1
|
Li X, Wan Y, Wang D, Li X, Wu J, Xiao J, Chen K, Han X, Chen Y. Spatiotemporal transcriptomics reveals key gene regulation for grain yield and quality in wheat. Genome Biol 2025; 26:93. [PMID: 40217326 PMCID: PMC11992740 DOI: 10.1186/s13059-025-03569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 04/07/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Cereal grain size and quality are critical agronomic traits in crop production. Wheat grain development is governed by intricate regulatory networks that require precise spatiotemporal coordination of gene expression to establish functional compartments in different cell types. RESULTS Here, we perform a spatial transcriptomics study covering the early stages of wheat grain development, from 4 to 12 days after pollination. We classify the grain into 10 distinct cell types and identify 192 marker genes associated with them. WGCNA analysis reveals that highly expressed genes in different cell types exhibit distinct enrichment patterns, significantly influencing grain development and filling. Through co-expression and motif analyses, we identify a specific group of genes that may regulate wheat grain development, including TaABI3-B1, a transcription factor specifically expressed in the embryo and surrounding endosperm, which negatively affects embryo and grain size. CONCLUSIONS This study presents a comprehensive spatiotemporal transcriptional dataset for understanding wheat grain development. Additionally, it identifies key genetic resources with potential applications for improving wheat yield.
Collapse
Affiliation(s)
- Xiaohui Li
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, 261325, China
- College of Life Sciences, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Yiman Wan
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, 261325, China
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Dongzhi Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xingguo Li
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jiajie Wu
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Centre of Excellence for Plant and Microbial Science (CEPAMS), JIC-CAS, Beijing, 100101, China
| | - Kunming Chen
- College of Life Sciences, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Xue Han
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, 261325, China.
| | - Yuan Chen
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, 261325, China.
| |
Collapse
|
2
|
Chen C, Ge F, Du H, Sun Y, Sui Y, Tang S, Shen Z, Li X, Zhang H, Mei C, Xie P, Li C, Yang S, Wei H, Shi J, Zhang D, Zhao K, Yang D, Qiao Y, Luo Z, Zhang L, Khan A, Wodajo B, Wu Y, Xia R, Wu C, Liang C, Xie Q, Yu F. A comprehensive omics resource and genetic tools for functional genomics research and genetic improvement of sorghum. MOLECULAR PLANT 2025; 18:703-719. [PMID: 40055894 DOI: 10.1016/j.molp.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/05/2025] [Accepted: 03/05/2025] [Indexed: 04/04/2025]
Abstract
Sorghum, the fifth most important food crop globally, is a source of silage forage, fiber, syrup, and biofuel. Moreover, it is widely recognized as an ideal model crop for studying stress biology becaused of its ability to tolerate multiple abiotic stresses, including high salt-alkali conditions, drought, and heat. However, functional genomics studies on sorghum have been challenging, primarily due to the limited availability of genetic resources and effective genetic transformation techniques. In this study, we developed the Sorghum Genomics and Mutation Database (SGMD), aiming to advance the genetic understanding of sorghum. Our effort encompassed a telomere-to-telomere genome assembly of an inbred sorghum line, E048, yielding 729.46 Mb of sequence data representing the complete genome. Alongside the high-quality sequence data, a gene expression atlas covering 13 distinct tissues was developed. We constructed a saturated ethyl methane sulfonate mutant library comprising 13,226 independent mutants. Causal genes in chlorosis and leafy mutants from the library were easily identified by leveraging the MutMap and MutMap+ methodologies, demonstrating the powerful application of this library for identifying functional genes. To facilitate sorghum research, we performed whole-genome sequencing of 179 M2 mutant lines, resulting in 2,291,074 mutations that covered 97.54% of all genes. In addition, an Agrobacterium-mediated sorghum transformation platform was established for gene function studies. In summary, this work establishes a comprehensive platform and provides valuable resources for functional genomics investigations and genetic improvement of sorghum.
Collapse
Affiliation(s)
- Chengxuan Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengyong Ge
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huilong Du
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanchang Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yi Sui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sanyuan Tang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhengwei Shen
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xuefeng Li
- Cropedit Biotech Co., Ltd., Beijing 102206, China
| | - Huili Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cuo Mei
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sen Yang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huimin Wei
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayang Shi
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kangxu Zhao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dekai Yang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Qiao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuyong Luo
- Cropedit Biotech Co., Ltd., Beijing 102206, China
| | - Li Zhang
- Cropedit Biotech Co., Ltd., Beijing 102206, China
| | - Aimal Khan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baye Wodajo
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaorong Wu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ran Xia
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chuanyin Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengzhi Liang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Guo W, Wang F, Lv J, Yu J, Wu Y, Wuriyanghan H, Le L, Pu L. Phenotyping, genome-wide dissection, and prediction of maize root architecture for temperate adaptability. IMETA 2025; 4:e70015. [PMID: 40236777 PMCID: PMC11995184 DOI: 10.1002/imt2.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 04/17/2025]
Abstract
Root System Architecture (RSA) plays an essential role in influencing maize yield by enhancing anchorage and nutrient uptake. Analyzing maize RSA dynamics holds potential for ideotype-based breeding and prediction, given the limited understanding of the genetic basis of RSA in maize. Here, we obtained 16 root morphology-related traits (R-traits), 7 weight-related traits (W-traits), and 108 slice-related microphenotypic traits (S-traits) from the meristem, elongation, and mature zones by cross-sectioning primary, crown, and lateral roots from 316 maize lines. Significant differences were observed in some root traits between tropical/subtropical and temperate lines, such as primary and total root diameters, root lengths, and root area. Additionally, root anatomy data were integrated with genome-wide association study (GWAS) to elucidate the genetic architecture of complex root traits. GWAS identified 809 genes associated with R-traits, 261 genes linked to W-traits, and 2577 key genes related to 108 slice-related traits. We confirm the function of a candidate gene, fucosyltransferase5 (FUT5), in regulating root development and heat tolerance in maize. The different FUT5 haplotypes found in tropical/subtropical and temperate lines are associated with primary root features and hold promising applications in molecular breeding. Furthermore, we performed machine learning prediction models of RSA using root slice traits, achieving high prediction accuracy. Collectively, our study offers a valuable tool for dissecting the genetic architecture of RSA, along with resources and predictive models beneficial for molecular design breeding and genetic enhancement.
Collapse
Affiliation(s)
- Weijun Guo
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- School of Life ScienceInner Mongolia UniversityHohhotChina
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
| | - Fanhua Wang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- School of Life ScienceInner Mongolia UniversityHohhotChina
| | - Jianyue Lv
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Jia Yu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Yue Wu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | | | - Liang Le
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Li Pu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
4
|
Zhang Y, Zhen S, Zhang C, Zhang J, Shangguan X, Lu J, Wu Q, Dirk LMA, Downie AB, Wang G, Zhao T, Fu J. Natural variation of CT2 affects the embryo/kernel weight ratio in maize. J Genet Genomics 2025; 52:432-440. [PMID: 39343093 DOI: 10.1016/j.jgg.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/22/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Embryo size is a critical trait determining not only grain yield but also the nutrition of the maize kernel. Up to the present, only a few genes have been characterized affecting the maize embryo/kernel ratio. Here, we identify 63 genes significantly associated with maize embryo/kernel weight ratio using a genome-wide association study (GWAS). The peak GWAS signal shows that the natural variation in Zea mays COMPACT PLANT2 (CT2), encoding the heterotrimeric G protein α subunit, is significantly associated with the Embryo/Kernel Weight Ratio (EKWR). Further analyses show that a missense mutation of CT2 increases its enzyme activity and associates with EKWR. The function of CT2 on affecting embryo/kernel weight ratio is further validated by the characterization of two ct2 mutants, for which EKWR is significantly decreased. Subsequently, the key downstream genes of CT2 are identified by combining the differential expression analysis of the ct2 mutant and quantitative trait transcript analysis in the GWAS population. In addition, the allele frequency spectrum shows that CT2 was under selective pressure during maize domestication. This study provides important genetic insights into the natural variation of maize embryo/kernel weight ratio, which could be applied in future maize breeding programs to improve grain yield and nutritional content.
Collapse
Affiliation(s)
- Yumin Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sihan Zhen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Seed Science and Technology Research Center, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; School of Management Science and Real Estate, Chongqing University, Chonging 400045, China
| | - Chunxia Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoqing Shangguan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiawen Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingyu Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lynnette M A Dirk
- Department of Horticulture, Seed Biology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - A Bruce Downie
- Department of Horticulture, Seed Biology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Guoying Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianyong Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Junjie Fu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
5
|
Lan Q, He G, Wang D, Li S, Jiang Y, Guan H, Li Y, Liu X, Wang T, Li Y, Zhang D, Li C. Overexpression of ZmEULD1b enhances maize seminal root elongation and drought tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112355. [PMID: 39672385 DOI: 10.1016/j.plantsci.2024.112355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/01/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Drought stress damages the growth and development of maize, which results in the maize yield reduction. A strong root system improves the drought tolerance in maize. A previous genome-wide association study for the maize seminal root length under drought stress conditions identified a significant SNP, which was located in the ZmEULD1b gene. Here, we show that enhancing ZmEULD1b expression in transgenic maize increases seminal root length, as well as plant tolerance to water deficit. Meanwhile, ZmEULD1b overexpression influences the stomatal development and promotes water-use efficiency of maize. Further, transcriptome analysis of wild type and ZmEULD1b-OE plants show that several peroxidases and ABA-related pathway genes are upregulated in the ZmEULD1b-OE plants under drought stress conditions. Additionally, rhizosphere microbiota analyses of plant root confirm that overexpression of ZmEULD1b improves the abundance of growth-promoting microbes in the maize root system under drought stress conditions. Collectively, the data presented in this work suggest that ZmEULD1b could be a valuable gene resource or selection target for the drought-tolerant genetic improvement of maize.
