1
|
Roeder AHK, Bent A, Lovell JT, McKay JK, Bravo A, Medina-Jimenez K, Morimoto KW, Brady SM, Hua L, Hibberd JM, Zhong S, Cardinale F, Visentin I, Lovisolo C, Hannah MA, Webb AAR. Lost in translation: What we have learned from attributes that do not translate from Arabidopsis to other plants. THE PLANT CELL 2025; 37:koaf036. [PMID: 40371945 DOI: 10.1093/plcell/koaf036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 05/16/2025]
Abstract
Research in Arabidopsis thaliana has a powerful influence on our understanding of gene functions and pathways. However, not everything translates from Arabidopsis to crops and other plants. Here, a group of experts consider instances where translation has been lost and why such translation is not possible or is challenging. First, despite great efforts, floral dip transformation has not succeeded in other species outside Brassicaceae. Second, due to gene duplications and losses throughout evolution, it can be complex to establish which genes are orthologs of Arabidopsis genes. Third, during evolution Arabidopsis has lost arbuscular mycorrhizal symbiosis. Fourth, other plants have evolved specialized cell types that are not present in Arabidopsis. Fifth, similarly, C4 photosynthesis cannot be studied in Arabidopsis, which is a C3 plant. Sixth, many other plant species have larger genomes, which has given rise to innovations in transcriptional regulation that are not present in Arabidopsis. Seventh, phenotypes such as acclimation to water stress can be challenging to translate due to different measurement strategies. And eighth, while the circadian oscillator is conserved, there are important nuances in the roles of circadian regulators in crop plants. A key theme emerging across these vignettes is that even when translation is lost, insights can still be gained through comparison with Arabidopsis.
Collapse
Affiliation(s)
- Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, 239 Weill Hall, 526 Campus Rd., Ithaca, NY 14853, USA
| | - Andrew Bent
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John T Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
- US Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - John K McKay
- Department of Soil and Crop Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Armando Bravo
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | | | - Kevin W Morimoto
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA 95616, USA
| | - Siobhán M Brady
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA 95616, USA
| | - Lei Hua
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Silin Zhong
- The State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, P.R. China
| | - Francesca Cardinale
- PlantStressLab, Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, TO 10095, Italy
| | - Ivan Visentin
- PlantStressLab, Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, TO 10095, Italy
| | - Claudio Lovisolo
- PlantStressLab, Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, TO 10095, Italy
| | - Matthew A Hannah
- BASF, BASF Belgium Coordination Center CommV, Technologiepark 101, 9052 Gent, Belgium
| | - Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
2
|
Weiss T, Kamalu M, Shi H, Li Z, Amerasekera J, Zhong Z, Adler BA, Song MM, Vohra K, Wirnowski G, Chitkara S, Ambrose C, Steinmetz N, Sridharan A, Sahagun D, Banfield JF, Doudna JA, Jacobsen SE. Viral delivery of an RNA-guided genome editor for transgene-free germline editing in Arabidopsis. NATURE PLANTS 2025:10.1038/s41477-025-01989-9. [PMID: 40263581 DOI: 10.1038/s41477-025-01989-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/22/2025] [Indexed: 04/24/2025]
Abstract
Genome editing is transforming plant biology by enabling precise DNA modifications. However, delivery of editing systems into plants remains challenging, often requiring slow, genotype-specific methods such as tissue culture or transformation1. Plant viruses, which naturally infect and spread to most tissues, present a promising delivery system for editing reagents. However, many viruses have limited cargo capacities, restricting their ability to carry large CRISPR-Cas systems. Here we engineered tobacco rattle virus (TRV) to carry the compact RNA-guided TnpB enzyme ISYmu1 and its guide RNA. This innovation allowed transgene-free editing of Arabidopsis thaliana in a single step, with edits inherited in the subsequent generation. By overcoming traditional reagent delivery barriers, this approach offers a novel platform for genome editing, which can greatly accelerate plant biotechnology and basic research.
Collapse
Affiliation(s)
- Trevor Weiss
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Maris Kamalu
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Honglue Shi
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Zheng Li
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jasmine Amerasekera
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Zhenhui Zhong
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Benjamin A Adler
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Michelle M Song
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Kamakshi Vohra
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Gabriel Wirnowski
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Sidharth Chitkara
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Charlie Ambrose
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Noah Steinmetz
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Ananya Sridharan
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Diego Sahagun
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
- University of Melbourne, Melbourne, Australia
| | - Jennifer A Doudna
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Li Ka Shing Center for Translational Genomics, University of California, Berkeley, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA.
- Howard Hughes Medical Institute (HHMI), University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Shivashakarappa K, Marriboina S, Yadegari Z, Paduri VR, Sachan R, Dumenyo K, Taheri A. DNA delivery into plant tissues using carbon dots made from citric acid and β-alanine. Front Chem 2025; 13:1542504. [PMID: 40177349 PMCID: PMC11961904 DOI: 10.3389/fchem.2025.1542504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/22/2025] [Indexed: 04/05/2025] Open
Abstract
Agriculture and food security face significant challenges due to population growth, climate change, and biotic and abiotic stresses. Enhancing crop productivity and quality through biotechnology is crucial in addressing these challenges. Genome engineering techniques, including gene cassette delivery into plant cells, aim to meet these demands. However, conventional biomolecule delivery methods have limitations such as poor efficacy, low regeneration capability, and potential cell damage. Nanoparticles, known for their success in drug delivery in animals, hold promise as DNA nanocarriers in plant sciences. This study explores the efficacy of carbon dots (CDs), synthesized rapidly and cost-effectively from citric acid monohydrate and β-alanine using a microwave-assisted method, as carriers for plasmid DNA delivery into plant tissues. The detailed characterization of carbon dots, evaluation of their binding ability with plasmid DNA, and phytotoxicity assessments were systematically conducted. The delivery and expression of plasmid DNA were successfully demonstrated in canola leaves via needleless syringe infiltration and in soybean root cells and protoplasts through passive diffusion. Additionally, the particle bombardment method facilitated the efficient delivery of plasmid DNA of varying sizes (4 kb, 11 kb, and 17 kb) into onion epidermal cells, as well as the successful delivery of plasmid DNA containing the GUS reporter gene into soybean embryos, using carbon dots as a binding agent between plasmid DNA and tungsten microcarrier. To our knowledge, this is the first study to report the use of carbon dots as a substitute for spermidine in such applications. Overall, our research presents a rapidly synthesized, cost-effective platform for efficient plasmid DNA delivery, establishing a foundation for using carbon dots as carriers for CRISPR and RNAi constructs in gene knockout and knockdown applications in plant tissues, with a comparison of their transformation efficiency against traditional delivery techniques.
Collapse
Affiliation(s)
- Kuber Shivashakarappa
- Department of Agricultural Science and Engineering, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Sureshbabu Marriboina
- Department of Agricultural Science and Engineering, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Zeinab Yadegari
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, United States
| | - Vikas Reddy Paduri
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, United States
| | - Ritesh Sachan
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, United States
| | - Korsi Dumenyo
- Department of Agricultural Science and Engineering, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Ali Taheri
- Department of Agricultural Science and Engineering, College of Agriculture, Tennessee State University, Nashville, TN, United States
| |
Collapse
|
4
|
Goralogia GS, Willig C, Strauss SH. Engineering Agrobacterium for improved plant transformation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70015. [PMID: 40051182 PMCID: PMC11885899 DOI: 10.1111/tpj.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/07/2025] [Accepted: 01/17/2025] [Indexed: 03/10/2025]
Abstract
Outside of a few model systems and selected taxa, the insertion of transgenes and regeneration of modified plants are difficult or impossible. This is a major bottleneck both for biotechnology and scientific research with many important species. Agrobacterium-mediated transformation (AMT) remains the most common approach to insert DNA into plant cells, and is also an important means to stimulate regeneration of organized tissues. However, the strains and transformation methods available today have been largely unchanged since the 1990s. New sources of Agrobacterium germplasm and associated genomic information are available for hundreds of wild strains in public repositories, providing new opportunities for research. Many of these strains contain novel gene variants or arrangements of genes in their T-DNA, potentially providing new tools for strain enhancement. There are also several new techniques for Agrobacterium modification, including base editing, CRISPR-associated transposases, and tailored recombineering, that make the process of domesticating wild strains more precise and efficient. We review the novel germplasm, genomic resources, and new methods available, which together should lead to a renaissance in Agrobacterium research and the generation of many new domesticated strains capable of promoting plant transformation and/or regeneration in diverse plant species.
Collapse
Affiliation(s)
- Greg S. Goralogia
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregon97331USA
| | - Chris Willig
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregon97331USA
| | - Steven H. Strauss
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregon97331USA
| |
Collapse
|
5
|
Brant E, Zuniga‐Soto E, Altpeter F. RNAi and genome editing of sugarcane: Progress and prospects. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70048. [PMID: 40051334 PMCID: PMC11886501 DOI: 10.1111/tpj.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 03/09/2025]
Abstract
Sugarcane, which provides 80% of global table sugar and 40% of biofuel, presents unique breeding challenges due to its highly polyploid, heterozygous, and frequently aneuploid genome. Significant progress has been made in developing genetic resources, including the recently completed reference genome of the sugarcane cultivar R570 and pan-genomic resources from sorghum, a closely related diploid species. Biotechnological approaches including RNA interference (RNAi), overexpression of transgenes, and gene editing technologies offer promising avenues for accelerating sugarcane improvement. These methods have successfully targeted genes involved in important traits such as sucrose accumulation, lignin biosynthesis, biomass oil accumulation, and stress response. One of the main transformation methods-biolistic gene transfer or Agrobacterium-mediated transformation-coupled with efficient tissue culture protocols, is typically used for implementing these biotechnology approaches. Emerging technologies show promise for overcoming current limitations. The use of morphogenic genes can help address genotype constraints and improve transformation efficiency. Tissue culture-free technologies, such as spray-induced gene silencing, virus-induced gene silencing, or virus-induced gene editing, offer potential for accelerating functional genomics studies. Additionally, novel approaches including base and prime editing, orthogonal synthetic transcription factors, and synthetic directed evolution present opportunities for enhancing sugarcane traits. These advances collectively aim to improve sugarcane's efficiency as a crop for both sugar and biofuel production. This review aims to discuss the progress made in sugarcane methodologies, with a focus on RNAi and gene editing approaches, how RNAi can be used to inform functional gene targets, and future improvements and applications.
Collapse
Affiliation(s)
- Eleanor Brant
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics InstituteUniversity of Florida, IFASGainesvilleFloridaUSA
| | - Evelyn Zuniga‐Soto
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics InstituteUniversity of Florida, IFASGainesvilleFloridaUSA
| | - Fredy Altpeter
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics InstituteUniversity of Florida, IFASGainesvilleFloridaUSA
| |
Collapse
|
6
|
Wang D, Mandal P, Rahman MS, Yang L. Engineering tomato disease resistance by manipulating susceptibility genes. Front Genome Ed 2025; 7:1537148. [PMID: 39995605 PMCID: PMC11847883 DOI: 10.3389/fgeed.2025.1537148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Various pathogens severely threaten tomato yield and quality. Advances in understanding plant-pathogen interactions have revealed the intricate roles of resistance (R) and susceptibility (S) genes in determining plant immunity. While R genes provide targeted pathogen resistance, they are often vulnerable to pathogen evolution. Conversely, S genes offer a promising avenue for developing broad-spectrum and durable resistance through targeted gene editing. Recent breakthroughs in CRISPR/Cas-based technologies have revolutionized the manipulation of plant genomes, enabling precise modification of S genes to enhance disease resistance in tomato without compromising growth or quality. However, the utilization of the full potential of this technique is challenging due to the complex plant-pathogen interactions and current technological limitations. This review highlights key advances in using gene editing tools to dissect and engineer tomato S genes for improved immunity. We discuss how S genes influence pathogen entry, immune suppression, and nutrient acquisition, and how their targeted editing has conferred resistance to bacterial, fungal, and viral pathogens. Furthermore, we address the challenges associated with growth-defense trade-offs and propose strategies, such as hormonal pathway modulation and precise regulatory edits, to overcome these limitations. This review underscores the potential of CRISPR-based approaches to transform tomato breeding, paving the way for sustainable production of disease-resistant cultivars amidst escalating global food security challenges.
