1
|
Yang Z, Gong R, Mimata Y, Ye S, Ji W, Ye W. Malate inhibits light-induced stomatal opening through SLAC1- and G-proteins mediated pathway in grapevine and Arabidopsis. Biosci Biotechnol Biochem 2025; 89:693-703. [PMID: 39890606 DOI: 10.1093/bbb/zbaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
A key tricarboxylic acid (TCA) cycle metabolite, malate, accumulates in leaves during dehydration and induces stomatal closure by recruiting cytosolic Ca2+, activating SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1), and promoting reactive oxygen species (ROS). However, the effects of malate on stomatal opening and its underlying molecular mechanisms remain poorly understood. Our study revealed that, among TCA cycle metabolites, malate specifically inhibited light-induced stomatal opening in both grapevine and Arabidopsis. We demonstrated that SLAC1 was required for malate's inhibitory effects. The inhibition by malate was disrupted by Ca2+ signaling inhibitors. Additionally, the malate signal was mediated by G-proteins, which regulate the production of second messengers. ROS production was abolished when G-proteins were inhibited. These findings show that malate efficiently maintains stomatal closure by not only inducing stomatal closure but also inhibiting stomatal opening. The inhibition of stomatal opening by malate is mediated through the activation of SLAC1 and the G-protein signaling cascade.
Collapse
Affiliation(s)
- Zhongyi Yang
- Shanxi Agricultural University, College of Horticulture, Jinzhong, Shanxi, China
| | - Ruhai Gong
- Shanxi Agricultural University, College of Horticulture, Jinzhong, Shanxi, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang Key Laboratory of Grapevine Improvement and Utilization, Weifang, Shandong, China
| | - Yoshiharu Mimata
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang Key Laboratory of Grapevine Improvement and Utilization, Weifang, Shandong, China
| | - Shaosong Ye
- Shanxi Agricultural University, College of Horticulture, Jinzhong, Shanxi, China
| | - Wei Ji
- Shanxi Agricultural University, College of Horticulture, Jinzhong, Shanxi, China
| | - Wenxiu Ye
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang Key Laboratory of Grapevine Improvement and Utilization, Weifang, Shandong, China
| |
Collapse
|
2
|
Kudriashova TR, Kryukov AA, Gorenkova AI, Yurkov AP. Aquaporins and their role in plant-microbial systems. Vavilovskii Zhurnal Genet Selektsii 2025; 29:238-247. [PMID: 40297298 PMCID: PMC12036568 DOI: 10.18699/vjgb-25-27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 04/30/2025] Open
Abstract
Global losses of agricultural products from water scarcity could be greater than from all other causes combined. Water deficiency in plants can result from insufficient precipitation, elevated air temperatures, and other factors that reduce the water available in the soil. Most terrestrial plants are able to form symbiosis with arbuscular mycorrhizal fungi. Arbuscular mycorrhiza plays a key role in the mineral nutrition of many terrestrial plant species. Water transport in plants is regulated primarily by aquaporins, transmembrane proteins. Aquaporins help plants save water, which is an important component of the plant's adaptation strategy to water scarcity. Some studies suggest that arbuscular mycorrhizal fungi can decrease the expression of aquaporin genes in plants under drought conditions, which reduces water transport within host plant tissues and conserves available water. On the other hand, there is little scientific evidence of the interaction mechanisms between plants and arbuscular mycorrhizal fungi during aquaporin regulation. In addition, the information in different sources on the aquaporin functions in different plant species may be contradictory. Plant aquaporins are represented by several subfamilies; their number varies for different species. A more comprehensive study of these transporters can enhance our understanding of water transport in plants and assess how arbuscular mycorrhizal fungi can influence it. This review contains data on the history of studies of the structure, localization, phylogeny, and functions of aquaporins. Advancing the study of the symbiotic system functioning may contribute to the development of biofertilizers based on soil microorganisms for agricultural uses in the Russian Federation.
Collapse
Affiliation(s)
- T R Kudriashova
- All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - A A Kryukov
- All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - A I Gorenkova
- All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - A P Yurkov
- All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| |
Collapse
|
3
|
Musa-Aziz R, Geyer RR, Moss FJ, Boron WF. Mechanism of CO 2 and NH 3 Transport through Human Aquaporin 1: Evidence for Parallel CO 2 Pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640247. [PMID: 40093180 PMCID: PMC11908171 DOI: 10.1101/2025.02.28.640247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The traditional view had been that dissolved gases cross membranes simply by dissolving in and diffusing through membrane lipid. However, some membranes are impermeable to CO 2 and NH 3 , whereas some aquaporin (AQP) water channels-tetramers with hydrophobic central pores-are permeable to CO 2 , NH 3 , or both. Nevertheless, we understand neither the routes that CO 2 and NH 3 take through AQP tetramers, nor the basis of CO 2 /NH 3 selectivity. Here, we show- for human AQP1-that all NH 3 and about half the CO 2 pass through the hydrophilic, monomeric pores. Surprisingly, the remaining half of CO 2 takes another pathway. We expressed AQP1 in Xenopus oocytes and used microelectrodes to monitor surface-pH transients caused by CO 2 or NH 3 influxes. We found that p-chloromercuribenzene sulfonate (pCMBS)-which reacts with C189 in the monomeric pore-eliminates the entire NH 3 signal but only half of the CO 2 signal and osmotic water permeability of AQP1. 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS), eliminates the remaining CO 2 signal but has no effect on NH 3 or osmotic water permeability. Together, the two drugs completely eliminate the CO 2 permeability of AQP1. When we express AQP1 in Pichia pastoris , treat spheroplasts with DIDS, and examine AQP1 by SDS-PAGE, reactivity with an anti-DIDS antibody shows that DIDS crosslinks AQP1 monomers. Our results provide the first evidence that a molecule can move through an AQP via a route other than the monomeric pore, and raise the possibility that selectivity depends on the extent to which CO 2 /NH 3 move through monomeric pores vs. an alternate pathway (e.g., the central pore). Key Points Some membranes have little or no CO 2 permeability, absent protein channels like aquaporin-1 (AQP1). We confirm that, during CO 2 influx, AQP1 expression in Xenopus oocytes increases the magnitude of the resulting transient surface-pH increase by an amount (ΔpH S *) CO2 , measured with microelectrodes. During NH 3 influx, AQP1 expression increases the magnitude of the transient pH S decrease by an amount (ΔpH S *) NH3 . p-chloromercuribenzene sulfonate (pCMBS), which reacts with C189 in the monomeric pore, reduces (ΔpH S *) CO2 by half; (ΔpH S *) NH3 , to zero; and AQP1-dependent osmotic water permeability ( P f *), by half. 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS) reduces (ΔpH S *) CO2 by half, but has no effect on (ΔpH S *) NH3 or P f *. DIDS crosslinks AQP1 monomers expressed in Pichia pastoris . Together, pCMBS+DIDS reduces (ΔpH S *) CO2 to zero. The C189S mutation of AQP1 eliminates the effects of pCMBS, but not DIDS. Our results thus show that CO 2 traverses AQP1 via the monomeric pore plus a novel, DIDS-sensitive route that may be the central pore.
Collapse
|
4
|
Mao C, Zheng J, Shen E, Sun B, Wu H, Xu Y, Huang W, Ding X, Lin Y, Chen T. Alternative transcriptional initiation of OsβCA1 produces three distinct subcellular localization isoforms involved in stomatal response regulation and photosynthesis in rice. THE NEW PHYTOLOGIST 2025. [PMID: 39888004 DOI: 10.1111/nph.20429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Plants adjust the size of their stomatal openings to balance CO2 intake and water loss. Carbonic anhydrases (CAs) facilitate the conversion between CO2 and HCO3 -, and the OsβCA1 mutant in rice (Oryza sativa) shows similar traits in carbon fixation and stomatal response to CO2 as the dual βCA mutants in Arabidopsis thaliana. However, the exact role of OsβCA1 in these processes was unclear. We used gene editing, molecular biology, and plant physiology to study how OsβCA1 contributes to carbon fixation, stomatal opening, and CO2 responses. OsβCA1 produces three isoforms (OsβCA1A, OsβCA1B, and OsβCA1C) through alternative transcriptional initiation, which localize to the chloroplast, cell membrane, and cytosol, respectively. Protein measurements revealed that OsβCA1A/C and OsβCA1B contribute 97 and 3% to OsβCA1, respectively. By creating specific mutants for each isoform, our results found that the chloroplast and cell membrane isoforms independently participate in carbon fixation and regulation of stomatal aperture. Furthermore, the complete knockout of OsβCA1 caused a delayed response to low CO2. Our findings provide new insights into the generation and function of different OsβCA1 isoforms, clarifying their roles in CO2 diffusion, CO2 fixation and stomatal regulation in rice.
Collapse
Affiliation(s)
- Cui Mao
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, 512000, China
| | - Jie Zheng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, 512000, China
| | - Enlong Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Baolong Sun
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Hao Wu
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, 512000, China
| | - Yi Xu
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, 512000, China
| | - Weifeng Huang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, 512000, China
| | - Xinghua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Taiyu Chen
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, 512000, China
| |
Collapse
|
5
|
Beltrami S, Alderotti F, Capperucci A, Tanini D, Brunetti C, Ferrini F, Lo Piccolo E, Gori A. Exploring the Potential of Selenium-Containing Amine (Se-AMA) to Enhance Photosynthesis and Leaf Water Content: New Avenues for Carbonic Anhydrase Modulation in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2025; 14:258. [PMID: 39861611 PMCID: PMC11768400 DOI: 10.3390/plants14020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Global changes and growing demands have led to the development of new molecular approaches to improve crop physiological performances. Carbonic anhydrase (CA) enzymes, ubiquitous across various life kingdoms, stand out for their critical roles in plant photosynthesis and water relations. We hypothesize that the modulators of human CAs could affect plant physiology. Our research demonstrated that foliar treatments with a synthetic selenium-containing CA activator (Se-AMA) influenced the physiological performances of Arabidopsis thaliana. Se-AMA increased net photosynthesis (A + 31.7%) and stomatal conductance (gs + 48.2%) at 100 µM, with the most notable effects after 10 days of treatment. Se-AMA at 300 µM proved to be even more effective, boosting A and gs by 19.9% and 55.3%, respectively, already after 3 days of application. Morning treatment with Se-AMA at 300 µM enhanced photosynthetic performances throughout the day, suggesting that the positive effect of Se-AMA lasted for several hours. Additionally, Se-AMA increased water content in plants by 17.1%, suggesting that Se-AMA treatment may have improved plant water absorption and resource management. This effect might be linked to Se-AMA's role in modulating specific CA isoforms working with aquaporins. Although preliminary, these findings suggest that Se-AMA could enhance plant physiological performances under the conditions of non-limiting water availability.
Collapse
Affiliation(s)
- Sara Beltrami
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Viale delle idee 30, 50019 Sesto Fiorentino, Florence, Italy
| | - Francesca Alderotti
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Viale delle idee 30, 50019 Sesto Fiorentino, Florence, Italy
| | - Antonella Capperucci
- Department of Chemistry 'Ugo Schiff', University of Florence, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Damiano Tanini
- Department of Chemistry 'Ugo Schiff', University of Florence, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Cecilia Brunetti
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Viale delle idee 30, 50019 Sesto Fiorentino, Florence, Italy
| | - Francesco Ferrini
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Viale delle idee 30, 50019 Sesto Fiorentino, Florence, Italy
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Ermes Lo Piccolo
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Viale delle idee 30, 50019 Sesto Fiorentino, Florence, Italy
| | - Antonella Gori
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Viale delle idee 30, 50019 Sesto Fiorentino, Florence, Italy
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
6
|
Zolotareva E, Topchiy N, Mykhaylenko N, Onoiko O. Multiple forms of carbonic anhydrase in Tetragonia tetragonioides leaves and the impact of heavy metal ions on enzyme activity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109301. [PMID: 39591889 DOI: 10.1016/j.plaphy.2024.109301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
Tetragonia tetragonioides (Aizoaceae; Caryophyllales), an annual herbaceous plant, a halophyte native to the marine coasts of New Zealand is now cultivated worldwide as a minor salt-tolerant crop. The aim of this study was to evaluate the activity of carbonic anhydrase (CA, EC 4.2.1.1) and identify the CA isoforms in a fraction of total soluble proteins from T. tetragonioides leaves and to determine CA sensitivity to specific sulfonamide inhibitors and heavy metal (HM) ions. In higher plants, CA is one of the most abundant leaf enzymes catalyzing CO2 and HCO3- interconversions that maintain the balance between dissolved forms of inorganic carbon. Catalytically active CA isoforms in the soluble protein fraction isolated from T. tetragonioides leaves were identified by a protonography method which involves the detection of CA activity in the gel following SDS-PAGE and subsequent removal of SDS (De Luca et al., 2015). This approach enabled the detection of active oligomeric forms of CA in the gel, allowing for the separate assessment of their activity. The protonogram revealed the presence of five sources of CA activity, which correspond to isoforms with approximate molecular masses of 26, 35, 41, 52, and 166 kDa. The total CA activity of T. tetragonioides leaf proteins was found to be inhibited by specific CA inhibitors, acetazolamide (AZ) and ethoxyzolamide (EZ), within the same concentration range as CAs from other plants. The half-maximal inhibition of hydratase activity was estimated to be 16 μM AZ and 2 μM EZ. The in vitro impact of selected heavy metal ions (Cu2⁺, Cd2⁺, Zn2⁺, Pb2⁺, Hg2⁺, and Ag⁺) on the hydratase activity of the soluble T. tetragonioides protein fraction was examined. High sensitivity of CA activity to inhibition by silver (I50-0.5 μM) and mercury ions (I50 ∼ 2 μM) was shown. Copper and cadmium ions inhibited CA activity with I50 ∼ 40 and ∼12 μM, respectively. Zinc ions (I50 ∼ 200 μM) were weaker inhibitors, and lead ions in the concentration range of 50-500 μM insignificantly stimulated the hydratase activity of soluble proteins of T. tetragonioides. The high sensitivity of T. tetragonioides CA to Ag⁺ and Hg2⁺ ions, which are known to act as sulfhydryl poisons, can be attributed to the presence of SH-containing cysteines within the active site of the plant CAs.