Collapse
Affiliation(s)
- Qian Lan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanhua He
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dongmei Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shen Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yufeng Jiang
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Honghui Guan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongxiang Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuyang Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianyu Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yu Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dengfeng Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Chunhui Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
6
|
Li Y, Wang J, Zhong S, Huo Q, Wang Q, Shi Y, Liu H, Liu J, Song Y, Fang X, Lin Z. MADS-box encoding gene Tunicate1 positively controls maize yield by increasing leaf number above the ear. Nat Commun 2024; 15:9799. [PMID: 39532880 PMCID: PMC11557842 DOI: 10.1038/s41467-024-54148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The leaves above the ear serve as a major source of carbohydrates for grain filling in maize. However, increasing the number of leaves above the ear to strengthen the source and improve maize yield remains challenging in modern maize breeding. Here, we clone the causative gene of the quantitative trait locus (QTL) associated with the number of leaves above the ear. The causative gene is the previously reported MADS-box domain-encoding gene Tunicate1 (Tu1), which is responsible for the phenotype of pod corn or Tunicate maize. We show that Tu1 can substantially increase the leaf number above the ear while maintaining the source‒sink balance. A distal upstream 5-base pair (bp) insertion of Tu1 originating from a popcorn landrace enhances its transcription, coregulates its plastochron activators and repressors, and increases the number of leaves above the ear. Field tests demonstrate that the 5-bp insertion of Tu1 can increase grain yields by 11.4% and 9.5% under regular and dense planting conditions, respectively. The discovery of this favorable Tu1 allele from landraces suggests that landraces represent a valuable resource for high-yield breeding of maize.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Maize Bio-Breeding; National Maize Improvement Center; Department of Crop Genetics and Breeding; China Agricultural University, 100193, Beijing, China
| | - Jian Wang
- State Key Laboratory of Maize Bio-Breeding; National Maize Improvement Center; Department of Crop Genetics and Breeding; China Agricultural University, 100193, Beijing, China
| | - Shuyang Zhong
- State Key Laboratory of Maize Bio-Breeding; National Maize Improvement Center; Department of Crop Genetics and Breeding; China Agricultural University, 100193, Beijing, China
| | - Qiang Huo
- State Key Laboratory of Maize Bio-Breeding; National Maize Improvement Center; Department of Crop Genetics and Breeding; China Agricultural University, 100193, Beijing, China
| | - Qun Wang
- State Key Laboratory of Maize Bio-Breeding; National Maize Improvement Center; Department of Crop Genetics and Breeding; China Agricultural University, 100193, Beijing, China
| | - Yunlu Shi
- Center for Crop Functional Genomics and Molecular Breeding; China Agricultural University, 100193, Beijing, China
| | - Hangqin Liu
- State Key Laboratory of Maize Bio-Breeding; National Maize Improvement Center; Department of Crop Genetics and Breeding; China Agricultural University, 100193, Beijing, China
| | - Jiacheng Liu
- State Key Laboratory of Maize Bio-Breeding; National Maize Improvement Center; Department of Crop Genetics and Breeding; China Agricultural University, 100193, Beijing, China
| | - Yang Song
- State Key Laboratory of Maize Bio-Breeding; National Maize Improvement Center; Department of Crop Genetics and Breeding; China Agricultural University, 100193, Beijing, China
| | - Xiaojian Fang
- State Key Laboratory of Maize Bio-Breeding; National Maize Improvement Center; Department of Crop Genetics and Breeding; China Agricultural University, 100193, Beijing, China
| | - Zhongwei Lin
- State Key Laboratory of Maize Bio-Breeding; National Maize Improvement Center; Department of Crop Genetics and Breeding; China Agricultural University, 100193, Beijing, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
| |
Collapse
|
7
|
Meng J, Li W, Qi F, Yang T, Li N, Wan J, Li X, Jiang Y, Wang C, Huang M, Zhang Y, Chen Y, Teotia S, Tang G, Zhang Z, Tang J. Knockdown of microRNA390 Enhances Maize Brace Root Growth. Int J Mol Sci 2024; 25:6791. [PMID: 38928499 PMCID: PMC11203754 DOI: 10.3390/ijms25126791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Brace root architecture is a critical determinant of maize's stalk anchorage and nutrition uptake, influencing root lodging resistance, stress tolerance, and plant growth. To identify the key microRNAs (miRNAs) in control of maize brace root growth, we performed small RNA sequencing using brace root samples at emergence and growth stages. We focused on the genetic modulation of brace root development in maize through manipulation of miR390 and its downstream regulated auxin response factors (ARFs). In the present study, miR167, miR166, miR172, and miR390 were identified to be involved in maize brace root growth in inbred line B73. Utilizing short tandem target mimic (STTM) technology, we further developed maize lines with reduced miR390 expression and analyzed their root architecture compared to wild-type controls. Our findings show that STTM390 maize lines exhibit enhanced brace root length and increased whorl numbers. Gene expression analyses revealed that the suppression of miR390 leads to upregulation of its downstream regulated ARF genes, specifically ZmARF11 and ZmARF26, which may significantly alter root architecture. Additionally, loss-of-function mutants for ZmARF11 and ZmARF26 were characterized to further confirm the role of these genes in brace root growth. These results demonstrate that miR390, ZmARF11, and ZmARF26 play crucial roles in regulating maize brace root growth; the involved complicated molecular mechanisms need to be further explored. This study provides a genetic basis for breeding maize varieties with improved lodging resistance and adaptability to diverse agricultural environments.
Collapse
Affiliation(s)
- Juan Meng
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Weiya Li
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Feiyan Qi
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Tianxiao Yang
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA;
| | - Na Li
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Jiong Wan
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Xiaoqi Li
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Yajuan Jiang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Chenhui Wang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Meilian Huang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Yuanyuan Zhang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Yongqiang Chen
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Sachin Teotia
- Department of Biotechnology, Sharda University, Greater Noida 201306, India;
| | - Guiliang Tang
- Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA;
| | - Zhanhui Zhang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
- The Shennong Laboratory, Zhengzhou 450002, China
| |
Collapse
|
8
|
Amin A, Naim MD, Islam N, Mollah MNH. Genome-wide identification and characterization of DTX family genes highlighting their locations, functions, and regulatory factors in banana (Musa acuminata). PLoS One 2024; 19:e0303065. [PMID: 38843276 PMCID: PMC11156367 DOI: 10.1371/journal.pone.0303065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/19/2024] [Indexed: 06/09/2024] Open
Abstract
The detoxification efflux carriers (DTX) are a significant group of multidrug efflux transporter family members that play diverse functions in all kingdoms of living organisms. However, genome-wide identification and characterization of DTX family transporters have not yet been performed in banana, despite its importance as an economic fruit plant. Therefore, a detailed genome-wide analysis of DTX family transporters in banana (Musa acuminata) was conducted using integrated bioinformatics and systems biology approaches. In this study, a total of 37 DTX transporters were identified in the banana genome and divided into four groups (I, II, III, and IV) based on phylogenetic analysis. The gene structures, as well as their proteins' domains and motifs, were found to be significantly conserved. Gene ontology (GO) annotation revealed that the predicted DTX genes might play a vital role in protecting cells and membrane-bound organelles through detoxification mechanisms and the removal of drug molecules from banana cells. Gene regulatory analyses identified key transcription factors (TFs), cis-acting elements, and post-transcriptional regulators (miRNAs) of DTX genes, suggesting their potential roles in banana. Furthermore, the changes in gene expression levels due to pathogenic infections and non-living factor indicate that banana DTX genes play a role in responses to both biotic and abiotic stresses. The results of this study could serve as valuable tools to improve banana quality by protecting them from a range of environmental stresses.
Collapse
Affiliation(s)
- Al Amin
- Department of Statistics, Bioinformatics Laboratory, Faculty of Science, University of Rajshahi, Rajshahi, Bangladesh
- Department of Zoology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Darun Naim
- Department of Botany, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Nurul Islam
- Department of Zoology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Nurul Haque Mollah
- Department of Statistics, Bioinformatics Laboratory, Faculty of Science, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
9
|
Jafari F, Wang B, Wang H, Zou J. Breeding maize of ideal plant architecture for high-density planting tolerance through modulating shade avoidance response and beyond. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:849-864. [PMID: 38131117 DOI: 10.1111/jipb.13603] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Maize is a major staple crop widely used as food, animal feed, and raw materials in industrial production. High-density planting is a major factor contributing to the continuous increase of maize yield. However, high planting density usually triggers a shade avoidance response and causes increased plant height and ear height, resulting in lodging and yield loss. Reduced plant height and ear height, more erect leaf angle, reduced tassel branch number, earlier flowering, and strong root system architecture are five key morphological traits required for maize adaption to high-density planting. In this review, we summarize recent advances in deciphering the genetic and molecular mechanisms of maize involved in response to high-density planting. We also discuss some strategies for breeding advanced maize cultivars with superior performance under high-density planting conditions.
Collapse
Affiliation(s)
- Fereshteh Jafari
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Nanfan Research Institute, CAAS, Sanya, 572025, China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Junjie Zou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Nanfan Research Institute, CAAS, Sanya, 572025, China
| |
Collapse
|
10
|
Zhou C, Lin Q, Ren Y, Lan J, Miao R, Feng M, Wang X, Liu X, Zhang S, Pan T, Wang J, Luo S, Qian J, Luo W, Mou C, Nguyen T, Cheng Z, Zhang X, Lei C, Zhu S, Guo X, Wang J, Zhao Z, Liu S, Jiang L, Wan J. A CYP78As-small grain4-coat protein complex Ⅱ pathway promotes grain size in rice. THE PLANT CELL 2023; 35:4325-4346. [PMID: 37738653 PMCID: PMC10689148 DOI: 10.1093/plcell/koad239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/11/2023] [Accepted: 08/11/2023] [Indexed: 09/24/2023]
Abstract
CYP78A, a cytochrome P450 subfamily that includes rice (Oryza sativa L.) BIG GRAIN2 (BG2, CYP78A13) and Arabidopsis thaliana KLUH (KLU, CYP78A5), generate an unknown mobile growth signal (referred to as a CYP78A-derived signal) that increases grain (seed) size. However, the mechanism by which the CYP78A pathway increases grain size remains elusive. Here, we characterized a rice small grain mutant, small grain4 (smg4), with smaller grains than its wild type due to restricted cell expansion and cell proliferation in spikelet hulls. SMG4 encodes a multidrug and toxic compound extrusion (MATE) transporter. Loss of function of SMG4 causes smaller grains while overexpressing SMG4 results in larger grains. SMG4 is mainly localized to endoplasmic reticulum (ER) exit sites (ERESs) and partially localized to the ER and Golgi. Biochemically, SMG4 interacts with coat protein complex Ⅱ (COPⅡ) components (Sar1, Sec23, and Sec24) and CYP78As (BG2, GRAIN LENGTH 3.2 [GL3.2], and BG2-LIKE 1 [BG2L1]). Genetically, SMG4 acts, at least in part, in a common pathway with Sar1 and CYP78As to regulate grain size. In summary, our findings reveal a CYP78As-SMG4-COPⅡ regulatory pathway for grain size in rice, thus providing new insights into the molecular and genetic regulatory mechanism of grain size.
Collapse
Affiliation(s)
- Chunlei Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qibing Lin
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Lan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Rong Miao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Miao Feng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengzhong Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Pan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiachang Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Sheng Luo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinsheng Qian
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenfan Luo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changling Mou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Thanhliem Nguyen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhijun Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shanshan Zhu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhichao Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
11
|
Xiao L, Fang Y, Zhang H, Quan M, Zhou J, Li P, Wang D, Ji L, Ingvarsson PK, Wu HX, El-Kassaby YA, Du Q, Zhang D. Natural variation in the prolyl 4-hydroxylase gene PtoP4H9 contributes to perennial stem growth in Populus. THE PLANT CELL 2023; 35:4046-4065. [PMID: 37522322 PMCID: PMC10615208 DOI: 10.1093/plcell/koad212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023]
Abstract
Perennial trees must maintain stem growth throughout their entire lifespan to progressively increase in size as they age. The overarching question of the molecular mechanisms that govern stem perennial growth in trees remains largely unanswered. Here we deciphered the genetic architecture that underlies perennial growth trajectories using genome-wide association studies (GWAS) for measures of growth traits across years in a natural population of Populus tomentosa. By analyzing the stem growth trajectory, we identified PtoP4H9, encoding prolyl 4-hydroxylase 9, which is responsible for the natural variation in the growth rate of diameter at breast height (DBH) across years. Quantifying the dynamic genetic contribution of PtoP4H9 loci to stem growth showed that PtoP4H9 played a pivotal role in stem growth regulation. Spatiotemporal expression analysis showed that PtoP4H9 was highly expressed in cambium tissues of poplars of various ages. Overexpression and knockdown of PtoP4H9 revealed that it altered cell expansion to regulate cell wall modification and mechanical characteristics, thereby promoting stem growth in Populus. We showed that natural variation in PtoP4H9 occurred in a BASIC PENTACYSTEINE transcription factor PtoBPC1-binding promoter element controlling PtoP4H9 expression. The geographic distribution of PtoP4H9 allelic variation was consistent with the modes of selection among populations. Altogether, our study provides important genetic insights into dynamic stem growth in Populus, and we confirmed PtoP4H9 as a potential useful marker for breeding or genetic engineering of poplars.
Collapse
Affiliation(s)
- Liang Xiao
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206,China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
| | - Yuanyuan Fang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
| | - He Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871,China
| | - Mingyang Quan
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
| | - Jiaxuan Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
| | - Peng Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
| | - Dan Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
| | - Li Ji
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083,China
| | - Pär K Ingvarsson
- Linnean Center for Plant Biology, Department of Plant Biology, Swedish University of Agricultural Sciences, Box 7080, SE-750 07 Uppsala,Sweden
| | - Harry X Wu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Science, 90183 Umeå,Sweden
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, British Columbia V6T 1Z4,Canada
| | - Qingzhang Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083,China
| | - Deqiang Zhang
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206,China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
| |
Collapse
|
12
|
Li X, Wasson AP, Zwart AB, Whan A, Ryan PR, Forrest K, Hayden M, Chin S, Richards R, Delhaize E. Physical Mapping of QTLs for Root Traits in a Population of Recombinant Inbred Lines of Hexaploid Wheat. Int J Mol Sci 2023; 24:10492. [PMID: 37445670 DOI: 10.3390/ijms241310492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Root architecture is key in determining how effective plants are at intercepting and absorbing nutrients and water. Previously, the wheat (Triticum aestivum) cultivars Spica and Maringa were shown to have contrasting root morphologies. These cultivars were crossed to generate an F6:1 population of recombinant inbred lines (RILs) which was genotyped using a 90 K single nucleotide polymorphisms (SNP) chip. A total of 227 recombinant inbred lines (RILs) were grown in soil for 21 days in replicated trials under controlled conditions. At harvest, the plants were scored for seven root traits and two shoot traits. An average of 7.5 quantitative trait loci (QTL) were associated with each trait and, for each of these, physical locations of the flanking markers were identified using the Chinese Spring reference genome. We also compiled a list of genes from wheat and other monocotyledons that have previously been associated with root growth and morphology to determine their physical locations on the Chinese Spring reference genome. This allowed us to determine whether the QTL discovered in our study encompassed genes previously associated with root morphology in wheat or other monocotyledons. Furthermore, it allowed us to establish if the QTL were co-located with the QTL identified from previously published studies. The parental lines together with the genetic markers generated here will enable specific root traits to be introgressed into elite wheat lines. Moreover, the comprehensive list of genes associated with root development, and their physical locations, will be a useful resource for researchers investigating the genetics of root morphology in cereals.