Collapse
Affiliation(s)
- Duoduo Wang
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH, United States
| | - Palash Mandal
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH, United States
| | - Md Sazan Rahman
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH, United States
| | - Lirong Yang
- School of Pharmacy and Pharmaceutical Science, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
7
|
Roychowdhury R, Das SP, Das S, Biswas S, Patel MK, Kumar A, Sarker U, Choudhary SP, Das R, Yogendra K, Gangurde SS. Advancing vegetable genetics with gene editing: a pathway to food security and nutritional resilience in climate-shifted environments. Funct Integr Genomics 2025; 25:31. [PMID: 39891757 DOI: 10.1007/s10142-025-01533-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/03/2025]
Abstract
As global populations grow and climate change increasingly disrupts agricultural systems, ensuring food security and nutritional resilience has become a critical challenge. In addition to grains and legumes, vegetables are very important for both human and animals because they contain vitamins, minerals, and fibre. Enhancing the ability of vegetables to withstand climate change threats is essential; however, traditional breeding methods face challenges due to the complexity of the genomic clonal multiplication process. In the postgenomic era, gene editing (GE) has emerged as a powerful tool for improving vegetables. GE can help to increase traits such as abiotic stress tolerance, herbicide tolerance, and disease resistance; improve agricultural productivity; and improve nutritional content and shelf-life by fine-tuning key genes. GE technologies such as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 (CRISPR-Cas9) have revolutionized vegetable breeding by enabling specific gene modifications in the genome. This review highlights recent advances in CRISPR-mediated editing across various vegetable species, highlighting successful modifications that increase their resilience to climatic stressors. Additionally, it explores the potential of GE to address malnutrition by increasing the nutrient content of vegetable crops, thereby contributing to public health and food system sustainability. Additionally, it addresses the implementation of GE-guided breeding strategies in agriculture, considering regulatory, ethical, and public acceptance issues. Enhancing vegetable genetics via GE may provide a reliable and nutritious food supply for an expanding global population under more unpredictable environmental circumstances.
Collapse
Affiliation(s)
- Rajib Roychowdhury
- Agricultural Research Organization (ARO), The Volcani Institute, Rishon Lezion, 7505101, Israel.
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, Telangana, India.
| | - Soumya Prakash Das
- School of Life Sciences, Seacom Skills University, Bolpur, 731236, West Bengal, India
| | - Siddhartha Das
- Department of Plant Pathology, MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi, 761211, Odisha, India
| | - Sabarni Biswas
- Department of Botany, Sonarpur Mahavidyalaya, Rajpur, Kolkata, 700149, West Bengal, India
| | - Manish Kumar Patel
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Madrid, Spain
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, 201313, Uttar Pradesh, India
| | - Umakanta Sarker
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Sikander Pal Choudhary
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu, 180006, India
| | - Ranjan Das
- Department of Crop Physiology, College of Agriculture, Assam Agricultural University, Jorhat, 785013, Assam, India
| | - Kalenahalli Yogendra
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, Telangana, India
| | - Sunil S Gangurde
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, Telangana, India.
| |
Collapse
|
8
|
Malzahn AA, Kaeppler H, Gordon‐Kamm W, Lee K, Taylor N, Veena V, Parrott W, Van Eck J. PlantGENE: Advancing plant transformation through community engagement. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17228. [PMID: 39908178 PMCID: PMC11798425 DOI: 10.1111/tpj.17228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 02/07/2025]
Abstract
Plant transformation is an important part of plant research and crop improvement. Transformation methods remain complex, labor intensive, and inefficient. PlantGENE is a community of scientists from academia, industry, non-profit research institutes, and government organizations working to improve plant transformation. PlantGENE hosts virtual training, interactive webinars, and a website with career opportunities, directories, and more. The plant science community has shown great interest and support for PlantGENE.
Collapse
Affiliation(s)
| | - Heidi Kaeppler
- Department of Plant and Agroecosystems SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Crop Innovation CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | - Keunsub Lee
- Department of AgronomyIowa State UniversityAmesIowaUSA
| | - Nigel Taylor
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
| | - Veena Veena
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
- Plant Transformation FacilityDonald Danforth Plant Science CenterSt. LouisMissouriUSA
| | - Wayne Parrott
- Department of Crop & Soil SciencesUniversity of GeorgiaAthensGeorgiaUSA
| | - Joyce Van Eck
- Boyce Thompson InstituteIthacaNew YorkUSA
- Plant Breeding & Genetics SectionCornell UniversityIthacaNew YorkUSA
| |
Collapse
|
9
|
Kang GH, Ko Y, Lee JM. Enhancing virus-mediated genome editing for cultivated tomato through low temperature. PLANT CELL REPORTS 2025; 44:22. [PMID: 39762363 DOI: 10.1007/s00299-024-03392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/27/2024] [Indexed: 01/28/2025]
Abstract
KEY MESSAGE Viral vector-mediated gene editing is enhanced for cultivated tomato under low temperature conditions, enabling higher mutation rates, heritable, and virus-free gene editing for efficient breeding. The CRISPR/Cas system, a versatile gene-editing tool, has revolutionized plant breeding by enabling precise genetic modifications. The development of robust and efficient genome-editing tools for crops is crucial for their application in plant breeding. In this study, we highly improved virus-induced genome-editing (VIGE) system for cultivated tomato. Vectors of tobacco rattle virus (TRV) and potato virus X (PVX) were used to deliver sgRNA targeting phytoene desaturase (SlPDS), along with mobile RNA sequences of tFT or tRNAIleu, into Cas9-overexpressing cultivated tomato (S. lycopersicum cv. Moneymaker). Our results demonstrate that low temperature significantly enhanced viral vector-mediated gene editing efficiency in both cotyledons and systemic upper leaves. However, no mutant progeny was obtained from TRV- and PVX301-infected MM-Cas9 plants. To address this challenge, we employed tissue culture techniques and found that low-temperature incubations at the initiation stage of tissue culture lead to enhanced editing efficiency in both vectors, resulting in a higher mutation rate (> 70%) of SlPDS in regenerated plants. Heritable gene-edited and virus-free progenies were successfully identified. This study presents a straightforward approach to enhance VIGE efficiency and the expeditious production of gene-edited lines in tomato breeding.
Collapse
Affiliation(s)
- Ga Hui Kang
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yujung Ko
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Je Min Lee
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
10
|
Youngstrom C, Wang K, Lee K. Unlocking regeneration potential: harnessing morphogenic regulators and small peptides for enhanced plant engineering. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17193. [PMID: 39658544 PMCID: PMC11771577 DOI: 10.1111/tpj.17193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/18/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024]
Abstract
Plant genetic transformation is essential for understanding gene functions and developing improved crop varieties. Traditional methods, often genotype-dependent, are limited by plants' recalcitrance to gene delivery and low regeneration capacity. To overcome these limitations, new approaches have emerged that greatly improve efficiency and genotype flexibility. This review summarizes key strategies recently developed for plant transformation, focusing on groundbreaking technologies enhancing explant- and genotype flexibility. It covers the use of morphogenic regulators (MRs), stem cell-based methods, and in planta transformation methods. MRs, such as maize Babyboom (BBM) with Wuschel2 (WUS2), and GROWTH-REGULATING FACTORs (GRFs) with their cofactors GRF-interacting factors (GIFs), offer great potential for transforming many monocot species, including major cereal crops. Optimizing BBM/WUS2 expression cassettes has further enabled successful transformation and gene editing using seedling leaves as starting material. This technology lowers the barriers for academic laboratories to adopt monocot transformation systems. For dicot plants, tissue culture-free or in planta transformation methods, with or without the use of MRs, are emerging as more genotype-flexible alternatives to traditional tissue culture-based transformation systems. Additionally, the discovery of the local wound signal peptide Regeneration Factor 1 (REF1) has been shown to enhance transformation efficiency by activating wound-induced regeneration pathways in both monocot and dicot plants. Future research may combine these advances to develop truly genotype-independent transformation methods.
Collapse
Affiliation(s)
- Christopher Youngstrom
- Department of AgronomyIowa State UniversityAmesIowa50011USA
- Crop Bioengineering CenterIowa State UniversityAmesIowa50011USA
| | - Kan Wang
- Department of AgronomyIowa State UniversityAmesIowa50011USA
- Crop Bioengineering CenterIowa State UniversityAmesIowa50011USA
| | - Keunsub Lee
- Department of AgronomyIowa State UniversityAmesIowa50011USA
- Crop Bioengineering CenterIowa State UniversityAmesIowa50011USA
| |
Collapse
|
11
|
Yong J, Xu W, Wu M, Zhang R, Mann CWG, Liu G, Brosnan CA, Mitter N, Carroll BJ, Xu ZP. Lysozyme-coated nanoparticles for active uptake and delivery of synthetic RNA and plasmid-encoded genes in plants. NATURE PLANTS 2025; 11:131-144. [PMID: 39747606 DOI: 10.1038/s41477-024-01882-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/26/2024] [Indexed: 01/04/2025]
Abstract
Nanoparticle-mediated delivery of nucleic acids and proteins into intact plants has the potential to modify metabolic pathways and confer desirable traits in crops. Here we show that layered double hydroxide (LDH) nanosheets coated with lysozyme are actively taken up into the root tip, root hairs and lateral root junctions by endocytosis, and translocate via an active membrane trafficking pathway in plants. Lysozyme coating enhanced nanosheet uptake by (1) loosening the plant cell wall and (2) stimulating the expression of endocytosis and other membrane trafficking genes. The lysozyme-coated nanosheets efficiently delivered synthetic mRNA, double-stranded RNA, small interfering RNA and plasmid DNA up to 15 kb in size into tobacco roots, and also functional nucleic acids into leaves, callus, flowers and developing pollen of dicot and monocot species. Thus, lysozyme-coated LDH nanoparticles are a versatile tool for efficiently delivering functional nucleic acids into plants.
Collapse
Affiliation(s)
- Jiaxi Yong
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Wang Xu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Miaomiao Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Christopher W G Mann
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Guoquan Liu
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Christopher A Brosnan
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Neena Mitter
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
- Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Bernard J Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
12
|
Zhong H, Elumalai S, Li C, Liu W, Dong S, Que Q. Development of high-throughput tissue culture-free plant transformation systems. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17163. [PMID: 39652509 PMCID: PMC11711879 DOI: 10.1111/tpj.17163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 01/11/2025]
Abstract
Efficient transformation systems are highly desirable for plant genetic research and biotechnology product development efforts. Tissue culture-free transformation (TCFT) and minimal tissue culture transformation (MTCT) systems have great potential in addressing genotype-dependency challenge, shortening transformation timeline, and improving operational efficiency by greatly reducing personnel and supply costs. The development of Arabidopsis floral dip transformation method almost 3 decades ago has greatly expedited plant genomic research. However, development of efficient TCFT or MTCT systems in non-Brassica species had limited success until recently despite the demonstration of successful in planta transformation in many plant species. In the last few years, there have been some major advances in the development of such systems in several crops using novel approaches. This article will review these new advances and discuss potential areas for further development.
Collapse
Affiliation(s)
- Heng Zhong
- Seeds ResearchSyngenta Crop Protection, LLC9 Davis DriveResearch Triangle ParkNorth Carolina27709USA
| | - Sivamani Elumalai
- Seeds ResearchSyngenta Crop Protection, LLC9 Davis DriveResearch Triangle ParkNorth Carolina27709USA
| | - Changbao Li
- Seeds ResearchSyngenta Crop Protection, LLC9 Davis DriveResearch Triangle ParkNorth Carolina27709USA
| | - Wei Liu
- Seeds ResearchSyngenta Crop Protection, LLC9 Davis DriveResearch Triangle ParkNorth Carolina27709USA
| | - Shujie Dong
- Seeds ResearchSyngenta Crop Protection, LLC9 Davis DriveResearch Triangle ParkNorth Carolina27709USA
| | - Qiudeng Que
- Seeds ResearchSyngenta Crop Protection, LLC9 Davis DriveResearch Triangle ParkNorth Carolina27709USA
| |
Collapse
|
13
|
Baysal C, Kausch AP, Cody JP, Altpeter F, Voytas DF. Rapid and efficient in planta genome editing in sorghum using foxtail mosaic virus-mediated sgRNA delivery. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17196. [PMID: 39661735 PMCID: PMC11771572 DOI: 10.1111/tpj.17196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 12/13/2024]
Abstract
The requirement of in vitro tissue culture for the delivery of gene editing reagents limits the application of gene editing to commercially relevant varieties of many crop species. To overcome this bottleneck, plant RNA viruses have been deployed as versatile tools for in planta delivery of recombinant RNA. Viral delivery of single-guide RNAs (sgRNAs) to transgenic plants that stably express CRISPR-associated (Cas) endonuclease has been successfully used for targeted mutagenesis in several dicotyledonous and few monocotyledonous plants. Progress with this approach in monocotyledonous plants is limited so far by the availability of effective viral vectors. We engineered a set of foxtail mosaic virus (FoMV) and barley stripe mosaic virus (BSMV) vectors to deliver the fluorescent protein AmCyan to track viral infection and movement in Sorghum bicolor. We further used these viruses to deliver and express sgRNAs to Cas9 and Green Fluorescent Protein (GFP) expressing transgenic sorghum lines, targeting Phytoene desaturase (PDS), Magnesium-chelatase subunit I (MgCh), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase, orthologs of maize Lemon white1 (Lw1) or GFP. The recombinant BSMV did neither infect sorghum nor deliver or express AmCyan and sgRNAs. In contrast, the recombinant FoMV systemically spread throughout sorghum plants and induced somatic mutations with frequencies reaching up to 60%. This mutagenesis led to visible phenotypic changes, demonstrating the potential of FoMV for in planta gene editing and functional genomics studies in sorghum.
