1
|
Ji S, Yin P, Li T, Du X, Chen W, Zhang R, Yang X, Zhang X. Pan-WD40ome analysis of 26 diverse inbred lines reveals the structural and functional diversity of WD40 proteins in maize. BMC Genomics 2025; 26:181. [PMID: 39987072 PMCID: PMC11847395 DOI: 10.1186/s12864-025-11342-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/10/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND The WD40 repeat proteins are crucial components of eukaryotic genomes and contribute to a wide array of plant developmental processes and environmental interactions. However, the true extent of intraspecific WD40 diversity in plants is unclear. RESULTS We defined a nearly complete species-wide pan-WD40ome in maize based on the published genome sequences of 26 nested association mapping (NAM) population founders. The pan-WD40ome largely saturated with inclusion of approximately 20 inbred lines, with about 95% of the pan-WD40ome being present in at least two founders. The architectural diversity of the WD40 domains, additional domains, and consequent spatial protein structures suggested the functional diversity of the maize pan-WD40ome. This finding was supported by significant associations between 87 WD40 genes and 19 agronomic, 3 kernel-quality, and 3 biotic-stress traits, as well as the multiple molecular pathways through which the trait-associated WD40 genes were predicted to function. In addition, WD40 genes exhibited abundant genomic variations among the NAM founders. Sequence analysis indicated that gene duplications and gene translocations caused by Helitron transposons may play important roles in the amplification of WD40 genes during the evolution of the maize WD40 gene family. CONCLUSIONS In summary, this study provides a comprehensive framework for understanding the structural and functional diversity of the pan-WD40ome in maize and other agronomically important species with complex genomes, as well as excellent candidate genes/alleles for maize genetic improvement.
Collapse
Affiliation(s)
- Shenghui Ji
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Pengfei Yin
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Tao Li
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Xiaoxia Du
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Wenkang Chen
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Renyu Zhang
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Xiaohong Yang
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China.
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
| | - Xuan Zhang
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Zhang L, Ma F, Duan G, Ju Y, Yu T, Zhang Q, Sodmergen. MIKC*-type MADS transcription factors control JINGUBANG expression and the degree of pollen dormancy in Arabidopsis. PLANT PHYSIOLOGY 2024; 197:kiae576. [PMID: 39471323 DOI: 10.1093/plphys/kiae576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/04/2024] [Accepted: 09/28/2024] [Indexed: 11/01/2024]
Abstract
While pollen dormancy has been proposed to play a necessary role in sexual reproduction, it remains poorly understood. Here, we used traditional pollen germination assays to characterize dormancy. Our results underscore variation in the degree of dormancy between individual pollen grains. In addition, we provide evidence that JINGUBANG (JGB), previously defined as a negative regulator of pollen germination in Arabidopsis (Arabidopsis thaliana), is responsible for the uneven degrees of pollen dormancy, as asynchronous pollen germination in vitro reflected varied expression levels of JGB. We identified 5 cis-acting elements, including 4 CArG-boxes and the previously uncharacterized element ERE7, as essential for the initiation and enhancement of JGB expression. A 10-bp sequence between CArG-box 3 and ERE7, likely the result of an inverse DNA loop formed between CArG-box 3 and CArG-box 4, was required for robust gene expression. In addition, the pollen-specific AtMIKC*-type MADS transcription factors AGAMOUS-LIKE 30 (AGL30), AGL65, AGL66, AGL94, and AGL104 activated JGB transcription. Notably, the transactivation levels differed among the obligate AtMIKC* heterodimers tested. Our results indicate that distinct AtMIKC* complexes formed in individual pollen grains direct pollen dormancy to uneven degrees, which is likely an adaptive trait that ensures broader pollen dispersal under adverse environmental conditions.
Collapse
Affiliation(s)
- Liguang Zhang
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Fei Ma
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Guangxing Duan
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yan Ju
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Tingqiao Yu
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Quan Zhang
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Sodmergen
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Xiong H, Wang J, Gao X, Dong G, Zeng W, Wang W, Sun MX. Transcriptome and Metabolome Analyses Reveal a Complex Stigma Microenvironment for Pollen Tube Growth in Tobacco. Int J Mol Sci 2024; 25:12255. [PMID: 39596319 PMCID: PMC11594504 DOI: 10.3390/ijms252212255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
In flowering plants, the success of fertilization depends on the rapid polar extension of a pollen tube, which delivers sperm cells to the female gametophyte for fertilization. Numerous studies have shown that the microenvironment in planta is more conducive to the growth and development of pollen tubes than that in vitro. However, how stigma factors coordinate to regulate pollen tube growth is still poorly understood. Here, we demonstrate that in tobacco, mature stigma extract, but not immature stigma extract, facilitates pollen tube growth. Comparative transcriptomic and qRT-PCR analyses showed that the differentially expressed genes during stigma maturation were mainly enriched in the metabolism pathway. Through metabolome analyses, about 500 metabolites were identified to be differently accumulated; the significantly increased metabolites in the mature stigmas mainly belonged to alkaloids, flavonoids, and terpenoids, while the downregulated differential metabolites were related to lipids, amino acids, and their derivatives. Among the different kinds of plant hormones, the cis-form contents of zeatin were significantly increased, and more importantly, cis-zeatin riboside promoted pollen tube growth in vitro. Thus, our results reveal an overall landscape of gene expression and a detailed nutritional microenvironment established for pollen tube growth during the process of stigma maturation, which provides valuable clues for optimizing in vitro pollen growth and investigating the pollen-stigma interaction.
Collapse
Affiliation(s)
- Hanxian Xiong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (H.X.); (J.W.); (X.G.); (G.D.); (W.Z.)
| | - Junjie Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (H.X.); (J.W.); (X.G.); (G.D.); (W.Z.)
| | - Xiaodi Gao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (H.X.); (J.W.); (X.G.); (G.D.); (W.Z.)
| | - Guoqing Dong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (H.X.); (J.W.); (X.G.); (G.D.); (W.Z.)
| | - Wanyong Zeng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (H.X.); (J.W.); (X.G.); (G.D.); (W.Z.)