Collapse
Affiliation(s)
- Xiaoqing Li
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Anton P Wasson
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | | | - Alex Whan
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Peter R Ryan
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Kerrie Forrest
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Matthew Hayden
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Sabrina Chin
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | | | - Emmanuel Delhaize
- Australian Plant Phenomics Facility, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
13
|
He K, Zhao Z, Ren W, Chen Z, Chen L, Chen F, Mi G, Pan Q, Yuan L. Mining genes regulating root system architecture in maize based on data integration analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:127. [PMID: 37188973 DOI: 10.1007/s00122-023-04376-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
KEY MESSAGE A new strategy that integrated multiple public data resources was established to construct root gene co-expression network and mine genes regulating root system architecture in maize. A root gene co-expression network, containing 13,874 genes, was constructed. A total of 53 root hub genes and 16 priority root candidate genes were identified. One priority root candidate was further functionally verified using overexpression transgenic maize lines. Root system architecture (RSA) is crucial for crops productivity and stress tolerance. In maize, few RSA genes are functionally cloned, and effective discovery of RSA genes remains a great of challenge. In this work, we established a strategy to mine maize RSA genes by integrating functionally characterized root genes, root transcriptome, weighted gene co-expression network analysis (WGCNA) and genome-wide association analysis (GWAS) of RSA traits based on public data resources. A total of 589 maize root genes were collected by searching well-characterized root genes in maize or homologous genes of other species. We performed WGCNA to construct a maize root gene co-expression network containing 13874 genes based on public available root transcriptome data, and further discovered the 53 hub genes related to root traits. In addition, by the prediction function of obtained root gene co-expression network, a total of 1082 new root candidate genes were explored. By further overlapping the obtained new root candidate gene with the root-related GWAS of RSA candidate genes, 16 priority root candidate genes were identified. Finally, a priority root candidate gene, Zm00001d023379 (encodes pyruvate kinase 2), was validated to modulate root open angle and shoot-borne roots number using its overexpression transgenic lines. Our results develop an integration analysis method for effectively exploring regulatory genes of RSA in maize and open a new avenue to mine the candidate genes underlying complex traits.
Collapse
Affiliation(s)
- Kunhui He
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Zheng Zhao
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Wei Ren
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Zhe Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Limei Chen
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Fanjun Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Guohua Mi
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Qingchun Pan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Lixing Yuan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
14
|
Li Q, Liu N, Wu C. Novel insights into maize (Zea mays) development and organogenesis for agricultural optimization. PLANTA 2023; 257:94. [PMID: 37031436 DOI: 10.1007/s00425-023-04126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
In maize, intrinsic hormone activities and sap fluxes facilitate organogenesis patterning and plant holistic development; these hormone movements should be a primary focus of developmental biology and agricultural optimization strategies. Maize (Zea mays) is an important crop plant with distinctive life history characteristics and structural features. Genetic studies have extended our knowledge of maize developmental processes, genetics, and molecular ecophysiology. In this review, the classical life cycle and life history strategies of maize are analyzed to identify spatiotemporal organogenesis properties and develop a definitive understanding of maize development. The actions of genes and hormones involved in maize organogenesis and sex determination, along with potential molecular mechanisms, are investigated, with findings suggesting central roles of auxin and cytokinins in regulating maize holistic development. Furthermore, investigation of morphological and structural characteristics of maize, particularly node ubiquity and the alternate attachment pattern of lateral organs, yields a novel regulatory model suggesting that maize organ initiation and subsequent development are derived from the stimulation and interaction of auxin and cytokinin fluxes. Propositions that hormone activities and sap flow pathways control organogenesis are thoroughly explored, and initiation and development processes of distinctive maize organs are discussed. Analysis of physiological factors driving hormone and sap movement implicates cues of whole-plant activity for hormone and sap fluxes to stimulate maize inflorescence initiation and organ identity determination. The physiological origins and biogenetic mechanisms underlying maize floral sex determination occurring at the tassel and ear spikelet are thoroughly investigated. The comprehensive outline of maize development and morphogenetic physiology developed in this review will enable farmers to optimize field management and will provide a reference for de novo crop domestication and germplasm improvement using genome editing biotechnologies, promoting agricultural optimization.
Collapse
Affiliation(s)
- Qinglin Li
- Crop Genesis and Novel Agronomy Center, Yangling, 712100, Shaanxi, China.
| | - Ning Liu
- Shandong ZhongnongTiantai Seed Co., Ltd, Pingyi, 273300, Shandong, China
| | - Chenglai Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
15
|
Zhu W, Miao X, Qian J, Chen S, Jin Q, Li M, Han L, Zhong W, Xie D, Shang X, Li L. A translatome-transcriptome multi-omics gene regulatory network reveals the complicated functional landscape of maize. Genome Biol 2023; 24:60. [PMID: 36991439 PMCID: PMC10053466 DOI: 10.1186/s13059-023-02890-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 03/04/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Maize (Zea mays L.) is one of the most important crops worldwide. Although sophisticated maize gene regulatory networks (GRNs) have been constructed for functional genomics and phenotypic dissection, a multi-omics GRN connecting the translatome and transcriptome is lacking, hampering our understanding and exploration of the maize regulatome. RESULTS We collect spatio-temporal translatome and transcriptome data and systematically explore the landscape of gene transcription and translation across 33 tissues or developmental stages of maize. Using this comprehensive transcriptome and translatome atlas, we construct a multi-omics GRN integrating mRNAs and translated mRNAs, demonstrating that translatome-related GRNs outperform GRNs solely using transcriptomic data and inter-omics GRNs outperform intra-omics GRNs in most cases. With the aid of the multi-omics GRN, we reconcile some known regulatory networks. We identify a novel transcription factor, ZmGRF6, which is associated with growth. Furthermore, we characterize a function related to drought response for the classic transcription factor ZmMYB31. CONCLUSIONS Our findings provide insights into spatio-temporal changes across maize development at both the transcriptome and translatome levels. Multi-omics GRNs represent a useful resource for dissection of the regulatory mechanisms underlying phenotypic variation.
Collapse
Affiliation(s)
- Wanchao Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Xinxin Miao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Jia Qian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Sijia Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qixiao Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Mingzhu Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Linqian Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Wanshun Zhong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Dan Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Xiaoyang Shang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
- HuBei HongShan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
16
|
Karnatam KS, Chhabra G, Saini DK, Singh R, Kaur G, Praba UP, Kumar P, Goyal S, Sharma P, Ranjan R, Sandhu SK, Kumar R, Vikal Y. Genome-Wide Meta-Analysis of QTLs Associated with Root Traits and Implications for Maize Breeding. Int J Mol Sci 2023; 24:6135. [PMID: 37047112 PMCID: PMC10093813 DOI: 10.3390/ijms24076135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Root system architecture (RSA), also known as root morphology, is critical in plant acquisition of soil resources, plant growth, and yield formation. Many QTLs associated with RSA or root traits in maize have been identified using several bi-parental populations, particularly in response to various environmental factors. In the present study, a meta-analysis of QTLs associated with root traits was performed in maize using 917 QTLs retrieved from 43 mapping studies published from 1998 to 2020. A total of 631 QTLs were projected onto a consensus map involving 19,714 markers, which led to the prediction of 68 meta-QTLs (MQTLs). Among these 68 MQTLs, 36 MQTLs were validated with the marker-trait associations available from previous genome-wide association studies for root traits. The use of comparative genomics approaches revealed several gene models conserved among the maize, sorghum, and rice genomes. Among the conserved genomic regions, the ortho-MQTL analysis uncovered 20 maize MQTLs syntenic to 27 rice MQTLs for root traits. Functional analysis of some high-confidence MQTL regions revealed 442 gene models, which were then subjected to in silico expression analysis, yielding 235 gene models with significant expression in various tissues. Furthermore, 16 known genes viz., DXS2, PHT, RTP1, TUA4, YUC3, YUC6, RTCS1, NSA1, EIN2, NHX1, CPPS4, BIGE1, RCP1, SKUS13, YUC5, and AW330564 associated with various root traits were present within or near the MQTL regions. These results could aid in QTL cloning and pyramiding in developing new maize varieties with specific root architecture for proper plant growth and development under optimum and abiotic stress conditions.
Collapse
Affiliation(s)
- Krishna Sai Karnatam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| | - Gautam Chhabra
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141001, India
| | - Rajveer Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| | - Gurwinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| | - Umesh Preethi Praba
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| | - Pankaj Kumar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| | - Simran Goyal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| | - Priti Sharma
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| | - Rumesh Ranjan
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141001, India
| | - Surinder K. Sandhu
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141001, India
| | - Ramesh Kumar
- Indian Institute of Maize Research, Ludhiana 141001, India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| |
Collapse
|
17
|
Wang K, Zhang Z, Sha X, Yu P, Li Y, Zhang D, Liu X, He G, Li Y, Wang T, Guo J, Chen J, Li C. Identification of a new QTL underlying seminal root number in a maize-teosinte population. FRONTIERS IN PLANT SCIENCE 2023; 14:1132017. [PMID: 36824192 PMCID: PMC9941338 DOI: 10.3389/fpls.2023.1132017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Seminal roots play an important role in acquisition of water and nutrients by maize seedlings. Compared with its teosinte ancestor, maize underwent a change in seminal root number (SRN). Although several key genes controlling SRN have been cloned, identification and utilization of new genes from teosinte would be useful for improving maize root architecture. In this study, a maize-teosinte BC2F6 population containing 206 individuals genotyped by resequencing was used to conduct high-resolution quantitative trait locus (QTL) mapping of SRN. A new major QTL on chromosome 7 (qSRN7) was identified. Differentially expressed genes (DEGs) based on RNA-Seq were identified between two inbred lines with no SRN and multiple SRN at two periods of seminal roots primordia formation. A total of 116 DEGs detected in at least one period were identified within the qSRN7 interval. Three DEGs (Zm00001d021572, Zm00001d021579 and Zm00001d021861) associated with SRN were identified through regional association mapping. When compared with reported domestication-related selective sweeps, Zm00001d021572 was selected during maize domestication. Our findings provide important insights into the genetic basis of SRN and identify a promising candidate gene for further studies on SRN.
Collapse
Affiliation(s)
- Kailiang Wang
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Zhen Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - XiaoQian Sha
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peng Yu
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Yongxiang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengfeng Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuyang Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guanhua He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianyu Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Guo
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Jiafa Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Chunhui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
18
|
Singh Z, Singh H, Garg T, Mushahary KKK, Yadav SR. Genetic and Hormonal Blueprint of Shoot-Borne Adventitious Root Development in Rice and Maize. PLANT & CELL PHYSIOLOGY 2023; 63:1806-1813. [PMID: 35713294 DOI: 10.1093/pcp/pcac084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/05/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The evolution of root architecture in plants was a prerequisite for the absorption of water and minerals from the soil, and thus a major determinant of terrestrial plant colonization. Cereals have a remarkably complex root system consisting of embryonic primary roots and post-embryonic lateral roots and shoot-borne adventitious roots. Among grass species, rice adventitious roots (also called crown roots) are developed from compressed nodes at the stem base, whereas in maize, besides crown roots, several aboveground brace roots are also formed, thus adventitious root types display species-specific diversity. Despite being the backbone for the adult root system in monocots, adventitious roots are the least studied of all the plant organs. In recent times, molecular genetics, genomics and proteomics-based approaches have been utilized to dissect the mechanism of post-embryonic meristem formation and tissue patterning. Adventitious root development is a cumulative effect of the actions and interactions of crucial genetic and hormonal regulators. In this review, we provide a comprehensive view of the key regulators involved during the different stages of adventitious root development in two important crop plants, rice and maize. We have reviewed the roles of major phytohormones, microRNAs and transcription factors and their crosstalk during adventitious root development in these cereal crops.
