1
|
Zhang Z, Qiu X, Guo G, Zhu X, Shi J, Zhang N, Ding S, Tang N, Qu Y, Sun Z, Li H, Ma F, Xie S, Lv Q, Fu L, Hu G, Cao Y, Ge H, Li H, Huang J, Xu W, Yang W, Zhou Y, Song CP. An automated root phenotype platform enables nondestructive high-throughput root system architecture dissection in wheat. PLANT PHYSIOLOGY 2025; 198:kiaf154. [PMID: 40305672 DOI: 10.1093/plphys/kiaf154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/13/2025] [Indexed: 05/02/2025]
Abstract
The root system architecture (RSA) determines plant growth and yield. The characterization of optimal RSA and discovery of genetic loci or candidate genes that control root traits are therefore important research goals. However, the hidden nature of the root system makes it difficult to perform nondestructive, rapid analyses of RSA. In this study, we developed an automated, nondestructive, high-throughput root phenotyping platform (Root-HTP) and a corresponding data processing pipeline for efficient, large-scale characterization of wheat (Triticum aestivum L.) RSA. This system is capable of tracking root growth dynamics and RSA variation across all wheat developmental stages. In situ phenotyping using Root-HTP extracted 47 RSA traits, including 33 novel traits in wheat and 23 novel traits in other crops. We used root trait data from the phenotyping system and yield trait data to conduct a genome-wide association study (GWAS) of 155 wheat accessions, which identified 2,650 SNPs and 233 quantitative trait loci (QTLs) associated with aspects of root architecture. The candidate gene TaMYB93 was detected in a QTL for root tortuosity, and EMS mutants confirmed its effect on RSA in wheat. We explored the relationship between root- and yield-related traits and identified 20 root-related QTLs that were also associated with yield traits. Furthermore, we have built a predictive model for wheat yield based on 18 RSA traits and propose a parsimonious RSA ideotype associated with high yields. The data generated from this study provide insight into the genetic architecture of wheat RSA and support for RSA ideotype-based wheat breeding and yield prediction.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiaolong Qiu
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Guanghui Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiaojing Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jiawei Shi
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ning Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Shenglong Ding
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Nazhu Tang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yunfeng Qu
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Zhe Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Huilin Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Feifei Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Shangyuan Xie
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Lv
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Liming Fu
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Ge Hu
- Institute of Crops Molecular Breeding, Henan Academy of Agricultural Sciences, National Engineering Laboratory of Wheat, The Shennong Laboratory, Zhengzhou 450002, China
| | - Ying Cao
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Haowei Ge
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Hao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jinling Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Kaifeng 475004, China
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Weigang Xu
- Institute of Crops Molecular Breeding, Henan Academy of Agricultural Sciences, National Engineering Laboratory of Wheat, The Shennong Laboratory, Zhengzhou 450002, China
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
2
|
Rahmati Ishka M, Sussman H, Hu Y, Alqahtani MD, Craft E, Sicat R, Wang M, Yu L, Ait-Haddou R, Li B, Drakakaki G, Nelson ADL, Pineros M, Korte A, Jaremko Ł, Testerink C, Tester M, Julkowska MM. Natural variation in salt-induced changes in root:shoot ratio reveals SR3G as a negative regulator of root suberization and salt resilience in Arabidopsis. eLife 2025; 13:RP98896. [PMID: 40153306 PMCID: PMC11952752 DOI: 10.7554/elife.98896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025] Open
Abstract
Soil salinity is one of the major threats to agricultural productivity worldwide. Salt stress exposure alters root and shoots growth rates, thereby affecting overall plant performance. While past studies have extensively documented the effect of salt stress on root elongation and shoot development separately, here we take an innovative approach by examining the coordination of root and shoot growth under salt stress conditions. Utilizing a newly developed tool for quantifying the root:shoot ratio in agar-grown Arabidopsis seedlings, we found that salt stress results in a loss of coordination between root and shoot growth rates. We identify a specific gene cluster encoding domain-of-unknown-function 247 (DUF247), and characterize one of these genes as Salt Root:shoot Ratio Regulator Gene (SR3G). Further analysis elucidates the role of SR3G as a negative regulator of salt stress tolerance, revealing its function in regulating shoot growth, root suberization, and sodium accumulation. We further characterize that SR3G expression is modulated by WRKY75 transcription factor, known as a positive regulator of salt stress tolerance. Finally, we show that the salt stress sensitivity of wrky75 mutant is completely diminished when it is combined with sr3g mutation. Together, our results demonstrate that utilizing root:shoot ratio as an architectural feature leads to the discovery of a new stress resilience gene. The study's innovative approach and findings not only contribute to our understanding of plant stress tolerance mechanisms but also open new avenues for genetic and agronomic strategies to enhance crop environmental resilience.
