1
|
Zhang C, Xu Y, Li L, Wu M, Fang Z, Tan J, Rollins JA, Lin H, Huang X, Mansfield SD, Li X, Zhang Y. A GDP-mannose-1-phosphate guanylyltransferase as a potential HIGS target against Sclerotinia sclerotiorum. PLoS Pathog 2025; 21:e1013129. [PMID: 40315235 DOI: 10.1371/journal.ppat.1013129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/15/2025] [Indexed: 05/04/2025] Open
Abstract
Sclerotinia stem rot is a devastating disease affecting vegetables and oil crops worldwide. It is caused by the necrotrophic ascomycete Sclerotinia (S.) sclerotiorum. Host-induced gene silencing (HIGS) has shown promise in disease control against insects and fungal pathogens, but effective HIGS target genes against S. sclerotiorum remain limited. In this study, we identified a GDP-mannose pyrophosphorylase (GMPP) SsMPG2 through forward genetic analysis. Ssmpg2 mutants exhibit abnormal sclerotia and compound appressoria, along with defective cell wall integrity and attenuated virulence. Meanwhile, knocking out SsMPG2 reduced the GMPP activity and glycosylation of proteins. In addition, SsMPG2 interacts with SsMPG1, which is essential in S. sclerotiorum. Downstream of the SsMPG1-SsMPG2 complex, SsPMT4, which encodes an O-mannosyltransferase, is also critical for compound appressoria formation and virulence. Notably, MPG2 is essential for the virulence of several other fungal pathogens such as Botrytis cinerea, Magnaporthe oryzae, and Fusarium graminearum. Furthermore, expressing hairpin RNAs against SsMPG1 and SsMPG2 in Nicotiana benthamiana and Arabidopsis thaliana significantly reduced disease symptoms caused by S. sclerotiorum. Collectively, our findings demonstrate the critical roles of GMPP in the virulence of phytopathogenic fungi and suggest that MPGs are promising HlGS targets for controlling S. sclerotiorum.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Yan Xu
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Lin Li
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Mingsong Wu
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Zheyi Fang
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Jinyi Tan
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Jeffrey A Rollins
- Depertment of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
| | - Honghui Lin
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinyi Huang
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Shawn D Mansfield
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Yuelin Zhang
- College of Life Sciences, Sichuan University, Chengdu, China
- Department of Botany, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Di T, Wu Y, Wang J, He M, Huang J, Li N, Hao X, Ding C, Zeng J, Yang Y, Wang X, Wang L. CsCIPK20 Improves Tea Plant Cold Tolerance by Modulating Ascorbic Acid Synthesis Through Attenuation of CsCSN5-CsVTC1 Interaction. PLANT, CELL & ENVIRONMENT 2025; 48:3337-3351. [PMID: 39740204 DOI: 10.1111/pce.15342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025]
Abstract
Low temperature is a limiting environmental factor for tea plant growth and development. CBL-interacting protein kinases (CIPKs) are important components of the calcium pathway and involved in plant development and stress responses. Herein, we report the function and regulatory mechanisms of a low-temperature-inducible gene, CsCIPK20, in tea plants. The overexpression of CsCIPK20 in Arabidopsis and its transient knockdown in tea plants confirmed its positive role in cold resistance. Notably, the ascorbic acid (AsA) levels increased in the overexpression lines and decreased in the CsCIPK20 knockdown tea plants under freezing stress. Transcriptomic analysis revealed that genes involved in flavonoid metabolism, glutathione metabolism, and AsA biosynthesis were significantly regulated by CsCIPK20. Furthermore, we found that CsCSN5, a key component of the COP9 signalosome, interacted with CsCIPK20 to mediate CsCIPK20 degradation. CsCSN5 interacted with CsVTC1, a key enzyme in AsA biosynthesis, and mediated CsVTC1 degradation. Knockdown of CsVTC1 in tea plants enhanced sensitivity to low temperature. Moreover, we demonstrated that CsCIPK20 competed with CsVTC1 to bind to CsCSN5, which protected CsVTC1 from degradation mediated by CsCSN5 and contributed to AsA accumulation. Overall, our findings uncovered a mechanistic framework through which the CsCIPK20-CsCSN5-CsVTC1 module mediated AsA accumulation and low-temperature resistance in tea plants.
Collapse
Affiliation(s)
- Taimei Di
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yedie Wu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jie Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Mingming He
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jianyan Huang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Nana Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xinyuan Hao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Changqing Ding
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jianming Zeng
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yajun Yang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xinchao Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Lu Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
3
|
Chowhan S, Kikuchi T, Ohashi M, Kutsuno T, Handa H, Kotake T, Takahashi D. Soluble sugars make a greater contribution than cell wall components to the variability of freezing tolerance in wheat cultivars. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:401-415. [PMID: 40083566 PMCID: PMC11897726 DOI: 10.5511/plantbiotechnology.24.0801a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/01/2024] [Indexed: 03/16/2025]
Abstract
Wheat, the second most produced cereal globally, is primarily cultivated in cooler regions. Unexpected freezing temperatures can severely impact wheat production. Wheat and other temperate plants have a cold acclimation mechanism that enhances freezing tolerance, but reduces growth under low, non-freezing temperatures. During cold acclimation, plants break down storage polysaccharides like starch and fructan to accumulate soluble sugars such as glucose and fructose. These soluble sugars aid freezing tolerance through osmotic adjustments, membrane stabilization, and freezing point depression. However, plant cell walls, composed of insoluble polysaccharides, are the first line of defense against extracellular freezing. We analyzed the contributions of soluble sugars, storage polysaccharides, and cell wall polysaccharides to freezing tolerance and growth under cold acclimation in wheat. The study involved two Japanese winter cultivars (Yumechikara and Norin-61) and one Japanese spring cultivar (Haruyokoi). While Yumechikara showed poor growth after four weeks of cold acclimation, it exhibited higher freezing tolerance than the other cultivars. Our analysis revealed that Yumechikara accumulated higher levels of glucose, fructose, starch, and fructan than Norin-61 and Haruyokoi, whereas no significant differences in cell wall composition among the cultivars were observed. Gene expression patterns related to soluble sugar metabolism supported these findings. Additionally, the distribution of sugar changes between leaves (source) and crown (sink) correlated with the relationship between growth and freezing tolerance. These results suggest that freezing tolerance in wheat involves a balance between sugar accumulation and growth regulation during cold acclimation.
Collapse
Affiliation(s)
- Sushan Chowhan
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
- Bangladesh Institute of Nuclear Agriculture, Sub-station Ishurdi, Pabna-6620, Bangladesh
| | - Takuma Kikuchi
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Momoka Ohashi
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Tatsuya Kutsuno
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Hiroto Handa
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Toshihisa Kotake
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Daisuke Takahashi
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| |
Collapse
|
4
|
Ishida K, Yamamoto S, Makino T, Tobimatsu Y. Expression of laccase and ascorbate oxidase affects lignin composition in Arabidopsis thaliana stems. JOURNAL OF PLANT RESEARCH 2024; 137:1177-1187. [PMID: 39373803 DOI: 10.1007/s10265-024-01585-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Lignin is a phenolic polymer that is a major source of biomass. Oxidative enzymes, such as laccase and peroxidase, are required for lignin polymerisation. Laccase is a member of the multicopper oxidase family and has a high amino acid sequence similarity with ascorbate oxidase. However, the process of functional differentiation between the two enzymes remains poorly understood. In this study, the common ancestry sequence of laccase and ascorbate oxidase (AncMCO) was predicted via phylogenetic reconstruction, and its in vivo effect on lignin biosynthesis in Arabidopsis thaliana was assessed. The estimated AncMCO sequence conserved key residues that coordinate with copper ions, implying that the electron transfer system is likely to be conserved in AncMCO. However, multiple insertions/deletions corresponding to protein surface structures have been found between laccase, ascorbate oxidase, and AncMCO. The overexpression of canonical laccase (AtLAC4) and ascorbate oxidase (AtAAO1) in A. thaliana resulted in notable increases of syringyl/guaiacyl lignin unit ratio in stems, whereas, in contrast, the overexpression of AncMCO did not show any detectable change in lignin deposition. Transcriptomic analysis revealed that the AtAAO1-overexpressing line exhibited significant changes in the expression of a wide range of cell wall biosynthesis genes. These results highlight the importance of the molecular evolution of multicopper oxidase, which drives lignin biosynthesis during plant evolution.
Collapse
Affiliation(s)
- Konan Ishida
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QE, UK.
| | - Senri Yamamoto
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011, Japan
| | - Takashi Makino
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011, Japan
| |
Collapse
|
5
|
Li X, Huo L, Li X, Zhang C, Gu M, Fan J, Xu C, Gong J, Hu X, Zheng Y, Sun X. Genomes of diverse Actinidia species provide insights into cis-regulatory motifs and genes associated with critical traits. BMC Biol 2024; 22:200. [PMID: 39256695 PMCID: PMC11389309 DOI: 10.1186/s12915-024-02002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Kiwifruit, belonging to the genus Actinidia, represents a unique fruit crop characterized by its modern cultivars being genetically diverse and exhibiting remarkable variations in morphological traits and adaptability to harsh environments. However, the genetic mechanisms underlying such morphological diversity remain largely elusive. RESULTS We report the high-quality genomes of five Actinidia species, including Actinidia longicarpa, A. macrosperma, A. polygama, A. reticulata, and A. rufa. Through comparative genomics analyses, we identified three whole genome duplication events shared by the Actinidia genus and uncovered rapidly evolving gene families implicated in the development of characteristic kiwifruit traits, including vitamin C (VC) content and fruit hairiness. A range of structural variations were identified, potentially contributing to the phenotypic diversity in kiwifruit. Notably, phylogenomic analyses revealed 76 cis-regulatory elements within the Actinidia genus, predominantly associated with stress responses, metabolic processes, and development. Among these, five motifs did not exhibit similarity to known plant motifs, suggesting the presence of possible novel cis-regulatory elements in kiwifruit. Construction of a pan-genome encompassing the nine Actinidia species facilitated the identification of gene DTZ79_23g14810 specific to species exhibiting extraordinarily high VC content. Expression of DTZ79_23g14810 is significantly correlated with the dynamics of VC concentration, and its overexpression in the transgenic roots of kiwifruit plants resulted in increased VC content. CONCLUSIONS Collectively, the genomes and pan-genome of diverse Actinidia species not only enhance our understanding of fruit development but also provide a valuable genomic resource for facilitating the genome-based breeding of kiwifruit.
