in the regulation of plant immunity to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and is physically associated with Sm-like4 (LSM4), which is involved in pre-mRNA splicing. AtMC1 and LSM4 protein levels both increased with their coexpression as compared with their separate expression in vivo. Like AtMC1, LSM4 negatively regulates plant immunity to P. syringae pv. tomato DC3000 infection. By RNA sequencing, AtMC1 was shown to modulate the splicing of many pre-mRNAs, including 4CL3, which is a negative regulator of plant immunity. Thus, AtMC1 plays a regulatory role in pre-mRNA splicing, which might contribute to AtMC1-mediated plant immunity.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Shune Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Mei Xue
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Chan He
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Danyu Shen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Chunhao Jiang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongwei Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Dongdong Niu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
36
|
Alternative splicing landscape of small brown planthopper and different response of JNK2 isoforms to rice stripe virus infection. J Virol 2021; 96:e0171521. [PMID: 34757837 DOI: 10.1128/jvi.01715-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alternative splicing (AS) is a frequent posttranscriptional regulatory event occurring in response to various endogenous and exogenous stimuli in most eukaryotic organisms. However, little is known about the effects of insect-transmitted viruses on AS events in insect vectors. The present study used third-generation sequencing technology and RNA sequencing (RNA-Seq) to evaluate the AS response in the small brown planthopper Laodelphax striatellus to rice stripe virus (RSV). The full-length transcriptome of L. striatellus was obtained using single-molecule real-time sequencing technology (SMRT). Posttranscriptional regulatory events, including AS, alternative polyadenylation, and fusion transcripts, were analyzed. A total of 28,175 nonredundant transcript isoforms included 24,950 transcripts assigned to 8,500 annotated genes of L. striatellus, and 5,000 of these genes (58.8%) had AS events. RNA-Seq of the gut samples of insects infected by RSV for 8 d identified 3,458 differentially expressed transcripts (DETs); 2,185 of these DETs were transcribed from 1,568 genes that had AS events, indicating that 31.4% of alternatively spliced genes responded to RSV infection of the gut. One of the c-Jun N-terminal kinase (JNK) genes, JNK2, experienced exon skipping, resulting in three transcript isoforms. These three isoforms differentially responded to RSV infection during development and in various organs. Injection of double-stranded RNAs targeting all or two isoforms indicated that three or at least two JNK2 isoforms facilitated RSV accumulation in planthoppers. These results implied that AS events could participate in the regulation of complex relationships between viruses and insect vectors. Importance Alternative splicing (AS) is a regulatory mechanism that occurs after gene transcription. AS events can enrich protein diversity to promote the reactions of the organisms to various endogenous and exogenous stimulations. It is not known how insect vectors exploit AS events to cope with transmitted viruses. The present study used third-generation sequencing technology to obtain the profile of AS events in the small brown planthopper Laodelphax striatellus, which is an efficient vector for rice stripe virus (RSV). The results indicated that 31.4% of alternatively spliced genes responded to RSV infection in the gut of planthoppers. One of the c-Jun N-terminal kinase (JNK) genes, JNK2, produced three transcript isoforms by AS. These three isoforms showed different responses to RSV infection, and at least two isoforms facilitated viral accumulation in planthoppers. These results implied that AS events could participate in the regulation of complex relationships between viruses and insect vectors.
Collapse
|
37
|
Klink VP, Darwish O, Alkharouf NW, Lawaju BR, Khatri R, Lawrence KS. Conserved oligomeric Golgi (COG) complex genes functioning in defense are expressed in root cells undergoing a defense response to a pathogenic infection and exhibit regulation my MAPKs. PLoS One 2021; 16:e0256472. [PMID: 34437620 PMCID: PMC8389442 DOI: 10.1371/journal.pone.0256472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/06/2021] [Indexed: 12/21/2022] Open
Abstract
The conserved oligomeric Golgi (COG) complex maintains correct Golgi structure and function during retrograde trafficking. Glycine max has 2 paralogs of each COG gene, with one paralog of each gene family having a defense function to the parasitic nematode Heterodera glycines. Experiments presented here show G. max COG paralogs functioning in defense are expressed specifically in the root cells (syncytia) undergoing the defense response. The expressed defense COG gene COG7-2-b is an alternate splice variant, indicating specific COG variants are important to defense. Transcriptomic experiments examining RNA isolated from COG overexpressing and RNAi roots show some COG genes co-regulate the expression of other COG complex genes. Examining signaling events responsible for COG expression, transcriptomic experiments probing MAPK overexpressing roots show their expression influences the relative transcript abundance of COG genes as compared to controls. COG complex paralogs are shown to be found in plants that are agriculturally relevant on a world-wide scale including Manihot esculenta, Zea mays, Oryza sativa, Triticum aestivum, Hordeum vulgare, Sorghum bicolor, Brassica rapa, Elaes guineensis and Saccharum officinalis and in additional crops significant to U.S. agriculture including Beta vulgaris, Solanum tuberosum, Solanum lycopersicum and Gossypium hirsutum. The analyses provide basic information on COG complex biology, including the coregulation of some COG genes and that MAPKs functioning in defense influence their expression. Furthermore, it appears in G. max and likely other crops that some level of neofunctionalization of the duplicated genes is occurring. The analysis has identified important avenues for future research broadly in plants.
