1
|
Ji Y, Gao Y, Li X, Hu H, Zhang Y, Shi Y. Discovery of proteolytically stable monocyte locomotion inhibitory factor peptide through systematic structural optimization. Eur J Med Chem 2025; 285:117237. [PMID: 39808971 DOI: 10.1016/j.ejmech.2025.117237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/23/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
The identification of novel molecular candidates capable of treating osteoarthritis (OA) has significant clinical implications. Monocyte locomotion inhibitory factor peptide (MLIF) is a pentapeptide derived from Entamoeba histolytica. It has been found possesses selective anti-inflammatory effects both in vitro and in vivo. Nonetheless, like many peptide therapeutics, MLIF has relatively poor proteolytic stability and short half-life in vivo, hindering its effective clinical applicability. To overcome these limitations, structural optimizations are needed to enhance the stability of MLIF while preserving or even enhancing its anti-inflammatory activities. Herein, a series of MLIF derivatives were designed and synthesized based on diverse structural modifications including N-terminal modifications, d-amino acid replacement, N-methylation, sulfhydryl modification, cyclization, and splicing strategy. Among all the MLIF derivatives, MLIF 30 with replacing l-methionine (Met) with D-Met and linking the polyethylene glycol (PEG) to cysteine (Cys) of MLIF displayed enhanced in vitro anti-inflammatory activities. Further in vivo experiment demonstrated MLIF 30 could reduce cartilage inflammation and attenuate cartilage damage more effectively in the collagenase induced osteoarthritis (CIOA) mice due to its improved serum stability compared to the linear MLIF. These findings laid foundation for the development of potent and stable anti-inflammatory peptide therapeutics and pushed the frontier of MLIF for clinical OA treatment.
Collapse
Affiliation(s)
- Yajing Ji
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China; School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yuan Gao
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiang Li
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Honggang Hu
- School of Medicine, Shanghai University, Shanghai, 200444, China; Shanghai Integration and Innovation Center of Marine Medical Engineering, China; Shanghai Engineering Research Center of Organ Repair, China
| | - Yuefan Zhang
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| | - Yejiao Shi
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China; Shanghai Integration and Innovation Center of Marine Medical Engineering, China.
| |
Collapse
|
2
|
McTiernan N, Kjosås I, Arnesen T. Illuminating the impact of N-terminal acetylation: from protein to physiology. Nat Commun 2025; 16:703. [PMID: 39814713 PMCID: PMC11735805 DOI: 10.1038/s41467-025-55960-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
N-terminal acetylation is a highly abundant protein modification in eukaryotic cells. This modification is catalysed by N-terminal acetyltransferases acting co- or post-translationally. Here, we review the eukaryotic N-terminal acetylation machinery: the enzymes involved and their substrate specificities. We also provide an overview of the impact of N-terminal acetylation, including its effects on protein folding, subcellular targeting, protein complex formation, and protein turnover. In particular, there may be competition between N-terminal acetyltransferases and other enzymes in defining protein fate. At the organismal level, N-terminal acetylation is highly influential, and its impairment was recently linked to cardiac dysfunction and neurodegenerative diseases.
Collapse
Affiliation(s)
- Nina McTiernan
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Ine Kjosås
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway.
- Department of Surgery, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
3
|
Chen W, Guo W, Zhang C, Zhao Y, Lei Y, Chen C, Wei Z, Dai H. MdLRR-RLK1-MdATG3 module enhances the resistance of apples to abiotic stress via autophagy. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17211. [PMID: 39671299 DOI: 10.1111/tpj.17211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
Apple is an important economic species affected by abiotic stress, such as salt and drought. LRR-RLKs play a key role in plant responses to stress, although their physiological functions under abiotic stress are not yet fully understood. Autophagy is a highly conserved process in eukaryotes, which plays a vital role in drought and salt stress responses. In this study, overexpression of MdLRR-RLK1 in apple promoted plant growth and development and increased salt and drought stress tolerance. MdLRR-RLK1 interacts with MdATG3 in vivo and in vitro, and MdATG3 ubiquitinates and degrades MdLRR-RLK1. Intriguingly, MdLRR-RLK1 and MdATG3 enhance salt and drought tolerance through increasing autophagy. Moreover, MdATG3 interacts with MdATG8F and MdATG8I-like in apple. These findings reveal the interaction between MdLRR-RLK1 and MdATG3, suggesting mechanisms that regulate apple growth and resistance to abiotic stress.
Collapse
Affiliation(s)
- Wenjun Chen
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Wei Guo
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
- Analytical and Testing Center, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Chao Zhang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Yi Zhao
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Yingying Lei
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Cui Chen
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Ziwen Wei
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Hongyan Dai
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| |
Collapse
|
4
|
Li X, Su G, Pan C, Zhan J, Wang A, Han Z, Xiao D, He L. TRX h2-PP2AC2 module serves as a convergence node for aluminum stress and leaf senescence signals, regulating cell death via ABA-mediated ROS pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2602-2622. [PMID: 39527458 DOI: 10.1111/tpj.17131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/13/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
ROS/redox signaling plays an important role in the regulation of signal transduction and acclimation pathways activated by multiple abiotic stresses and leaf senescence. However, the regulatory events that produce ROS under different stimuli are far from clear. Here, we report the elucidation of the molecular mechanism of an h type thioredoxin, AhTRX h2, positively regulates Al sensitivity and leaf senescence by promoting ROS. AhTRX h2 transcript levels increased greatly during both natural senescence and Al stress condition in peanut. Ectopic expression of AhTRX h2 in Arabidopsis conferred Al sensitivity as well as premature leaf senescence, manifested by multiple indices, including inhibiting root elongation, severe cell death, and accelerated expression of MC1 and CEX17. AhTRX h2 exhibited similar functions to AtTRX h2, as AhTRX h2 was able to restore the phenotypes of the AtTRX h2 defective mutant (trxh2-4) which showed Al tolerant and late senescence phenotypes. The knock down of AhTRX h2 markedly suppressed Al- and senescence-induced cell death in peanut. AhTRX h2 could recruit catalytic subunit of protein phosphatase 2A (PP2AC2) to form a stable complex. The interaction between AhTRX h2 and AtPP2AC2, as well as AhPP2AC2 and AtTRX h2 was also proved. Overexpression of AhPP2AC2 significantly enhanced Al sensitivity and leaf senescence in Arabidopsis. Protein stability assay revealed that AhTRX h2 was more stable during aging or aluminum stress. Moreover, PP2AC2 could greatly enhance the stability of AhTRX h2 in vivo. Consistent with these observations, overexpression of AhPP2AC2 effectively enhanced AhTRX h2-induced Al sensitivity and precocious leaf senescence. AhTRX h2 and AhPP2AC2 required ABA and ROS in response to cell death under Al stress and senescence, and it was evidence to suggest that ABA acted upstream of ROS in this process. Together, AhTRX h2 and AhPP2AC2 constitute a stable complex that promotes the accumulation of ABA and ROS, effectively regulate cell death. These findings suggest that TRX h2-PP2AC2-mediated pathway may be a widespread mechanism in regulating Al stress and leaf senescence.
Collapse
Affiliation(s)
- Xia Li
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Guijun Su
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Chunliu Pan
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Jie Zhan
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Aiqin Wang
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Zhuqiang Han
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530004, China
| | - Dong Xiao
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Longfei He
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
- Agricultural and Animal Husbandry Industry Development Research Institute, Guangxi University, Nanning, 530004, China
| |
Collapse
|
5
|
Yang J, Kim SY, Hwang CS. Delineation of the substrate recognition domain of MARCHF6 E3 ubiquitin ligase in the Ac/N-degron pathway and its regulatory role in ferroptosis. J Biol Chem 2024; 300:107731. [PMID: 39216628 PMCID: PMC11460463 DOI: 10.1016/j.jbc.2024.107731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Nα-terminal acetylation in eukaryotic proteins creates specific degradation signals (Ac/N-degrons) targeted for ubiquitin-mediated proteolysis via the Ac/N-degron pathway. Despite the identification of key components of the Ac/N-degron pathway over the past 15 years, the precise recognition domain (Ac/N domain) remains unclear. Here, we defined the Ac/N domain of the endoplasmic reticulum MARCHF6 E3 ubiquitin ligase through a systematic analysis of its cytosol-facing regions using alanine-stretch mutagenesis, chemical crosslinking-based co-immunoprecipitation-immunoblotting, and split-ubiquitin assays in human and yeast cells. The Ac/N domain of MARCHF6 exhibits preferential binding specificity to Nα-terminally acetylated proteins and peptides over their unacetylated counterparts, mediating the degradation of Ac/N-degron-bearing proteins, such as the G-protein regulator RGS2 and the lipid droplet protein PLIN2. Furthermore, abolishing the recognition of Ac/N-degrons by MARCHF6 stabilized RGS2 and PLIN2, thereby increasing the resistance to ferroptosis, an iron-dependent lipid peroxidation-mediated cell death. These findings provide mechanistic and functional insights into how MARCHF6 serves as a rheostatic modulator of ferroptosis by recognizing Ac/N-degron substrates via its Ac/N domain and non-Ac/N-degron substrates via distinct recognition sites.
Collapse
Affiliation(s)
- Jihye Yang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Sang-Yoon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Cheol-Sang Hwang
- Department of Life Sciences, Korea University, Seoul, South Korea.
| |
Collapse
|
6
|
Eckardt NA, Avin-Wittenberg T, Bassham DC, Chen P, Chen Q, Fang J, Genschik P, Ghifari AS, Guercio AM, Gibbs DJ, Heese M, Jarvis RP, Michaeli S, Murcha MW, Mursalimov S, Noir S, Palayam M, Peixoto B, Rodriguez PL, Schaller A, Schnittger A, Serino G, Shabek N, Stintzi A, Theodoulou FL, Üstün S, van Wijk KJ, Wei N, Xie Q, Yu F, Zhang H. The lowdown on breakdown: Open questions in plant proteolysis. THE PLANT CELL 2024; 36:2931-2975. [PMID: 38980154 PMCID: PMC11371169 DOI: 10.1093/plcell/koae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
Proteolysis, including post-translational proteolytic processing as well as protein degradation and amino acid recycling, is an essential component of the growth and development of living organisms. In this article, experts in plant proteolysis pose and discuss compelling open questions in their areas of research. Topics covered include the role of proteolysis in the cell cycle, DNA damage response, mitochondrial function, the generation of N-terminal signals (degrons) that mark many proteins for degradation (N-terminal acetylation, the Arg/N-degron pathway, and the chloroplast N-degron pathway), developmental and metabolic signaling (photomorphogenesis, abscisic acid and strigolactone signaling, sugar metabolism, and postharvest regulation), plant responses to environmental signals (endoplasmic-reticulum-associated degradation, chloroplast-associated degradation, drought tolerance, and the growth-defense trade-off), and the functional diversification of peptidases. We hope these thought-provoking discussions help to stimulate further research.
Collapse
Affiliation(s)
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Poyu Chen
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Qian Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Fang
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Angelica M Guercio
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B1 2RU, UK
| | - Maren Heese
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - R Paul Jarvis
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Simon Michaeli
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Sergey Mursalimov
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Sandra Noir
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Bruno Peixoto
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, Valencia ES-46022, Spain
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - Giovanna Serino
- Department of Biology and Biotechnology, Sapienza Universita’ di Roma, p.le A. Moro 5, Rome 00185, Italy
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Annick Stintzi
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | | | - Suayib Üstün
- Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Bochum 44780, Germany
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100083, China
| | - Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|
7
|
Li X, Tang H, Xu T, Wang P, Ma F, Wei H, Fang Z, Wu X, Wang Y, Xue Y, Zhang B. N-terminal acetylation orchestrates glycolate-mediated ROS homeostasis to promote rice thermoresponsive growth. THE NEW PHYTOLOGIST 2024; 243:1742-1757. [PMID: 38934055 DOI: 10.1111/nph.19928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Climate warming poses a significant threat to global crop production and food security. However, our understanding of the molecular mechanisms governing thermoresponsive development in crops remains limited. Here we report that the auxiliary subunit of N-terminal acetyltransferase A (NatA) in rice OsNAA15 is a prerequisite for rice thermoresponsive growth. OsNAA15 produces two isoforms OsNAA15.1 and OsNAA15.2, via temperature-dependent alternative splicing. Among the two, OsNAA15.1 is more likely to form a stable and functional NatA complex with the potential catalytic subunit OsNAA10, leading to a thermoresponsive N-terminal acetylome. Intriguingly, while OsNAA15.1 promotes plant growth under elevated temperatures, OsNAA15.2 exhibits an inhibitory effect. We identified two glycolate oxidases (GLO1/5) as major substrates from the thermoresponsive acetylome. These enzymes are involved in hydrogen peroxide (H2O2) biosynthesis via glycolate oxidation. N-terminally acetylated GLO1/5 undergo their degradation through the ubiquitin-proteasome system. This leads to reduced reactive oxygen species (ROS) production, thereby promoting plant growth, particularly under high ambient temperatures. Conclusively, our findings highlight the pivotal role of N-terminal acetylation in orchestrating the glycolate-mediated ROS homeostasis to facilitate thermoresponsive growth in rice.