Collapse
Affiliation(s)
- Xiaolong Li
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Liuqing Huo
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xinyi Li
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Chaofan Zhang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Miaofeng Gu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jialu Fan
- Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Changbin Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jinli Gong
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xiaoli Hu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yi Zheng
- Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
6
|
Umezawa A, Matsumoto M, Handa H, Nakazawa K, Miyagawa M, Seifert GJ, Takahashi D, Fushinobu S, Kotake T. Cytosolic UDP-L-arabinose synthesis by bifunctional UDP-glucose 4-epimerases in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:508-524. [PMID: 38678521 DOI: 10.1111/tpj.16779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 05/01/2024]
Abstract
L-Arabinose (L-Ara) is a plant-specific sugar found in cell wall polysaccharides, proteoglycans, glycoproteins, and small glycoconjugates, which play physiologically important roles in cell proliferation and other essential cellular processes. L-Ara is synthesized as UDP-L-arabinose (UDP-L-Ara) from UDP-xylose (UDP-Xyl) by UDP-Xyl 4-epimerases (UXEs), a type of de novo synthesis of L-Ara unique to plants. In Arabidopsis, the Golgi-localized UXE AtMUR4 is the main contributor to UDP-L-Ara synthesis. However, cytosolic bifunctional UDP-glucose 4-epimerases (UGEs) with UXE activity, AtUGE1, and AtUGE3 also catalyze this reaction. For the present study, we first examined the physiological importance of bifunctional UGEs in Arabidopsis. The uge1 and uge3 mutants enhanced the dwarf phenotype of mur4 and further reduced the L-Ara content in cell walls, suggesting that bifunctional UGEs contribute to UDP-L-Ara synthesis. Through the introduction of point mutations exchanging corresponding amino acid residues between AtUGE1 with high UXE activity and AtUGE2 with low UXE activity, two mutations that increase relative UXE activity of AtUGE2 were identified. The crystal structures of AtUGE2 in complex forms with NAD+ and NAD+/UDP revealed that the UDP-binding domain of AtUGE2 has a more closed conformation and smaller sugar-binding site than bacterial and mammalian UGEs, suggesting that plant UGEs have the appropriate size and shape for binding UDP-Xyl and UDP-L-Ara to exhibit UXE activity. The presented results suggest that the capacity for cytosolic synthesis of UDP-L-Ara was acquired by the small sugar-binding site and several mutations of UGEs, enabling diversified utilization of L-Ara in seed plants.
Collapse
Affiliation(s)
- Akira Umezawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Mayuko Matsumoto
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Hiroto Handa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Konatsu Nakazawa
- Department of Biochemistry and Molecular Biology, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Megumi Miyagawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Georg J Seifert
- Institute of Plant Biotechnology and Cell biology, University of Natural Resources and Life Science, Muthgasse 18, A-1190, Vienna, Austria
| | - Daisuke Takahashi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
- Green Bioscience Research Center, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| |
Collapse
|
7
|
Smirnoff N, Wheeler GL. The ascorbate biosynthesis pathway in plants is known, but there is a way to go with understanding control and functions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2604-2630. [PMID: 38300237 PMCID: PMC11066809 DOI: 10.1093/jxb/erad505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/29/2024] [Indexed: 02/02/2024]
Abstract
Ascorbate (vitamin C) is one of the most abundant primary metabolites in plants. Its complex chemistry enables it to function as an antioxidant, as a free radical scavenger, and as a reductant for iron and copper. Ascorbate biosynthesis occurs via the mannose/l-galactose pathway in green plants, and the evidence for this pathway being the major route is reviewed. Ascorbate accumulation is leaves is responsive to light, reflecting various roles in photoprotection. GDP-l-galactose phosphorylase (GGP) is the first dedicated step in the pathway and is important in controlling ascorbate synthesis. Its expression is determined by a combination of transcription and translation. Translation is controlled by an upstream open reading frame (uORF) which blocks translation of the main GGP-coding sequence, possibly in an ascorbate-dependent manner. GGP associates with a PAS-LOV protein, inhibiting its activity, and dissociation is induced by blue light. While low ascorbate mutants are susceptible to oxidative stress, they grow nearly normally. In contrast, mutants lacking ascorbate do not grow unless rescued by supplementation. Further research should investigate possible basal functions of ascorbate in severely deficient plants involving prevention of iron overoxidation in 2-oxoglutarate-dependent dioxygenases and iron mobilization during seed development and germination.
Collapse
Affiliation(s)
- Nicholas Smirnoff
- Biosciences, Faculty of Health and Life Sciences, Exeter EX4 4QD, UK
| | | |
Collapse
|
8
|
Wang C, Luo J, He W, Huang A, Lu W, Lin Y, Ou Y. Genome-wide identification and expression analysis of GDP-D-mannose pyrophosphorylase and KATANIN in Corymbia citriodora. FRONTIERS IN PLANT SCIENCE 2023; 14:1308354. [PMID: 38186597 PMCID: PMC10766700 DOI: 10.3389/fpls.2023.1308354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024]
Abstract
The GDP-D-mannose pyrophosphorylase (GMP) and microtubule severing enzyme KATANIN (KTN) are crucial for wood formation. Although functional identification has been performed in Arabidopsis, few comprehensive studies have been conducted in forest trees. In this study, we discovered 8 CcGMP and 4 CcKTN genes by analyzing the whole genome sequence of Corymbia citriodora. The chromosomal location, genome synteny, phylogenetic relationship, protein domain, motif identification, gene structure, cis-acting regulatory elements, and protein-interaction of CcGMP and CcKTN were all investigated. KTN has just one pair of segmentally duplicated genes, while GMP has no duplication events. According to gene structure, two 5' UTRs were identified in CcGMP4. Furthermore, there is no protein-interaction between KTN and GMP. Based on real-time PCR, the expression of most genes showed a positive connection with DBH diameters. In addition, the expression of CcGMP4 and CcKTN4 genes were greater in different size tree, indicating that these genes are important in secondary xylem production. Overall, this findings will enhance our comprehension of the intricacy of CcGMP&CcKTN across diverse DBHs and furnish valuable insights for future functional characterization of specific genes in C. citriodora.
Collapse
Affiliation(s)
- Chubiao Wang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Jianzhong Luo
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Wenliang He
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Anying Huang
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Wanhong Lu
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Yan Lin
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Yuduan Ou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
9
|
Kikukawa K, Takigawa-Imamura H, Soga K, Kotake T, Higaki T. Smooth Elongation of Pavement Cells Induced by RIC1 Overexpression Leads to Marginal Protrusions of the Cotyledon in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2023; 64:1356-1371. [PMID: 37718531 DOI: 10.1093/pcp/pcad094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 09/19/2023]
Abstract
The interdigitated pavement cell shape is suggested to be mechanically rational at both the cellular and tissue levels, but the biological significance of the cell shape is not fully understood. In this study, we explored the potential importance of the jigsaw puzzle-like cell shape for cotyledon morphogenesis in Arabidopsis. We used a transgenic line overexpressing a Rho-like GTPase-interacting protein, ROP-INTERACTIVE CRIB MOTIF-CONTAINING PROTEIN 1 (RIC1), which causes simple elongation of pavement cells. Computer-assisted microscopic analyses, including virtual reality observation, revealed that RIC1 overexpression resulted in abnormal cotyledon shapes with marginal protrusions, suggesting that the abnormal organ shape might be explained by changes in the pavement cell shape. Microscopic, biochemical and mechanical observations indicated that the pavement cell deformation might be due to reduction in the cell wall cellulose content with alteration of cortical microtubule organization. To examine our hypothesis that simple elongation of pavement cells leads to an abnormal shape with marginal protrusion of the cotyledon, we developed a mathematical model that examines the impact of planar cell growth geometry on the morphogenesis of the organ that is an assemblage of the cells. Computer simulations supported experimental observations that elongated pavement cells resulted in an irregular cotyledon shape, suggesting that marginal protrusions were due to local growth variation possibly caused by stochastic bias in the direction of cell elongation cannot be explained only by polarity-based cell elongation, but that an organ-level regulatory mechanism is required.
Collapse
Affiliation(s)
| | - Hisako Takigawa-Imamura
- Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Kouichi Soga
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585 Japan
| | - Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama, 338-8570 Japan
- Green Biology Research Center, Saitama University, Shimo-okubo, Sakura-ku, Saitama, 338-8570 Japan
| | - Takumi Higaki
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kurokami 2-39-1 Chuo-ku, Kumamoto, 860-8555 Japan
- International Research Center for Agricultural and Environmental Biology, Kumamoto University, Kurokami 2-39-1 Chuo-ku, Kumamoto, 860-8555 Japan
| |
Collapse
|
10
|
Wu SY, Hou LL, Zhu J, Wang YC, Zheng YL, Hou JQ, Yang ZN, Lou Y. Ascorbic acid-mediated reactive oxygen species homeostasis modulates the switch from tapetal cell division to cell differentiation in Arabidopsis. THE PLANT CELL 2023; 35:1474-1495. [PMID: 36781400 PMCID: PMC10118275 DOI: 10.1093/plcell/koad037] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The major antioxidant L-ascorbic acid (AsA) plays important roles in plant growth, development, and stress responses. However, the importance of AsA concentration and the regulation of AsA metabolism in plant reproduction remain unclear. In Arabidopsis (Arabidopsis thaliana) anthers, the tapetum monolayer undergoes cell differentiation to support pollen development. Here, we report that a transcription factor, DEFECTIVE IN TAPETAL DEVELOPMENT AND FUNCTION 1 (TDF1), inhibits tapetal cell division leading to cell differentiation. We identified SKEWED5-SIMILAR 18 (SKS18) as a downstream target of TDF1. Enzymatic assays showed that SKS18, annotated as a multicopper oxidase-like protein, has ascorbate oxidase activity, leading to AsA oxidation. We also show that VITAMIN C DEFECTIVE1 (VTC1), an AsA biosynthetic enzyme, is negatively controlled by TDF1 to maintain proper AsA contents. Consistently, either knockout of SKS18 or VTC1 overexpression raised AsA concentrations, resulting in extra tapetal cells, while SKS18 overexpression in tdf1 or the vtc1-3 tdf1 double mutant mitigated their defective tapetum. We observed that high AsA concentrations caused lower accumulation of reactive oxygen species (ROS) in tapetal cells. Overexpression of ROS scavenging genes in tapetum restored excess cell divisions. Thus, our findings demonstrate that TDF1-regulated AsA balances cell division and cell differentiation in the tapetum through governing ROS homeostasis.