Collapse
Affiliation(s)
- Vincent P. Klink
- USDA ARS NEA BARC Molecular Plant Pathology Laboratory, Beltsville, MD, United States of America
| | - Omar Darwish
- Department of Mathematics Computer Science, Texas Woman’s University, Denton, TX, United States of America
| | - Nadim W. Alkharouf
- Department of Computer and Information Sciences, Towson University, Towson, MD, United States of America
| | - Bisho R. Lawaju
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States of America
| | - Rishi Khatri
- Department of Biological Sciences, Mississippi State University, Mississippi, MS, United States of America
| | - Kathy S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States of America
| |
Collapse
|
38
|
Decoding co-/post-transcriptional complexities of plant transcriptomes and epitranscriptome using next-generation sequencing technologies. Biochem Soc Trans 2021; 48:2399-2414. [PMID: 33196096 DOI: 10.1042/bst20190492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/06/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
Next-generation sequencing (NGS) technologies - Illumina RNA-seq, Pacific Biosciences isoform sequencing (PacBio Iso-seq), and Oxford Nanopore direct RNA sequencing (DRS) - have revealed the complexity of plant transcriptomes and their regulation at the co-/post-transcriptional level. Global analysis of mature mRNAs, transcripts from nuclear run-on assays, and nascent chromatin-bound mRNAs using short as well as full-length and single-molecule DRS reads have uncovered potential roles of different forms of RNA polymerase II during the transcription process, and the extent of co-transcriptional pre-mRNA splicing and polyadenylation. These tools have also allowed mapping of transcriptome-wide start sites in cap-containing RNAs, poly(A) site choice, poly(A) tail length, and RNA base modifications. The emerging theme from recent studies is that reprogramming of gene expression in response to developmental cues and stresses at the co-/post-transcriptional level likely plays a crucial role in eliciting appropriate responses for optimal growth and plant survival under adverse conditions. Although the mechanisms by which developmental cues and different stresses regulate co-/post-transcriptional splicing are largely unknown, a few recent studies indicate that the external cues target spliceosomal and splicing regulatory proteins to modulate alternative splicing. In this review, we provide an overview of recent discoveries on the dynamics and complexities of plant transcriptomes, mechanistic insights into splicing regulation, and discuss critical gaps in co-/post-transcriptional research that need to be addressed using diverse genomic and biochemical approaches.
Collapse
|
39
|
Gao P, Quilichini TD, Zhai C, Qin L, Nilsen KT, Li Q, Sharpe AG, Kochian LV, Zou J, Reddy AS, Wei Y, Pozniak C, Patterson N, Gillmor CS, Datla R, Xiang D. Alternative splicing dynamics and evolutionary divergence during embryogenesis in wheat species. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1624-1643. [PMID: 33706417 PMCID: PMC8384600 DOI: 10.1111/pbi.13579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 05/07/2023]
Abstract
Among polyploid species with complex genomic architecture, variations in the regulation of alternative splicing (AS) provide opportunities for transcriptional and proteomic plasticity and the potential for generating trait diversities. However, the evolution of AS and its influence on grain development in diploid grass and valuable polyploid wheat crops are poorly understood. To address this knowledge gap, we developed a pipeline for the analysis of alternatively spliced transcript isoforms, which takes the high sequence similarity among polyploid wheat subgenomes into account. Through analysis of synteny and detection of collinearity of homoeologous subgenomes, conserved and specific AS events across five wheat and grass species were identified. A global analysis of the regulation of AS in diploid grass and polyploid wheat grains revealed diversity in AS events not only between the endosperm, pericarp and embryo overdevelopment, but also between subgenomes. Analysis of AS in homoeologous triads of polyploid wheats revealed evolutionary divergence between gene-level and transcript-level regulation of embryogenesis. Evolutionary age analysis indicated that the generation of novel transcript isoforms has occurred in young genes at a more rapid rate than in ancient genes. These findings, together with the development of comprehensive AS resources for wheat and grass species, advance understanding of the evolution of regulatory features of AS during embryogenesis and grain development in wheat.