Collapse
Affiliation(s)
- Elena Zolotareva
- M.G. Kholodny Institute of Botany, Natl. Acad. Sci. Ukraine, Tereshchenkivs'ka St., 2 Kyiv, 01004, Ukraine.
| | - Nataliia Topchiy
- M.G. Kholodny Institute of Botany, Natl. Acad. Sci. Ukraine, Tereshchenkivs'ka St., 2 Kyiv, 01004, Ukraine.
| | - Natalia Mykhaylenko
- M.G. Kholodny Institute of Botany, Natl. Acad. Sci. Ukraine, Tereshchenkivs'ka St., 2 Kyiv, 01004, Ukraine.
| | - Olena Onoiko
- M.G. Kholodny Institute of Botany, Natl. Acad. Sci. Ukraine, Tereshchenkivs'ka St., 2 Kyiv, 01004, Ukraine.
| |
Collapse
|
7
|
Ding L, Laurent MJ, Milhiet T, Aesaert S, Van Lijsbettens M, Pauwels L, Nelissen H, Inzé D, Chaumont F. The maize aquaporin ZmPIP1;6 enhances stomatal opening and CO2- and ABA-induced stomatal closure. JOURNAL OF EXPERIMENTAL BOTANY 2024:erae500. [PMID: 39700432 DOI: 10.1093/jxb/erae500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Indexed: 12/21/2024]
Abstract
The plasma membrane aquaporin ZmPIP1;6 is expressed in maize stomatal complexes, with higher expression during the day than at night. To elucidate the role of ZmPIP1;6 in gas exchange and stomatal movement, it was expressed in maize (inbred line B104) under the control of p35S promoter (OE) or its native promoter fused with mYFP cDNA (mYFP-ZmPIP1;6). In stomatal complexes of the leaf mature zone, mYFP-ZmPIP1;6 showed higher expression in subsidiary cells than in guard cells, with light and dark treatments influencing its subcellular localization. Notably, ZmPIP1;6 internalization increased in dark conditions versus light. Stomatal opening was greater in ZmPIP1;6 OE than in wild type (WT), while closure exhibited greater sensitivity to elevated CO2 concentration or ABA treatment. Our finding revealed that reactive oxygen species (H2O2) was involved in ABA-induced stomatal closure, while ZmPIP1;6 was unable to facilitate H2O2 diffusion when expressed in yeast. Finally, ZmPIP1;6 OE and mYFP-ZmPIP1;6 transgenic plants exhibited higher abaxial stomatal density than WT. Overall, these results indicate that ZmPIP1;6 plays important roles in stomatal opening and CO2- and ABA-induced stomatal closure.
Collapse
Affiliation(s)
- Lei Ding
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Maxime J Laurent
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Thomas Milhiet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Stijn Aesaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Mieke Van Lijsbettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - François Chaumont
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
8
|
Xiao C, Guo H, Li R, Wang Y, Yin K, Ye P, Hu H. A module involving HIGH LEAF TEMPERATURE1 controls instantaneous water use efficiency. PLANT PHYSIOLOGY 2024; 196:1579-1594. [PMID: 39041424 DOI: 10.1093/plphys/kiae377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/24/2024]
Abstract
Drought stress inhibits plant growth and agricultural production. Improving plant instantaneous water use efficiency (iWUE), which is strictly regulated by stomata, is an effective way to cope with drought stress. However, the mechanisms of iWUE regulation are poorly understood. Through genetic screening for suppressors of mpk12-4, an Arabidopsis (Arabidopsis thaliana) mutant with a major iWUE quantitative trait locus gene MITOGEN-ACTIVATED PROTEIN KINASE12 deleted, we identified HIGH LEAF TEMPERATURE1 (HT1). Genetic interaction and physiological analyses showed that MPK12 controls iWUE through multiple modules in a high CO2-induced stomatal closing pathway that regulate SLOW ANION CHANNEL-ASSOCIATED1 (SLAC1) activity. HT1 acts downstream of MPK12, whereas OPEN STOMATA1 (OST1) and GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1) function downstream of HT1 by activating SLAC1 in iWUE. Photosynthetic-CO2 response curves and biomass analyses under different water-supply conditions showed that HT1 dysfunction improved iWUE and also increased plant growth capacity, and products of HT1 putative orthologs from Brassica (Brassica napus) and rice (Oryza sativa) exhibited functions similar to that of Arabidopsis HT1 in iWUE and the CO2-signaling pathway. Our study revealed the mechanism of MPK12-mediated iWUE regulation in Arabidopsis and provided insight into the internal relationship between iWUE and CO2 signaling in guard cells and a potential target for improving crop iWUE and drought tolerance.
Collapse
Affiliation(s)
- Chuanlei Xiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Huimin Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuehua Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaili Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Peipei Ye
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
9
|
Koolmeister K, Merilo E, Hõrak H, Kollist H. Stomatal CO2 responses at sub- and above-ambient CO2 levels employ different pathways in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:608-620. [PMID: 38833587 PMCID: PMC11376393 DOI: 10.1093/plphys/kiae320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 05/03/2024] [Accepted: 05/12/2024] [Indexed: 06/06/2024]
Abstract
Stomatal pores that control plant CO2 uptake and water loss affect global carbon and water cycles. In the era of increasing atmospheric CO2 levels and vapor pressure deficit (VPD), it is essential to understand how these stimuli affect stomatal behavior. Whether stomatal responses to sub-ambient and above-ambient CO2 levels are governed by the same regulators and depend on VPD remains unknown. We studied stomatal conductance responses in Arabidopsis (Arabidopsis thaliana) stomatal signaling mutants under conditions where CO2 levels were either increased from sub-ambient to ambient (400 ppm) or from ambient to above-ambient levels under normal or elevated VPD. We found that guard cell signaling components involved in CO2-induced stomatal closure have different roles in the sub-ambient and above-ambient CO2 levels. The CO2-specific regulators prominently affected sub-ambient CO2 responses, whereas the lack of guard cell slow-type anion channel SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1) more strongly affected the speed of above-ambient CO2-induced stomatal closure. Elevated VPD caused lower stomatal conductance in all studied genotypes and CO2 transitions, as well as faster CO2-responsiveness in some studied genotypes and CO2 transitions. Our results highlight the importance of experimental setups in interpreting stomatal CO2-responsiveness, as stomatal movements under different CO2 concentration ranges are controlled by distinct mechanisms. Elevated CO2 and VPD responses may also interact. Hence, multi-factor treatments are needed to understand how plants integrate different environmental signals and translate them into stomatal responses.
Collapse
Affiliation(s)
- Kaspar Koolmeister
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
- Institute of Bioengineering, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Ebe Merilo
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Hanna Hõrak
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Hannes Kollist
- Institute of Bioengineering, University of Tartu, Nooruse 1, Tartu 50411, Estonia
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| |
Collapse
|
10
|
Ding L, Fox AR, Chaumont F. Multifaceted role and regulation of aquaporins for efficient stomatal movements. PLANT, CELL & ENVIRONMENT 2024; 47:3330-3343. [PMID: 38742465 DOI: 10.1111/pce.14942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/18/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Stomata are micropores on the leaf epidermis that allow carbon dioxide (CO2) uptake for photosynthesis at the expense of water loss through transpiration. Stomata coordinate the plant gas exchange of carbon and water with the atmosphere through their opening and closing dynamics. In the context of global climate change, it is essential to better understand the mechanism of stomatal movements under different environmental stimuli. Aquaporins (AQPs) are considered important regulators of stomatal movements by contributing to membrane diffusion of water, CO2 and hydrogen peroxide. This review compiles the most recent findings and discusses future directions to update our knowledge of the role of AQPs in stomatal movements. After highlighting the role of subsidiary cells (SCs), which contribute to the high water use efficiency of grass stomata, we explore the expression of AQP genes in guard cells and SCs. We then focus on the cellular regulation of AQP activity at the protein level in stomata. After introducing their post-translational modifications, we detail their trafficking as well as their physical interaction with various partners that regulate AQP subcellular dynamics towards and within specific regions of the cell membranes, such as microdomains and membrane contact sites.
Collapse
Affiliation(s)
- Lei Ding
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Ana Romina Fox
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - François Chaumont
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
11
|
Wan Q, Li Y, Cheng J, Wang Y, Ge J, Liu T, Ma L, Li Y, Liu J, Zhou C, Li H, Sun X, Chen X, Li QX, Yu X. Two aquaporins, PIP1;1 and PIP2;1, mediate the uptake of neonicotinoid pesticides in plants. PLANT COMMUNICATIONS 2024; 5:100830. [PMID: 38297839 PMCID: PMC11121740 DOI: 10.1016/j.xplc.2024.100830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/05/2023] [Accepted: 01/29/2024] [Indexed: 02/02/2024]
Abstract
Neonicotinoids (NEOs), a large class of organic compounds, are a type of commonly used pesticide for crop protection. Their uptake and accumulation in plants are prerequisites for their intra- and intercellular movements, transformation, and function. Understanding the molecular mechanisms that underpin NEO uptake by plants is crucial for effective application, which remains elusive. Here, we demonstrate that NEOs enter plant cells primarily through the transmembrane symplastic pathway and accumulate mainly in the cytosol. Two plasma membrane intrinsic proteins discovered in Brassica rapa, BraPIP1;1 and BraPIP2;1, were found to encode aquaporins (AQPs) that are highly permeable to NEOs in different plant species and facilitate NEO subcellular diffusion and accumulation. Their conserved transport function was further demonstrated in Xenopus laevis oocyte and yeast assays. BraPIP1;1 and BraPIP2;1 gene knockouts and interaction assays suggested that their proteins can form functional heterotetramers. Assessment of the potential of mean force indicated a negative correlation between NEO uptake and the energy barrier of BraPIP1;1 channels. This study shows that AQPs transport organic compounds with greater osmolarity than previously thought, providing new insight into the molecular mechanisms of organic compound uptake and facilitating innovations in systemic pesticides.