Collapse
Affiliation(s)
| | | | - Jun Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yi-Chen Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yu-Ling Zheng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jian-Qiao Hou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | | |
Collapse
|
11
|
Castro JC, Castro CG, Cobos M. Genetic and biochemical strategies for regulation of L-ascorbic acid biosynthesis in plants through the L-galactose pathway. FRONTIERS IN PLANT SCIENCE 2023; 14:1099829. [PMID: 37021310 PMCID: PMC10069634 DOI: 10.3389/fpls.2023.1099829] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Vitamin C (L-ascorbic acid, AsA) is an essential compound with pleiotropic functions in many organisms. Since its isolation in the last century, AsA has attracted the attention of the scientific community, allowing the discovery of the L-galactose pathway, which is the main pathway for AsA biosynthesis in plants. Thus, the aim of this review is to analyze the genetic and biochemical strategies employed by plant cells for regulating AsA biosynthesis through the L-galactose pathway. In this pathway, participates eight enzymes encoded by the genes PMI, PMM, GMP, GME, GGP, GPP, GDH, and GLDH. All these genes and their encoded enzymes have been well characterized, demonstrating their participation in AsA biosynthesis. Also, have described some genetic and biochemical strategies that allow its regulation. The genetic strategy includes regulation at transcriptional and post-transcriptional levels. In the first one, it was demonstrated that the expression levels of the genes correlate directly with AsA content in the tissues/organs of the plants. Also, it was proved that these genes are light-induced because they have light-responsive promoter motifs (e.g., ATC, I-box, GT1 motif, etc.). In addition, were identified some transcription factors that function as activators (e.g., SlICE1, AtERF98, SlHZ24, etc.) or inactivators (e.g., SlL1L4, ABI4, SlNYYA10) regulate the transcription of these genes. In the second one, it was proved that some genes have alternative splicing events and could be a mechanism to control AsA biosynthesis. Also, it was demonstrated that a conserved cis-acting upstream open reading frame (5'-uORF) located in the 5'-untranslated region of the GGP gene induces its post-transcriptional repression. Among the biochemical strategies discovered is the control of the enzyme levels (usually by decreasing their quantities), control of the enzyme catalytic activity (by increasing or decreasing its activity), feedback inhibition of some enzymes (GME and GGP), subcellular compartmentation of AsA, the metabolon assembly of the enzymes, and control of AsA biosynthesis by electron flow. Together, the construction of this basic knowledge has been establishing the foundations for generating genetically improved varieties of fruits and vegetables enriched with AsA, commonly used in animal and human feed.
Collapse
Affiliation(s)
- Juan C. Castro
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Iquitos, Peru
- Departamento Académico de Ciencias Biomédicas y Biotecnología (DACBB), Facultad de Ciencias Biológicas (FCB), Universidad Nacional de la Amazonia Peruana (UNAP), Iquitos, Peru
| | - Carlos G. Castro
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Iquitos, Peru
| | - Marianela Cobos
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Iquitos, Peru
- Departamento Académico de Ciencias Biomédicas y Biotecnología (DACBB), Facultad de Ciencias Biológicas (FCB), Universidad Nacional de la Amazonia Peruana (UNAP), Iquitos, Peru
| |
Collapse
|
12
|
Xu Y, Hu R, Li S. Regulation of seed coat mucilage production and modification in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111591. [PMID: 36623642 DOI: 10.1016/j.plantsci.2023.111591] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/13/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The Arabidopsis seed coat mucilage is a polysaccharide-rich matrix synthesized by the seed coat epidermal cells. It is a specialized cell wall mainly composed of three types of polysaccharides (i. e. pectin, hemicellulose, and cellulose), and represents as an ideal model system for plant cell wall research. A large number of genes responsible for the synthesis and modification of cell wall polysaccharides have been identified using this model system. Moreover, a subset of regulators controlling mucilage production and modification have been characterized, and the underlying transcriptional regulatory mechanisms have been elucidated. This substantially contributes to the understanding of the molecular mechanisms underlying mucilage synthesis and modification. In this review, we concisely summarize the various genes and regulators involved in seed coat cell differentiation, mucilage biosynthesis and modification, and secondary cell wall formation. In particular, we put emphasis on the latest knowledge gained regarding the transcriptional regulation of mucilage production, which is composed of a hierarchal cascade with three-layer transcriptional regulators. Collectively, we propose an updated schematic framework of the genetic regulatory network controlling mucilage production and modification in the Arabidopsis mucilage secretory cells.
Collapse
Affiliation(s)
- Yan Xu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - Ruibo Hu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China.
| | - Shengjun Li
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China.
| |
Collapse
|
13
|
Terzaghi M, De Tullio MC. The perils of planning strategies to increase vitamin C content in plants: Beyond the hype. FRONTIERS IN PLANT SCIENCE 2022; 13:1096549. [PMID: 36600921 PMCID: PMC9806220 DOI: 10.3389/fpls.2022.1096549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Ever since the identification of vitamin C (ascorbic acid, AsA) as an essential molecule that humans cannot synthesize on their own, finding adequate dietary sources of AsA became a priority in nutrition research. Plants are the main producers of AsA for humans and other non-synthesizing animals. It was immediately clear that some plant species have more AsA than others. Further studies evidenced that AsA content varies in different plant organs, in different developmental stages/environmental conditions and even within different cell compartments. With the progressive discovery of the genes of the main (Smirnoff-Wheeler) and alternative pathways coding for the enzymes involved in AsA biosynthesis in plants, the simple overexpression of those genes appeared a suitable strategy for boosting AsA content in any plant species or organ. Unfortunately, overexpression experiments mostly resulted in limited, if any, AsA increase, apparently due to a tight regulation of the biosynthetic machinery. Attempts to identify regulatory steps in the pathways that could be manipulated to obtain unlimited AsA production were also less successful than expected, confirming the difficulties in "unleashing" AsA synthesis. A different approach to increase AsA content has been the overexpression of genes coding for enzymes catalyzing the recycling of the oxidized forms of vitamin C, namely monodehydroascorbate and dehydroascorbate reductases. Such approach proved mostly effective in making the overexpressors apparently more resistant to some forms of environmental stress, but once more did not solve the issue of producing massive AsA amounts for human diet. However, it should also be considered that a hypothetical unlimited increase in AsA content is likely to interfere with plant development, which is in many ways regulated by AsA availability itself. The present review article aims at summarizing the many attempts made so far to improve AsA production/content in plants, evidencing the most promising ones, and at providing information about the possible unexpected consequences of a pure biotechnological approach not keeping into account the peculiar features of the AsA system in plants.
Collapse
Affiliation(s)
- Mattia Terzaghi
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - Mario C. De Tullio
- Department of Earth and Geoenvironmental Sciences, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
14
|
Qi L, Shi Y, Li C, Liu J, Chong SL, Lim KJ, Si J, Han Z, Chen D. Glucomannan in Dendrobium catenatum: Bioactivities, Biosynthesis and Perspective. Genes (Basel) 2022; 13:1957. [PMID: 36360194 PMCID: PMC9690530 DOI: 10.3390/genes13111957] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 07/13/2024] Open
Abstract
Dendrobium catenatum is a classical and precious dual-use plant for both medicine and food in China. It was first recorded in Shen Nong's Herbal Classic, and has the traditional functions of nourishing yin, antipyresis, tonifying the stomach, and promoting fluid production. The stem is its medicinal part and is rich in active polysaccharide glucomannan. As an excellent dietary fiber, glucomannan has been experimentally confirmed to be involved in anti-cancer, enhancing immunity, lowering blood sugar and blood lipids, etc. Here, the status quo of the D. catenatum industry, the structure, bioactivities, biosynthesis pathway and key genes of glucomannan are systematically described to provide a crucial foundation and theoretical basis for understanding the value of D. catenatum and the potential application of glucomannan in crop biofortification.
Collapse
Affiliation(s)
- Luyan Qi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| | - Yan Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| | - Cong Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
- National Innovation Alliance of Dendrobium catenatum Industry, Engineering Technology Research Center of Dendrobium catenatum of National Forestry and Grassland Administration, Hangzhou 311300, China
| | - Jingjing Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
- National Innovation Alliance of Dendrobium catenatum Industry, Engineering Technology Research Center of Dendrobium catenatum of National Forestry and Grassland Administration, Hangzhou 311300, China
| | - Sun-Li Chong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| | - Kean-Jin Lim
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
- National Innovation Alliance of Dendrobium catenatum Industry, Engineering Technology Research Center of Dendrobium catenatum of National Forestry and Grassland Administration, Hangzhou 311300, China
| | - Zhigang Han
- National Innovation Alliance of Dendrobium catenatum Industry, Engineering Technology Research Center of Dendrobium catenatum of National Forestry and Grassland Administration, Hangzhou 311300, China
| | - Donghong Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| |
Collapse
|
15
|
Maruta T. How does light facilitate vitamin C biosynthesis in leaves? Biosci Biotechnol Biochem 2022; 86:1173-1182. [PMID: 35746883 DOI: 10.1093/bbb/zbac096] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/14/2022] [Indexed: 11/14/2022]
Abstract
Plants store ascorbate in high concentrations, particularly in their leaves. Ascorbate is an excellent antioxidant that acts as an indispensable photoprotectant. The D-mannose/L-galactose pathway is responsible for ascorbate biosynthesis in plants. Light facilitates ascorbate biosynthesis in a light intensity-dependent manner to enhance ascorbate pool size in leaves, and photosynthesis is required for this process. Light- and photosynthesis-dependent activation of the rate-limiting enzyme GDP-L-galactose phosphorylase (GGP) plays a critical role in ascorbate pool size regulation. In addition, the tight regulation of ascorbate biosynthesis by ascorbate itself has been proposed. Ascorbate represses GGP translation in a dose-dependent manner through the upstream open reading frame in the 5'-untranslated regions of the gene, which may compete with the light-dependent activation of ascorbate biosynthesis. This review focuses on ascorbate biosynthesis based on past and latest findings and critically discusses how light activates this process.
Collapse
Affiliation(s)
- Takanori Maruta
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, Japan
| |
Collapse
|
16
|
Nakamura-Gouvea N, Alves-Lima C, Benites LF, Iha C, Maracaja-Coutinho V, Aliaga-Tobar V, Araujo Amaral Carneiro M, Yokoya NS, Marinho-Soriano E, Graminha MAS, Collén J, Oliveira MC, Setubal JC, Colepicolo P. Insights into agar and secondary metabolite pathways from the genome of the red alga Gracilaria domingensis (Rhodophyta, Gracilariales). JOURNAL OF PHYCOLOGY 2022; 58:406-423. [PMID: 35090189 DOI: 10.1111/jpy.13238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Gracilariales is a clade of florideophycean red macroalgae known for being the main source of agar. We present a de novo genome assembly and annotation of Gracilaria domingensis, an agarophyte alga with flattened thallus widely distributed along Central and South American Atlantic intertidal zones. In addition to structural analysis, an organizational comparison was done with other Rhodophyta genomes. The nuclear genome has 78 Mbp, with 11,437 predicted coding genes, 4,075 of which did not have hits in sequence databases. We also predicted 1,567 noncoding RNAs, distributed in 14 classes. The plastid and mitochondrion genome structures were also obtained. Genes related to agar synthesis were identified. Genes for type II galactose sulfurylases could not be found. Genes related to ascorbate synthesis were found. These results suggest an intricate connection of cell wall polysaccharide synthesis and the redox systems through the use of L-galactose in Rhodophyta. The genome of G. domingensis should be valuable to phycological and aquacultural research, as it is the first tropical and Western Atlantic red macroalgal genome to be sequenced.