Collapse
Affiliation(s)
- Can Baysal
- DOE Center for Advanced Bioenergy and Bioproducts InnovationSt. PaulMinnesota55108USA
- Department of Genetics, Cell Biology and DevelopmentUniversity of MinnesotaSt. PaulMinnesota55108USA
- Center for Precision Plant GenomicsUniversity of MinnesotaSt. PaulMinnesota55108USA
| | - Albert P. Kausch
- Department of Cell and Molecular BiologyUniversity of Rhode IslandSouth KingstownRhode Island02881USA
| | - Jon P. Cody
- Department of Genetics, Cell Biology and DevelopmentUniversity of MinnesotaSt. PaulMinnesota55108USA
- Center for Precision Plant GenomicsUniversity of MinnesotaSt. PaulMinnesota55108USA
| | - Fredy Altpeter
- Agronomy Department, Plant Molecular and Cellular Biology ProgramGenetics InstituteUniversity of Florida, IFASGainesvilleFloridaUSA
- DOE Center for Advanced Bioenergy and Bioproducts InnovationGainesvilleFlorida32611USA
| | - Daniel F. Voytas
- DOE Center for Advanced Bioenergy and Bioproducts InnovationSt. PaulMinnesota55108USA
- Department of Genetics, Cell Biology and DevelopmentUniversity of MinnesotaSt. PaulMinnesota55108USA
- Center for Precision Plant GenomicsUniversity of MinnesotaSt. PaulMinnesota55108USA
| |
Collapse
|
14
|
Faion-Molina M, Molina-Risco MD, Bellinatti-Della Gracia MD, Ibarra O, Kim B, Septiningsih EM, Thomson MJ. Agrobacterium tumefaciens-Mediated Plant Transformation and Gene Editing in Rice. Methods Mol Biol 2025; 2911:45-59. [PMID: 40146509 DOI: 10.1007/978-1-0716-4450-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Bottlenecks in plant transformation and regeneration have slowed progress in applying CRISPR/Cas9-based genome editing for crop improvement. Rice (Oryza sativa L.) has highly efficient temperate japonica transformation protocols, along with reasonably efficient indica protocols using immature embryos. However, rapid and efficient protocols are not available for transformation and regeneration in tropical japonica varieties, even though they represent most of the rice production in the USA and South America, along with some regions in Asia. This chapter describes a protocol for CRISPR/Cas9 gene editing using Agrobacterium-mediated transformation for the tropical japonica rice cultivar Presidio leading to knock-out mutations in the phytoene desaturase (PDS) gene.
Collapse
Affiliation(s)
- Mayra Faion-Molina
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA
| | | | | | | | - Backki Kim
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Endang M Septiningsih
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA
| | - Michael J Thomson
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
15
|
Latour-Paczka K, Luciński R. Artificial Biopolymers Derived from Transgenic Plants: Applications and Properties-A Review. Int J Mol Sci 2024; 25:13628. [PMID: 39769390 PMCID: PMC11676134 DOI: 10.3390/ijms252413628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Biodegradable materials are currently one of the main focuses of research and technological development. The significance of these products grows annually, particularly in the fight against climate change and environmental pollution. Utilizing artificial biopolymers offers an opportunity to shift away from petroleum-based plastics with applications spanning various sectors of the economy, from the pharmaceutical and medical industries to food packaging. This paper discusses the main groups of artificial biopolymers. It emphasizes the potential of using genetically modified plants for its production, describing the primary plant species involved in these processes and the most common genetic modifications. Additionally, the paper explores the potential applications of biobased polymers, highlighting their key advantages and disadvantages in specific context.
Collapse
Affiliation(s)
| | - Robert Luciński
- Department of Plant Physiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| |
Collapse
|
16
|
Hu Y, Dash L, May G, Sardesai N, Deschamps S. Harnessing Single-Cell and Spatial Transcriptomics for Crop Improvement. PLANTS (BASEL, SWITZERLAND) 2024; 13:3476. [PMID: 39771174 PMCID: PMC11728591 DOI: 10.3390/plants13243476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
Single-cell and spatial transcriptomics technologies have significantly advanced our understanding of the molecular mechanisms underlying crop biology. This review presents an update on the application of these technologies in crop improvement. The heterogeneity of different cell populations within a tissue plays a crucial role in the coordinated response of an organism to its environment. Single-cell transcriptomics enables the dissection of this heterogeneity, offering insights into the cell-specific transcriptomic responses of plants to various environmental stimuli. Spatial transcriptomics technologies complement single-cell approaches by preserving the spatial context of gene expression profiles, allowing for the in situ localization of transcripts. Together, single-cell and spatial transcriptomics facilitate the discovery of novel genes and gene regulatory networks that can be targeted for genetic manipulation and breeding strategies aimed at enhancing crop yield, quality, and resilience. This review highlights significant findings from recent studies, discusses the expanding roles of these technologies, and explores future opportunities for their application in crop improvement.
Collapse
Affiliation(s)
| | | | | | | | - Stéphane Deschamps
- Corteva Agriscience, Johnston, IA 50131, USA; (Y.H.); (L.D.); (G.M.); (N.S.)
| |
Collapse
|
17
|
Yoshida T, Ishikawa M, Toki S, Ishibashi K. Heritable Tissue-Culture-Free Gene Editing in Nicotiana benthamiana through Viral Delivery of SpCas9 and sgRNA. PLANT & CELL PHYSIOLOGY 2024; 65:1743-1750. [PMID: 39215594 PMCID: PMC11631083 DOI: 10.1093/pcp/pcae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Conventional plant gene editing requires laborious tissue-culture-mediated transformation, which restricts the range of applicable plant species. In this study, we developed a heritable and tissue-culture-free gene editing method in Nicotiana benthamiana using tobacco ringspot virus (TRSV) as a vector for in planta delivery of Cas9 and single-guide RNA (sgRNA) to shoot apical meristems. Agrobacterium-mediated inoculation of the TRSV vector induced systemic and heritable gene editing in Nicotiana benthamiana PHYTOENE DESATURASE. Transient downregulation of RNA silencing enhanced gene editing efficiency, resulting in an order of magnitude increase (0.8-13.2%) in the frequency of transgenerational gene editing. While the TRSV system had a preference for certain sgRNA sequences, co-inoculation of a TRSV vector carrying only Cas9 and a tobacco rattle virus vector carrying sgRNA successfully introduced systemic mutations with all five tested sgRNAs. Extensively gene-edited lateral shoots occasionally grew from plants inoculated with the virus vectors, the transgenerational gene editing frequency of which ranged up to 100%. This virus-mediated heritable gene editing method makes plant gene editing easy, requiring only the inoculation of non-transgenic plants with a virus vector(s) to obtain gene-edited individuals.
Collapse
Affiliation(s)
- Tetsuya Yoshida
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Masayuki Ishikawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Seiichi Toki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan
| | - Kazuhiro Ishibashi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| |
Collapse
|
18
|
Jiang W, Deng F, Babla M, Chen C, Yang D, Tong T, Qin Y, Chen G, Marchant B, Soltis P, Soltis DE, Zeng F, Chen ZH. Efficient gene editing of a model fern species through gametophyte-based transformation. PLANT PHYSIOLOGY 2024; 196:2346-2361. [PMID: 39268871 PMCID: PMC11638000 DOI: 10.1093/plphys/kiae473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas) system allows precise and easy editing of genes in many plant species. However, this system has not yet been applied to any fern species through gametophytes due to the complex characteristics of fern genomes, genetics, and physiology. Here, we established a protocol for gametophyte-based screening of single-guide RNAs (sgRNAs) with high efficiency for CRISPR/Cas9-mediated gene knockout in a model fern species, Ceratopteris richardii. We utilized the C. richardii ACTIN promoter to drive sgRNA expression and the enhanced CaMV 35S promoter to drive the expression of Streptococcus pyogenes Cas9 in this CRISPR-mediated editing system, which was employed to successfully edit a few genes, such as Nucleotidase/phosphatase 1 (CrSAL1) and Phytoene Desaturase (CrPDS), which resulted in an albino phenotype in C. richardii. Knockout of CrSAL1 resulted in significantly (P < 0.05) reduced stomatal conductance (gs), leaf transpiration rate (E), guard cell length, and abscisic acid (ABA)-induced reactive oxygen species (ROS) accumulation in guard cells. Moreover, CrSAL1 overexpressing plants showed significantly increased net photosynthetic rate (A), gs, and E as well as most of the stomatal traits and ABA-induced ROS production in guard cells compared to the wild-type (WT) plants. Taken together, our optimized CRISPR/Cas9 system provides a useful tool for functional genomics in a model fern species, allowing the exploration of fern gene functions for evolutionary biology, herbal medicine discovery, and agricultural applications.
Collapse
Affiliation(s)
- Wei Jiang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
- Xianghu Laboratory, Hangzhou 311231, China
| | - Fenglin Deng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Mohammad Babla
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Chen Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Dongmei Yang
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
| | - Tao Tong
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Yuan Qin
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Guang Chen
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Blaine Marchant
- Department of Biology, University of Missouri—St. Louis, St. Louis, MO 63121, USA
| | - Pamela Soltis
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | | | - Fanrong Zeng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
19
|
Kuwabara C, Miki R, Maruyama N, Yasui M, Hamada H, Nagira Y, Hirayama Y, Ackley W, Li F, Imai R, Taoka N, Yamada T. A DNA-free and genotype-independent CRISPR/Cas9 system in soybean. PLANT PHYSIOLOGY 2024; 196:2320-2329. [PMID: 39307540 DOI: 10.1093/plphys/kiae491] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/30/2024] [Indexed: 12/14/2024]
Abstract
Here, we report a smart genome editing system for soybean (Glycine max) using the in planta bombardment-ribonucleoprotein (iPB-RNP) method without introducing foreign DNA or requiring traditional tissue culture processes such as embryogenesis and organogenesis. Shoot apical meristem (SAM) of embryonic axes was used as the target tissue for genome editing because the SAM in soybean mature seeds has stem cells and specific cell layers that develop germ cells during the reproductive growth stage. In the iPB-RNP method, the RNP complex of the CRISPR/Cas9 system was directly delivered into SAM stem cells via particle bombardment, and genome-edited plants were generated from these SAMs. Soybean allergenic gene Gly m Bd 30K was targeted in this study. Many E0 (the first generation of genome-edited) plants in this experiment harbored mutant alleles at the targeted locus. Editing frequency of inducing mutations transmissible to the E1 generation was approximately 0.4% to 4.6% of all E0 plants utilized in various soybean varieties. Furthermore, simultaneous mutagenesis by iPB-RNP method was also successfully performed at other loci. Our results offer a practical approach for both plant regeneration and DNA-free genome editing achieved by delivering RNP into the SAM of dicotyledonous plants.
Collapse
Affiliation(s)
- Chikako Kuwabara
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Ryuji Miki
- Agri-Bio Research Center, Kaneka Corporation, 700 Higashibara, Iwata, Shizuoka 438-0802, Japan
| | - Nobuyuki Maruyama
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masanori Yasui
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Haruyasu Hamada
- Agri-Bio Research Center, Kaneka Corporation, 700 Higashibara, Iwata, Shizuoka 438-0802, Japan
| | - Yozo Nagira
- Agri-Bio Research Center, Kaneka Corporation, 700 Higashibara, Iwata, Shizuoka 438-0802, Japan
| | - Yumiko Hirayama
- Genome-Edited Crop Development Group, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 3-1-3, Tsukuba, Ibaraki 305-8604, Japan
| | - Wataru Ackley
- Genome-Edited Crop Development Group, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 3-1-3, Tsukuba, Ibaraki 305-8604, Japan
| | - Feng Li
- Division of Crop Design Research, Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | - Ryozo Imai
- Genome-Edited Crop Development Group, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 3-1-3, Tsukuba, Ibaraki 305-8604, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Naoaki Taoka
- Agri-Bio Research Center, Kaneka Corporation, 700 Higashibara, Iwata, Shizuoka 438-0802, Japan
| | - Tetsuya Yamada
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| |
Collapse
|
20
|
Rafiei F, Wiersma J, Scofield S, Zhang C, Alizadeh H, Mohammadi M. Facts, uncertainties, and opportunities in wheat molecular improvement. Heredity (Edinb) 2024; 133:371-380. [PMID: 39237600 PMCID: PMC11589648 DOI: 10.1038/s41437-024-00721-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024] Open
Abstract
The year 2020 was a landmark year for wheat. The wheat HB4 event harboring a drought-resistant gene from sunflowers, received regulatory approval and was grown commercially in Argentina, with approval for food and feed in other countries. This, indeed, is many years after the adoption of genetic modifications in other crops. The lack of consumer acceptance and resulting trade barriers halted the commercialization of the earliest events and had a chilling effect on, especially, private Research & Development (R&D) investments. As regulations for modern breeding technologies such as genome-edited cultivars are being discussed and/or adopted across the globe, we would like to propose a framework to ensure that wheat is not left behind a second time as the potential benefits far outweigh the perceived risks. In this paper, after a review of the technical challenges wheat faces with the generation of trans- and cis-genic wheat varieties, we discuss some of the factors that could help demystify the risk/reward equation and thereby the consumer's reluctance or acceptance of these techniques for future wheat improvement. The advent of next-generation sequencing is shedding light on natural gene transfer between species and the number of perturbations other accepted techniques like mutagenesis create. The transition from classic breeding techniques and embracing transgenic, cisgenic, and genome editing approaches feels inevitable for wheat improvement if we are to develop climate-resilient wheat varieties to feed a growing world population.
