1
|
Zhang H, Chen W, Zhu D, Zhang B, Xu Q, Shi C, He H, Dai X, Li Y, He W, Lv Y, Yang L, Cao X, Cui Y, Leng Y, Wei H, Liu X, Zhang B, Wang X, Guo M, Zhang Z, Li X, Liu C, Yuan Q, Wang T, Yu X, Qian H, Zhang Q, Chen D, Hu G, Qian Q, Shang L. Population-level exploration of alternative splicing and its unique role in controlling agronomic traits of rice. THE PLANT CELL 2024; 36:4372-4387. [PMID: 38916914 PMCID: PMC11449091 DOI: 10.1093/plcell/koae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
Alternative splicing (AS) plays crucial roles in regulating various biological processes in plants. However, the genetic mechanisms underlying AS and its role in controlling important agronomic traits in rice (Oryza sativa) remain poorly understood. In this study, we explored AS in rice leaves and panicles using the rice minicore collection. Our analysis revealed a high level of transcript isoform diversity, with approximately one-fifth of the potential isoforms acting as major transcripts in both tissues. Regarding the genetic mechanism of AS, we found that the splicing of 833 genes in the leaf and 1,230 genes in the panicle was affected by cis-genetic variation. Twenty-one percent of these AS events could only be explained by large structural variations. Approximately 77.5% of genes with significant splicing quantitative trait loci (sGenes) exhibited tissue-specific regulation, and AS can cause 26.9% (leaf) and 23.6% (panicle) of sGenes to have altered, lost, or gained functional domains. Additionally, through splicing-phenotype association analysis, we identified phosphate-starvation-induced RING-type E3 ligase (OsPIE1; LOC_Os01g72480), whose splicing ratio was significantly associated with plant height. In summary, this study provides an understanding of AS in rice and its contribution to the regulation of important agronomic traits.
Collapse
Affiliation(s)
- Hong Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- Yazhouwan National Laboratory, No. 8 Huanjin Road, Yazhou District, Sanya, Hainan 572024, China
| | - Wu Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - De Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Bintao Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Qiang Xu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Chuanlin Shi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Huiying He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Xiaofan Dai
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Yilin Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Wenchuang He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Yang Lv
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Longbo Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Xinglan Cao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Yan Cui
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Yue Leng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Hua Wei
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Xiangpei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Bin Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Xianmeng Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Mingliang Guo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Zhipeng Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Xiaoxia Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Congcong Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Qiaoling Yuan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Tianyi Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Xiaoman Yu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Hongge Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Qianqian Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Dandan Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Guanjing Hu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Qian Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- Yazhouwan National Laboratory, No. 8 Huanjin Road, Yazhou District, Sanya, Hainan 572024, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- Yazhouwan National Laboratory, No. 8 Huanjin Road, Yazhou District, Sanya, Hainan 572024, China
- Nanfan Research Institute, Chinese Academy of Agriculture Science, Sanya, Hainan 572024, China
| |
Collapse
|
2
|
Gupta P, Jaiswal P. Transcriptional Modulation during Photomorphogenesis in Rice Seedlings. Genes (Basel) 2024; 15:1072. [PMID: 39202430 PMCID: PMC11353317 DOI: 10.3390/genes15081072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Light is one of the most important factors regulating plant gene expression patterns, metabolism, physiology, growth, and development. To explore how light may induce or alter transcript splicing, we conducted RNA-Seq-based transcriptome analyses by comparing the samples harvested as etiolated seedlings grown under continuous dark conditions vs. the light-treated green seedlings. The study aims to reveal differentially regulated protein-coding genes and novel long noncoding RNAs (lncRNAs), their light-induced alternative splicing, and their association with biological pathways. We identified 14,766 differentially expressed genes, of which 4369 genes showed alternative splicing. We observed that genes mapped to the plastid-localized methyl-erythritol-phosphate (MEP) pathway were light-upregulated compared to the cytosolic mevalonate (MVA) pathway genes. Many of these genes also undergo splicing. These pathways provide crucial metabolite precursors for the biosynthesis of secondary metabolic compounds needed for chloroplast biogenesis, the establishment of a successful photosynthetic apparatus, and photomorphogenesis. In the chromosome-wide survey of the light-induced transcriptome, we observed intron retention as the most predominant splicing event. In addition, we identified 1709 novel lncRNA transcripts in our transcriptome data. This study provides insights on light-regulated gene expression and alternative splicing in rice.
Collapse
Affiliation(s)
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
3
|
Hardy EC, Balcerowicz M. Untranslated yet indispensable-UTRs act as key regulators in the environmental control of gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4314-4331. [PMID: 38394144 PMCID: PMC11263492 DOI: 10.1093/jxb/erae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/22/2024] [Indexed: 02/25/2024]
Abstract
To survive and thrive in a dynamic environment, plants must continuously monitor their surroundings and adjust their development and physiology accordingly. Changes in gene expression underlie these developmental and physiological adjustments, and are traditionally attributed to widespread transcriptional reprogramming. Growing evidence, however, suggests that post-transcriptional mechanisms also play a vital role in tailoring gene expression to a plant's environment. Untranslated regions (UTRs) act as regulatory hubs for post-transcriptional control, harbouring cis-elements that affect an mRNA's processing, localization, translation, and stability, and thereby tune the abundance of the encoded protein. Here, we review recent advances made in understanding the critical function UTRs exert in the post-transcriptional control of gene expression in the context of a plant's abiotic environment. We summarize the molecular mechanisms at play, present examples of UTR-controlled signalling cascades, and discuss the potential that resides within UTRs to render plants more resilient to a changing climate.
Collapse
Affiliation(s)
- Emma C Hardy
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, UK
| | - Martin Balcerowicz
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, UK
| |
Collapse
|
4
|
Li C, Krishnan S, Zhang M, Hu D, Meng D, Riedelsberger J, Dougherty L, Xu K, Piñeros MA, Cheng L. Alternative Splicing Underpins the ALMT9 Transporter Function for Vacuolar Malic Acid Accumulation in Apple. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310159. [PMID: 38514904 PMCID: PMC11165477 DOI: 10.1002/advs.202310159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Vacuolar malic acid accumulation largely determines fruit acidity, a key trait for the taste and flavor of apple and other fleshy fruits. Aluminum-activated malate transporter 9 (ALMT9/Ma1) underlies a major genetic locus, Ma, for fruit acidity in apple, but how the protein transports malate across the tonoplast is unclear. Here, it is shown that overexpression of the coding sequence of Ma1 (Ma1α) drastically decreases fruit acidity in "Royal Gala" apple, leading to uncovering alternative splicing underpins Ma1's function. Alternative splicing generates two isoforms: Ma1β is 68 amino acids shorter with much lower expression than the full-length protein Ma1α. Ma1β does not transport malate itself but interacts with the functional Ma1α to form heterodimers, creating synergy with Ma1α for malate transport in a threshold manner (When Ma1β/Ma1α ≥ 1/8). Overexpression of Ma1α triggers feedback inhibition on the native Ma1 expression via transcription factor MYB73, decreasing the Ma1β level well below the threshold that leads to significant reductions in Ma1 function and malic acid accumulation in fruit. Overexpression of Ma1α and Ma1β or genomic Ma1 increases both isoforms proportionally and enhances fruit malic acid accumulation. These findings reveal an essential role of alternative splicing in ALMT9-mediated malate transport underlying apple fruit acidity.
Collapse
Affiliation(s)
- Chunlong Li
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhan430070China
| | | | - Mengxia Zhang
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Dagang Hu
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Dong Meng
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Janin Riedelsberger
- Center for Bioinformatics, Simulation and Modeling, Department of Bioinformatics, Faculty of EngineeringUniversity of TalcaTalca3460000Chile
| | - Laura Dougherty
- Horticulture Section, School of Integrative Plant Science, New York State Agricultural Experiment StationCornell UniversityGenevaNY14456USA
| | - Kenong Xu
- Horticulture Section, School of Integrative Plant Science, New York State Agricultural Experiment StationCornell UniversityGenevaNY14456USA
| | - Miguel A. Piñeros
- Plant Biology Section, School of Integrative Plant Science and Robert W. Holley Center for Agriculture and HealthUSDA‐ARS Cornell UniversityIthacaNY14853USA
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| |
Collapse
|
5
|
Fan C, Lyu M, Zeng B, He Q, Wang X, Lu MZ, Liu B, Liu J, Esteban E, Pasha A, Provart NJ, Wang H, Zhang J. Profiling of the gene expression and alternative splicing landscapes of Eucalyptus grandis. PLANT, CELL & ENVIRONMENT 2024; 47:1363-1378. [PMID: 38221855 DOI: 10.1111/pce.14814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/05/2023] [Accepted: 01/01/2024] [Indexed: 01/16/2024]
Abstract
Eucalyptus is a widely planted hardwood tree species due to its fast growth, superior wood properties and adaptability. However, the post-transcriptional regulatory mechanisms controlling tissue development and stress responses in Eucalyptus remain poorly understood. In this study, we performed a comprehensive analysis of the gene expression profile and the alternative splicing (AS) landscape of E. grandis using strand-specific RNA-Seq, which encompassed 201 libraries including different organs, developmental stages, and environmental stresses. We identified 10 416 genes (33.49%) that underwent AS, and numerous differentially expressed and/or differential AS genes involved in critical biological processes, such as primary-to-secondary growth transition of stems, adventitious root formation, aging and responses to phosphorus- or boron-deficiency. Co-expression analysis of AS events and gene expression patterns highlighted the potential upstream regulatory role of AS events in multiple processes. Additionally, we highlighted the lignin biosynthetic pathway to showcase the potential regulatory functions of AS events in the KNAT3 and IRL3 genes within this pathway. Our high-quality expression atlas and AS landscape serve as valuable resources for unravelling the genetic control of woody plant development, long-term adaptation, and understanding transcriptional diversity in Eucalyptus. Researchers can conveniently access these resources through the interactive ePlant browser (https://bar.utoronto.ca/eplant_eucalyptus).
Collapse
Affiliation(s)
- Chunjie Fan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Mingjie Lyu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Bingshan Zeng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Qiang He
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoping Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Bobin Liu
- Jiansu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Jun Liu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Eddi Esteban
- Department of Cell and Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Asher Pasha
- Department of Cell and Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Nicholas J Provart
- Department of Cell and Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Yan Y, Luo H, Qin Y, Yan T, Jia J, Hou Y, Liu Z, Zhai J, Long Y, Deng X, Cao X. Light controls mesophyll-specific post-transcriptional splicing of photoregulatory genes by AtPRMT5. Proc Natl Acad Sci U S A 2024; 121:e2317408121. [PMID: 38285953 PMCID: PMC10861865 DOI: 10.1073/pnas.2317408121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Light plays a central role in plant growth and development, providing an energy source and governing various aspects of plant morphology. Previous study showed that many polyadenylated full-length RNA molecules within the nucleus contain unspliced introns (post-transcriptionally spliced introns, PTS introns), which may play a role in rapidly responding to changes in environmental signals. However, the mechanism underlying post-transcriptional regulation during initial light exposure of young, etiolated seedlings remains elusive. In this study, we used FLEP-seq2, a Nanopore-based sequencing technique, to analyze nuclear RNAs in Arabidopsis (Arabidopsis thaliana) seedlings under different light conditions and found numerous light-responsive PTS introns. We also used single-nucleus RNA sequencing (snRNA-seq) to profile transcripts in single nucleus and investigate the distribution of light-responsive PTS introns across distinct cell types. We established that light-induced PTS introns are predominant in mesophyll cells during seedling de-etiolation following exposure of etiolated seedlings to light. We further demonstrated the involvement of the splicing-related factor A. thaliana PROTEIN ARGININE METHYLTRANSFERASE 5 (AtPRMT5), working in concert with the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a critical repressor of light signaling pathways. We showed that these two proteins orchestrate light-induced PTS events in mesophyll cells and facilitate chloroplast development, photosynthesis, and morphogenesis in response to ever-changing light conditions. These findings provide crucial insights into the intricate mechanisms underlying plant acclimation to light at the cell-type level.