Collapse
Affiliation(s)
- Natalia Nakamura-Gouvea
- Laboratory of Algal Biochemistry and Molecular Biology, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu, Prestes, 748, São Paulo, SP, 05508-000, Brazil
| | - Cicero Alves-Lima
- Laboratory of Algal Biochemistry and Molecular Biology, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu, Prestes, 748, São Paulo, SP, 05508-000, Brazil
| | - Luiz Felipe Benites
- CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Sorbonne Université, Observatoire Océanologique - F-66650, Banyuls-sur-Mer, France
| | - Cintia Iha
- Department of Botany, Institute of Biosciences, University of São Paulo, R Matão 277, São Paulo, SP, 05508-090, Brazil
| | - Vinicius Maracaja-Coutinho
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Universidad de Chile - Independencia, Santiago, 8380492, Chile
| | - Victor Aliaga-Tobar
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Universidad de Chile - Independencia, Santiago, 8380492, Chile
| | - Marcella Araujo Amaral Carneiro
- Department of Oceanography and Limnology, Federal University of Rio Grande do Norte - Via Costeira, Praia de Mãe Luiza, s/n, Natal, RN, 59014-002, Brazil
| | - Nair S Yokoya
- Phycology Research Center, Institute of Botany, Secretary of Infrastructure and Environment of São Paulo State, Brazil - Av. Miguel Estefano, 3687, Água Funda, São Paulo, SP, 04301-012, Brazil
| | - Eliane Marinho-Soriano
- Department of Oceanography and Limnology, Federal University of Rio Grande do Norte - Via Costeira, Praia de Mãe Luiza, s/n, Natal, RN, 59014-002, Brazil
| | - Marcia A S Graminha
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rod. Araraquara-Jaú km 1, Campus Ville, Araraquara, SP, 14800-903, Brazil
| | - Jonas Collén
- Station Biologique de Roscoff, UMR 8227, Integrative Biology of Marine Models - CS 90074, Roscoff cedex, 29688, France
| | - Mariana C Oliveira
- Department of Botany, Institute of Biosciences, University of São Paulo, R Matão 277, São Paulo, SP, 05508-090, Brazil
| | - Joao C Setubal
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP, 05508-000, Brazil
| | - Pio Colepicolo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
17
|
Zhang C, Zhao S, Li YS, He C, Wang X, Liu L. Crystal Structures of Arabidopsis thaliana GDP-D-Mannose Pyrophosphorylase VITAMIN C DEFECTIVE 1. FRONTIERS IN PLANT SCIENCE 2022; 13:899738. [PMID: 35677252 PMCID: PMC9168903 DOI: 10.3389/fpls.2022.899738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Plant GDP-D-mannose pyrophosphorylase (GMPase) catalyzes a committed step in ascorbic acid biosynthesis pathway. Arabidopsis thaliana VTC1 is the first genetically characterized plant GMPase and has unique properties when compared with bacterial and animal homologs. Here we present the crystal structures of VTC1 in the unliganded and product-bound states at resolutions of 2.8 and 3.0 Å, respectively. VTC1 dimerizes in a same way like other known GMPases, but dodecamerizes in a previously unobserved arrangement. The interactions to GDP-D-mannose and inorganic pyrophosphate are revealed by the product-bound VTC1 structure. An in vitro GMPase activity assay confirms the regulatory role of the C-terminal left-handed β-helix domain, and structural analyses suggest the models of VTC1 hetero-complex with its interacting proteins. The structural information advances our insights into the different mechanisms involved in VTC1 regulation.
Collapse
Affiliation(s)
- Chi Zhang
- School of Life Sciences, Anhui University, Hefei, China
| | - Shun Zhao
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yu-Shuai Li
- School of Life Sciences, Anhui University, Hefei, China
| | - Chao He
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Xiao Wang
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Lin Liu
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| |
Collapse
|
18
|
Voiniciuc C. Modern mannan: a hemicellulose's journey. THE NEW PHYTOLOGIST 2022; 234:1175-1184. [PMID: 35285041 DOI: 10.1111/nph.18091] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Hemicellulosic polysaccharides built of β-1,4-linked mannose units have been found throughout the plant kingdom and have numerous industrial applications. Here, I review recent advances in the biosynthesis and modification of plant β-mannans. These matrix polymers can associate with cellulose bundles to impact the mechanical properties of plant fibers or biocomposites. In certain algae, mannan microfibrils even replace cellulose as the dominant structural component of the cell wall. Conversely, patterned galactoglucomannan found in Arabidopsis thaliana seed mucilage significantly modulates cell wall architecture and abiotic stress tolerance despite its relatively low content. I also discuss the subcellular requirements for β-mannan biosynthesis, the increasing number of carbohydrate-active enzymes involved in this process, and the players that continue to be puzzling. I discuss how cellulose synthase-like enzymes elongate (gluco)mannans in orthogonal hosts and highlight the discoveries of plant enzymes that add specific galactosyl or acetyl decorations. Hydrolytic enzymes such as endo-β-1,4-mannanases have recently been involved in a wide range of biological contexts including seed germination, wood formation, heavy metal tolerance, and defense responses. Synthetic biology tools now provide faster tracks to modulate the increasingly-relevant mannan structures for improved plant traits and bioproducts.
Collapse
Affiliation(s)
- Cătălin Voiniciuc
- Independent Junior Research Group-Designer Glycans, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
19
|
Ma S, Li H, Wang L, Li B, Wang Z, Ma B, Ma F, Li M. F-box protein MdAMR1L1 regulates ascorbate biosynthesis in apple by modulating GDP-mannose pyrophosphorylase. PLANT PHYSIOLOGY 2022; 188:653-669. [PMID: 35051284 PMCID: PMC8774718 DOI: 10.1093/plphys/kiab427] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/10/2021] [Indexed: 05/04/2023]
Abstract
Ascorbate (Asc) is an important antioxidant in plants and humans that plays key roles in various physiological processes. Understanding the regulation of Asc content in fruit plants is important for improving plant resiliency and optimizing Asc in food. Here, we found that both the transcript level and protein abundance of Asc Mannose pathway Regulator 1 Like 1 (MdAMR1L1) was negatively associated with Asc levels during the development of apple (Malus × domestica) fruit. The overexpression or silencing of MdAMR1L1 in apple indicated that MdAMR1L1 negatively regulated Asc levels. However, in the leaves of MdAMR1L1-overexpressing apple lines, the transcript levels of the Asc synthesis gene Guanosine diphosphate-mannose pyrophosphorylase MdGMP1 were increased, while its protein levels and enzyme activity were reduced. This occurred because the MdAMR1L1 protein interacted with MdGMP1 and promoted its degradation via the ubiquitination pathway to inhibit Asc synthesis at the post-translational level. MdERF98, an apple ethylene response factor, whose transcription was modulated by Asc level, is directly bound to the promoter of MdGMP1 to promote the transcription of MdGMP1. These findings provide insights into the regulatory mechanism of Asc biosynthesis in apples and revealed potential opportunities to improve fruit Asc levels.
Collapse
Affiliation(s)
- Songya Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of Apple, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huixia Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of Apple, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of Apple, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Baiyun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of Apple, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhengyang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of Apple, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Baiquan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of Apple, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of Apple, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of Apple, Northwest A&F University, Yangling, Shaanxi 712100, China
- Author for communication:
| |
Collapse
|
20
|
Chen Y, Shu P, Wang R, Du X, Xie Y, Du K, Deng H, Li M, Zhang Y, Grierson D, Liu M. Ethylene response factor AcERF91 affects ascorbate metabolism via regulation of GDP-galactose phosphorylase encoding gene (AcGGP3) in kiwifruit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111063. [PMID: 34763857 DOI: 10.1016/j.plantsci.2021.111063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 05/02/2023]
Abstract
Kiwifruit is known as 'the king of vitamin C' because of the high content of ascorbic acid (AsA) in the fruit. Deciphering the regulatory network and identification of the key regulators mediating AsA biosynthesis is vital for fruit nutrition and quality improvement. To date, however, the key transcription factors regulating AsA metabolism during kiwifruit developmental and ripening processes remains largely unknown. Here, we generated a putative transcriptional regulatory network mediating ascorbate metabolism by transcriptome co-expression analysis. Further studies identified an ethylene response factor AcERF91 from this regulatory network, which is highly co-expressed with a GDP-galactose phosphorylase encoding gene (AcGGP3) during fruit developmental and ripening processes. Through dual-luciferase reporter and yeast one-hybrid assays, it was shown that AcERF91 is able to bind and directly activate the activity of the AcGGP3 promoter. Furthermore, transient expression of AcERF91 in kiwifruit fruits resulted in a significant increase in AsA content and AcGGP3 transcript level, indicating a positive role of AcERF91 in controlling AsA accumulation via regulation of the expression of AcGGP3. Overall, our results provide a new insight into the regulation of AsA metabolism in kiwifruit.
Collapse
Affiliation(s)
- Yuan Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Peng Shu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Ruochen Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xiaofei Du
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yue Xie
- Key Laboratory of Breeding and Utilization of Kiwifruit in Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Kui Du
- Key Laboratory of Breeding and Utilization of Kiwifruit in Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Heng Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Mingzhang Li
- Key Laboratory of Breeding and Utilization of Kiwifruit in Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Yang Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Don Grierson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, United Kingdom
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
21
|
Nishigaki N, Yoshimi Y, Kuki H, Kunieda T, Hara-Nishimura I, Tsumuraya Y, Takahashi D, Dupree P, Kotake T. Galactoglucomannan structure of Arabidopsis seed-coat mucilage in GDP-mannose synthesis impaired mutants. PHYSIOLOGIA PLANTARUM 2021; 173:1244-1252. [PMID: 34380178 DOI: 10.1111/ppl.13519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Cell-wall polysaccharides are synthesized from nucleotide sugars by glycosyltransferases. However, in what way the level of nucleotide sugars affects the structure of the polysaccharides is not entirely clear. guanosine diphosphate (GDP)-mannose (GDP-Man) is one of the major nucleotide sugars in plants and serves as a substrate in the synthesis of mannan polysaccharides. GDP-Man is synthesized from mannose 1-phosphate and GTP by a GDP-Man pyrophosphorylase, VITAMIN C DEFECTIVE1 (VTC1), which is positively regulated by the interacting protein KONJAC1 (KJC1) in Arabidopsis. Since seed-coat mucilage can serve as a model of the plant cell wall, we examined the influence of vtc1 and kjc1 mutations on the synthesis of mucilage galactoglucomannan. Sugar composition analysis showed that mannose content in adherent mucilage of kjc1 and vtc1 mutants was only 42% and 11% of the wild-type, respectively, indicating a drastic decrease of galactoglucomannan. On the other hand, structural analysis based on specific oligosaccharides released by endo-β-1,4-mannanase indicated that galactoglucomannan had a patterned glucomannan backbone consisting of alternating residues of glucose and mannose and the frequency of α-galactosyl branches was also similar to the wild type structure. These results suggest that the structure of mucilage galactoglucomannan is mainly determined by properties of glycosyltransferases rather than the availability of nucleotide sugars.