Collapse
Affiliation(s)
- Peng Gao
- Global Institute for Food SecurityUniversity of SaskatchewanSaskatoonSKCanada
| | - Teagen D. Quilichini
- Aquatic and Crop Resource DevelopmentNational Research Council CanadaSaskatoonSKCanada
| | - Chun Zhai
- Agriculture and Agri‐Food CanadaSaskatoon Research and Development CentreSaskatoonSKCanada
| | - Li Qin
- College of Art & ScienceUniversity of SaskatchewanSaskatoonSKCanada
| | - Kirby T. Nilsen
- Agriculture and Agri‐Food CanadaBrandon Research and Development CentreBrandonMBCanada
| | - Qiang Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Andrew G. Sharpe
- Global Institute for Food SecurityUniversity of SaskatchewanSaskatoonSKCanada
| | - Leon V. Kochian
- Global Institute for Food SecurityUniversity of SaskatchewanSaskatoonSKCanada
| | - Jitao Zou
- Aquatic and Crop Resource DevelopmentNational Research Council CanadaSaskatoonSKCanada
| | - Anireddy S.N. Reddy
- Department of Biology and Program in Cell and Molecular BiologyColorado State UniversityFort CollinsCOUSA
| | - Yangdou Wei
- College of Art & ScienceUniversity of SaskatchewanSaskatoonSKCanada
| | - Curtis Pozniak
- Crop Development CentreUniversity of SaskatchewanSaskatoonSKCanada
| | - Nii Patterson
- Aquatic and Crop Resource DevelopmentNational Research Council CanadaSaskatoonSKCanada
| | - C. Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)Unidad de Genómica AvanzadaCentro de Investigación y Estudios Avanzados del IPN (CINVESTAV‐IPN)IrapuatoGuanajuatoMexico
| | - Raju Datla
- Global Institute for Food SecurityUniversity of SaskatchewanSaskatoonSKCanada
| | - Daoquan Xiang
- Aquatic and Crop Resource DevelopmentNational Research Council CanadaSaskatoonSKCanada
| |
Collapse
|
40
|
Li Z, Tang J, Bassham DC, Howell SH. Daily temperature cycles promote alternative splicing of RNAs encoding SR45a, a splicing regulator in maize. PLANT PHYSIOLOGY 2021; 186:1318-1335. [PMID: 33705553 PMCID: PMC8195531 DOI: 10.1093/plphys/kiab110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/18/2021] [Indexed: 05/04/2023]
Abstract
Elevated temperatures enhance alternative RNA splicing in maize (Zea mays) with the potential to expand the repertoire of plant responses to heat stress. Alternative RNA splicing generates multiple RNA isoforms for many maize genes, and here we observed changes in the pattern of RNA isoforms with temperature changes. Increases in maximum daily temperature elevated the frequency of the major modes of alternative splices (AS), in particular retained introns and skipped exons. The genes most frequently targeted by increased AS with temperature encode factors involved in RNA processing and plant development. Genes encoding regulators of alternative RNA splicing were themselves among the principal AS targets in maize. Under controlled environmental conditions, daily changes in temperature comparable to field conditions altered the abundance of different RNA isoforms, including the RNAs encoding the splicing regulator SR45a, a member of the SR45 gene family. We established an "in protoplast" RNA splicing assay to show that during the afternoon on simulated hot summer days, SR45a RNA isoforms were produced with the potential to encode proteins efficient in splicing model substrates. With the RNA splicing assay, we also defined the exonic splicing enhancers that the splicing-efficient SR45a forms utilize to aid in the splicing of model substrates. Hence, with rising temperatures on hot summer days, SR45a RNA isoforms in maize are produced with the capability to encode proteins with greater RNA splicing potential.