Collapse
Affiliation(s)
- Yan Yan
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Haofei Luo
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Yuwei Qin
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Tingting Yan
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences, Haikou571100, China
| | - Jinbu Jia
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Yifeng Hou
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Zhijian Liu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Yanping Long
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Xian Deng
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Xiaofeng Cao
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
7
|
Careno DA, Assaf CH, Eggermont EDC, Canelo M, Cerdán PD, Yanovsky MJ. Role of Phytochromes in Red Light-Regulated Alternative Splicing in Arabidopsis thaliana: Impactful but Not Indispensable. Cells 2023; 12:2447. [PMID: 37887291 PMCID: PMC10605401 DOI: 10.3390/cells12202447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Light is both the main source of energy and a key environmental signal for plants. It regulates not only gene expression but also the tightly related processes of splicing and alternative splicing (AS). Two main pathways have been proposed to link light sensing with the splicing machinery. One occurs through a photosynthesis-related signal, and the other is mediated by photosensory proteins, such as red light-sensing phytochromes. Here, we evaluated the relative contribution of each of these pathways by performing a transcriptome-wide analysis of light regulation of AS in plants that do not express any functional phytochrome (phyQ). We found that an acute 2-h red-light pulse in the middle of the night induces changes in the splicing patterns of 483 genes in wild-type plants. Approximately 30% of these genes also showed strong light regulation of splicing patterns in phyQ mutant plants, revealing that phytochromes are important but not essential for the regulation of AS by R light. We then performed a meta-analysis of related transcriptomic datasets and found that different light regulatory pathways can have overlapping targets in terms of AS regulation. All the evidence suggests that AS is regulated simultaneously by various light signaling pathways, and the relative contribution of each pathway is highly dependent on the plant developmental stage.
Collapse
Affiliation(s)
- Daniel Alejandro Careno
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires–Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Buenos Aires C1405BWE, Argentina; (C.H.A.); (E.D.C.E.); (M.C.); (P.D.C.)
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Constanza Helena Assaf
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires–Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Buenos Aires C1405BWE, Argentina; (C.H.A.); (E.D.C.E.); (M.C.); (P.D.C.)
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Eline Dieuwerke Catharina Eggermont
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires–Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Buenos Aires C1405BWE, Argentina; (C.H.A.); (E.D.C.E.); (M.C.); (P.D.C.)
- Plant-Environment Signaling Group, Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Micaela Canelo
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires–Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Buenos Aires C1405BWE, Argentina; (C.H.A.); (E.D.C.E.); (M.C.); (P.D.C.)
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Pablo Diego Cerdán
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires–Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Buenos Aires C1405BWE, Argentina; (C.H.A.); (E.D.C.E.); (M.C.); (P.D.C.)
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Marcelo Javier Yanovsky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires–Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Buenos Aires C1405BWE, Argentina; (C.H.A.); (E.D.C.E.); (M.C.); (P.D.C.)
| |
Collapse
|
8
|
Rodriguez Gallo MC, Uhrig RG. Phosphorylation mediated regulation of RNA splicing in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1249057. [PMID: 37780493 PMCID: PMC10539000 DOI: 10.3389/fpls.2023.1249057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023]
Abstract
For the past two decades, the study of alternative splicing (AS) and its involvement in plant development and stress response has grown in popularity. Only recently however, has the focus shifted to the study of how AS regulation (or lack-thereof) affects downstream mRNA and protein landscapes and how these AS regulatory events impact plant development and stress tolerance. In humans, protein phosphorylation represents one of the predominant mechanisms by which AS is regulated and thus the protein kinases governing these phosphorylation events are of interest for further study. Large-scale phosphoproteomic studies in plants have consistently found that RNA splicing-related proteins are extensively phosphorylated, however, the signaling pathways involved in AS regulation have not been resolved. In this mini-review, we summarize our current knowledge of the three major splicing-related protein kinase families in plants that are suggested to mediate AS phospho-regulation and draw comparisons to their metazoan orthologs. We also summarize and contextualize the phosphorylation events identified as occurring on splicing-related protein families to illustrate the high degree to which splicing-related proteins are modified, placing a new focus on elucidating the impacts of AS at the protein and PTM-level.
Collapse
Affiliation(s)
| | - R. Glen Uhrig
- University of Alberta, Department of Biological Sciences, Edmonton, AB, Canada
- University of Alberta, Department of Biochemistry, Edmonton, AB, Canada
| |
Collapse
|
9
|
Busche M. How many kinases does it take to change a light developmental response? THE PLANT CELL 2023; 35:3388-3389. [PMID: 37352161 PMCID: PMC10473212 DOI: 10.1093/plcell/koad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/25/2023]
Affiliation(s)
- Michael Busche
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists, Rockville, MD, USA
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
10
|
Saile J, Wießner-Kroh T, Erbstein K, Obermüller DM, Pfeiffer A, Janocha D, Lohmann J, Wachter A. SNF1-RELATED KINASE 1 and TARGET OF RAPAMYCIN control light-responsive splicing events and developmental characteristics in etiolated Arabidopsis seedlings. THE PLANT CELL 2023; 35:3413-3428. [PMID: 37338062 PMCID: PMC10473197 DOI: 10.1093/plcell/koad168] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/23/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
The kinases SNF1-RELATED KINASE 1 (SnRK1) and TARGET OF RAPAMYCIN (TOR) are central sensors of the energy status, linking this information via diverse regulatory mechanisms to plant development and stress responses. Despite the well-studied functions of SnRK1 and TOR under conditions of limited or ample energy availability, respectively, little is known about the extent to which the 2 sensor systems function and how they are integrated in the same molecular process or physiological context. Here, we demonstrate that both SnRK1 and TOR are required for proper skotomorphogenesis in etiolated Arabidopsis (Arabidopsis thaliana) seedlings, light-induced cotyledon opening, and regular development in light. Furthermore, we identify SnRK1 and TOR as signaling components acting upstream of light- and sugar-regulated alternative splicing events, expanding the known action spectra for these 2 key players in energy signaling. Our findings imply that concurring SnRK1 and TOR activities are required throughout various phases of plant development. Based on the current knowledge and our findings, we hypothesize that turning points in the activities of these sensor kinases, as expected to occur upon illumination of etiolated seedlings, instead of signaling thresholds reflecting the nutritional status may modulate developmental programs in response to altered energy availability.
Collapse
Affiliation(s)
- Jennifer Saile
- Institute for Molecular Physiology (imP), University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Theresa Wießner-Kroh
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Katarina Erbstein
- Institute for Molecular Physiology (imP), University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Dominik M Obermüller
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Anne Pfeiffer
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Denis Janocha
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Jan Lohmann
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Andreas Wachter
- Institute for Molecular Physiology (imP), University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| |
Collapse
|
11
|
Global Analysis of Dark- and Heat-Regulated Alternative Splicing in Arabidopsis. Int J Mol Sci 2023; 24:ijms24065299. [PMID: 36982373 PMCID: PMC10049525 DOI: 10.3390/ijms24065299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Alternative splicing (AS) is one of the major post-transcriptional regulation mechanisms that contributes to plant responses to various environmental perturbations. Darkness and heat are two common abiotic factors affecting plant growth, yet the involvement and regulation of AS in the plant responses to these signals remain insufficiently examined. In this study, we subjected Arabidopsis seedlings to 6 h of darkness or heat stress and analyzed their transcriptome through short-read RNA sequencing. We revealed that both treatments altered the transcription and AS of a subset of genes yet with different mechanisms. Dark-regulated AS events were found enriched in photosynthesis and light signaling pathways, while heat-regulated AS events were enriched in responses to abiotic stresses but not in heat-responsive genes, which responded primarily through transcriptional regulation. The AS of splicing-related genes (SRGs) was susceptible to both treatments; while dark treatment mostly regulated the AS of these genes, heat had a strong effect on both their transcription and AS. PCR analysis showed that the AS of the Serine/Arginine-rich family gene SR30 was reversely regulated by dark and heat, and heat induced the upregulation of multiple minor SR30 isoforms with intron retention. Our results suggest that AS participates in plant responses to these two abiotic signals and reveal the regulation of splicing regulators during these processes.
Collapse
|
12
|
Yin L, Zander M, Huang SSC, Xie M, Song L, Saldierna Guzmán JP, Hann E, Shanbhag BK, Ng S, Jain S, Janssen BJ, Clark NM, Walley JW, Beddoe T, Bar-Joseph Z, Lewsey MG, Ecker JR. Transcription Factor Dynamics in Cross-Regulation of Plant Hormone Signaling Pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531630. [PMID: 36945593 PMCID: PMC10028877 DOI: 10.1101/2023.03.07.531630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Cross-regulation between hormone signaling pathways is indispensable for plant growth and development. However, the molecular mechanisms by which multiple hormones interact and co-ordinate activity need to be understood. Here, we generated a cross-regulation network explaining how hormone signals are integrated from multiple pathways in etiolated Arabidopsis (Arabidopsis thaliana) seedlings. To do so we comprehensively characterized transcription factor activity during plant hormone responses and reconstructed dynamic transcriptional regulatory models for six hormones; abscisic acid, brassinosteroid, ethylene, jasmonic acid, salicylic acid and strigolactone/karrikin. These models incorporated target data for hundreds of transcription factors and thousands of protein-protein interactions. Each hormone recruited different combinations of transcription factors, a subset of which were shared between hormones. Hub target genes existed within hormone transcriptional networks, exhibiting transcription factor activity themselves. In addition, a group of MITOGEN-ACTIVATED PROTEIN KINASES (MPKs) were identified as potential key points of cross-regulation between multiple hormones. Accordingly, the loss of function of one of these (MPK6) disrupted the global proteome, phosphoproteome and transcriptome during hormone responses. Lastly, we determined that all hormones drive substantial alternative splicing that has distinct effects on the transcriptome compared with differential gene expression, acting in early hormone responses. These results provide a comprehensive understanding of the common features of plant transcriptional regulatory pathways and how cross-regulation between hormones acts upon gene expression.
Collapse
Affiliation(s)
- Lingling Yin
- La Trobe Institute for Agriculture and Food, Department of Animal, Plant and Soil Sciences, School of Agriculture Biomedicine and Environment, AgriBio Building, La Trobe University, Melbourne, VIC 3086, Australia
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Mark Zander
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Present address: Waksman Institute of Microbiology, Department of Plant Biology, Rutgers, The State University of New Jersey, NJ 08854, USA
| | - Shao-shan Carol Huang
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Present address: Department of Biology, New York University, New York, NY 10003, USA
| | - Mingtang Xie
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Present address: Cibus, San Diego, CA 92121, USA
| | - Liang Song
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Present address: Department of Botany, The University of British Columbia, Vancouver, British Columbia, Canada
| | - J. Paola Saldierna Guzmán
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Present address: Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Elizabeth Hann
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Present address: Department of Chemical and Environmental Engineering, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Bhuvana K. Shanbhag
- La Trobe Institute for Agriculture and Food, Department of Animal, Plant and Soil Sciences, School of Agriculture Biomedicine and Environment, AgriBio Building, La Trobe University, Melbourne, VIC 3086, Australia
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Sophia Ng
- La Trobe Institute for Agriculture and Food, Department of Animal, Plant and Soil Sciences, School of Agriculture Biomedicine and Environment, AgriBio Building, La Trobe University, Melbourne, VIC 3086, Australia
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Siddhartha Jain
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Bart J. Janssen
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Natalie M. Clark
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA, 50011 USA
| | - Justin W. Walley
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA, 50011 USA
| | - Travis Beddoe
- La Trobe Institute for Agriculture and Food, Department of Animal, Plant and Soil Sciences, School of Agriculture Biomedicine and Environment, AgriBio Building, La Trobe University, Melbourne, VIC 3086, Australia
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Mathew G. Lewsey
- La Trobe Institute for Agriculture and Food, Department of Animal, Plant and Soil Sciences, School of Agriculture Biomedicine and Environment, AgriBio Building, La Trobe University, Melbourne, VIC 3086, Australia
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Centre of Excellence in Plants For Space, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Joseph R. Ecker
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
13
|
Wang L, Xu F, Yu F. Two environmental signal-driven RNA metabolic processes: Alternative splicing and translation. PLANT, CELL & ENVIRONMENT 2023; 46:718-732. [PMID: 36609800 DOI: 10.1111/pce.14537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Plants live in fixed locations and have evolved adaptation mechanisms that integrate multiple responses to various environmental signals. Among the different components of these response pathways, receptors/sensors represent nodes that recognise environmental signals. Additionally, RNA metabolism plays an essential role in the regulation of gene expression and protein synthesis. With the development of RNA biotechnology, recent advances have been made in determining the roles of RNA metabolism in response to different environmental signals-especially the roles of alternative splicing and translation. In this review, we discuss recent progress in research on how the environmental adaptation mechanisms in plants are affected at the posttranscriptional level. These findings improve our understanding of the mechanism through which plants adapt to environmental changes by regulating the posttranscriptional level and are conducive for breeding stress-tolerant plants to cope with dynamic and rapidly changing environments.