Collapse
Affiliation(s)
- Qun Wan
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Yixin Li
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Jinjin Cheng
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Ya Wang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Jing Ge
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Tingli Liu
- Jiangsu Provincial Key Construction Laboratory of Special Biomass Resource Utilization, Nanjing Xiaozhuang University, 3601 Hongjin Avenue, Nanjing 211171, China
| | - Liya Ma
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Yong Li
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Jianan Liu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Chunli Zhou
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Haocong Li
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Xing Sun
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Xiaolong Chen
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Xiangyang Yu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
12
|
Gan X, Sengottaiyan P, Park KH, Assmann SM, Albert R. A network-based modeling framework reveals the core signal transduction network underlying high carbon dioxide-induced stomatal closure in guard cells. PLoS Biol 2024; 22:e3002592. [PMID: 38691548 PMCID: PMC11090369 DOI: 10.1371/journal.pbio.3002592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/13/2024] [Accepted: 03/15/2024] [Indexed: 05/03/2024] Open
Abstract
Stomata are pores on plant aerial surfaces, each bordered by a pair of guard cells. They control gas exchange vital for plant survival. Understanding how guard cells respond to environmental signals such as atmospheric carbon dioxide (CO2) levels is not only insightful to fundamental biology but also relevant to real-world issues of crop productivity under global climate change. In the past decade, multiple important signaling elements for stomatal closure induced by elevated CO2 have been identified. Yet, there is no comprehensive understanding of high CO2-induced stomatal closure. In this work, we assemble a cellular signaling network underlying high CO2-induced stomatal closure by integrating evidence from a comprehensive literature analysis. We further construct a Boolean dynamic model of the network, which allows in silico simulation of the stomatal closure response to high CO2 in wild-type Arabidopsis thaliana plants and in cases of pharmacological or genetic manipulation of network nodes. Our model has a 91% accuracy in capturing known experimental observations. We perform network-based logical analysis and reveal a feedback core of the network, which dictates cellular decisions in closure response to high CO2. Based on these analyses, we predict and experimentally confirm that applying nitric oxide (NO) induces stomatal closure in ambient CO2 and causes hypersensitivity to elevated CO2. Moreover, we predict a negative regulatory relationship between NO and the protein phosphatase ABI2 and find experimentally that NO inhibits ABI2 phosphatase activity. The experimental validation of these model predictions demonstrates the effectiveness of network-based modeling and highlights the decision-making role of the feedback core of the network in signal transduction. We further explore the model's potential in predicting targets of signaling elements not yet connected to the CO2 network. Our combination of network science, in silico model simulation, and experimental assays demonstrates an effective interdisciplinary approach to understanding system-level biology.
Collapse
Affiliation(s)
- Xiao Gan
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Palanivelu Sengottaiyan
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kyu Hyong Park
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Réka Albert
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
13
|
Horiguchi G, Oyama R, Akabane T, Suzuki N, Katoh E, Mizokami Y, Noguchi K, Hirotsu N. Cooperation of an external carbonic anhydrase and HCO3- transporter supports underwater photosynthesis in submerged leaves of the amphibious plant Hygrophila difformis. ANNALS OF BOTANY 2024; 133:287-304. [PMID: 37832038 PMCID: PMC11005787 DOI: 10.1093/aob/mcad161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND AND AIMS HCO3- can be a major carbon resource for photosynthesis in underwater environments. Here we investigate the underlying mechanism of uptake and membrane transport of HCO3- in submerged leaves of Hygrophila difformis, a heterophyllous amphibious plant. To characterize these mechanisms, we evaluated the sensitivity of underwater photosynthesis to an external carbonic anhydrase (CA) inhibitor and an anion exchanger protein inhibitor, and we attempted to identify components of the mechanism of HCO3- utilization. METHODS We evaluated the effects of the external CA inhibitor and anion exchanger protein inhibitor on the NaHCO3 response of photosynthetic O2 evolution in submerged leaves of H. difformis. Furthermore, we performed a comparative transcriptomic analysis between terrestrial and submerged leaves. KEY RESULTS Photosynthesis in the submerged leaves was decreased by both the external CA inhibitor and anion exchanger protein inhibitor, but no additive effect was observed. Among upregulated genes in submerged leaves, two α-CAs, Hdα-CA1 and Hdα-CA2, and one β-carbonic anhydrase, Hdβ-CA1, were detected. Based on their putative amino acid sequences, the α-CAs are predicted to be localized in the apoplastic region. Recombinant Hdα-CA1 and Hdβ-CA1 showed dominant CO2 hydration activity over HCO3- dehydration activity. CONCLUSIONS We propose that the use of HCO3- for photosynthesis in submerged leaves of H. difformis is driven by the cooperation between an external CA, Hdα-CA1, and an unidentified HCO3- transporter.
Collapse
Affiliation(s)
- Genki Horiguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
- Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan
| | - Ryoma Oyama
- Faculty of Life Sciences, Toyo University, Itakura, Gunma, Japan
| | - Tatsuki Akabane
- Graduate School of Life Sciences, Toyo University, Itakura, Gunma, Japan
| | - Nobuhiro Suzuki
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Etsuko Katoh
- Faculty of Food and Nutritional Sciences Life Sciences, Toyo University, Itakura, Gunma, Japan
| | - Yusuke Mizokami
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Naoki Hirotsu
- Faculty of Life Sciences, Toyo University, Itakura, Gunma, Japan
- Graduate School of Life Sciences, Toyo University, Itakura, Gunma, Japan
| |
Collapse
|
14
|
Zhang J, Chen X, Song Y, Gong Z. Integrative regulatory mechanisms of stomatal movements under changing climate. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:368-393. [PMID: 38319001 DOI: 10.1111/jipb.13611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024]
Abstract
Global climate change-caused drought stress, high temperatures and other extreme weather profoundly impact plant growth and development, restricting sustainable crop production. To cope with various environmental stimuli, plants can optimize the opening and closing of stomata to balance CO2 uptake for photosynthesis and water loss from leaves. Guard cells perceive and integrate various signals to adjust stomatal pores through turgor pressure regulation. Molecular mechanisms and signaling networks underlying the stomatal movements in response to environmental stresses have been extensively studied and elucidated. This review focuses on the molecular mechanisms of stomatal movements mediated by abscisic acid, light, CO2 , reactive oxygen species, pathogens, temperature, and other phytohormones. We discussed the significance of elucidating the integrative mechanisms that regulate stomatal movements in helping design smart crops with enhanced water use efficiency and resilience in a climate-changing world.
Collapse
Affiliation(s)
- Jingbo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Xuexue Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yajing Song
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Institute of Life Science and Green Development, School of Life Sciences, Hebei University, Baoding, 071001, China
| |
Collapse
|
15
|
Weerasooriya HN, Longstreth DJ, DiMario RJ, Rosati VC, Cassel BA, Moroney JV. Carbonic anhydrases in the cell wall and plasma membrane of Arabidopsis thaliana are required for optimal plant growth on low CO 2. Front Mol Biosci 2024; 11:1267046. [PMID: 38455761 PMCID: PMC10917985 DOI: 10.3389/fmolb.2024.1267046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/15/2024] [Indexed: 03/09/2024] Open
Abstract
Introduction: Plants have many genes encoding both alpha and beta type carbonic anhydrases. Arabidopsis has eight alpha type and six beta type carbonic anhydrase genes. Individual carbonic anhydrases are localized to specific compartments within the plant cell. In this study, we investigate the roles of αCA2 and βCA4.1 in the growth of the plant Arabidopsis thaliana under different CO2 regimes. Methods: Here, we identified the intracellular location of αCA2 and βCA4.1 by linking the coding region of each gene to a fluorescent tag. Tissue expression was determined by investigating GUS expression driven by the αCA2 and βCA4.1 promoters. Finally, the role of these proteins in plant growth and photosynthesis was tested in plants with T-DNA insertions in the αCA2 and βCA4 genes. Results: Fluorescently tagged proteins showed that αCA2 is localized to the cell wall and βCA4.1 to the plasma membrane in plant leaves. Both proteins were expressed in roots and shoots. Plants missing either αCA2 or βCA4 did not show any growth defects under the conditions tested in this study. However, if both αCA2 and βCA4 were disrupted, plants had a significantly smaller above- ground fresh weight and rosette area than Wild Type (WT) plants when grown at 200 μL L-1 CO2 but not at 400 and 1,000 μL L-1 CO2. Growth of the double mutant plants at 200 μL L-1 CO2 was restoredif either αCA2 or βCA4.1 was transformed back into the double mutant plants. Discussion: Both the cell wall and plasma membrane CAs, αCA2 and βCA4.1 had to be knocked down to produce an effect on Arabidopsis growth and only when grown in a CO2 concentration that was significantly below ambient. This indicates that αCA2 and βCA4.1 have overlapping functions since the growth of lines where only one of these CAs was knocked down was indistinguishable from WT growth. The growth results and cellular locations of the two CAs suggest that together, αCA2 and βCA4.1 play an important role in the delivery of CO2 and HCO3 - to the plant cell.
Collapse
Affiliation(s)
| | | | | | | | | | - James V. Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
16
|
Zhou L, Xiang X, Ji D, Chen Q, Ma T, Wang J, Liu C. A Carbonic Anhydrase, ZmCA4, Contributes to Photosynthetic Efficiency and Modulates CO2 Signaling Gene Expression by Interacting with Aquaporin ZmPIP2;6 in Maize. PLANT & CELL PHYSIOLOGY 2024; 65:243-258. [PMID: 37955399 DOI: 10.1093/pcp/pcad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023]
Abstract
Carbonic anhydrase (CA) catalyzes the reversible CO2 hydration reaction that produces bicarbonate for phosphoenolpyruvate carboxylase (PEPC). This is the initial step for transmitting the CO2 signal in C4 photosynthesis. However, it remains unknown whether the maize (Zea mays L.) CA gene, ZmCA4, plays a role in the maize photosynthesis process. In our study, we found that ZmCA4 was relatively highly expressed in leaves and localized in the chloroplast and the plasma membrane of mesophyll protoplasts. Knock-out of ZmCA4 reduced CA activity, while overexpression of ZmCA4 increased rubisco activity, as well as the quantum yield and relative electron transport rate in photosystem II. Overexpression of ZmCA4 enhanced maize yield-related traits. Moreover, ZmCA4 interacted with aquaporin ZmPIP2;6 in bimolecular fluorescence complementation and co-immunoprecipitation experiments. The double-knock-out mutant for ZmPIP2;6 and ZmCA4 genes showed reductions in its growth, CA and PEPC activities, assimilation rate and photosystem activity. RNA-Seq analysis revealed that the expression of other ZmCAs, ZmPIPs, as well as CO2 signaling pathway homologous genes, and photosynthetic-related genes was all altered in the double-knock-out mutant compared with the wild type. Altogether, our study's findings point to a critical role of ZmCA4 in determining photosynthetic capacity and modulating CO2 signaling regulation via its interaction with ZmPIP2;6, thus providing insight into the potential genetic value of ZmCA4 for maize yield improvement.
Collapse
Affiliation(s)
- Lian Zhou
- Maize Research Institute, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Xiaoqin Xiang
- Maize Research Institute, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Dongpu Ji
- Maize Research Institute, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Qiulan Chen
- Maize Research Institute, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Tengfei Ma
- Maize Research Institute, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Jiuguang Wang
- Maize Research Institute, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Chaoxian Liu
- Maize Research Institute, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| |
Collapse
|
17
|
Melicher P, Dvořák P, Řehák J, Šamajová O, Pechan T, Šamaj J, Takáč T. Methyl viologen-induced changes in the Arabidopsis proteome implicate PATELLIN 4 in oxidative stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:405-421. [PMID: 37728561 PMCID: PMC10735431 DOI: 10.1093/jxb/erad363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
The photosynthesis-induced accumulation of reactive oxygen species in chloroplasts can lead to oxidative stress, triggering changes in protein synthesis, degradation, and the assembly/disassembly of protein complexes. Using shot-gun proteomics, we identified methyl viologen-induced changes in protein abundance in wild-type Arabidopsis and oxidative stress-hypersensitive fsd1-1 and fsd1-2 knockout mutants, which are deficient in IRON SUPEROXIDE DISMUTASE 1 (FSD1). The levels of proteins that are localized in chloroplasts and the cytoplasm were modified in all lines treated with methyl viologen. Compared with the wild-type, fsd1 mutants showed significant changes in metabolic protein and chloroplast chaperone levels, together with increased ratio of cytoplasmic, peroxisomal, and mitochondrial proteins. Different responses in proteins involved in the disassembly of photosystem II-light harvesting chlorophyll a/b binding proteins were observed. Moreover, the abundance of PATELLIN 4, a phospholipid-binding protein enriched in stomatal lineage, was decreased in response to methyl viologen. Reverse genetic studies using patl4 knockout mutants and a PATELLIN 4 complemented line indicate that PATELLIN 4 affects plant responses to oxidative stress by effects on stomatal closure.