Collapse
Affiliation(s)
- Zhaoxia Li
- Plant Sciences Institute, Iowa State University, Ames, Iowa 50011, USA
| | - Jie Tang
- Genetics, Development and Cell Biology Department, Iowa State University, Ames, Iowa 50011, USA
| | - Diane C Bassham
- Genetics, Development and Cell Biology Department, Iowa State University, Ames, Iowa 50011, USA
| | - Stephen H. Howell
- Plant Sciences Institute, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
41
|
Mejias J, Bazin J, Truong NM, Chen Y, Marteu N, Bouteiller N, Sawa S, Crespi MD, Vaucheret H, Abad P, Favery B, Quentin M. The root-knot nematode effector MiEFF18 interacts with the plant core spliceosomal protein SmD1 required for giant cell formation. THE NEW PHYTOLOGIST 2021; 229:3408-3423. [PMID: 33206370 DOI: 10.1111/nph.17089] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/12/2020] [Indexed: 05/11/2023]
Abstract
The root-knot nematode Meloidogyne incognita secretes specific effectors (MiEFF) and induces the redifferentiation of plant root cells into enlarged multinucleate feeding 'giant cells' essential for nematode development. Immunolocalizations revealed the presence of the MiEFF18 protein in the salivary glands of M. incognita juveniles. In planta, MiEFF18 localizes to the nuclei of giant cells demonstrating its secretion during plant-nematode interactions. A yeast two-hybrid approach identified the nuclear ribonucleoprotein SmD1 as a MiEFF18 partner in tomato and Arabidopsis. SmD1 is an essential component of the spliceosome, a complex involved in pre-mRNA splicing and alternative splicing. RNA-seq analyses of Arabidopsis roots ectopically expressing MiEFF18 or partially impaired in SmD1 function (smd1b mutant) revealed the contribution of the effector and its target to alternative splicing and proteome diversity. The comparison with Arabidopsis galls data showed that MiEFF18 modifies the expression of genes important for giant cell ontogenesis, indicating that MiEFF18 modulates SmD1 functions to facilitate giant cell formation. Finally, Arabidopsis smd1b mutants exhibited less susceptibility to M. incognita infection, and the giant cells formed on these mutants displayed developmental defects, suggesting that SmD1 plays an important role in the formation of giant cells and is required for successful nematode infection.
Collapse
Affiliation(s)
- Joffrey Mejias
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
| | - Jérémie Bazin
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Universités Paris Saclay - Evry, Université de Paris, Gif sur Yvette, 91192, France
| | - Nhat-My Truong
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-11 8555, Japan
| | - Yongpan Chen
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| | - Nathalie Marteu
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
| | - Nathalie Bouteiller
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-11 8555, Japan
| | - Martin D Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Universités Paris Saclay - Evry, Université de Paris, Gif sur Yvette, 91192, France
| | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Pierre Abad
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
| | - Bruno Favery
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
| | - Michaël Quentin
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
| |
Collapse
|
42
|
Havranek KE, White LA, Bisom TC, Lanchy JM, Lodmell JS. The Atypical Kinase RIOK3 Limits RVFV Propagation and Is Regulated by Alternative Splicing. Viruses 2021; 13:v13030367. [PMID: 33652597 PMCID: PMC7996929 DOI: 10.3390/v13030367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
In recent years, transcriptome profiling studies have identified changes in host splicing patterns caused by viral invasion, yet the functional consequences of the vast majority of these splicing events remain uncharacterized. We recently showed that the host splicing landscape changes during Rift Valley fever virus MP-12 strain (RVFV MP-12) infection of mammalian cells. Of particular interest, we observed that the host mRNA for Rio Kinase 3 (RIOK3) was alternatively spliced during infection. This kinase has been shown to be involved in pattern recognition receptor (PRR) signaling mediated by RIG-I like receptors to produce type-I interferon. Here, we characterize RIOK3 as an important component of the interferon signaling pathway during RVFV infection and demonstrate that RIOK3 mRNA expression is skewed shortly after infection to produce alternatively spliced variants that encode premature termination codons. This splicing event plays a critical role in regulation of the antiviral response. Interestingly, infection with other RNA viruses and transfection with nucleic acid-based RIG-I agonists also stimulated RIOK3 alternative splicing. Finally, we show that specifically stimulating alternative splicing of the RIOK3 transcript using a morpholino oligonucleotide reduced interferon expression. Collectively, these results indicate that RIOK3 is an important component of the mammalian interferon signaling cascade and its splicing is a potent regulatory mechanism capable of fine-tuning the host interferon response.