| | - Wei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| |
Collapse
|
4
|
Fang Y, Guo D, Wang Y, Wang N, Fang X, Zhang Y, Li X, Chen L, Yu D, Zhang B, Qin G. Rice transcriptional repressor OsTIE1 controls anther dehiscence and male sterility by regulating JA biosynthesis. THE PLANT CELL 2024; 36:1697-1717. [PMID: 38299434 PMCID: PMC11062430 DOI: 10.1093/plcell/koae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/12/2023] [Accepted: 12/24/2023] [Indexed: 02/02/2024]
Abstract
Proper anther dehiscence is essential for successful pollination and reproduction in angiosperms, and jasmonic acid (JA) is crucial for the process. However, the mechanisms underlying the tight regulation of JA biosynthesis during anther development remain largely unknown. Here, we demonstrate that the rice (Oryza sativa L.) ethylene-response factor-associated amphiphilic repression (EAR) motif-containing protein TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTORS (TCP) INTERACTOR CONTAINING EAR MOTIF PROTEIN1 (OsTIE1) tightly regulates JA biosynthesis by repressing TCP transcription factor OsTCP1/PCF5 during anther development. The loss of OsTIE1 function in Ostie1 mutants causes male sterility. The Ostie1 mutants display inviable pollen, early stamen filament elongation, and precocious anther dehiscence. In addition, JA biosynthesis is activated earlier and JA abundance is precociously increased in Ostie1 anthers. OsTIE1 is expressed during anther development, and OsTIE1 is localized in nuclei and has transcriptional repression activity. OsTIE1 directly interacts with OsTCP1, and overexpression of OsTCP1 caused early anther dehiscence resembling that of Ostie1. JA biosynthesis genes including rice LIPOXYGENASE are regulated by the OsTIE1-OsTCP1 complex. Our findings reveal that the OsTIE1-OsTCP1 module plays a critical role in anther development by finely tuning JA biosynthesis and provide a foundation for the generation of male sterile plants for hybrid seed production.
Collapse
Affiliation(s)
- Yuxing Fang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Dongshu Guo
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Yi Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ning Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xianwen Fang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yunhui Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiao Li
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
- Southwest United Graduate School, Kunming 650092, China
| | - Baolong Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
5
|
Gutierrez N, Pégard M, Solis I, Sokolovic D, Lloyd D, Howarth C, Torres AM. Genome-wide association study for yield-related traits in faba bean ( Vicia faba L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1328690. [PMID: 38545396 PMCID: PMC10965552 DOI: 10.3389/fpls.2024.1328690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/26/2024] [Indexed: 11/11/2024]
Abstract
Yield is the most complex trait to improve crop production, and identifying the genetic determinants for high yield is a major issue in breeding new varieties. In faba bean (Vicia faba L.), quantitative trait loci (QTLs) have previously been detected in studies of biparental mapping populations, but the genes controlling the main trait components remain largely unknown. In this study, we investigated for the first time the genetic control of six faba bean yield-related traits: shattering (SH), pods per plant (PP), seeds per pod (SP), seeds per plant (SPL), 100-seed weight (HSW), and plot yield (PY), using a genome-wide association study (GWAS) on a worldwide collection of 352 homozygous faba bean accessions with the aim of identifying markers associated with them. Phenotyping was carried out in field trials at three locations (Spain, United Kingdom, and Serbia) over 2 years. The faba bean panel was genotyped with the Affymetrix faba bean SNP-chip yielding 22,867 SNP markers. The GWAS analysis identified 112 marker-trait associations (MTAs) in 97 candidate genes, distributed over the six faba bean chromosomes. Eight MTAs were detected in at least two environments, and five were associated with multiple traits. The next step will be to validate these candidates in different genetic backgrounds to provide resources for marker-assisted breeding of faba bean yield.
Collapse
Affiliation(s)
- Natalia Gutierrez
- Área de Mejora Vegetal y Biotecnología, IFAPA Centro “Alameda del Obispo”, Córdoba, Spain
| | - Marie Pégard
- INRA, Centre Nouvelle-Aquitaine-Poitiers, UR4 (URP3F), Lusignan, France
| | | | | | - David Lloyd
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Catherine Howarth
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Ana M. Torres
- Área de Mejora Vegetal y Biotecnología, IFAPA Centro “Alameda del Obispo”, Córdoba, Spain
| |
Collapse
|
6
|
Scheible N, Henning PM, McCubbin AG. Calmodulin-Domain Protein Kinase PiCDPK1 Interacts with the 14-3-3-like Protein NtGF14 to Modulate Pollen Tube Growth. PLANTS (BASEL, SWITZERLAND) 2024; 13:451. [PMID: 38337984 PMCID: PMC10857193 DOI: 10.3390/plants13030451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Calcium-mediated signaling pathways are known to play important roles in the polar growth of pollen tubes. The calcium-dependent protein kinase, PiCDPK1, has been shown to be involved in regulating this process through interaction with a guanine dissociation inhibitor, PiRhoGDI1. To more fully understand the role of PiCDPK1 in pollen tube extension, we designed a pull-down study to identify additional substrates of this kinase. These experiments identified 123 putative interactors. Two of the identified proteins were predicted to directly interact with PiCDPK1, and this possibility was investigated in planta. The first, NtGF14, a 14-3-3-like protein, did not produce a noticeable phenotype when overexpressed in pollen alone but partially rescued the spherical tube phenotype caused by PiCDPK1 over-expression when co-over-expressed with the kinase. The second, NtREN1, a GTPase activating protein (GAP), severely inhibited pollen tube germination when over-expressed, and its co-over-expression with PiCDPK1 did not substantially affect this phenotype. These results suggest a novel in vivo interaction between NtGF14 and PiCDPK1 but do not support the direct interaction between PiCDPK1 and NtREN1. We demonstrate the utility of the methodology used to identify potential protein interactions while confirming the necessity of additional studies to confirm their validity. Finally, additional support was found for intersection between PiCDPK1 and RopGTPase pathways to control polar growth at the pollen tube tip.
Collapse
Affiliation(s)
| | | | - Andrew G. McCubbin
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA; (N.S.); (P.M.H.)