Collapse
Affiliation(s)
- Zeenu Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Harshita Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Tushar Garg
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | | | - Shri Ram Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
19
|
Wang C, Li H, Long Y, Dong Z, Wang J, Liu C, Wei X, Wan X. A Systemic Investigation of Genetic Architecture and Gene Resources Controlling Kernel Size-Related Traits in Maize. Int J Mol Sci 2023; 24:1025. [PMID: 36674545 PMCID: PMC9865405 DOI: 10.3390/ijms24021025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
Grain yield is the most critical and complex quantitative trait in maize. Kernel length (KL), kernel width (KW), kernel thickness (KT) and hundred-kernel weight (HKW) associated with kernel size are essential components of yield-related traits in maize. With the extensive use of quantitative trait locus (QTL) mapping and genome-wide association study (GWAS) analyses, thousands of QTLs and quantitative trait nucleotides (QTNs) have been discovered for controlling these traits. However, only some of them have been cloned and successfully utilized in breeding programs. In this study, we exhaustively collected reported genes, QTLs and QTNs associated with the four traits, performed cluster identification of QTLs and QTNs, then combined QTL and QTN clusters to detect consensus hotspot regions. In total, 31 hotspots were identified for kernel size-related traits. Their candidate genes were predicted to be related to well-known pathways regulating the kernel developmental process. The identified hotspots can be further explored for fine mapping and candidate gene validation. Finally, we provided a strategy for high yield and quality maize. This study will not only facilitate causal genes cloning, but also guide the breeding practice for maize.
Collapse
Affiliation(s)
- Cheng Wang
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Huangai Li
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Yan Long
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Zhenying Dong
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Jianhui Wang
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Chang Liu
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xun Wei
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xiangyuan Wan
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| |
Collapse
|
20
|
Huang J, Zhang G, Li Y, Lyu M, Zhang H, Zhang N, Chen R. Integrative genomic and transcriptomic analyses of a bud sport mutant 'Jinzao Wuhe' with the phenotype of large berries in grapevines. PeerJ 2023; 11:e14617. [PMID: 36620751 PMCID: PMC9817954 DOI: 10.7717/peerj.14617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023] Open
Abstract
Background Bud sport mutation occurs frequently in fruit plants and acts as an important approach for grapevine improvement and breeding. 'Jinzao Wuhe' is a bud sport of the elite cultivar 'Himord Seedless' with obviously enlarged organs and berries. To date, the molecular mechanisms underlying berry enlargement caused by bud sport in grapevines remain unclear. Methods Whole genome resequencing (WGRS) was performed for two pairs of bud sports and their maternal plants with similar phenotype to identify SNPs, InDels and structural variations (SVs) as well as related genes. Furthermore, transcriptomic sequencing at different developmental stages and weighted gene co-expression network analysis (WGCNA) for 'Jinzao Wuhe' and its maternal plant 'Himord Seedless' were carried out to identify the differentially expressed genes (DEGs), which were subsequently analyzed for Gene Ontology (GO) and function annotation. Results In two pairs of enlarged berry bud sports, a total of 1,334 SNPs, 272 InDels and 74 SVs, corresponding to 1,022 target genes related to symbiotic microorganisms, cell death and other processes were identified. Meanwhile, 1,149 DEGs associated with cell wall modification, stress-response and cell killing might be responsible for the phenotypic variation were also determined. As a result, 42 DEGs between 'Himord Seedless' and 'Jinzao Wuhe' harboring genetic variations were further investigated, including pectin esterase, cellulase A, cytochromes P450 (CYP), UDP-glycosyltransferase (UGT), zinc finger protein, auxin response factor (ARF), NAC transcription factor (TF), protein kinase, etc. These candidate genes offer important clues for a better understanding of developmental regulations of berry enlargement in grapevine. Conclusion Our results provide candidate genes and valuable information for dissecting the underlying mechanisms of berry development and contribute to future improvement of grapevine cultivars.
Collapse
Affiliation(s)
- Jianquan Huang
- The Research Institute of Forestry and Pomology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Guan Zhang
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Yanhao Li
- The Research Institute of Forestry and Pomology, Tianjin Academy of Agricultural Sciences, Tianjin, China
- College of Horticulture and Gardening, Tianjin Agricultural University, Tianjin, China
| | - Mingjie Lyu
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - He Zhang
- The Research Institute of Forestry and Pomology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Na Zhang
- The Research Institute of Forestry and Pomology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Rui Chen
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| |
Collapse
|
21
|
Melicher P, Dvořák P, Šamaj J, Takáč T. Protein-protein interactions in plant antioxidant defense. FRONTIERS IN PLANT SCIENCE 2022; 13:1035573. [PMID: 36589041 PMCID: PMC9795235 DOI: 10.3389/fpls.2022.1035573] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The regulation of reactive oxygen species (ROS) levels in plants is ensured by mechanisms preventing their over accumulation, and by diverse antioxidants, including enzymes and nonenzymatic compounds. These are affected by redox conditions, posttranslational modifications, transcriptional and posttranscriptional modifications, Ca2+, nitric oxide (NO) and mitogen-activated protein kinase signaling pathways. Recent knowledge about protein-protein interactions (PPIs) of antioxidant enzymes advanced during last decade. The best-known examples are interactions mediated by redox buffering proteins such as thioredoxins and glutaredoxins. This review summarizes interactions of major antioxidant enzymes with regulatory and signaling proteins and their diverse functions. Such interactions are important for stability, degradation and activation of interacting partners. Moreover, PPIs of antioxidant enzymes may connect diverse metabolic processes with ROS scavenging. Proteins like receptor for activated C kinase 1 may ensure coordination of antioxidant enzymes to ensure efficient ROS regulation. Nevertheless, PPIs in antioxidant defense are understudied, and intensive research is required to define their role in complex regulation of ROS scavenging.
Collapse
|
22
|
Ren W, Zhao L, Liang J, Wang L, Chen L, Li P, Liu Z, Li X, Zhang Z, Li J, He K, Zhao Z, Ali F, Mi G, Yan J, Zhang F, Chen F, Yuan L, Pan Q. Genome-wide dissection of changes in maize root system architecture during modern breeding. NATURE PLANTS 2022; 8:1408-1422. [PMID: 36396706 DOI: 10.1038/s41477-022-01274-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 10/12/2022] [Indexed: 05/12/2023]
Abstract
Appropriate root system architecture (RSA) can improve maize yields in densely planted fields, but little is known about its genetic basis in maize. Here we performed root phenotyping of 14,301 field-grown plants from an association mapping panel to study the genetic architecture of maize RSA. A genome-wide association study identified 81 high-confidence RSA-associated candidate genes and revealed that 28 (24.3%) of known root-related genes were selected during maize domestication and improvement. We found that modern maize breeding has selected for a steeply angled root system. Favourable alleles related to steep root system angle have continuously accumulated over the course of modern breeding, and our data pinpoint the root-related genes that have been selected in different breeding eras. We confirm that two auxin-related genes, ZmRSA3.1 and ZmRSA3.2, contribute to the regulation of root angle and depth in maize. Our genome-wide identification of RSA-associated genes provides new strategies and genetic resources for breeding maize suitable for high-density planting.
Collapse
Affiliation(s)
- Wei Ren
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Longfei Zhao
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Jiaxing Liang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Lifeng Wang
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Limei Chen
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| | - Pengcheng Li
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Zhigang Liu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaojie Li
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Zhihai Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Jieping Li
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Kunhui He
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Zheng Zhao
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Farhan Ali
- Cereal Crops Research Institute, Pirsabak, Nowshera, Pakistan
| | - Guohua Mi
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Fusuo Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Fanjun Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.
- Sanya Institute of China Agricultural University, Sanya, China.
| | - Lixing Yuan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China.
| | - Qingchun Pan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.
- Sanya Institute of China Agricultural University, Sanya, China.
| |
Collapse
|
23
|
Li X, Jia Y, Sun M, Ji Z, Zhang H, Qiu D, Cai Q, Xia Y, Yuan X, Chen X, Shen Z. MINI BODY1, encoding a MATE/DTX family transporter, affects plant architecture in mungbean ( Vigna radiata L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1064685. [PMID: 36466236 PMCID: PMC9714821 DOI: 10.3389/fpls.2022.1064685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
It has been shown that multidrug and toxic compound extrusion/detoxification (MATE/DTX) family transporters are involved in the regulation of plant development and stress response. Here, we characterized the mini body1 (mib1) mutants in mungbean, which gave rise to increased branches, pentafoliate compound leaves, and shortened pods. Map-based cloning revealed that MIB1 encoded a MATE/DTX family protein in mungbean. qRT-PCR analysis showed that MIB1 was expressed in all tissues of mungbean, with the highest expression level in the young inflorescence. Complementation assays in Escherichia coli revealed that MIB1 potentially acted as a MATE/DTX transporter in mungbean. It was found that overexpression of the MIB1 gene partially rescued the shortened pod phenotype of the Arabidopsis dtx54 mutant. Transcriptomic analysis of the shoot buds and young pods revealed that the expression levels of several genes involved in the phytohormone pathway and developmental regulators were altered in the mib1 mutants. Our results suggested that MIB1 plays a key role in the control of plant architecture establishment in mungbean.
Collapse
Affiliation(s)
- Xin Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yahui Jia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingzhu Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zikun Ji
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Hui Zhang
- National experimental Teaching Center for Plant Production, Nanjing Agricultural University, Nanjing, China
| | - Dan Qiu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qiao Cai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yan Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
24
|
The Role of Transmembrane Proteins in Plant Growth, Development, and Stress Responses. Int J Mol Sci 2022; 23:ijms232113627. [PMID: 36362412 PMCID: PMC9655316 DOI: 10.3390/ijms232113627] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Transmembrane proteins participate in various physiological activities in plants, including signal transduction, substance transport, and energy conversion. Although more than 20% of gene products are predicted to be transmembrane proteins in the genome era, due to the complexity of transmembrane domains they are difficult to reliably identify in the predicted protein, and they may have different overall three-dimensional structures. Therefore, it is challenging to study their biological function. In this review, we describe the typical structures of transmembrane proteins and their roles in plant growth, development, and stress responses. We propose a model illustrating the roles of transmembrane proteins during plant growth and response to various stresses, which will provide important references for crop breeding.
Collapse
|
25
|
Nimmy MS, Kumar V, Suthanthiram B, Subbaraya U, Nagar R, Bharadwaj C, Jain PK, Krishnamurthy P. A Systematic Phylogenomic Classification of the Multidrug and Toxic Compound Extrusion Transporter Gene Family in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:774885. [PMID: 35371145 PMCID: PMC8970042 DOI: 10.3389/fpls.2022.774885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Multidrug and toxic compound extrusion (MATE) transporters comprise a multigene family that mediates multiple functions in plants through the efflux of diverse substrates including organic molecules, specialized metabolites, hormones, and xenobiotics. MATE classification based on genome-wide studies remains ambiguous, likely due to a lack of large-scale phylogenomic studies and/or reference sequence datasets. To resolve this, we established a phylogeny of the plant MATE gene family using a comprehensive kingdom-wide phylogenomic analysis of 74 diverse plant species. We identified more than 4,000 MATEs, which were classified into 14 subgroups based on a systematic bioinformatics pipeline using USEARCH, blast+ and synteny network tools. Our classification was performed using a four-step process, whereby MATEs sharing ≥ 60% protein sequence identity with a ≤ 1E-05 threshold at different sequence lengths (either full-length, ≥ 60% length, or ≥ 150 amino acids) or retaining in the similar synteny blocks were assigned to the same subgroup. In this way, we assigned subgroups to 95.8% of the identified MATEs, which we substantiated using synteny network clustering analysis. The subgroups were clustered under four major phylogenetic groups and named according to their clockwise appearance within each group. We then generated a reference sequence dataset, the usefulness of which was demonstrated in the classification of MATEs in additional species not included in the original analysis. Approximately 74% of the plant MATEs exhibited synteny relationships with angiosperm-wide or lineage-, order/family-, and species-specific conservation. Most subgroups evolved independently, and their distinct evolutionary trends were likely associated with the development of functional novelties or the maintenance of conserved functions. Together with the systematic classification and synteny network profiling analyses, we identified all the major evolutionary events experienced by the MATE gene family in plants. We believe that our findings and the reference dataset provide a valuable resource to guide future functional studies aiming to explore the key roles of MATEs in different aspects of plant physiology. Our classification framework can also be readily extendable to other (super) families.