Collapse
Affiliation(s)
- Katherine E. Havranek
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (K.E.H.); (L.A.W.); (J.-M.L.)
| | - Luke Adam White
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (K.E.H.); (L.A.W.); (J.-M.L.)
| | - Thomas C. Bisom
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA;
| | - Jean-Marc Lanchy
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (K.E.H.); (L.A.W.); (J.-M.L.)
| | - J. Stephen Lodmell
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (K.E.H.); (L.A.W.); (J.-M.L.)
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
- Correspondence:
| |
Collapse
|
43
|
Brachypodium Phenylalanine Ammonia Lyase (PAL) Promotes Antiviral Defenses against Panicum mosaic virus and Its Satellites. mBio 2021; 12:mBio.03518-20. [PMID: 33593968 PMCID: PMC8545123 DOI: 10.1128/mbio.03518-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brachypodium distachyon has recently emerged as a premier model plant for monocot biology, akin to Arabidopsis thaliana We previously reported genome-wide transcriptomic and alternative splicing changes occurring in Brachypodium during compatible infections with Panicum mosaic virus (PMV) and its satellite virus (SPMV). Here, we dissected the role of Brachypodium phenylalanine ammonia lyase 1 (PAL1), a key enzyme for phenylpropanoid and salicylic acid (SA) biosynthesis and the induction of plant defenses. Targeted metabolomics profiling of PMV-infected and PMV- plus SPMV-infected (PMV/SPMV) Brachypodium plants revealed enhanced levels of multiple defense-related hormones and metabolites such as cinnamic acid, SA, and fatty acids and lignin precursors during disease progression. The virus-induced accumulation of SA and lignin was significantly suppressed upon knockdown of B. distachyon PAL1 (BdPAL1) using RNA interference (RNAi). The compromised SA accumulation in PMV/SPMV-infected BdPAL1 RNAi plants correlated with weaker induction of multiple SA-related defense gene markers (pathogenesis related 1 [PR-1], PR-3, PR-5, and WRKY75) and enhanced susceptibility to PMV/SPMV compared to that of wild-type (WT) plants. Furthermore, exogenous application of SA alleviated the PMV/SPMV necrotic disease phenotypes and delayed plant death caused by single and mixed infections. Together, our results support an antiviral role for BdPAL1 during compatible host-virus interaction, perhaps as a last resort attempt to rescue the infected plant.IMPORTANCE Although the role of plant defense mechanisms against viruses are relatively well studied in dicots and in incompatible plant-microbe interactions, studies of their roles in compatible interactions and in grasses are lagging behind. In this study, we leveraged the emerging grass model Brachypodium and genetic resources to dissect Panicum mosaic virus (PMV)- and its satellite virus (SPMV)-compatible grass-virus interactions. We found a significant role for PAL1 in the production of salicylic acid (SA) in response to PMV/SPMV infections and that SA is an essential component of the defense response preventing the plant from succumbing to viral infection. Our results suggest a convergent role for the SA defense pathway in both compatible and incompatible plant-virus interactions and underscore the utility of Brachypodium for grass-virus biology.
Collapse
|
44
|
Xue X, Suvorov A, Fujimoto S, Dilman AR, Adams BJ. Genome analysis of Plectus murrayi, a nematode from continental Antarctica. G3-GENES GENOMES GENETICS 2021; 11:6044189. [PMID: 33561244 PMCID: PMC8022722 DOI: 10.1093/g3journal/jkaa045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/08/2020] [Indexed: 01/23/2023]
Abstract
Plectus murrayi is one of the most common and locally abundant invertebrates of continental Antarctic ecosystems. Because it is readily cultured on artificial medium in the laboratory and highly tolerant to an extremely harsh environment, P. murrayi is emerging as a model organism for understanding the evolutionary origin and maintenance of adaptive responses to multiple environmental stressors, including freezing and desiccation. The de novo assembled genome of P. murrayi contains 225.741 million base pairs and a total of 14,689 predicted genes. Compared to Caenorhabditis elegans, the architectural components of P. murrayi are characterized by a lower number of protein-coding genes, fewer transposable elements, but more exons, than closely related taxa from less harsh environments. We compared the transcriptomes of lab-reared P. murrayi with wild-caught P. murrayi and found genes involved in growth and cellular processing were up-regulated in lab-cultured P. murrayi, while a few genes associated with cellular metabolism and freeze tolerance were expressed at relatively lower levels. Preliminary comparative genomic and transcriptomic analyses suggest that the observed constraints on P. murrayi genome architecture and functional gene expression, including genome decay and intron retention, may be an adaptive response to persisting in a biotically simplified, yet consistently physically harsh environment.