Collapse
Affiliation(s)
| | | | - Yunfei Hu
- School of Life Sciences, Lanzhou UniversityLanzhouChina
| | | | | | - Ronell Sicat
- Visualization Core Lab, King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Minmin Wang
- University of California, DavisDavisUnited States
| | - Li'ang Yu
- Boyce Thompson InstituteIthacaUnited States
| | - Rachid Ait-Haddou
- Department of Mathematics, King Fahd University of Petroleum and MineralsDhahranSaudi Arabia
| | - Bo Li
- School of Life Sciences, Lanzhou UniversityLanzhouChina
| | | | | | | | - Arthur Korte
- Julius-von-Sachs-Institute and Center for Computational and Theoretical Biology, Julius Maximilian UniversityWuerzburgGermany
| | - Łukasz Jaremko
- King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | | | - Mark Tester
- Center for Desert Agriculture, King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Magdalena M Julkowska
- Boyce Thompson InstituteIthacaUnited States
- Center for Desert Agriculture, King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| |
Collapse
|
3
|
Wang D, Zheng K, Long W, Zhao L, Li W, Xue X, Han S. Cytosolic and Nucleosolic Calcium-Regulated Long Non-Coding RNAs and Their Target Protein-Coding Genes in Response to Hyperosmolarity and Salt Stresses in Arabidopsis thaliana. Int J Mol Sci 2025; 26:2086. [PMID: 40076708 PMCID: PMC11900983 DOI: 10.3390/ijms26052086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in plant biotic and abiotic stress responses, in which Ca2+ also plays a significant role. There is diversity in the regulation of different gene expressions by cytosolic Ca2+ ([Ca2+]cyt) and nucleosolic Ca2+ ([Ca2+]nuc). However, no studies have yet explored the interrelationship between lncRNAs and calcium signaling, nor how calcium signaling regulates the expression of lncRNAs. Here, we use transgenic materials PV-NES and NLS-PV, which simulate [Ca2+]cyt- and [Ca2+]nuc-deficient mutants, respectively, and wild type (WT) materials in response to hyperosmolarity (250 mM sorbitol) or salt stresses (125 mM NaCl) at different time points to obtain RNA-seq data, respectively. Then, we proceed with the screening of lncRNAs, adding 688 new lncRNAs to the known Arabidopsis lncRNA database. Subsequently, through the analysis of differentially expressed lncRNA genes, it was found that cytosolic or nucleosolic calcium signals have distinct regulatory effects on differentially expressed lncRNAs (DElncRNAs) and differentially expressed protein-coding genes (DEPCGs) treated with high-concentration NaCl and sorbitol at different times. Furthermore, through weighted correlation network analysis (WGCNA), it is discovered that under hyperosmolarity and salt stresses, lncRNA-associated PCGs are related to the cell wall structure, the plasma membrane component, and osmotic substances through trans-regulation. In addition, by screening for cis-regulatory target PCGs of Ca2+-regulated lncRNAs related to osmotic stress, we obtain a series of lncRNA-PCG pairs related to water transport, cell wall components, and lateral root formation. Therefore, we expand the existing Arabidopsis lncRNA database and obtain a series of lncRNAs and PCGs regulated by [Ca2+]cyt or [Ca2+]nuc in response to salt and hyperosmolarity stress, providing a new perspective for subsequent research on lncRNAs. We also explore the trans- and cis-regulated target PCGs of lncRNAs regulated by calcium signaling, providing new insights for further studying salt stress and osmotic stress.