Collapse
Affiliation(s)
- Fariba Rafiei
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Jochum Wiersma
- Department of Agronomy and Plant Genetics, University of Minnesota, Northwest Research and Outreach Center, Crookston, MN, USA
| | - Steve Scofield
- USDA-ARS, Crop Production and Pest Control Research Unit, West Lafayette, IN, USA
| | - Cankui Zhang
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Houshang Alizadeh
- Department of Agronomy & Plant Breeding, College of Agricultural and Natural Resource, University of Tehran, Karaj, Iran
| | - Mohsen Mohammadi
- Department of Agronomy, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
21
|
Stupar RM, Locke AM, Allen DK, Stacey MG, Ma J, Weiss J, Nelson RT, Hudson ME, Joshi T, Li Z, Song Q, Jedlicka JR, MacIntosh GC, Grant D, Parrott WA, Clemente TE, Stacey G, An YC, Aponte‐Rivera J, Bhattacharyya MK, Baxter I, Bilyeu KD, Campbell JD, Cannon SB, Clough SJ, Curtin SJ, Diers BW, Dorrance AE, Gillman JD, Graef GL, Hancock CN, Hudson KA, Hyten DL, Kachroo A, Koebernick J, Libault M, Lorenz AJ, Mahan AL, Massman JM, McGinn M, Meksem K, Okamuro JK, Pedley KF, Rainey KM, Scaboo AM, Schmutz J, Song B, Steinbrenner AD, Stewart‐Brown BB, Toth K, Wang D, Weaver L, Zhang B, Graham MA, O'Rourke JA. Soybean genomics research community strategic plan: A vision for 2024-2028. THE PLANT GENOME 2024; 17:e20516. [PMID: 39572930 PMCID: PMC11628913 DOI: 10.1002/tpg2.20516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 12/11/2024]
Abstract
This strategic plan summarizes the major accomplishments achieved in the last quinquennial by the soybean [Glycine max (L.) Merr.] genetics and genomics research community and outlines key priorities for the next 5 years (2024-2028). This work is the result of deliberations among over 50 soybean researchers during a 2-day workshop in St Louis, MO, USA, at the end of 2022. The plan is divided into seven traditional areas/disciplines: Breeding, Biotic Interactions, Physiology and Abiotic Stress, Functional Genomics, Biotechnology, Genomic Resources and Datasets, and Computational Resources. One additional section was added, Training the Next Generation of Soybean Researchers, when it was identified as a pressing issue during the workshop. This installment of the soybean genomics strategic plan provides a snapshot of recent progress while looking at future goals that will improve resources and enable innovation among the community of basic and applied soybean researchers. We hope that this work will inform our community and increase support for soybean research.
Collapse
Affiliation(s)
- Robert M. Stupar
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Anna M. Locke
- USDA‐ARS Soybean & Nitrogen Fixation Research UnitRaleighNorth CarolinaUSA
| | - Doug K. Allen
- USDA‐ARS Donald Danforth Plant Science CenterSt. LouisMissouriUSA
| | - Minviluz G. Stacey
- Division of Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | - Jianxin Ma
- Department of AgronomyPurdue UniversityWest LafayetteIndianaUSA
| | - Jackie Weiss
- Smithbucklin for the United Soybean BoardSt. LouisMissouriUSA
| | - Rex T. Nelson
- USDA‐ARS Corn Insects and Crop Genetics Research UnitAmesIowaUSA
| | | | - Trupti Joshi
- Division of Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
- MU Institute for Data Science and InformaticsUniversity of Missouri–ColumbiaColumbiaMissouriUSA
| | - Zenglu Li
- Department of Crop and Soil Sciences, and Institute of Plant Breeding, Genetics and GenomicsUniversity of GeorgiaAthensGeorgiaUSA
| | - Qijian Song
- USDA‐ARS Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research CenterBeltsvilleMarylandUSA
| | | | - Gustavo C. MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular BiologyIowa State UniversityAmesIowaUSA
| | - David Grant
- USDA‐ARS Corn Insects and Crop Genetics Research UnitAmesIowaUSA
- Department of AgronomyIowa State UniversityAmesIowaUSA
| | - Wayne A. Parrott
- Department of Crop and Soil Sciences, and Institute of Plant Breeding, Genetics and GenomicsUniversity of GeorgiaAthensGeorgiaUSA
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
| | - Tom E. Clemente
- Department of Agronomy & HorticultureUniversity of NebraskaLincolnNebraskaUSA
| | - Gary Stacey
- Division of Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | | | | | | | - Ivan Baxter
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
| | | | | | - Steven B. Cannon
- USDA‐ARS Corn Insects and Crop Genetics Research UnitAmesIowaUSA
| | - Steven J. Clough
- USDA‐ARS Soybean/Maize Germplasm, Pathology and Genetics Research UnitUrbanaIllinoisUSA
| | | | - Brian W. Diers
- Department of Crop SciencesUniversity of IllinoisUrbanaIllinoisUSA
| | - Anne E. Dorrance
- Department of Plant PathologyThe Ohio State UniversityWoosterOhioUSA
| | | | - George L. Graef
- Department of Agronomy & HorticultureUniversity of NebraskaLincolnNebraskaUSA
| | - C. Nathan Hancock
- Department of Biological, Environmental, and Earth SciencesUniversity of South Carolina AikenAikenSouth CarolinaUSA
| | - Karen A. Hudson
- USDA‐ARS Crop Production and Pest Control Research UnitWest LafayetteIndianaUSA
| | - David L. Hyten
- Department of Agronomy & HorticultureUniversity of NebraskaLincolnNebraskaUSA
| | - Aardra Kachroo
- Department of Plant PathologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Jenny Koebernick
- Department of Crop, Soil and Environmental SciencesAuburn UniversityAuburnAlabamaUSA
| | - Marc Libault
- Division of Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | - Aaron J. Lorenz
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Adam L. Mahan
- USDA‐ARS Soybean/Maize Germplasm, Pathology and Genetics Research UnitUrbanaIllinoisUSA
| | | | - Michaela McGinn
- Smithbucklin for the United Soybean BoardSt. LouisMissouriUSA
| | - Khalid Meksem
- Department of Plant, Soil, and Agricultural SystemsSouthern Illinois UniversityCarbondaleIllinoisUSA
| | - Jack K. Okamuro
- USDA‐ARS Crop Production and ProtectionBeltsvilleMarylandUSA
| | - Kerry F. Pedley
- USDA‐ARS Foreign Disease‐Weed Science Research UnitFt. DetrickMarylandUSA
| | | | - Andrew M. Scaboo
- Division of Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | - Jeremy Schmutz
- DOE Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- HudsonAlpha Institute of BiotechnologyHuntsvilleAlabamaUSA
| | - Bao‐Hua Song
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNorth CarolinaUSA
| | | | | | | | - Dechun Wang
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Lisa Weaver
- Smithbucklin for the United Soybean BoardSt. LouisMissouriUSA
| | - Bo Zhang
- School of Plant and Environmental SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | | | | |
Collapse
|
22
|
Szarzanowicz MJ, Waldburger LM, Busche M, Geiselman GM, Kirkpatrick LD, Kehl AJ, Tahmin C, Kuo RC, McCauley J, Pannu H, Cui R, Liu S, Hillson NJ, Brunkard JO, Keasling JD, Gladden JM, Thompson MG, Shih PM. Binary vector copy number engineering improves Agrobacterium-mediated transformation. Nat Biotechnol 2024:10.1038/s41587-024-02462-2. [PMID: 39496930 DOI: 10.1038/s41587-024-02462-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/02/2024] [Indexed: 11/06/2024]
Abstract
The copy number of a plasmid is linked to its functionality, yet there have been few attempts to optimize higher-copy-number mutants for use across diverse origins of replication in different hosts. We use a high-throughput growth-coupled selection assay and a directed evolution approach to rapidly identify origin of replication mutations that influence copy number and screen for mutants that improve Agrobacterium-mediated transformation (AMT) efficiency. By introducing these mutations into binary vectors within the plasmid backbone used for AMT, we observe improved transient transformation of Nicotiana benthamiana in four diverse tested origins (pVS1, RK2, pSa and BBR1). For the best-performing origin, pVS1, we isolate higher-copy-number variants that increase stable transformation efficiencies by 60-100% in Arabidopsis thaliana and 390% in the oleaginous yeast Rhodosporidium toruloides. Our work provides an easily deployable framework to generate plasmid copy number variants that will enable greater precision in prokaryotic genetic engineering, in addition to improving AMT efficiency.
Collapse
Affiliation(s)
- Matthew J Szarzanowicz
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Lucas M Waldburger
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael Busche
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Liam D Kirkpatrick
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Alexander J Kehl
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Claudine Tahmin
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Rita C Kuo
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Joshua McCauley
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hamreet Pannu
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Ruoming Cui
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Shuying Liu
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Nathan J Hillson
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jacob O Brunkard
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- QB3, University of California, Berkeley, Berkeley, CA, USA
- Center for Biosustainability, Danish Technical University, Kongens Lyngby, Denmark
| | - John M Gladden
- Joint BioEnergy Institute, Emeryville, CA, USA
- Sandia National Laboratories, Livermore, CA, USA
| | - Mitchell G Thompson
- Joint BioEnergy Institute, Emeryville, CA, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| | - Patrick M Shih
- Joint BioEnergy Institute, Emeryville, CA, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA.
- Innovative Genomics Institute, Berkeley, CA, USA.
| |
Collapse
|
23
|
Cao HX, Michels D, Vu GTH, Gailing O. Applications of CRISPR Technologies in Forestry and Molecular Wood Biotechnology. Int J Mol Sci 2024; 25:11792. [PMID: 39519342 PMCID: PMC11547103 DOI: 10.3390/ijms252111792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/27/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Forests worldwide are under increasing pressure from climate change and emerging diseases, threatening their vital ecological and economic roles. Traditional breeding approaches, while valuable, are inherently slow and limited by the long generation times and existing genetic variation of trees. CRISPR technologies offer a transformative solution, enabling precise and efficient genome editing to accelerate the development of climate-resilient and productive forests. This review provides a comprehensive overview of CRISPR applications in forestry, exploring its potential for enhancing disease resistance, improving abiotic stress tolerance, modifying wood properties, and accelerating growth. We discuss the mechanisms and applications of various CRISPR systems, including base editing, prime editing, and multiplexing strategies. Additionally, we highlight recent advances in overcoming key challenges such as reagent delivery and plant regeneration, which are crucial for successful implementation of CRISPR in trees. We also delve into the potential and ethical considerations of using CRISPR gene drive for population-level genetic alterations, as well as the importance of genetic containment strategies for mitigating risks. This review emphasizes the need for continued research, technological advancements, extensive long-term field trials, public engagement, and responsible innovation to fully harness the power of CRISPR for shaping a sustainable future for forests.
Collapse
Affiliation(s)
- Hieu Xuan Cao
- Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077 Göttingen, Germany; (H.X.C.)
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany
| | - David Michels
- Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077 Göttingen, Germany; (H.X.C.)
| | - Giang Thi Ha Vu
- Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077 Göttingen, Germany; (H.X.C.)
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077 Göttingen, Germany; (H.X.C.)
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
24
|
Hoermayer L, Friml J. Feeling the danger: local wound signaling in plants. Cell Res 2024; 34:761-762. [PMID: 39354142 PMCID: PMC11527891 DOI: 10.1038/s41422-024-01035-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Affiliation(s)
- Lukas Hoermayer
- Department of Plant Molecular Biology (DMBV), University of Lausanne, Lausanne, Switzerland.
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| |
Collapse
|
25
|
Song Y, Wang J, Zhu J, Shang W, Jia W, Sun Y, He S, Yang X, Wang Z. Functional Analysis of the PoSERK-Interacting Protein PorbcL in the Embryogenic Callus Formation of Tree Peony ( Paeonia ostii T. Hong et J. X. Zhang). PLANTS (BASEL, SWITZERLAND) 2024; 13:2697. [PMID: 39409567 PMCID: PMC11479246 DOI: 10.3390/plants13192697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024]
Abstract
SERK is a marker gene for early somatic embryogenesis. We screened and functionally verified a SERK-interacting protein to gain insights into tree-peony somatic embryogenesis. Using PoSERK as bait, we identified PorbcL (i.e., the large subunit of Rubisco) as a SERK-interacting protein from a yeast two-hybrid (Y2H) library of cDNA from developing tree-peony somatic embryos. The interaction between PorbcL and PoSERK was verified by Y2H and bimolecular fluorescence complementation analyses. PorbcL encodes a 586-amino-acid acidic non-secreted hydrophobic non-transmembrane protein that is mainly localized in the chloroplast and plasma membrane. PorbcL was highly expressed in tree-peony roots and flowers and was up-regulated during zygotic embryo development. PorbcL overexpression caused the up-regulation of PoSERK (encoding somatic embryogenesis receptor-like kinase), PoAGL15 (encoding agamous-like 15), and PoGPT1 (encoding glucose-6-phosphate translocator), while it caused the down-regulation of PoLEC1 (encoding leafy cotyledon 1) in tree-peony callus. PorbcL overexpression led to increased indole-3-acetic acid (IAA) content but decreasing contents of abscisic acid (ABA) and 6-benzyladenosine (BAPR). The changes in gene expression, high IAA levels, and increased ratio of IAA to ABA, BAPR, 1-Aminocyclopropanecarboxylic acid (ACC), 5-Deoxystrigol (5DS), and brassinolide (BL) promoted embryogenesis. These results provide a foundation for establishing a tree-peony embryogenic callus system.