| |
Collapse
|
7
|
Kim YJ, Jung KH. WD40-domain protein GORI is an integrative scaffold that is required for pollen tube growth in rice. PLANT SIGNALING & BEHAVIOR 2023; 18:2082678. [PMID: 35642508 PMCID: PMC9851197 DOI: 10.1080/15592324.2022.2082678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The pollen tube plays a critical role in angiosperm plants by delivering sperm gametes for double fertilization. Although the molecular mechanisms underlying pollen tube germination and growth are crucial to crop plants, they are poorly understood. Here, we describe recent advancements in the understanding of the role of the WD40-domain protein in regulating pollen germination and discuss future directions to investigate its role in rice. GORI encodes a seven-WD40-motif protein that interacts with an AP180 N-terminal homology (ANTH)-domain protein, which modulates clathrin-mediated endocytosis (CME), and regulates Rac6 activity in the apical plasma membrane of elongating pollen tubes. Loss of function of GORI or Rac6 reduces pollen germination and tube growth, thereby resulting in male sterility in rice. In contrast, overexpression of Rac6 increases pollen tube elongation, with this effect being rescued by GORI overexpression. In the absence of ANTH, pollen germination was reduced, similar to the results observed after inhibitor treatment, indicating that pollen germination partially requires CME. Our findings demonstrated that the GORI protein is a positive regulator of pollen germination and tube growth, serving as a link between Rac6 activity regulation and ANTH-mediated endocytosis.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, Pusan National University, Miryang, Republic of Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
8
|
Genome-Wide Identification and Characterization of TCP Gene Family Members in Melastoma candidum. Molecules 2022; 27:molecules27249036. [PMID: 36558169 PMCID: PMC9787641 DOI: 10.3390/molecules27249036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
It has been confirmed that the plant-specific Teosinte-branched 1/Cycloidea/Proliferating (TCP) gene family plays a pivotal role during plant growth and development. M. candidum is a native ornamental species and has a wide range of pharmacodynamic effects. However, there is still a lack of research on TCP’s role in controlling M. candidum’s development, abiotic stress responses and hormone metabolism. A comprehensive description of the TCP gene family in M. candidum is urgently needed. In this study, we used the HMMER search method in conjunction with the BLASTp method to identify the members of the TCP gene family, and a total of 35 TCP genes were identified. A domain analysis further confirmed that all 35 TCPs contained a TCP superfamily, a characteristic involved in dimerization and DNA binding that can be found in most genes from this gene family, suggesting that our identification was effective. As a result of the domain conservation analysis, the 35 TCP genes could be classified into two classes, TCP-P and TCP-C, based on the conservative regions of 55 and 59 amino acids, respectively. Gene-duplication analysis revealed that most TCP genes were present in duplication events that eventually led to TCP gene expansion in M. candidum. All the detected gene pairs had a Ka/Ks value of less than one, suggesting that purification selection is the most important factor that influences the evolution of TCP genes. Phylogenetic analysis of three species displayed the evolutionary relationship of TCP genes across different species and further confirmed our results. The real-time quantitative PCR (qRT-PCR) results showed that McTCP2a, McTCP7a, McTCP10, McTCP11, McTCP12a, McTCP13, McTCP16, McTCP17, McTCP18, McTCP20 and McTCP21 may be involved in leaf development; McTCP4a, McTCP1, McTCP14, McTCP17, McTCP18, McTCP20, McTCP22 and McTCP24 may be involved in flower development; and McTCP2a, McTCP3, McTCP5a, McTCP6, McTCP7a, McTCP9, McTCP11, McTCP14 and McTCP16 may be involved in seed development. Our results dissect the TCP gene family across the genome of M. candidum and provide valuable information for exploring TCP genes to promote molecular breeding and property improvement of M. candidum in the future.
Collapse
|
9
|
Saroha A, Pal D, Gomashe SS, Akash, Kaur V, Ujjainwal S, Rajkumar S, Aravind J, Radhamani J, Kumar R, Chand D, Sengupta A, Wankhede DP. Identification of QTNs Associated With Flowering Time, Maturity, and Plant Height Traits in Linum usitatissimum L. Using Genome-Wide Association Study. Front Genet 2022; 13:811924. [PMID: 35774513 PMCID: PMC9237403 DOI: 10.3389/fgene.2022.811924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/02/2022] [Indexed: 12/21/2022] Open
Abstract
Early flowering, maturity, and plant height are important traits for linseed to fit in rice fallows, for rainfed agriculture, and for economically viable cultivation. Here, Multi-Locus Genome-Wide Association Study (ML-GWAS) was undertaken in an association mapping panel of 131 accessions, genotyped using 68,925 SNPs identified by genotyping by sequencing approach. Phenotypic evaluation data of five environments comprising 3 years and two locations were used. GWAS was performed for three flowering time traits including days to 5%, 50%, and 95% flowering, days to maturity, and plant height by employing five ML-GWAS methods: FASTmrEMMA, FASTmrMLM, ISIS EM-BLASSO, mrMLM, and pLARmEB. A total of 335 unique QTNs have been identified for five traits across five environments. 109 QTNs were stable as observed in ≥2 methods and/or environments, explaining up to 36.6% phenotypic variance. For three flowering time traits, days to maturity, and plant height, 53, 30, and 27 stable QTNs, respectively, were identified. Candidate genes having roles in flower, pollen, embryo, seed and fruit development, and xylem/phloem histogenesis have been identified. Gene expression of candidate genes for flowering and plant height were studied using transcriptome of an early maturing variety Sharda (IC0523807). The present study unravels QTNs/candidate genes underlying complex flowering, days to maturity, and plant height traits in linseed.
Collapse
|
10
|
Qi X, Guo S, Wang D, Zhong Y, Chen M, Chen C, Cheng D, Liu Z, An T, Li J, Jiao Y, Wang Y, Liu J, Zhang Y, Chen S, Liu C. ZmCOI2a and ZmCOI2b redundantly regulate anther dehiscence and gametophytic male fertility in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:849-862. [PMID: 35167149 DOI: 10.1111/tpj.15708] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
In higher plants, the generation and release of viable pollen from anthers is vital for double fertilization and the initiation of seed development. Thus, the characterization of genes related to pollen development and anther dehiscence in plants is of great significance. The F-box protein COI1 plays a crucial role in the jasmonate (JA) signaling pathway and interacts with many JAZ family proteins in the presence of jasmonoyl-isoleucine (JA-Ile) or coronatine (COR). The mutation of AtCOI1 in Arabidopsis leads to defective anther dehiscence and male sterility (MS), although COI has not been shown to affect fertility in Zea mays (maize). Here we identified two genes, ZmCOI2a and ZmCOI2b, that redundantly regulate gametophytic male fertility. Both ZmCOI2a and ZmCOI2b are highly homologous and constitutively expressed in all tissues tested. Subcellular localization revealed that ZmCOI2a and ZmCOI2b were located in the nucleus. The coi2a coi2b double mutant, generated by CRISPR/Cas9, had non-dehiscent anthers, delayed anther development and MS. In addition, coi2a coi2b male gametes could not be transmitted to the next generation because of severe defects in pollen germination. The JA content of coi2a coi2b anthers was unaltered compared with those of the wild type, and the exogenous application of JA could not rescue the fertility defects of coi2a coi2b. Transcriptome analysis showed that the expression of genes involving the JA signaling transduction pathway, including ZmJAZ3, ZmJAZ4, ZmJAZ5 and ZmJAZ15, was affected in coi2a coi2b. However, yeast two-hybrid assays showed that ZmJAZs interacted with ZmCOI1s, but not with ZmCOI2s. In conclusion, ZmCOI2a and ZmCOI2b redundantly regulate anther dehiscence and gametophytic male fertility in maize.