Collapse
Affiliation(s)
| | - Vinod Kumar
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Bhagalpur, India
| | | | - Uma Subbaraya
- Crop Improvement Division, ICAR–National Research Centre for Banana, Tiruchirappalli, India
| | - Ramawatar Nagar
- ICAR–National Institute for Plant Biotechnology, New Delhi, India
| | | | | | | |
Collapse
|
26
|
G. Viana W, Scharwies JD, Dinneny JR. Deconstructing the root system of grasses through an exploration of development, anatomy and function. PLANT, CELL & ENVIRONMENT 2022; 45:602-619. [PMID: 35092025 PMCID: PMC9303260 DOI: 10.1111/pce.14270] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 05/16/2023]
Abstract
Well-adapted root systems allow plants to grow under resource-limiting environmental conditions and are important determinants of yield in agricultural systems. Important staple crops such as rice and maize belong to the family of grasses, which develop a complex root system that consists of an embryonic root system that emerges from the seed, and a postembryonic nodal root system that emerges from basal regions of the shoot after germination. While early seedling establishment is dependent on the embryonic root system, the nodal root system, and its associated branches, gains in importance as the plant matures and will ultimately constitute the bulk of below-ground growth. In this review, we aim to give an overview of the different root types that develop in cereal grass root systems, explore the different physiological roles they play by defining their anatomical features, and outline the genetic networks that control their development. Through this deconstructed view of grass root system function, we provide a parts-list of elements that function together in an integrated root system to promote survival and crop productivity.
Collapse
Affiliation(s)
| | | | - José R. Dinneny
- Department of BiologyStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
27
|
A rice QTL GS3.1 regulates grain size through metabolic-flux distribution between flavonoid and lignin metabolons without affecting stress tolerance. Commun Biol 2021; 4:1171. [PMID: 34620988 PMCID: PMC8497587 DOI: 10.1038/s42003-021-02686-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023] Open
Abstract
Grain size is a key component trait of grain weight and yield. Numbers of quantitative trait loci (QTLs) have been identified in various bioprocesses, but there is still little known about how metabolism-related QTLs influence grain size and yield. The current study report GS3.1, a QTL that regulates rice grain size via metabolic flux allocation between two branches of phenylpropanoid metabolism. GS3.1 encodes a MATE (multidrug and toxic compounds extrusion) transporter that regulates grain size by directing the transport of p-coumaric acid from the p-coumaric acid biosynthetic metabolon to the flavonoid biosynthetic metabolon. A natural allele of GS3.1 was identified from an African rice with enlarged grains, reduced flavonoid content and increased lignin content in the panicles. Notably, the natural allele of GS3.1 caused no alterations in other tissues and did not affect stress tolerance, revealing an ideal candidate for breeding efforts. This study uncovers insights into the regulation of grain size though metabolic-flux distribution. In this way, it supports a strategy of enhancing crop yield without introducing deleterious side effects on stress tolerance mechanisms.
Collapse
|
28
|
Du Z, Huang Z, Li J, Bao J, Tu H, Zeng C, Wu Z, Fu H, Xu J, Zhou D, Zhu C, Fu J, He H. qTGW12a, a naturally varying QTL, regulates grain weight in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2767-2776. [PMID: 34021769 PMCID: PMC8354980 DOI: 10.1007/s00122-021-03857-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/10/2021] [Indexed: 05/18/2023]
Abstract
KEY MESSAGE A stable QTL associated with rice grain type with a large effect value was found in multiple environments, and its candidate genes were verified by genetic transformation. Rice (Oryza sativa L.) grain size is critical to both yield and appearance quality. Therefore, the discovery and identification of rice grain size genes can provide pathways for the cultivation of high-yielding varieties. In the present work, 45,607 SNP markers were used to construct a high-density genetic map of rice recombinant inbred lines, and hence a total of 14 quantitative trait loci (QTLs) were detected based on the phenotypic data of grain weight, grain length and grain width under four different environments. qTGW12a and qGL12 are newly detected QTLs related to grain weight, and are located between 22.43 Mb and 22.45 Mb on chromosome 12. Gene annotation shows that the QTL region contains the LOC_Os12g36660 annotated gene, which encodes the multidrug and toxic compound extrusion (MATE) transporter. Mutations in exons and the splice site were responsible for the changes in grain type and weight. Gene knockout experiments were used to verify these results. Hence, these results provide a basis for the cloning of qTGW12a. This discovery provides new insights for studying the genetic mechanism of rice grain morphology, and reveals a promising gene to ultimately increase rice yield.
Collapse
Affiliation(s)
- Zhixuan Du
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Zhou Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Jianbin Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Jianzhong Bao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Hang Tu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Chuihai Zeng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Zheng Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Haihui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Jie Xu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Dahu Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Changlan Zhu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Junru Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China.
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China.
| |
Collapse
|
29
|
Zhang W, Liao L, Xu J, Han Y, Li L. Genome-wide identification, characterization and expression analysis of MATE family genes in apple (Malus × domestica Borkh). BMC Genomics 2021; 22:632. [PMID: 34461821 PMCID: PMC8406601 DOI: 10.1186/s12864-021-07943-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As an important group of the multidrug efflux transporter family, the multidrug and toxic compound extrusion (MATE) family has a wide range of functions and is distributed in all kingdoms of living organisms. However, only two MATE genes in apple have been analyzed and genome-wide comprehensive analysis of MATE family is needed. RESULTS In this study, a total of 66 MATE (MdMATE) candidates encoding putative MATE transporters were identified in the apple genome. These MdMATE genes were classified into four groups by phylogenetic analysis with MATE genes in Arabidopsis. Synteny analysis reveals that whole genome duplication (WGD) and segmental duplication events played a major role in the expansion of MATE gene family in apple. MdMATE genes show diverse expression patterns in different tissues/organs and developmental stages. Analysis of cis-regulatory elements in MdMATE promoter regions indicates that the function of MdMATE genes is mainly related to stress response. Besides, the changes of gene expression levels upon different pathogen infections reveal that MdMATE genes are involved in biotic stress response. CONCLUSIONS In this work, we systematically identified MdMATE genes in apple genome using a set of bioinformatics approaches. Our comprehensive analysis provided valuable resources for improving disease resistance in apple and further functional characterization of MATE genes in other species.
Collapse
Affiliation(s)
- Weihan Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Liao Liao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
| | - Jinsheng Xu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
| | - Li Li
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China. .,Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
30
|
Du Z, Su Q, Wu Z, Huang Z, Bao J, Li J, Tu H, Zeng C, Fu J, He H. Genome-wide characterization of MATE gene family and expression profiles in response to abiotic stresses in rice (Oryza sativa). BMC Ecol Evol 2021; 21:141. [PMID: 34243710 PMCID: PMC8268253 DOI: 10.1186/s12862-021-01873-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/29/2021] [Indexed: 01/09/2023] Open
Abstract
Multidrug and toxic compound extrusion (MATE) proteins are involved in many physiological functions of plant growth and development. Although an increasing number of MATE proteins have been identified, the understanding of MATE proteins is still very limited in rice. In this study, 46 MATE proteins were identified from the rice (Oryza sativa) genome by homology searches and domain prediction. The rice MATE family was divided into four subfamilies based on the phylogenetic tree. Tandem repeats and fragment replication contribute to the expansion of the rice MATE gene family. Gene structure and cis-regulatory elements reveal the potential functions of MATE genes. Analysis of gene expression showed that most of MATE genes were constitutively expressed and the expression patterns of genes in different tissues were analyzed using RNA-seq. Furthermore, qRT-PCR-based analysis showed differential expression patterns in response to salt and drought stress. The analysis results of this study provide comprehensive information on the MATE gene family in rice and will aid in understanding the functional divergence of MATE genes.
Collapse
Affiliation(s)
- Zhixuan Du
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qitao Su
- School of Life Sciences, Jinggangshan University, Ji'an, 343009, China
| | - Zheng Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhou Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jianzhong Bao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jianbin Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hang Tu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chuihai Zeng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Junru Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
31
|
Ober ES, Alahmad S, Cockram J, Forestan C, Hickey LT, Kant J, Maccaferri M, Marr E, Milner M, Pinto F, Rambla C, Reynolds M, Salvi S, Sciara G, Snowdon RJ, Thomelin P, Tuberosa R, Uauy C, Voss-Fels KP, Wallington E, Watt M. Wheat root systems as a breeding target for climate resilience. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1645-1662. [PMID: 33900415 PMCID: PMC8206059 DOI: 10.1007/s00122-021-03819-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/18/2021] [Indexed: 05/08/2023]
Abstract
In the coming decades, larger genetic gains in yield will be necessary to meet projected demand, and this must be achieved despite the destabilizing impacts of climate change on crop production. The root systems of crops capture the water and nutrients needed to support crop growth, and improved root systems tailored to the challenges of specific agricultural environments could improve climate resiliency. Each component of root initiation, growth and development is controlled genetically and responds to the environment, which translates to a complex quantitative system to navigate for the breeder, but also a world of opportunity given the right tools. In this review, we argue that it is important to know more about the 'hidden half' of crop plants and hypothesize that crop improvement could be further enhanced using approaches that directly target selection for root system architecture. To explore these issues, we focus predominantly on bread wheat (Triticum aestivum L.), a staple crop that plays a major role in underpinning global food security. We review the tools available for root phenotyping under controlled and field conditions and the use of these platforms alongside modern genetics and genomics resources to dissect the genetic architecture controlling the wheat root system. To contextualize these advances for applied wheat breeding, we explore questions surrounding which root system architectures should be selected for, which agricultural environments and genetic trait configurations of breeding populations are these best suited to, and how might direct selection for these root ideotypes be implemented in practice.
Collapse
Affiliation(s)
- Eric S Ober
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK.
| | - Samir Alahmad
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - James Cockram
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Cristian Forestan
- Department of Agricultural and Food Sciences, University of Bologna, Viale G Fanin 44, 40127, Bologna, Italy
| | - Lee T Hickey
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Josefine Kant
- Forschungszentrum Jülich, IBG-2, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Marco Maccaferri
- Department of Agricultural and Food Sciences, University of Bologna, Viale G Fanin 44, 40127, Bologna, Italy
| | - Emily Marr
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | | | - Francisco Pinto
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), 56237, Texcoco, Estado de Mexico, Mexico
| | - Charlotte Rambla
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Matthew Reynolds
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), 56237, Texcoco, Estado de Mexico, Mexico
| | - Silvio Salvi
- Department of Agricultural and Food Sciences, University of Bologna, Viale G Fanin 44, 40127, Bologna, Italy
| | - Giuseppe Sciara
- Department of Agricultural and Food Sciences, University of Bologna, Viale G Fanin 44, 40127, Bologna, Italy
| | - Rod J Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | | | - Roberto Tuberosa
- Department of Agricultural and Food Sciences, University of Bologna, Viale G Fanin 44, 40127, Bologna, Italy
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Kai P Voss-Fels
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | - Michelle Watt
- School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
32
|
MicroRNA Zma-miR528 Versatile Regulation on Target mRNAs during Maize Somatic Embryogenesis. Int J Mol Sci 2021; 22:ijms22105310. [PMID: 34069987 PMCID: PMC8157881 DOI: 10.3390/ijms22105310] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate the accumulation and translation of their target mRNAs through sequence complementarity. miRNAs have emerged as crucial regulators during maize somatic embryogenesis (SE) and plant regeneration. A monocot-specific miRNA, mainly accumulated during maize SE, is zma-miR528. While several targets have been described for this miRNA, the regulation has not been experimentally confirmed for the SE process. Here, we explored the accumulation of zma-miR528 and several predicted targets during embryogenic callus induction, proliferation, and plantlet regeneration using the maize cultivar VS-535. We confirmed the cleavage site for all tested zma-miR528 targets; however, PLC1 showed very low levels of processing. The abundance of zma-miR528 slightly decreased in one month-induced callus compared to the immature embryo (IE) explant tissue. However, it displayed a significant increase in four-month sub-cultured callus, coincident with proliferation establishment. In callus-regenerated plantlets, zma-miR528 greatly decreased to levels below those observed in the initial explant. Three of the target transcripts (MATE, bHLH, and SOD1a) showed an inverse correlation with the miRNA abundance in total RNA samples at all stages. Using polysome fractionation, zma-miR528 was detected in the polysome fraction and exhibited an inverse distribution with the PLC1 target, which was not observed at total RNA. Accordingly, we conclude that zma-miR528 regulates multiple target mRNAs during the SE process by promoting their degradation, translation inhibition or both.