Collapse
Affiliation(s)
- Yinglong Song
- Postdoctoral Innovation Practice Base, Henan Institute of Science and Technology, Xinxiang 453003, China;
- Postdoctoral Workstation, Henan Bainong Seed Industry Co., Ltd., Xinxiang 453003, China
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (J.Z.); (W.S.); (Y.S.)
| | - Jiange Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (J.Z.); (W.S.); (Y.S.)
| | - Jiale Zhu
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (J.Z.); (W.S.); (Y.S.)
| | - Wenqian Shang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (J.Z.); (W.S.); (Y.S.)
| | - Wenqing Jia
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China;
| | - Yuke Sun
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (J.Z.); (W.S.); (Y.S.)
| | - Songlin He
- Postdoctoral Innovation Practice Base, Henan Institute of Science and Technology, Xinxiang 453003, China;
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (J.Z.); (W.S.); (Y.S.)
| | - Xitian Yang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (J.Z.); (W.S.); (Y.S.)
| | - Zheng Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (J.W.); (J.Z.); (W.S.); (Y.S.)
| |
Collapse
|
26
|
Liu D, Ellison EE, Myers EA, Donahue LI, Xuan S, Swanson R, Qi S, Prichard LE, Starker CG, Voytas DF. Heritable gene editing in tomato through viral delivery of isopentenyl transferase and single-guide RNAs to latent axillary meristematic cells. Proc Natl Acad Sci U S A 2024; 121:e2406486121. [PMID: 39284063 PMCID: PMC11441571 DOI: 10.1073/pnas.2406486121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/07/2024] [Indexed: 10/02/2024] Open
Abstract
Realizing the full potential of genome editing for crop improvement has been slow due to inefficient methods for reagent delivery and the reliance on tissue culture for creating gene-edited plants. RNA viral vectors offer an alternative approach for delivering gene engineering reagents and bypassing the tissue culture requirement. Viruses, however, are often excluded from the shoot apical meristem, making virus-mediated gene editing inefficient in some species. Here, we developed effective approaches for generating gene-edited shoots in Cas9-expressing transgenic tomato plants using RNA virus-mediated delivery of single-guide RNAs (sgRNAs). RNA viral vectors expressing sgRNAs were either delivered to leaves or sites near axillary meristems. Trimming of the apical and axillary meristems induced new shoots to form from edited somatic cells. To further encourage the induction of shoots, we used RNA viral vectors to deliver sgRNAs along with the cytokinin biosynthesis gene, isopentenyl transferase. Abundant, phenotypically normal, gene-edited shoots were induced per infected plant with single and multiplexed gene edits fixed in the germline. The use of viruses to deliver both gene editing reagents and developmental regulators overcomes the bottleneck in applying virus-induced gene editing to dicotyledonous crops such as tomato and reduces the dependency on tissue culture.
Collapse
Affiliation(s)
- Degao Liu
- Department of Genetics, Cell Biology and Development and Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN55108
| | - Evan E. Ellison
- Department of Genetics, Cell Biology and Development and Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN55108
| | - Erik A. Myers
- Department of Genetics, Cell Biology and Development and Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN55108
| | - Lilee I. Donahue
- Department of Genetics, Cell Biology and Development and Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN55108
| | - Shuya Xuan
- Department of Genetics, Cell Biology and Development and Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN55108
| | - Ryan Swanson
- Department of Genetics, Cell Biology and Development and Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN55108
| | - Songyan Qi
- Department of Genetics, Cell Biology and Development and Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN55108
| | - Lynn E. Prichard
- Department of Genetics, Cell Biology and Development and Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN55108
| | - Colby G. Starker
- Department of Genetics, Cell Biology and Development and Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN55108
| | - Daniel F. Voytas
- Department of Genetics, Cell Biology and Development and Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN55108
| |
Collapse
|
27
|
Ishibashi K, Sukegawa S, Endo M, Hara N, Nureki O, Saika H, Toki S. Systemic delivery of engineered compact AsCas12f by a positive-strand RNA virus vector enables highly efficient targeted mutagenesis in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1454554. [PMID: 39323536 PMCID: PMC11423357 DOI: 10.3389/fpls.2024.1454554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024]
Abstract
Because virus vectors can spread systemically autonomously, they are powerful vehicles with which to deliver genome-editing tools into plant cells. Indeed, a vector based on a positive-strand RNA virus, potato virus X (PVX), harboring SpCas9 and its single guide RNA (sgRNA), achieved targeted mutagenesis in inoculated leaves of Nicotiana benthamiana. However, the large size of the SpCas9 gene makes it unstable in the PVX vector, hampering the introduction of mutations in systemic leaves. Smaller Cas variants are promising tools for virus vector-mediated genome editing; however, they exhibit far lower nuclease activity than SpCas9. Recently, AsCas12f, one of the smallest known Cas proteins so far (one-third the size of SpCas9), was engineered to improve genome-editing activity dramatically. Here, we first confirmed that engineered AsCas12f variants including I123Y/D195K/D208R/V232A exhibited enhanced genome-editing frequencies in rice. Then, a PVX vector harboring this AsCas12f variant was inoculated into N. benthamiana leaves by agroinfiltration. Remarkably, and unlike with PVX-SpCas9, highly efficient genome editing was achieved, not only in PVX-AsCas12f-inoculated leaves but also in leaves above the inoculated leaf (fourth to sixth upper leaves). Moreover, genome-edited shoots regenerated from systemic leaves were obtained at a rate of >60%, enabling foreign DNA-free genome editing. Taken together, our results demonstrate that AsCas12f is small enough to be maintained in the PVX vector during systemic infection in N. benthamiana and that engineered AsCas12f offers advantages over SpCas9 for plant genome editing using virus vectors.
Collapse
Affiliation(s)
- Kazuhiro Ishibashi
- Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Satoru Sukegawa
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Masaki Endo
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Naho Hara
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Japan
| | - Hiroaki Saika
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Seiichi Toki
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- Department of Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| |
Collapse
|
28
|
Tavernier EK, Perroud PF, Lockwood E, Nogué F, McDaniel SF. Establishing CRISPR-Cas9 in the sexually dimorphic moss, Ceratodon purpureus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2753-2764. [PMID: 39154335 DOI: 10.1111/tpj.16946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/07/2024] [Accepted: 07/13/2024] [Indexed: 08/20/2024]
Abstract
The development of CRISPR technologies provides a powerful tool for understanding the evolution and functionality of essential biological processes. Here we demonstrate successful CRISPR-Cas9 genome editing in the dioecious moss species, Ceratodon purpureus. Using an existing selection system from the distantly related hermaphroditic moss, Physcomitrium patens, we generated knock-outs of the APT reporter gene by employing CRISPR-targeted mutagenesis under expression of native U6 snRNA promoters. Next, we used the native homology-directed repair (HDR) pathway, combined with CRISPR-Cas9, to knock in two reporter genes under expression of an endogenous RPS5A promoter in a newly developed landing site in C. purpureus. Our results show that the molecular tools developed in P. patens can be extended to other mosses across this ecologically important and developmentally variable group. These findings pave the way for precise and powerful experiments aimed at identifying the genetic basis of key functional variation within the bryophytes and between the bryophytes and other land plants.
Collapse
Affiliation(s)
- Emilie-Katherine Tavernier
- Department of Biology, University of Florida, Gainesville, Florida, USA
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, 78000, France
| | - Pierre-François Perroud
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, 78000, France
| | - Emily Lockwood
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Fabien Nogué
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, 78000, France
| | - Stuart F McDaniel
- Department of Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
29
|
Li B, Sun C, Li J, Gao C. Targeted genome-modification tools and their advanced applications in crop breeding. Nat Rev Genet 2024; 25:603-622. [PMID: 38658741 DOI: 10.1038/s41576-024-00720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 04/26/2024]
Abstract
Crop improvement by genome editing involves the targeted alteration of genes to improve plant traits, such as stress tolerance, disease resistance or nutritional content. Techniques for the targeted modification of genomes have evolved from generating random mutations to precise base substitutions, followed by insertions, substitutions and deletions of small DNA fragments, and are finally starting to achieve precision manipulation of large DNA segments. Recent developments in base editing, prime editing and other CRISPR-associated systems have laid a solid technological foundation to enable plant basic research and precise molecular breeding. In this Review, we systematically outline the technological principles underlying precise and targeted genome-modification methods. We also review methods for the delivery of genome-editing reagents in plants and outline emerging crop-breeding strategies based on targeted genome modification. Finally, we consider potential future developments in precise genome-editing technologies, delivery methods and crop-breeding approaches, as well as regulatory policies for genome-editing products.
Collapse
Affiliation(s)
- Boshu Li
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Sun
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiayang Li
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Caixia Gao
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
30
|
Aboofazeli N, Khosravi S, Bagheri H, Chandler SF, Pan SQ, Azadi P. Conquering Limitations: Exploring the Factors that Drive Successful Agrobacterium-Mediated Genetic Transformation of Recalcitrant Plant Species. Mol Biotechnol 2024:10.1007/s12033-024-01247-x. [PMID: 39177863 DOI: 10.1007/s12033-024-01247-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024]
Abstract
Agrobacterium-mediated transformation is a preferred method for genetic engineering and genome editing of plants due to its numerous advantages, although not all species exhibit transformability. Genetic engineering and plant genome editing methods are technically challenging in recalcitrant crop plants. Factors affecting the poor rate of transformation in such species include host genotype, Agrobacterium genotype, type of explant, physiological condition of the explant, vector, selectable marker, inoculation method, chemical additives, antioxidative compounds, transformation-enhancing compounds, medium formulation, optimization of culture conditions, and pre-treatments. This review provides novel insights into the key factors involved in gene transfer facilitated by Agrobacterium and proposes potential solutions to overcome existing barriers to transformation in recalcitrant species, thereby contributing to improvement programs for these species. This review introduces the key factors that impact the effectiveness of a molecular breeding program using Agrobacterium-mediated transformation, specifically focusing on recalcitrant plant species.
Collapse
Affiliation(s)
- Nafiseh Aboofazeli
- Novin Giti Gene Biotech R&D Center (N.G.G), Imam Khomeini Higher Education Center, Karaj, Iran
| | - Solmaz Khosravi
- Department of Genetic Engineering, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran (ABRII), Postal Code: 3135933152, Karaj, Iran
| | - Hedayat Bagheri
- Department of Biotechnology, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, 65174, Iran
| | | | - Shen Q Pan
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Republic of Singapore
| | - Pejman Azadi
- Department of Genetic Engineering, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran (ABRII), Postal Code: 3135933152, Karaj, Iran.
| |
Collapse
|
31
|
Chen C, Hu Y, Ikeuchi M, Jiao Y, Prasad K, Su YH, Xiao J, Xu L, Yang W, Zhao Z, Zhou W, Zhou Y, Gao J, Wang JW. Plant regeneration in the new era: from molecular mechanisms to biotechnology applications. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1338-1367. [PMID: 38833085 DOI: 10.1007/s11427-024-2581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/26/2024] [Indexed: 06/06/2024]
Abstract
Plants or tissues can be regenerated through various pathways. Like animal regeneration, cell totipotency and pluripotency are the molecular basis of plant regeneration. Detailed systematic studies on Arabidopsis thaliana gradually unravel the fundamental mechanisms and principles underlying plant regeneration. Specifically, plant hormones, cell division, epigenetic remodeling, and transcription factors play crucial roles in reprogramming somatic cells and reestablishing meristematic cells. Recent research on basal non-vascular plants and monocot crops has revealed that plant regeneration differs among species, with various plant species using distinct mechanisms and displaying significant differences in regenerative capacity. Conducting multi-omics studies at the single-cell level, tracking plant regeneration processes in real-time, and deciphering the natural variation in regenerative capacity will ultimately help understand the essence of plant regeneration, improve crop regeneration efficiency, and contribute to future crop design.
Collapse
Affiliation(s)
- Chunli Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences (CAS), China National Botanical Garden, Beijing, 100093, China.
| | - Momoko Ikeuchi
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan.
| | - Yuling Jiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Kalika Prasad
- Indian Institute of Science Education and Research, Pune, 411008, India.
- , Thiruvananthapuram, 695551, India.
| | - Ying Hua Su
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
- Sino-German Joint Research Center on Agricultural Biology, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology (IGDB), CAS, Beijing, 100101, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), IGDB, CAS, Beijing, 100101, China.
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
| | - Weibing Yang
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
- CEPAMS, SIPPE, CAS, Shanghai, 200032, China.
| | - Zhong Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, CEMPS, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Wenkun Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Yun Zhou
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, 47907, USA.
| | - Jian Gao
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai, 200032, China.