Collapse
Affiliation(s)
- Long Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
| | - Fan Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| |
Collapse
|
14
|
Martín G. Regulation of alternative splicing by retrograde and light signals converges to control chloroplast proteins. FRONTIERS IN PLANT SCIENCE 2023; 14:1097127. [PMID: 36844062 PMCID: PMC9950775 DOI: 10.3389/fpls.2023.1097127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Retrograde signals sent by chloroplasts control transcription in the nucleus. These signals antagonistically converge with light signals to coordinate the expression of genes involved in chloroplast functioning and seedling development. Although significant advances have been made in understanding the molecular interplay between light and retrograde signals at the transcriptional level, little is known about their interconnection at the post-transcriptional level. By using different publicly available datasets, this study addresses the influence of retrograde signaling on alternative splicing and defines the molecular and biological functions of this regulation. These analyses revealed that alternative splicing mimics transcriptional responses triggered by retrograde signals at different levels. First, both molecular processes similarly depend on the chloroplast-localized pentatricopeptide-repeat protein GUN1 to modulate the nuclear transcriptome. Secondly, as described for transcriptional regulation, alternative splicing coupled with the nonsense-mediated decay pathway effectively downregulates expression of chloroplast proteins in response to retrograde signals. Finally, light signals were found to antagonistically control retrograde signaling-regulated splicing isoforms, which consequently generates opposite splicing outcomes that likely contribute to the opposite roles these signals play in controlling chloroplast functioning and seedling development.
Collapse
|
15
|
Identification and Functional Characterization of the RcFAH12 Promoter from Castor Bean in Arabidopsis thaliana. SEPARATIONS 2022. [DOI: 10.3390/separations10010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Castor (Ricinus communis L.) seed oil is the commercial source of ricinoleate, a valuable raw material used in many industries. Oleoyl-12-hydroxylase (RcFAH12) is a key enzyme in the biosynthesis of ricinoleate, accumulating nearly 90% of the triacylglycerol in castor seeds. Little is known about the transcriptional regulation of RcFAH12. We used rapid amplification of cDNA 5′ ends (5′RACE) to locate the transcription start site (TSS) of RcFAH12, and the sequence of a 2605 bp region, −2506~+99, surrounding the TSS was cloned. We then investigated these regions to promote β-glucuronidase (GUS) expression in transgenic Arabidopsis by the progressive 5′ and 3′ deletions strategies. The GUS staining showed that the GUS accumulation varied in tissues under the control of different deleted fragments of RcFAH12. In addition, the GUS expression driven by the RcFAH12 promoter markedly accumulated in transgenic seeds, which indicated that RcFAH12 might play an important role in the biosynthesis of ricinoleic acid. This study will lay a potential foundation for developing a tissue-specific promoter in oil-seed crops.
Collapse
|
16
|
Kathare PK, Xin R, Ganesan AS, June VM, Reddy ASN, Huq E. SWAP1-SFPS-RRC1 splicing factor complex modulates pre-mRNA splicing to promote photomorphogenesis in Arabidopsis. Proc Natl Acad Sci U S A 2022; 119:e2214565119. [PMID: 36282917 PMCID: PMC9636961 DOI: 10.1073/pnas.2214565119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/22/2022] [Indexed: 11/21/2022] Open
Abstract
Light signals perceived by a group of photoreceptors have profound effects on the physiology, growth, and development of plants. The red/far-red light-absorbing phytochromes (phys) modulate these aspects by intricately regulating gene expression at multiple levels. Here, we report the identification and functional characterization of an RNA-binding splicing factor, SWAP1 (SUPPRESSOR-OF-WHITE-APRICOT/SURP RNA-BINDING DOMAIN-CONTAINING PROTEIN1). Loss-of-function swap1-1 mutant is hyposensitive to red light and exhibits a day length-independent early flowering phenotype. SWAP1 physically interacts with two other splicing factors, (SFPS) SPLICING FACTOR FOR PHYTOCHROME SIGNALING and (RRC1) REDUCED RED LIGHT RESPONSES IN CRY1CRY2 BACKGROUND 1 in a light-independent manner and forms a ternary complex. In addition, SWAP1 physically interacts with photoactivated phyB and colocalizes with nuclear phyB photobodies. Phenotypic analyses show that the swap1sfps, swap1rrc1, and sfpsrrc1 double mutants display hypocotyl lengths similar to that of the respective single mutants under red light, suggesting that they function in the same genetic pathway. The swap1sfps double and swap1sfpsrrc1 triple mutants display pleiotropic phenotypes, including sterility at the adult stage. Deep RNA sequencing (RNA-seq) analyses show that SWAP1 regulates the gene expression and pre-messenger RNA (mRNA) alternative splicing of a large number of genes, including those involved in plant responses to light signaling. A comparative analysis of alternative splicing among single, double, and triple mutants showed that all three splicing factors coordinately regulate the alternative splicing of a subset of genes. Our study uncovered the function of a splicing factor that modulates light-regulated alternative splicing by interacting with photoactivated phyB and other splicing factors.
Collapse
Affiliation(s)
- Praveen Kumar Kathare
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
- The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
| | - Ruijiao Xin
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
- The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
| | - Abirama Sundari Ganesan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
- The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
| | - Viviana M. June
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
- The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
| | - Anireddy S. N. Reddy
- Department of Biology, Program in Cell and Molecular Plant Biology, Colorado State University, Fort Collins, CO 80523
| | - Enamul Huq
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
- The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
17
|
Li Y, Du Y, Huai J, Jing Y, Lin R. The RNA helicase UAP56 and the E3 ubiquitin ligase COP1 coordinately regulate alternative splicing to repress photomorphogenesis in Arabidopsis. THE PLANT CELL 2022; 34:4191-4212. [PMID: 35920787 PMCID: PMC9614450 DOI: 10.1093/plcell/koac235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Light is a key environmental signal that regulates plant growth and development. While posttranscriptional regulatory mechanisms of gene expression include alternative splicing (AS) of pre-messenger RNA (mRNA) in both plants and animals, how light signaling affects AS in plants is largely unknown. Here, we identify DExD/H RNA helicase U2AF65-associated protein (UAP56) as a negative regulator of photomorphogenesis in Arabidopsis thaliana. UAP56 is encoded by the homologs UAP56a and UAP56b. Knockdown of UAP56 led to enhanced photomorphogenic responses and diverse developmental defects during vegetative and reproductive growth. UAP56 physically interacts with the central light signaling repressor constitutive photomorphogenic 1 (COP1) and U2AF65. Global transcriptome analysis revealed that UAP56 and COP1 co-regulate the transcription of a subset of genes. Furthermore, deep RNA-sequencing analysis showed that UAP56 and COP1 control pre-mRNA AS in both overlapping and distinct manners. Ribonucleic acid immunoprecipitation assays showed that UAP56 and COP1 bind to common small nuclear RNAs and mRNAs of downstream targets. Our study reveals that both UAP56 and COP1 function as splicing factors that coordinately regulate AS during light-regulated plant growth and development.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxin Du
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junling Huai
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yanjun Jing
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | |
Collapse
|
18
|
Comparative Analysis of Environment-Responsive Alternative Splicing in the Inflorescences of Cultivated and Wild Tomato Species. Int J Mol Sci 2022; 23:ijms231911585. [PMID: 36232886 PMCID: PMC9569760 DOI: 10.3390/ijms231911585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Cultivated tomato (Solanum lycopersicum) is bred for fruit production in optimized environments, in contrast to harsh environments where their ancestral relatives thrive. The process of domestication and breeding has profound impacts on the phenotypic plasticity of plant development and the stress response. Notably, the alternative splicing (AS) of precursor message RNA (pre-mRNA), which is one of the major factors contributing to transcriptome complexity, is responsive to developmental cues and environmental change. To determine a possible association between AS events and phenotypic plasticity, we investigated environment-responsive AS events in the inflorescences of cultivated tomato and its ancestral relatives S. pimpinellifolium. Despite that similar AS frequencies were detected in the cultivated tomato variety Moneymaker and two S. pimpinellifolium accessions under the same growth conditions, 528 genes including splicing factors showed differential splicing in the inflorescences of plants grown in open fields and plastic greenhouses in the Moneymaker variety. In contrast, the two S. pimpinellifolium accessions, LA1589 and LA1781, had 298 and 268 genes showing differential splicing, respectively. Moreover, seven heat responsive genes showed opposite expression patterns in response to changing growth conditions between Moneymaker and its ancestral relatives. Accordingly, there were eight differentially expressed splice variants from genes involved in heat response in Moneymaker. Our results reveal distinctive features of AS events in the inflorescences between cultivated tomato and its ancestral relatives, and show that AS regulation in response to environmental changes is genotype dependent.
Collapse
|
19
|
Hao DC, Chen H, Xiao PG, Jiang T. A Global Analysis of Alternative Splicing of Dichocarpum Medicinal Plants, Ranunculales. Curr Genomics 2022; 23:207-216. [PMID: 36777007 PMCID: PMC9878827 DOI: 10.2174/1389202923666220527112929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022] Open
Abstract
Background: The multiple isoforms are often generated from a single gene via Alternative Splicing (AS) in plants, and the functional diversity of the plant genome is significantly increased. Despite well-studied gene functions, the specific functions of isoforms are little known, therefore, the accurate prediction of isoform functions is exceedingly wanted. Methods: Here we perform the first global analysis of AS of Dichocarpum, a medicinal genus of Ranunculales, by utilizing full-length transcriptome datasets of five Chinese endemic Dichocarpum taxa. Multiple software were used to identify AS events, the gene function was annotated based on seven databases, and the protein-coding sequence of each AS isoform was translated into an amino acid sequence. The self-developed software DIFFUSE was used to predict the functions of AS isoforms. Results: Among 8,485 genes with AS events, the genes with two isoforms were the most (6,038), followed by those with three isoforms and four isoforms. Retained intron (RI, 551) was predominant among 1,037 AS events, and alternative 3' splice sites and alternative 5' splice sites were second. The software DIFFUSE was effective in predicting functions of Dichocarpum isoforms, which have not been unearthed. When compared with the sequence alignment-based database annotations, DIFFUSE performed better in differentiating isoform functions. The DIFFUSE predictions on the terms GO:0003677 (DNA binding) and GO: 0010333 (terpene synthase activity) agreed with the biological features of transcript isoforms. Conclusion: Numerous AS events were for the first time identified from full-length transcriptome datasets of five Dichocarpum taxa, and functions of AS isoforms were successfully predicted by the self-developed software DIFFUSE. The global analysis of Dichocarpum AS events and predicting isoform functions can help understand the metabolic regulations of medicinal taxa and their pharmaceutical explorations.
Collapse
Affiliation(s)
- Da-Cheng Hao
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China;,Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK;,Address correspondence to these authors at the School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China; Tel: 0086-411-84572552; E-mail: ; and Department of Computer Science and Engineering, University of California, Riverside, CA, USA; Tel/Fax: 001-951-827-2991; E-mail:
| | - Hao Chen
- Department of Computer Science and Engineering, University of California, Riverside, CA, USA;,Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA;,These authors contributed equally to this work.
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Tao Jiang
- Department of Computer Science and Engineering, University of California, Riverside, CA, USA;,Bioinformatics Division, BNRIST/Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China,Address correspondence to these authors at the School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China; Tel: 0086-411-84572552; E-mail: ; and Department of Computer Science and Engineering, University of California, Riverside, CA, USA; Tel/Fax: 001-951-827-2991; E-mail:
| |
Collapse
|
20
|
Yan T, Heng Y, Wang W, Li J, Deng XW. SWELLMAP 2, a phyB-Interacting Splicing Factor, Negatively Regulates Seedling Photomorphogenesis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:836519. [PMID: 35222493 PMCID: PMC8867171 DOI: 10.3389/fpls.2022.836519] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Light-triggered transcriptome reprogramming is critical for promoting photomorphogenesis in Arabidopsis seedlings. Nonetheless, recent studies have shed light on the importance of alternative pre-mRNA splicing (AS) in photomorphogenesis. The splicing factors splicing factor for phytochrome signaling (SFPS) and reduced red-light responses in cry1cry2 background1 (RRC1) are involved in the phytochrome B (phyB) signaling pathway and promote photomorphogenesis by controlling pre-mRNA splicing of light- and clock-related genes. However, splicing factors that serve as repressors in phyB signaling pathway remain unreported. Here, we report that the splicing factor SWELLMAP 2 (SMP2) suppresses photomorphogenesis in the light. SMP2 physically interacts with phyB and colocalizes with phyB in photobodies after light exposure. Genetic analyses show that SMP2 antagonizes phyB signaling to promote hypocotyl elongation in the light. The homologs of SMP2 in yeast and human belong to second-step splicing factors required for proper selection of the 3' splice site (3'SS) of an intron. Notably, SMP2 reduces the abundance of the functional REVEILLE 8 a (RVE8a) form, probably by determining the 3'SS, and thereby inhibits RVE8-mediated transcriptional activation of clock genes containing evening elements (EE). Finally, SMP2-mediated reduction of functional RVE8 isoform promotes phytochrome interacting factor 4 (PIF4) expression to fine-tune hypocotyl elongation in the light. Taken together, our data unveil a phyB-interacting splicing factor that negatively regulates photomorphogenesis, providing additional information for further mechanistic investigations regarding phyB-controlled AS of light- and clock-related genes.