Collapse
Affiliation(s)
- Doudou Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (K.Z.); (W.L.); (L.Z.); (W.L.)
| | - Kaifeng Zheng
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (K.Z.); (W.L.); (L.Z.); (W.L.)
| | - Wenfen Long
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (K.Z.); (W.L.); (L.Z.); (W.L.)
| | - Liang Zhao
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (K.Z.); (W.L.); (L.Z.); (W.L.)
| | - Wanjie Li
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (K.Z.); (W.L.); (L.Z.); (W.L.)
| | - Xiuhua Xue
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (K.Z.); (W.L.); (L.Z.); (W.L.)
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (K.Z.); (W.L.); (L.Z.); (W.L.)
- Academy of Plateau Science and Sustainability of the People’s Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Xining 810008, China
| |
Collapse
|
4
|
Hu Y, Wang D, Zhang X, Lv X, Li B. Current progress in deciphering the molecular mechanisms underlying plant salt tolerance. CURRENT OPINION IN PLANT BIOLOGY 2025; 83:102671. [PMID: 39603169 DOI: 10.1016/j.pbi.2024.102671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Enhancing crop salt tolerance through genetics and genomics is important for food security. It is environmentally friendly and cost-effective in maintaining crop production in farmlands affected by soil salinization and can also facilitate the utilization of marginal saline land. Despite the limited success achieved so far, it is becoming possible to bridge the gap between fundamental research and crop breeding owing to a deeper understanding of plant salt tolerance at both physiological and molecular levels. Therefore, we review the recent key progress in identifying the molecular mechanisms contributing to plant salt tolerance with a focus on balancing growth and salt resilience. With the accruing knowledge and the rapidly evolving tools (e.g. genome editing and artificial intelligence), it is reasonable to expect the future salt-tolerant crops in a few decades.
Collapse
Affiliation(s)
- Yunfei Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China; Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Dan Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China; Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Xiaohua Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China; Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Xiaodong Lv
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China; Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Bo Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China; Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China.
| |
Collapse
|
5
|
Garcia-Daga S, Roy SJ, Gilliham M. Redefining the role of sodium exclusion within salt tolerance. TRENDS IN PLANT SCIENCE 2025; 30:137-146. [PMID: 39462719 DOI: 10.1016/j.tplants.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024]
Abstract
Salt contamination of soils and irrigation water is a significant environmental concern for crop production. Leaf sodium (Na+) exclusion is commonly proposed to be a key subtrait of salt tolerance for many crop plants. High-Affinity Potassium (K+) Transporter 1 (HKT1) proteins have previously been identified as major controllers of leaf Na+ exclusion across diverse species. However, leaf Na+ exclusion does not always correlate with salt tolerance. We discuss literature which shows leaf Na+ accumulation can, in some circumstances, be tolerated without a detrimental effect on yield when HKT1 still functions to exclude Na+ from reproductive tissues. We conclude that, by having an ultimate role in the protection of reproductive performance, HKT1s' role in adaptation to salinity warrants redefinition.
Collapse
Affiliation(s)
- Sebastian Garcia-Daga
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Urrbrae, SA 5064, Australia; School of Biosciences, University of Nottingham, Sutton Bonnington, LE12 5RD, UK; ARC Centre of Excellence in Plants for Space, University of Adelaide, Urrbrae, SA 5064, Australia
| | - Stuart J Roy
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Urrbrae, SA 5064, Australia; ARC Industrial Transformation Training Centre for Future Crops Development, University of Adelaide, Urrbrae, SA 5064, Australia
| | - Matthew Gilliham
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Urrbrae, SA 5064, Australia; ARC Centre of Excellence in Plants for Space, University of Adelaide, Urrbrae, SA 5064, Australia; ARC Industrial Transformation Training Centre for Future Crops Development, University of Adelaide, Urrbrae, SA 5064, Australia.