- New Cornerstone Science Laboratory, Shanghai, 200032, China.
| |
Collapse
|
32
|
Jyoti SD, Singh G, Pradhan AK, Tarpley L, Septiningsih EM, Talukder SK. Rice breeding for low input agriculture. FRONTIERS IN PLANT SCIENCE 2024; 15:1408356. [PMID: 38974981 PMCID: PMC11224470 DOI: 10.3389/fpls.2024.1408356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/24/2024] [Indexed: 07/09/2024]
Abstract
A low-input-based farming system can reduce the adverse effects of modern agriculture through proper utilization of natural resources. Modern varieties often need to improve in low-input settings since they are not adapted to these systems. In addition, rice is one of the most widely cultivated crops worldwide. Enhancing rice performance under a low input system will significantly reduce the environmental concerns related to rice cultivation. Traits that help rice to maintain yield performance under minimum inputs like seedling vigor, appropriate root architecture for nutrient use efficiency should be incorporated into varieties for low input systems through integrated breeding approaches. Genes or QTLs controlling nutrient uptake, nutrient assimilation, nutrient remobilization, and root morphology need to be properly incorporated into the rice breeding pipeline. Also, genes/QTLs controlling suitable rice cultivars for sustainable farming. Since several variables influence performance under low input conditions, conventional breeding techniques make it challenging to work on many traits. However, recent advances in omics technologies have created enormous opportunities for rapidly improving multiple characteristics. This review highlights current research on features pertinent to low-input agriculture and provides an overview of alternative genomics-based breeding strategies for enhancing genetic gain in rice suitable for low-input farming practices.
Collapse
Affiliation(s)
- Subroto Das Jyoti
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Gurjeet Singh
- Texas A&M AgriLife Research Center, Beaumont, TX, United States
| | | | - Lee Tarpley
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
- Texas A&M AgriLife Research Center, Beaumont, TX, United States
| | - Endang M. Septiningsih
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Shyamal K. Talukder
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
- Texas A&M AgriLife Research Center, Beaumont, TX, United States
| |
Collapse
|
33
|
Trull BN, Sultana MS, Pfotenhauer AC, Stockdale JN, Pantalone V, Zhang B, Stewart CN. Robust soybean leaf agroinfiltration. PLANT CELL REPORTS 2024; 43:162. [PMID: 38837057 DOI: 10.1007/s00299-024-03245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
KEY MESSAGE A robust agroinfiltration-mediated transient gene expression method for soybean leaves was developed. Plant genotype, developmental stage and leaf age, surfactant, and Agrobacterium culture conditions are important for successful agroinfiltration. Agroinfiltration of Nicotiana benthamiana has emerged as a workhorse transient assay for plant biotechnology and synthetic biology to test the performance of gene constructs in dicot leaves. While effective, it is nonetheless often desirable to assay transgene constructs directly in crop species. To that end, we innovated a substantially robust agroinfiltration method for Glycine max (soybean), the most widely grown dicot crop plant in the world. Several factors were found to be relevant to successful soybean leaf agroinfiltration, including genotype, surfactant, developmental stage, and Agrobacterium strain and culture medium. Our optimized protocol involved a multi-step Agrobacterium culturing process with appropriate expression vectors, Silwet L-77 as the surfactant, selection of fully expanded leaves in the VC or V1 stage of growth, and 5 min of vacuum at - 85 kPa followed by a dark incubation period before plants were returned to normal growth conditions. Using this method, young soybean leaves of two lines-V17-0799DT, and TN16-5004-were high expressors for GUS, two co-expressed fluorescent protein genes, and the RUBY reporter product, betalain. This work not only represents a new research tool for soybean biotechnology, but also indicates critical parameters for guiding agroinfiltration optimization for other crop species. We speculate that leaf developmental stage might be the most critical factor for successful agroinfiltration.
Collapse
Affiliation(s)
- Bryce N Trull
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, USA
| | | | | | - Jessica N Stockdale
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, USA
| | - Vincent Pantalone
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Bo Zhang
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA, USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA.
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
34
|
Shen Y, Ye T, Li Z, Kimutai TH, Song H, Dong X, Wan J. Exploiting viral vectors to deliver genome editing reagents in plants. ABIOTECH 2024; 5:247-261. [PMID: 38974861 PMCID: PMC11224180 DOI: 10.1007/s42994-024-00147-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/02/2024] [Indexed: 07/09/2024]
Abstract
Genome editing holds great promise for the molecular breeding of plants, yet its application is hindered by the shortage of simple and effective means of delivering genome editing reagents into plants. Conventional plant transformation-based methods for delivery of genome editing reagents into plants often involve prolonged tissue culture, a labor-intensive and technically challenging process for many elite crop cultivars. In this review, we describe various virus-based methods that have been employed to deliver genome editing reagents, including components of the CRISPR/Cas machinery and donor DNA for precision editing in plants. We update the progress in these methods with recent successful examples of genome editing achieved through virus-based delivery in different plant species, highlight the advantages and limitations of these delivery approaches, and discuss the remaining challenges.
Collapse
Affiliation(s)
- Yilin Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Tao Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Zihan Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Torotwa Herman Kimutai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Hao Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Xiaoou Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
- Hainan Seed Industry Laboratory, Sanya, 572025 China
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
- Hainan Seed Industry Laboratory, Sanya, 572025 China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
35
|
Szabała BM, Święcicka M, Łyżnik LA. Microinjection of the CRISPR/Cas9 editing system through the germ pore of a wheat microspore induces mutations in the target Ms2 gene. Mol Biol Rep 2024; 51:706. [PMID: 38824203 DOI: 10.1007/s11033-024-09644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Microinjection is a direct procedure for delivering various compounds via micropipette into individual cells. Combined with the CRISPR/Cas9 editing technology, it has been used to produce genetically engineered animal cells. However, genetic micromanipulation of intact plant cells has been a relatively unexplored area of research, partly due to the cytological characteristics of these cells. This study aimed to gain insight into the genetic micromanipulation of wheat microspores using microinjection procedures combined with the CRISPR/Cas9 editing system targeting the Ms2 gene. METHODS AND RESULTS Microspores were first reprogrammed by starvation and heat shock treatment to make them structurally suitable for microinjection. The large central vacuole was fragmented and the nucleus with cytoplasm was positioned in the center of the cell. This step and an additional maltose gradient provided an adequate source of intact single cells in the three wheat genotypes. The microcapillary was inserted into the cell through the germ pore to deliver a working solution with a fluorescent marker. This procedure was much more efficient and less harmful to the microspore than inserting the microcapillary through the cell wall. The CRISPR/Cas9 binary vectors injected into reprogrammed microspores induced mutations in the target Ms2 gene with deletions ranging from 1 to 16 bp. CONCLUSIONS This is the first report of successful genome editing in an intact microspore/wheat cell using the microinjection technique and the CRISPR/Cas9 editing system. The study presented offers a range of molecular and cellular biology tools that can aid in genetic micromanipulation and single-cell analysis.
Collapse
Affiliation(s)
- Bartosz M Szabała
- Institute of Biology, Department of Genetics, Breeding and Plant Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 166 St, Warsaw, 02-787, Poland.
| | - Magdalena Święcicka
- Institute of Biology, Department of Genetics, Breeding and Plant Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 166 St, Warsaw, 02-787, Poland
| | - Leszek A Łyżnik
- Institute of Biology, Department of Genetics, Breeding and Plant Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 166 St, Warsaw, 02-787, Poland
| |
Collapse
|
36
|
Valentine M, Butruille D, Achard F, Beach S, Brower-Toland B, Cargill E, Hassebrock M, Rinehart J, Ream T, Chen Y. Simultaneous genetic transformation and genome editing of mixed lines in soybean ( Glycine max) and maize ( Zea mays). ABIOTECH 2024; 5:169-183. [PMID: 38974857 PMCID: PMC11224177 DOI: 10.1007/s42994-024-00173-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/02/2024] [Indexed: 07/09/2024]
Abstract
Robust genome editing technologies are becoming part of the crop breeding toolbox. Currently, genome editing is usually conducted either at a single locus, or multiple loci, in a variety at one time. Massively parallel genomics platforms, multifaceted genome editing capabilities, and flexible transformation systems enable targeted variation at nearly any locus, across the spectrum of genotypes within a species. We demonstrate here the simultaneous transformation and editing of many genotypes, by targeting mixed seed embryo explants with genome editing machinery, followed by re-identification through genotyping after plant regeneration. Transformation and Editing of Mixed Lines (TREDMIL) produced transformed individuals representing 101 of 104 (97%) mixed elite genotypes in soybean; and 22 of 40 (55%) and 9 of 36 (25%) mixed maize female and male elite inbred genotypes, respectively. Characterization of edited genotypes for the regenerated individuals identified over 800 distinct edits at the Determinate1 (Dt1) locus in samples from 101 soybean genotypes and 95 distinct Brown midrib3 (Bm3) edits in samples from 17 maize genotypes. These results illustrate how TREDMIL can help accelerate the development and deployment of customized crop varieties for future precision breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-024-00173-5.
Collapse
Affiliation(s)
- Michelle Valentine
- Bayer Crop Science, 700 Chesterfield Parkway W, Chesterfield, MO 63017 USA
| | - David Butruille
- Bayer Crop Science, 700 Chesterfield Parkway W, Chesterfield, MO 63017 USA
| | - Frederic Achard
- Bayer Crop Science, 700 Chesterfield Parkway W, Chesterfield, MO 63017 USA
| | - Steven Beach
- Bayer Crop Science, 700 Chesterfield Parkway W, Chesterfield, MO 63017 USA
| | | | - Edward Cargill
- Bayer Crop Science, 700 Chesterfield Parkway W, Chesterfield, MO 63017 USA
| | - Megan Hassebrock
- Bayer Crop Science, 700 Chesterfield Parkway W, Chesterfield, MO 63017 USA
| | - Jennifer Rinehart
- Bayer Crop Science, 700 Chesterfield Parkway W, Chesterfield, MO 63017 USA
| | - Thomas Ream
- Bayer Crop Science, 700 Chesterfield Parkway W, Chesterfield, MO 63017 USA
| | - Yurong Chen
- Bayer Crop Science, 700 Chesterfield Parkway W, Chesterfield, MO 63017 USA
| |
Collapse
|
37
|
Yang Z, Zhao M, Zhang X, Gu L, Li J, Ming F, Wang M, Wang Z. MIR396-GRF/GIF enhances in planta shoot regeneration of Dendrobium catenatum. BMC Genomics 2024; 25:543. [PMID: 38822270 PMCID: PMC11143658 DOI: 10.1186/s12864-024-10360-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/29/2024] [Indexed: 06/02/2024] Open
Abstract
Recent studies on co-transformation of the growth regulator, TaGRF4-GIF1 chimera (Growth Regulating Factor 4-GRF Interacting Factor 1), in cultivated wheat varieties (Triticum aestivum), showed improved regeneration efficiency, marking a significant breakthrough. Here, a simple and reproducible protocol using the GRF4-GIF1 chimera was established and tested in the medicinal orchid Dendrobium catenatum, a monocot orchid species. TaGRF4-GIF1 from T. aestivum and DcGRF4-GIF1 from D. catenatum were reconstructed, with the chimeras significantly enhancing the regeneration efficiency of D. catenatum through in planta transformation. Further, mutating the microRNA396 (miR396) target sites in TaGRF4 and DcGRF4 improved regeneration efficiency. The target mimicry version of miR396 (MIM396) not only boosted shoot regeneration but also enhanced plant growth. Our methods revealed a powerful tool for the enhanced regeneration and genetic transformation of D. catenatum.
Collapse
Affiliation(s)
- Zhenyu Yang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Meili Zhao
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China
| | - Xiaojie Zhang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China
- Xinjiang Key Laboratory of Grassland Resources and Ecology, College of Grassland Sciences, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Lili Gu
- Xinjiang Key Laboratory of Grassland Resources and Ecology, College of Grassland Sciences, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Jian Li
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China
| | - Feng Ming
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| | - Meina Wang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China.
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China.
| | - Zhicai Wang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China.
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China.
| |
Collapse
|
38
|
Zhang N, Dong X, Jain R, Ruan D, de Araujo Junior AT, Li Y, Lipzen A, Martin J, Barry K, Ronald PC. XA21-mediated resistance to Xanthomonas oryzae pv. oryzae is dose dependent. PeerJ 2024; 12:e17323. [PMID: 38726377 PMCID: PMC11080989 DOI: 10.7717/peerj.17323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
The rice receptor kinase XA21 confers broad-spectrum resistance to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of rice bacterial blight disease. To investigate the relationship between the expression level of XA21 and resulting resistance, we generated independent HA-XA21 transgenic rice lines accumulating the XA21 immune receptor fused with an HA epitope tag. Whole-genome sequence analysis identified the T-DNA insertion sites in sixteen independent T0 events. Through quantification of the HA-XA21 protein and assessment of the resistance to Xoo strain PXO99 in six independent transgenic lines, we observed that XA21-mediated resistance is dose dependent. In contrast, based on the four agronomic traits quantified in these experiments, yield is unlikely to be affected by the expression level of HA-XA21. These findings extend our knowledge of XA21-mediated defense and contribute to the growing number of well-defined genomic landing pads in the rice genome that can be targeted for gene insertion without compromising yield.