Collapse
Affiliation(s)
- Tingting Yan
- Harbin Institute of Technology, Harbin, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yueqin Heng
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Wenwei Wang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jian Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xing Wang Deng
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
21
|
Huang CK, Lin WD, Wu SH. An improved repertoire of splicing variants and their potential roles in Arabidopsis photomorphogenic development. Genome Biol 2022; 23:50. [PMID: 35139889 PMCID: PMC8827149 DOI: 10.1186/s13059-022-02620-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/25/2022] [Indexed: 01/03/2023] Open
Abstract
Background Light switches on the photomorphogenic development of young plant seedlings, allowing young seedlings to acquire photosynthetic capacities and gain survival fitness. Light regulates gene expression at all levels of the central dogma, including alternative splicing (AS) during the photomorphogenic development. However, accurate determination of full-length (FL) splicing variants has been greatly hampered by short-read RNA sequencing technologies. Result In this study, we adopt PacBio isoform sequencing (Iso-seq) to overcome the limitation of the short-read RNA-seq technologies. Normalized cDNA libraries used for Iso-seq allows for comprehensive and effective identification of FL AS variants. Our analyses reveal more than 30,000 splicing variant models from approximately 16,500 gene loci and additionally identify approximately 700 previously unannotated genes. Among the variants, approximately 12,000 represent new gene models. Intron retention (IR) is the most frequently observed form of variants, and many IR-containing AS variants show evidence of engagement in translation. Our study reveals the formation of heterodimers of transcription factors composed of annotated and IR-containing AS variants. Moreover, transgenic plants overexpressing the IR forms of two B-BOX DOMAIN PROTEINs exhibits light-hypersensitive phenotypes, suggesting their regulatory roles in modulating optimal light responses. Conclusions This study provides an accurate and comprehensive portrait of full-length transcript isoforms and experimentally confirms the presence of de novo synthesized AS variants that impose regulatory functions in photomorphogenic development in Arabidopsis. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02620-2.
Collapse
Affiliation(s)
- Chun-Kai Huang
- Institute of Plant and Microbial Biology, Academia Sinica, 128, Sec. 2, Academia Rd., Taipei, 11529, Taiwan
| | - Wen-Dar Lin
- The Bioinformatics Core Lab, Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, 128, Sec. 2, Academia Rd., Taipei, 11529, Taiwan.
| |
Collapse
|
22
|
Chong GL, Tu SL. RNA-seq analysis of alternative pre-mRNA splicing regulation mediated by photoreceptors in Physcomitrium patens. Methods Enzymol 2022; 683:227-241. [PMID: 37087189 DOI: 10.1016/bs.mie.2022.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Plants require light for carbon fixation in photosynthesis and activate a suite of signal-transducing photoreceptors that regulate plant development, ranging from seed germination to flowering and fruiting. Light perception by these photoreceptors triggers massive alterations of gene expression patterns and alternative splicing (AS) of many genes in plants. RNA sequencing (RNA-seq) is a powerful tool to study the full-length transcriptomes and AS of many model organisms, including the moss Physcomitrium patens. RNA-Seq has been applied successfully in transcriptome profiling of plants' developmental processes and responses to various environmental perturbations. Studies using this method provide valuable insights into the genetic networks of plants. Here we describe the use of a high-throughput Illumina sequencing system together with bioinformatics analysis software for transcriptome and AS analysis of Physcomitrium patens in response to red light (RL).
Collapse
|
23
|
Du C, Bai HY, Chen JJ, Wang JH, Wang ZF, Zhang ZH. Alternative Splicing Regulation of Glycine-Rich Proteins via Target of Rapamycin-Reactive Oxygen Species Pathway in Arabidopsis Seedlings Upon Glucose Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:830140. [PMID: 35498646 PMCID: PMC9051487 DOI: 10.3389/fpls.2022.830140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/16/2022] [Indexed: 05/05/2023]
Abstract
Glucose can serve as both the source of energy and regulatory signaling molecule in plant. Due to the environmental and metabolic change, sugar levels could affect various developmental processes. High glucose environment is hardly conductive to the plant growth but cause development arrest. Increasing evidence indicate that alternative splicing (AS) plays a pivotal role in sugar signaling. However, the regulatory mechanism upon glucose stress remains unclear. The full-length transcriptomes were obtained from the samples of Arabidopsis seedlings with 3% glucose and mock treatment, using Oxford Nanopore sequencing technologies. Further analysis indicated that many genes involved in photosynthesis were significantly repressed and many genes involved in glycolysis, mitochondrial function, and the response to oxidative stress were activated. In total, 1,220 significantly differential alternative splicing (DAS) events related to 619 genes were identified, among which 75.74% belong to intron retention (IR). Notably, more than 20% of DAS events come from a large set of glycine-rich protein (GRP) family genes, such as GRP7, whose AS types mostly belong to IR. Besides the known productive GRP transcript isoforms, we identified a lot of splicing variants with diverse introns spliced in messenger RNA (mRNA) region coding the glycine-rich (GR) domain. The AS pattern of GRPs changed and particularly, the productive GRPs increased upon glucose stress. These ASs of GRP pre-mRNAs triggered by glucose stress could be abolished by AZD-8055, which is an ATP competitive inhibitor for the target of rapamycin (TOR) kinase but could be mimicked by H2O2. Additionally, AS pattern change of arginine/serine-rich splicing factor 31(RS31) via TOR pathway, which was previously described in response to light and sucrose signaling, was also induced in a similar manner by both glucose stress and reactive oxygen species (ROS). Here we conclude that (i) glucose stress suppresses photosynthesis and activates the glycolysis-mitochondria energy relay and ROS scavenging system; (ii) glucose stress triggers transcriptome-wide AS pattern changes including a large set of splicing factors, such as GRPs and RS31; (iii) high sugars regulate AS pattern change of both GRPs and RS31 via TOR-ROS pathway. The results from this study will deepen our understanding of the AS regulation mechanism in sugar signaling.
Collapse
|
24
|
Maillot P, Velt A, Rustenholz C, Butterlin G, Merdinoglu D, Duchêne E. Alternative splicing regulation appears to play a crucial role in grape berry development and is also potentially involved in adaptation responses to the environment. BMC PLANT BIOLOGY 2021; 21:487. [PMID: 34696712 PMCID: PMC8543832 DOI: 10.1186/s12870-021-03266-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Alternative splicing (AS) produces transcript variants playing potential roles in proteome diversification and gene expression regulation. AS modulation is thus essential to respond to developmental and environmental stimuli. In grapevine, a better understanding of berry development is crucial for implementing breeding and viticultural strategies allowing adaptation to climate changes. Although profound changes in gene transcription have been shown to occur in the course of berry ripening, no detailed study on splicing modifications during this period has been published so far. We report here on the regulation of gene AS in developing berries of two grapevine (Vitis vinifera L.) varieties, Gewurztraminer (Gw) and Riesling (Ri), showing distinctive phenotypic characteristics. Using the software rMATS, the transcriptomes of berries at four developmental steps, from the green stage to mid-ripening, were analysed in pairwise comparisons between stages and varieties. RESULTS A total of 305 differential AS (DAS) events, affecting 258 genes, were identified. Interestingly, 22% of these AS events had not been reported before. Among the 80 genes that underwent the most significant variations during ripening, 22 showed a similar splicing profile in Gw and Ri, which suggests their involvement in berry development. Conversely, 23 genes were subjected to splicing regulation in only one variety. In addition, the ratios of alternative isoforms were different in Gw and Ri for 35 other genes, without any change during ripening. This last result indicates substantial AS differences between the two varieties. Remarkably, 8 AS events were specific to one variety, due to the lack of a splice site in the other variety. Furthermore, the transcription rates of the genes affected by stage-dependent splicing regulation were mostly unchanged, identifying AS modulation as an independent way of shaping the transcriptome. CONCLUSIONS The analysis of AS profiles in grapevine varieties with contrasting phenotypes revealed some similarity in the regulation of several genes with developmental functions, suggesting their involvement in berry ripening. Additionally, many splicing differences were discovered between the two varieties, that could be linked to phenotypic specificities and distinct adaptive capacities. Together, these findings open perspectives for a better understanding of berry development and for the selection of grapevine genotypes adapted to climate change.
Collapse
Affiliation(s)
- Pascale Maillot
- SVQV, INRAE - University of Strasbourg, 68000, Colmar, France.
- University of Haute Alsace, 68000, Mulhouse, France.
| | - Amandine Velt
- SVQV, INRAE - University of Strasbourg, 68000, Colmar, France
| | | | | | | | - Eric Duchêne
- SVQV, INRAE - University of Strasbourg, 68000, Colmar, France
| |
Collapse
|
25
|
Kathare PK, Huq E. Light-regulated pre-mRNA splicing in plants. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102037. [PMID: 33823333 PMCID: PMC8487434 DOI: 10.1016/j.pbi.2021.102037] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/13/2021] [Accepted: 02/26/2021] [Indexed: 05/11/2023]
Abstract
Light signal perceived by the red/far-red absorbing phytochrome (phy) family of photoreceptors regulates plant growth and development throughout the life cycle. Phytochromes regulate the light-triggered physiological responses by controlling gene expression both at the transcriptional and post-transcriptional levels. Recent large-scale RNA-seq studies have demonstrated the roles of phys in altering the global transcript diversity by modulating the pre-mRNA splicing in response to light. Moreover, several phy-interacting splicing factors/regulators from different species have been identified using forward genetics and protein-protein interaction studies, which modulate the light-regulated pre-mRNA splicing. In this article, we summarize our current understanding of the role of phys in the light-mediated pre-mRNA splicing and how that contributes to the regulation of gene expression to promote photomorphogenesis.
Collapse
Affiliation(s)
- Praveen Kumar Kathare
- Department of Molecular Biosciences, The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Enamul Huq
- Department of Molecular Biosciences, The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
26
|
Riegler S, Servi L, Scarpin MR, Godoy Herz MA, Kubaczka MG, Venhuizen P, Meyer C, Brunkard JO, Kalyna M, Barta A, Petrillo E. Light regulates alternative splicing outcomes via the TOR kinase pathway. Cell Rep 2021; 36:109676. [PMID: 34496244 PMCID: PMC8547716 DOI: 10.1016/j.celrep.2021.109676] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 05/18/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022] Open
Abstract
For plants, light is the source of energy and the most relevant regulator of growth and adaptations to the environment by inducing changes in gene expression at various levels, including alternative splicing. Light-triggered chloroplast retrograde signals control alternative splicing in Arabidopsis thaliana. Here, we provide evidence that light regulates the expression of a core set of splicing-related factors in roots. Alternative splicing responses in roots are not directly caused by light but are instead most likely triggered by photo-synthesized sugars. The target of rapamycin (TOR) kinase plays a key role in this shoot-to-root signaling pathway. Knocking down TOR expression or pharmacologically inhibiting TOR activity disrupts the alternative splicing responses to light and exogenous sugars in roots. Consistently, splicing decisions are modulated by mitochondrial activity in roots. In conclusion, by activating the TOR pathway, sugars act as mobile signals to coordinate alternative splicing responses to light throughout the whole plant. Riegler et al. reveal a central role for TOR kinase paired with retrograde signaling in alternative splicing regulation by light in roots and, to a certain extent, in leaves. Activating the TOR pathway, sugars act as mobile signals to coordinate alternative splicing responses to light throughout the whole plant.