Collapse
Affiliation(s)
- Pavol Melicher
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Petr Dvořák
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jan Řehák
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Olga Šamajová
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Tibor Pechan
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Starkville, MS, USA
| | - Jozef Šamaj
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Tomáš Takáč
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
18
|
Lee Y, Jeong HS, Jung S, Hwang J, Le CTH, Jun SH, Du EJ, Kang K, Kim BG, Lim HH, Lee S. Cryo-EM structures of the plant anion channel SLAC1 from Arabidopsis thaliana suggest a combined activation model. Nat Commun 2023; 14:7345. [PMID: 37963863 PMCID: PMC10645844 DOI: 10.1038/s41467-023-43193-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
The anion channel SLAC1 functions as a crucial effector in the ABA signaling, leading to stomata closure. SLAC1 is activated by phosphorylation in its intracellular domains. Both a binding-activation model and an inhibition-release model for activation have been proposed based on only the closed structures of SLAC1, rendering the structure-based activation mechanism controversial. Here we report cryo-EM structures of Arabidopsis SLAC1 WT and its phosphomimetic mutants in open and closed states. Comparison of the open structure with the closed ones reveals the structural basis for opening of the conductance pore. Multiple phosphorylation of an intracellular domain (ICD) causes dissociation of ICD from the transmembrane domain. A conserved, positively-charged sequence motif in the intracellular loop 2 (ICL2) seems to be capable of sensing of the negatively charged phosphorylated ICD. Interactions between ICL2 and ICD drive drastic conformational changes, thereby widening the pore. From our results we propose that SLAC1 operates by a mechanism combining the binding-activation and inhibition-release models.
Collapse
Affiliation(s)
- Yeongmok Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyeon Seong Jeong
- Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu, 41068, Republic of Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Seoyeon Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Junmo Hwang
- Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu, 41068, Republic of Korea
| | - Chi Truc Han Le
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sung-Hoon Jun
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Eun Jo Du
- Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu, 41068, Republic of Korea
| | - KyeongJin Kang
- Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu, 41068, Republic of Korea
| | - Beom-Gi Kim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Hyun-Ho Lim
- Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu, 41068, Republic of Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
19
|
Yang M, Umer MJ, Wang H, Han J, Han J, Liu Q, Zheng J, Cai X, Hou Y, Xu Y, Wang Y, Khan MKR, Ditta A, Liu F, Zhou Z. Decoding the guardians of cotton resilience: A comprehensive exploration of the βCA genes and its role in Verticillium dahliae resistance. PHYSIOLOGIA PLANTARUM 2023; 175:e14113. [PMID: 38148227 DOI: 10.1111/ppl.14113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 12/28/2023]
Abstract
Plant Carbonic anhydrases (Cas) have been shown to be stress-responsive enzymes that may play a role in adapting to adverse conditions. Cotton is a significant economic crop in China, with upland cotton (Gossypium hirsutum) being the most widely cultivated species. We conducted genome-wide identification of the βCA gene in six cotton species and preliminary analysis of the βCA gene in upland cotton. In total, 73 βCA genes from six cotton species were identified, with phylogenetic analysis dividing them into five subgroups. GHβCA proteins were predominantly localized in the chloroplast and cytoplasm. The genes exhibited conserved motifs, with motifs 1, 2, and 3 being prominent. GHβCA genes were unevenly distributed across chromosomes and were associated with stress-responsive cis-regulatory elements, including those responding to light, MeJA, salicylic acid, abscisic acid, cell cycle regulation, and defence/stress. Expression analysis indicated that GHβCA6, GHβCA7, GHβCA10, GHβCA15, and GHβCA16 were highly expressed under various abiotic stress conditions, whereas GHβCA3, GHβCA9, GHβCA10, and GHβCA18 had higher expression patterns under Verticillium dahliae infection at different time intervals. In Gossypium thurberi, GthβCA1, GthβCA2, and GthβCA4 showed elevated expression across stress conditions and tissues. Silencing GHβCA10 through VIGS increased Verticillium wilt severity and reduced lignin deposition compared to non-silenced plants. GHβCA10 is crucial for cotton's defense against Verticillium dahliae. Further research is needed to understand the underlying mechanisms and develop strategies to enhance resistance against Verticillium wilt.
Collapse
Affiliation(s)
- Mengying Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Muhammad Jawad Umer
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
| | - Heng Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
| | - Jiale Han
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiangping Han
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiankun Liu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
| | - Jie Zheng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
- National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, China
| | - Xiaoyan Cai
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
- National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, China
- Henan International Joint Laboratory of Cotton Biology, Henan, China
| | - Yuqing Hou
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
| | - Yanchao Xu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
- National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, China
| | - Yuhong Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
| | | | - Allah Ditta
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Fang Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
- National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, China
- Henan International Joint Laboratory of Cotton Biology, Henan, China
| | - Zhongli Zhou
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Henan, China
- Henan International Joint Laboratory of Cotton Biology, Henan, China
| |
Collapse
|
20
|
Sukhova EM, Yudina LM, Sukhov VS. Changes in Activity of the Plasma Membrane H+-ATPase as a Link Between Formation of Electrical Signals and Induction of Photosynthetic Responses in Higher Plants. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1488-1503. [PMID: 38105019 DOI: 10.1134/s0006297923100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 12/19/2023]
Abstract
Action of numerous adverse environmental factors on higher plants is spatially-heterogenous; it means that induction of a systemic adaptive response requires generation and transmission of the stress signals. Electrical signals (ESs) induced by local action of stressors include action potential, variation potential, and system potential and they participate in formation of fast physiological changes at the level of a whole plant, including photosynthetic responses. Generation of these ESs is accompanied by the changes in activity of H+-ATPase, which is the main system of electrogenic proton transport across the plasma membrane. Literature data show that the changes in H+-ATPase activity and related changes in intra- and extracellular pH play a key role in the ES-induced inactivation of photosynthesis in non-irritated parts of plants. This inactivation is caused by both suppression of CO2 influx into mesophyll cells in leaves, which can be induced by the apoplast alkalization and, probably, cytoplasm acidification, and direct influence of acidification of stroma and lumen of chloroplasts on light and, probably, dark photosynthetic reactions. The ES-induced inactivation of photosynthesis results in the increasing tolerance of photosynthetic machinery to the action of adverse factors and probability of the plant survival.
Collapse
Affiliation(s)
- Ekaterina M Sukhova
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia
| | - Lyubov' M Yudina
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia
| | - Vladimir S Sukhov
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia.
| |
Collapse
|
21
|
Guizani A, Askri H, Amenta ML, Defez R, Babay E, Bianco C, Rapaná N, Finetti-Sialer M, Gharbi F. Drought responsiveness in six wheat genotypes: identification of stress resistance indicators. FRONTIERS IN PLANT SCIENCE 2023; 14:1232583. [PMID: 37780517 PMCID: PMC10534941 DOI: 10.3389/fpls.2023.1232583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023]
Abstract
Introduction Wheat (Triticum aestivum L.) is among the world's most important staple food crops. In the current climate change scenario, a better understanding of wheat response mechanisms to water stress could help to enhance its productivity in arid ecosystems. Methods In this study, water relations, gas exchange, membrane integrity, agronomic traits and molecular analysis were evaluated in six wheat genotypes (D117, Syndiouk, Tunisian durum7 (Td7), Utique, Mahmoudi AG3 and BT) subjected to drought-stress. Results and discussion For all the studied genotypes, drought stress altered leaf area, chlorophyll content, stomatal density, photosynthetic rate and water-use efficiency, while the relative water content at turgor loss point (RWC0) remained stable. Changes in osmotic potential at turgor loss point (Ψπ0), bulk modulus of elasticity (Ɛmax) and stomatal regulation, differed greatly among the studied genotypes. For the drought-sensitive genotypes AG3 and BT, no significant changes were observed in Ψπ0, whereas the stomatal conductance (gs) and transpiration rate (E) decreased under stress conditions. These two varieties avoided turgor loss during drought treatment through an accurate stomatal control, resulting in a significant reduction in yield components. On the contrary, for Syndiouk, D117, Td7 and Utique genotypes, a solute accumulation and an increase in cell wall rigidity were the main mechanisms developed during drought stress. These mechanisms were efficient in enhancing soil water uptake, limiting leaf water loss and protecting cells membranes against leakage induced by oxidative damages. Furthermore, leaf soluble sugars accumulation was the major component of osmotic adjustment in drought-stressed wheat plants. The transcriptional analysis of genes involved in the final step of the ABA biosynthesis (AAO) and in the synthesis of an aquaporin (PIP2:1) revealed distinct responses to drought stress among the selected genotypes. In the resistant genotypes, PIP2:1 was significantly upregulated whereas in the sensitive ones, its expression showed only a slight induction. Conversely, the sensitive genotypes exhibited higher levels of AAO gene expression compared to the resistant genotypes. Our results suggest that drought tolerance in wheat is regulated by the interaction between the dynamics of leaf water status and stomatal behavior. Based on our findings, Syndiouk, D117, Utique and Td7, could be used in breeding programs for developing high-yielding and drought-tolerant wheat varieties.
Collapse
Affiliation(s)
- Asma Guizani
- Laboratory of Mycology, Pathologies and Biomarkers LR16ES05, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hend Askri
- Laboratory of Valorization of Non-Conventional Water (LR16INRGREF02), National Institute of Rural Engineering, Water and Forestry, Carthage University, Tunis, Tunisia
| | - Maria Laura Amenta
- Institute of Biosciences and BioResources, National Research Council, Naples, Italy
| | - Roberto Defez
- Institute of Biosciences and BioResources, National Research Council, Naples, Italy
| | - Elyes Babay
- Laboratory of Cereals and Food Legumes, National Gene Bank of Tunisia (BNG), Tunis, Tunisia
- Agricultural Applied Biotechnology Laboratory (LR16INRAT06), Institut National de la Recherche Agronomique de Tunisie (INRAT), University of Carthage, Tunis, Tunisia
| | - Carmen Bianco
- Institute of Biosciences and BioResources, National Research Council, Naples, Italy
| | - Nicoletta Rapaná
- Institute of Biosciences and BioResources, National Research Council, Bari, Italy
| | | | - Fatma Gharbi
- Laboratory of Mycology, Pathologies and Biomarkers LR16ES05, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
22
|
Byrt CS, Zhang RY, Magrath I, Chan KX, De Rosa A, McGaughey S. Exploring aquaporin functions during changes in leaf water potential. FRONTIERS IN PLANT SCIENCE 2023; 14:1213454. [PMID: 37615024 PMCID: PMC10442719 DOI: 10.3389/fpls.2023.1213454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/04/2023] [Indexed: 08/25/2023]
Abstract
Maintenance of optimal leaf tissue humidity is important for plant productivity and food security. Leaf humidity is influenced by soil and atmospheric water availability, by transpiration and by the coordination of water flux across cell membranes throughout the plant. Flux of water and solutes across plant cell membranes is influenced by the function of aquaporin proteins. Plants have numerous aquaporin proteins required for a multitude of physiological roles in various plant tissues and the membrane flux contribution of each aquaporin can be regulated by changes in protein abundance, gating, localisation, post-translational modifications, protein:protein interactions and aquaporin stoichiometry. Resolving which aquaporins are candidates for influencing leaf humidity and determining how their regulation impacts changes in leaf cell solute flux and leaf cavity humidity is challenging. This challenge involves resolving the dynamics of the cell membrane aquaporin abundance, aquaporin sub-cellular localisation and location-specific post-translational regulation of aquaporins in membranes of leaf cells during plant responses to changes in water availability and determining the influence of cell signalling on aquaporin permeability to a range of relevant solutes, as well as determining aquaporin influence on cell signalling. Here we review recent developments, current challenges and suggest open opportunities for assessing the role of aquaporins in leaf substomatal cavity humidity regulation.
Collapse
|
23
|
Chen J, Yue K, Shen L, Zheng C, Zhu Y, Han K, Kai L. Aquaporins and CO 2 diffusion across biological membrane. Front Physiol 2023; 14:1205290. [PMID: 37383148 PMCID: PMC10293838 DOI: 10.3389/fphys.2023.1205290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023] Open
Abstract
Despite the physiological significance of effective CO2 diffusion across biological membranes, the underlying mechanism behind this process is not yet resolved. Particularly debatable is the existence of CO2-permeable aquaporins. The lipophilic characteristic of CO2 should, according to Overton's rule, result in a rapid flux across lipid bilayers. However, experimental evidence of limited membrane permeability poses a challenge to this idea of free diffusion. In this review, we summarized recent progress with regard to CO2 diffusion, and discussed the physiological effects of altered aquaporin expression, the molecular mechanisms of CO2 transport via aquaporins, and the function of sterols and other membrane proteins in CO2 permeability. In addition, we highlight the existing limits in measuring CO2 permeability and end up with perspectives on resolving such argument either by determining the atomic resolution structure of CO2 permeable aquaporins or by developing new methods for measuring permeability.