Collapse
Affiliation(s)
- Xia Xue
- Precision Medicine Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China.,Department of Biology, Evolutionary Ecology Laboratories, and Monte L. Bean Museum, Brigham Young University, Provo, UT, USA
| | - Anton Suvorov
- Department of Biology, Evolutionary Ecology Laboratories, and Monte L. Bean Museum, Brigham Young University, Provo, UT, USA
| | - Stanley Fujimoto
- Department of Computer Science, Brigham Young University, Provo, UT, USA
| | - Adler R Dilman
- Department of Nematology, University of California, Riverside, CA, USA
| | - Byron J Adams
- Department of Biology, Evolutionary Ecology Laboratories, and Monte L. Bean Museum, Brigham Young University, Provo, UT, USA
| |
Collapse
|
45
|
Lan HH, Lu LM. Characterization of Hibiscus Latent Fort Pierce Virus-Derived siRNAs in Infected Hibiscus rosa-sinensis in China. THE PLANT PATHOLOGY JOURNAL 2020; 36:618-627. [PMID: 33312097 PMCID: PMC7721542 DOI: 10.5423/ppj.oa.09.2020.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/27/2020] [Accepted: 10/09/2020] [Indexed: 06/12/2023]
Abstract
Although limited progress have been made about pathogen system of Hibiscus rosa-sinensis and Hibiscus latent Fort Pierce virus (HLFPV), interaction between plant host and pathogen remain largely unknown, which led to deficiency of effective measures to control disease of hibiscus plants caused by HLFPV. In this study, infection of HLFPV in Hibiscus rosa-sinensis was firstly confirmed for the first time by traditional electron microscopy, modern reverse transcription polymerase chain reaction and RNA-seq methods in China (HLFPV-Ch). Sequence properties analyzing suggested that the full-length sequences (6,465 nt) of HLFPV-Ch had a high sequence identity and a similar genomic structure with other tobamoviruses. It includes a 5'-terminal untranslated region (UTR), followed by four open reading frames encoding for a 128.5-kDa replicase, a 186.5-kDa polymerase, a 31-kDa movement protein, 17.6-kDa coat protein, and the last a 3'-terminal UTR. Furthermore, HLFPV-Ch-derived virus-derived siRNAs (vsiRNAs) ant its putative target genes, reported also for the first time, were identified and characterized from disease Hibiscus rosa-sinensis through sRNA-seq and Patmatch server to investigate the interaction in this pathogen systems. HLFPV-Ch-derived vsiRNAs demonstrated several general and specific characteristics. Gene Ontology classification revealed predicted target genes by vsiRNAs are involved in abroad range of cellular component, molecular function and biological processes. Taken together, for first time, our results certified the HLFPV infection in China and provide an insight into interaction between HLFPV and Hibiscus rosa-sinensis.
Collapse
Affiliation(s)
- Han-hong Lan
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Colleges and Universities, School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Luan-mei Lu
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Colleges and Universities, School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| |
Collapse
|
46
|
Li N, Meng Z, Tao M, Wang Y, Zhang Y, Li S, Gao W, Deng C. Comparative transcriptome analysis of male and female flowers in Spinacia oleracea L. BMC Genomics 2020; 21:850. [PMID: 33256615 PMCID: PMC7708156 DOI: 10.1186/s12864-020-07277-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/24/2020] [Indexed: 12/30/2022] Open
Abstract
Background Dioecious spinach (Spinacia oleracea L.), a commercial and nutritional vegetable crop, serves as a model for studying the mechanisms of sex determination and differentiation in plants. However, this mechanism is still unclear. Herein, based on PacBio Iso-seq and Illumina RNA-seq data, comparative transcriptome analysis of male and female flowers were performed to explore the sex differentiation mechanism in spinach. Results Compared with published genome of spinach, 10,800 transcripts were newly annotated; alternative splicing, alternative polyadenylation and lncRNA were analyzed for the first time, increasing the diversity of spinach transcriptome. A total of 2965 differentially expressed genes were identified between female and male flowers at three early development stages. The differential expression of RNA splicing-related genes, polyadenylation-related genes and lncRNAs suggested the involvement of alternative splicing, alternative polyadenylation and lncRNA in sex differentiation. Moreover, 1946 male-biased genes and 961 female-biased genes were found and several candidate genes related to gender development were identified, providing new clues to reveal the mechanism of sex differentiation. In addition, weighted gene co-expression network analysis showed that auxin and gibberellin were the common crucial factors in regulating female or male flower development; however, the closely co-expressed genes of these two factors were different between male and female flower, which may result in spinach sex differentiation. Conclusions In this study, 10,800 transcripts were newly annotated, and the alternative splicing, alternative polyadenylation and long-noncoding RNA were comprehensively analyzed for the first time in spinach, providing valuable information for functional genome study. Moreover, candidate genes related to gender development were identified, shedding new insight on studying the mechanism of sex determination and differentiation in plant. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07277-4.