Collapse
Affiliation(s)
- Xueting Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huashan Tang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pengfei Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangfang Ma
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haifang Wei
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zi Fang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoyan Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanan Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| | - Biyao Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| |
Collapse
|
8
|
Armbruster L, Pożoga M, Wu Z, Eirich J, Thulasi Devendrakumar K, De La Torre C, Miklánková P, Huber M, Bradic F, Poschet G, Weidenhausen J, Merker S, Ruppert T, Sticht C, Sinning I, Finkemeier I, Li X, Hell R, Wirtz M. Nα-acetyltransferase NAA50 mediates plant immunity independent of the Nα-acetyltransferase A complex. PLANT PHYSIOLOGY 2024; 195:3097-3118. [PMID: 38588051 DOI: 10.1093/plphys/kiae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024]
Abstract
In humans and plants, 40% of the proteome is cotranslationally acetylated at the N-terminus by a single Nα-acetyltransferase (Nat) termed NatA. The core NatA complex is comprised of the catalytic subunit Nα-acetyltransferase 10 (NAA10) and the ribosome-anchoring subunit NAA15. The regulatory subunit Huntingtin Yeast Partner K (HYPK) and the acetyltransferase NAA50 join this complex in humans. Even though both are conserved in Arabidopsis (Arabidopsis thaliana), only AtHYPK is known to interact with AtNatA. Here we uncover the AtNAA50 interactome and provide evidence for the association of AtNAA50 with NatA at ribosomes. In agreement with the latter, a split-luciferase approach demonstrated close proximity of AtNAA50 and AtNatA in planta. Despite their interaction, AtNatA/HYPK and AtNAA50 exerted different functions in vivo. Unlike NatA/HYPK, AtNAA50 did not modulate drought tolerance or promote protein stability. Instead, transcriptome and proteome analyses of a novel AtNAA50-depleted mutant (amiNAA50) implied that AtNAA50 negatively regulates plant immunity. Indeed, amiNAA50 plants exhibited enhanced resistance to oomycetes and bacterial pathogens. In contrast to what was observed in NatA-depleted mutants, this resistance was independent of an accumulation of salicylic acid prior to pathogen exposure. Our study dissects the in vivo function of the NatA interactors HYPK and NAA50 and uncovers NatA-independent roles for NAA50 in plants.
Collapse
Affiliation(s)
- Laura Armbruster
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Marlena Pożoga
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Zhongshou Wu
- Michael Smith Laboratories, University of British Columbia, V6T1Z4 Vancouver, BC, Canada
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Münster, 48149 Münster, Germany
| | | | - Carolina De La Torre
- NGS Core Facility, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Pavlina Miklánková
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Monika Huber
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Fabian Bradic
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Jonas Weidenhausen
- Structural Biology, Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Sabine Merker
- Core Facility for Mass Spectrometry and Proteomics, Center for Molecular Biology of Heidelberg University, 69120 Heidelberg, Germany
| | - Thomas Ruppert
- Core Facility for Mass Spectrometry and Proteomics, Center for Molecular Biology of Heidelberg University, 69120 Heidelberg, Germany
| | - Carsten Sticht
- NGS Core Facility, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Irmgard Sinning
- Structural Biology, Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, 48149 Münster, Germany
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, V6T1Z4 Vancouver, BC, Canada
| | - Rüdiger Hell
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Sun Y, Xie Z, Jin L, Qin T, Zhan C, Huang J. Histone deacetylase OsHDA716 represses rice chilling tolerance by deacetylating OsbZIP46 to reduce its transactivation function and protein stability. THE PLANT CELL 2024; 36:1913-1936. [PMID: 38242836 PMCID: PMC11062455 DOI: 10.1093/plcell/koae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/15/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Low temperature is a major environmental factor limiting plant growth and crop production. Epigenetic regulation of gene expression is important for plant adaptation to environmental changes, whereas the epigenetic mechanism of cold signaling in rice (Oryza sativa) remains largely elusive. Here, we report that the histone deacetylase (HDAC) OsHDA716 represses rice cold tolerance by interacting with and deacetylating the transcription factor OsbZIP46. The loss-of-function mutants of OsHDA716 exhibit enhanced chilling tolerance, compared with the wild-type plants, while OsHDA716 overexpression plants show chilling hypersensitivity. On the contrary, OsbZIP46 confers chilling tolerance in rice through transcriptionally activating OsDREB1A and COLD1 to regulate cold-induced calcium influx and cytoplasmic calcium elevation. Mechanistic investigation showed that OsHDA716-mediated OsbZIP46 deacetylation in the DNA-binding domain reduces the DNA-binding ability and transcriptional activity as well as decreasing OsbZIP46 protein stability. Genetic evidence indicated that OsbZIP46 deacetylation mediated by OsHDA716 reduces rice chilling tolerance. Collectively, these findings reveal that the functional interplay between the chromatin regulator and transcription factor fine-tunes the cold response in plant and uncover a mechanism by which HDACs repress gene transcription through deacetylating nonhistone proteins and regulating their biochemical functions.
Collapse
Affiliation(s)
- Ying Sun
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Zizhao Xie
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Tian Qin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Chenghang Zhan
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
10
|
Nagle MF, Yuan J, Kaur D, Ma C, Peremyslova E, Jiang Y, Niño de Rivera A, Jawdy S, Chen JG, Feng K, Yates TB, Tuskan GA, Muchero W, Fuxin L, Strauss SH. GWAS supported by computer vision identifies large numbers of candidate regulators of in planta regeneration in Populus trichocarpa. G3 (BETHESDA, MD.) 2024; 14:jkae026. [PMID: 38325329 PMCID: PMC10989874 DOI: 10.1093/g3journal/jkae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/09/2024]
Abstract
Plant regeneration is an important dimension of plant propagation and a key step in the production of transgenic plants. However, regeneration capacity varies widely among genotypes and species, the molecular basis of which is largely unknown. Association mapping methods such as genome-wide association studies (GWAS) have long demonstrated abilities to help uncover the genetic basis of trait variation in plants; however, the performance of these methods depends on the accuracy and scale of phenotyping. To enable a large-scale GWAS of in planta callus and shoot regeneration in the model tree Populus, we developed a phenomics workflow involving semantic segmentation to quantify regenerating plant tissues over time. We found that the resulting statistics were of highly non-normal distributions, and thus employed transformations or permutations to avoid violating assumptions of linear models used in GWAS. We report over 200 statistically supported quantitative trait loci (QTLs), with genes encompassing or near to top QTLs including regulators of cell adhesion, stress signaling, and hormone signaling pathways, as well as other diverse functions. Our results encourage models of hormonal signaling during plant regeneration to consider keystone roles of stress-related signaling (e.g. involving jasmonates and salicylic acid), in addition to the auxin and cytokinin pathways commonly considered. The putative regulatory genes and biological processes we identified provide new insights into the biological complexity of plant regeneration, and may serve as new reagents for improving regeneration and transformation of recalcitrant genotypes and species.
Collapse
Affiliation(s)
- Michael F Nagle
- Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97311, USA
| | - Jialin Yuan
- Department of Electrical Engineering and Computer Science, Oregon State University, 1148 Kelley Engineering Center, Corvallis, OR 97331, USA
| | - Damanpreet Kaur
- Department of Electrical Engineering and Computer Science, Oregon State University, 1148 Kelley Engineering Center, Corvallis, OR 97331, USA
| | - Cathleen Ma
- Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97311, USA
| | - Ekaterina Peremyslova
- Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97311, USA
| | - Yuan Jiang
- Statistics Department, Oregon State University, 239 Weniger Hall, Corvallis, OR 97331, USA
| | - Alexa Niño de Rivera
- Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97311, USA
| | - Sara Jawdy
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee-Knoxville, 310 Ferris Hall 1508 Middle Dr, Knoxville, TN 37996, USA
| | - Kai Feng
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
| | - Timothy B Yates
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee-Knoxville, 310 Ferris Hall 1508 Middle Dr, Knoxville, TN 37996, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee-Knoxville, 310 Ferris Hall 1508 Middle Dr, Knoxville, TN 37996, USA
| | - Li Fuxin
- Department of Electrical Engineering and Computer Science, Oregon State University, 1148 Kelley Engineering Center, Corvallis, OR 97331, USA
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97311, USA
| |
Collapse
|
11
|
Gong X, Boyer JB, Gierlich S, Pożoga M, Weidenhausen J, Sinning I, Meinnel T, Giglione C, Wang Y, Hell R, Wirtz M. HYPK controls stability and catalytic activity of the N-terminal acetyltransferase A in Arabidopsis thaliana. Cell Rep 2024; 43:113768. [PMID: 38363676 DOI: 10.1016/j.celrep.2024.113768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/12/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024] Open
Abstract
The ribosome-tethered N-terminal acetyltransferase A (NatA) acetylates 52% of soluble proteins in Arabidopsis thaliana. This co-translational modification of the N terminus stabilizes diverse cytosolic plant proteins. The evolutionary conserved Huntingtin yeast partner K (HYPK) facilitates NatA activity in planta, but in vitro, its N-terminal helix α1 inhibits human NatA activity. To dissect the regulatory function of HYPK protein domains in vivo, we genetically engineer CRISPR-Cas9 mutants expressing a HYPK fragment lacking all functional domains (hypk-cr1) or an internally deleted HYPK variant truncating helix α1 but retaining the C-terminal ubiquitin-associated (UBA) domain (hypk-cr2). We find that the UBA domain of HYPK is vital for stabilizing the NatA complex in an organ-specific manner. The N terminus of HYPK, including helix α1, is critical for promoting NatA activity on substrates starting with various amino acids. Consequently, deleting only 42 amino acids inside the HYPK N terminus causes substantial destabilization of the plant proteome and higher tolerance toward drought stress.
Collapse
Affiliation(s)
- Xiaodi Gong
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Jean-Baptiste Boyer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Simone Gierlich
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Marlena Pożoga
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | | | - Irmgard Sinning
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Yonghong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 271018 Tai'an, China
| | - Rüdiger Hell
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
12
|
Daly RE, Myasnikov I, Gaglia MM. N-terminal acetylation separately promotes nuclear localization and host shutoff activity of the influenza A virus ribonuclease PA-X. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.01.569683. [PMID: 38076881 PMCID: PMC10705558 DOI: 10.1101/2023.12.01.569683] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
To counteract host antiviral responses, influenza A virus triggers a global reduction of cellular gene expression, a process termed "host shutoff." A key effector of influenza A virus host shutoff is the viral endoribonuclease PA-X, which degrades host mRNAs. While many of the molecular determinants of PA-X activity remain unknown, a previous study found that N-terminal acetylation of PA-X is required for its host shutoff activity. However, it remains unclear how this co-translational modification promotes PA-X activity. Here, we report that PA-X N-terminal acetylation has two functions that can be separated based on the position of the acetylation, i.e. on the first amino acid, the initiator methionine, or the second amino acid following initiator methionine excision. Modification at either site is sufficient to ensure PA-X localization to the nucleus. However, modification of the second amino acid is not sufficient for host shutoff activity of ectopically expressed PA-X, which specifically requires N-terminal acetylation of the initiator methionine. Interestingly, during infection N-terminal acetylation of PA-X at any position results in host shutoff activity, which is in part due to a functional interaction with the influenza protein NS1. This result reveals an unexpected role for another viral protein in PA-X activity. Our studies uncover a multifaceted role for PA-X N-terminal acetylation in regulation of this important immunomodulatory factor.