Collapse
Affiliation(s)
- Junyu Chen
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Ke Yue
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Lulu Shen
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Chuncui Zheng
- Hangzhou Institute of Test and Calibration for Quality and Technology Supervision, Hangzhou, China
| | - Yiyong Zhu
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Kun Han
- Jiangsu Keybio Co., Ltd, Xuzhou, China
| | - Lei Kai
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
24
|
OsαCA1 Affects Photosynthesis, Yield Potential, and Water Use Efficiency in Rice. Int J Mol Sci 2023; 24:ijms24065560. [PMID: 36982632 PMCID: PMC10056782 DOI: 10.3390/ijms24065560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Plant growth and crop yield are essentially determined by photosynthesis when considering carbon dioxide (CO2) availability. CO2 diffusion inside a leaf is one of the factors that dictate the CO2 concentrations in chloroplasts. Carbonic anhydrases (CAs) are zinc-containing enzymes that interconvert CO2 and bicarbonate ions (HCO3−), which, consequently, affect CO2 diffusion and thus play a fundamental role in all photosynthetic organisms. Recently, the great progress in the research in this field has immensely contributed to our understanding of the function of the β-type CAs; however, the analysis of α-type CAs in plants is still in its infancy. In this study, we identified and characterized the OsαCA1 gene in rice via the analysis of OsαCAs expression in flag leaves and the subcellular localization of its encoding protein. OsαCA1 encodes an α-type CA, whose protein is located in chloroplasts with a high abundance in photosynthetic tissues, including flag leaves, mature leaves, and panicles. OsαCA1 deficiency caused a significant reduction in assimilation rate, biomass accumulation, and grain yield. The growth and photosynthetic defects of the OsαCA1 mutant were attributable to the restricted CO2 supply at the chloroplast carboxylation sites, which could be partially rescued by the application of an elevated concentration of CO2 but not that of HCO3−. Furthermore, we have provided evidence that OsαCA1 positively regulates water use efficiency (WUE) in rice. In summary, our results reveal that the function of OsαCA1 is integral to rice photosynthesis and yield potential, underscoring the importance of α-type CAs in determining plant physiology and crop yield and providing genetic resources and new ideas for breeding high-yielding rice varieties.
Collapse
|
25
|
Verslues PE, Bailey-Serres J, Brodersen C, Buckley TN, Conti L, Christmann A, Dinneny JR, Grill E, Hayes S, Heckman RW, Hsu PK, Juenger TE, Mas P, Munnik T, Nelissen H, Sack L, Schroeder JI, Testerink C, Tyerman SD, Umezawa T, Wigge PA. Burning questions for a warming and changing world: 15 unknowns in plant abiotic stress. THE PLANT CELL 2023; 35:67-108. [PMID: 36018271 PMCID: PMC9806664 DOI: 10.1093/plcell/koac263] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/21/2022] [Indexed: 05/08/2023]
Abstract
We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g. circadian clock and flowering time); and how this integrated signaling controls downstream responses (e.g. stomatal regulation, proline metabolism, and growth versus defense balance). The plasma membrane comes up frequently as a site of key signaling and transport events (e.g. mechanosensing and lipid-derived signaling, aquaporins). Adaptation to water extremes and rising CO2 affects hydraulic architecture and transpiration, as well as root and shoot growth and morphology, in ways not fully understood. Environmental adaptation involves tradeoffs that limit ecological distribution and crop resilience in the face of changing and increasingly unpredictable environments. Exploration of plant diversity within and among species can help us know which of these tradeoffs represent fundamental limits and which ones can be circumvented by bringing new trait combinations together. Better defining what constitutes beneficial stress resistance in different contexts and making connections between genes and phenotypes, and between laboratory and field observations, are overarching challenges.
Collapse
Affiliation(s)
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, Connecticut 06511, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Lucio Conti
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Alexander Christmann
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Erwin Grill
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - Scott Hayes
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Robert W Heckman
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Po-Kai Hsu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Paloma Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Teun Munnik
- Department of Plant Cell Biology, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam NL-1098XH, The Netherlands
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095, USA
| | - Julian I Schroeder
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Stephen D Tyerman
- ARC Center Excellence, Plant Energy Biology, School of Agriculture Food and Wine, University of Adelaide, Adelaide, South Australia 5064, Australia
| | - Taishi Umezawa
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 6708 PB, Japan
| | - Philip A Wigge
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Großbeeren 14979, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| |
Collapse
|
26
|
Xin H, Li Q, Wang S, Zhang Z, Wu X, Liu R, Zhu J, Li J. Saussurea involucrata PIP2;4 improves growth and drought tolerance in Nicotiana tabacum by increasing stomatal density and sensitivity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111526. [PMID: 36343868 DOI: 10.1016/j.plantsci.2022.111526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Aquaporins, the major facilitators of water transport across membranes, are involved in growth and development and adaptation to drought stress in plants. In this study, a plasma membrane intrinsic protein (SiPIP2;4) was cloned from Saussurea involucrata, a cold-tolerant hardy herb. The expression of SiPIP2;4 increased the stomatal density and sensitivity of tobacco (Nicotiana tabacum), thus, affecting the plant's growth and resistance to the diverse water environment. The higher stomatal density under well-watered conditions effectively promoted the photosynthetic rate, which led to the rapid growth of transgenic lines. The stomata in the transgenic lines responded more sensitively to the vapor pressure deficit than the wild-type under different levels of ambient humidity. Their stomatal apertures positively correlated with the ambient humidity. Under drought conditions, the overexpression of SiPIP2;4 promoted rapid stomatal closure, reduced water dissipation, and enhanced drought tolerance. These results indicate that SiPIP2;4 regulates the density and sensitivity of plant stomata, thus, playing an important role in balancing plant growth and stress tolerance. This suggests that SiPIP2;4 has the potential to serve as a genetic resource for crop improvement.
Collapse
Affiliation(s)
- Hongliang Xin
- College of Life Sciences, Shihezi University, Xinjiang, Shihezi 832000, China
| | - Qianqin Li
- College of Life Sciences, Shihezi University, Xinjiang, Shihezi 832000, China
| | - Saisai Wang
- College of Life Sciences, Shihezi University, Xinjiang, Shihezi 832000, China
| | - Zexing Zhang
- College of Life Sciences, Shihezi University, Xinjiang, Shihezi 832000, China
| | - Xiaoyan Wu
- College of Life Sciences, Shihezi University, Xinjiang, Shihezi 832000, China
| | - Ruina Liu
- College of Life Sciences, Shihezi University, Xinjiang, Shihezi 832000, China
| | - Jianbo Zhu
- College of Life Sciences, Shihezi University, Xinjiang, Shihezi 832000, China.
| | - Jin Li
- College of Life Sciences, Shihezi University, Xinjiang, Shihezi 832000, China.
| |
Collapse
|
27
|
Mimata Y, Munemasa S, Nakamura T, Nakamura Y, Murata Y. Extracellular malate induces stomatal closure via direct activation of guard-cell anion channel SLAC1 and stimulation of Ca 2+ signalling. THE NEW PHYTOLOGIST 2022; 236:852-863. [PMID: 35879859 DOI: 10.1111/nph.18400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Plants secrete malate from guard cells to apoplast under stress conditions and exogenous malate induces stomatal closure. Malate is considered an extracellular chemical signal of stomatal closure. However, the molecular mechanism of malate-induced stomatal closure is not fully elucidated. We investigated responses of stomatal aperture, ion channels, and cytosolic Ca2+ to malate. A treatment with malate induced stomatal closure in Arabidopsis thaliana wild-type plants, but not in the mutants deficient in the slow (S-type) anion channel gene SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1). The treatment with malate increased S-type anion currents in guard-cell protoplasts of wild-type plants but not in the slac1 mutant. In addition, extracellular rather than intracellular application of malate increased the S-type currents of constitutively active mutants of SLAC1, which have kinase-independent activities, in a heterologous expression system using Xenopus oocytes. The treatment with malate transiently increased cytosolic Ca2+ concentration in the wild-type Arabidopsis guard cells and the malate-induced stomatal closure was inhibited by the Ca2+ channel blocker and the Ca2+ chelator. These results indicate that extracellular malate directly activates SLAC1 and simultaneously stimulates Ca2+ signalling in guard cells, resulting in steady and solid activation of SLAC1 for stomatal closure.
Collapse
Affiliation(s)
- Yoshiharu Mimata
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka 1-1-1, 700-8530, Okayama, Japan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka 1-1-1, 700-8530, Okayama, Japan
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka 1-1-1, 700-8530, Okayama, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka 1-1-1, 700-8530, Okayama, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka 1-1-1, 700-8530, Okayama, Japan
| |
Collapse
|
28
|
Ozu M, Alvear-Arias JJ, Fernandez M, Caviglia A, Peña-Pichicoi A, Carrillo C, Carmona E, Otero-Gonzalez A, Garate JA, Amodeo G, Gonzalez C. Aquaporin Gating: A New Twist to Unravel Permeation through Water Channels. Int J Mol Sci 2022; 23:12317. [PMID: 36293170 PMCID: PMC9604103 DOI: 10.3390/ijms232012317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Aquaporins (AQPs) are small transmembrane tetrameric proteins that facilitate water, solute and gas exchange. Their presence has been extensively reported in the biological membranes of almost all living organisms. Although their discovery is much more recent than ion transport systems, different biophysical approaches have contributed to confirm that permeation through each monomer is consistent with closed and open states, introducing the term gating mechanism into the field. The study of AQPs in their native membrane or overexpressed in heterologous systems have experimentally demonstrated that water membrane permeability can be reversibly modified in response to specific modulators. For some regulation mechanisms, such as pH changes, evidence for gating is also supported by high-resolution structures of the water channel in different configurations as well as molecular dynamics simulation. Both experimental and simulation approaches sustain that the rearrangement of conserved residues contributes to occlude the cavity of the channel restricting water permeation. Interestingly, specific charged and conserved residues are present in the environment of the pore and, thus, the tetrameric structure can be subjected to alter the positions of these charges to sustain gating. Thus, is it possible to explore whether the displacement of these charges (gating current) leads to conformational changes? To our knowledge, this question has not yet been addressed at all. In this review, we intend to analyze the suitability of this proposal for the first time.
Collapse
Affiliation(s)
- Marcelo Ozu
- Department of Biodiversity and Experimental Biology, Faculty of Exact & Natural Sciences, University of Buenos Aires, Buenos Aires C1053, Argentina
- CONICET—Institute of Biodiversity and Experimental and Applied Biology CONICET (IBBEA), University of Buenos Aires, Buenos Aires C1053, Argentina
| | - Juan José Alvear-Arias
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
| | - Miguel Fernandez
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
| | - Agustín Caviglia
- CONICET—Institute of Biodiversity and Experimental and Applied Biology CONICET (IBBEA), University of Buenos Aires, Buenos Aires C1053, Argentina
| | - Antonio Peña-Pichicoi
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
| | - Christian Carrillo
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
| | - Emerson Carmona
- Cell Physiology and Molecular Biophysics Department and the Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Anselmo Otero-Gonzalez
- Center of Protein Study, Faculty of Biology, University of Havana, La Habana 10400, Cuba
| | - José Antonio Garate
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
- Faculty of Engineering and Technology, University of San Sebastian, Santiago 8420524, Chile
| | - Gabriela Amodeo
- Department of Biodiversity and Experimental Biology, Faculty of Exact & Natural Sciences, University of Buenos Aires, Buenos Aires C1053, Argentina
- CONICET—Institute of Biodiversity and Experimental and Applied Biology CONICET (IBBEA), University of Buenos Aires, Buenos Aires C1053, Argentina
| | - Carlos Gonzalez
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
29
|
Mizokami Y, Oguchi R, Sugiura D, Yamori W, Noguchi K, Terashima I. Cost-benefit analysis of mesophyll conductance: diversities of anatomical, biochemical and environmental determinants. ANNALS OF BOTANY 2022; 130:265-283. [PMID: 35947983 PMCID: PMC9487971 DOI: 10.1093/aob/mcac100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/08/2022] [Indexed: 06/09/2023]
Abstract
BACKGROUND Plants invest photosynthates in construction and maintenance of their structures and functions. Such investments are considered costs. These costs are recovered by the CO2 assimilation rate (A) in the leaves, and thus A is regarded as the immediate, short-term benefit. In photosynthesizing leaves, CO2 diffusion from the air to the carboxylation site is hindered by several structural and biochemical barriers. CO2 diffusion from the intercellular air space to the chloroplast stroma is obstructed by the mesophyll resistance. The inverses is the mesophyll conductance (gm). Whether various plants realize an optimal gm, and how much investment is needed for a relevant gm, remain unsolved. SCOPE This review examines relationships among leaf construction costs (CC), leaf maintenance costs (MC) and gm in various plants under diverse growth conditions. Through a literature survey, we demonstrate a strong linear relationship between leaf mass per area (LMA) and leaf CC. The overall correlation of CC vs. gm across plant phylogenetic groups is weak, but significant trends are evident within specific groups and/or environments. Investment in CC is necessary for an increase in LMA and mesophyll cell surface area (Smes). This allows the leaf to accommodate more chloroplasts, thus increasing A. However, increases in LMA and/or Smes often accompany other changes, such as cell wall thickening, which diminishes gm. Such factors that make the correlations of CC and gm elusive are identified. CONCLUSIONS For evaluation of the contribution of gm to recover CC, leaf life span is the key factor. The estimation of MC in relation to gm, especially in terms of costs required to regulate aquaporins, could be essential for efficient control of gm over the short term. Over the long term, costs are mainly reflected in CC, while benefits also include ultimate fitness attributes in terms of integrated carbon gain over the life of a leaf, plant survival and reproductive output.