Collapse
Affiliation(s)
- Stefan Riegler
- Department of Applied Genetics and Cell Biology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Lucas Servi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología, Molecular, y Celular, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), C1428EHA, Buenos Aires, Argentina
| | - M Regina Scarpin
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Plant Gene Expression Center, US Department of Agriculture, Agricultural Research Service, Albany, CA 94710, USA
| | - Micaela A Godoy Herz
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología, Molecular, y Celular, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), C1428EHA, Buenos Aires, Argentina
| | - María G Kubaczka
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología, Molecular, y Celular, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), C1428EHA, Buenos Aires, Argentina
| | - Peter Venhuizen
- Department of Applied Genetics and Cell Biology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Christian Meyer
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, Versailles, France
| | - Jacob O Brunkard
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Plant Gene Expression Center, US Department of Agriculture, Agricultural Research Service, Albany, CA 94710, USA; Laboratory of Genetics, University of Wisconsin, Madison, Madison, WI 53706, USA
| | - Maria Kalyna
- Department of Applied Genetics and Cell Biology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Andrea Barta
- Max Perutz Labs, Medical University of Vienna, Vienna Biocenter Campus, 1030 Vienna, Austria
| | - Ezequiel Petrillo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología, Molecular, y Celular, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
27
|
Gao P, Quilichini TD, Zhai C, Qin L, Nilsen KT, Li Q, Sharpe AG, Kochian LV, Zou J, Reddy AS, Wei Y, Pozniak C, Patterson N, Gillmor CS, Datla R, Xiang D. Alternative splicing dynamics and evolutionary divergence during embryogenesis in wheat species. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1624-1643. [PMID: 33706417 PMCID: PMC8384600 DOI: 10.1111/pbi.13579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 05/07/2023]
Abstract
Among polyploid species with complex genomic architecture, variations in the regulation of alternative splicing (AS) provide opportunities for transcriptional and proteomic plasticity and the potential for generating trait diversities. However, the evolution of AS and its influence on grain development in diploid grass and valuable polyploid wheat crops are poorly understood. To address this knowledge gap, we developed a pipeline for the analysis of alternatively spliced transcript isoforms, which takes the high sequence similarity among polyploid wheat subgenomes into account. Through analysis of synteny and detection of collinearity of homoeologous subgenomes, conserved and specific AS events across five wheat and grass species were identified. A global analysis of the regulation of AS in diploid grass and polyploid wheat grains revealed diversity in AS events not only between the endosperm, pericarp and embryo overdevelopment, but also between subgenomes. Analysis of AS in homoeologous triads of polyploid wheats revealed evolutionary divergence between gene-level and transcript-level regulation of embryogenesis. Evolutionary age analysis indicated that the generation of novel transcript isoforms has occurred in young genes at a more rapid rate than in ancient genes. These findings, together with the development of comprehensive AS resources for wheat and grass species, advance understanding of the evolution of regulatory features of AS during embryogenesis and grain development in wheat.
Collapse
Affiliation(s)
- Peng Gao
- Global Institute for Food SecurityUniversity of SaskatchewanSaskatoonSKCanada
| | - Teagen D. Quilichini
- Aquatic and Crop Resource DevelopmentNational Research Council CanadaSaskatoonSKCanada
| | - Chun Zhai
- Agriculture and Agri‐Food CanadaSaskatoon Research and Development CentreSaskatoonSKCanada
| | - Li Qin
- College of Art & ScienceUniversity of SaskatchewanSaskatoonSKCanada
| | - Kirby T. Nilsen
- Agriculture and Agri‐Food CanadaBrandon Research and Development CentreBrandonMBCanada
| | - Qiang Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Andrew G. Sharpe
- Global Institute for Food SecurityUniversity of SaskatchewanSaskatoonSKCanada
| | - Leon V. Kochian
- Global Institute for Food SecurityUniversity of SaskatchewanSaskatoonSKCanada
| | - Jitao Zou
- Aquatic and Crop Resource DevelopmentNational Research Council CanadaSaskatoonSKCanada
| | - Anireddy S.N. Reddy
- Department of Biology and Program in Cell and Molecular BiologyColorado State UniversityFort CollinsCOUSA
| | - Yangdou Wei
- College of Art & ScienceUniversity of SaskatchewanSaskatoonSKCanada
| | - Curtis Pozniak
- Crop Development CentreUniversity of SaskatchewanSaskatoonSKCanada
| | - Nii Patterson
- Aquatic and Crop Resource DevelopmentNational Research Council CanadaSaskatoonSKCanada
| | - C. Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)Unidad de Genómica AvanzadaCentro de Investigación y Estudios Avanzados del IPN (CINVESTAV‐IPN)IrapuatoGuanajuatoMexico
| | - Raju Datla
- Global Institute for Food SecurityUniversity of SaskatchewanSaskatoonSKCanada
| | - Daoquan Xiang
- Aquatic and Crop Resource DevelopmentNational Research Council CanadaSaskatoonSKCanada
| |
Collapse
|
28
|
Tognacca RS, Botto JF. Post-transcriptional regulation of seed dormancy and germination: Current understanding and future directions. PLANT COMMUNICATIONS 2021; 2:100169. [PMID: 34327318 PMCID: PMC8299061 DOI: 10.1016/j.xplc.2021.100169] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/26/2021] [Accepted: 02/13/2021] [Indexed: 05/06/2023]
Abstract
Seed dormancy is a developmental checkpoint that prevents mature seeds from germinating under conditions that are otherwise favorable for germination. Temperature and light are the most relevant environmental factors that regulate seed dormancy and germination. These environmental cues can trigger molecular and physiological responses including hormone signaling, particularly that of abscisic acid and gibberellin. The balance between the content and sensitivity of these hormones is the key to the regulation of seed dormancy. Temperature and light tightly regulate the transcription of thousands of genes, as well as other aspects of gene expression such as mRNA splicing, translation, and stability. Chromatin remodeling determines specific transcriptional outputs, and alternative splicing leads to different outcomes and produces transcripts that encode proteins with altered or lost functions. Proper regulation of chromatin remodeling and alternative splicing may be highly relevant to seed germination. Moreover, microRNAs are also critical for the control of gene expression in seeds. This review aims to discuss recent updates on post-transcriptional regulation during seed maturation, dormancy, germination, and post-germination events. We propose future prospects for understanding how different post-transcriptional processes in crop seeds can contribute to the design of genotypes with better performance and higher productivity.
Collapse
Affiliation(s)
- Rocío Soledad Tognacca
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Facultad de Ciencias Exactas y Naturales, CP1428 Buenos Aires, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, CP1417 Buenos Aires, Argentina
| | - Javier Francisco Botto
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, CP1417 Buenos Aires, Argentina
| |
Collapse
|
29
|
Alvarez JM, Brooks MD, Swift J, Coruzzi GM. Time-Based Systems Biology Approaches to Capture and Model Dynamic Gene Regulatory Networks. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:105-131. [PMID: 33667112 PMCID: PMC9312366 DOI: 10.1146/annurev-arplant-081320-090914] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
All aspects of transcription and its regulation involve dynamic events. However, capturing these dynamic events in gene regulatory networks (GRNs) offers both a promise and a challenge. The promise is that capturing and modeling the dynamic changes in GRNs will allow us to understand how organisms adapt to a changing environment. The ability to mount a rapid transcriptional response to environmental changes is especially important in nonmotile organisms such as plants. The challenge is to capture these dynamic, genome-wide events and model them in GRNs. In this review, we cover recent progress in capturing dynamic interactions of transcription factors with their targets-at both the local and genome-wide levels-and how they are used to learn how GRNs operate as a function of time. We also discuss recent advances that employ time-based machine learning approaches to forecast gene expression at future time points, a key goal of systems biology.
Collapse
Affiliation(s)
- Jose M Alvarez
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Matthew D Brooks
- Global Change and Photosynthesis Research Unit, US Department of Agriculture Agricultural Research Service, Urbana, Illinois 61801, USA
| | - Joseph Swift
- Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Gloria M Coruzzi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA;
| |
Collapse
|
30
|
Martín G, Duque P. Tailoring photomorphogenic markers to organ growth dynamics. PLANT PHYSIOLOGY 2021; 186:239-249. [PMID: 33620489 PMCID: PMC8154095 DOI: 10.1093/plphys/kiab083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
When a dark-germinated seedling reaches the soil surface and perceives sunlight for the first time, light signaling is activated to adapt the plant's development and transition to autotrophism. During this process, functional chloroplasts assemble in the cotyledons and the seedling's cell expansion pattern is rearranged to enhance light perception. Hypocotyl cells expand rapidly in the dark, while cotyledon cell expansion is suppressed. However, light reverses this pattern by activating cell expansion in cotyledons and repressing it in hypocotyls. The fact that light-regulated developmental responses, as well as the transcriptional mechanisms controlling them, are organ-specific has been largely overlooked in previous studies of seedling de-etiolation. To analyze the expansion pattern of the hypocotyl and cotyledons separately in a given Arabidopsis (Arabidopsis thaliana) seedling, we define an organ ratio, the morphogenic index (MI), which integrates either phenotypic or transcriptomic data for each tissue and provides an important resource for functional analyses. Moreover, based on this index, we identified organ-specific molecular markers to independently quantify cotyledon and hypocotyl growth dynamics in whole-seedling samples. The combination of these marker genes with those of other developmental processes occurring during de-etiolation will allow improved molecular dissection of photomorphogenesis. Along with organ growth markers, this MI contributes a key toolset to unveil and accurately characterize the molecular mechanisms controlling seedling growth.
Collapse
Affiliation(s)
- Guiomar Martín
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Paula Duque
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| |
Collapse
|
31
|
Wang CC, Hsieh HY, Hsieh HL, Tu SL. The Physcomitrella patens chromatin adaptor PpMRG1 interacts with H3K36me3 and regulates light-responsive alternative splicing. PLANT PHYSIOLOGY 2021; 185:1229-1241. [PMID: 33793927 PMCID: PMC8133547 DOI: 10.1093/plphys/kiaa103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Plants perceive dynamic light conditions and optimize their growth and development accordingly by regulating gene expression at multiple levels. Alternative splicing (AS), a widespread mechanism in eukaryotes that post-transcriptionally generates two or more messenger RNAs (mRNAs) from the same pre-mRNA, is rapidly controlled by light. However, a detailed mechanism of light-regulated AS is still not clear. In this study, we demonstrate that histone 3 lysine 36 trimethylation (H3K36me3) rapidly and differentially responds to light at specific gene loci with light-regulated intron retention (IR) of their transcripts in the moss Physcomitrella patens. However, the level of H3K36me3 following exposure to light is inversely related to that of IR events. Physcomitrella patens MORF-related gene 1 (PpMRG1), a chromatin adaptor, bound with higher affinity to H3K36me3 in light conditions than in darkness and was differentially targeted to gene loci showing light-responsive IR. Transcriptome analysis indicated that PpMRG1 functions in the regulation of light-mediated AS. Furthermore, PpMRG1 was also involved in red light-mediated phototropic responses. Our results suggest that light regulates histone methylation, which leads to alterations of AS patterns. The chromatin adaptor PpMRG1 potentially participates in light-mediated AS, revealing that chromatin-coupled regulation of pre-mRNA splicing is an important aspect of the plant's response to environmental changes.