Collapse
Affiliation(s)
- Raecliffe E Daly
- Program in Cellular, Molecular and Developmental Biology, Tufts University Graduate School of Biomedical Sciences, Boston, MA, 02111, United States
- Institute for Molecular Virology and Department of Medical Microbiology and Immunology, University of Wisconsin - Madison, Madison, WI, 53706, United States
| | - Idalia Myasnikov
- Institute for Molecular Virology and Department of Medical Microbiology and Immunology, University of Wisconsin - Madison, Madison, WI, 53706, United States
| | - Marta Maria Gaglia
- Institute for Molecular Virology and Department of Medical Microbiology and Immunology, University of Wisconsin - Madison, Madison, WI, 53706, United States
| |
Collapse
|
13
|
González-Fuente M. What happens in plants stays in plants: Arabidopsis prime Ac/N-recognin candidates do not function as such. PLANT PHYSIOLOGY 2023; 193:1724-1726. [PMID: 37555474 PMCID: PMC10602599 DOI: 10.1093/plphys/kiad450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Affiliation(s)
- Manuel González-Fuente
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- Faculty of Biology & Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| |
Collapse
|
14
|
Etherington RD, Bailey M, Boyer JB, Armbruster L, Cao X, Coates JC, Meinnel T, Wirtz M, Giglione C, Gibbs DJ. Nt-acetylation-independent turnover of SQUALENE EPOXIDASE 1 by Arabidopsis DOA10-like E3 ligases. PLANT PHYSIOLOGY 2023; 193:2086-2104. [PMID: 37427787 PMCID: PMC10602611 DOI: 10.1093/plphys/kiad406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023]
Abstract
The acetylation-dependent (Ac/)N-degron pathway degrades proteins through recognition of their acetylated N-termini (Nt) by E3 ligases called Ac/N-recognins. To date, specific Ac/N-recognins have not been defined in plants. Here we used molecular, genetic, and multiomics approaches to characterize potential roles for Arabidopsis (Arabidopsis thaliana) DEGRADATION OF ALPHA2 10 (DOA10)-like E3 ligases in the Nt-acetylation-(NTA)-dependent turnover of proteins at global- and protein-specific scales. Arabidopsis has two endoplasmic reticulum (ER)-localized DOA10-like proteins. AtDOA10A, but not the Brassicaceae-specific AtDOA10B, can compensate for loss of yeast (Saccharomyces cerevisiae) ScDOA10 function. Transcriptome and Nt-acetylome profiling of an Atdoa10a/b RNAi mutant revealed no obvious differences in the global NTA profile compared to wild type, suggesting that AtDOA10s do not regulate the bulk turnover of NTA substrates. Using protein steady-state and cycloheximide-chase degradation assays in yeast and Arabidopsis, we showed that turnover of ER-localized SQUALENE EPOXIDASE 1 (AtSQE1), a critical sterol biosynthesis enzyme, is mediated by AtDOA10s. Degradation of AtSQE1 in planta did not depend on NTA, but Nt-acetyltransferases indirectly impacted its turnover in yeast, indicating kingdom-specific differences in NTA and cellular proteostasis. Our work suggests that, in contrast to yeast and mammals, targeting of Nt-acetylated proteins is not a major function of DOA10-like E3 ligases in Arabidopsis and provides further insight into plant ERAD and the conservation of regulatory mechanisms controlling sterol biosynthesis in eukaryotes.
Collapse
Affiliation(s)
- Ross D Etherington
- School of Biosciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK
| | - Mark Bailey
- School of Biosciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK
| | - Jean-Baptiste Boyer
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Laura Armbruster
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, 69120, Germany
| | - Xulyu Cao
- School of Biosciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK
| | - Juliet C Coates
- School of Biosciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK
| | - Thierry Meinnel
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, 69120, Germany
| | - Carmela Giglione
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, UK
| |
Collapse
|
15
|
Langin G, González-Fuente M, Üstün S. The Plant Ubiquitin-Proteasome System as a Target for Microbial Manipulation. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:351-375. [PMID: 37253695 DOI: 10.1146/annurev-phyto-021622-110443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The plant immune system perceives pathogens to trigger defense responses. In turn, pathogens secrete effector molecules to subvert these defense responses. The initiation and maintenance of defense responses involve not only de novo synthesis of regulatory proteins and enzymes but also their regulated degradation. The latter is achieved through protein degradation pathways such as the ubiquitin-proteasome system (UPS). The UPS regulates all stages of immunity, from the perception of the pathogen to the execution of the response, and, therefore, constitutes an ideal candidate for microbial manipulation of the host. Pathogen effector molecules interfere with the plant UPS through several mechanisms. This includes hijacking general UPS functions or perturbing its ability to degrade specific targets. In this review, we describe how the UPS regulates different immunity-related processes and how pathogens subvert this to promote disease.
Collapse
Affiliation(s)
- Gautier Langin
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany;
- Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | | | - Suayib Üstün
- Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
16
|
Significance of NatB-mediated N-terminal acetylation of auxin biosynthetic enzymes in maintaining auxin homeostasis in Arabidopsis thaliana. Commun Biol 2022; 5:1410. [PMID: 36550195 PMCID: PMC9780221 DOI: 10.1038/s42003-022-04313-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
The auxin IAA (Indole-3-acetic acid) plays key roles in regulating plant growth and development, which depends on an intricate homeostasis that is determined by the balance between its biosynthesis, metabolism and transport. YUC flavin monooxygenases catalyze the rate-limiting step of auxin biosynthesis via IPyA (indole pyruvic acid) and are critical targets in regulating auxin homeostasis. Despite of numerous reports on the transcriptional regulation of YUC genes, little is known about those at the post-translational protein level. Here, we show that loss of function of CKRC3/TCU2, the auxiliary subunit (Naa25) of Arabidopsis NatB, and/or of its catalytic subunit (Naa20), NBC, led to auxin-deficiency in plants. Experimental evidences show that CKRC3/TCU2 can interact with NBC to form a NatB complex, catalyzing the N-terminal acetylation (NTA) of YUC proteins for their intracellular stability to maintain normal auxin homeostasis in plants. Hence, our findings provide significantly new insight into the link between protein NTA and auxin biosynthesis in plants.
Collapse
|
17
|
Pożoga M, Armbruster L, Wirtz M. From Nucleus to Membrane: A Subcellular Map of the N-Acetylation Machinery in Plants. Int J Mol Sci 2022; 23:ijms232214492. [PMID: 36430970 PMCID: PMC9692967 DOI: 10.3390/ijms232214492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
N-terminal acetylation (NTA) is an ancient protein modification conserved throughout all domains of life. N-terminally acetylated proteins are present in the cytosol, the nucleus, the plastids, mitochondria and the plasma membrane of plants. The frequency of NTA differs greatly between these subcellular compartments. While up to 80% of cytosolic and 20-30% of plastidic proteins are subject to NTA, NTA of mitochondrial proteins is rare. NTA alters key characteristics of proteins such as their three-dimensional structure, binding properties and lifetime. Since the majority of proteins is acetylated by five ribosome-bound N-terminal acetyltransferases (Nats) in yeast and humans, NTA was long perceived as an exclusively co-translational process in eukaryotes. The recent characterization of post-translationally acting plant Nats, which localize to the plasma membrane and the plastids, has challenged this view. Moreover, findings in humans, yeast, green algae and higher plants uncover differences in the cytosolic Nat machinery of photosynthetic and non-photosynthetic eukaryotes. These distinctive features of the plant Nat machinery might constitute adaptations to the sessile lifestyle of plants. This review sheds light on the unique role of plant N-acetyltransferases in development and stress responses as well as their evolution-driven adaptation to function in different cellular compartments.
Collapse
|
18
|
Meinnel T, Giglione C. N-terminal modifications, the associated processing machinery, and their evolution in plastid-containing organisms. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6013-6033. [PMID: 35768189 DOI: 10.1093/jxb/erac290] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The N-terminus is a frequent site of protein modifications. Referring primarily to knowledge gained from land plants, here we review the modifications that change protein N-terminal residues and provide updated information about the associated machinery, including that in Archaeplastida. These N-terminal modifications include many proteolytic events as well as small group additions such as acylation or arginylation and oxidation. Compared with that of the mitochondrion, the plastid-dedicated N-terminal modification landscape is far more complex. In parallel, we extend this review to plastid-containing Chromalveolata including Stramenopiles, Apicomplexa, and Rhizaria. We report a well-conserved machinery, especially in the plastid. Consideration of the two most abundant proteins on Earth-Rubisco and actin-reveals the complexity of N-terminal modification processes. The progressive gene transfer from the plastid to the nuclear genome during evolution is exemplified by the N-terminus modification machinery, which appears to be one of the latest to have been transferred to the nuclear genome together with crucial major photosynthetic landmarks. This is evidenced by the greater number of plastid genes in Paulinellidae and red algae, the most recent and fossil recipients of primary endosymbiosis.
Collapse
Affiliation(s)
- Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
19
|
Li C, Hu F, Chen H, Zhao J. Transcriptome characteristics during cell wall formation of endosperm cellularization and embryo differentiation in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:998664. [PMID: 36262665 PMCID: PMC9575994 DOI: 10.3389/fpls.2022.998664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Embryonic and endosperm development are important biological events during Arabidopsis seed development, and are controlled by dynamic changes in a range of gene expression. Nevertheless, the regulatory mechanisms of endosperm cellularization and embryo differentiation remain unclear. Here, we characterized the early embryo and endosperm development of the naa15 mutant that had abnormal embryo differentiation and incomplete endosperm cellularization compared to WT of Arabidopsis, and comparatively investigated the changes of gene expressions in WT seeds at 3, 4, and 5 days after pollination (3W, 4W, and 5W) and the white homozygous aborted naa15 seeds at 5, 6, and 7 DAP (5M, 6M, and 7M) from naa15-1/+ siliques using RNA sequencing and qPCR assays. The transcriptome analyses showed that there were 2040 and 3630 differentially expressed genes (DEGs) in 4W (at endosperm cellularization initiation stage and heart embryo stage) vs 3W (at syncytium stage and globular embryo stage), and 5W (at end of endosperm cellularization stage and torpedo embryo stage) vs 4W, respectively. The KEGG and GO analyses showed that lipid metabolic processes and transmembrane transport related to cell wall biogenesis, cell division and differentiation, the plant hormone signaling pathway, photosynthesis, and transcription regulator activity were evidently enriched in WT and naa15. The heatmap and qPCR analyses showed that auxin response genes (ARFs), auxin transport genes (PINs) cytokinin synthesis genes (LOGs), cytokinin dehydrogenase genes (CKXs), cytokinin receptor, transcription factors (MYB, bHLH, MADS-box, and ERF) were significantly downregulated in naa15 compared to WT. A series of cell wall genes annotated to xyloglucan endotransglycosylase/hydrolase, pectin methyl esterase, and pectin methyl esterase inhibitor were also identified in these DEGs. Moreover, using an immunofluorescent assay, the features of cell walls displayed that cellulose fluorescence signals in the embryo and endosperm of naa15 were significantly decreased, and the signals of low- and high- methyl esterification of pectin were also obviously decreased in the endosperm of naa15. In summary, we identified a large number of DEGs and investigated the features of cell walls during endosperm cellularization and embryonic differentiation, which provided important information on transcription and gene expression to reveal their regulatory mechanisms.
Collapse
|
20
|
Song ZT, Chen XJ, Luo L, Yu F, Liu JX, Han JJ. UBA domain protein SUF1 interacts with NatA-complex subunit NAA15 to regulate thermotolerance in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1297-1302. [PMID: 35524486 DOI: 10.1111/jipb.13273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
During recovery from heat stress, plants clear away the heat-stress-induced misfolded proteins through the ubiquitin-proteasome system (UPS). In the UPS, the recognition of substrate proteins by E3 ligase can be regulated by the N-terminal acetyltransferase A (NatA) complex. Here, we determined that Arabidopsis STRESS-RELATED UBIQUITIN-ASSOCIATED-DOMAIN PROTEIN FACTOR 1 (SUF1) interacts with the NatA complex core subunit NAA15 and positively regulates NAA15. The suf1 and naa15 mutants are sensitive to heat stress; the NatA substrate N SNC1 is stabilized in suf1 mutant plants during heat stress recovery. Therefore, SUF1 and its interactor NAA15 play important roles in basal thermotolerance in Arabidopsis.