Collapse
Affiliation(s)
- Xiaolong Qi
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Shuwei Guo
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Dong Wang
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Yu Zhong
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Ming Chen
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Chen Chen
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Dehe Cheng
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Zongkai Liu
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Tai An
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Jinlong Li
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Yanyan Jiao
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Yuwen Wang
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Jinchu Liu
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Yuling Zhang
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Shaojiang Chen
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Chenxu Liu
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| |
Collapse
|
11
|
Rutley N, Harper JF, Miller G. Reproductive resilience: putting pollen grains in two baskets. TRENDS IN PLANT SCIENCE 2022; 27:237-246. [PMID: 34627662 DOI: 10.1016/j.tplants.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
To ensure reproductive success, flowering plants produce an excess of pollen to fertilize a limited number of ovules. Pollen grains mature into two distinct subpopulations - those that display high metabolic activity and elevated reactive oxygen species (ROS) levels immediately after hydration (high-ROS/active), and those that maintain an extended period of dormancy with low metabolic activity (low-ROS/inactive/arrested/dormant). We propose that the dormant pollen serves as a backup to provide a second chance for successful fertilization when the 'first wave' of pollen encounters an unpredictable growth condition such as heat stress. This model provides a framework for considering the role of dormancy in reproductive stress tolerance as well as strategies for mitigating pollen thermovulnerability to daytime and night-time warming that is associated with global climate change.
Collapse
Affiliation(s)
- Nicholas Rutley
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, 5290002, Israel
| | - Jeffery F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada at Reno, NV 89557, USA
| | - Gad Miller
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
12
|
Mei J, Zhou P, Zeng Y, Sun B, Chen L, Ye D, Zhang X. MAP3Kε1/2 Interact with MOB1A/1B and Play Important Roles in Control of Pollen Germination through Crosstalk with JA Signaling in Arabidopsis. Int J Mol Sci 2022; 23:ijms23052683. [PMID: 35269823 PMCID: PMC8910673 DOI: 10.3390/ijms23052683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Restriction of pollen germination before the pollen grain is pollinated to stigma is essential for successful fertilization in angiosperms. However, the mechanisms underlying the process remain poorly understood. Here, we report functional characterization of the MAPKKK kinases, MAP3Kε1 and MAP3Kε2, involve in control of pollen germination in Arabidopsis. The two genes were expressed in different tissues with higher expression levels in the tricellular pollen grains. The map3kε1 map3kε2 double mutation caused abnormal callose accumulation, increasing level of JA and precocious pollen germination, resulting in significantly reduced seed set. Furthermore, the map3kε1 map3kε2 double mutations obviously upregulated the expression levels of genes in JA biosynthesis and signaling. The MAP3Kε1/2 interacted with MOB1A/1B which shared homology with the core components of Hippo singling pathway in yeast. The Arabidopsis mob1a mob1b mutant also exhibited a similar phenotype of precocious pollen germination to that in map3kε1 map3kε2 mutants. Taken together, these results suggested that the MAP3Kεs interacted with MOB1s and played important role in restriction of the precocious pollen germination, possibly through crosstalk with JA signaling and influencing callose accumulation in Arabidopsis.
Collapse
Affiliation(s)
- Juan Mei
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (J.M.); (P.Z.); (Y.Z.); (B.S.); (L.C.); (D.Y.)
| | - Pengmin Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (J.M.); (P.Z.); (Y.Z.); (B.S.); (L.C.); (D.Y.)
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuejuan Zeng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (J.M.); (P.Z.); (Y.Z.); (B.S.); (L.C.); (D.Y.)
| | - Binyang Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (J.M.); (P.Z.); (Y.Z.); (B.S.); (L.C.); (D.Y.)
| | - Liqun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (J.M.); (P.Z.); (Y.Z.); (B.S.); (L.C.); (D.Y.)
| | - De Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (J.M.); (P.Z.); (Y.Z.); (B.S.); (L.C.); (D.Y.)
| | - Xueqin Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (J.M.); (P.Z.); (Y.Z.); (B.S.); (L.C.); (D.Y.)
- Correspondence: ; Tel./Fax: +86-10-6273-4837
| |
Collapse
|
13
|
Wang J, Chen J, Huang S, Han D, Li J, Guo D. Investigating the Mechanism of Unilateral Cross Incompatibility in Longan ( Dimocarpus longan Lour.) Cultivars (Yiduo × Shixia). FRONTIERS IN PLANT SCIENCE 2022; 12:821147. [PMID: 35222456 PMCID: PMC8874016 DOI: 10.3389/fpls.2021.821147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Longan (Dimocarpus longan Lour.) is an important subtropical fruit tree in China. Nearly 90% of longan fruit imports from Thailand are from the cultivar Yiduo. However, we have observed that there exists a unilateral cross incompatibility (UCI) when Yiduo is used as a female parent and Shixia (a famous Chinese cultivar) as a male parent. Here, we performed a comparative transcriptome analysis coupled with microscopy of pistils from two reciprocal pollination combinations [Shixia♂ × Yiduo♀(SY) and Yiduo♀ × Shixia♂(YS)] 4, 8, 12, and 24 h after pollination. We also explored endogenous jasmonic acid (JA) and jasmonyl isoleucine (JA-Ile) levels in pistils of the crosses. The microscopic observations showed that the UCI was sporophytic. The endogenous JA and JA-Ile levels were higher in YS than in SY at the studied time points. We found 7,251 differentially expressed genes from the transcriptome analysis. Our results highlighted that genes associated with JA biosynthesis and signaling, pollen tube growth, cell wall modification, starch and sucrose biosynthesis, and protein processing in endoplasmic reticulum pathways were differentially regulated between SY and YS. We discussed transcriptomic changes in the above-mentioned pathways regarding the observed microscopic and/or endogenous hormone levels. This is the first report on the elaboration of transcriptomic changes in longan reciprocal pollination combination showing UCI. The results presented here will enable the longan breeding community to better understand the mechanisms of UCI.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Ji Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shilian Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Dongmei Han
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Jianguang Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Dongliang Guo
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
14
|
Zhang MJ, Zhao TY, Ouyang XK, Zhao XY, Dai X, Gao XQ. Pollen-specific gene SKU5-SIMILAR 13 enhances growth of pollen tubes in the transmitting tract in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:696-710. [PMID: 34626184 DOI: 10.1093/jxb/erab448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Pollen tube growth and penetration in female tissues are essential for the transfer of sperm to the embryo sac during plant pollination. Despite its importance during pollination, little is known about the mechanisms that mediate pollen tube growth in female tissues. In this study, we identified an Arabidopsis thaliana pollen/pollen tube-specific gene, SKU5-SIMILAR 13 (SKS13), which was critical for the growth of pollen tubes in the transmitting tract. The SKS13 protein was distributed throughout the cytoplasm and pollen tube walls at the apical region. In comparison with wild-type pollen tubes, those of the sks13 mutants burst more frequently when grown in vitro. Additionally, the growth of sks13 pollen tubes was retarded in the transmitting tract, thereby resulting in decreased male fertility. The accumulation of pectin and cellulose in the cell wall of sks13 pollen tubes was altered, and the content of jasmonic acid (JA) in sks13 pollen was reduced. The pollen tubes treated with an inhibitor of JA biosynthesis grew much more slowly and had an altered distribution of pectin, which is similar to the pollen tube phenotypes of the SKS13 mutation. Our results suggest that SKS13 is essential for pollen tube growth in the transmitting tract by mediating the biosynthesis of JA that modifies the components of pollen tube cell walls.