| |
Collapse
|
6
|
Zhang Y, Liu X, Shi Y, Lang L, Tao S, Zhang Q, Qin M, Wang K, Xu Y, Zheng L, Cao H, Wang H, Zhu Y, Song J, Li K, Xu A, Huang Z. The B-box transcription factor BnBBX22.A07 enhances salt stress tolerance by indirectly activating BnWRKY33.C03. PLANT, CELL & ENVIRONMENT 2024; 47:5424-5442. [PMID: 39189937 DOI: 10.1111/pce.15119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/21/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
Salt stress has a detrimental impact on both plant growth and global crop yields. B-box proteins have emerged as pivotal players in plant growth and development regulation. Although the precise role of B-box proteins orchestrating salt stress responses in B. napus (Brassica napus) is not well understood in the current literature, further research and molecular explorations are required. Here, we isolated the B-box protein BnBBX22.A07 from B. napus. The overexpression of BnBBX22.A07 significantly improved the salt tolerance of Arabidopsis (Arabidopsis thaliana) and B. napus. Transcriptomic and histological analysis showed that BnBBX22.A07 enhanced the salt tolerance of B. napus by activating the expression of reactive oxygen species (ROS) scavenging-related genes and decreasing salt-induced superoxide anions and hydrogen peroxide. Moreover, BnBBX22.A07 interacted with BnHY5.C09, which specifically bound to and activated the promoter of BnWRKY33.C03. The presence of BnBBX22.A07 enhanced the activation of BnHY5.C09 on BnWRKY33.C03. Overexpression of BnHY5.C09 and BnWRKY33.C03 improved the salt tolerance of Arabidopsis. Functional analyses revealed that BnBBX22.A07-mediated salt tolerance was partly dependent on WRKY33. Taken together, we demonstrate that BnBBX22.A07 functions positively in salt responses not only by activating ROS scavenging-related genes but also by indirectly activating BnWRKY33.C03. Notably, our study offers a promising avenue for the identification of candidate genes that could be harnessed in breeding endeavours to develop salt-resistant transgenic crops.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Xiang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Yiji Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Lina Lang
- Shandong Seed Administration Station, Jinan, China
| | - Shunxian Tao
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Qi Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Mengfan Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Kai Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Yu Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Lin Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Hanming Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Han Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Yunlin Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Jia Song
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Keqi Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Aixia Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Zhen Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Héreil A, Guillaume M, Duboscq R, Carretero Y, Pelpoir E, Bitton F, Giraud C, Karlova R, Testerink C, Stevens R, Causse M. Characterisation of a major QTL for sodium accumulation in tomato grown in high salinity. PLANT, CELL & ENVIRONMENT 2024; 47:5089-5103. [PMID: 39148196 DOI: 10.1111/pce.15082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/09/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
Soil salinity is a serious concern for tomato culture, affecting both yield and quality parameters. Although some genes involved in tomato salt tolerance have been identified, their genetic diversity has been rarely studied. In the present study, we assessed salt tolerance-related traits at juvenile and adult stages in a large core collection and identified salt tolerance quantitative trait loci (QTLs) by genome-wide association study (GWAS). The results suggested that a major QTL is involved in leaf sodium accumulation at both physiological stages. We were able to identify the underlying candidate gene, coding for a well-known sodium transporter, called SlHKT1.2. We showed that an eQTL for the expression of this gene in roots colocalized with the above ground sodium content QTL. A polymorphism putatively responsible for its variation was identified in the gene promoter. Finally, to extend the applicability of these results, we carried out the same analysis on a test-cross panel composed of the core collection crossed with a distant line. The results indicated that the identified QTL retained its functional impact even in a hybrid genetic context: this paves the way for its use in breeding programs aimed at improving salinity tolerance in tomato cultivars.