Collapse
Affiliation(s)
- Chien-Chang Wang
- Institute of Plant and Microbial biology, Academia Sinica, Taipei, Taiwan
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yu Hsieh
- Institute of Plant and Microbial biology, Academia Sinica, Taipei, Taiwan
| | - Hsu-Liang Hsieh
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shih-Long Tu
- Institute of Plant and Microbial biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
32
|
Schwenk P, Sheerin DJ, Ponnu J, Staudt AM, Lesch KL, Lichtenberg E, Medzihradszky KF, Hoecker U, Klement E, Viczián A, Hiltbrunner A. Uncovering a novel function of the CCR4-NOT complex in phytochrome A-mediated light signalling in plants. eLife 2021; 10:63697. [PMID: 33783355 PMCID: PMC8009681 DOI: 10.7554/elife.63697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/03/2021] [Indexed: 12/21/2022] Open
Abstract
Phytochromes are photoreceptors regulating growth and development in plants. Using the model plant Arabidopsis, we identified a novel signalling pathway downstream of the far-red light-sensing phytochrome, phyA, that depends on the highly conserved CCR4-NOT complex. CCR4-NOT is integral to RNA metabolism in yeast and animals, but its function in plants is largely unknown. NOT9B, an Arabidopsis homologue of human CNOT9, is a component of the CCR4-NOT complex, and acts as negative regulator of phyA-specific light signalling when bound to NOT1, the scaffold protein of the complex. Light-activated phyA interacts with and displaces NOT9B from NOT1, suggesting a potential mechanism for light signalling through CCR4-NOT. ARGONAUTE 1 and proteins involved in splicing associate with NOT9B and we show that NOT9B is required for specific phyA-dependent alternative splicing events. Furthermore, association with nuclear localised ARGONAUTE 1 raises the possibility that NOT9B and CCR4-NOT are involved in phyA-modulated gene expression. Place a seedling on a windowsill, and soon you will notice the fragile stem bending towards the glass to soak in the sun and optimize its growth. Plants can ‘sense’ light thanks to specialized photoreceptor molecules: for instance, the phytochrome A is responsible for detecting weak and ‘far-red’ light from the very edge of the visible spectrum. Once the phytochrome has been activated, this message is relayed to the rest of the plant through an intricate process that requires other molecules. The CCR4-NOT protein complex is vital for all plants, animals and fungi, suggesting that it was already present in early life forms. Here, Schwenk et al. examine whether CCR4-NOT could have acquired a new role in plants to help them respond to far-red light. Scanning the genetic information of the plant model Arabidopsis thaliana revealed that the gene encoding the NOT9 subunit of CCR4-NOT had been duplicated in plants during evolution. NOT9B, the protein that the new copy codes for, has a docking site that can attach to both phytochrome A and CCR4-NOT. When NOT9B binds phytochrome A, it is released from the CCR4-NOT complex: this could trigger a cascade of reactions that ultimately changes how A. thaliana responds to far-red light. Plants that had not enough or too much NOT9B were respectively more or less responsive to that type of light, showing that the duplication of the gene coding for this subunit had helped plants respond to certain types of light. The findings by Schwenk et al. illustrate how existing structures can be repurposed during evolution to carry new roles. They also provide a deeper understanding of how plants optimize their growth, a useful piece of information in a world where most people rely on crops as their main source of nutrients.
Collapse
Affiliation(s)
- Philipp Schwenk
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - David J Sheerin
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jathish Ponnu
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Anne-Marie Staudt
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Klara L Lesch
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.,Internal Medicine IV, Department of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Elisabeth Lichtenberg
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Ute Hoecker
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Eva Klement
- Laboratory of Proteomics Research, Biological Research Centre, Szeged, Hungary
| | - András Viczián
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Andreas Hiltbrunner
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
33
|
Yan Z, Shen Z, Li Z, Chao Q, Kong L, Gao ZF, Li QW, Zheng HY, Zhao CF, Lu CM, Wang YW, Wang BC. Genome-wide transcriptome and proteome profiles indicate an active role of alternative splicing during de-etiolation of maize seedlings. PLANTA 2020; 252:60. [PMID: 32964359 DOI: 10.1007/s00425-020-03464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
AS events affect genes encoding protein domain composition and make the single gene produce more proteins with a certain number of genes to satisfy the establishment of photosynthesis during de-etiolation. The drastic switch from skotomorphogenic to photomorphogenic development is an excellent system to elucidate rapid developmental responses to environmental stimuli in plants. To decipher the effects of different light wavelengths on de-etiolation, we illuminated etiolated maize seedlings with blue, red, blue-red mixed and white light, respectively. We found that blue light alone has the strongest effect on photomorphogenesis and that this effect can be attributed to the higher number and expression levels of photosynthesis and chlorosynthesis proteins. Deep sequencing-based transcriptome analysis revealed gene expression changes under different light treatments and a genome-wide alteration in alternative splicing (AS) profiles. We discovered 41,188 novel transcript isoforms for annotated genes, which increases the percentage of multi-exon genes with AS to 63% in maize. We provide peptide support for all defined types of AS, especially retained introns. Further in silico prediction revealed that 58.2% of retained introns have changes in domains compared with their most similar annotated protein isoform. This suggests that AS acts as a protein function switch allowing rapid light response through the addition or removal of functional domains. The richness of novel transcripts and protein isoforms also demonstrates the potential and importance of integrating proteomics into genome annotation in maize.
Collapse
Affiliation(s)
- Zhen Yan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhuo Shen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Zhe Li
- Precision Scientific (Beijing) Co., Ltd., Beijing, 100085, China
| | - Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100039, China
| | - Lei Kong
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhi-Fang Gao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Qing-Wei Li
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hai-Yan Zheng
- Center for Advanced Biotechnology and Medicine, Biological Mass Spectrometry Facility, Rutgers University, Piscataway, NJ, 08855, USA
| | - Cai-Feng Zhao
- Center for Advanced Biotechnology and Medicine, Biological Mass Spectrometry Facility, Rutgers University, Piscataway, NJ, 08855, USA
| | - Cong-Ming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Ying-Wei Wang
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
34
|
Chen DY, Chen QY, Wang DD, Mu YP, Wang MY, Huang JR, Mao YB. Differential Transcription and Alternative Splicing in Cotton Underly Specialized Defense Responses Against Pests. FRONTIERS IN PLANT SCIENCE 2020; 11:573131. [PMID: 33072149 PMCID: PMC7533563 DOI: 10.3389/fpls.2020.573131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
The green mirid bug (Apolygus lucorum) and the cotton bollworm (Helicoverpa armigera) are both preferred to live on cotton but cause different symptoms, suggesting specialized responses of cotton to the two insects. In this study, we investigated differential molecular mechanisms underlying cotton plant defenses against A. lucorum and H. armigera via transcriptomic analyses. At the transcription level, jasmonate (JA) signaling was dominated in defense against H. armigera whereas salicylic acid (SA) signaling was more significant in defense against A. lucorum. A set of pathogenesis-related (PR) genes and protease inhibitor genes were differentially induced by the two insects. Insect infestations also had an impact on alternative splicing (AS), which was altered more significantly by the H. armigera than A. lucorum. Interestingly, most differential AS (DAS) genes had no obvious change at the transcription level. GO analysis revealed that biological process termed "RNA splicing" and "cellular response to abiotic stimulus" were enriched only in DAS genes from the H. armigera infested samples. Furthermore, insect infestations induced the retained intron of GhJAZs transcripts, which produced a truncated protein lacking the intact Jas motif. Taken together, our data demonstrate that the specialized cotton response to different insects is regulated by gene transcription and AS as well.
Collapse
Affiliation(s)
- Dian-Yang Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Qiu-Yi Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| | - Dan-Dan Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yu-Pei Mu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| | - Mu-Yang Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| | - Ji-Rong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Ying-Bo Mao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
35
|
Slane D, Lee CH, Kolb M, Dent C, Miao Y, Franz-Wachtel M, Lau S, Maček B, Balasubramanian S, Bayer M, Jürgens G. The integral spliceosomal component CWC15 is required for development in Arabidopsis. Sci Rep 2020; 10:13336. [PMID: 32770129 PMCID: PMC7415139 DOI: 10.1038/s41598-020-70324-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 07/27/2020] [Indexed: 01/01/2023] Open
Abstract
Efficient mRNA splicing is a prerequisite for protein biosynthesis and the eukaryotic splicing machinery is evolutionarily conserved among species of various phyla. At its catalytic core resides the activated splicing complex Bact consisting of the three small nuclear ribonucleoprotein complexes (snRNPs) U2, U5 and U6 and the so-called NineTeen complex (NTC) which is important for spliceosomal activation. CWC15 is an integral part of the NTC in humans and it is associated with the NTC in other species. Here we show the ubiquitous expression and developmental importance of the Arabidopsis ortholog of yeast CWC15. CWC15 associates with core components of the Arabidopsis NTC and its loss leads to inefficient splicing. Consistent with the central role of CWC15 in RNA splicing, cwc15 mutants are embryo lethal and additionally display strong defects in the female haploid phase. Interestingly, the haploid male gametophyte or pollen in Arabidopsis, on the other hand, can cope without functional CWC15, suggesting that developing pollen might be more tolerant to CWC15-mediated defects in splicing than either embryo or female gametophyte.
Collapse
Affiliation(s)
- Daniel Slane
- Max Planck Institute for Developmental Biology, Cell Biology, 72076, Tübingen, Germany
| | - Cameron H Lee
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Martina Kolb
- Max Planck Institute for Developmental Biology, Cell Biology, 72076, Tübingen, Germany
| | - Craig Dent
- School of Biological Sciences, Monash University, Clayton Campus, Clayton, VIC, 3800, Australia
| | - Yingjing Miao
- Max Planck Institute for Developmental Biology, Cell Biology, 72076, Tübingen, Germany
| | - Mirita Franz-Wachtel
- Proteome Center Tübingen, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Steffen Lau
- Max Planck Institute for Developmental Biology, Cell Biology, 72076, Tübingen, Germany
| | - Boris Maček
- Proteome Center Tübingen, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | | | - Martin Bayer
- Max Planck Institute for Developmental Biology, Cell Biology, 72076, Tübingen, Germany
| | - Gerd Jürgens
- Max Planck Institute for Developmental Biology, Cell Biology, 72076, Tübingen, Germany.
| |
Collapse
|
36
|
Niyikiza D, Piya S, Routray P, Miao L, Kim WS, Burch-Smith T, Gill T, Sams C, Arelli PR, Pantalone V, Krishnan HB, Hewezi T. Interactions of gene expression, alternative splicing, and DNA methylation in determining nodule identity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1744-1766. [PMID: 32491251 DOI: 10.1111/tpj.14861] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/19/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Soybean nodulation is a highly controlled process that involves complex gene regulation at both transcriptional and post-transcriptional levels. In the present study, we profiled gene expression changes, alternative splicing events, and DNA methylation patterns during nodule formation, development, and senescence. The transcriptome data uncovered key transcription patterns of nodule development that included 9669 core genes and 7302 stage-specific genes. Alternative splicing analysis uncovered a total of 2323 genes that undergo alternative splicing events in at least one nodule developmental stage, with activation of exon skipping and repression of intron retention being the most common splicing events in nodules compared to roots. Approximately 40% of the differentially spliced genes were also differentially expressed at the same nodule developmental stage, implying a substantial association between gene expression and alternative splicing. Genome-wide-DNA methylation analysis revealed dynamic changes in nodule methylomes that were specific to each nodule stage, occurred in a sequence-specific manner, and impacted the expression of 1864 genes. An attractive hypothesis raised by our data is that increased DNA methylation may contribute to the efficiency of alternative splicing. Together, our results provide intriguing insights into the associations between gene expression, alternative splicing, and DNA methylation that may shape transcriptome complexity and proteome specificity in developing soybean nodules.
Collapse
Affiliation(s)
- Daniel Niyikiza
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Pratyush Routray
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Long Miao
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Won-Seok Kim
- Plant Science Division, University of Missouri, Columbia, MI, 65211, USA
| | - Tessa Burch-Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996-0840, USA
| | - Tom Gill
- Smith Center for International Sustainable Agriculture, University of Tennessee, Knoxville, TN, 37996, USA
| | - Carl Sams
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | | | - Vince Pantalone
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Hari B Krishnan
- Plant Science Division, University of Missouri, Columbia, MI, 65211, USA
- Plant Genetics Research, USDA-Agricultural Research Service, Columbia, MI, 65211, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
37
|
Wang Z, Ma W, Zhu T, Lu N, Ouyang F, Wang N, Yang G, Kong L, Qu G, Zhang S, Wang J. Multi-omics sequencing provides insight into floral transition in Catalpa bungei. C.A. Mey. BMC Genomics 2020; 21:508. [PMID: 32698759 PMCID: PMC7376858 DOI: 10.1186/s12864-020-06918-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 07/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Floral transition plays an important role in development, and proper time is necessary to improve the value of valuable ornamental trees. The molecular mechanisms of floral transition remain unknown in perennial woody plants. "Bairihua" is a type of C. bungei that can undergo floral transition in the first planting year. RESULTS Here, we combined short-read next-generation sequencing (NGS) and single-molecule real-time (SMRT) sequencing to provide a more complete view of transcriptome regulation during floral transition in C. bungei. The circadian rhythm-plant pathway may be the critical pathway during floral transition in early flowering (EF) C. bungei, according to horizontal and vertical analysis in EF and normal flowering (NF) C. bungei. SBP and MIKC-MADS-box were seemingly involved in EF during floral transition. A total of 61 hub genes were associated with floral transition in the MEturquoise model with Weighted Gene Co-expression Network Analysis (WGCNA). The results reveal that ten hub genes had a close connection with the GASA homologue gene (Cbu.gene.18280), and the ten co-expressed genes belong to five flowering-related pathways. Furthermore, our study provides new insights into the complexity and regulation of alternative splicing (AS). The ratio or number of isoforms of some floral transition-related genes is different in different periods or in different sub-genomes. CONCLUSIONS Our results will be a useful reference for the study of floral transition in other perennial woody plants. Further molecular investigations are needed to verify our sequencing data.