Collapse
Affiliation(s)
- Ze-Ting Song
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
- Laboratory of Ecology and Evolutionary Biology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Xiao-Jie Chen
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Ling Luo
- Laboratory of Ecology and Evolutionary Biology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100083, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Jia-Jia Han
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
- Laboratory of Ecology and Evolutionary Biology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, China
| |
Collapse
|
21
|
Miklánková P, Linster E, Boyer JB, Weidenhausen J, Mueller J, Armbruster L, Lapouge K, De La Torre C, Bienvenut W, Sticht C, Mann M, Meinnel T, Sinning I, Giglione C, Hell R, Wirtz M. HYPK promotes the activity of the Nα-acetyltransferase A complex to determine proteostasis of nonAc-X 2/N-degron-containing proteins. SCIENCE ADVANCES 2022; 8:eabn6153. [PMID: 35704578 PMCID: PMC9200280 DOI: 10.1126/sciadv.abn6153] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In humans, the Huntingtin yeast partner K (HYPK) binds to the ribosome-associated Nα-acetyltransferase A (NatA) complex that acetylates ~40% of the proteome in humans and Arabidopsis thaliana. However, the relevance of HsHYPK for determining the human N-acetylome is unclear. Here, we identify the AtHYPK protein as the first in vivo regulator of NatA activity in plants. AtHYPK physically interacts with the ribosome-anchoring subunit of NatA and promotes Nα-terminal acetylation of diverse NatA substrates. Loss-of-AtHYPK mutants are remarkably resistant to drought stress and strongly resemble the phenotype of NatA-depleted plants. The ectopic expression of HsHYPK rescues this phenotype. Combined transcriptomics, proteomics, and N-terminomics unravel that HYPK impairs plant metabolism and development, predominantly by regulating NatA activity. We demonstrate that HYPK is a critical regulator of global proteostasis by facilitating masking of the recently identified nonAc-X2/N-degron. This N-degron targets many nonacetylated NatA substrates for degradation by the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Pavlína Miklánková
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 360, Heidelberg, Germany
| | - Eric Linster
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 360, Heidelberg, Germany
| | - Jean-Baptiste Boyer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Jonas Weidenhausen
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld, 328 Heidelberg, Germany
| | - Johannes Mueller
- Max-Planck-Institute for Biochemistry, Am Klopferspitz 18, Martinsried, Germany
| | - Laura Armbruster
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 360, Heidelberg, Germany
| | - Karine Lapouge
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld, 328 Heidelberg, Germany
| | - Carolina De La Torre
- Center of Medical Research, Heidelberg University, Theodor-Kutzer-Ufer, Mannheim, Germany
| | - Willy Bienvenut
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Carsten Sticht
- Center of Medical Research, Heidelberg University, Theodor-Kutzer-Ufer, Mannheim, Germany
| | - Matthias Mann
- Max-Planck-Institute for Biochemistry, Am Klopferspitz 18, Martinsried, Germany
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld, 328 Heidelberg, Germany
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Rüdiger Hell
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 360, Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 360, Heidelberg, Germany
- Corresponding author.
| |
Collapse
|
22
|
Gong X, Huang Y, Liang Y, Yuan Y, Liu Y, Han T, Li S, Gao H, Lv B, Huang X, Linster E, Wang Y, Wirtz M, Wang Y. OsHYPK-mediated protein N-terminal acetylation coordinates plant development and abiotic stress responses in rice. MOLECULAR PLANT 2022; 15:740-754. [PMID: 35381198 DOI: 10.1016/j.molp.2022.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/08/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
N-terminal acetylation is one of the most common protein modifications in eukaryotes, and approximately 40% of human and plant proteomes are acetylated by ribosome-associated N-terminal acetyltransferase A (NatA) in a co-translational manner. However, the in vivo regulatory mechanism of NatA and the global impact of NatA-mediated N-terminal acetylation on protein fate remain unclear. Here, we identify Huntingtin Yeast partner K (HYPK), an evolutionarily conserved chaperone-like protein, as a positive regulator of NatA activity in rice. We found that loss of OsHYPK function leads to developmental defects in rice plant architecture but increased resistance to abiotic stresses, attributable to perturbation of the N-terminal acetylome and accelerated global protein turnover. Furthermore, we demonstrated that OsHYPK is also a substrate of NatA and that N-terminal acetylation of OsHYPK promotes its own degradation, probably through the Ac/N-degron pathway, which could be induced by abiotic stresses. Taken together, our findings suggest that the OsHYPK-NatA complex plays a critical role in coordinating plant development and stress responses by dynamically regulating NatA-mediated N-terminal acetylation and global protein turnover, which are essential for maintaining adaptive phenotypic plasticity in rice.
Collapse
Affiliation(s)
- Xiaodi Gong
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqian Huang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Liang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agriculture University, Taian, Shandong 271018, China
| | - Yundong Yuan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agriculture University, Taian, Shandong 271018, China
| | - Yuhao Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agriculture University, Taian, Shandong 271018, China
| | - Tongwen Han
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agriculture University, Taian, Shandong 271018, China
| | - Shujia Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hengbin Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agriculture University, Taian, Shandong 271018, China
| | - Bo Lv
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agriculture University, Taian, Shandong 271018, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Eric Linster
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Yonghong Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agriculture University, Taian, Shandong 271018, China.
| |
Collapse
|
23
|
Ubiquitination of Receptorsomes, Frontline of Plant Immunity. Int J Mol Sci 2022; 23:ijms23062937. [PMID: 35328358 PMCID: PMC8948693 DOI: 10.3390/ijms23062937] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 12/14/2022] Open
Abstract
Sessile plants are constantly exposed to myriads of unfavorable invading organisms with different lifestyles. To survive, plants have evolved plasma membrane-resident pattern recognition receptors (PRRs) and intracellular nucleotide-binding domain leucine-rich repeat receptors (NLRs) to initiate sophisticated downstream immune responses. Ubiquitination serves as one of the most important and prevalent posttranslational modifications (PTMs) to fine-tune plant immune responses. Over the last decade, remarkable progress has been made in delineating the critical roles of ubiquitination in plant immunity. In this review, we highlight recent advances in the understanding of ubiquitination in the modulation of plant immunity, with a particular focus on ubiquitination in the regulation of receptorsomes, and discuss how ubiquitination and other PTMs act in concert to ensure rapid, proper, and robust immune responses.
Collapse
|
24
|
Feng J, Qin M, Yao L, Li Y, Han R, Ma L. The N-terminal acetyltransferase Naa50 regulates tapetum degradation and pollen development in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111180. [PMID: 35151444 DOI: 10.1016/j.plantsci.2022.111180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
The N-terminal acetylation of proteins is a key modification in eukaryotes. However, knowledge of the biological function of N-terminal acetylation modification of proteins in plants is limited. Naa50 is the catalytic subunit of the N-terminal acetyltransferase NatE complex. We previously demonstrated that the absence of Naa50 leads to sterility in Arabidopsis thaliana. In the present study, the lack of Naa50 resulted in collapsed and sterile pollen in Arabidopsis. Further experiments showed that the mutation in Naa50 accelerated programmed cell death in the tapetum. Expression pattern analysis revealed the specific expression of Naa50 in the tapetum cells of anthers at 9-11 stages during pollen development, when tapetal programmed cell death occurred. Reciprocal cross analyses indicated that male sterility in naa50 is caused by sporophytic effects. mRNA sequencing and quantitative PCR of the closed buds showed that the deletion of Naa50 resulted in the upregulation of the cysteine protease coding gene CEP1 and impaired the expression of several genes involved in pollen wall deposition and pollen mitotic division. The collective data suggest that Naa50 balances the degradation of tapetum cells during anther development and plays an important role in pollen development by affecting several pathways.
Collapse
Affiliation(s)
- Jinlin Feng
- College of Life Sciences, Shanxi Normal University, Taiyuan, 030000 Shanxi, China; Higher Education Key Laboratory of Plant Molecular and Environment Stress Response (Shanxi Normal University) in Shanxi Province, Taiyuan, 030000 Shanxi, China.
| | - Minghui Qin
- College of Life Sciences, Shanxi Normal University, Taiyuan, 030000 Shanxi, China; Higher Education Key Laboratory of Plant Molecular and Environment Stress Response (Shanxi Normal University) in Shanxi Province, Taiyuan, 030000 Shanxi, China
| | - Lixia Yao
- College of Life Sciences, Shanxi Normal University, Taiyuan, 030000 Shanxi, China; Higher Education Key Laboratory of Plant Molecular and Environment Stress Response (Shanxi Normal University) in Shanxi Province, Taiyuan, 030000 Shanxi, China
| | - Yan Li
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Rong Han
- College of Life Sciences, Shanxi Normal University, Taiyuan, 030000 Shanxi, China; Higher Education Key Laboratory of Plant Molecular and Environment Stress Response (Shanxi Normal University) in Shanxi Province, Taiyuan, 030000 Shanxi, China
| | - Ligeng Ma
- College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
25
|
(De)Activation (Ir)Reversibly or Degradation: Dynamics of Post-Translational Protein Modifications in Plants. Life (Basel) 2022; 12:life12020324. [PMID: 35207610 PMCID: PMC8874572 DOI: 10.3390/life12020324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 11/22/2022] Open
Abstract
The increasing dynamic functions of post-translational modifications (PTMs) within protein molecules present outstanding challenges for plant biology even at this present day. Protein PTMs are among the first and fastest plant responses to changes in the environment, indicating that the mechanisms and dynamics of PTMs are an essential area of plant biology. Besides being key players in signaling, PTMs play vital roles in gene expression, gene, and protein localization, protein stability and interactions, as well as enzyme kinetics. In this review, we take a broader but concise approach to capture the current state of events in the field of plant PTMs. We discuss protein modifications including citrullination, glycosylation, phosphorylation, oxidation and disulfide bridges, N-terminal, SUMOylation, and ubiquitination. Further, we outline the complexity of studying PTMs in relation to compartmentalization and function. We conclude by challenging the proteomics community to engage in holistic approaches towards identification and characterizing multiple PTMs on the same protein, their interaction, and mechanism of regulation to bring a deeper understanding of protein function and regulation in plants.