Collapse
Affiliation(s)
- Nan Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, USA
| | - Xiaoou Dong
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, USA
- State Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing, China
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Feedstocks Division, The Joint Bioenergy Institute, Emeryville, CA, USA
| | - Rashmi Jain
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, USA
| | - Deling Ruan
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, USA
- Feedstocks Division, The Joint Bioenergy Institute, Emeryville, CA, USA
| | | | - Yan Li
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, USA
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Anna Lipzen
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Joel Martin
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kerrie Barry
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Pamela C. Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Feedstocks Division, The Joint Bioenergy Institute, Emeryville, CA, USA
| |
Collapse
|
39
|
Chen T, Hayes M, Liu Z, Isenegger D, Mason J, Spangenberg G. Modified fructan accumulation through overexpression of wheat fructan biosynthesis pathway fusion genes Ta1SST:Ta6SFT. BMC PLANT BIOLOGY 2024; 24:352. [PMID: 38689209 PMCID: PMC11059666 DOI: 10.1186/s12870-024-05049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Fructans are water-soluble carbohydrates that accumulate in wheat and are thought to contribute to a pool of stored carbon reserves used in grain filling and tolerance to abiotic stress. RESULTS In this study, transgenic wheat plants were engineered to overexpress a fusion of two fructan biosynthesis pathway genes, wheat sucrose: sucrose 1-fructosyltransferase (Ta1SST) and wheat sucrose: fructan 6-fructosyltransferase (Ta6SFT), regulated by a wheat ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (TaRbcS) gene promoter. We have shown that T4 generation transgene-homozygous single-copy events accumulated more fructan polymers in leaf, stem and grain when compared in the same tissues from transgene null lines. Under water-deficit (WD) conditions, transgenic wheat plants showed an increased accumulation of fructan polymers with a high degree of polymerisation (DP) when compared to non-transgenic plants. In wheat grain of a transgenic event, increased deposition of particular fructan polymers such as, DP4 was observed. CONCLUSIONS This study demonstrated that the tissue-regulated expression of a gene fusion between Ta1SST and Ta6SFT resulted in modified fructan accumulation in transgenic wheat plants and was influenced by water-deficit stress conditions.
Collapse
Affiliation(s)
- Tong Chen
- Agriculture Victoria, Agribio, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Matthew Hayes
- Agriculture Victoria, Agribio, Bundoora, VIC, Australia
| | - Zhiqian Liu
- Agriculture Victoria, Agribio, Bundoora, VIC, Australia
| | | | - John Mason
- Agriculture Victoria, Agribio, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - German Spangenberg
- Agriculture Victoria, Agribio, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Present Address: Qingdao Agricultural University, College of Grassland Science, N0. 700 Changcheng Road, Chengyang District, Qingdao, Shandong Province, 266109, P.R. China
| |
Collapse
|
40
|
Zhang Y, Mo Y, Ren H, Wu X, Han L, Sun Z, Xu W. Improving Sedum plumbizincicola genetic transformation with the SpGRF4-SpGIF1 gene and the self-excision CRE/LoxP system. PLANTA 2024; 259:119. [PMID: 38594473 DOI: 10.1007/s00425-024-04393-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/16/2024] [Indexed: 04/11/2024]
Abstract
MAIN CONCLUSION S. plumbizincicola genetic transformation was optimized using a self-excision molecular-assisted transformation system by integrating the SpGRF4/SpGIF1 gene with XVE and Cre/loxP. Sedum plumbizincicola, despite being an excellent hyperaccumulator of cadmium and zinc with significant potential for soil pollution phytoremediation on farmland, has nonetheless trailed behind other major model plants in genetic transformation technology. In this study, different explants and SpGRF4-SpGIF1 genes were used to optimize the genetic transformation of S. plumbizincicola. We found that petiole and stem segments had higher genetic transformation efficiency than cluster buds. Overexpression of SpGRF4-SpGIF1 could significantly improve the genetic transformation efficiency and shorten the period of obtaining regenerated buds. However, molecular assistance with overexpression of SpGRF4-SpGIF1 leads to abnormal morphology, resulting in plant tissue enlargement and abnormal growth. Therefore, we combined SpGRF4-SpGIF1 with XVE and Cre/loxP to obtain DNA autocleavage transgenic plants induced by estradiol, thereby ensuring normal growth in transgenic plants. This study optimized the S. plumbizincicola genetic transformation system, improved the efficiency of genetic transformation, and established a self-excision molecular-assisted transformation system. This work also established the basis for studying S. plumbizincicola gene function, and for S. plumbizincicola breeding and germplasm innovation.
Collapse
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yanlan Mo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Hongxu Ren
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaotong Wu
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Liyuan Han
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zhenyuan Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Wenzhong Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
41
|
Nagle MF, Yuan J, Kaur D, Ma C, Peremyslova E, Jiang Y, Niño de Rivera A, Jawdy S, Chen JG, Feng K, Yates TB, Tuskan GA, Muchero W, Fuxin L, Strauss SH. GWAS supported by computer vision identifies large numbers of candidate regulators of in planta regeneration in Populus trichocarpa. G3 (BETHESDA, MD.) 2024; 14:jkae026. [PMID: 38325329 PMCID: PMC10989874 DOI: 10.1093/g3journal/jkae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/09/2024]
Abstract
Plant regeneration is an important dimension of plant propagation and a key step in the production of transgenic plants. However, regeneration capacity varies widely among genotypes and species, the molecular basis of which is largely unknown. Association mapping methods such as genome-wide association studies (GWAS) have long demonstrated abilities to help uncover the genetic basis of trait variation in plants; however, the performance of these methods depends on the accuracy and scale of phenotyping. To enable a large-scale GWAS of in planta callus and shoot regeneration in the model tree Populus, we developed a phenomics workflow involving semantic segmentation to quantify regenerating plant tissues over time. We found that the resulting statistics were of highly non-normal distributions, and thus employed transformations or permutations to avoid violating assumptions of linear models used in GWAS. We report over 200 statistically supported quantitative trait loci (QTLs), with genes encompassing or near to top QTLs including regulators of cell adhesion, stress signaling, and hormone signaling pathways, as well as other diverse functions. Our results encourage models of hormonal signaling during plant regeneration to consider keystone roles of stress-related signaling (e.g. involving jasmonates and salicylic acid), in addition to the auxin and cytokinin pathways commonly considered. The putative regulatory genes and biological processes we identified provide new insights into the biological complexity of plant regeneration, and may serve as new reagents for improving regeneration and transformation of recalcitrant genotypes and species.
Collapse
Affiliation(s)
- Michael F Nagle
- Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97311, USA
| | - Jialin Yuan
- Department of Electrical Engineering and Computer Science, Oregon State University, 1148 Kelley Engineering Center, Corvallis, OR 97331, USA
| | - Damanpreet Kaur
- Department of Electrical Engineering and Computer Science, Oregon State University, 1148 Kelley Engineering Center, Corvallis, OR 97331, USA
| | - Cathleen Ma
- Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97311, USA
| | - Ekaterina Peremyslova
- Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97311, USA
| | - Yuan Jiang
- Statistics Department, Oregon State University, 239 Weniger Hall, Corvallis, OR 97331, USA
| | - Alexa Niño de Rivera
- Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97311, USA
| | - Sara Jawdy
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee-Knoxville, 310 Ferris Hall 1508 Middle Dr, Knoxville, TN 37996, USA
| | - Kai Feng
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
| | - Timothy B Yates
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee-Knoxville, 310 Ferris Hall 1508 Middle Dr, Knoxville, TN 37996, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee-Knoxville, 310 Ferris Hall 1508 Middle Dr, Knoxville, TN 37996, USA
| | - Li Fuxin
- Department of Electrical Engineering and Computer Science, Oregon State University, 1148 Kelley Engineering Center, Corvallis, OR 97331, USA
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97311, USA
| |
Collapse
|
42
|
Li J, Zhang Q, Wang Z, Liu Q. The roles of epigenetic regulators in plant regeneration: Exploring patterns amidst complex conditions. PLANT PHYSIOLOGY 2024; 194:2022-2038. [PMID: 38290051 PMCID: PMC10980418 DOI: 10.1093/plphys/kiae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/06/2023] [Accepted: 12/17/2023] [Indexed: 02/01/2024]
Abstract
Plants possess remarkable capability to regenerate upon tissue damage or optimal environmental stimuli. This ability not only serves as a crucial strategy for immobile plants to survive through harsh environments, but also made numerous modern plant improvements techniques possible. At the cellular level, this biological process involves dynamic changes in gene expression that redirect cell fate transitions. It is increasingly recognized that chromatin epigenetic modifications, both activating and repressive, intricately interact to regulate this process. Moreover, the outcomes of epigenetic regulation on regeneration are influenced by factors such as the differences in regenerative plant species and donor tissue types, as well as the concentration and timing of hormone treatments. In this review, we focus on several well-characterized epigenetic modifications and their regulatory roles in the expression of widely studied morphogenic regulators, aiming to enhance our understanding of the mechanisms by which epigenetic modifications govern plant regeneration.
Collapse
Affiliation(s)
- Jiawen Li
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Qiyan Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Zejia Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Qikun Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
43
|
Atia M, Jiang W, Sedeek K, Butt H, Mahfouz M. Crop bioengineering via gene editing: reshaping the future of agriculture. PLANT CELL REPORTS 2024; 43:98. [PMID: 38494539 PMCID: PMC10944814 DOI: 10.1007/s00299-024-03183-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/23/2024] [Indexed: 03/19/2024]
Abstract
Genome-editing technologies have revolutionized research in plant biology, with major implications for agriculture and worldwide food security, particularly in the face of challenges such as climate change and increasing human populations. Among these technologies, clustered regularly interspaced short palindromic repeats [CRISPR]-CRISPR-associated protein [Cas] systems are now widely used for editing crop plant genomes. In this review, we provide an overview of CRISPR-Cas technology and its most significant applications for improving crop sustainability. We also review current and potential technological advances that will aid in the future breeding of crops to enhance food security worldwide. Finally, we discuss the obstacles and challenges that must be overcome to realize the maximum potential of genome-editing technologies for future crop and food production.
Collapse
Affiliation(s)
- Mohamed Atia
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Wenjun Jiang
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Khalid Sedeek
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Haroon Butt
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
| |
Collapse
|
44
|
Li X, Bu F, Wang L, Kim C, Xue W, Zhang M, Kawabata S, Zhang Q, Li Y, Zhang Y. Optimization of CRISPR-Cas9 system in Eustoma grandiflorum. iScience 2024; 27:109053. [PMID: 38361623 PMCID: PMC10864798 DOI: 10.1016/j.isci.2024.109053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/10/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
The optimization of the CRISPR-Cas9 system for enhancing editing efficiency holds significant value in scientific research. In this study, we optimized single guide RNA and Cas9 promoters of the CRISPR-Cas9 vector and established an efficient protoplast isolation and transient transformation system in Eustoma grandiflorum, and we successfully applied the modified CRISPR-Cas9 system to detect editing efficiency of the EgPDS gene. The activity of the EgU6-2 promoter in E. grandiflorum protoplasts was approximately three times higher than that of the GmU6 promoter. This promoter, along with the EgUBQ10 promoter, was applied in the CRISPR-Cas9 cassette, the modified CRISPR-Cas9 vectors that pEgU6-2::sgRNA-2/pEgUBQ10::Cas9-2 editing efficiency was 37.7%, which was 30.3% higher than that of the control, and the types of mutation are base substitutions, small fragment deletions and insertions. Finally we obtained an efficient gene editing vector for E. grandiflorum. This project provides an important technical platform for the study of gene function in E. grandiflorum.
Collapse
Affiliation(s)
- Xueqi Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Fanqi Bu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Lishan Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Cholmin Kim
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Branch of Biotechnology, State Academy of Sciences, Pyongyang, the Democratic People’s Republic of Korea
| | - Wanjie Xue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Man Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Saneyuki Kawabata
- Institute for Sustainable Agroecosystem Services, Graduate School of Agriculture and Life Science, The University of Tokyo, Tokyo, Japan
| | - Qingzhu Zhang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yuhua Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yang Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
45
|
Kumar S, Vishwakarma H, Ghosh G, Singh J, Padaria JC. In planta transformation in wheat: an improved protocol to develop wheat transformants. Mol Biol Rep 2024; 51:407. [PMID: 38460010 DOI: 10.1007/s11033-024-09333-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/07/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Lack of efficient transformation protocol continues to be a major bottleneck for successful genome editing or transgenic development in wheat. An in planta transformation method was developed in Indian bread wheat in earlier study (Vasil et al. in Nat Biotechnol 10:667-674, 1992) which was labour-intensive and time-consuming. In the present study, in planta transformation method was improved to make it simple, efficient, less labour-intensive and time-saving. METHODS AND RESULTS PCR-based screening for generated transformants at T0 stage was introduced in this method. Shoot apical meristem of two days old wheat seedling was inoculated with the routine active culture of Agrobacterium tumefaciens harboring plasmid pCAMBIA1300-Ubi-GFP having gene GFP under the control of Zea mays ubiquitin promoter. PCR analysis at T0 stage confirmed 27 plants to be transgene positive. These 27 plants were only taken to the next generation (T1) and the rest were discarded. At T1 generation 6 plants were analyzed to be PCR positive. Out of them, 4 plants were confirmed to have stable integration of transgene (GFP). Fluorescent microscopy at T1 stage confirmed the 4 Southern hybridization positive plants to be expressing reporter gene GFP. CONCLUSIONS Screening at T0 stage, reduced the load of plants to be taken to T1 generation and their screening thereof at T1 with no overall loss in transformation efficiency. We successfully transformed wheat genotype HD2894 with 3.33% transformation efficiency using a simple, effective method which was less labour-intensive and less time-consuming. This method may be utilized to develop wheat transgenic as well as genome edited lines for desirable traits.