Collapse
Affiliation(s)
- Naho Nishigaki
- Graduate School of Science and Engineering, Saitama, Japan
| | | | - Hiroaki Kuki
- Graduate School of Science and Engineering, Saitama, Japan
| | - Tadashi Kunieda
- Faculty of Science and Engineering, Konan University, Kobe, Japan
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | | | | | | | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Toshihisa Kotake
- Graduate School of Science and Engineering, Saitama, Japan
- Green Biology Research Center, Saitama University, Saitama, Japan
| |
Collapse
|
22
|
Somssich M, Vandenbussche F, Ivakov A, Funke N, Ruprecht C, Vissenberg K, VanDer Straeten D, Persson S, Suslov D. Brassinosteroids Influence Arabidopsis Hypocotyl Graviresponses through Changes in Mannans and Cellulose. PLANT & CELL PHYSIOLOGY 2021; 62:678-692. [PMID: 33570567 DOI: 10.1093/pcp/pcab024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
The force of gravity is a constant environmental factor. Plant shoots respond to gravity through negative gravitropism and gravity resistance. These responses are essential for plants to direct the growth of aerial organs away from the soil surface after germination and to keep an upright posture above ground. We took advantage of the effect of brassinosteroids (BRs) on the two types of graviresponses in Arabidopsis thaliana hypocotyls to disentangle functions of cell wall polymers during etiolated shoot growth. The ability of etiolated Arabidopsis seedlings to grow upward was suppressed in the presence of 24-epibrassinolide (EBL) but enhanced in the presence of brassinazole (BRZ), an inhibitor of BR biosynthesis. These effects were accompanied by changes in cell wall mechanics and composition. Cell wall biochemical analyses, confocal microscopy of the cellulose-specific pontamine S4B dye and cellular growth analyses revealed that the EBL and BRZ treatments correlated with changes in cellulose fibre organization, cell expansion at the hypocotyl base and mannan content. Indeed, a longitudinal reorientation of cellulose fibres and growth inhibition at the base of hypocotyls supported their upright posture whereas the presence of mannans reduced gravitropic bending. The negative effect of mannans on gravitropism is a new function for this class of hemicelluloses. We also found that EBL interferes with upright growth of hypocotyls through their uneven thickening at the base.
Collapse
Affiliation(s)
- Marc Somssich
- School of Biosciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, Gent 9000, Belgium
| | - Alexander Ivakov
- Max-Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam 14476, Germany
| | - Norma Funke
- Max-Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam 14476, Germany
- Targenomix GmbH, Am Muehlenberg 11, Potsdam 14476, Germany
| | - Colin Ruprecht
- Max-Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam 14476, Germany
- Max-Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, Potsdam 14476, Germany
| | - Kris Vissenberg
- Biology Department, Integrated Molecular Plant Physiology Research, University of Antwerp, Groenenborgerlaan 171, Antwerpen 2020, Belgium
- Plant Biochemistry and Biotechnology Lab, Department of Agriculture, Hellenic Mediterranean University, Stavromenos, Heraklion, Crete 71410, Greece
| | - Dominique VanDer Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, Gent 9000, Belgium
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C 1871, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg C 1871, Denmark
| | - Dmitry Suslov
- Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya emb. 7/9, Saint Petersburg 199034, Russia
| |
Collapse
|
23
|
Bulley SM, Cooney JM, Laing W. Elevating Ascorbate in Arabidopsis Stimulates the Production of Abscisic Acid, Phaseic Acid, and to a Lesser Extent Auxin (IAA) and Jasmonates, Resulting in Increased Expression of DHAR1 and Multiple Transcription Factors Associated with Abiotic Stress Tolerance. Int J Mol Sci 2021. [PMID: 34201662 DOI: 10.3990/ijms22136743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Gene expression and phytohormone contents were measured in response to elevating ascorbate in the absence of other confounding stimuli such as high light and abiotic stresses. Young Arabidopsis plants were treated with 25 mM solutions of l-galactose pathway intermediates l-galactose (l-gal) or l-galactono-1,4-lactone (l-galL), as well as L-ascorbic acid (AsA), with 25 mM glucose used as control. Feeding increased rosette AsA 2- to 4-fold but there was little change in AsA biosynthetic gene transcripts. Of the ascorbate recycling genes, only Dehydroascorbate reductase 1 expression was increased. Some known regulatory genes displayed increased expression and included ANAC019, ANAC072, ATHB12, ZAT10 and ZAT12. Investigation of the ANAC019/ANAC072/ATHB12 gene regulatory network revealed a high proportion of ABA regulated genes. Measurement of a subset of jasmonate, ABA, auxin (IAA) and salicylic acid compounds revealed consistent increases in ABA (up to 4.2-fold) and phaseic acid (PA; up to 5-fold), and less consistently certain jasmonates, IAA, but no change in salicylic acid levels. Increased ABA is likely due to increased transcripts for the ABA biosynthetic gene NCED3. There were also smaller increases in transcripts for transcription factors ATHB7, ERD1, and ABF3. These results provide insights into how increasing AsA content can mediate increased abiotic stress tolerance.
Collapse
Affiliation(s)
- Sean M Bulley
- The New Zealand Institute for Plant and Food Research Limited, Te Puke 3182, New Zealand
| | - Janine M Cooney
- The New Zealand Institute for Plant and Food Research Limited, Ruakura, Hamilton 3214, New Zealand
| | - William Laing
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| |
Collapse
|
24
|
Bulley SM, Cooney JM, Laing W. Elevating Ascorbate in Arabidopsis Stimulates the Production of Abscisic Acid, Phaseic Acid, and to a Lesser Extent Auxin (IAA) and Jasmonates, Resulting in Increased Expression of DHAR1 and Multiple Transcription Factors Associated with Abiotic Stress Tolerance. Int J Mol Sci 2021; 22:ijms22136743. [PMID: 34201662 PMCID: PMC8269344 DOI: 10.3390/ijms22136743] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/17/2021] [Indexed: 01/05/2023] Open
Abstract
Gene expression and phytohormone contents were measured in response to elevating ascorbate in the absence of other confounding stimuli such as high light and abiotic stresses. Young Arabidopsis plants were treated with 25 mM solutions of l-galactose pathway intermediates l-galactose (l-gal) or l-galactono-1,4-lactone (l-galL), as well as L-ascorbic acid (AsA), with 25 mM glucose used as control. Feeding increased rosette AsA 2- to 4-fold but there was little change in AsA biosynthetic gene transcripts. Of the ascorbate recycling genes, only Dehydroascorbate reductase 1 expression was increased. Some known regulatory genes displayed increased expression and included ANAC019, ANAC072, ATHB12, ZAT10 and ZAT12. Investigation of the ANAC019/ANAC072/ATHB12 gene regulatory network revealed a high proportion of ABA regulated genes. Measurement of a subset of jasmonate, ABA, auxin (IAA) and salicylic acid compounds revealed consistent increases in ABA (up to 4.2-fold) and phaseic acid (PA; up to 5-fold), and less consistently certain jasmonates, IAA, but no change in salicylic acid levels. Increased ABA is likely due to increased transcripts for the ABA biosynthetic gene NCED3. There were also smaller increases in transcripts for transcription factors ATHB7, ERD1, and ABF3. These results provide insights into how increasing AsA content can mediate increased abiotic stress tolerance.
Collapse
Affiliation(s)
- Sean M. Bulley
- The New Zealand Institute for Plant and Food Research Limited, Te Puke 3182, New Zealand
- Correspondence: ; Tel.: +64-7-928-9796
| | - Janine M. Cooney
- The New Zealand Institute for Plant and Food Research Limited, Ruakura, Hamilton 3214, New Zealand;
| | - William Laing
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand;
| |
Collapse
|
25
|
Fenech M, Amorim-Silva V, Esteban del Valle A, Arnaud D, Ruiz-Lopez N, Castillo AG, Smirnoff N, Botella MA. The role of GDP-l-galactose phosphorylase in the control of ascorbate biosynthesis. PLANT PHYSIOLOGY 2021; 185:1574-1594. [PMID: 33793952 PMCID: PMC8133566 DOI: 10.1093/plphys/kiab010] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/28/2020] [Indexed: 05/03/2023]
Abstract
The enzymes involved in l-ascorbate biosynthesis in photosynthetic organisms (the Smirnoff-Wheeler [SW] pathway) are well established. Here, we analyzed their subcellular localizations and potential physical interactions and assessed their role in the control of ascorbate synthesis. Transient expression of C terminal-tagged fusions of SW genes in Nicotiana benthamiana and Arabidopsis thaliana mutants complemented with genomic constructs showed that while GDP-d-mannose epimerase is cytosolic, all the enzymes from GDP-d-mannose pyrophosphorylase (GMP) to l-galactose dehydrogenase (l-GalDH) show a dual cytosolic/nuclear localization. All transgenic lines expressing functional SW protein green fluorescent protein fusions driven by their endogenous promoters showed a high accumulation of the fusion proteins, with the exception of those lines expressing GDP-l-galactose phosphorylase (GGP) protein, which had very low abundance. Transient expression of individual or combinations of SW pathway enzymes in N. benthamiana only increased ascorbate concentration if GGP was included. Although we did not detect direct interaction between the different enzymes of the pathway using yeast-two hybrid analysis, consecutive SW enzymes, as well as the first and last enzymes (GMP and l-GalDH) associated in coimmunoprecipitation studies. This association was supported by gel filtration chromatography, showing the presence of SW proteins in high-molecular weight fractions. Finally, metabolic control analysis incorporating known kinetic characteristics showed that previously reported feedback repression at the GGP step, combined with its relatively low abundance, confers a high-flux control coefficient and rationalizes why manipulation of other enzymes has little effect on ascorbate concentration.