Collapse
Affiliation(s)
- Ming Jun Zhang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China271018
| | - Tian Yi Zhao
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China271018
| | - Xiu Ke Ouyang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China271018
| | - Xin-Ying Zhao
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China271018
| | - Xinren Dai
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China100091
| | - Xin-Qi Gao
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China271018
| |
Collapse
|
15
|
Seok HY, Bae H, Kim T, Mehdi SMM, Nguyen LV, Lee SY, Moon YH. Non-TZF Protein AtC3H59/ZFWD3 Is Involved in Seed Germination, Seedling Development, and Seed Development, Interacting with PPPDE Family Protein Desi1 in Arabidopsis. Int J Mol Sci 2021; 22:ijms22094738. [PMID: 33947021 PMCID: PMC8124945 DOI: 10.3390/ijms22094738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
Despite increasing reports on the function of CCCH zinc finger proteins in plant development and stress response, the functions and molecular aspects of many non-tandem CCCH zinc finger (non-TZF) proteins remain uncharacterized. AtC3H59/ZFWD3 is an Arabidopsis non-TZF protein and belongs to the ZFWD subfamily harboring a CCCH zinc finger motif and a WD40 domain. In this study, we characterized the biological and molecular functions of AtC3H59, which is subcellularly localized in the nucleus. The seeds of AtC3H59-overexpressing transgenic plants (OXs) germinated faster than those of wild type (WT), whereas atc3h59 mutant seeds germinated slower than WT seeds. AtC3H59 OX seedlings were larger and heavier than WT seedlings, whereas atc3h59 mutant seedlings were smaller and lighter than WT seedlings. Moreover, AtC3H59 OX seedlings had longer primary root length than WT seedlings, whereas atc3h59 mutant seedlings had shorter primary root length than WT seedlings, owing to altered cell division activity in the root meristem. During seed development, AtC3H59 OXs formed larger and heavier seeds than WT. Using yeast two-hybrid screening, we isolated Desi1, a PPPDE family protein, as an interacting partner of AtC3H59. AtC3H59 and Desi1 interacted via their WD40 domain and C-terminal region, respectively, in the nucleus. Taken together, our results indicate that AtC3H59 has pleiotropic effects on seed germination, seedling development, and seed development, and interacts with Desi1 in the nucleus via its entire WD40 domain. To our knowledge, this is the first report to describe the biological functions of the ZFWD protein and Desi1 in Arabidopsis.
Collapse
Affiliation(s)
- Hye-Yeon Seok
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea; (H.-Y.S.); (H.B.)
| | - Hyungjoon Bae
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea; (H.-Y.S.); (H.B.)
| | - Taehyoung Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (T.K.); (S.M.M.M.); (L.V.N.)
| | - Syed Muhammad Muntazir Mehdi
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (T.K.); (S.M.M.M.); (L.V.N.)
| | - Linh Vu Nguyen
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (T.K.); (S.M.M.M.); (L.V.N.)
| | - Sun-Young Lee
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;
| | - Yong-Hwan Moon
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea; (H.-Y.S.); (H.B.)
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (T.K.); (S.M.M.M.); (L.V.N.)
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea
- Correspondence: ; Tel.: +82-51-510-2592
| |
Collapse
|
16
|
Kim YJ, Kim MH, Hong WJ, Moon S, Kim EJ, Silva J, Lee J, Lee S, Kim ST, Park SK, Jung KH. GORI, encoding the WD40 domain protein, is required for pollen tube germination and elongation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1645-1664. [PMID: 33345419 DOI: 10.1111/tpj.15139] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 05/05/2023]
Abstract
Successful delivery of sperm cells to the embryo sac in higher plants is mediated by pollen tube growth. The molecular mechanisms underlying pollen germination and tube growth in crop plants remain rather unclear, although these mechanisms are crucial to plant reproduction and seed formation. By screening pollen-specific gene mutants in rice (Oryza sativa), we identified a T-DNA insertional mutant of Germinating modulator of rice pollen (GORI) that showed a one-to-one segregation ratio for wild type (WT) to heterozygous. GORI encodes a seven-WD40-motif protein that is homologous to JINGUBANG/REN4 in Arabidopsis. GORI is specifically expressed in rice pollen, and its protein is localized in the nucleus, cytosol and plasma membrane. Furthermore, a homozygous mutant, gori-2, created through CRISPR-Cas9 clearly exhibited male sterility with disruption of pollen tube germination and elongation. The germinated pollen tube of gori-2 exhibited decreased actin filaments and altered pectin distribution. Transcriptome analysis revealed that 852 pollen-specific genes were downregulated in gori-2 compared with the WT, and Gene Ontology enrichment analysis indicated that these genes are strongly associated with cell wall modification and clathrin coat assembly. Based on the molecular features of GORI, phenotypical observation of the gori mutant and its interaction with endocytic proteins and Rac GTPase, we propose that GORI plays key roles in forming endo-/exocytosis complexes that could mediate pollen tube growth in rice.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, Pusan National University, Miryang, 50463, Republic of Korea
| | - Myung-Hee Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Woo-Jong Hong
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Sunok Moon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Eui-Jung Kim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Jeniffer Silva
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Jinwon Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, 50463, Republic of Korea
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| |
Collapse
|
17
|
Zhou PM, Liang Y, Mei J, Liao HZ, Wang P, Hu K, Chen LQ, Zhang XQ, Ye D. The Arabidopsis AGC kinases NDR2/4/5 interact with MOB1A/1B and play important roles in pollen development and germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1035-1052. [PMID: 33215783 DOI: 10.1111/tpj.15085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/29/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Pollen formation and pollen tube growth are essential for the delivery of male gametes into the female embryo sac for double fertilization. Little is known about the mechanisms that regulate the late developmental process of pollen formation and pollen germination. In this study, we characterized a group of Arabidopsis AGC kinase proteins, NDR2/4/5, involved in pollen development and pollen germination. The NDR2/4/5 genes are mainly expressed in pollen grains at the late developmental stages and in pollen tubes. They function redundantly in pollen formation and pollen germination. At the tricellular stages, the ndr2 ndr4 ndr5 mutant pollen grains exhibit an abnormal accumulation of callose, precocious germination and burst in anthers, leading to a drastic reduction in fertilization and a reduced seed set. NDR2/4/5 proteins can interact with another group of proteins (MOB1A/1B) homologous to the MOB proteins from the Hippo signaling pathway in yeast and animals. The Arabidopsis mob1a mob1b mutant pollen grains also have a phenotype similar to that of ndr2 ndr4 ndr5 pollen grains. These results provide new evidence demonstrating that the Hippo signaling components are conserved in plants and play important roles in sexual plant reproduction.