Collapse
Affiliation(s)
- A Héreil
- UR1052 GAFL, INRAE, Montfavet, France
| | - M Guillaume
- GAUTIER Semences, Route d'Avignon, Eyragues, France
| | - R Duboscq
- UR1052 GAFL, INRAE, Montfavet, France
| | | | - E Pelpoir
- UR1052 GAFL, INRAE, Montfavet, France
| | - F Bitton
- UR1052 GAFL, INRAE, Montfavet, France
| | - C Giraud
- UE A2M, INRAE, Montfavet, France
| | - R Karlova
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, Wageningen, The Netherlands
| | - C Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, Wageningen, The Netherlands
| | - R Stevens
- UR1052 GAFL, INRAE, Montfavet, France
| | - M Causse
- UR1052 GAFL, INRAE, Montfavet, France
| |
Collapse
|
8
|
Salehin M. Emerging roles of auxin in plant abiotic stress tolerance. PHYSIOLOGIA PLANTARUM 2024; 176:e14601. [PMID: 39489540 DOI: 10.1111/ppl.14601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 11/05/2024]
Abstract
Plants are continuously attacked by several biotic and abiotic factors. Among abiotic factors, heat, cold, drought, and salinity are common stresses. Plants produce several hormones as their main weapon in fightback against these stresses. Among these hormones, the role of auxin is well established in regulating plant growth and development at various scales. However, in recent literature, the important role of auxin in abiotic stress tolerance has emerged. Several auxin signalling and transport mutants exhibit heat, drought, and salinity-related phenotypes. Among them, auxin-mediated hypocotyl elongation and root growth in response to increased heat are of importance due to the continuous rise in global temperature. Auxin is also involved in regulating and recruiting specialized metabolites like aliphatic glucosinolate to defend themselves from drought stress. Aliphatic glucosinolate (A-GLS) regulates guard cell closure using auxin, which is independent of the major abiotic stress hormone abscisic acid. This regulatory mechanism serves as an additional layer of guard cell movement to protect plants from drought. Transferring the aliphatic glucosinolate pathway into non-brassica plants such as rice and soybean holds the promise to improve drought tolerance. In addition to these, post-translational modification of auxin signalling components and redistribution of auxin efflux transporters are also playing important roles in drought and salt tolerance and, hence, may be exploited to breed drought-tolerant crops. Also, reactive oxygen species, along with peptide hormone and auxin signalling, are important in root growth under stress. In conclusion, we summarize recent discoveries that suggest auxin is involved in various abiotic stresses.
Collapse
Affiliation(s)
- Mohammad Salehin
- Department of Biology, North Carolina A&T State University, Greensboro, NC
| |
Collapse
|
9
|
Zhou Y, Feng C, Wang Y, Yun C, Zou X, Cheng N, Zhang W, Jing Y, Li H. Understanding of Plant Salt Tolerance Mechanisms and Application to Molecular Breeding. Int J Mol Sci 2024; 25:10940. [PMID: 39456729 PMCID: PMC11507592 DOI: 10.3390/ijms252010940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Soil salinization is a widespread hindrance that endangers agricultural production and ecological security. High salt concentrations in saline soils are primarily caused by osmotic stress, ionic toxicity and oxidative stress, which have a negative impact on plant growth and development. In order to withstand salt stress, plants have developed a series of complicated physiological and molecular mechanisms, encompassing adaptive changes in the structure and function of various plant organs, as well as the intricate signal transduction networks enabling plants to survive in high-salinity environments. This review summarizes the recent advances in salt perception under different tissues, physiological responses and signaling regulations of plant tolerance to salt stress. We also examine the current knowledge of strategies for breeding salt-tolerant plants, including the applications of omics technologies and transgenic approaches, aiming to provide the basis for the cultivation of salt-tolerant crops through molecular breeding. Finally, future research on the application of wild germplasm resources and muti-omics technologies to discover new tolerant genes as well as investigation of crosstalk among plant hormone signaling pathways to uncover plant salt tolerance mechanisms are also discussed in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yan Jing
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (Y.Z.); (C.F.); (Y.W.); (C.Y.); (X.Z.); (N.C.); (W.Z.)