Collapse
Affiliation(s)
- Zhi Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| | - Tianqing Zhu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| | - Nan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| | - Fangqun Ouyang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| | - Nan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| | - Guijuan Yang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| | - Lisheng Kong
- Department of Biology Centre for Forest Biology, University of Victoria, Victoria, BC 11 Canada
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040 PR China
| | - Shougong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| |
Collapse
|
38
|
Jarad M, Antoniou-Kourounioti R, Hepworth J, Qüesta JI. Unique and contrasting effects of light and temperature cues on plant transcriptional programs. Transcription 2020; 11:134-159. [PMID: 33016207 PMCID: PMC7714439 DOI: 10.1080/21541264.2020.1820299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Plants have adapted to tolerate and survive constantly changing environmental conditions by reprogramming gene expression in response to stress or to drive developmental transitions. Among the many signals that plants perceive, light and temperature are of particular interest due to their intensely fluctuating nature which is combined with a long-term seasonal trend. Whereas specific receptors are key in the light-sensing mechanism, the identity of plant thermosensors for high and low temperatures remains far from fully addressed. This review aims at discussing common as well as divergent characteristics of gene expression regulation in plants, controlled by light and temperature. Light and temperature signaling control the abundance of specific transcription factors, as well as the dynamics of co-transcriptional processes such as RNA polymerase elongation rate and alternative splicing patterns. Additionally, sensing both types of cues modulates gene expression by altering the chromatin landscape and through the induction of long non-coding RNAs (lncRNAs). However, while light sensing is channeled through dedicated receptors, temperature can broadly affect chemical reactions inside plant cells. Thus, direct thermal modifications of the transcriptional machinery add another level of complexity to plant transcriptional regulation. Besides the rapid transcriptome changes that follow perception of environmental signals, plant developmental transitions and acquisition of stress tolerance depend on long-term maintenance of transcriptional states (active or silenced genes). Thus, the rapid transcriptional response to the signal (Phase I) can be distinguished from the long-term memory of the acquired transcriptional state (Phase II - remembering the signal). In this review we discuss recent advances in light and temperature signal perception, integration and memory in Arabidopsis thaliana, focusing on transcriptional regulation and highlighting the contrasting and unique features of each type of cue in the process.
Collapse
Affiliation(s)
- Mai Jarad
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| | | | - Jo Hepworth
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Julia I. Qüesta
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| |
Collapse
|
39
|
Zander M, Lewsey MG, Clark NM, Yin L, Bartlett A, Saldierna Guzmán JP, Hann E, Langford AE, Jow B, Wise A, Nery JR, Chen H, Bar-Joseph Z, Walley JW, Solano R, Ecker JR. Integrated multi-omics framework of the plant response to jasmonic acid. NATURE PLANTS 2020; 6:290-302. [PMID: 32170290 PMCID: PMC7094030 DOI: 10.1038/s41477-020-0605-7] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/23/2020] [Indexed: 05/17/2023]
Abstract
Understanding the systems-level actions of transcriptional responses to hormones provides insight into how the genome is reprogrammed in response to environmental stimuli. Here, we investigated the signalling pathway of the hormone jasmonic acid (JA), which controls a plethora of critically important processes in plants and is orchestrated by the transcription factor MYC2 and its closest relatives in Arabidopsis thaliana. We generated an integrated framework of the response to JA, which spans from the activity of master and secondary regulatory transcription factors, through gene expression outputs and alternative splicing, to protein abundance changes, protein phosphorylation and chromatin remodelling. We integrated time-series transcriptome analysis with (phospho)proteomic data to reconstruct gene regulatory network models. These enabled us to predict previously unknown points of crosstalk of JA to other signalling pathways and to identify new components of the JA regulatory mechanism, which we validated through targeted mutant analysis. These results provide a comprehensive understanding of how a plant hormone remodels cellular functions and plant behaviour, the general principles of which provide a framework for analyses of cross-regulation between other hormone and stress signalling pathways.
Collapse
Affiliation(s)
- Mark Zander
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mathew G Lewsey
- Centre for AgriBioscience, Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia.
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia.
| | - Natalie M Clark
- Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Lingling Yin
- Centre for AgriBioscience, Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia
| | - Anna Bartlett
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - J Paola Saldierna Guzmán
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Elizabeth Hann
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Chemical and Environmental Engineering, Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Amber E Langford
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bruce Jow
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Aaron Wise
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Joseph R Nery
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Huaming Chen
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Justin W Walley
- Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Joseph R Ecker
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
40
|
Hendron RW, Kelly S. Subdivision of Light Signaling Networks Contributes to Partitioning of C 4 Photosynthesis. PLANT PHYSIOLOGY 2020; 182:1297-1309. [PMID: 31862840 PMCID: PMC7054874 DOI: 10.1104/pp.19.01053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/04/2019] [Indexed: 05/29/2023]
Abstract
Plants coordinate the expression of photosynthesis-related genes in response to growth and environmental changes. In species that conduct two-cell C4 photosynthesis, expression of photosynthesis genes is partitioned such that leaf mesophyll and bundle sheath cells accumulate different components of the photosynthetic pathway. The identities of the regulatory networks that facilitate this partitioning are unknown. Here, we show that differences in light perception between mesophyll and bundle sheath cells facilitate differential regulation and accumulation of photosynthesis gene transcripts in the C4 crop maize (Zea mays). Key components of the photosynthesis gene regulatory network differentially accumulated between mesophyll and bundle sheath cells, indicative of differential network activity across cell types. We further show that blue (but not red) light is necessary and sufficient to activate photosystem II assembly in mesophyll cells in etiolated maize. Finally, we demonstrate that 61% of all light-induced mesophyll and bundle sheath genes were induced only by blue light or only by red light, but not both. These findings provide evidence that subdivision of light signaling networks is a component of cellular partitioning of C4 photosynthesis in maize.
Collapse
Affiliation(s)
- Ross-W Hendron
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom
| |
Collapse
|
41
|
Zander M, Lewsey MG, Clark NM, Yin L, Bartlett A, Saldierna Guzmán JP, Hann E, Langford AE, Jow B, Wise A, Nery JR, Chen H, Bar-Joseph Z, Walley JW, Solano R, Ecker JR. Integrated multi-omics framework of the plant response to jasmonic acid. NATURE PLANTS 2020; 6:290-302. [PMID: 32170290 DOI: 10.1038/s41477-020-0605-607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/23/2020] [Indexed: 05/26/2023]
Abstract
Understanding the systems-level actions of transcriptional responses to hormones provides insight into how the genome is reprogrammed in response to environmental stimuli. Here, we investigated the signalling pathway of the hormone jasmonic acid (JA), which controls a plethora of critically important processes in plants and is orchestrated by the transcription factor MYC2 and its closest relatives in Arabidopsis thaliana. We generated an integrated framework of the response to JA, which spans from the activity of master and secondary regulatory transcription factors, through gene expression outputs and alternative splicing, to protein abundance changes, protein phosphorylation and chromatin remodelling. We integrated time-series transcriptome analysis with (phospho)proteomic data to reconstruct gene regulatory network models. These enabled us to predict previously unknown points of crosstalk of JA to other signalling pathways and to identify new components of the JA regulatory mechanism, which we validated through targeted mutant analysis. These results provide a comprehensive understanding of how a plant hormone remodels cellular functions and plant behaviour, the general principles of which provide a framework for analyses of cross-regulation between other hormone and stress signalling pathways.
Collapse
Affiliation(s)
- Mark Zander
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mathew G Lewsey
- Centre for AgriBioscience, Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia.
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia.
| | - Natalie M Clark
- Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Lingling Yin
- Centre for AgriBioscience, Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia
| | - Anna Bartlett
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - J Paola Saldierna Guzmán
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Elizabeth Hann
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Chemical and Environmental Engineering, Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Amber E Langford
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bruce Jow
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Aaron Wise
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Joseph R Nery
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Huaming Chen
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Justin W Walley
- Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Joseph R Ecker
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
42
|
Lin BY, Shih CJ, Hsieh HY, Chen HC, Tu SL. Phytochrome Coordinates with a hnRNP to Regulate Alternative Splicing via an Exonic Splicing Silencer. PLANT PHYSIOLOGY 2020; 182:243-254. [PMID: 31501299 PMCID: PMC6945828 DOI: 10.1104/pp.19.00289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/24/2019] [Indexed: 05/25/2023]
Abstract
Plants perceive environmental light conditions and optimize their growth and development accordingly by regulating gene activity at multiple levels. Photoreceptors are important for light sensing and downstream gene regulation. Phytochromes, red/far-red light receptors, are believed to regulate light-responsive alternative splicing, but little is known about the underlying mechanism. Alternative splicing is primarily regulated by transacting factors, such as splicing regulators, and by cis-acting elements in precursor mRNA. In the moss Physcomitrella patens, we show that phytochrome 4 (PpPHY4) directly interacts with a splicing regulator, heterogeneous nuclear ribonucleoprotein F1 (PphnRNP-F1), in the nucleus to regulate light-responsive alternative splicing. RNA sequencing analysis revealed that PpPHY4 and PphnRNP-F1 coregulate 70% of intron retention (IR) events in response to red light. A repetitive GAA motif was identified to be an exonic splicing silencer that controls red light-responsive IR. Biochemical studies indicated that PphnRNP-F1 is recruited by the GAA motif to form RNA-protein complexes. Finally, red light elevates PphnRNP-F1 protein levels via PpPHY4, increasing levels of IR. We propose that PpPHY4 and PphnRNP-F1 regulate alternative splicing through an exonic splicing silencer to control splicing machinery activity in response to light.
Collapse
Affiliation(s)
- Bou-Yun Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Chung-Hsing University and Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Chueh-Ju Shih
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Chung-Hsing University and Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Hsin-Yu Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hsiu-Chen Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shih-Long Tu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Chung-Hsing University and Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
43
|
Lu CA, Huang CK, Huang WS, Huang TS, Liu HY, Chen YF. DEAD-Box RNA Helicase 42 Plays a Critical Role in Pre-mRNA Splicing under Cold Stress. PLANT PHYSIOLOGY 2020; 182:255-271. [PMID: 31753844 PMCID: PMC6945872 DOI: 10.1104/pp.19.00832] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/13/2019] [Indexed: 05/24/2023]
Abstract
Low temperature is an important environmental stress that adversely affects rice (Oryza sativa) growth and productivity. Splicing of pre-mRNA is a crucial posttranscriptional regulatory step in gene expression in plants and is sensitive to temperature. DEAD-box RNA helicases belong to an RNA helicase family involved in the rearrangement of ribonucleoprotein complexes and the modification of RNA structure and are therefore involved in all aspects of RNA metabolism. In this study, we demonstrate that the rate of pre-mRNA splicing is reduced in rice at low temperatures and that the DEAD-box RNA Helicase42 (OsRH42) is necessary to support effective splicing of pre-mRNA during mRNA maturation at low temperatures. OsRH42 expression is tightly coupled to temperature fluctuation, and OsRH42 is localized in the splicing speckles and interacts directly with U2 small nuclear RNA. Retarded pre-mRNA splicing and plant growth defects were exhibited by OsRH42-knockdown transgenic lines at low temperatures, thus indicating that OsRH42 performs an essential role in ensuring accurate pre-mRNA splicing and normal plant growth under low ambient temperature. Unexpectedly, our results show that OsRH42 overexpression significantly disrupts the pre-mRNA splicing pathway, causing retarded plant growth and reducing plant cold tolerance. Combined, these results indicate that accurate control of OsRH42 homeostasis is essential for rice plants to respond to changes in ambient temperature. In addition, our study presents the molecular mechanism of DEAD-box RNA helicase function in pre-mRNA splicing, which is required for adaptation to cold stress in rice.