Collapse
|
26
|
Linster E, Forero Ruiz FL, Miklankova P, Ruppert T, Mueller J, Armbruster L, Gong X, Serino G, Mann M, Hell R, Wirtz M. Cotranslational N-degron masking by acetylation promotes proteome stability in plants. Nat Commun 2022; 13:810. [PMID: 35145090 PMCID: PMC8831508 DOI: 10.1038/s41467-022-28414-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
N-terminal protein acetylation (NTA) is a prevalent protein modification essential for viability in animals and plants. The dominant executor of NTA is the ribosome tethered Nα-acetyltransferase A (NatA) complex. However, the impact of NatA on protein fate is still enigmatic. Here, we demonstrate that depletion of NatA activity leads to a 4-fold increase in global protein turnover via the ubiquitin-proteasome system in Arabidopsis. Surprisingly, a concomitant increase in translation, actioned via enhanced Target-of-Rapamycin activity, is also observed, implying that defective NTA triggers feedback mechanisms to maintain steady-state protein abundance. Quantitative analysis of the proteome, the translatome, and the ubiquitome reveals that NatA substrates account for the bulk of this enhanced turnover. A targeted analysis of NatA substrate stability uncovers that NTA absence triggers protein destabilization via a previously undescribed and widely conserved nonAc/N-degron in plants. Hence, the imprinting of the proteome with acetylation marks is essential for coordinating proteome stability. N-terminal protein acetylation is required for plant viability. Here the authors show that reducing N-terminal acetylation by NatA leads to an increase in global protein turnover that is facilitated by absent masking of a novel N-degron
Collapse
Affiliation(s)
- Eric Linster
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Francy L Forero Ruiz
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Pavlina Miklankova
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Thomas Ruppert
- Center for Molecular Biology Heidelberg, Heidelberg University, Heidelberg, Germany
| | | | - Laura Armbruster
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Xiaodi Gong
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Giovanna Serino
- Department of Biology and Biotechnology, Sapienza Università di Roma, Rome, Italy
| | - Matthias Mann
- Max-Planck-Institute for Biochemistry, Martinsried, Germany
| | - Rüdiger Hell
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
27
|
Huber M, Armbruster L, Etherington RD, De La Torre C, Hawkesford MJ, Sticht C, Gibbs DJ, Hell R, Wirtz M. Disruption of the N α-Acetyltransferase NatB Causes Sensitivity to Reductive Stress in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 12:799954. [PMID: 35046984 PMCID: PMC8761761 DOI: 10.3389/fpls.2021.799954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
In Arabidopsis thaliana, the evolutionary conserved N-terminal acetyltransferase (Nat) complexes NatA and NatB co-translationally acetylate 60% of the proteome. Both have recently been implicated in the regulation of plant stress responses. While NatA mediates drought tolerance, NatB is required for pathogen resistance and the adaptation to high salinity and high osmolarity. Salt and osmotic stress impair protein folding and result in the accumulation of misfolded proteins in the endoplasmic reticulum (ER). The ER-membrane resident E3 ubiquitin ligase DOA10 targets misfolded proteins for degradation during ER stress and is conserved among eukaryotes. In yeast, DOA10 recognizes conditional degradation signals (Ac/N-degrons) created by NatA and NatB. Assuming that this mechanism is preserved in plants, the lack of Ac/N-degrons required for efficient removal of misfolded proteins might explain the sensitivity of NatB mutants to protein harming conditions. In this study, we investigate the response of NatB mutants to dithiothreitol (DTT) and tunicamycin (TM)-induced ER stress. We report that NatB mutants are hypersensitive to DTT but not TM, suggesting that the DTT hypersensitivity is caused by an over-reduction of the cytosol rather than an accumulation of unfolded proteins in the ER. In line with this hypothesis, the cytosol of NatB depleted plants is constitutively over-reduced and a global transcriptome analysis reveals that their reductive stress response is permanently activated. Moreover, we demonstrate that doa10 mutants are susceptible to neither DTT nor TM, ruling out a substantial role of DOA10 in ER-associated protein degradation (ERAD) in plants. Contrary to previous findings in yeast, our data indicate that N-terminal acetylation (NTA) does not inhibit ER targeting of a substantial amount of proteins in plants. In summary, we provide further evidence that NatB-mediated imprinting of the proteome is vital for the response to protein harming stress and rule out DOA10 as the sole recognin for substrates in the plant ERAD pathway, leaving the role of DOA10 in plants ambiguous.
Collapse
Affiliation(s)
- Monika Huber
- Centre for Organismal Studies, Molecular Biology of Plants Group, Heidelberg University, Heidelberg, Germany
| | - Laura Armbruster
- Centre for Organismal Studies, Molecular Biology of Plants Group, Heidelberg University, Heidelberg, Germany
| | | | - Carolina De La Torre
- Institute of Clinical Chemistry, NGS Core Facility, Medical Faculty Mannheim of Heidelberg University, Heidelberg, Germany
| | | | - Carsten Sticht
- Institute of Clinical Chemistry, NGS Core Facility, Medical Faculty Mannheim of Heidelberg University, Heidelberg, Germany
| | - Daniel J. Gibbs
- School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | - Rüdiger Hell
- Centre for Organismal Studies, Molecular Biology of Plants Group, Heidelberg University, Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, Molecular Biology of Plants Group, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
28
|
Tian H, Wu Z, Chen S, Ao K, Huang W, Yaghmaiean H, Sun T, Xu F, Zhang Y, Wang S, Li X, Zhang Y. Activation of TIR signalling boosts pattern-triggered immunity. Nature 2021; 598:500-503. [PMID: 34544113 DOI: 10.1038/s41586-021-03987-1] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Plant immune responses are mainly activated by two types of receptor. Pattern recognition receptors localized on the plasma membrane perceive extracellular microbial features, and nucleotide-binding leucine-rich repeat receptors (NLRs) recognize intracellular effector proteins from pathogens1. NLRs possessing amino-terminal Toll/interleukin-1 receptor (TIR) domains activate defence responses via the NADase activity of the TIR domain2,3. Here we report that activation of TIR signalling has a key role in pattern-triggered immunity (PTI) mediated by pattern recognition receptors. TIR signalling mutants exhibit attenuated PTI responses and decreased resistance against pathogens. Consistently, PTI is compromised in plants with reduced NLR levels. Treatment with the PTI elicitor flg22 or nlp20 rapidly induces many genes encoding TIR-domain-containing proteins, which is likely to be responsible for activating TIR signalling during PTI. Overall, our study reveals that activation of TIR signalling is an important mechanism for boosting plant defence during PTI.
Collapse
Affiliation(s)
- Hainan Tian
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zhongshou Wu
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Siyu Chen
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, China
| | - Kevin Ao
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Weijie Huang
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hoda Yaghmaiean
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tongjun Sun
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fang Xu
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Yanjun Zhang
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, China
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
29
|
Liu HQ, Zou YJ, Li XF, Wu L, Guo GQ. Stablization of ACOs by NatB mediated N-terminal acetylation is required for ethylene homeostasis. BMC PLANT BIOLOGY 2021; 21:320. [PMID: 34217224 PMCID: PMC8254318 DOI: 10.1186/s12870-021-03090-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
N-terminal acetylation (NTA) is a highly abundant protein modification catalyzed by N-terminal acetyltransferases (NATs) in eukaryotes. However, the plant NATs and their biological functions have been poorly explored. Here we reveal that loss of function of CKRC3 and NBC-1, the auxiliary subunit (Naa25) and catalytic subunit (Naa20) of Arabidopsis NatB, respectively, led to defects in skotomorphogenesis and triple responses of ethylene. Proteome profiling and WB test revealed that the 1-amincyclopropane-1-carboxylate oxidase (ACO, catalyzing the last step of ethylene biosynthesis pathway) activity was significantly down-regulated in natb mutants, leading to reduced endogenous ethylene content. The defective phenotypes could be fully rescued by application of exogenous ethylene, but less by its precursor ACC. The present results reveal a previously unknown regulation mechanism at the co-translational protein level for ethylene homeostasis, in which the NatB-mediated NTA of ACOs render them an intracellular stability to maintain ethylene homeostasis for normal growth and responses.
Collapse
Affiliation(s)
- Hai-Qing Liu
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Ya-Jie Zou
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiao-Feng Li
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lei Wu
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Guang-Qin Guo
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
30
|
Giglione C, Meinnel T. Evolution-Driven Versatility of N Terminal Acetylation in Photoautotrophs. TRENDS IN PLANT SCIENCE 2021; 26:375-391. [PMID: 33384262 DOI: 10.1016/j.tplants.2020.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/27/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
N terminal protein α-acetylation (NTA) is a pervasive protein modification that has recently attracted renewed interest. Early studies on NTA were mostly conducted in yeast and metazoans, providing a detailed portrait of the modification, which was indirectly applied to all eukaryotes. However, new findings originating from photosynthetic organisms have expanded our knowledge of this modification, revealing strong similarities as well as idiosyncratic features. Here, we review the most recent advances on NTA and its dedicated machinery in photosynthetic organisms. We discuss the cytosolic and unique plastid NTA machineries and their critical biological roles in development, stress responses, protein translocation, and stability. These new findings suggest that the multitasking plastid and cytosolic machineries evolved to support the specific needs of photoautotrophs.
Collapse
Affiliation(s)
- Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
31
|
Weidenhausen J, Kopp J, Armbruster L, Wirtz M, Lapouge K, Sinning I. Structural and functional characterization of the N-terminal acetyltransferase Naa50. Structure 2021; 29:413-425.e5. [PMID: 33400917 DOI: 10.1016/j.str.2020.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/28/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022]
Abstract
The majority of eukaryotic proteins is modified by N-terminal acetylation, which plays a fundamental role in protein homeostasis, localization, and complex formation. N-terminal acetyltransferases (NATs) mainly act co-translationally on newly synthesized proteins at the ribosomal tunnel exit. NatA is the major NAT consisting of Naa10 catalytic and Naa15 auxiliary subunits, and with Naa50 forms the NatE complex. Naa50 has recently been identified in Arabidopsis thaliana and is important for plant development and stress response regulation. Here, we determined high-resolution X-ray crystal structures of AtNaa50 in complex with AcCoA and a bisubstrate analog. We characterized its substrate specificity, determined its enzymatic parameters, and identified functionally important residues. Even though Naa50 is conserved among species, we highlight differences between Arabidopsis and yeast, where Naa50 is catalytically inactive but binds CoA conjugates. Our study provides insights into Naa50 conservation, species-specific adaptations, and serves as a basis for further studies of NATs in plants.
Collapse
Affiliation(s)
| | - Jürgen Kopp
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Laura Armbruster
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Karine Lapouge
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany.
| |
Collapse
|
32
|
Krtenic B, Drazic A, Arnesen T, Reuter N. Classification and phylogeny for the annotation of novel eukaryotic GNAT acetyltransferases. PLoS Comput Biol 2020; 16:e1007988. [PMID: 33362253 PMCID: PMC7790372 DOI: 10.1371/journal.pcbi.1007988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 01/07/2021] [Accepted: 10/16/2020] [Indexed: 11/19/2022] Open
Abstract
The enzymes of the GCN5-related N-acetyltransferase (GNAT) superfamily count more than 870 000 members through all kingdoms of life and share the same structural fold. GNAT enzymes transfer an acyl moiety from acyl coenzyme A to a wide range of substrates including aminoglycosides, serotonin, glucosamine-6-phosphate, protein N-termini and lysine residues of histones and other proteins. The GNAT subtype of protein N-terminal acetyltransferases (NATs) alone targets a majority of all eukaryotic proteins stressing the omnipresence of the GNAT enzymes. Despite the highly conserved GNAT fold, sequence similarity is quite low between members of this superfamily even when substrates are similar. Furthermore, this superfamily is phylogenetically not well characterized. Thus functional annotation based on sequence similarity is unreliable and strongly hampered for thousands of GNAT members that remain biochemically uncharacterized. Here we used sequence similarity networks to map the sequence space and propose a new classification for eukaryotic GNAT acetyltransferases. Using the new classification, we built a phylogenetic tree, representing the entire GNAT acetyltransferase superfamily. Our results show that protein NATs have evolved more than once on the GNAT acetylation scaffold. We use our classification to predict the function of uncharacterized sequences and verify by in vitro protein assays that two fungal genes encode NAT enzymes targeting specific protein N-terminal sequences, showing that even slight changes on the GNAT fold can lead to change in substrate specificity. In addition to providing a new map of the relationship between eukaryotic acetyltransferases the classification proposed constitutes a tool to improve functional annotation of GNAT acetyltransferases. Enzymes of the GCN5-related N-acetyltransferase (GNAT) superfamily transfer an acetyl group from one molecule to another. This reaction is called acetylation and is one of the most common reactions inside the cell. The GNAT superfamily counts more than 870 000 members through all kingdoms of life. Despite sharing the same fold the GNAT superfamily is very diverse in terms of amino acid sequence and substrates. The eight N-terminal acetyltransferases (NatA, NatB, etc.. to NatH) are a GNAT subtype which acetylates the free amine group of polypeptide chains. This modification is called N-terminal acetylation and is one of the most abundant protein modifications in eukaryotic cells. This subtype is also characterized by a high sequence diversity even though they share the same substrate. In addition, the phylogeny of the superfamily is not characterized. This hampers functional annotation based on sequence similarity, and discovery of novel NATs. In this work we set out to solve the problem of the classification of eukaryotic GCN5-related acetyltransferases and report the first classification framework of the superfamily. This framework can be used as a tool for annotation of all GCN5-related acetyltransferases. As an example of what can be achieved we report in this paper the computational prediction and in vitro verification of the function of two previously uncharacterized N-terminal acetyltransferases. We also report the first acetyltransferase phylogenetic tree of the GCN5 superfamily. It indicates that N-terminal acetyltransferases do not constitute one homogeneous protein family, but that the ability to bind and acetylate protein N-termini had evolved more than once on the same acetylation scaffold. We also show that even small changes in key positions can lead to altered enzyme specificity.