Collapse
Affiliation(s)
- Yusuke Mizokami
- Department of Life Science, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Riichi Oguchi
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daisuke Sugiura
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo, Chikusa-ku, Nagoya 464-8601, Japan
| | - Wataru Yamori
- Graduate School of Agricultural and Life Science, Institute for Sustainable Agri-ecosystem, The University of Tokyo, 1-1-1, Midoricho, Nishitokyo, Tokyo 188-0002, Japan
| | - Ko Noguchi
- Department of Life Science, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Ichiro Terashima
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
30
|
Chen S, Xu K, Kong D, Wu L, Chen Q, Ma X, Ma S, Li T, Xie Q, Liu H, Luo L. Ubiquitin ligase OsRINGzf1 regulates drought resistance by controlling the turnover of OsPIP2;1. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1743-1755. [PMID: 35587579 PMCID: PMC9398399 DOI: 10.1111/pbi.13857] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/18/2022] [Accepted: 05/08/2022] [Indexed: 05/27/2023]
Abstract
Water is crucial for plant growth and survival. The transcellular water movement is facilitated by aquaporins (AQPs) that rapidly and reversibly modify water permeability. The abundance of AQPs is regulated by its synthesis, redistribution and degradation. However, the molecular mechanism of proteasomal degradation of AQPs remains unclear. Here, we demonstrate that a novel E3 ligase, OsRINGzf1, mediated the degradation of AQPs in rice. OsRINGzf1 is the candidate gene from a drought-related quantitative trait locus (QTL) on the long arm of chromosome 4 in rice (Oryza sativa) and encodes a Really Interesting New Gene (RING) zinc finger protein 1. OsRINGzf1 possesses the E3 ligase activity, ubiquitinates and mediates OsPIP2;1 degradation, thus reducing its protein abundance. The content of OsPIP2;1 protein was decreased in OsRINGzf1 overexpression (OE) plants. The degradation of OsPIP2;1 was inhibited by MG132. The OsRINGzf1 OE plants, with higher leaf-related water content (LRWC) and lower leaf water loss rate (LWLR), exhibited enhanced drought resistance, whereas the RNAi and knockout plants of OsRINGzf1 were more sensitive to drought. Together, our data demonstrate that OsRINGzf1 positively regulates drought resistance through promoting the degradation of OsPIP2;1 to enhance water retention capacity in rice.
Collapse
Affiliation(s)
- Shoujun Chen
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Shanghai Agrobiological Gene CenterShanghaiChina
| | - Kai Xu
- Shanghai Agrobiological Gene CenterShanghaiChina
| | - Deyan Kong
- Shanghai Agrobiological Gene CenterShanghaiChina
| | - Lunying Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Qian Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Xiaosong Ma
- Shanghai Agrobiological Gene CenterShanghaiChina
| | - Siqi Ma
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
| | - Tianfei Li
- Shanghai Agrobiological Gene CenterShanghaiChina
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Hongyan Liu
- Shanghai Agrobiological Gene CenterShanghaiChina
| | - Lijun Luo
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Shanghai Agrobiological Gene CenterShanghaiChina
| |
Collapse
|
31
|
Rudenko NN, Ignatova LK, Naydov IA, Novichkova NS, Ivanov BN. Effect of CO2 Content in Air on the Activity of Carbonic Anhydrases in Cytoplasm, Chloroplasts, and Mitochondria and the Expression Level of Carbonic Anhydrase Genes of the α- and β-Families in Arabidopsis thaliana Leaves. PLANTS 2022; 11:plants11162113. [PMID: 36015416 PMCID: PMC9414674 DOI: 10.3390/plants11162113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022]
Abstract
The carbonic anhydrase (CA) activities of the preparations of cytoplasm, mitochondria, chloroplast stroma, and chloroplast thylakoids, as well as the expression levels of genes encoding αCA1, αCA2, αCA4, βCA1, βCA2, βCA3, βCA4, βCA5, and βCA6, were measured in the leaves of Arabidopsis thaliana plants, acclimated to different CO2 content in the air: low (150 ppm, lCO2), normal (450 ppm, nCO2), and high (1200 ppm, hCO2). To evaluate the photosynthetic apparatus operation, the carbon assimilation and chlorophyll a fluorescence were measured under the same conditions. It was found that the CA activities of the preparations of cytoplasm, chloroplast stroma, and chloroplast thylakoids measured after two weeks of acclimation were higher, the lower CO2 concentration in the air. That was preceded by an increase in the expression levels of genes encoding the cytoplasmic form of βCA1, and other cytoplasmic CAs, βCA2, βCA3, and βCA4, as well as of the chloroplast CAs, βCA5, and the stromal forms of βCA1 in a short-term range 1–2 days after the beginning of the acclimation. The dependence on the CO2 content in the air was most noticeable for the CA activity of the preparations of the stroma; it was two orders higher in lCO2 plants than in hCO2 plants. The CA activity of thylakoid membranes from lCO2 plants was higher than that in nCO2 and hCO2 plants; however, in these plants, a significant increase in the expression levels of the genes encoding αCA2 and αCA4 located in thylakoid membranes was not observed. The CA activity of mitochondria and the expression level of the mitochondrial βCA6 gene did not depend on the content of carbon dioxide. Taken together, the data implied that in the higher plants, the supply of inorganic carbon to carboxylation sites is carried out with the cooperative functioning of CAs located in the cytoplasm and CAs located in the chloroplasts.
Collapse
|
32
|
Clarke VC, De Rosa A, Massey B, George AM, Evans JR, von Caemmerer S, Groszmann M. Mesophyll conductance is unaffected by expression of Arabidopsis PIP1 aquaporins in the plasmalemma of Nicotiana. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3625-3636. [PMID: 35184158 PMCID: PMC9162178 DOI: 10.1093/jxb/erac065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/18/2022] [Indexed: 05/22/2023]
Abstract
In plants with C3 photosynthesis, increasing the diffusion conductance for CO2 from the substomatal cavity to chloroplast stroma (mesophyll conductance) can improve the efficiencies of both CO2 assimilation and photosynthetic water use. In the diffusion pathway from substomatal cavity to chloroplast stroma, the plasmalemma and chloroplast envelope membranes impose a considerable barrier to CO2 diffusion, limiting photosynthetic efficiency. In an attempt to improve membrane permeability to CO2, and increase photosynthesis in tobacco, we generated transgenic lines in Nicotiana tabacum L. cv Petite Havana carrying either the Arabidopsis PIP1;2 (AtPIP1;2) or PIP1;4 (AtPIP1;4) gene driven by the constitutive dual 2x35S CMV promoter. From a collection of independent T0 transgenics, two T2 lines from each gene were characterized, with western blots confirming increased total aquaporin protein abundance in the AtPIP1;2 tobacco lines. Transient expression of AtPIP1;2-mGFP6 and AtPIP1;4-mGFP6 fusions in Nicotiana benthamiana identified that both AtPIP1;2 and AtPIP1;4 localize to the plasmalemma. Despite achieving ectopic production and correct localization, gas exchange measurements combined with carbon isotope discrimination measurements detected no increase in mesophyll conductance or CO2 assimilation rate in the tobacco lines expressing AtPIP. We discuss the complexities associated with trying to enhance gm through modified aquaporin activity.
Collapse
Affiliation(s)
- Victoria C Clarke
- Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Annamaria De Rosa
- Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Baxter Massey
- Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Aleu Mani George
- Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | | | | | | |
Collapse
|
33
|
Structure of the Arabidopsis guard cell anion channel SLAC1 suggests activation mechanism by phosphorylation. Nat Commun 2022; 13:2511. [PMID: 35523967 PMCID: PMC9076830 DOI: 10.1038/s41467-022-30253-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/22/2022] [Indexed: 11/08/2022] Open
Abstract
Stomata play a critical role in the regulation of gas exchange and photosynthesis in plants. Stomatal closure participates in multiple stress responses, and is regulated by a complex network including abscisic acid (ABA) signaling and ion-flux-induced turgor changes. The slow-type anion channel SLAC1 has been identified to be a central controller of stomatal closure and phosphoactivated by several kinases. Here, we report the structure of SLAC1 in Arabidopsis thaliana (AtSLAC1) in an inactivated, closed state. The cytosolic amino (N)-terminus and carboxyl (C)-terminus of AtSLAC1 are partially resolved and form a plug-like structure which packs against the transmembrane domain (TMD). Breaking the interactions between the cytosolic plug and transmembrane domain triggers channel activation. An inhibition-release model is proposed for SLAC1 activation by phosphorylation that the cytosolic plug dissociates from the transmembrane domain upon phosphorylation, and induces conformational changes to open the pore. These findings facilitate our understanding of the regulation of SLAC1 activity and stomatal aperture in plants. The anion channel SLAC1 controls stomatal closure upon phosphoactivation. Here via structural analysis and electrophysiology, the authors propose an inhibition-release model where phosphorylation causes dissociation of a cytosolic plug from the SLAC1 transmembrane domains to induce conformational change in the pore-forming helices.
Collapse
|
34
|
Ding L, Milhiet T, Parent B, Meziane A, Tardieu F, Chaumont F. The plasma membrane aquaporin ZmPIP2;5 enhances the sensitivity of stomatal closure to water deficit. PLANT, CELL & ENVIRONMENT 2022; 45:1146-1156. [PMID: 35112729 DOI: 10.1111/pce.14276] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Increasing stomatal movement is beneficial to improve plant water use efficiency and drought resilience. Contradictory results indicate that aquaporins might regulate stomatal movement. Here, we tested whether the maize plasma membrane PIP2;5 aquaporin affects stomatal closure under water deficit, abscisic acid (ABA) or vapour pressure deficit (VPD) treatment in intact plants, detached leaves or peeled epidermis. Transpiration, stomatal conductance (gs ) and aperture and reactive oxygen species (ROS) in stomatal complexes were studied in maize lines with increased or knocked down (KD) PIP2;5 gene expression. In well-watered conditions, the PIP2;5 overexpressing (OE) plants transpired more than wild types (WTs), while no significant difference in transpiration was observed between pip2;5 KD and WT. Upon mild water deficit or low ABA concentration treatments, transpiration and gs decreased more in PIP2;5 OE lines and less in pip2;5 KD lines, in comparison with WTs. In the detached epidermis, ABA treatment induced faster stomatal closing in PIP2;5 OE lines compared to WTs, while pip2;5 KD stomata were ABA insensitive. These phenotypes were associated with guard cell ROS accumulation. Additionally, PIP2;5 is involved in the transpiration decrease observed under high VPD. These data indicate that maize PIP2;5 is a key actor increasing the sensitivity of stomatal closure to water deficit.
Collapse
Affiliation(s)
- Lei Ding
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Thomas Milhiet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Boris Parent
- INRAE, LEPSE, Université de Montpellier, Montpellier, France
| | - Adel Meziane
- INRAE, LEPSE, Université de Montpellier, Montpellier, France
| | | | - François Chaumont
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
35
|
Rodrigues O, Shan L. Stomata in a state of emergency: H 2O 2 is the target locked. TRENDS IN PLANT SCIENCE 2022; 27:274-286. [PMID: 34756808 DOI: 10.1016/j.tplants.2021.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Stomatal movements are essential for plants to regulate photosynthesis rate, water status, and immunity. Upon stress stimulation, the production of hydrogen peroxide (H2O2) in the apoplasts and its accumulation within the guard cells are among key determinatives for stomatal closure. The regulatory mechanisms of H2O2 production and transport under plant-pathogen interaction and drought stress response in stomata are important fields of research. Specifically, the regulation of NADPH oxidases and aquaporins appears to be crucial in H2O2-controlled stomatal closure. In this review, we summarize how the calcium-dependent and calcium-independent mechanisms activate RESPIRATORY BURST OXIDASE HOMOLOG (RBOH)D/F NADPH oxidases and the aquaporin PIP2;1 to induce stomatal closure, and highlight how the H2O2 production is targeted by pathogen toxins and effectors to counteract plant immunity.