Collapse
Affiliation(s)
- Chung-An Lu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, Republic of China
| | - Chun-Kai Huang
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, Republic of China
| | - Wen-Shan Huang
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, Republic of China
| | - Tian-Sheng Huang
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, Republic of China
| | - Hsin-Yi Liu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, Republic of China
| | - Yu-Fu Chen
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, Republic of China
| |
Collapse
|
44
|
Dong J, Chen H, Deng XW, Irish VF, Wei N. Phytochrome B Induces Intron Retention and Translational Inhibition of PHYTOCHROME-INTERACTING FACTOR3. PLANT PHYSIOLOGY 2020; 182:159-166. [PMID: 31690709 PMCID: PMC6945864 DOI: 10.1104/pp.19.00835] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/22/2019] [Indexed: 05/25/2023]
Abstract
The phytochrome B (phyB) photoreceptor stimulates light responses in plants in part by inactivating repressors of light responses, such as PHYTOCHROME-INTERACTING FACTOR3 (PIF3). Activated phyB inhibits PIF3 by rapid protein degradation and decreased transcription. PIF3 protein degradation is mediated by EIN3-BINDING F-BOX PROTEIN (EBF) and LIGHT-RESPONSE BTB (LRB) E3 ligases, the latter of which simultaneously targets phyB for degradation. In this study, we show that PIF3 levels are additionally regulated by alternative splicing and protein translation in Arabidopsis (Arabidopsis thaliana). Overaccumulation of photo-activated phyB, which occurs in the mutant defective for LRB genes under continuous red light, induces a specific alternative splicing of PIF3 that results in retention of an intron in the 5' untranslated region of PIF3 mRNA. In turn, the upstream open reading frames contained within this intron inhibit PIF3 protein synthesis. The phyB-dependent alternative splicing of PIF3 is diurnally regulated under the short-day light cycle. We hypothesize that this reversible regulatory mechanism may be utilized to fine tune the level of PIF3 protein in light-grown plants and may contribute to the oscillation of PIF3 protein abundance under the short-day environment.
Collapse
Affiliation(s)
- Jie Dong
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Haodong Chen
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Vivian F Irish
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Ning Wei
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
45
|
Tu Z, Shen Y, Wen S, Zong Y, Li H. Alternative Splicing Enhances the Transcriptome Complexity of Liriodendron chinense. FRONTIERS IN PLANT SCIENCE 2020; 11:578100. [PMID: 33072153 PMCID: PMC7539066 DOI: 10.3389/fpls.2020.578100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/04/2020] [Indexed: 05/11/2023]
Abstract
Alternative splicing (AS) plays pivotal roles in regulating plant growth and development, flowering, biological rhythms, signal transduction, and stress responses. However, no studies on AS have been performed in Liriodendron chinense, a deciduous tree species that has high economic and ecological value. In this study, we used multiple tools and algorithms to analyze transcriptome data derived from seven tissues via hybrid sequencing. Although only 17.56% (8,503/48,408) of genes in L. chinense were alternatively spliced, these AS genes occurred in 37,844 AS events. Among these events, intron retention was the most frequent AS event, producing 1,656 PTC-containing and 3,310 non-PTC-containing transcripts. Moreover, 183 long noncoding RNAs (lncRNAs) also underwent AS events. Furthermore, weighted gene coexpression network analysis (WGCNA) revealed that there were great differences in the activities of transcription and post-transcriptional regulation between pistils and leaves, and AS had an impact on many physiological and biochemical processes in L. chinense, such as photosynthesis, sphingolipid metabolism, fatty acid biosynthesis and metabolism. Moreover, our analysis showed that the features of genes may affect AS, as AS genes and non-AS genes had differences in the exon/intron length, transcript length, and number of exons/introns. In addition, the structure of AS genes may impact the frequencies and types of AS because AS genes with more exons or introns tended to exhibit more AS events, and shorter introns tended to be retained, whereas shorter exons tended to be skipped. Furthermore, eight AS genes were verified, and the results were consistent with our analysis. Overall, this study reveals that AS and gene interaction are mutual-on one hand, AS can affect gene expression and translation, while on the other hand, the structural characteristics of the gene can also affect AS. This work is the first to comprehensively report on AS in L. chinense, and it can provide a reference for further research on AS in L. chinense.
Collapse
Affiliation(s)
- Zhonghua Tu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yufang Shen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Shaoying Wen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yaxian Zong
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Huogen Li
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- *Correspondence: Huogen Li,
| |
Collapse
|
46
|
Wang M, Zang L, Jiao F, Perez-Garcia MD, Ogé L, Hamama L, Le Gourrierec J, Sakr S, Chen J. Sugar Signaling and Post-transcriptional Regulation in Plants: An Overlooked or an Emerging Topic? FRONTIERS IN PLANT SCIENCE 2020; 11:578096. [PMID: 33224165 PMCID: PMC7674178 DOI: 10.3389/fpls.2020.578096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/02/2020] [Indexed: 05/21/2023]
Abstract
Plants are autotrophic organisms that self-produce sugars through photosynthesis. These sugars serve as an energy source, carbon skeletons, and signaling entities throughout plants' life. Post-transcriptional regulation of gene expression plays an important role in various sugar-related processes. In cells, it is regulated by many factors, such as RNA-binding proteins (RBPs), microRNAs, the spliceosome, etc. To date, most of the investigations into sugar-related gene expression have been focused on the transcriptional level in plants, while only a few studies have been conducted on post-transcriptional mechanisms. The present review provides an overview of the relationships between sugar and post-transcriptional regulation in plants. It addresses the relationships between sugar signaling and RBPs, microRNAs, and mRNA stability. These new items insights will help to reach a comprehensive understanding of the diversity of sugar signaling regulatory networks, and open onto new investigations into the relevance of these regulations for plant growth and development.
Collapse
Affiliation(s)
- Ming Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - Lili Zang
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - Fuchao Jiao
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | | | - Laurent Ogé
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - Latifa Hamama
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - José Le Gourrierec
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - Soulaiman Sakr
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
- Soulaiman Sakr,
| | - Jingtang Chen
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Jingtang Chen,
| |
Collapse
|
47
|
Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nat Commun 2019; 10:5219. [PMID: 31745087 PMCID: PMC6864062 DOI: 10.1038/s41467-019-13045-0] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 10/17/2019] [Indexed: 11/08/2022] Open
Abstract
Phytochromes are bilin-binding photosensory receptors which control development over a broad range of environmental conditions and throughout the whole plant life cycle. Light-induced conformational changes enable phytochromes to interact with signaling partners, in particular transcription factors or proteins that regulate them, resulting in large-scale transcriptional reprograming. Phytochromes also regulate promoter usage, mRNA splicing and translation through less defined routes. In this review we summarize our current understanding of plant phytochrome signaling, emphasizing recent work performed in Arabidopsis. We compare and contrast phytochrome responses and signaling mechanisms among land plants and highlight open questions in phytochrome research.
Collapse
|
48
|
Jabre I, Reddy ASN, Kalyna M, Chaudhary S, Khokhar W, Byrne LJ, Wilson CM, Syed NH. Does co-transcriptional regulation of alternative splicing mediate plant stress responses? Nucleic Acids Res 2019; 47:2716-2726. [PMID: 30793202 PMCID: PMC6451118 DOI: 10.1093/nar/gkz121] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 12/15/2022] Open
Abstract
Plants display exquisite control over gene expression to elicit appropriate responses under normal and stress conditions. Alternative splicing (AS) of pre-mRNAs, a process that generates two or more transcripts from multi-exon genes, adds another layer of regulation to fine-tune condition-specific gene expression in animals and plants. However, exactly how plants control splice isoform ratios and the timing of this regulation in response to environmental signals remains elusive. In mammals, recent evidence indicate that epigenetic and epitranscriptome changes, such as DNA methylation, chromatin modifications and RNA methylation, regulate RNA polymerase II processivity, co-transcriptional splicing, and stability and translation efficiency of splice isoforms. In plants, the role of epigenetic modifications in regulating transcription rate and mRNA abundance under stress is beginning to emerge. However, the mechanisms by which epigenetic and epitranscriptomic modifications regulate AS and translation efficiency require further research. Dynamic changes in the chromatin landscape in response to stress may provide a scaffold around which gene expression, AS and translation are orchestrated. Finally, we discuss CRISPR/Cas-based strategies for engineering chromatin architecture to manipulate AS patterns (or splice isoforms levels) to obtain insight into the epigenetic regulation of AS.
Collapse
Affiliation(s)
- Ibtissam Jabre
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Maria Kalyna
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences - BOKU, Muthgasse 18, 1190 Vienna, Austria
| | - Saurabh Chaudhary
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| | - Waqas Khokhar
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| | - Lee J Byrne
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| | - Cornelia M Wilson
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| | - Naeem H Syed
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| |
Collapse
|
49
|
Loh SC, Othman AS, Veera Singham G. Identification and characterization of jasmonic acid- and linolenic acid-mediated transcriptional regulation of secondary laticifer differentiation in Hevea brasiliensis. Sci Rep 2019; 9:14296. [PMID: 31586098 PMCID: PMC6778104 DOI: 10.1038/s41598-019-50800-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 09/17/2019] [Indexed: 11/30/2022] Open
Abstract
Hevea brasiliensis remains the primary crop commercially exploited to obtain latex, which is produced from the articulated secondary laticifer. Here, we described the transcriptional events related to jasmonic acid (JA)- and linolenic acid (LA)-induced secondary laticifer differentiation (SLD) in H. brasiliensis clone RRIM 600 based on RNA-seq approach. Histochemical approach proved that JA- and LA-treated samples resulted in SLD in H. brasiliensis when compared to ethephon and untreated control. RNA-seq data resulted in 86,614 unigenes, of which 2,664 genes were differentially expressed in JA and LA-induced secondary laticifer harvested from H. brasiliensis bark samples. Among these, 450 genes were unique to JA and LA as they were not differentially expressed in ethephon-treated samples compared with the untreated samples. Most transcription factors from the JA- and LA-specific dataset were classified under MYB, APETALA2/ethylene response factor (AP2/ERF), and basic-helix-loop-helix (bHLH) gene families that were involved in tissue developmental pathways, and we proposed that Bel5-GA2 oxidase 1-KNOTTED-like homeobox complex are likely involved in JA- and LA-induced SLD in H. brasiliensis. We also discovered alternative spliced transcripts, putative novel transcripts, and cis-natural antisense transcript pairs related to SLD event. This study has advanced understanding on the transcriptional regulatory network of SLD in H. brasiliensis.
Collapse
Affiliation(s)
- Swee Cheng Loh
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Ahmad Sofiman Othman
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia.,School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - G Veera Singham
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia.
| |
Collapse
|
50
|
Shih CJ, Chen HW, Hsieh HY, Lai YH, Chiu FY, Chen YR, Tu SL. Heterogeneous Nuclear Ribonucleoprotein H1 Coordinates with Phytochrome and the U1 snRNP Complex to Regulate Alternative Splicing in Physcomitrella patens. THE PLANT CELL 2019; 31:2510-2524. [PMID: 31409629 PMCID: PMC6790087 DOI: 10.1105/tpc.19.00314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/15/2019] [Accepted: 08/06/2019] [Indexed: 05/03/2023]
Abstract
Plant photoreceptors tightly regulate gene expression to control photomorphogenic responses. Although gene expression is modulated by photoreceptors at various levels, the regulatory mechanism at the pre-mRNA splicing step remains unclear. Alternative splicing, a widespread mechanism in eukaryotes that generates two or more mRNAs from the same pre-mRNA, is largely controlled by splicing regulators, which recruit spliceosomal components to initiate pre-mRNA splicing. The red/far-red light photoreceptor phytochrome participates in light-mediated splicing regulation, but the detailed mechanism remains unclear. Here, using protein-protein interaction analysis, we demonstrate that in the moss Physcomitrella patens, phytochrome4 physically interacts with the splicing regulator heterogeneous nuclear ribonucleoprotein H1 (PphnRNP-H1) in the nucleus, a process dependent on red light. We show that PphnRNP-H1 is involved in red light-mediated phototropic responses in P. patens and that it binds with higher affinity to the splicing factor pre-mRNA-processing factor39-1 (PpPRP39-1) in the presence of red light-activated phytochromes. Furthermore, PpPRP39-1 associates with the core component of U1 small nuclear RNP in P. patens Genome-wide analyses demonstrated the involvement of both PphnRNP-H1 and PpPRP39-1 in light-mediated splicing regulation. Our results suggest that phytochromes target the early step of spliceosome assembly via a cascade of protein-protein interactions to control pre-mRNA splicing and photomorphogenic responses.
Collapse
Affiliation(s)
- Chueh-Ju Shih
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Chung-Hsing University and Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
| | - Hsiang-Wen Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hsin-Yu Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yung-Hua Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Fang-Yi Chiu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Rong Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shih-Long Tu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Chung-Hsing University and Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan
| |
Collapse
|