Collapse
Affiliation(s)
- Bojan Krtenic
- Department of Biological Sciences, University of Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Norway
- * E-mail: (BK); (NR)
| | - Adrian Drazic
- Department of Biomedicine, University of Bergen, Norway
| | - Thomas Arnesen
- Department of Biological Sciences, University of Bergen, Norway
- Department of Biomedicine, University of Bergen, Norway
- Department of Surgery, Haukeland University Hospital, Norway
| | - Nathalie Reuter
- Computational Biology Unit, Department of Informatics, University of Bergen, Norway
- Department of Chemistry, University of Bergen, Norway
- * E-mail: (BK); (NR)
| |
Collapse
|
33
|
He D, Damaris RN, Li M, Khan I, Yang P. Advances on Plant Ubiquitylome-From Mechanism to Application. Int J Mol Sci 2020; 21:E7909. [PMID: 33114409 PMCID: PMC7663383 DOI: 10.3390/ijms21217909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 12/11/2022] Open
Abstract
Post-translational modifications (PTMs) of proteins enable modulation of their structure, function, localization and turnover. To date, over 660 PTMs have been reported, among which, reversible PTMs are regarded as the key players in cellular signaling. Signaling mediated by PTMs is faster than re-initiation of gene expression, which may result in a faster response that is particularly crucial for plants due to their sessile nature. Ubiquitylation has been widely reported to be involved in many aspects of plant growth and development and it is largely determined by its target protein. It is therefore of high interest to explore new ubiquitylated proteins/sites to obtain new insights into its mechanism and functions. In the last decades, extensive protein profiling of ubiquitylation has been achieved in different plants due to the advancement in ubiquitylated proteins (or peptides) affinity and mass spectrometry techniques. This obtained information on a large number of ubiquitylated proteins/sites helps crack the mechanism of ubiquitylation in plants. In this review, we have summarized the latest advances in protein ubiquitylation to gain comprehensive and updated knowledge in this field. Besides, the current and future challenges and barriers are also reviewed and discussed.
Collapse
Affiliation(s)
- Dongli He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (D.H.); (R.N.D.); (M.L.)
| | - Rebecca Njeri Damaris
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (D.H.); (R.N.D.); (M.L.)
| | - Ming Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (D.H.); (R.N.D.); (M.L.)
| | - Imran Khan
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA;
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (D.H.); (R.N.D.); (M.L.)
| |
Collapse
|
34
|
Linster E, Layer D, Bienvenut WV, Dinh TV, Weyer FA, Leemhuis W, Brünje A, Hoffrichter M, Miklankova P, Kopp J, Lapouge K, Sindlinger J, Schwarzer D, Meinnel T, Finkemeier I, Giglione C, Hell R, Sinning I, Wirtz M. The Arabidopsis N α -acetyltransferase NAA60 locates to the plasma membrane and is vital for the high salt stress response. THE NEW PHYTOLOGIST 2020; 228:554-569. [PMID: 32548857 DOI: 10.1111/nph.16747] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
In humans and plants, N-terminal acetylation plays a central role in protein homeostasis, affects 80% of proteins in the cytoplasm and is catalyzed by five ribosome-associated N-acetyltransferases (NatA-E). Humans also possess a Golgi-associated NatF (HsNAA60) that is essential for Golgi integrity. Remarkably, NAA60 is absent in fungi and has not been identified in plants. Here we identify and characterize the first plasma membrane-anchored post-translationally acting N-acetyltransferase AtNAA60 in the reference plant Arabidopsis thaliana by the combined application of reverse genetics, global proteomics, live-cell imaging, microscale thermophoresis, circular dichroism spectroscopy, nano-differential scanning fluorometry, intrinsic tryptophan fluorescence and X-ray crystallography. We demonstrate that AtNAA60, like HsNAA60, is membrane-localized in vivo by an α-helical membrane anchor at its C-terminus, but in contrast to HsNAA60, AtNAA60 localizes to the plasma membrane. The AtNAA60 crystal structure provides insights into substrate-binding, the broad substrate specificity and the catalytic mechanism probed by structure-based mutagenesis. Characterization of the NAA60 loss-of-function mutants (naa60-1 and naa60-2) uncovers a plasma membrane-localized substrate of AtNAA60 and the importance of NAA60 during high salt stress. Our findings provide evidence for the plant-specific evolution of a plasma membrane-anchored N-acetyltransferase that is vital for adaptation to stress.
Collapse
Affiliation(s)
- Eric Linster
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, 69120, Germany
| | - Dominik Layer
- Heidelberg University Biochemistry Center, Heidelberg, 69120, Germany
| | - Willy V Bienvenut
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris Saclay, Gif-sur-Yvette Cedex, 91198, France
| | - Trinh V Dinh
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, 69120, Germany
| | - Felix A Weyer
- Heidelberg University Biochemistry Center, Heidelberg, 69120, Germany
| | - Wiebke Leemhuis
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, 69120, Germany
| | - Annika Brünje
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Münster, 48149, Germany
| | - Marion Hoffrichter
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, 69120, Germany
| | - Pavlina Miklankova
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, 69120, Germany
| | - Jürgen Kopp
- Heidelberg University Biochemistry Center, Heidelberg, 69120, Germany
| | - Karine Lapouge
- Heidelberg University Biochemistry Center, Heidelberg, 69120, Germany
| | - Julia Sindlinger
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, 72076, Germany
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, 72076, Germany
| | - Thierry Meinnel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris Saclay, Gif-sur-Yvette Cedex, 91198, France
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Münster, 48149, Germany
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris Saclay, Gif-sur-Yvette Cedex, 91198, France
| | - Ruediger Hell
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, 69120, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center, Heidelberg, 69120, Germany
| | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, 69120, Germany
| |
Collapse
|
35
|
Neubauer M, Innes RW. Loss of the Acetyltransferase NAA50 Induces Endoplasmic Reticulum Stress and Immune Responses and Suppresses Growth. PLANT PHYSIOLOGY 2020; 183:1838-1854. [PMID: 32457093 PMCID: PMC7401112 DOI: 10.1104/pp.20.00225] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/19/2020] [Indexed: 05/15/2023]
Abstract
Stress signaling in plants is carefully regulated to ensure proper development and reproductive fitness. Overactive defense signaling can result in dwarfism as well as developmental defects. In addition to requiring a substantial amount of energy, plant stress responses place a burden upon the cellular machinery, which can result in the accumulation of misfolded proteins and endoplasmic reticulum (ER) stress. Negative regulators of stress signaling, such as ENHANCED DISEASE RESISTANCE 1 (EDR1), ensure that stress responses are properly suspended when they are not needed, thereby conserving energy for growth and development. Here, we describe the role of an uncharacterized N-terminal acetyltransferase, NAA50, in the regulation of plant development and stress responses in Arabidopsis (Arabidopsis thaliana). Our results demonstrate that NAA50, an interactor of EDR1, plays an important role in regulating the tradeoff between plant growth and defense. Plants lacking NAA50 display severe developmental defects as well as induced stress responses. Reduction of NAA50 expression results in arrested stem and root growth as well as senescence. Furthermore, our results demonstrate that the loss of NAA50 results in constitutive ER stress signaling, indicating that NAA50 may be required for the suppression of ER stress. This work establishes NAA50 as essential for plant development and the suppression of stress responses, potentially through the regulation of ER stress.
Collapse
Affiliation(s)
- Matthew Neubauer
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
36
|
Armbruster L, Linster E, Boyer JB, Brünje A, Eirich J, Stephan I, Bienvenut WV, Weidenhausen J, Meinnel T, Hell R, Sinning I, Finkemeier I, Giglione C, Wirtz M. NAA50 Is an Enzymatically Active N α-Acetyltransferase That Is Crucial for Development and Regulation of Stress Responses. PLANT PHYSIOLOGY 2020; 183:1502-1516. [PMID: 32461302 PMCID: PMC7401105 DOI: 10.1104/pp.20.00222] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/15/2020] [Indexed: 05/11/2023]
Abstract
Nα-terminal acetylation (NTA) is a prevalent protein modification in eukaryotes. In plants, the biological function of NTA remains enigmatic. The dominant N-acetyltransferase (Nat) in Arabidopsis (Arabidopsis thaliana) is NatA, which cotranslationally catalyzes acetylation of ∼40% of the proteome. The core NatA complex consists of the catalytic subunit NAA10 and the ribosome-anchoring subunit NAA15. In human (Homo sapiens), fruit fly (Drosophila melanogaster), and yeast (Saccharomyces cerevisiae), this core NatA complex interacts with NAA50 to form the NatE complex. While in metazoa, NAA50 has N-acetyltransferase activity, yeast NAA50 is catalytically inactive and positions NatA at the ribosome tunnel exit. Here, we report the identification and characterization of Arabidopsis NAA50 (AT5G11340). Consistent with its putative function as a cotranslationally acting Nat, AtNAA50-EYFP localized to the cytosol and the endoplasmic reticulum but also to the nuclei. We demonstrate that purified AtNAA50 displays Nα-terminal acetyltransferase and lysine-ε-autoacetyltransferase activity in vitro. Global N-acetylome profiling of Escherichia coli cells expressing AtNAA50 revealed conservation of NatE substrate specificity between plants and humans. Unlike the embryo-lethal phenotype caused by the absence of AtNAA10 and AtNAA15, loss of NAA50 expression resulted in severe growth retardation and infertility in two Arabidopsis transfer DNA insertion lines (naa50-1 and naa50-2). The phenotype of naa50-2 was rescued by the expression of HsNAA50 or AtNAA50. In contrast, the inactive ScNAA50 failed to complement naa50-2 Remarkably, loss of NAA50 expression did not affect NTA of known NatA substrates and caused the accumulation of proteins involved in stress responses. Overall, our results emphasize a relevant role of AtNAA50 in plant defense and development, which is independent of the essential NatA activity.
Collapse
Affiliation(s)
- Laura Armbruster
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Eric Linster
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Jean-Baptiste Boyer
- Université Paris-Saclay, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Institute for Integrative Biology of the Cell, 91198 Gif-sur-Yvette, France
| | - Annika Brünje
- Institute for Plant Biology and Biotechnology, University of Münster, Muenster 48149, Germany
| | - Jürgen Eirich
- Institute for Plant Biology and Biotechnology, University of Münster, Muenster 48149, Germany
| | - Iwona Stephan
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Willy V Bienvenut
- Université Paris-Saclay, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Institute for Integrative Biology of the Cell, 91198 Gif-sur-Yvette, France
| | | | - Thierry Meinnel
- Université Paris-Saclay, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Institute for Integrative Biology of the Cell, 91198 Gif-sur-Yvette, France
| | - Ruediger Hell
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Iris Finkemeier
- Institute for Plant Biology and Biotechnology, University of Münster, Muenster 48149, Germany
| | - Carmela Giglione
- Université Paris-Saclay, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Institute for Integrative Biology of the Cell, 91198 Gif-sur-Yvette, France
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
37
|
Zhang Y, Zeng L. Crosstalk between Ubiquitination and Other Post-translational Protein Modifications in Plant Immunity. PLANT COMMUNICATIONS 2020; 1:100041. [PMID: 33367245 PMCID: PMC7748009 DOI: 10.1016/j.xplc.2020.100041] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/07/2020] [Accepted: 03/19/2020] [Indexed: 05/05/2023]
Abstract
Post-translational modifications (PTMs) are central to the modulation of protein activity, stability, subcellular localization, and interaction with partners. They greatly expand the diversity and functionality of the proteome and have taken the center stage as key players in regulating numerous cellular and physiological processes. Increasing evidence indicates that in addition to a single regulatory PTM, many proteins are modified by multiple different types of PTMs in an orchestrated manner to collectively modulate the biological outcome. Such PTM crosstalk creates a combinatorial explosion in the number of proteoforms in a cell and greatly improves the ability of plants to rapidly mount and fine-tune responses to different external and internal cues. While PTM crosstalk has been investigated in depth in humans, animals, and yeast, the study of interplay between different PTMs in plants is still at its infant stage. In the past decade, investigations showed that PTMs are widely involved and play critical roles in the regulation of interactions between plants and pathogens. In particular, ubiquitination has emerged as a key regulator of plant immunity. This review discusses recent studies of the crosstalk between ubiquitination and six other PTMs, i.e., phosphorylation, SUMOylation, poly(ADP-ribosyl)ation, acetylation, redox modification, and glycosylation, in the regulation of plant immunity. The two basic ways by which PTMs communicate as well as the underlying mechanisms and diverse outcomes of the PTM crosstalk in plant immunity are highlighted.