Collapse
Affiliation(s)
- Mario Fenech
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - Vítor Amorim-Silva
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - Alicia Esteban del Valle
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - Dominique Arnaud
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Noemi Ruiz-Lopez
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - Araceli G Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Departamento de Genética, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Miguel A Botella
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| |
Collapse
|
26
|
Yu C, Yan M, Dong H, Luo J, Ke Y, Guo A, Chen Y, Zhang J, Huang X. Maize bHLH55 functions positively in salt tolerance through modulation of AsA biosynthesis by directly regulating GDP-mannose pathway genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110676. [PMID: 33288001 DOI: 10.1016/j.plantsci.2020.110676] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 05/21/2023]
Abstract
Ascorbic acid (AsA) is an antioxidant and enzyme co-factor that is vital to plant development and abiotic stress tolerance. However, the regulation mechanisms of AsA biosynthesis in plants remain poorly understood. Here, we report a basic helix-loop-helix 55 (ZmbHLH55) transcription factor that regulates AsA biosynthesis in maize. Analysis of publicly available transcriptomic data revealed that ZmbHLH55 is co-expressed with several genes of the GDP-mannose pathway. Experimental data showed that ZmbHLH55 forms homodimers localized to the cell nuclei, and it exhibits DNA binding and transactivation activity in yeast. Under salt stress conditions, knock down mutant (zmbhlh55) in maize accumulated lower levels of AsA compared with wild type, accompanied by lower antioxidant enzymes activity, shorter root length, and higher malondialdehyde (MDA) level. Gene expression data from the WT and zmbhlh55 mutant, showed that ZmbHLH55 positively regulates the expression of ZmPGI2, ZmGME1, and ZmGLDH, but negatively regulates ZmGMP1 and ZmGGP. Furthermore, ZmbHLH55-overexpressing Arabidopsis, under salt conditions, showed higher AsA levels, increased rates of germination, and elevated antioxidant enzyme activities. In conclusion, these results have identified previously unknown regulation mechanisms for AsA biosynthesis, indicating that ZmbHLH55 may be a potential candidate to enhance plant salt stress tolerance in the future.
Collapse
Affiliation(s)
- Chunmei Yu
- Ministry of Agriculture Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, 226019, China
| | - Ming Yan
- Ministry of Agriculture Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, 226019, China
| | - Huizhen Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Luo
- Ministry of Agriculture Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, 226019, China
| | - Yongchao Ke
- Ministry of Agriculture Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, 226019, China
| | - Anfang Guo
- Ministry of Agriculture Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, 226019, China
| | - Yanhong Chen
- Ministry of Agriculture Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, 226019, China
| | - Jian Zhang
- Ministry of Agriculture Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, 226019, China
| | - Xiaosan Huang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
27
|
Chen W, Hu T, Ye J, Wang B, Liu G, Wang Y, Yuan L, Li J, Li F, Ye Z, Zhang Y. A CCAAT-binding factor, SlNFYA10, negatively regulates ascorbate accumulation by modulating the D-mannose/L-galactose pathway in tomato. HORTICULTURE RESEARCH 2020; 7:200. [PMID: 33328457 PMCID: PMC7705693 DOI: 10.1038/s41438-020-00418-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 05/04/2023]
Abstract
Ascorbic acid (AsA), an important antioxidant and growth regulator, and it is essential for plant development and human health. Specifically, humans have to acquire AsA from dietary sources due to their inability to synthesize it. The AsA biosynthesis pathway in plants has been elucidated, but its regulatory mechanism remains largely unknown. In this report, we biochemically identified a CCAAT-box transcription factor (SlNFYA10) that can bind to the promoter of SlGME1, which encodes GDP-Man-3',5'-epimerase, a pivotal enzyme in the D-mannose/L-galactose pathway. Importantly, SlNFYA10 simultaneously binds to the promoter of SlGGP1, a downstream gene of SlGME1 in the D-mannose/L-galactose pathway. Binding assays in yeast and functional analyses in plants have confirmed that SlNFYA10 exerts a negative effect on the expression of both SlGME1 and SlGGP1. Transgenic tomato lines overexpressing SlNFYA10 show decreased levels of SlGME1 and SlGGP1 abundance and AsA concentration in their leaves and fruits, accompanied by enhanced sensitivity to oxidative stress. Overall, SlNFYA10 is the first CCAAT-binding factor identified to date to negatively regulate the AsA biosynthetic pathway at multiple sites and modulate plant responses to oxidative stress.
Collapse
Affiliation(s)
- Weifang Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Tixu Hu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Jie Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Bing Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Genzhong Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ying Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Lei Yuan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Jiaming Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Fangman Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
- HZAU Chuwei Institute of Advanced Seeds, 430070, Wuhan, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China.
- HZAU Chuwei Institute of Advanced Seeds, 430070, Wuhan, China.
| |
Collapse
|
28
|
Niu J, Zhao G, Mi Z, Chen L, Liu S, Wang S, Wang D, Wang Z. De novo sequencing of Bletilla striata (Orchidaceae) transcriptome and identification of genes involved in polysaccharide biosynthesis. Genet Mol Biol 2020; 43:e20190417. [PMID: 32609279 PMCID: PMC7315133 DOI: 10.1590/1678-4685-gmb-2019-0417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/16/2020] [Indexed: 11/22/2022] Open
Abstract
Bletilla striata polysaccharide (BSP) is the main component of Bletilla striata, which has important pharmacological and pharmacological effects; however, due to the lack of genetic data, the metabolic pathways of BSP remain unclear. For this study, 11 representative resources of B. striata were analyzed, and the BSP contents of the different samples were significantly different; however, the monosaccharide composition of BSP was glucose and mannose. The representative samples were selected to observe their life history in situ, which were then divided and cultured in a greenhouse. Finally, samples from various organs of different plants were combined for transcriptome sequencing using the Illumina system. Our results summarized the BSP metabolic pathway, and we found that there were eight enzyme genes involved in biosynthesis, but these genes showed tissue specificity. Following qRT-PCR validation and comparative analysis, manA showed the highest expression; however, there were significant differences between the two germplasm resources in which the BSP content was significantly different, while UGP2, GPI, PMM, and GMPP had significant differences between the two samples. In summary, this study lays the foundation for further research into BSP metabolism and other physiological processes at the molecular level.
Collapse
Affiliation(s)
- Junfeng Niu
- Shaanxi Normal University, College of Life Sciences, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, Shaanxi, China
| | - Guangming Zhao
- Shaanxi Normal University, College of Life Sciences, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, Shaanxi, China
| | - Zeyuan Mi
- Shaanxi Normal University, College of Life Sciences, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, Shaanxi, China
| | - Lijun Chen
- Shaanxi Normal University, College of Life Sciences, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, Shaanxi, China
| | - Shuai Liu
- Shaanxi Normal University, College of Life Sciences, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, Shaanxi, China
| | - Shiqiang Wang
- Shaanxi Normal University, College of Life Sciences, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, Shaanxi, China
| | - Donghao Wang
- Shaanxi Normal University, College of Life Sciences, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, Shaanxi, China
| | - Zhezhi Wang
- Shaanxi Normal University, College of Life Sciences, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, Shaanxi, China
| |
Collapse
|
29
|
Broad RC, Bonneau JP, Hellens RP, Johnson AA. Manipulation of Ascorbate Biosynthetic, Recycling, and Regulatory Pathways for Improved Abiotic Stress Tolerance in Plants. Int J Mol Sci 2020; 21:E1790. [PMID: 32150968 PMCID: PMC7084844 DOI: 10.3390/ijms21051790] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 02/03/2023] Open
Abstract
Abiotic stresses, such as drought, salinity, and extreme temperatures, are major limiting factors in global crop productivity and are predicted to be exacerbated by climate change. The overproduction of reactive oxygen species (ROS) is a common consequence of many abiotic stresses. Ascorbate, also known as vitamin C, is the most abundant water-soluble antioxidant in plant cells and can combat oxidative stress directly as a ROS scavenger, or through the ascorbate-glutathione cycle-a major antioxidant system in plant cells. Engineering crops with enhanced ascorbate concentrations therefore has the potential to promote broad abiotic stress tolerance. Three distinct strategies have been utilized to increase ascorbate concentrations in plants: (i) increased biosynthesis, (ii) enhanced recycling, or (iii) modulating regulatory factors. Here, we review the genetic pathways underlying ascorbate biosynthesis, recycling, and regulation in plants, including a summary of all metabolic engineering strategies utilized to date to increase ascorbate concentrations in model and crop species. We then highlight transgene-free strategies utilizing genome editing tools to increase ascorbate concentrations in crops, such as editing the highly conserved upstream open reading frame that controls translation of the GDP-L-galactose phosphorylase gene.
Collapse
Affiliation(s)
- Ronan C. Broad
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Julien P. Bonneau
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Roger P. Hellens
- Centre for Tropical Crops and Biocommodities, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | | |
Collapse
|
30
|
Vitamin C in Plants: From Functions to Biofortification. Antioxidants (Basel) 2019; 8:antiox8110519. [PMID: 31671820 PMCID: PMC6912510 DOI: 10.3390/antiox8110519] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 12/18/2022] Open
Abstract
Vitamin C (l-ascorbic acid) is an excellent free radical scavenger, not only for its capability to donate reducing equivalents but also for the relative stability of the derived monodehydroascorbate radical. However, vitamin C is not only an antioxidant, since it is also a cofactor for numerous enzymes involved in plant and human metabolism. In humans, vitamin C takes part in various physiological processes, such as iron absorption, collagen synthesis, immune stimulation, and epigenetic regulation. Due to the functional loss of the gene coding for l-gulonolactone oxidase, humans cannot synthesize vitamin C; thus, they principally utilize plant-based foods for their needs. For this reason, increasing the vitamin C content of crops could have helpful effects on human health. To achieve this objective, exhaustive knowledge of the metabolism and functions of vitamin C in plants is needed. In this review, the multiple roles of vitamin C in plant physiology as well as the regulation of its content, through biosynthetic or recycling pathways, are analyzed. Finally, attention is paid to the strategies that have been used to increase the content of vitamin C in crops, emphasizing not only the improvement of nutritional value of the crops but also the acquisition of plant stress resistance.