Collapse
Affiliation(s)
- Peng-Min Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yan Liang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Juan Mei
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hong-Ze Liao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Pu Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ke Hu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Li-Qun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xue-Qin Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - De Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Genome-Wide Identification and Characterization of the TCP Gene Family in Cucumber ( Cucumis sativus L.) and Their Transcriptional Responses to Different Treatments. Genes (Basel) 2020; 11:genes11111379. [PMID: 33233827 PMCID: PMC7709023 DOI: 10.3390/genes11111379] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
TCP proteins are plant-specific transcription factors widely implicated in leaf morphogenesis and senescence, flowering, lateral branching, hormone crosstalk, and stress responses. However, the relationship between the transcription pattern of TCPs and organ development in cucumber has not been systematically studied. In this study, we performed a genome-wide identification of putative TCP genes and analyzed their chromosomal location, gene structure, conserved motif, and transcript expression. A total of 27 putative TCP genes were identified and characterized in cucumber. All 27 putative CsTCP genes were classified into class I and class II. Class I comprised 12 CsTCPs and Class II contained 15 CsTCPs. The 27 putative CsTCP genes were randomly distributed in five of seven chromosomes in cucumber. Four putative CsTCP genes were found to contain putative miR319 target sites. Quantitative RT-PCR revealed that 27 putative CsTCP genes exhibited different expression patterns in cucumber tissues and floral organ development. Transcript expression and phenotype analysis showed that the putative CsTCP genes responded to temperature and photoperiod and were induced by gibberellin (GA)and ethylene treatment, which suggested that CsTCP genes may regulate the lateral branching by involving in multiple signal pathways. These results lay the foundation for studying the function of cucumber TCP genes in the future.
Collapse
|
19
|
Xu L, Xiong X, Liu W, Liu T, Yu Y, Cao J. BcMF30a and BcMF30c, Two Novel Non-Tandem CCCH Zinc-Finger Proteins, Function in Pollen Development and Pollen Germination in Brassica campestris ssp. chinensis. Int J Mol Sci 2020; 21:ijms21176428. [PMID: 32899329 PMCID: PMC7504113 DOI: 10.3390/ijms21176428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/19/2020] [Accepted: 08/31/2020] [Indexed: 01/04/2023] Open
Abstract
Chinese cabbage (Brassica campestris) is an economically important leaf vegetable crop worldwide. Mounting studies have shown that cysteine-cysteine-cysteine-histidine (CCCH) zinc-finger protein genes are involved in various plant growth and development processes. However, research on the involvement of these genes in male reproductive development is still in its infancy. Here, we identified 11 male fertility-related CCCH genes in Chinese cabbage. Among them, a pair of paralogs encoding novel non-tandem CCCH zinc-finger proteins, Brassica campestris Male Fertility 30a (BcMF30a) and BcMF30c, were further characterized. They were highly expressed in pollen during microgametogenesis and continued to express in germinated pollen. Further analyses demonstrated that both BcMF30a and BcMF30c may play a dual role as transcription factors and RNA-binding proteins in plant cells. Functional analysis showed that partial bcmf30a bcmf30c pollen grains were aborted due to the degradation of pollen inclusion at the microgametogenesis phase, and the germination rate of viable pollen was also greatly reduced, indicating that BcMF30a and BcMF30c are required for both pollen development and pollen germination. This research provided insights into the function of CCCH proteins in regulating male reproductive development and laid a theoretical basis for hybrid breeding of Chinese cabbage.
Collapse
Affiliation(s)
- Liai Xu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (X.X.); (W.L.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Xingpeng Xiong
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (X.X.); (W.L.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Weimiao Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (X.X.); (W.L.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Tingting Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (X.X.); (W.L.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Youjian Yu
- Department of Horticulture, College of Agriculture and Food Science, Zhejiang A & F University, Lin’an 311300, China;
| | - Jiashu Cao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (X.X.); (W.L.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-131-8501-1958
| |
Collapse
|
20
|
Fan YL, Barrett SCH, Yang JQ, Zhao JL, Xia YM, Li QJ. Water mediates fertilization in a terrestrial flowering plant. THE NEW PHYTOLOGIST 2019; 224:1133-1141. [PMID: 31032938 DOI: 10.1111/nph.15873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
Water-mediated fertilization is ubiquitous in early land plants. This ancestral mode of fertilization has, however, generally been considered to have been lost during the evolutionary history of terrestrial flowering plants. We investigated reproductive mechanisms in the subtropical ginger Cautleya gracilis (Zingiberaceae), which has two pollen conditions - granular and filiform masses - depending on external conditions. We tested whether rain transformed granular pollen into filiform masses and whether this then promoted pollen-tube growth and fertilization of ovules. Using experimental manipulations in the field we investigated the contribution of water-mediated fertilization to seed production. Rain caused granular pollen to form filiform masses of germinating pollen tubes, which transported sperm to ovules, resulting in fertilization and seed set. Flowers exposed to rain produced significantly more seeds than those protected from the rain, which retained granular pollen. Insect pollination made only a limited contribution to seed set because rainy conditions limited pollinator service. Our results reveal a previously undescribed fertilization mechanism in flowering plants involving water-mediated fertilization stimulated by rain. Water-mediated fertilization is likely to be adaptive in the subtropical monsoon environments in which C. gracilis occurs by ensuring reproductive assurance when persistent rain prevents insect-mediated pollination.
Collapse
Affiliation(s)
- Yong-Li Fan
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, China
- Kunming Survey & Design Institute of State Forestry and Grassland Administration, Kunming, Yunnan, 650216, China
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Ji-Qin Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Jian-Li Zhao
- Yunnan Key Laboratory of Plant Reproductive Adaption and Evolutionary Ecology, Yunnan University, Kunming, Yunnan, 650091, China
- Laboratory of Ecology and Evolutionary Biology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, 650216, China
| | - Yong-Mei Xia
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Qing-Jun Li
- Yunnan Key Laboratory of Plant Reproductive Adaption and Evolutionary Ecology, Yunnan University, Kunming, Yunnan, 650091, China
- Laboratory of Ecology and Evolutionary Biology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, 650216, China
| |
Collapse
|
21
|
Pacini E, Dolferus R. Pollen Developmental Arrest: Maintaining Pollen Fertility in a World With a Changing Climate. FRONTIERS IN PLANT SCIENCE 2019; 10:679. [PMID: 31178886 PMCID: PMC6544056 DOI: 10.3389/fpls.2019.00679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/06/2019] [Indexed: 05/07/2023]
Abstract
During evolution of land plants, the haploid gametophytic stage has been strongly reduced in size and the diploid sporophytic phase has become the dominant growth form. Both male and female gametophytes are parasitic to the sporophyte and reside in separate parts of the flower located either on the same plant or on different plants. For fertilization to occur, bi-cellular or tri-cellular male gametophytes (pollen grains) have to travel to the immobile female gametophyte in the ovary. To survive exposure to a hostile atmosphere, pollen grains are thought to enter a state of complete or partial developmental arrest (DA). DA in pollen is strongly associated with acquisition of desiccation tolerance (DT) to extend pollen viability during air travel, but occurrence of DA in pollen is both species-dependent and at the same time strongly dependent on the reigning environmental conditions at the time of dispersal. Several environmental stresses (heat, drought, cold, humidity) are known to affect pollen production and viability. Climate change is also posing a serious threat to plant reproductive behavior and crop productivity. It is therefore timely to gain a better understanding of how DA and pollen viability are controlled in plants and how pollen viability can be protected to secure crop yields in a changing environment. Here, we provide an overview of how DA and pollen viability are controlled and how the environment affects them. We make emphasis on what is known and areas where a deeper understanding is needed.