Collapse
Affiliation(s)
- Ning Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Ziwei Meng
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Minjie Tao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yueyuan Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yulan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Shufen Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Wujun Gao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Chuanliang Deng
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
47
|
Du K, Jiang T, Chen H, Murphy AM, Carr JP, Du Z, Li X, Fan Z, Zhou T. Viral Perturbation of Alternative Splicing of a Host Transcript Benefits Infection. PLANT PHYSIOLOGY 2020; 184:1514-1531. [PMID: 32958561 PMCID: PMC7608148 DOI: 10.1104/pp.20.00903] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Pathogens disturb alternative splicing patterns of infected eukaryotic hosts. However, in plants it is unknown if this is incidental to infection or represents a pathogen-induced remodeling of host gene expression needed to support infection. Here, we compared changes in transcription and protein accumulation with changes in transcript splicing patterns in maize (Zea mays) infected with the globally important pathogen sugarcane mosaic virus (SCMV). Our results suggested that changes in alternative splicing play a major role in determining virus-induced proteomic changes. Focusing on maize phytoene synthase1 (ZmPSY1), which encodes the key regulatory enzyme in carotenoid biosynthesis, we found that although SCMV infection decreases total ZmPSY1 transcript accumulation, the proportion of splice variant T001 increases by later infection stages so that ZmPSY1 protein levels are maintained. We determined that ZmPSY1 has two leaf-specific transcripts, T001 and T003, distinguished by differences between the respective 3'-untranslated regions (UTRs). The shorter 3'-UTR of T001 makes it the more efficient mRNA. Nonsense ZmPSY1 mutants or virus-induced silencing of ZmPSY1 expression suppressed SCMV accumulation, attenuated symptoms, and decreased chloroplast damage. Thus, ZmPSY1 acts as a proviral host factor that is required for virus accumulation and pathogenesis. Taken together, our findings reveal that SCMV infection-modulated alternative splicing ensures that ZmPSY1 synthesis is sustained during infection, which supports efficient virus infection.
Collapse
Affiliation(s)
- Kaitong Du
- State Key Laboratory for Agro-Biotechnology, and Key Laboratory for Pest Monitoring and Green Management-Ministry of Agriculture and Rural Affairs, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Tong Jiang
- State Key Laboratory for Agro-Biotechnology, and Key Laboratory for Pest Monitoring and Green Management-Ministry of Agriculture and Rural Affairs, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Hui Chen
- State Key Laboratory for Agro-Biotechnology, and Key Laboratory for Pest Monitoring and Green Management-Ministry of Agriculture and Rural Affairs, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Alex M Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - John P Carr
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Zhiyou Du
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Xiangdong Li
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Zaifeng Fan
- State Key Laboratory for Agro-Biotechnology, and Key Laboratory for Pest Monitoring and Green Management-Ministry of Agriculture and Rural Affairs, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Tao Zhou
- State Key Laboratory for Agro-Biotechnology, and Key Laboratory for Pest Monitoring and Green Management-Ministry of Agriculture and Rural Affairs, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
48
|
Huang J, Lu X, Wu H, Xie Y, Peng Q, Gu L, Wu J, Wang Y, Reddy ASN, Dong S. Phytophthora Effectors Modulate Genome-wide Alternative Splicing of Host mRNAs to Reprogram Plant Immunity. MOLECULAR PLANT 2020; 13:1470-1484. [PMID: 32693165 DOI: 10.1016/j.molp.2020.07.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/30/2020] [Accepted: 07/15/2020] [Indexed: 05/20/2023]
Abstract
Alternative splicing (AS) of pre-mRNAs increases transcriptome and proteome diversity, regulates gene expression through multiple mechanisms, and plays important roles in plant development and stress responses. However, the prevalence of genome-wide plant AS changes during infection and the mechanisms by which pathogens modulate AS remain poorly understood. Here, we examined the global AS changes in tomato leaves infected with Phytophthora infestans, the infamous Irish famine pathogen. We show that more than 2000 genes exhibiting significant changes in AS are not differentially expressed, indicating that AS is a distinct layer of transcriptome reprogramming during plant-pathogen interactions. Furthermore, our results show that P. infestans subverts host immunity by repressing the AS of positive regulators of plant immunity and promoting the AS of susceptibility factors. To study the underlying mechanism, we established a luminescence-based AS reporter system in Nicotiana benthamiana to screen pathogen effectors modulating plant AS. We identified nine splicing regulatory effectors (SREs) from 87 P. infestans effectors. Further studies revealed that SRE3 physically binds U1-70K to manipulate the plant AS machinery and subsequently modulates AS-mediated plant immunity. Our study not only unveils genome-wide plant AS reprogramming during infection but also establishes a novel AS screening tool to identify SREs from a wide range of plant pathogens, providing opportunities to understand the splicing regulatory mechanisms through which pathogens subvert plant immunity.