Collapse
Affiliation(s)
- Satish Kumar
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Harinder Vishwakarma
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Gourab Ghosh
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Jaskirat Singh
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | | |
Collapse
|
46
|
Yang C, Sun N, Qin X, Liu Y, Sui M, Zhang Y, Hu Y, Mao Z, Chen X, Mao Y, Shen X. Multi-omics analysis reveals the biosynthesis of flavonoids during the browning process of Malus sieversii explants. PHYSIOLOGIA PLANTARUM 2024; 176:e14238. [PMID: 38488414 DOI: 10.1111/ppl.14238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 03/19/2024]
Abstract
Malus sieversii is a precious apple germplasm resource. Browning of explants is one of the most important factors limiting the survival rate of plant tissue culture. In order to explore the molecular mechanism of the browning degree of different strains of Malus sieversii, we compared the dynamic changes of Malus sieversii and Malus robusta Rehd. during the whole browning process using a multi-group method. A total of 44 048 differentially expressed genes (DEGs) were identified by transcriptome analysis on the DNBSEQ-T7 sequencing platform. KEGG enrichment analysis showed that the DEGs were significantly enriched in the flavonoid biosynthesis pathway. In addition, metabonomic analysis showed that (-)-epicatechin, astragalin, chrysin, irigenin, isoquercitrin, naringenin, neobavaisoflavone and prunin exhibited different degrees of free radical scavenging ability in the tissue culture browning process, and their accumulation in different varieties led to differences in the browning degree among varieties. Comprehensive transcriptome and metabonomics analysis of the data related to flavonoid biosynthesis showed that PAL, 4CL, F3H, CYP73A, CHS, CHI, ANS, DFR and PGT1 were the key genes for flavonoid accumulation during browning. In addition, WGCNA analysis revealed a strong correlation between the known flavonoid structure genes and the selected transcriptional genes. Protein interaction predictions demonstrated that 19 transcription factors (7 MYBs and 12 bHLHs) and 8 flavonoid structural genes had targeted relationships. The results show that the interspecific differential expression of flavonoid genes is the key influencing factor of the difference in browning degree between Malus sieversii and Malus robusta Rehd., providing a theoretical basis for further study on the regulation of flavonoid biosynthesis.
Collapse
Affiliation(s)
- Chen Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, China
| | - Nan Sun
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xin Qin
- College of Horticulture Science and Engineering, Shandong Agricultural University, China
| | - Yangbo Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, China
| | - Mengyi Sui
- College of Horticulture Science and Engineering, Shandong Agricultural University, China
| | - Yawen Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, China
| | - Yanli Hu
- College of Horticulture Science and Engineering, Shandong Agricultural University, China
| | - Zhiquan Mao
- College of Horticulture Science and Engineering, Shandong Agricultural University, China
| | - Xuesen Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, China
| | - Yunfei Mao
- College of Horticulture Science and Engineering, Shandong Agricultural University, China
| | - Xiang Shen
- College of Horticulture Science and Engineering, Shandong Agricultural University, China
| |
Collapse
|
47
|
Havlickova L, He Z, Berger M, Wang L, Sandmann G, Chew YP, Yoshikawa GV, Lu G, Hu Q, Banga SS, Beaudoin F, Bancroft I. Genomics of predictive radiation mutagenesis in oilseed rape: modifying seed oil composition. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:738-750. [PMID: 37921406 PMCID: PMC10893948 DOI: 10.1111/pbi.14220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Rapeseed is a crop of global importance but there is a need to broaden the genetic diversity available to address breeding objectives. Radiation mutagenesis, supported by genomics, has the potential to supersede genome editing for both gene knockout and copy number increase, but detailed knowledge of the molecular outcomes of radiation treatment is lacking. To address this, we produced a genome re-sequenced panel of 1133 M2 generation rapeseed plants and analysed large-scale deletions, single nucleotide variants and small insertion-deletion variants affecting gene open reading frames. We show that high radiation doses (2000 Gy) are tolerated, gamma radiation and fast neutron radiation have similar impacts and that segments deleted from the genomes of some plants are inherited as additional copies by their siblings, enabling gene dosage decrease. Of relevance for species with larger genomes, we showed that these large-scale impacts can also be detected using transcriptome re-sequencing. To test the utility of the approach for predictive alteration of oil fatty acid composition, we produced lines with both decreased and increased copy numbers of Bna.FAE1 and confirmed the anticipated impacts on erucic acid content. We detected and tested a 21-base deletion expected to abolish function of Bna.FAD2.A5, for which we confirmed the predicted reduction in seed oil polyunsaturated fatty acid content. Our improved understanding of the molecular effects of radiation mutagenesis will underpin genomics-led approaches to more efficient introduction of novel genetic variation into the breeding of this crop and provides an exemplar for the predictive improvement of other crops.
Collapse
Affiliation(s)
| | - Zhesi He
- Department of BiologyUniversity of YorkYorkUK
| | | | - Lihong Wang
- Department of BiologyUniversity of YorkYorkUK
| | | | | | - Guilherme V. Yoshikawa
- Department of BiologyUniversity of YorkYorkUK
- Present address:
School of Agriculture, Food and Wine, Waite Research InstituteUniversity of AdelaideGlen OsmondSAAustralia
| | - Guangyuan Lu
- Department of Rapeseed Genetics and Breeding, Oil Crops Research InstituteCAASWuhanChina
- College of Biology and Food EngineeringGuangdong University of Petrochemical TechnologyMaomingChina
| | - Qiong Hu
- Department of Rapeseed Genetics and Breeding, Oil Crops Research InstituteCAASWuhanChina
| | - Surinder S. Banga
- Department of Plant Breeding and GeneticsPunjab Agricultural UniversityLudhianaIndia
| | | | | |
Collapse
|
48
|
Das S, Kwon M, Kim JY. Enhancement of specialized metabolites using CRISPR/Cas gene editing technology in medicinal plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1279738. [PMID: 38450402 PMCID: PMC10915232 DOI: 10.3389/fpls.2024.1279738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
Plants are the richest source of specialized metabolites. The specialized metabolites offer a variety of physiological benefits and many adaptive evolutionary advantages and frequently linked to plant defense mechanisms. Medicinal plants are a vital source of nutrition and active pharmaceutical agents. The production of valuable specialized metabolites and bioactive compounds has increased with the improvement of transgenic techniques like gene silencing and gene overexpression. These techniques are beneficial for decreasing production costs and increasing nutritional value. Utilizing biotechnological applications to enhance specialized metabolites in medicinal plants needs characterization and identification of genes within an elucidated pathway. The breakthrough and advancement of CRISPR/Cas-based gene editing in improving the production of specific metabolites in medicinal plants have gained significant importance in contemporary times. This article imparts a comprehensive recapitulation of the latest advancements made in the implementation of CRISPR-gene editing techniques for the purpose of augmenting specific metabolites in medicinal plants. We also provide further insights and perspectives for improving metabolic engineering scenarios in medicinal plants.
Collapse
Affiliation(s)
- Swati Das
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Moonhyuk Kwon
- Division of Life Science, Anti-aging Bio Cell Factory Regional Leading Research Center (ABC-RLRC), Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Nulla Bio R&D Center, Nulla Bio Inc., Jinju, Republic of Korea
| |
Collapse
|
49
|
Li T, Shen T, Shi K, Zhang Y. Transcriptome analysis reveals the effect of propyl gallate on kiwifruit callus formation. PLANT CELL REPORTS 2024; 43:60. [PMID: 38334781 DOI: 10.1007/s00299-024-03140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/31/2023] [Indexed: 02/10/2024]
Abstract
KEY MESSAGE Exploring the potential action mechanisms of reactive oxygen species during the callus inducing, they can activate specific metabolic pathways in explants to regulate callus development. Reactive oxygen species (ROS) play an important role in the regulation of plant growth and development, but the mechanism of their action on plant callus formation remains to be elucidated. To address this question, kiwifruit was selected as the explant for callus induction, and the influence of ROS on callus formation was investigated by introducing propyl gallate (PG) as an antioxidant into the medium used for inducing callus. The results have unveiled that the inclusion of PG in the medium has disturbed the equilibrium of ROS during the formation of the kiwifruit callus. We selected the callus that was induced by the addition of 0.05 mmol/L PG to the MS medium. The callus exhibited a significant difference in the amount compared to the control medium without PG. The callus induced by the MS medium without PG was used as the control for comparison. KEGG enrichment indicated that PG exposure resulted in significant differences in gene expression in related pathways, such as phytohormone signaling and glutathione in kiwifruit callus. Weighted gene co-expression analysis indicated that the pertinent regulatory networks of both ROS and phytohormone signaling were critical for the establishment of callus in kiwifruit leaves. In addition, during the process of callus establishment, the ROS level of the explants was also closely related to the genes for transmembrane transport of substances, cell wall formation, and plant organ establishment. This investigation expands the theory of ROS-regulated callus formation and presents a new concept for the expeditious propagation of callus in kiwifruit.
Collapse
Affiliation(s)
- Tianyuan Li
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Tin Shen
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Kai Shi
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Yunfeng Zhang
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China.
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China.
| |
Collapse
|
50
|
Prado GS, Rocha DC, dos Santos LN, Contiliani DF, Nobile PM, Martinati-Schenk JC, Padilha L, Maluf MP, Lubini G, Pereira TC, Monteiro-Vitorello CB, Creste S, Boscariol-Camargo RL, Takita MA, Cristofani-Yaly M, de Souza AA. CRISPR technology towards genome editing of the perennial and semi-perennial crops citrus, coffee and sugarcane. FRONTIERS IN PLANT SCIENCE 2024; 14:1331258. [PMID: 38259920 PMCID: PMC10801916 DOI: 10.3389/fpls.2023.1331258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024]
Abstract
Gene editing technologies have opened up the possibility of manipulating the genome of any organism in a predicted way. CRISPR technology is the most used genome editing tool and, in agriculture, it has allowed the expansion of possibilities in plant biotechnology, such as gene knockout or knock-in, transcriptional regulation, epigenetic modification, base editing, RNA editing, prime editing, and nucleic acid probing or detection. This technology mostly depends on in vitro tissue culture and genetic transformation/transfection protocols, which sometimes become the major challenges for its application in different crops. Agrobacterium-mediated transformation, biolistics, plasmid or RNP (ribonucleoprotein) transfection of protoplasts are some of the commonly used CRISPR delivery methods, but they depend on the genotype and target gene for efficient editing. The choice of the CRISPR system (Cas9, Cas12), CRISPR mechanism (plasmid or RNP) and transfection technique (Agrobacterium spp., PEG solution, lipofection) directly impacts the transformation efficiency and/or editing rate. Besides, CRISPR/Cas technology has made countries rethink regulatory frameworks concerning genetically modified organisms and flexibilize regulatory obstacles for edited plants. Here we present an overview of the state-of-the-art of CRISPR technology applied to three important crops worldwide (citrus, coffee and sugarcane), considering the biological, methodological, and regulatory aspects of its application. In addition, we provide perspectives on recently developed CRISPR tools and promising applications for each of these crops, thus highlighting the usefulness of gene editing to develop novel cultivars.
Collapse
Affiliation(s)
- Guilherme Souza Prado
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
| | - Dhiôvanna Corrêia Rocha
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
- Institute of Biology, State University of Campinas (Unicamp), Campinas, Brazil
| | - Lucas Nascimento dos Santos
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
- Institute of Biology, State University of Campinas (Unicamp), Campinas, Brazil
| | - Danyel Fernandes Contiliani
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
- Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Paula Macedo Nobile
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
| | | | - Lilian Padilha
- Coffee Center of the Agronomic Institute of Campinas (IAC), Campinas, Brazil
- Embrapa Coffee, Brazilian Agricultural Research Corporation, Brasília, Federal District, Brazil
| | - Mirian Perez Maluf
- Coffee Center of the Agronomic Institute of Campinas (IAC), Campinas, Brazil
- Embrapa Coffee, Brazilian Agricultural Research Corporation, Brasília, Federal District, Brazil
| | - Greice Lubini
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Tiago Campos Pereira
- Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | | | - Silvana Creste
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
- Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | | | - Marco Aurélio Takita
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
| | | | | |
Collapse
|