Collapse
Affiliation(s)
- Olivier Rodrigues
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Unité de Recherche Physiologie, Pathologie et Génétique Végétales, Université Fédérale Toulouse Midi-Pyrénées, INP-PURPAN, F-31076 Toulouse, France.
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
36
|
Li YM, You JL, Nie WF, Sun MH, Xie ZS. Transcription Profiles Reveal Age-Dependent Variations of Photosynthetic Properties and Sugar Metabolism in Grape Leaves (Vitis vinifera L.). Int J Mol Sci 2022; 23:ijms23042243. [PMID: 35216359 PMCID: PMC8876361 DOI: 10.3390/ijms23042243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 12/10/2022] Open
Abstract
Leaves, considered as the ‘source’ organs, depend on the development stages because of the age-dependent photosynthesis and assimilation of leaves. However, the molecular mechanisms of age-dependent limitations on the function of leaves are seldom reported. In the present study, the photosynthesis-related characteristics and photoassimilates were investigated in grape leaves at six different age groups (Ll to L6) at micro-morphological, biochemical, and molecular levels. These results showed lower expression levels of genes associated with stomatal development, and chl biosynthesis resulted in fewer stomata and lowered chlorophyll a/b contents in L1 when compared to L3 and L5. The DEGs between L5 and L3/L1 were largely distributed at stomatal movement, carbon fixation, and sucrose and starch metabolism pathways, such as STOMATAL ANION CHANNEL PROTEIN 1 (SLAC1), FRUCTOSE-1,6-BISPHOSPHATE ALDOLASE (FBA1), SUCROSE-PHOSPHATE SYNTHASE (SPP1), and SUCROSE-PHOSPHATE PHOSPHATASE (SPS2, 4). These genes could be major candidate genes leading to increased photosynthesis capacity and sugar content in L5. The accumulation of starch grains in the chloroplast and palisade tissue of L5 and higher transcription levels of genes related to starch biosynthesis in L5 further supported the high ability of L5 to produce photoassimilates. Hence, our results provide insights for understanding different photosynthetic functions in age-dependent leaves in grape plants at the molecular level.
Collapse
|
37
|
Shen J, Li Z, Fu Y, Liang J. Identification and molecular characterization of the alternative spliced variants of beta carbonic anhydrase 1 (βCA1) from Arabidopsis thaliana. PeerJ 2022; 9:e12673. [PMID: 35036152 PMCID: PMC8710251 DOI: 10.7717/peerj.12673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Carbonic anhydrases (CAs) are ubiquitous zinc metalloenzymes that catalyze the interconversion of carbon dioxide and bicarbonate. Higher plants mainly contain the three evolutionarily distinct CA families αCA, βCA, and γCA, with each represented by multiple isoforms. Alternative splicing (AS) of the CA transcripts is common. However, there is little information on the spliced variants of individual CA isoforms. In this study, we focused on the characterization of spliced variants of βCA1 from Arabidopsis. The expression patterns and subcellular localization of the individual spliced variants of βCA1 were examined. The results showed that the spliced variants of βCA1 possessed different subcellular and tissue distributions and responded differently to environmental stimuli. Additionally, we addressed the physiological role of βCA1 in heat stress response and its protein-protein interaction (PPI) network. Our results showed that βCA1 was regulated by heat stresses, and βca1 mutant was hypersensitive to heat stress, indicating a role for βCA1 in heat stress response. Furthermore, PPI network analysis revealed that βCA1 interacts with multiple proteins involved in several processes, including photosynthesis, metabolism, and the stress response, and these will provide new avenues for future investigations of βCA1.
Collapse
Affiliation(s)
- Jinyu Shen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zhiyong Li
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China.,Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yajuan Fu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jiansheng Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
38
|
Dubeaux G, Hsu PK, Ceciliato PHO, Swink KJ, Rappel WJ, Schroeder JI. Deep dive into CO2-dependent molecular mechanisms driving stomatal responses in plants. PLANT PHYSIOLOGY 2021; 187:2032-2042. [PMID: 35142859 PMCID: PMC8644143 DOI: 10.1093/plphys/kiab342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/30/2021] [Indexed: 05/04/2023]
Abstract
Recent advances are revealing mechanisms mediating CO2-regulated stomatal movements in Arabidopsis, stomatal architecture and stomatal movements in grasses, and the long-term impact of CO2 on growth.
Collapse
Affiliation(s)
- Guillaume Dubeaux
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Po-Kai Hsu
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Paulo H O Ceciliato
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Kelsey J Swink
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Wouter-Jan Rappel
- Physics Department, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
- Author for communication:
| |
Collapse
|
39
|
Maurel C, Tournaire-Roux C, Verdoucq L, Santoni V. Hormonal and environmental signaling pathways target membrane water transport. PLANT PHYSIOLOGY 2021; 187:2056-2070. [PMID: 35235672 PMCID: PMC8644278 DOI: 10.1093/plphys/kiab373] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/13/2021] [Indexed: 05/04/2023]
Abstract
Plant water transport and its molecular components including aquaporins are responsive, across diverse time scales, to an extremely wide array of environmental and hormonal signals. These include water deficit and abscisic acid (ABA) but also more recently identified stimuli such as peptide hormones or bacterial elicitors. The present review makes an inventory of corresponding signalling pathways. It identifies some main principles, such as the central signalling role of ROS, with a dual function of aquaporins in water and hydrogen peroxide transport, the importance of aquaporin phosphorylation that is targeted by multiple classes of protein kinases, and the emerging role of lipid signalling. More studies including systems biology approaches are now needed to comprehend how plant water transport can be adjusted in response to combined stresses.
Collapse
Affiliation(s)
- Christophe Maurel
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
- Author for Communication:
| | | | - Lionel Verdoucq
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Véronique Santoni
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
40
|
Wang X, Lu K, Yao X, Zhang L, Wang F, Wu D, Peng J, Chen X, Du J, Wei J, Ma J, Chen L, Zou S, Zhang C, Zhang M, Dong H. The Aquaporin TaPIP2;10 Confers Resistance to Two Fungal Diseases in Wheat. PHYTOPATHOLOGY 2021; 111:2317-2331. [PMID: 34058861 DOI: 10.1094/phyto-02-21-0048-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plants employ aquaporins (AQPs) of the plasma membrane intrinsic protein (PIP) family to import environmental substrates, thereby affecting various processes, such as the cellular responses regulated by the signaling molecule hydrogen peroxide (H2O2). Common wheat (Triticum aestivum) contains 24 candidate members of the PIP family, designated as TaPIP1;1 to TaPIP1;12 and TaPIP2;1 to TaPIP2;12. None of these TaPIP candidates have been characterized for substrate selectivity or defense responses in their source plant. Here, we report that T. aestivum AQP TaPIP2;10 facilitates the cellular uptake of H2O2 to confer resistance against powdery mildew and Fusarium head blight, two devastating fungal diseases in wheat throughout the world. In wheat, the apoplastic H2O2 signal is induced by fungal attack, while TaPIP2;10 is stimulated to translocate this H2O2 into the cytoplasm, where it activates defense responses to restrict further attack. TaPIP2;10-mediated transport of H2O2 is essential for pathogen-associated molecular pattern-triggered plant immunity (PTI). Typical PTI responses are induced by the fungal infection and intensified by overexpression of the TaPIP2;10 gene. TaPIP2;10 overexpression causes a 70% enhancement in wheat resistance to powdery mildew and an 86% enhancement in resistance to Fusarium head blight. By reducing the disease severities, TaPIP2;10 overexpression brings about >37% increase in wheat grain yield. These results verify the feasibility of using an immunity-relevant AQP to concomitantly improve crop productivity and immunity.
Collapse
Affiliation(s)
- Xiaobing Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Kai Lu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Xiaohui Yao
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Liyuan Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Fubin Wang
- Institute of Environmental Sciences & Resources and Plant Protection, Jining Academy of Agricultural Sciences, Jining, Shandon Province 272000, China
| | - Degong Wu
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui Province 233100, China
| | - Jinfeng Peng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Xiaochen Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Junli Du
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui Province 233100, China
| | - Jiankun Wei
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Jingyu Ma
- Institute of Environmental Sciences & Resources and Plant Protection, Jining Academy of Agricultural Sciences, Jining, Shandon Province 272000, China
| | - Lei Chen
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Shenshen Zou
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Chunling Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Meixiang Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Hansong Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong Province 271018, China
| |
Collapse
|
41
|
Ermakova M, Osborn H, Groszmann M, Bala S, Bowerman A, McGaughey S, Byrt C, Alonso-Cantabrana H, Tyerman S, Furbank RT, Sharwood RE, von Caemmerer S. Expression of a CO 2-permeable aquaporin enhances mesophyll conductance in the C 4 species Setaria viridis. eLife 2021; 10:70095. [PMID: 34842138 PMCID: PMC8648302 DOI: 10.7554/elife.70095] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/23/2021] [Indexed: 02/02/2023] Open
Abstract
A fundamental limitation of photosynthetic carbon fixation is the availability of CO2. In C4 plants, primary carboxylation occurs in mesophyll cytosol, and little is known about the role of CO2 diffusion in facilitating C4 photosynthesis. We have examined the expression, localization, and functional role of selected plasma membrane intrinsic aquaporins (PIPs) from Setaria italica (foxtail millet) and discovered that SiPIP2;7 is CO2-permeable. When ectopically expressed in mesophyll cells of Setaria viridis (green foxtail), SiPIP2;7 was localized to the plasma membrane and caused no marked changes in leaf biochemistry. Gas exchange and C18O16O discrimination measurements revealed that targeted expression of SiPIP2;7 enhanced the conductance to CO2 diffusion from the intercellular airspace to the mesophyll cytosol. Our results demonstrate that mesophyll conductance limits C4 photosynthesis at low pCO2 and that SiPIP2;7 is a functional CO2 permeable aquaporin that can improve CO2 diffusion at the airspace/mesophyll interface and enhance C4 photosynthesis.
Collapse
Affiliation(s)
- Maria Ermakova
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, Canberra, Australia
| | - Hannah Osborn
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, Canberra, Australia
| | - Michael Groszmann
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, Canberra, Australia
| | - Soumi Bala
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, Canberra, Australia
| | - Andrew Bowerman
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, Canberra, Australia
| | - Samantha McGaughey
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, Canberra, Australia
| | - Caitlin Byrt
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, Canberra, Australia
| | - Hugo Alonso-Cantabrana
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, Canberra, Australia
| | - Steve Tyerman
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture Food and Wine, University of Adelaide, Adelaide, Australia
| | - Robert T Furbank
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, Canberra, Australia
| | - Robert E Sharwood
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, Canberra, Australia.,Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Australia
| | - Susanne von Caemmerer
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, Canberra, Australia
| |
Collapse
|
42
|
Rudenko NN, Ivanov BN. Unsolved Problems of Carbonic Anhydrases Functioning in Photosynthetic Cells of Higher C3 Plants. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1243-1255. [PMID: 34903154 DOI: 10.1134/s0006297921100072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The review presents current data on carbonic anhydrases found in various compartments of photosynthetic cells of higher plants. The available data on expression of genes some of carbonic anhydrases and its dependence on environmental factors and plant age are considered. The existing hypotheses on the functions of carbonic anhydrases of plasma membrane, cytoplasm, as well as of stroma and thylakoids of chloroplast, first of all, the hypothesis on participation of these enzymes in supplying carbon dioxide molecules to ribulose-bisphosphate carboxylase (Rubisco) are analyzed. Difficulties of establishing physiological role of the plant cell carbonic anhydrase are discussed in detail.
Collapse
Affiliation(s)
- Natalia N Rudenko
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Boris N Ivanov
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
43
|
Jezek M, Silva-Alvim FAL, Hills A, Donald N, Ishka MR, Shadbolt J, He B, Lawson T, Harper JF, Wang Y, Lew VL, Blatt MR. Guard cell endomembrane Ca 2+-ATPases underpin a 'carbon memory' of photosynthetic assimilation that impacts on water-use efficiency. NATURE PLANTS 2021; 7:1301-1313. [PMID: 34326530 DOI: 10.1038/s41477-021-00966-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Stomata of most plants close to preserve water when the demand for CO2 by photosynthesis is reduced. Stomatal responses are slow compared with photosynthesis, and this kinetic difference erodes assimilation and water-use efficiency under fluctuating light. Despite a deep knowledge of guard cells that regulate the stoma, efforts to enhance stomatal kinetics are limited by our understanding of its control by foliar CO2. Guided by mechanistic modelling that incorporates foliar CO2 diffusion and mesophyll photosynthesis, here we uncover a central role for endomembrane Ca2+ stores in guard cell responsiveness to fluctuating light and CO2. Modelling predicted and experiments demonstrated a delay in Ca2+ cycling that was enhanced by endomembrane Ca2+-ATPase mutants, altering stomatal conductance and reducing assimilation and water-use efficiency. Our findings illustrate the power of modelling to bridge the gap from the guard cell to whole-plant photosynthesis, and they demonstrate an unforeseen latency, or 'carbon memory', of guard cells that affects stomatal dynamics, photosynthesis and water-use efficiency.