Collapse
|
31
|
Song W, Wang F, Chen L, Ma R, Zuo X, Cao A, Xie S, Chen X, Jin X, Li H. GhVTC1, the Key Gene for Ascorbate Biosynthesis in Gossypium hirsutum, Involves in Cell Elongation Under Control of Ethylene. Cells 2019; 8:cells8091039. [PMID: 31492030 PMCID: PMC6769745 DOI: 10.3390/cells8091039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 02/02/2023] Open
Abstract
L-Ascorbate (Asc) plays important roles in cell growth and plant development, and its de novo biosynthesis was catalyzed by the first rate-limiting enzyme VTC1. However, the function and regulatory mechanism of VTC1 involved in cell development is obscure in Gossypium hirsutum. Herein, the Asc content and AsA/DHA ratio were accumulated and closely linked with fiber development. The GhVTC1 encoded a typical VTC1 protein with functional conserved domains and expressed preferentially during fiber fast elongation stages. Functional complementary analysis of GhVTC1 in the loss-of-function Arabidopsis vtc1-1 mutants indicated that GhVTC1 is genetically functional to rescue the defects of mutants to normal or wild type (WT). The significant shortened primary root in vtc1-1 mutants was promoted to the regular length of WT by the ectopic expression of GhVTC1 in the mutants. Additionally, GhVTC1 expression was induced by ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and the GhVTC1 promoter showed high activity and included two ethylene-responsive elements (ERE). Moreover, the 5'-truncted promoters containing the ERE exhibited increased activity by ACC treatment. Our results firstly report the cotton GhVTC1 function in promoting cell elongation at the cellular level, and serve as a foundation for further understanding the regulatory mechanism of Asc-mediated cell growth via the ethylene signaling pathway.
Collapse
Affiliation(s)
- Wangyang Song
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Fei Wang
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Lihua Chen
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Rendi Ma
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Xiaoyu Zuo
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Aiping Cao
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Shuangquan Xie
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Xifeng Chen
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Xiang Jin
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
32
|
Xing C, Liu Y, Zhao L, Zhang S, Huang X. A novel MYB transcription factor regulates ascorbic acid synthesis and affects cold tolerance. PLANT, CELL & ENVIRONMENT 2019; 42:832-845. [PMID: 29929211 DOI: 10.1111/pce.13387] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/19/2018] [Accepted: 06/13/2018] [Indexed: 05/18/2023]
Abstract
Dehydroascorbate reductase (DHAR) plays an important role in stress responses, but the transcriptional regulation of DHAR in response to abiotic stress is still poorly understood. In this study, we isolated a novel R2R3-type MYB transcription factor from Pyrus betulaefolia by yeast one-hybrid screening, designated as PbrMYB5. PbrMYB5 was localized in the nucleus and could bind specifically to the promoter of PbrDHAR2. PbrMYB5 was greatly induced by cold and salt but slightly by dehydration. Overexpression of PbrMYB5 in tobacco conferred enhanced tolerance to chilling stresses, whereas down-regulation of PbrMYB5 in P. betulaefolia by virus-induced gene silencing resulted in elevated chilling sensitivity. Transgenic tobacco exhibited higher expression levels of NtDHAR2 and accumulated larger amount of ascorbic acid (AsA) than the wild-type plants. Virus-induced gene silencing of PbrMYB5 in P. betulaefolia down-regulated PbrDHAR2 abundance and decreased AsA level, accompanied by an increased sensitivity to the chilling stress. Taken together, these results demonstrated that PbrMYB5 was an activator of AsA biosynthesis and may play a positive role in chilling tolerance, at least in part, due to the modulation of AsA synthesis by regulating the PbrDHAR2 expression.
Collapse
Affiliation(s)
- Caihua Xing
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Yue Liu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Liangyi Zhao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Shaoling Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xiaosan Huang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
33
|
Fenech M, Amaya I, Valpuesta V, Botella MA. Vitamin C Content in Fruits: Biosynthesis and Regulation. FRONTIERS IN PLANT SCIENCE 2019; 9:2006. [PMID: 30733729 PMCID: PMC6353827 DOI: 10.3389/fpls.2018.02006] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/31/2018] [Indexed: 05/19/2023]
Abstract
Throughout evolution, a number of animals including humans have lost the ability to synthesize ascorbic acid (ascorbate, vitamin C), an essential molecule in the physiology of animals and plants. In addition to its main role as an antioxidant and cofactor in redox reactions, recent reports have shown an important role of ascorbate in the activation of epigenetic mechanisms controlling cell differentiation, dysregulation of which can lead to the development of certain types of cancer. Although fruits and vegetables constitute the main source of ascorbate in the human diet, rising its content has not been a major breeding goal, despite the large inter- and intraspecific variation in ascorbate content in fruit crops. Nowadays, there is an increasing interest to boost ascorbate content, not only to improve fruit quality but also to generate crops with elevated stress tolerance. Several attempts to increase ascorbate in fruits have achieved fairly good results but, in some cases, detrimental effects in fruit development also occur, likely due to the interaction between the biosynthesis of ascorbate and components of the cell wall. Plants synthesize ascorbate de novo mainly through the Smirnoff-Wheeler pathway, the dominant pathway in photosynthetic tissues. Two intermediates of the Smirnoff-Wheeler pathway, GDP-D-mannose and GDP-L-galactose, are also precursors of the non-cellulosic components of the plant cell wall. Therefore, a better understanding of ascorbate biosynthesis and regulation is essential for generation of improved fruits without developmental side effects. This is likely to involve a yet unknown tight regulation enabling plant growth and development, without impairing the cell redox state modulated by ascorbate pool. In certain fruits and developmental conditions, an alternative pathway from D-galacturonate might be also relevant. We here review the regulation of ascorbate synthesis, its close connection with the cell wall, as well as different strategies to increase its content in plants, with a special focus on fruits.
Collapse
Affiliation(s)
- Mario Fenech
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Iraida Amaya
- Instituto Andaluz de Investigación y Formación Agraria y Pesquera, Area de Genómica y Biotecnología, Centro de Málaga, Spain
| | - Victoriano Valpuesta
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Miguel A. Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
34
|
Decker D, Kleczkowski LA. UDP-Sugar Producing Pyrophosphorylases: Distinct and Essential Enzymes With Overlapping Substrate Specificities, Providing de novo Precursors for Glycosylation Reactions. FRONTIERS IN PLANT SCIENCE 2019; 9:1822. [PMID: 30662444 PMCID: PMC6329318 DOI: 10.3389/fpls.2018.01822] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/23/2018] [Indexed: 05/02/2023]
Abstract
Nucleotide sugars are the key precursors for all glycosylation reactions and are required both for oligo- and polysaccharides synthesis and protein and lipid glycosylation. Among all nucleotide sugars, UDP-sugars are the most important precursors for biomass production in nature (e.g., synthesis of cellulose, hemicellulose, and pectins for cell wall production). Several recent studies have already suggested a potential role for UDP-Glc in plant growth and development, and UDP-Glc has also been suggested as a signaling molecule, in addition to its precursor function. In this review, we will cover primary mechanisms of formation of UDP-sugars, by focusing on UDP-sugar metabolizing pyrophosphorylases. The pyrophosphorylases can be divided into three families: UDP-Glc pyrophosphorylase (UGPase), UDP-sugar pyrophosphorylase (USPase), and UDP-N-acetyl glucosamine pyrophosphorylase (UAGPase), which can be distinguished both by their amino acid sequences and by differences in substrate specificity. Substrate specificities of these enzymes are discussed, along with structure-function relationships, based on their crystal structures and homology modeling. Earlier studies with transgenic plants have revealed that each of the pyrophosphorylases is essential for plant survival, and their loss or a decrease in activity results in reproductive impairment. This constitutes a problem when studying exact in vivo roles of the enzymes using classical reverse genetics approaches. Thus, strategies involving the use of specific inhibitors (reverse chemical genetics) are also discussed. Further characterization of the properties/roles of pyrophosphorylases should address fundamental questions dealing with mechanisms and control of carbohydrate synthesis and may allow to identify targets for manipulation of biomass production in plants.
Collapse
Affiliation(s)
| | - Leszek A. Kleczkowski
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| |
Collapse
|
35
|
Mahboubi A, Niittylä T. Sucrose transport and carbon fluxes during wood formation. PHYSIOLOGIA PLANTARUM 2018; 164:67-81. [PMID: 29572842 DOI: 10.1111/ppl.12729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/05/2018] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
Wood biosynthesis defines the chemical and structural properties of wood. The metabolic pathways that produce the precursors of wood cell wall polymers have a central role in defining wood properties. To make rational design of wood properties feasible, we need not only to understand the cell wall biosynthetic machinery, but also how sucrose transport and metabolism in developing wood connect to cell wall biosynthesis and how they respond to genetic and environmental cues. Here, we review the current understanding of the sucrose transport and primary metabolism pathways leading to the precursors of cell wall biosynthesis in woody plant tissues. We present both old, persistent questions and new emerging themes with a focus on wood formation in trees and draw upon evidence from the xylem tissues of herbaceous plants when it is relevant.
Collapse
Affiliation(s)
- Amir Mahboubi
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Totte Niittylä
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
36
|
Kka N, Rookes J, Cahill D. The influence of ascorbic acid on root growth and the root apical meristem in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:323-330. [PMID: 29929127 DOI: 10.1016/j.plaphy.2018.05.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 05/07/2023]
Abstract
Cell division is a fundamental biological process governed by molecular networks that are initiated in the apical meristems of plants. l-ascorbic acid (AsA) commonly known as vitamin C is a crucial molecular modulator involved in cell proliferation. In this study, we used AsA application to Arabidopsis and four AsA pathway mutants to investigate the influence of AsA on the root apical meristem (RAM) and root growth. Treatment of seeds of wild-type Col-0 with AsA prior to sowing showed a significant increase in the activity of cell division of the RAM, root growth rate and root length when compared with untreated seeds. Seedlings of the AsA pathway mutant vtc1-1 showed a significant reduction in the level of AsA and a significant increase in the number of quiescent cells in the RAM when compared with Col-0. Cell proliferation was reduced in the AsA pathway mutants vtc1-1, dhar1, vtc5-1, apx1, respectively, however, root growth decreased significantly only in vtc1-1 when compared with Col-0. In addition, hydrogen peroxide (H2O2) levels were shown to increase in the AsA pathway mutants, with the highest level of H2O2 found in vtc1-1. AsA is also shown to have an indirect influence in inducing periclinal division as a reduced level was found in vtc1-1. Therefore, in this study, we found that AsA had an influence on cell proliferation and root growth and VTC1 was shown to be a key modulator of H2O2 levels. These findings open the door for further studies to reveal the involvement of AsA in cell proliferation and the interaction between AsA and H2O2 on cell polarity in the RAM and potentially the shoot apical meristem.