Collapse
|
33
|
Hibara KI, Miya M, Benvenuto SA, Hibara-Matsuo N, Mimura M, Yoshikawa T, Suzuki M, Kusaba M, Taketa S, Itoh JI. Regulation of the plastochron by three many-noded dwarf genes in barley. PLoS Genet 2021; 17:e1009292. [PMID: 33970916 PMCID: PMC8136844 DOI: 10.1371/journal.pgen.1009292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/20/2021] [Accepted: 04/06/2021] [Indexed: 11/18/2022] Open
Abstract
The plastochron, the time interval between the formation of two successive leaves, is an important determinant of plant architecture. We genetically and phenotypically investigated many-noded dwarf (mnd) mutants in barley. The mnd mutants exhibited a shortened plastochron and a decreased leaf blade length, and resembled previously reported plastochron1 (pla1), pla2, and pla3 mutants in rice. In addition, the maturation of mnd leaves was accelerated, similar to pla mutants in rice. Several barley mnd alleles were derived from three genes-MND1, MND4, and MND8. Although MND4 coincided with a cytochrome P450 family gene that is a homolog of rice PLA1, we clarified that MND1 and MND8 encode an N-acetyltransferase-like protein and a MATE transporter-family protein, which are respectively orthologs of rice GW6a and maize BIGE1 and unrelated to PLA2 or PLA3. Expression analyses of the three MND genes revealed that MND1 and MND4 were expressed in limited regions of the shoot apical meristem and leaf primordia, but MND8 did not exhibit a specific expression pattern around the shoot apex. In addition, the expression levels of the three genes were interdependent among the various mutant backgrounds. Genetic analyses using the double mutants mnd4mnd8 and mnd1mnd8 indicated that MND1 and MND4 regulate the plastochron independently of MND8, suggesting that the plastochron in barley is controlled by multiple genetic pathways involving MND1, MND4, and MND8. Correlation analysis between leaf number and leaf blade length indicated that both traits exhibited a strong negative association among different genetic backgrounds but not in the same genetic background. We propose that MND genes function in the regulation of the plastochron and leaf growth and revealed conserved and diverse aspects of plastochron regulation via comparative analysis of barley and rice.
Collapse
Affiliation(s)
- Ken-Ichiro Hibara
- Graduate School of Agricultural Regional Vitalization, Kibi International University, Minamiawaji, Japan
| | - Masayuki Miya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Sean Akira Benvenuto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoko Hibara-Matsuo
- Graduate School of Agricultural Regional Vitalization, Kibi International University, Minamiawaji, Japan
| | | | | | - Masaharu Suzuki
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, United States of America
| | - Makoto Kusaba
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Shin Taketa
- Group of Genetic Resources and Functions, Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Jun-Ichi Itoh
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
34
|
Yin X. Phyllotaxis: from classical knowledge to molecular genetics. JOURNAL OF PLANT RESEARCH 2021; 134:373-401. [PMID: 33550488 DOI: 10.1007/s10265-020-01247-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Plant organs are repetitively generated at the shoot apical meristem (SAM) in recognizable patterns. This phenomenon, known as phyllotaxis, has long fascinated scientists from different disciplines. While we have an enriched body of knowledge on phyllotactic patterns, parameters, and transitions, only in the past 20 years, however, have we started to identify genes and elucidate genetic pathways that involved in phyllotaxis. In this review, I first summarize the classical knowledge of phyllotaxis from a morphological perspective. I then discuss recent advances in the regulation of phyllotaxis, from a molecular genetics perspective. I show that the morphological beauty of phyllotaxis we appreciate is the manifestation of many regulators, in addition to the critical role of auxin as a patterning signal, exerting their respective effects in a coordinated fashion either directly or indirectly in the SAM.
Collapse
Affiliation(s)
- Xiaofeng Yin
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Japan Society for the Promotion of Science, Tokyo, Japan.
| |
Collapse
|
35
|
Hostetler AN, Khangura RS, Dilkes BP, Sparks EE. Bracing for sustainable agriculture: the development and function of brace roots in members of Poaceae. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:101985. [PMID: 33418403 DOI: 10.1016/j.pbi.2020.101985] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 05/28/2023]
Abstract
Optimization of crop production requires root systems to function in water uptake, nutrient use, and anchorage. In maize, two types of nodal roots-subterranean crown and aerial brace roots function in anchorage and water uptake and preferentially express multiple water and nutrient transporters. Brace root development shares genetic control with juvenile-to-adult phase change and flowering time. We present a comprehensive list of the genes known to alter brace roots and explore these as candidates for QTL studies in maize and sorghum. Brace root development and function may be conserved in other members of Poaceae, however research is limited. This work highlights the critical knowledge gap of aerial nodal root development and function and suggests new focus areas for breeding resilient crops.
Collapse
Affiliation(s)
- Ashley N Hostetler
- Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, United States
| | - Rajdeep S Khangura
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Brian P Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Erin E Sparks
- Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, United States.
| |
Collapse
|
36
|
Dai D, Ma Z, Song R. Maize kernel development. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:2. [PMID: 37309525 PMCID: PMC10231577 DOI: 10.1007/s11032-020-01195-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/03/2020] [Indexed: 06/14/2023]
Abstract
Maize (Zea mays) is a leading cereal crop in the world. The maize kernel is the storage organ and the harvest portion of this crop and is closely related to its yield and quality. The development of maize kernel is initiated by the double fertilization event, leading to the formation of a diploid embryo and a triploid endosperm. The embryo and endosperm are then undergone independent developmental programs, resulting in a mature maize kernel which is comprised of a persistent endosperm, a large embryo, and a maternal pericarp. Due to the well-characterized morphogenesis and powerful genetics, maize kernel has long been an excellent model for the study of cereal kernel development. In recent years, with the release of the maize reference genome and the development of new genomic technologies, there has been an explosive expansion of new knowledge for maize kernel development. In this review, we overviewed recent progress in the study of maize kernel development, with an emphasis on genetic mapping of kernel traits, transcriptome analysis during kernel development, functional gene cloning of kernel mutants, and genetic engineering of kernel traits.
Collapse
Affiliation(s)
- Dawei Dai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444 China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
37
|
Gani U, Vishwakarma RA, Misra P. Membrane transporters: the key drivers of transport of secondary metabolites in plants. PLANT CELL REPORTS 2021; 40:1-18. [PMID: 32959124 DOI: 10.1007/s00299-020-02599-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/09/2020] [Indexed: 05/20/2023]
Abstract
This review summarizes the recent updates in the area of transporters of plant secondary metabolites, including their applied aspects in metabolic engineering of economically important secondary metabolites. Plants have evolved biosynthetic pathways to produce structurally diverse secondary metabolites, which serve distinct functions, including defense against pathogens and herbivory, thereby playing a pivotal role in plant ecological interactions. These compounds often display interesting bioactivities and, therefore, have been used as repositories of natural drugs and phytoceuticals for humans. At an elevated level, plant secondary metabolites could be cytotoxic to the plant cell itself; therefore, plants have developed sophisticated mechanisms to sequester these compounds to prevent cytotoxicity. Many of these valuable natural compounds and their precursors are biosynthesized and accumulated at diverse subcellular locations, and few are even transported to sink organs via long-distance transport, implying the involvement of compartmentalization via intra- and intercellular transport mechanisms. The transporter proteins belonging to different families of transporters, especially ATP binding cassette (ABC) and multidrug and toxic compound extrusion (MATE) have been implicated in membrane-mediated transport of certain plant secondary metabolites. Despite increasing reports on the characterization of transporter proteins and their genes, our knowledge about the transporters of several medicinally and economically important plant secondary metabolites is still enigmatic. A comprehensive understanding of the molecular mechanisms underlying the whole route of secondary metabolite transportome, in addition to the biosynthetic pathways, will aid in systematic and targeted metabolic engineering of high-value secondary metabolites. The present review embodies a comprehensive update on the progress made in the elucidation of transporters of secondary metabolites in view of basic and applied aspects of their transport mechanism.
Collapse
Affiliation(s)
- Umar Gani
- Plant Sciences Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ram A Vishwakarma
- Plant Sciences Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, 180001, India
| | - Prashant Misra
- Plant Sciences Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
38
|
Cheah ZX, O’Hare TJ, Harper SM, Bell MJ. Variation in zinc concentration of sweetcorn kernels reflects source-sink dynamics influenced by kernel number. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4985-4992. [PMID: 32442251 PMCID: PMC7410176 DOI: 10.1093/jxb/eraa244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Grain yield and mineral nutrient concentration in cereal crops are usually inversely correlated, undermining biofortification efforts. Here, sink size, expressed as kernel number per cob, was manipulated by controlling the time when the silks of sweetcorn (Zea mays) cv. Hybrix 5 and var. HiZeax 103146 were exposed to pollen. Twelve other varieties were manually pollinated to achieve the maximum potential kernel number per cob, and kernel Zn concentration was correlated with kernel number and kernel mass. As kernel number increased, kernel Zn concentration decreased, with the decrease occurring to similar extents in the embryo tissue and the rest of the kernel. However, total kernel Zn accumulated per cob increased with increasing kernel number, as the small decreases in individual kernel Zn concentration were more than offset by increases in kernel number. When both kernel number and mass were considered, 90% of the variation in kernel Zn concentration was accounted for. Differential distribution of assimilates and Zn to sweetcorn cobs led to significant decreases in kernel Zn concentration with increasing kernel number. This suggests there will be challenges to achieving high kernel Zn concentrations in modern high-yielding sweetcorn varieties unless genotypes with higher Zn translocation rates into kernels can be identified.
Collapse
Affiliation(s)
- Zhong Xiang Cheah
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - Tim J O’Hare
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Gatton, Queensland, Australia
| | - Stephen M Harper
- Australia Department of Agriculture and Fisheries, Gatton, Queensland, Australia
| | - Michael J Bell
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Queensland, Australia
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Gatton, Queensland, Australia
| |
Collapse
|
39
|
Orman-Ligeza B, Borrill P, Chia T, Chirico M, Doležel J, Drea S, Karafiátová M, Schatlowski N, Solomon CU, Steuernagel B, Wulff BBH, Uauy C, Trafford K. LYS3 encodes a prolamin-box-binding transcription factor that controls embryo growth in barley and wheat. J Cereal Sci 2020; 93:102965. [PMID: 32508376 PMCID: PMC7263734 DOI: 10.1016/j.jcs.2020.102965] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mutations at the LYS3 locus in barley have multiple effects on grain development, including an increase in embryo size and a decrease in endosperm starch content. The gene underlying LYS3 was identified by genetic mapping and mutations in this gene were identified in all four barley lys3 alleles. LYS3 encodes a transcription factor called Prolamin Binding Factor (PBF). Its role in controlling embryo size was confirmed using wheat TILLING mutants. To understand how PBF controls embryo development, we studied its spatial and temporal patterns of expression in developing grains. The PBF gene is expressed in both the endosperm and the embryos, but the timing of expression in these organs differs. PBF expression in wild-type embryos precedes the onset of embryo enlargement in lys3 mutants, suggesting that PBF suppresses embryo growth. We predicted the down-stream target genes of PBF in wheat and found them to be involved in a wide range of biological processes, including organ development and starch metabolism. Our work suggests that PBF may influence embryo size and endosperm starch synthesis via separate gene control networks. LYS3 encodes a transcription factor called Prolamin Binding Factor (PBF) that is expressed in grains only. Wheat and barley LYS3/PBF mutants have enlarged embryos suggesting that this gene suppresses embryo growth. The predicted targets of wheat PBF are involved in a wide range of biological processes, including organ development.