Collapse
Affiliation(s)
- Ettore Pacini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Rudy Dolferus
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| |
Collapse
|
22
|
Chen H, Yang Q, Chen K, Zhao S, Zhang C, Pan R, Cai T, Deng Y, Wang X, Chen Y, Chu W, Xie W, Zhuang W. Integrated microRNA and transcriptome profiling reveals a miRNA-mediated regulatory network of embryo abortion under calcium deficiency in peanut (Arachis hypogaea L.). BMC Genomics 2019; 20:392. [PMID: 31113378 PMCID: PMC6528327 DOI: 10.1186/s12864-019-5770-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 05/03/2019] [Indexed: 12/14/2022] Open
Abstract
Background Peanut embryo development is a complex process involving a series of gene regulatory pathways and is easily affected by various elements in the soil. Calcium deficiency in the soil induces early embryo abortion in peanut, which provides an opportunity to determine the mechanism underlying this important event. MicroRNA (miRNA)-guided target gene regulation is vital to a wide variety of biological processes. However, whether miRNAs participate in peanut embryo abortion under calcium deficiency has yet to be explored. Results In this study, with the assistance of a recently established platform for genome sequences of wild peanut species, we analyzed small RNAs (sRNAs) in early peanut embryos. A total of 29 known and 132 potential novel miRNAs were discovered in 12 peanut-specific miRNA families. Among the identified miRNAs, 87 were differentially expressed during early embryo development under calcium deficiency and sufficiency conditions, and 117 target genes of the differentially expressed miRNAs were identified. Integrated analysis of miRNAs and transcriptome expression revealed 52 differentially expressed target genes of 20 miRNAs. The expression profiles for some differentially expressed targets by gene chip analysis were consistent with the transcriptome sequencing results. Together, our results demonstrate that seed/embryo development-related genes such as TCP3, AP2, EMB2750, and GRFs; cell division and proliferation-related genes such as HsfB4 and DIVARICATA; plant hormone signaling pathway-related genes such as CYP707A1 and CYP707A3, with which abscisic acid (ABA) is involved; and BR1, with which brassinosteroids (BRs) are involved, were actively modulated by miRNAs during early embryo development. Conclusions Both a number of miRNAs and corresponding target genes likely playing key roles in the regulation of peanut embryo abortion under calcium deficiency were identified. These findings provide for the first time new insights into miRNA-mediated regulatory pathways involved in peanut embryo abortion under calcium deficiency. Electronic supplementary material The online version of this article (10.1186/s12864-019-5770-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hua Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Qiang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Kun Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Shanshan Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Chong Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Ronglong Pan
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsin Chu, 30013, Taiwan
| | - Tiecheng Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Ye Deng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Xingjun Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Yuting Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Wenting Chu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Wenping Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Weijian Zhuang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China. .,Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China. .,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.
| |
Collapse
|
23
|
Ma F, Qi H, Hu YF, Jiang QR, Zhang LG, Xue P, Yang FQ, Wang R, Ju Y, Uchida H, Zhang Q. The Mitochondrial Endonuclease M20 Participates in the Down-Regulation of Mitochondrial DNA in Pollen Cells. PLANT PHYSIOLOGY 2018; 178:1537-1550. [PMID: 30301773 PMCID: PMC6288753 DOI: 10.1104/pp.18.00754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
Maintaining the appropriate number of mitochondrial DNA (mtDNA) molecules is crucial for supporting mitochondrial metabolism and function in both plant and animal cells. For example, a substantial decrease in mtDNA levels occurs as a key part of pollen development. The molecular mechanisms regulating mtDNA copy number are largely unclear, particularly with regard to those that reduce mtDNA levels. Here, we identified and purified a 20-kD endonuclease, M20, from maize (Zea mays) pollen mitochondria. We found M20 to be an His-Asn-His/Asn (H-N-H/N) nuclease that degrades linear and circular DNA in the presence of Mg2+ or Mn2+ Arabidopsis (Arabidopsis thaliana) AtM20, which shared high sequence similarity with maize M20, localized to the mitochondria, had a similar H-N-H/N structure, and degraded both linear and circular DNA. AtM20 transcript levels increased during pollen development, in parallel with a rapid reduction in mtDNA. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 genome-editing techniques were used to generate knockout lines of AtM20 (atm20), which exhibited a significant delay in the reduction in mtDNA levels in pollen vegetative cells but normal mtDNA levels in somatic cells. The delayed reduction in pollen mtDNA levels was rescued by the transgenic expression of AtM20 in atm20 plants. This study thus uncovers an endonucleolytic DNase in plant mitochondria and its crucial role in reducing mtDNA levels, pointing to the complex mechanism regulating mtDNA levels in plants.
Collapse
Affiliation(s)
- Fei Ma
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Qi
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yu-Fei Hu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qian-Ru Jiang
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Li-Guang Zhang
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Peng Xue
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fu-Quan Yang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Wang
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yan Ju
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Hidenobu Uchida
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
- Department of Chemical Biological Sciences, Faculty of Science, Japan Women's University, Tokyo 112-8681, Japan
| | - Quan Zhang
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
24
|
Hu R, Xiao J, Gu T, Yu X, Zhang Y, Chang J, Yang G, He G. Genome-wide identification and analysis of WD40 proteins in wheat (Triticum aestivum L.). BMC Genomics 2018; 19:803. [PMID: 30400808 PMCID: PMC6219084 DOI: 10.1186/s12864-018-5157-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/10/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND WD40 domains are abundant in eukaryotes, and they are essential subunits of large multiprotein complexes, which serve as scaffolds. WD40 proteins participate in various cellular processes, such as histone modification, transcription regulation, and signal transduction. WD40 proteins are regarded as crucial regulators of plant development processes. However, the systematic identification and analysis of WD40 proteins have yet to be reported in wheat. RESULTS In this study, a total of 743 WD40 proteins were identified in wheat, and they were grouped into 5 clusters and 11 subfamilies. Their gene structures, chromosomal locations, and evolutionary relationships were analyzed. Among them, 39 and 46 pairs of TaWD40s were distinguished as tandem duplication and segmental duplication genes. The 123 OsWD40s were identified to exhibit synteny with TaWD40s. TaWD40s showed the specific characteristics at the reproductive developmental stage, and numerous TaWD40s were involved in responses to stresses, including cold, heat, drought, and powdery mildew infection pathogen, based on the result of RNA-seq data analysis. The expression profiles of some TaWD40s in wheat seed development were confirmed through qRT-PCR technique. CONCLUSION In this study, 743 TaWD40s were identified from the wheat genome. As the main driving force of evolution, duplication events were observed, and homologous recombination was another driving force of evolution. The expression profiles of TaWD40s revealed their importance for the growth and development of wheat and their response to biotic and abiotic stresses. Our study also provided important information for further functional characterization of some WD40 proteins in wheat.