Collapse
|
38
|
Bienvenut WV, Brünje A, Boyer J, Mühlenbeck JS, Bernal G, Lassowskat I, Dian C, Linster E, Dinh TV, Koskela MM, Jung V, Seidel J, Schyrba LK, Ivanauskaite A, Eirich J, Hell R, Schwarzer D, Mulo P, Wirtz M, Meinnel T, Giglione C, Finkemeier I. Dual lysine and N-terminal acetyltransferases reveal the complexity underpinning protein acetylation. Mol Syst Biol 2020; 16:e9464. [PMID: 32633465 PMCID: PMC7339202 DOI: 10.15252/msb.20209464] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 01/02/2023] Open
Abstract
Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N-α-acetylation (NTA) and ε-lysine acetylation (KA) are known to be catalyzed by distinct families of enzymes (NATs and KATs, respectively), although the possibility that the same GCN5-related N-acetyltransferase (GNAT) can perform both functions has been debated. Here, we discovered a new family of plastid-localized GNATs, which possess a dual specificity. All characterized GNAT family members display a number of unique features. Quantitative mass spectrometry analyses revealed that these enzymes exhibit both distinct KA and relaxed NTA specificities. Furthermore, inactivation of GNAT2 leads to significant NTA or KA decreases of several plastid proteins, while proteins of other compartments were unaffected. The data indicate that these enzymes have specific protein targets and likely display partly redundant selectivity, increasing the robustness of the acetylation process in vivo. In summary, this study revealed a new layer of complexity in the machinery controlling this prevalent modification and suggests that other eukaryotic GNATs may also possess these previously underappreciated broader enzymatic activities.
Collapse
Affiliation(s)
- Willy V Bienvenut
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
- Present address:
Génétique Quantitative et ÉvolutionGif‐sur‐YvetteFrance
| | - Annika Brünje
- Plant PhysiologyInstitute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| | - Jean‐Baptiste Boyer
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
| | - Jens S Mühlenbeck
- Plant PhysiologyInstitute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| | - Gautier Bernal
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
- Present address:
Institute of Plant Sciences Paris‐SaclayGif‐sur‐YvetteFrance
| | - Ines Lassowskat
- Plant PhysiologyInstitute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| | - Cyril Dian
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
| | - Eric Linster
- Centre for Organismal Studies HeidelbergUniversity of HeidelbergHeidelbergGermany
| | - Trinh V Dinh
- Centre for Organismal Studies HeidelbergUniversity of HeidelbergHeidelbergGermany
| | - Minna M Koskela
- Department of BiochemistryMolecular Plant BiologyUniversity of TurkuTurkuFinland
- Present address:
Institute of MicrobiologyTřeboňCzech Republic
| | - Vincent Jung
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
- Present address:
Institute IMAGINEParisFrance
| | - Julian Seidel
- Interfaculty Institute of BiochemistryUniversity of TübingenTübingenGermany
| | - Laura K Schyrba
- Plant PhysiologyInstitute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| | - Aiste Ivanauskaite
- Department of BiochemistryMolecular Plant BiologyUniversity of TurkuTurkuFinland
| | - Jürgen Eirich
- Plant PhysiologyInstitute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| | - Rüdiger Hell
- Centre for Organismal Studies HeidelbergUniversity of HeidelbergHeidelbergGermany
| | - Dirk Schwarzer
- Interfaculty Institute of BiochemistryUniversity of TübingenTübingenGermany
| | - Paula Mulo
- Department of BiochemistryMolecular Plant BiologyUniversity of TurkuTurkuFinland
| | - Markus Wirtz
- Centre for Organismal Studies HeidelbergUniversity of HeidelbergHeidelbergGermany
| | - Thierry Meinnel
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
| | - Carmela Giglione
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
| | - Iris Finkemeier
- Plant PhysiologyInstitute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| |
Collapse
|
39
|
Feng J, Hu J, Li Y, Li R, Yu H, Ma L. The N-Terminal Acetyltransferase Naa50 Regulates Arabidopsis Growth and Osmotic Stress Response. ACTA ACUST UNITED AC 2020; 61:1565-1575. [DOI: 10.1093/pcp/pcaa081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/08/2020] [Indexed: 11/14/2022]
Abstract
Abstract
N-terminal acetylation (Nt-acetylation) is one of the most common protein modifications in eukaryotes. The function of Naa50, the catalytic subunit of the evolutionarily conserved N-terminal acetyltransferase (Nat) E complex, has not been reported in Arabidopsis. In this study, we found that a loss of Naa50 resulted in a pleiotropic phenotype that included dwarfism and sterility, premature leaf senescence and a shortened primary root. Further analysis revealed that root cell patterning and various root cell properties were severely impaired in naa50 mutant plants. Moreover, defects in auxin distribution were observed due to the mislocalization of PIN auxin transporters. In contrast to its homologs in yeast and animals, Naa50 showed no co-immunoprecipitation with any subunit of the Nat A complex. Moreover, plants lacking Naa50 displayed hypersensitivity to abscisic acid and osmotic stress. Therefore, our results suggest that protein N-terminal acetylation catalyzed by Naa50 plays an essential role in Arabidopsis growth and osmotic stress responses.
Collapse
Affiliation(s)
- Jinlin Feng
- College of Life Sciences, Shanxi Normal University, Linfen, Shanxi 041004, China
| | - Jianxin Hu
- College of Life Sciences, Shanxi Normal University, Linfen, Shanxi 041004, China
| | - Yan Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ruiqi Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hao Yu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Ligeng Ma
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
40
|
Copeland C. Starting Off Right: N-Terminal Acetylation Stabilizes an Immune-Activating Protein. PLANT PHYSIOLOGY 2020; 183:35-36. [PMID: 32385185 PMCID: PMC7210646 DOI: 10.1104/pp.20.00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Charles Copeland
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| |
Collapse
|
41
|
Singh PK, Gao W, Liao P, Li Y, Xu FC, Ma XN, Long L, Song CP. Comparative acetylome analysis of wild-type and fuzzless-lintless mutant ovules of upland cotton (Gossypium hirsutum Cv. Xu142) unveils differential protein acetylation may regulate fiber development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 150:56-70. [PMID: 32114400 DOI: 10.1016/j.plaphy.2020.02.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Protein acetylation (KAC) is a significant post-translational modification, which plays an essential role in the regulation of growth and development. Unfortunately, related studies are inadequately available in angiosperms, and to date, there is no report providing insight on the role of protein acetylation in cotton fiber development. Therefore, we first compared the lysine-acetylation proteome (acetylome) of upland cotton ovules in the early fiber development stages by using wild-type as well as its fuzzless-lintless mutant to identify the role of KAC in the fiber development. A total of 1696 proteins with 2754 acetylation sites identified with the different levels of acetylation belonging to separate subcellular compartments suggesting a large number of proteins differentially acetylated in two cotton cultivars. About 80% of the sites were predicted to localize in the cytoplasm, chloroplast, and mitochondria. Seventeen significantly enriched acetylation motifs were identified. Serine and threonine and cysteine located downstream and upstream to KAC sites. KEGG pathway enrichment analysis indicated oxidative phosphorylation, fatty acid, ribosome and protein, and folate biosynthesis pathways enriched significantly. To our knowledge, this is the first report of comparative acetylome analysis to compare the wild-type as well as its fuzzless-lintless mutant acetylome data to identify the differentially acetylated proteins, which may play a significant role in cotton fiber development.
Collapse
Affiliation(s)
- Prashant Kumar Singh
- Department of Vegetables and Field Crops, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Rishon LeZion, 7505101, Israel; State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, China; Department of Biotechnology, Pachhunga University College, Mizoram University, Aizawl, 796001, India.
| | - Wei Gao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, China
| | - Peng Liao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, China
| | - Yang Li
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, China
| | - Fu-Chun Xu
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, China
| | - Xiao-Nan Ma
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, China
| | - Lu Long
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, China
| | - Chun-Peng Song
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, China.
| |
Collapse
|
42
|
Li Z, Dogra V, Lee KP, Li R, Li M, Li M, Kim C. N-Terminal Acetylation Stabilizes SIGMA FACTOR BINDING PROTEIN1 Involved in Salicylic Acid-Primed Cell Death. PLANT PHYSIOLOGY 2020; 183:358-370. [PMID: 32139475 PMCID: PMC7210619 DOI: 10.1104/pp.19.01417] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/24/2020] [Indexed: 05/14/2023]
Abstract
N-terminal (Nt) acetylation (NTA) is an ample and irreversible cotranslational protein modification catalyzed by ribosome-associated Nt-acetyltransferases. NTA on specific proteins can act as a degradation signal (called an Ac/N-degron) for proteolysis in yeast and mammals. However, in plants, the biological relevance of NTA remains largely unexplored. In this study, we reveal that Arabidopsis (Arabidopsis thaliana) SIGMA FACTOR-BINDING PROTEIN1 (SIB1), a transcription coregulator and a positive regulator of salicylic acid-primed cell death, undergoes an absolute NTA on the initiator Met; Nt-acetyltransferase B (NatB) partly contributes to this modification. While NTA results in destabilization of certain target proteins, our genetic and biochemical analyses revealed that plant NatB-involved NTA instead renders SIB1 more stable. Given that the ubiquitin/proteasome system stimulates SIB1 degradation, it seems that the NTA-conferred stability ensures the timely expression of SIB1-dependent genes, mostly related to immune responses. Taking our findings together, here we report a noncanonical NTA-driven protein stabilization in land plants.
Collapse
Affiliation(s)
- Zihao Li
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Vivek Dogra
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Keun Pyo Lee
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Rongxia Li
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mingyue Li
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Mengping Li
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
43
|
Schreiber KJ, Lewis JD. Protein Acetylation in Pathogen Virulence and Host Defense: In Vitro Detection of Protein Acetylation by Radiolabeled Acetyl Coenzyme A. Methods Mol Biol 2020; 1991:23-32. [PMID: 31041759 DOI: 10.1007/978-1-4939-9458-8_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Protein acetylation has emerged as a common modification that modulates multiple aspects of protein function, including localization, stability, and protein-protein interactions. It is increasingly evident that protein acetylation significantly impacts the outcome of host-microbe interactions. In order to characterize novel putative acetyltransferase enzymes and their substrates, we describe a simple protocol for the detection of acetyltransferase activity in vitro. Purified proteins are incubated with 14C-acetyl CoA and separated electrophoretically, and acetylated proteins are detected by phosphorimaging or autoradiography.