Collapse
Affiliation(s)
| | - Philippa Borrill
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Tansy Chia
- NIAB, Genetics and Breeding, Huntington Road, Cambridge, CB3 0LE, UK
| | - Marcella Chirico
- NIAB, Genetics and Breeding, Huntington Road, Cambridge, CB3 0LE, UK
| | - Jaroslav Doležel
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Sinead Drea
- Department of Genetics, University of Leicester, Adrian Building University Road, Leicester, LE1 7RH, UK
| | - Miroslava Karafiátová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | | | - Charles U Solomon
- Department of Genetics, University of Leicester, Adrian Building University Road, Leicester, LE1 7RH, UK.,Department of Plant Science and Biotechnology, Abia State University, PMB 2000, Uturu, Nigeria
| | | | | | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Kay Trafford
- NIAB, Genetics and Breeding, Huntington Road, Cambridge, CB3 0LE, UK
| |
Collapse
|
40
|
Ma L, Qing C, Frei U, Shen Y, Lübberstedt T. Association mapping for root system architecture traits under two nitrogen conditions in germplasm enhancement of maize doubled haploid lines. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.cj.2019.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Guo J, Li C, Zhang X, Li Y, Zhang D, Shi Y, Song Y, Li Y, Yang D, Wang T. Transcriptome and GWAS analyses reveal candidate gene for seminal root length of maize seedlings under drought stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110380. [PMID: 32005385 DOI: 10.1016/j.plantsci.2019.110380] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 05/21/2023]
Abstract
Water deficits are a major constraint on maize growth and yield, and deep roots are one of the major mechanisms of drought tolerance. In this study, four root and shoot traits were evaluated within an association panel consisting of 209 diverse maize accessions under well-watered (WW) and water-stressed (WS) conditions. A significant positive correlation was observed between seminal root length (SRL) under WS treatment and the drought tolerance index (DI) of maize seedlings. The transcriptome profiles of maize seminal roots were compared between four drought-tolerant lines and four drought-sensitive lines under both water conditions to identify genes associated with the drought stress response. After drought stress, 343 and 177 common differentially expressed genes (DEGs) were identified in the drought-tolerant group and drought-sensitive group, respectively. In parallel, a coexpression network underlying SRL was constructed on the basis of transcriptome data, and 10 hub genes involved in two significant associated modules were identified. Additionally, a genome-wide association study (GWAS) of the SRL revealed 62 loci for the two water treatments. By integrating the results of the GWAS, the common DEGs and the coexpression network analysis, 7 promising candidate genes were prioritized for further research. Together, our results provide a foundation for the enhanced understanding of seminal root changes in response to drought stress in maize.
Collapse
Affiliation(s)
- Jian Guo
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Chunhui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | | | - Yongxiang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengfeng Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunsu Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanchun Song
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Deguang Yang
- College of Agriculture, Northeast Agricultural University, Harbin, China.
| | - Tianyu Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
42
|
Zheng Z, Hey S, Jubery T, Liu H, Yang Y, Coffey L, Miao C, Sigmon B, Schnable JC, Hochholdinger F, Ganapathysubramanian B, Schnable PS. Shared Genetic Control of Root System Architecture between Zea mays and Sorghum bicolor. PLANT PHYSIOLOGY 2020; 182:977-991. [PMID: 31740504 PMCID: PMC6997706 DOI: 10.1104/pp.19.00752] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/03/2019] [Indexed: 05/08/2023]
Abstract
Determining the genetic control of root system architecture (RSA) in plants via large-scale genome-wide association study (GWAS) requires high-throughput pipelines for root phenotyping. We developed Core Root Excavation using Compressed-air (CREAMD), a high-throughput pipeline for the cleaning of field-grown roots, and Core Root Feature Extraction (COFE), a semiautomated pipeline for the extraction of RSA traits from images. CREAMD-COFE was applied to diversity panels of maize (Zea mays) and sorghum (Sorghum bicolor), which consisted of 369 and 294 genotypes, respectively. Six RSA-traits were extracted from images collected from >3,300 maize roots and >1,470 sorghum roots. Single nucleotide polymorphism (SNP)-based GWAS identified 87 TAS (trait-associated SNPs) in maize, representing 77 genes and 115 TAS in sorghum. An additional 62 RSA-associated maize genes were identified via expression read depth GWAS. Among the 139 maize RSA-associated genes (or their homologs), 22 (16%) are known to affect RSA in maize or other species. In addition, 26 RSA-associated genes are coregulated with genes previously shown to affect RSA and 51 (37% of RSA-associated genes) are themselves transe-quantitative trait locus for another RSA-associated gene. Finally, the finding that RSA-associated genes from maize and sorghum included seven pairs of syntenic genes demonstrates the conservation of regulation of morphology across taxa.
Collapse
Affiliation(s)
- Zihao Zheng
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, Iowa 50011
| | - Stefan Hey
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Talukder Jubery
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011
| | - Huyu Liu
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, Iowa 50011
- Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Yu Yang
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
- Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Lisa Coffey
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
| | - Chenyong Miao
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska 68583
| | - Brandi Sigmon
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska 68583
| | - James C Schnable
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska 68583
| | - Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | | | - Patrick S Schnable
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, Iowa 50011
- Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
43
|
Zheng X, Li Q, Li C, An D, Xiao Q, Wang W, Wu Y. Intra-Kernel Reallocation of Proteins in Maize Depends on VP1-Mediated Scutellum Development and Nutrient Assimilation. THE PLANT CELL 2019; 31:2613-2635. [PMID: 31530735 PMCID: PMC6881121 DOI: 10.1105/tpc.19.00444] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/24/2019] [Accepted: 09/16/2019] [Indexed: 05/05/2023]
Abstract
During maize (Zea mays) seed development, the endosperm functions as the major organ for storage of photoassimilate, serving to nourish the embryo. α-Zeins and globulins (GLBs) predominantly accumulate in the maize endosperm and embryo, respectively. Here, we show that suppression of α-zeins by RNA interference (αRNAi) in the endosperm results in more GLB1 being synthesized in the embryo, thereby markedly increasing the size and number of protein storage vacuoles. Glb genes are strongly expressed in the middle-to-upper section of the scutellum, cells of which are significantly enlarged by αRNAi induction. Elimination of GLBs caused an apparent reduction in embryo protein level, regardless of whether α-zeins were expressed or suppressed in the endosperm, indicating that GLBs represent the dominant capacity for storage of amino acids allocated from the endosperm. It appears that protein reallocation is mostly regulated at the transcriptional level. Genes differentially expressed between wild-type and αRNAi kernels are mainly involved in sulfur assimilation and nutrient metabolism, and many are transactivated by VIVIPAROUS1 (VP1). In vp1 embryos, misshapen scutellum cells contain notably less cellular content and are unable to respond to αRNAi induction. Our results demonstrate that VP1 is essential for scutellum development and protein reallocation from the endosperm to embryo.
Collapse
Affiliation(s)
- Xixi Zheng
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Li
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changsheng Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dong An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiao Xiao
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqin Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
44
|
Upadhyay N, Kar D, Deepak Mahajan B, Nanda S, Rahiman R, Panchakshari N, Bhagavatula L, Datta S. The multitasking abilities of MATE transporters in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4643-4656. [PMID: 31106838 DOI: 10.1093/jxb/erz246] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/14/2019] [Indexed: 05/20/2023]
Abstract
As sessile organisms, plants constantly monitor environmental cues and respond appropriately to modulate their growth and development. Membrane transporters act as gatekeepers of the cell regulating both the inflow of useful materials as well as exudation of harmful substances. Members of the multidrug and toxic compound extrusion (MATE) family of transporters are ubiquitously present in almost all forms of life including prokaryotes and eukaryotes. In bacteria, MATE proteins were originally characterized as efflux transporters conferring drug resistance. There are 58 MATE transporters in Arabidopsis thaliana, which are also known as DETOXIFICATION (DTX) proteins. In plants, these integral membrane proteins are involved in a diverse array of functions, encompassing secondary metabolite transport, xenobiotic detoxification, aluminium tolerance, and disease resistance. MATE proteins also regulate overall plant development by controlling phytohormone transport, tip growth processes, and senescence. While most of the functional characterizations of MATE proteins have been reported in Arabidopsis, recent reports suggest that their diverse roles extend to numerous other plant species. The wide array of functions exhibited by MATE proteins highlight their multitasking ability. In this review, we integrate information related to structure and functions of MATE transporters in plants. Since these transporters are central to mechanisms that allow plants to adapt to abiotic and biotic stresses, their study can potentially contribute to improving stress tolerance under changing climatic conditions.
Collapse
Affiliation(s)
- Neha Upadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Debojyoti Kar
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Bhagyashri Deepak Mahajan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
- Cellular Organization and Signalling, National Centre for Biological Sciences (NCBS), Bengaluru, India
| | - Sanchali Nanda
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Rini Rahiman
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Nimisha Panchakshari
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
- Department of Genetics, Ludwig Maximilians Universität, Biocenter, Germany
| | - Lavanya Bhagavatula
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| |
Collapse
|
45
|
Shorinola O, Kaye R, Golan G, Peleg Z, Kepinski S, Uauy C. Genetic Screening for Mutants with Altered Seminal Root Numbers in Hexaploid Wheat Using a High-Throughput Root Phenotyping Platform. G3 (BETHESDA, MD.) 2019; 9:2799-2809. [PMID: 31352407 PMCID: PMC6723138 DOI: 10.1534/g3.119.400537] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 07/23/2019] [Indexed: 12/23/2022]
Abstract
Roots are the main channel for water and nutrient uptake in plants. Optimization of root architecture provides a viable strategy to improve nutrient and water uptake efficiency and maintain crop productivity under water-limiting and nutrient-poor conditions. We know little, however, about the genetic control of root development in wheat, a crop supplying 20% of global calorie and protein intake. To improve our understanding of the genetic control of seminal root development in wheat, we conducted a high-throughput screen for variation in seminal root number using an exome-sequenced mutant population derived from the hexaploid wheat cultivar Cadenza. The screen identified seven independent mutants with homozygous and stably altered seminal root number phenotypes. One mutant, Cadenza0900, displays a recessive extra seminal root number phenotype, while six mutants (Cadenza0062, Cadenza0369, Cadenza0393, Cadenza0465, Cadenza0818 and Cadenza1273) show lower seminal root number phenotypes most likely originating from defects in the formation and activation of seminal root primordia. Segregation analysis in F2 populations suggest that the phenotype of Cadenza0900 is controlled by multiple loci whereas the Cadenza0062 phenotype fits a 3:1 mutant:wild-type segregation ratio characteristic of dominant single gene action. This work highlights the potential to use the sequenced wheat mutant population as a forward genetic resource to uncover novel variation in agronomic traits, such as seminal root architecture.
Collapse
Affiliation(s)
- Oluwaseyi Shorinola
- Bioscience Eastern and Central Africa - International Livestock Research Institute, Nairobi, PO Box 30709, Kenya
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ryan Kaye
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK, and
| | - Guy Golan
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Zvi Peleg
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Stefan Kepinski
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK, and
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
46
|
Cheah ZX, Kopittke PM, Harper SM, Meyer G, O'Hare TJ, Bell MJ. Speciation and accumulation of Zn in sweetcorn kernels for genetic and agronomic biofortification programs. PLANTA 2019; 250:219-227. [PMID: 30980245 DOI: 10.1007/s00425-019-03162-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
In sweetcorn (Zea mays L.), embryo Zn is accumulated mainly as Zn-phytate, whereas endosperm Zn is complexed with a N- or S-containing ligand. Understanding the speciation of Zn in crop plants helps improve the effectiveness of biofortification efforts. Kernels of four sweetcorn (Zea mays L.) varieties were analysed for Zn concentration and content. We also assessed the speciation of the Zn in the embryo, endosperm, and pericarp in situ using synchrotron-based X-ray absorption spectroscopy. The majority of the Zn was in the endosperm and pericarp (72%), with the embryo contributing 28%. Approximately 79% of the Zn in the embryo accumulated as Zn-phytate, whereas in the endosperm most of the Zn was complexed with a N- or S-containing ligand, possibly as Zn-histidine and Zn-cysteine. This suggests that whilst the Zn in the endosperm and pericarp is likely to be bioavailable for humans, the Zn in the embryo is of low bioavailability. This study highlights the importance of targeting the endosperm of sweetcorn kernels as the tissue for increasing bioavailable Zn concentration.