Collapse
Affiliation(s)
- Rui Hu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jie Xiao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Ting Gu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xiaofen Yu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yang Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| |
Collapse
|
25
|
Li H, Luo N, Wang W, Liu Z, Chen J, Zhao L, Tan L, Wang C, Qin Y, Li C, Xu T, Yang Z. The REN4 rheostat dynamically coordinates the apical and lateral domains of Arabidopsis pollen tubes. Nat Commun 2018; 9:2573. [PMID: 29968705 PMCID: PMC6030205 DOI: 10.1038/s41467-018-04838-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/11/2018] [Indexed: 11/08/2022] Open
Abstract
The dynamic maintenance of polar domains in the plasma membrane (PM) is critical for many fundamental processes, e.g., polar cell growth and growth guidance but remains poorly characterized. Rapid tip growth of Arabidopsis pollen tubes requires dynamic distribution of active ROP1 GTPase to the apical domain. Here, we show that clathrin-mediated endocytosis (CME) coordinates lateral REN4 with apical ROP1 signaling. REN4 interacted with but antagonized active ROP1. REN4 also interacts and co-localizes with CME components, but exhibits an opposite role to CME, which removes both REN4 and active ROP1 from the PM. Mathematical modeling shows that REN4 restrains the spatial distribution of active ROP1 and is important for the robustness of polarity control. Hence our results indicate that REN4 acts as a spatiotemporal rheostat by interacting with ROP1 to initiate their removal from the PM by CME, thereby coordinating a dynamic demarcation between apical and lateral domains during rapid tip growth.
Collapse
Affiliation(s)
- Hui Li
- Shanghai Center for Plant Stress Biology and Shanghai Institute of Plant Physiology and Ecolog, Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, 201602, Shanghai, China
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92508, USA
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Nan Luo
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92508, USA
- FAFU-UCR Joint Center for Horticultural Biology and Metebolomics, Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Weidong Wang
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92508, USA
| | - Zengyu Liu
- FAFU-UCR Joint Center for Horticultural Biology and Metebolomics, Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Jisheng Chen
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92508, USA
- FAFU-UCR Joint Center for Horticultural Biology and Metebolomics, Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Liangtao Zhao
- Shanghai Center for Plant Stress Biology and Shanghai Institute of Plant Physiology and Ecolog, Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, 201602, Shanghai, China
| | - Li Tan
- Shanghai Center for Plant Stress Biology and Shanghai Institute of Plant Physiology and Ecolog, Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, 201602, Shanghai, China
| | - Chunyan Wang
- Shanghai Center for Plant Stress Biology and Shanghai Institute of Plant Physiology and Ecolog, Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, 201602, Shanghai, China
| | - Yuan Qin
- FAFU-UCR Joint Center for Horticultural Biology and Metebolomics, Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Chao Li
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Tongda Xu
- Shanghai Center for Plant Stress Biology and Shanghai Institute of Plant Physiology and Ecolog, Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, 201602, Shanghai, China
- FAFU-UCR Joint Center for Horticultural Biology and Metebolomics, Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92508, USA.
- FAFU-UCR Joint Center for Horticultural Biology and Metebolomics, Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China.
| |
Collapse
|
26
|
Yang X, Zhang Q, Zhao K, Luo Q, Bao S, Liu H, Men S. The Arabidopsis GPR1 Gene Negatively Affects Pollen Germination, Pollen Tube Growth, and Gametophyte Senescence. Int J Mol Sci 2017. [PMID: 28635622 PMCID: PMC5486124 DOI: 10.3390/ijms18061303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genes essential for gametophyte development and fertilization have been identified and studied in detail; however, genes that fine-tune these processes are largely unknown. Here, we characterized an unknown Arabidopsis gene, GTP-BINDING PROTEIN RELATED1 (GPR1). GPR1 is specifically expressed in ovule, pollen, and pollen tube. Enhanced green fluorescent protein-tagged GPR1 localizes to both nucleus and cytoplasm, and it also presents in punctate and ring-like structures. gpr1 mutants exhibit no defect in gametogenesis and seed setting, except that their pollen grains are pale in color. Scanning electron microscopy analyses revealed a normal patterned but thinner exine on gpr1 pollen surface. This may explain why gpr1 pollen grains are pale. We next examined whether GPR1 mutation affects post gametogenesis processes including pollen germination, pollen tube growth, and ovule senescence. We found that gpr1 pollen grains germinated earlier, and their pollen tubes elongated faster. Emasculation assay revealed that unfertilized gpr1 pistil expressed the senescence marker PBFN1:GUS (GUS: a reporter gene that encodes β-glucuronidase) one-day earlier than the wild type pistil. Consistently, ovules and pollen grains of gpr1 mutants showed lower viability than those of the wild type at 4 to 5 days post anthesis. Together, these data suggest that GPR1 functions as a negative regulator of pollen germination, pollen tube growth, and gametophyte senescence to fine-tune the fertilization process.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Qinying Zhang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Kun Zhao
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Qiong Luo
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Shuguang Bao
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Huabin Liu
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Shuzhen Men
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
27
|
Huang H, Liu B, Liu L, Song S. Jasmonate action in plant growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1349-1359. [PMID: 28158849 DOI: 10.1093/jxb/erw495] [Citation(s) in RCA: 349] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phytohormones, including jasmonates (JAs), gibberellin, ethylene, abscisic acid, and auxin, integrate endogenous developmental cues with environmental signals to regulate plant growth, development, and defense. JAs are well- recognized lipid-derived stress hormones that regulate plant adaptations to biotic stresses, including herbivore attack and pathogen infection, as well as abiotic stresses, including wounding, ozone, and ultraviolet radiation. An increasing number of studies have shown that JAs also have functions in a remarkable number of plant developmental events, including primary root growth, reproductive development, and leaf senescence. Since the 1980s, details of the JA biosynthesis pathway, signaling pathway, and crosstalk during plant growth and development have been elucidated. Here, we summarize recent advances and give an updated overview of JA action and crosstalk in plant growth and development.
Collapse
Affiliation(s)
- Huang Huang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bei Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Liangyu Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|