Collapse
Affiliation(s)
- Mareike Jezek
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK
| | | | - Adrian Hills
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK
| | - Naomi Donald
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK
| | - Maryam Rahmati Ishka
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Jessica Shadbolt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK
| | - Bingqing He
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Yizhou Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Virgilio L Lew
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK.
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
44
|
Zhang M, Yang H, Zhu F, Xu R, Cheng Y. Transcript profiles analysis of citrus aquaporins in response to fruit water loss during storage. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:819-830. [PMID: 33797834 DOI: 10.1111/plb.13269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/22/2021] [Indexed: 05/02/2023]
Abstract
Water loss is an essential factor that affects the maintenance of quality of citrus fruit during postharvest handling and storage. Aquaporins (AQPs) play an important role in the transport of water across membranes. However, the expression profiling of AQPs is incomplete for citrus fruits during storage. In this study, a post-harvest storage experiment was performed using sweet orange fruits to determine changes in water loss and fruit quality. Also, genome-wide expression analysis of CsAQP genes was carried out in fruit of different citrus varieties during storage. Low humidity storage conditions accelerated the postharvest water loss and texture decline and increased the TSS content in the fruit. A total of 39 non-redundant CsAQP genes were identified. A comprehensive analysis of these genes demonstrated that all AQPs had conserved filter motifs in the different citrus varieties examined. Moreover, multiple expression analysis revealed AQPs had complex expression profiles upon water loss in citrus fruit, being time-specific in tight-skin varieties (orange and pomelo varieties), tissue-specific between peel and pulp, and variety-specific between loose-skin (mandarin varieties) and tight-skin varieties (such as sweet orange and pummelo). These results indicated that the relative humidity in storage environment affected the postharvest water loss and quality of citrus fruit. Besides, the alternation in AQPs expression may partially account for the different water loss ratio in citrus varieties and the transfer of water between the peel and the pulp of citrus fruit during storage.
Collapse
Affiliation(s)
- M Zhang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - H Yang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - F Zhu
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - R Xu
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Y Cheng
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
45
|
Zhang M, Liu R, Liu H, Yang H, Li X, Wang P, Zhu F, Xu R, Xue S, Cheng Y. Citrus NIP5;1 aquaporin regulates cell membrane water permeability and alters PIPs plasma membrane localization. PLANT MOLECULAR BIOLOGY 2021; 106:449-462. [PMID: 34173150 DOI: 10.1007/s11103-021-01164-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/11/2021] [Indexed: 05/29/2023]
Abstract
The ER or donut-like structures localized aquaporin NIP5;1, which interacts with PIPs and alters their localization from plasma membrane to donut-like structures, regulates water permeability. NOD26-like intrinsic proteins (NIPs) play important roles in nutrient uptake and response to various stresses. However, there have been few studies of their functions in water transportation in citrus. Here, we demonstrate the functions of a novel citrus NIP aquaporin (CsNIP5;1) via multiple physiological and biochemical experiments. CsNIP5;1 showed high water permeability when expressed in Xenopus laevis oocytes and yeast. However, subcellular localization assays showed that this protein was localized in the endoplasmic reticulum (ER) or donut-like structures in citrus callus and tobacco leaf. Meanwhile, overexpression of CsNIP5;1 led to a reduction in the water permeability of citrus callus. Protein-protein interaction experiments and subcellular localization assays further revealed that CsNIP5;1 physically interacted with PIPs (CsPIP1;1 and AtPIP2;1), which altered their subcellular localization from the plasma membrane to donut-like structures. Together, CsNIP5;1 was identified as a good water channel when expressed in oocytes and yeast. Meanwhile, CsNIP5;1 participated in the regulation of water permeability of citrus callus, which may be associated with CsNIP5;1-induced re-localization of water channels PIPs. In summary, these results provide new insights into the regulatory mechanism of AQPs-mediated water diffusion.
Collapse
Affiliation(s)
- Mingfei Zhang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ruilian Liu
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hai Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongbin Yang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xin Li
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ping Wang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Feng Zhu
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Rangwei Xu
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shaowu Xue
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunjiang Cheng
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
46
|
Ovrutska I. Aquaporins in regulation of plant protective responses to drought. UKRAINIAN BOTANICAL JOURNAL 2021. [DOI: 10.15407/ukrbotj78.03.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Plasmolemma permeability is an integral indicator of the functional state of plant cells under stress. Aquaporins (AQPs), specialized transmembrane proteins that form water channels and play an important role in the adaptation of plants to adverse conditions and, in particular, to lack or excess of water, are involved in the formation of the response to drought. The main function of AQPs is to facilitate the movement of water across cell membranes and maintain aqueous cell homeostasis. Under stressful conditions, there is both an increase and decrease in the expression of individual aquaporin genes. Analysis of the data revealed differences in the expression of AQPs genes in stable and sensitive plant genotypes. It turned out that aquaporins in different stress-resistant varieties of the same species also respond differently to drought. The review provides brief information on the history of the discovery of aquaporins, the structure and function of these proteins, summarizes the latest information on the role of aquaporins in the regulation of metabolism and the response of plants to stressors, with particular emphasis on aquaporins in drought protection. The discovery and study of AQPs expands the possibilities of using genetic engineering methods for the selection of new plant species, in particular, more resistant to drought and salinization of the soil, as well as to increase their productivity. The use of aquaporins in biotechnology to improve drought resistance of various species has many prospects.
Collapse
|
47
|
Israel D, Khan S, Warren CR, Zwiazek JJ, Robson TM. The contribution of PIP2-type aquaporins to photosynthetic response to increased vapour pressure deficit. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5066-5078. [PMID: 33928350 PMCID: PMC8219038 DOI: 10.1093/jxb/erab187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
The roles of different plasma membrane aquaporins (PIPs) in leaf-level gas exchange of Arabidopsis thaliana were examined using knockout mutants. Since multiple Arabidopsis PIPs are implicated in CO2 transport across cell membranes, we focused on identifying the effects of the knockout mutations on photosynthesis, and whether they are mediated through the control of stomatal conductance of water vapour (gs), mesophyll conductance of CO2 (gm), or both. We grew Arabidopsis plants in low and high humidity environments and found that the contribution of PIPs to gs was larger under low air humidity when the evaporative demand was high, whereas any effect of a lack of PIP function was minimal under higher humidity. The pip2;4 knockout mutant had 44% higher gs than wild-type plants under low humidity, which in turn resulted in an increased net photosynthetic rate (Anet). We also observed a 23% increase in whole-plant transpiration (E) for this knockout mutant. The lack of functional plasma membrane aquaporin AtPIP2;5 did not affect gs or E, but resulted in homeostasis of gm despite changes in humidity, indicating a possible role in regulating CO2 membrane permeability. CO2 transport measurements in yeast expressing AtPIP2;5 confirmed that this aquaporin is indeed permeable to CO2.
Collapse
Affiliation(s)
- David Israel
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), University of Helsinki, Finland
| | - Shanjida Khan
- Department of Renewable Resources, University of Alberta, Canada
| | - Charles R Warren
- School of Life and Environmental Sciences, University of Sydney, Australia
| | - Janusz J Zwiazek
- Department of Renewable Resources, University of Alberta, Canada
| | - T Matthew Robson
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), University of Helsinki, Finland
| |
Collapse
|
48
|
Abstract
Our knowledge of plant ion channels was significantly enhanced by the first application of the patch-clamp technique to isolated guard cell protoplasts over 35 years ago. Since then, research has demonstrated the importance of ion channels in the control of gas exchange in guard cells, their role in nutrient uptake in roots, and the participation of calcium-permeable cation channels in the regulation of cell signaling affected by the intracellular concentrations of this second messenger. In recent years, through the employment of reverse genetics, mutant proteins, and heterologous expression systems, research on ion channels has identified mechanisms that modify their activity through protein-protein interactions or that result in activation and/or deactivation of ion channels through posttranslational modifications. Additional and confirmatory information on ion channel functioning has been derived from the crystallization and molecular modeling of plant proteins that, together with functional analyses, have helped to increase our knowledge of the functioning of these important membrane proteins that may eventually help to improve crop yield. Here, an update on the advances obtained in plant ion channel function during the last few years is presented.
Collapse
Affiliation(s)
- Omar Pantoja
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México;
| |
Collapse
|
49
|
Tyerman SD, McGaughey SA, Qiu J, Yool AJ, Byrt CS. Adaptable and Multifunctional Ion-Conducting Aquaporins. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:703-736. [PMID: 33577345 DOI: 10.1146/annurev-arplant-081720-013608] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Aquaporins function as water and neutral solute channels, signaling hubs, disease virulence factors, and metabolon components. We consider plant aquaporins that transport ions compared to some animal counterparts. These are candidates for important, as yet unidentified, cation and anion channels in plasma, tonoplast, and symbiotic membranes. For those individual isoforms that transport ions, water, and gases, the permeability spans 12 orders of magnitude. This requires tight regulation of selectivity via protein interactions and posttranslational modifications. A phosphorylation-dependent switch between ion and water permeation in AtPIP2;1 might be explained by coupling between the gates of the four monomer water channels and the central pore of the tetramer. We consider the potential for coupling between ion and water fluxes that could form the basis of an electroosmotic transducer. A grand challenge in understanding the roles of ion transporting aquaporins is their multifunctional modes that are dependent on location, stress, time, and development.
Collapse
Affiliation(s)
- Stephen D Tyerman
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia; ,
| | - Samantha A McGaughey
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Acton, Australian Capital Territory 0200, Australia; ,
| | - Jiaen Qiu
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia; ,
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5005, Australia;
| | - Caitlin S Byrt
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Acton, Australian Capital Territory 0200, Australia; ,
| |
Collapse
|
50
|
Michenkova M, Taki S, Blosser MC, Hwang HJ, Kowatz T, Moss FJ, Occhipinti R, Qin X, Sen S, Shinn E, Wang D, Zeise BS, Zhao P, Malmstadt N, Vahedi-Faridi A, Tajkhorshid E, Boron WF. Carbon dioxide transport across membranes. Interface Focus 2021; 11:20200090. [PMID: 33633837 PMCID: PMC7898146 DOI: 10.1098/rsfs.2020.0090] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 12/30/2022] Open
Abstract
Carbon dioxide (CO2) movement across cellular membranes is passive and governed by Fick's law of diffusion. Until recently, we believed that gases cross biological membranes exclusively by dissolving in and then diffusing through membrane lipid. However, the observation that some membranes are CO2 impermeable led to the discovery of a gas molecule moving through a channel; namely, CO2 diffusion through aquaporin-1 (AQP1). Later work demonstrated CO2 diffusion through rhesus (Rh) proteins and NH3 diffusion through both AQPs and Rh proteins. The tetrameric AQPs exhibit differential selectivity for CO2 versus NH3 versus H2O, reflecting physico-chemical differences among the small molecules as well as among the hydrophilic monomeric pores and hydrophobic central pores of various AQPs. Preliminary work suggests that NH3 moves through the monomeric pores of AQP1, whereas CO2 moves through both monomeric and central pores. Initial work on AQP5 indicates that it is possible to create a metal-binding site on the central pore's extracellular face, thereby blocking CO2 movement. The trimeric Rh proteins have monomers with hydrophilic pores surrounding a hydrophobic central pore. Preliminary work on the bacterial Rh homologue AmtB suggests that gas can diffuse through the central pore and three sets of interfacial clefts between monomers. Finally, initial work indicates that CO2 diffuses through the electrogenic Na/HCO3 cotransporter NBCe1. At least in some cells, CO2-permeable proteins could provide important pathways for transmembrane CO2 movements. Such pathways could be amenable to cellular regulation and could become valuable drug targets.
Collapse
Affiliation(s)
- Marie Michenkova
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sara Taki
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Matthew C. Blosser
- Mork Family Department of Chemical Engineering & Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Hyea J. Hwang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Thomas Kowatz
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Fraser. J. Moss
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Rossana Occhipinti
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Xue Qin
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Soumyo Sen
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Eric Shinn
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Dengke Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Brian S. Zeise
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Pan Zhao
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Noah Malmstadt
- Mork Family Department of Chemical Engineering & Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Ardeschir Vahedi-Faridi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Walter F. Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|