Collapse
Affiliation(s)
- Zhong Xiang Cheah
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, 4343, Australia.
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Stephen M Harper
- Department of Agriculture and Fisheries, Gatton, QLD, 4343, Australia
| | - Gregor Meyer
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Tim J O'Hare
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Michael J Bell
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, 4343, Australia
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Gatton, QLD, 4343, Australia
| |
Collapse
|
47
|
Li P, Pan T, Wang H, Wei J, Chen M, Hu X, Zhao Y, Yang X, Yin S, Xu Y, Fang H, Liu J, Xu C, Yang Z. Natural variation of ZmHKT1 affects root morphology in maize at the seedling stage. PLANTA 2019; 249:879-889. [PMID: 30460404 DOI: 10.1007/s00425-018-3043-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/12/2018] [Indexed: 05/25/2023]
Abstract
Eight variants in ZmHKT1 promoter were significantly associated with root diameter, four haplotypes based on these significant variants were found, and Hap2 has the largest root diameter. Roots play an important role in uptake of water, nutrients and plant anchorage. Identification of gene and corresponding SNPs associated with root traits would enable develop maize lines with better root traits that might help to improve capacity for absorbing nutrients and water acquisition. The genomic sequences of a salt tolerance gene ZmHKT1 was resequenced in 349 maize inbred lines, and the association between nucleotide polymorphisms and seedling root traits was detected. A total of 269 variants in ZmHKT1 were identified, including 226 single nucleotide polymorphisms and 43 insertions and deletions. The gene displayed high level of nucleotide diversity, especially in non-genic regions. A total of 19 variations in untranslated region of ZmHKT1 were found to be associated with six seedling traits. Eight variants in promoter region were significantly associated with average root diameter (ARD), four haplotypes were found based on these significant variants, and Hap2 has the largest ARD. Two SNPs in high-linkage disequilibrium (SNP-415 and SNP 2169) with pleiotropic effects were significantly associated with plant height, root surface area, root volume, and shoot dry weight. This result revealed that ZmHKT1 was an important contributor to the phenotypic variations of seedling root traits in maize, these significant variants could use to develop functional markers to improve root traits.
Collapse
Affiliation(s)
- Pengcheng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Ting Pan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Houmiao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Jie Wei
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Minjun Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xiaohong Hu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Yu Zhao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xiaoyi Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Shuangyi Yin
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Yang Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Huimin Fang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Jun Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Chenwu Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
48
|
Li J, Chen F, Li Y, Li P, Wang Y, Mi G, Yuan L. ZmRAP2.7, an AP2 Transcription Factor, Is Involved in Maize Brace Roots Development. FRONTIERS IN PLANT SCIENCE 2019; 10:820. [PMID: 31333689 PMCID: PMC6621205 DOI: 10.3389/fpls.2019.00820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/06/2019] [Indexed: 05/12/2023]
Abstract
In maize, shoot-borne roots dominate the whole root system and play essential roles in water and nutrient acquisition and lodging tolerance. Shoot-borne roots initiate at shoot nodes, including crown roots from the belowground nodes and brace roots from aboveground nodes. In contrast to crown roots, few genes for brace roots development have been identified. Here, we characterized a maize AP2/ERF transcription factor, ZmRAP2.7, to be involved in brace roots development. ZmRAP2.7 expressed in all types of roots, and the encoded protein localized in the nucleus with transcriptional activation activity. A maize transposon insert mutant RAP2.7-Mu defective in ZmRAP2.7 expression revealed a decreased number of brace roots but not crown roots. Maize Corngrass1 mutant, which showed an elevated expression of ZmRAP2.7, however, revealed an increased number of brace roots. The ZmRAP2.7-based association analysis in a maize panel further identified a SNP marker at the fifth exon of gene to be associated with number of brace roots. These results uncovered a function of ZmRAP2.7 in brace roots development and provided the valuable gene and allele for genetic improvement of maize root systems.
Collapse
Affiliation(s)
- Jieping Li
- Key Laboratory of Plant-Soil Interaction, MOE, Department of Plant Nutrition, College Resources and Environmental Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Plant Science, School of Life Sciences, Henan University, Kaifeng, China
| | - Fanjun Chen
- Key Laboratory of Plant-Soil Interaction, MOE, Department of Plant Nutrition, College Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Yanqing Li
- Key Laboratory of Plant-Soil Interaction, MOE, Department of Plant Nutrition, College Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Pengcheng Li
- Key Laboratory of Plant-Soil Interaction, MOE, Department of Plant Nutrition, College Resources and Environmental Sciences, China Agricultural University, Beijing, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics, Co-Innovation Center for Modern Production Technology of Grain Crops, MOE, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Yuanqing Wang
- Key Laboratory of Plant-Soil Interaction, MOE, Department of Plant Nutrition, College Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Guohua Mi
- Key Laboratory of Plant-Soil Interaction, MOE, Department of Plant Nutrition, College Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Lixing Yuan
- Key Laboratory of Plant-Soil Interaction, MOE, Department of Plant Nutrition, College Resources and Environmental Sciences, China Agricultural University, Beijing, China
- *Correspondence: Lixing Yuan,
| |
Collapse
|
49
|
Li W, Yang Z, Yao J, Li J, Song W, Yang X. Cellulose synthase-like D1 controls organ size in maize. BMC PLANT BIOLOGY 2018; 18:239. [PMID: 30326832 PMCID: PMC6192064 DOI: 10.1186/s12870-018-1453-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 09/27/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND Plant architecture is a critical factor that affects planting density and, consequently, grain yield in maize. The genes or loci that determine organ size are the key regulators of plant architecture. Thus, understanding the genetic and molecular mechanisms of organ size will inform the use of a molecular manipulation approach to improve maize plant architecture and grain yield. RESULTS A total of 18 unique quantitative trait loci (QTLs) were identified for 11 agronomic traits in the F2 and F2:3 segregating populations derived from a cross between a double haploid line with a small plant architecture (MT03-1) and an inbred line with a large plant architecture (LEE-12). Subsequently, we showed that one QTL, qLW10, for multiple agronomic traits that relate to plant organ size reflects allelic variation in ZmCSLD1, which encodes a cellulose synthase-like D protein. ZmCSLD1 was localized to the trans-Golgi and was highly expressed in the rapidly growing regions. The loss of ZmCSLD1 function decreased cell division, which resulted in smaller organs with fewer cell numbers and, in turn, pleiotropic effects on multiple agronomic traits. In addition, intragenic complementation was investigated for two Zmcsld1 alleles with nonsynonymous SNPs in different functional domains, and the mechanism of this complementation was determined to be through homodimeric interactions. CONCLUSIONS Through positional cloning by using two populations and allelism tests, qLW10 for organ size was resolved to be a cellulose synthase-like D family gene, ZmCSLD1. ZmCSLD1 has pleiotropic effects on multiple agronomic traits that alter plant organ size by changing the process of cell division. These findings provide new insight into the regulatory mechanism that underlies plant organ development.
Collapse
Affiliation(s)
- Weiya Li
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193 China
- National Maize Improvement Center of China, MOA Key Lab of Maize Biology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Zhixing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193 China
- National Maize Improvement Center of China, MOA Key Lab of Maize Biology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Jieyuan Yao
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193 China
- National Maize Improvement Center of China, MOA Key Lab of Maize Biology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Jiansheng Li
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193 China
- National Maize Improvement Center of China, MOA Key Lab of Maize Biology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Weibin Song
- National Maize Improvement Center of China, MOA Key Lab of Maize Biology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Xiaohong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193 China
- National Maize Improvement Center of China, MOA Key Lab of Maize Biology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
50
|
Kovinich N, Wang Y, Adegboye J, Chanoca AA, Otegui MS, Durkin P, Grotewold E. Arabidopsis MATE45 antagonizes local abscisic acid signaling to mediate development and abiotic stress responses. PLANT DIRECT 2018; 2:e00087. [PMID: 31245687 PMCID: PMC6508792 DOI: 10.1002/pld3.87] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 09/22/2018] [Accepted: 09/26/2018] [Indexed: 05/11/2023]
Abstract
Anthocyanins provide ideal visual markers for the identification of mutations that disrupt molecular responses to abiotic stress. We screened Arabidopsis mutants of ABC (ATP-Binding Cassette) and MATE (Multidrug And Toxic compound Extrusion) transporter genes under nutritional stress and identified four genes (ABCG25,ABCG9,ABCG5, and MATE45) required for normal anthocyanin pigmentation. ABCG25 was previously demonstrated to encode a vascular-localized cellular exporter of abscisic acid (ABA). Our results show that MATE45 encodes an aerial meristem- and a vascular-localized transporter associated with the trans-Golgi, and that it plays an important role in controlling the levels and distribution of ABA in growing aerial meristems and non-meristematic tissues. MATE45 promoter-GUS reporter fusions revealed the activity localized to the leaf and influorescence meristems and the vasculature. Loss-of-function mate45 mutants exhibited accelerated rates of aerial organ initiation suggesting at least partial functional conservation with the maize ortholog bige1. The aba2-1 mutant, which is deficient in ABA biosynthesis, exhibited a number of phenotypes that were rescued in the mate45-1 aba2-1 double mutant. mate45 exhibited enhanced the seed dormancy, and germination was hypersensitive to ABA. Enhanced frequency of leaf primordia growth in mate45 seedlings grown in nutrient imbalance stress was ABA-dependent. The ABA signaling reporter construct pRD29B::GUS revealed elevated levels of ABA signaling in the true leaf primordia of mate45 seedlings grown under nutritional stress, and gradually reduced signaling in surrounding cotyledon and hypocotyl tissues concomitant with reduced expressions of ABCG25. Our results suggest a role of MATE45 in reducing meristematic ABA and in maintaining ABA distribution in adjacent non-meristematic tissues.
Collapse
Affiliation(s)
- Nik Kovinich
- Center for Applied Plant Sciences and Department of Molecular GeneticsThe Ohio State UniversityColumbusOhio
- Davis College of Agriculture, Natural Resources and DesignWest Virginia UniversityMorgantownWest Virginia
- Present address:
Davis College of Agriculture, Natural Resources and DesignWest Virginia UniversityMorgantownWest Virginia
| | - Yiqun Wang
- Center for Applied Plant Sciences and Department of Molecular GeneticsThe Ohio State UniversityColumbusOhio
- Present address:
Department of Molecular and Cellular BiologyHarvard UniversityCambridgeMassachusetts
| | - Janet Adegboye
- Center for Applied Plant Sciences and Department of Molecular GeneticsThe Ohio State UniversityColumbusOhio
- Present address:
Cleveland Clinic Lerner College of MedicineClevelandOhio
| | - Alexandra A. Chanoca
- Davis College of Agriculture, Natural Resources and DesignWest Virginia UniversityMorgantownWest Virginia
- Department of Botany and Department of GeneticsUniversity of Wisconsin‐MadisonMadisonWisconsin
- Present address:
VIB‐UGENT Center for Plant Systems BiologyZwijnaardeBelgium
| | - Marisa S. Otegui
- Department of Botany and Department of GeneticsUniversity of Wisconsin‐MadisonMadisonWisconsin
- Laboratory of Molecular and Cellular BiologyUniversity of Wisconsin‐MadisonMadisonWisconsin
| | - Paige Durkin
- Davis College of Agriculture, Natural Resources and DesignWest Virginia UniversityMorgantownWest Virginia
- Present address:
West Virginia University School of DentistryMorgantownWest Virginia
| | - Erich Grotewold
- Center for Applied Plant Sciences and Department of Molecular GeneticsThe Ohio State UniversityColumbusOhio
- Present address:
Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichigan
| |
Collapse
|