Collapse
Affiliation(s)
- Jie Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Xinyu Lu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongwei Wu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuchen Xie
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Peng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Juyou Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Anireddy S N Reddy
- Colorado State University, Program in Cell and Molecular Biology, Fort Collins, CO 80523, USA
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
49
|
Yan Z, Shen Z, Li Z, Chao Q, Kong L, Gao ZF, Li QW, Zheng HY, Zhao CF, Lu CM, Wang YW, Wang BC. Genome-wide transcriptome and proteome profiles indicate an active role of alternative splicing during de-etiolation of maize seedlings. PLANTA 2020; 252:60. [PMID: 32964359 DOI: 10.1007/s00425-020-03464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
AS events affect genes encoding protein domain composition and make the single gene produce more proteins with a certain number of genes to satisfy the establishment of photosynthesis during de-etiolation. The drastic switch from skotomorphogenic to photomorphogenic development is an excellent system to elucidate rapid developmental responses to environmental stimuli in plants. To decipher the effects of different light wavelengths on de-etiolation, we illuminated etiolated maize seedlings with blue, red, blue-red mixed and white light, respectively. We found that blue light alone has the strongest effect on photomorphogenesis and that this effect can be attributed to the higher number and expression levels of photosynthesis and chlorosynthesis proteins. Deep sequencing-based transcriptome analysis revealed gene expression changes under different light treatments and a genome-wide alteration in alternative splicing (AS) profiles. We discovered 41,188 novel transcript isoforms for annotated genes, which increases the percentage of multi-exon genes with AS to 63% in maize. We provide peptide support for all defined types of AS, especially retained introns. Further in silico prediction revealed that 58.2% of retained introns have changes in domains compared with their most similar annotated protein isoform. This suggests that AS acts as a protein function switch allowing rapid light response through the addition or removal of functional domains. The richness of novel transcripts and protein isoforms also demonstrates the potential and importance of integrating proteomics into genome annotation in maize.
Collapse
Affiliation(s)
- Zhen Yan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhuo Shen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Zhe Li
- Precision Scientific (Beijing) Co., Ltd., Beijing, 100085, China
| | - Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100039, China
| | - Lei Kong
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhi-Fang Gao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Qing-Wei Li
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hai-Yan Zheng
- Center for Advanced Biotechnology and Medicine, Biological Mass Spectrometry Facility, Rutgers University, Piscataway, NJ, 08855, USA
| | - Cai-Feng Zhao
- Center for Advanced Biotechnology and Medicine, Biological Mass Spectrometry Facility, Rutgers University, Piscataway, NJ, 08855, USA
| | - Cong-Ming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Ying-Wei Wang
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
50
|
Scholthof KBG. Brachypodium and plant viruses: entwined tools for discovery. THE NEW PHYTOLOGIST 2020; 227:1676-1680. [PMID: 31868932 DOI: 10.1111/nph.16388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
In just a decade, Brachypodium distachyon (Brachypodium) has fulfilled its initial promise as a key tool for realizing new strategies for understanding host and pathogen biology during virus infections of the Poaceae. For this Tansley Insight, I have identified four areas - from the laboratory to the field - that may be particularly fruitful to explore, with a particular focus on Brachypodium-virus infections. These focus areas include: mechanisms of RNA modification of host plants and viruses; coevolution of virus-host interactions; viruses as tools of discovery; and how to explicate the complex outcomes during multivirus infections. Here, I broadly frame our current knowledge of Brachypodium-virus interactions and how these findings may inform virus studies of grasses in the laboratory, field and natural settings.
Collapse
Affiliation(s)
- Karen-Beth G Scholthof
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|