Collapse
Affiliation(s)
- Noura Kka
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds Campus, Geelong, Victoria 3220, Australia
| | - James Rookes
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds Campus, Geelong, Victoria 3220, Australia.
| | - David Cahill
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds Campus, Geelong, Victoria 3220, Australia
| |
Collapse
|
37
|
Li Y, Chu Z, Luo J, Zhou Y, Cai Y, Lu Y, Xia J, Kuang H, Ye Z, Ouyang B. The C2H2 zinc-finger protein SlZF3 regulates AsA synthesis and salt tolerance by interacting with CSN5B. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1201-1213. [PMID: 29193661 PMCID: PMC5978872 DOI: 10.1111/pbi.12863] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/07/2017] [Accepted: 11/12/2017] [Indexed: 05/19/2023]
Abstract
Abiotic stresses are a major cause of crop loss. Ascorbic acid (AsA) promotes stress tolerance by scavenging reactive oxygen species (ROS), which accumulate when plants experience abiotic stress. Although the biosynthesis and metabolism of AsA are well established, the genes that regulate these pathways remain largely unexplored. Here, we report on a novel regulatory gene from tomato (Solanum lycopersicum) named SlZF3 that encodes a Cys2/His2-type zinc-finger protein with an EAR repression domain. The expression of SlZF3 was rapidly induced by NaCl treatments. The overexpression of SlZF3 significantly increased the levels of AsA in tomato and Arabidopsis. Consequently, the AsA-mediated ROS-scavenging capacity of the SlZF3-overexpressing plants was increased, which enhanced the salt tolerance of these plants. Protein-protein interaction assays demonstrated that SlZF3 directly binds CSN5B, a key component of the COP9 signalosome. This interaction inhibited the binding of CSN5B to VTC1, a GDP-mannose pyrophosphorylase that contributes to AsA biosynthesis. We found that the EAR domain promoted the stability of SlZF3 but was not required for the interaction between SlZF3 and CSN5B. Our findings indicate that SlZF3 simultaneously promotes the accumulation of AsA and enhances plant salt-stress tolerance.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Horticultural Plant Biology, MOE, and Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOAHuazhong Agricultural UniversityWuhanHubeiChina
| | - Zhuannan Chu
- Key Laboratory of Horticultural Plant Biology, MOE, and Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOAHuazhong Agricultural UniversityWuhanHubeiChina
| | - Jinying Luo
- Key Laboratory of Horticultural Plant Biology, MOE, and Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOAHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yuhong Zhou
- Key Laboratory of Horticultural Plant Biology, MOE, and Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOAHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yujing Cai
- Key Laboratory of Horticultural Plant Biology, MOE, and Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOAHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yongen Lu
- Key Laboratory of Horticultural Plant Biology, MOE, and Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOAHuazhong Agricultural UniversityWuhanHubeiChina
| | - Junhui Xia
- Key Laboratory of Horticultural Plant Biology, MOE, and Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOAHuazhong Agricultural UniversityWuhanHubeiChina
| | - Hanhui Kuang
- Key Laboratory of Horticultural Plant Biology, MOE, and Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOAHuazhong Agricultural UniversityWuhanHubeiChina
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, MOE, and Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOAHuazhong Agricultural UniversityWuhanHubeiChina
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology, MOE, and Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOAHuazhong Agricultural UniversityWuhanHubeiChina
| |
Collapse
|
38
|
Mellidou I, Kanellis AK. Genetic Control of Ascorbic Acid Biosynthesis and Recycling in Horticultural Crops. Front Chem 2017; 5:50. [PMID: 28744455 PMCID: PMC5504230 DOI: 10.3389/fchem.2017.00050] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/27/2017] [Indexed: 12/20/2022] Open
Abstract
Ascorbic acid (AsA) is an essential compound present in almost all living organisms that has important functions in several aspects of plant growth and development, hormone signaling, as well as stress defense networks. In recent years, the genetic regulation of AsA metabolic pathways has received much attention due to its beneficial role in human diet. Despite the great variability within species, genotypes, tissues and developmental stages, AsA accumulation is considered to be controlled by the fine orchestration of net biosynthesis, recycling, degradation/oxidation, and/or intercellular and intracellular transport. To date, several structural genes from the AsA metabolic pathways and transcription factors are considered to significantly affect AsA in plant tissues, either at the level of activity, transcription or translation via feedback inhibition. Yet, all the emerging studies support the notion that the steps proceeding through GDP-L-galactose phosphorylase and to a lesser extent through GDP-D-mannose-3,5-epimerase are control points in governing AsA pool size in several species. In this mini review, we discuss the current consensus of the genetic regulation of AsA biosynthesis and recycling, with a focus on horticultural crops. The aspects of AsA degradation and transport are not discussed herein. Novel insights of how this multifaceted trait is regulated are critical to prioritize candidate genes for follow-up studies toward improving the nutritional value of fruits and vegetables.
Collapse
Affiliation(s)
- Ifigeneia Mellidou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of ThessalonikiThessaloniki, Greece.,Laboratory of Agricultural Chemistry, Department of Crop Science, School of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Angelos K Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of ThessalonikiThessaloniki, Greece
| |
Collapse
|
39
|
Macknight RC, Laing WA, Bulley SM, Broad RC, Johnson AA, Hellens RP. Increasing ascorbate levels in crops to enhance human nutrition and plant abiotic stress tolerance. Curr Opin Biotechnol 2017; 44:153-160. [PMID: 28231513 DOI: 10.1016/j.copbio.2017.01.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/29/2017] [Accepted: 01/30/2017] [Indexed: 12/20/2022]
Abstract
Ascorbate (or vitamin C) is an essential human micronutrient predominantly obtained from plants. In addition to preventing scurvy, it is now known to have broader roles in human health, for example as a cofactor for enzymes involved in epigenetic programming and as regulator of cellular iron uptake. Furthermore, ascorbate is the major antioxidant in plants and underpins many environmentally induced abiotic stress responses. Biotechnological approaches to enhance the ascorbate content of crops therefore have potential to improve both human health and abiotic stress tolerance of crops. Identifying the genetic basis of ascorbate variation between plant varieties and discovering how some 'super fruits' accumulate extremely high levels of ascorbate should reveal new ways to more effectively manipulate the production of ascorbate in crops.
Collapse
Affiliation(s)
- Richard C Macknight
- University of Otago, Department of Biochemistry, PO Box 56, Dunedin 9054, New Zealand; Queensland University of Technology, Centre for Tropical Crops and Biocommodities, Institute for Future Environments, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - William A Laing
- The New Zealand Institute for Plant & Food Research Limited, Food Industry Science Centre, Bachelor Road, Palmerston North 4474, New Zealand
| | - Sean M Bulley
- The New Zealand Institute for Plant & Food Research Limited, 412 No 1 Road, RD 2, Te Puke 3182, New Zealand
| | - Ronan C Broad
- The University of Melbourne, School of BioSciences, Parkville, Melbourne, 3010 VIC, Australia
| | - Alexander At Johnson
- The University of Melbourne, School of BioSciences, Parkville, Melbourne, 3010 VIC, Australia
| | - Roger P Hellens
- Queensland University of Technology, Centre for Tropical Crops and Biocommodities, Institute for Future Environments, GPO Box 2434, Brisbane, QLD 4001, Australia
| |
Collapse
|
40
|
DoGMP1 from Dendrobium officinale contributes to mannose content of water-soluble polysaccharides and plays a role in salt stress response. Sci Rep 2017; 7:41010. [PMID: 28176760 PMCID: PMC5296857 DOI: 10.1038/srep41010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/14/2016] [Indexed: 12/20/2022] Open
Abstract
GDP-mannose pyrophosphorylase (GMP) catalyzed the formation of GDP-mannose, which serves as a donor for the biosynthesis of mannose-containing polysaccharides. In this study, three GMP genes from Dendrobium officinale (i.e., DoGMPs) were cloned and analyzed. The putative 1000 bp upstream regulatory region of these DoGMPs was isolated and cis-elements were identified, which indicates their possible role in responses to abiotic stresses. The DoGMP1 protein was shown to be localized in the cytoplasm. To further study the function of the DoGMP1 gene, 35S:DoGMP1 transgenic A. thaliana plants with an enhanced expression level of DoGMP1 were generated. Transgenic plants were indistinguishable from wild-type (WT) plants in tissue culture or in soil. However, the mannose content of the extracted water-soluble polysaccharides increased 67%, 96% and 92% in transgenic lines #1, #2 and #3, respectively more than WT levels. Germination percentage of seeds from transgenic lines was higher than WT seeds and the growth of seedlings from transgenic lines was better than WT seedlings under salinity stress (150 mM NaCl). Our results provide genetic evidence for the involvement of GMP genes in the biosynthesis of mannose-containing polysaccharides and the mediation of GMP genes in the response to salt stress during seed germination and seedling growth.
Collapse
|
41
|
Bulley S, Laing W. The regulation of ascorbate biosynthesis. CURRENT OPINION IN PLANT BIOLOGY 2016; 33:15-22. [PMID: 27179323 DOI: 10.1016/j.pbi.2016.04.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 05/20/2023]
Abstract
We review the regulation of ascorbate (vitamin C) biosynthesis, focusing on the l-galactose pathway. We discuss the regulation of ascorbate biosynthesis at the level of gene transcription (both repression and enhancement) and translation (feedback inhibition of translation by ascorbate concentration) and discuss the eight proteins that have been demonstrated to date to affect ascorbate concentration in plant tissues. GDP-galactose phosphorylase (GGP) and GDP-mannose epimerase are critical steps that regulate ascorbate biosynthesis. These and other biosynthetic genes are controlled at the transcriptional level, while GGP is also controlled at the translational level. Ascorbate feedback on enzyme activity has not been observed unequivocally.
Collapse
Affiliation(s)
- Sean Bulley
- The New Zealand Institute for Plant & Food Research Limited, 412 No 1 Road, RD 2, Te Puke 3182, New Zealand
| | - William Laing
- The New Zealand Institute for Plant & Food Research Limited, Food Industry Science Centre, Batchelar Road, Palmerston North 4474, New Zealand.
| |
Collapse
|
42
|
Zhao S, Liu L. Expression and crystallographic studies of the Arabidopsis thaliana GDP-D-mannose pyrophosphorylase VTC1. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2016; 72:795-798. [PMID: 27710946 DOI: 10.1107/s2053230x16013406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/20/2016] [Indexed: 12/30/2022]
Abstract
GDP-D-mannose pyrophosphorylase catalyzes the production of GDP-D-mannose, an intermediate product in the plant ascorbic acid (AsA) biosynthetic pathway. This enzyme is a key regulatory target in AsA biosynthesis and is encoded by VITAMIN C DEFECTIVE 1 (VTC1) in the Arabidopsis thaliana genome. Here, recombinant VTC1 was expressed, purified and crystallized. Diffraction data were obtained from VTC1 crystals grown in the absence and presence of substrate using X-rays. The ligand-free VTC1 crystal diffracted X-rays to 3.3 Å resolution and belonged to space group R32, with unit-cell parameters a = b = 183.6, c = 368.5 Å, α = β = 90, γ = 120°; the crystal of VTC1 in the presence of substrate diffracted X-rays to 1.75 Å resolution and belonged to space group P21, with unit-cell parameters a = 70.8, b = 83.9, c = 74.5 Å, α = γ = 90.0, β = 114.9°.
Collapse
Affiliation(s)
- Shun Zhao
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Lin Liu
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| |
Collapse
|