Collapse
Affiliation(s)
- Karl J Schreiber
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Jennifer D Lewis
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA. .,Plant Gene Expression Center, United States Department of Agriculture, Albany, CA, USA.
| |
Collapse
|
44
|
Huber M, Bienvenut WV, Linster E, Stephan I, Armbruster L, Sticht C, Layer D, Lapouge K, Meinnel T, Sinning I, Giglione C, Hell R, Wirtz M. NatB-Mediated N-Terminal Acetylation Affects Growth and Biotic Stress Responses. PLANT PHYSIOLOGY 2020; 182:792-806. [PMID: 31744933 PMCID: PMC6997699 DOI: 10.1104/pp.19.00792] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/07/2019] [Indexed: 05/22/2023]
Abstract
N∝-terminal acetylation (NTA) is one of the most abundant protein modifications in eukaryotes. In humans, NTA is catalyzed by seven Nα-acetyltransferases (NatA-F and NatH). Remarkably, the plant Nat machinery and its biological relevance remain poorly understood, although NTA has gained recognition as a key regulator of crucial processes such as protein turnover, protein-protein interaction, and protein targeting. In this study, we combined in vitro assays, reverse genetics, quantitative N-terminomics, transcriptomics, and physiological assays to characterize the Arabidopsis (Arabidopsis thaliana) NatB complex. We show that the plant NatB catalytic (NAA20) and auxiliary subunit (NAA25) form a stable heterodimeric complex that accepts canonical NatB-type substrates in vitro. In planta, NatB complex formation was essential for enzymatic activity. Depletion of NatB subunits to 30% of the wild-type level in three Arabidopsis T-DNA insertion mutants (naa20-1, naa20-2, and naa25-1) caused a 50% decrease in plant growth. A complementation approach revealed functional conservation between plant and human catalytic NatB subunits, whereas yeast NAA20 failed to complement naa20-1 Quantitative N-terminomics of approximately 1000 peptides identified 32 bona fide substrates of the plant NatB complex. In vivo, NatB was seen to preferentially acetylate N termini starting with the initiator Met followed by acidic amino acids and contributed 20% of the acetylation marks in the detected plant proteome. Global transcriptome and proteome analyses of NatB-depleted mutants suggested a function of NatB in multiple stress responses. Indeed, loss of NatB function, but not NatA, increased plant sensitivity toward osmotic and high-salt stress, indicating that NatB is required for tolerance of these abiotic stressors.
Collapse
Affiliation(s)
- Monika Huber
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Willy V Bienvenut
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Eric Linster
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Iwona Stephan
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Laura Armbruster
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | | | - Dominik Layer
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Karine Lapouge
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Thierry Meinnel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Ruediger Hell
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
45
|
Niu R, Zhou Y, Zhang Y, Mou R, Tang Z, Wang Z, Zhou G, Guo S, Yuan M, Xu G. uORFlight: a vehicle toward uORF-mediated translational regulation mechanisms in eukaryotes. Database (Oxford) 2020; 2020:baaa007. [PMID: 32168374 PMCID: PMC7068905 DOI: 10.1093/database/baaa007] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 01/10/2023]
Abstract
Upstream open reading frames (uORFs) are prevalent in eukaryotic mRNAs. They act as a translational control element for precisely tuning the expression of the downstream major open reading frame (mORF). uORF variation has been clearly associated with several human diseases. In contrast, natural uORF variants in plants have not ever been identified or linked with any phenotypic changes. The paucity of such evidence encouraged us to generate this database-uORFlight (http://uorflight.whu.edu.cn). It facilitates the exploration of uORF variation among different splicing models of Arabidopsis and rice genes. Most importantly, users can evaluate uORF frequency among different accessions at the population scale and find out the causal single nucleotide polymorphism (SNP) or insertion/deletion (INDEL), which can be associated with phenotypic variation through database mining or simple experiments. Such information will help to make hypothesis of uORF function in plant development or adaption to changing environments on the basis of the cognate mORF function. This database also curates plant uORF relevant literature into distinct groups. To be broadly interesting, our database expands uORF annotation into more species of fungus (Botrytis cinerea and Saccharomyces cerevisiae), plant (Brassica napus, Glycine max, Gossypium raimondii, Medicago truncatula, Solanum lycopersicum, Solanum tuberosum, Triticum aestivum and Zea mays), metazoan (Caenorhabditis elegans and Drosophila melanogaster) and vertebrate (Homo sapiens, Mus musculus and Danio rerio). Therefore, uORFlight will light up the runway toward how uORF genetic variation determines phenotypic diversity and advance our understanding of translational control mechanisms in eukaryotes.
Collapse
Affiliation(s)
- Ruixia Niu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Yulu Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Yu Zhang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Rui Mou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Zhijuan Tang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Zhao Wang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Guilong Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Sibin Guo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Science, Nanning, Guangxi 530007, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
46
|
Holdsworth MJ, Vicente J, Sharma G, Abbas M, Zubrycka A. The plant N-degron pathways of ubiquitin-mediated proteolysis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:70-89. [PMID: 31638740 DOI: 10.1111/jipb.12882] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/20/2019] [Indexed: 05/29/2023]
Abstract
The amino-terminal residue of a protein (or amino-terminus of a peptide following protease cleavage) can be an important determinant of its stability, through the Ubiquitin Proteasome System associated N-degron pathways. Plants contain a unique combination of N-degron pathways (previously called the N-end rule pathways) E3 ligases, PROTEOLYSIS (PRT)6 and PRT1, recognizing non-overlapping sets of amino-terminal residues, and others remain to be identified. Although only very few substrates of PRT1 or PRT6 have been identified, substrates of the oxygen and nitric oxide sensing branch of the PRT6 N-degron pathway include key nuclear-located transcription factors (ETHYLENE RESPONSE FACTOR VIIs and LITTLE ZIPPER 2) and the histone-modifying Polycomb Repressive Complex 2 component VERNALIZATION 2. In response to reduced oxygen or nitric oxide levels (and other mechanisms that reduce pathway activity) these stabilized substrates regulate diverse aspects of growth and development, including response to flooding, salinity, vernalization (cold-induced flowering) and shoot apical meristem function. The N-degron pathways show great promise for use in the improvement of crop performance and for biotechnological applications. Upstream proteases, components of the different pathways and associated substrates still remain to be identified and characterized to fully appreciate how regulation of protein stability through the amino-terminal residue impacts plant biology.
Collapse
Affiliation(s)
| | - Jorge Vicente
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Gunjan Sharma
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Mohamad Abbas
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Agata Zubrycka
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| |
Collapse
|
47
|
Liu Y, Lu S, Liu K, Wang S, Huang L, Guo L. Proteomics: a powerful tool to study plant responses to biotic stress. PLANT METHODS 2019; 15:135. [PMID: 31832077 PMCID: PMC6859632 DOI: 10.1186/s13007-019-0515-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/29/2019] [Indexed: 05/08/2023]
Abstract
In recent years, mass spectrometry-based proteomics has provided scientists with the tremendous capability to study plants more precisely than previously possible. Currently, proteomics has been transformed from an isolated field into a comprehensive tool for biological research that can be used to explain biological functions. Several studies have successfully used the power of proteomics as a discovery tool to uncover plant resistance mechanisms. There is growing evidence that indicates that the spatial proteome and post-translational modifications (PTMs) of proteins directly participate in the plant immune response. Therefore, understanding the subcellular localization and PTMs of proteins is crucial for a comprehensive understanding of plant responses to biotic stress. In this review, we discuss current approaches to plant proteomics that use mass spectrometry, with particular emphasis on the application of spatial proteomics and PTMs. The purpose of this paper is to investigate the current status of the field, discuss recent research challenges, and encourage the application of proteomics techniques to further research.
Collapse
Affiliation(s)
- Yahui Liu
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- National Institute of Metrology, Beijing, China
| | - Song Lu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Kefu Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Sheng Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
48
|
Thulasi Devendrakumar K, Copeland C, Li X. The proteasome regulator PTRE1 contributes to the turnover of SNC1 immune receptor. MOLECULAR PLANT PATHOLOGY 2019; 20:1566-1573. [PMID: 31393057 PMCID: PMC6804346 DOI: 10.1111/mpp.12855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Plants have evolved a sophisticated immune system in order to recognize and respond to microbes in their environments. Nucleotide-binding leucine-rich repeat (NLR) proteins detect the presence of specific effector molecules delivered into host cells by pathogens and activate strong defence responses. However, as excessive accumulation of NLRs can result in inappropriate immune responses, their abundance must be tightly regulated. Targeted degradation of NLRs through the ubiquitin proteasome pathway is an important mechanism to limit NLR accumulation. Mutations that perturb NLR degradation can cause autoimmune phenotypes. In this study, we show that the proteasome regulator PTRE1 also contributes to NLR degradation. ptre1 mutant plants exhibit increased defence marker gene expression and enhanced disease resistance against virulent pathogens. The stability of the NLR, SUPPRESSOR OF npr1-1 CONSTITUTIVE 1 (SNC1) is also increased in the ptre1 mutant. Although the mouse homologue of PTRE1 was reported to interact with a Cell Division Control protein 48 (CDC48) homologue in vitro (Clemen et al., 2015), we only observed interaction between PTRE1 and AtCDC48A in a split luciferase assay, but not in co-immunoprecipitation. In addition, a related Arabidopsis protein PTRE1h shares partial redundancy with PTRE1. Together, PTRE1 acts as a negative regulator of plant immunity partly by facilitating the degradation of immune receptors such as SNC1.
Collapse
Affiliation(s)
| | - Charles Copeland
- Michael Smith Laboratories and Department of BotanyUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
- Present address:
Department of Plant Microbe InteractionsMax Planck Institute for Plant Breeding Research50829CologneGermany
| | - Xin Li
- Michael Smith Laboratories and Department of BotanyUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| |
Collapse
|
49
|
Eldeeb MA, Fahlman RP, Ragheb MA, Esmaili M. Does N‐Terminal Protein Acetylation Lead to Protein Degradation? Bioessays 2019; 41:e1800167. [DOI: 10.1002/bies.201800167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 08/12/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Mohamed A. Eldeeb
- Department of Chemistry (Biochemistry Division)Faculty of ScienceCairo University Giza 12613 Egypt
- Department of Neurology and NeurosurgeryMontreal Neurological InstituteMcGill University Montreal Quebec H3A 2B4 Canada
| | - Richard P. Fahlman
- Department of BiochemistryUniversity of Alberta Edmonton Alberta T6G 2R3 Canada
| | - Mohamed A. Ragheb
- Department of Chemistry (Biochemistry Division)Faculty of ScienceCairo University Giza 12613 Egypt
| | - Mansoore Esmaili
- Department of BiochemistryUniversity of Alberta Edmonton Alberta T6G 2R3 Canada
| |
Collapse
|
50
|
Ree R, Geithus AS, Tørring PM, Sørensen KP, Damkjær M, Lynch SA, Arnesen T. A novel NAA10 p.(R83H) variant with impaired acetyltransferase activity identified in two boys with ID and microcephaly. BMC MEDICAL GENETICS 2019; 20:101. [PMID: 31174490 PMCID: PMC6554967 DOI: 10.1186/s12881-019-0803-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/08/2019] [Indexed: 12/21/2022]
Abstract
Background N-terminal acetylation is a common protein modification in human cells and is catalysed by N-terminal acetyltransferases (NATs), mostly cotranslationally. The NAA10-NAA15 (NatA) protein complex is the major NAT, responsible for acetylating ~ 40% of human proteins. Recently, NAA10 germline variants were found in patients with the X-linked lethal Ogden syndrome, and in other familial or de novo cases with variable degrees of developmental delay, intellectual disability (ID) and cardiac anomalies. Methods Here we report a novel NAA10 (NM_003491.3) c.248G > A, p.(R83H) missense variant in NAA10 which was detected by whole exome sequencing in two unrelated boys with intellectual disability, developmental delay, ADHD like behaviour, very limited speech and cardiac abnormalities. We employ in vitro acetylation assays to functionally test the impact of this variant on NAA10 enzyme activity. Results Functional characterization of NAA10-R83H by in vitro acetylation assays revealed a reduced enzymatic activity of monomeric NAA10-R83H. This variant is modelled to have an altered charge density in the acetyl-coenzyme A (Ac-CoA) binding region of NAA10. Conclusions We show that NAA10-R83H has a reduced monomeric catalytic activity, likely due to impaired enzyme-Ac-CoA binding. Our data support a model where reduced NAA10 and/or NatA activity cause the phenotypes observed in the two patients. Electronic supplementary material The online version of this article (10.1186/s12881-019-0803-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rasmus Ree
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5020, Bergen, Norway
| | - Anni Sofie Geithus
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5020, Bergen, Norway
| | | | | | - Mads Damkjær
- Hans Christian Andersen Children's Hospital, Odense University Hospital, DK-5000, Odense C, Denmark
| | | | - Sally Ann Lynch
- Temple Street Children's Hospital, Temple Street, Dublin, D01 X584, Ireland.
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5020, Bergen, Norway. .,Department of Biological Sciences, University of Bergen, NO-5020, Bergen, Norway. .,Department of Surgery, Haukeland University Hospital, NO-5021, Bergen, Norway.
| |
Collapse
|