| | - Haiyan Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (Y.Z.); (C.F.); (Y.W.); (C.Y.); (X.Z.); (N.C.); (W.Z.)
| |
Collapse
|
10
|
Furio RN, Fernández AC, Albornoz PL, Yonny ME, Toscano Adamo ML, Ruiz AI, Nazareno MA, Coll Y, Díaz-Ricci JC, Salazar SM. Mitigation strategy of saline stress in Fragaria vesca using natural and synthetic brassinosteroids as biostimulants. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23327. [PMID: 39413063 DOI: 10.1071/fp23327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 09/24/2024] [Indexed: 10/18/2024]
Abstract
Bassinosteroids (BRs) can induce plant defence responses and promote plant growth. In this work, we evaluated the effect of a natural (EP24) and a synthetic (BB16) brassinosteroid on strawberry (Fragaria vesca ) plants exposed to saline stress. Treated plants showed higher shoot dry weight and root growth compared to untreated control plants. In BR-treated plants, crown diameters increased 66% and 40%, leaf area 148% and 112%, relative water content in leaves 84% and 61%, and SPAD values 24% and 26%, in response to BB16 and EP24, respectively. A marked stomatal closure, increased leaflet lignification, and a decrease in cortex thickness, root diameter and stele radius were also observed in treated plants. Treatments also reduces stress-induced damage, as plants showed a 34% decrease in malondialdehyde content and a lower proline content compared to control plants. A 22% and 15% increase in ascorbate peroxidase and total phenolic compound activities was observed in response to BB16, and a 24% increase in total flavonoid compound in response to both BRs, under stress conditions. These results allow us to propose the use of BRs as an environmentally safe crop management strategy to overcome salinity situations that severely affect crop yield.
Collapse
Affiliation(s)
- Ramiro N Furio
- Instituto Nacional de Tecnología Agropecuaria, EEA Famaillá, Tucumán CP4132, Argentina
| | - Ana C Fernández
- Instituto Nacional de Tecnología Agropecuaria, EEA Famaillá, Tucumán CP4132, Argentina
| | - Patricia L Albornoz
- Instituto de Morfología Vegetal, Fundación Miguel Lillo, Tucumán T4000JFE, Argentina; and Cátedra de Anatomía Vegetal, Fac. Ciencias Naturales e IML UNT, Tucumán CP4000, Argentina
| | - Melisa Evangelina Yonny
- Instituto de Ciencias Químicas - Facultad de Agronomía y Agroindustrias - Universidad Nacional de Santiago del Estero, CONICET, Santiago del Estero CP4200, Argentina
| | - María Luisa Toscano Adamo
- Instituto de Ciencias Químicas - Facultad de Agronomía y Agroindustrias - Universidad Nacional de Santiago del Estero, CONICET, Santiago del Estero CP4200, Argentina
| | - Ana I Ruiz
- Instituto de Morfología Vegetal, Fundación Miguel Lillo, Tucumán T4000JFE, Argentina
| | - Mónica Azucena Nazareno
- Instituto de Ciencias Químicas - Facultad de Agronomía y Agroindustrias - Universidad Nacional de Santiago del Estero, CONICET, Santiago del Estero CP4200, Argentina
| | - Yamilet Coll
- Centro de Estudios de Productos Naturales, Facultad de Química, Universidad de La Habana, Vedado CP10400, Cuba
| | - Juan C Díaz-Ricci
- Instituto de Química Biológica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, and Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán CPT4000ILI, Argentina
| | - Sergio M Salazar
- Instituto Nacional de Tecnología Agropecuaria, EEA Famaillá, Tucumán CP4132, Argentina; and Facultad de Agronomía, Zootecnia y Veterinaria, Universidad Nacional de Tucumán, San Miguel de Tucumán CP4000ACS, Argentina
| |
Collapse
|
11
|
Juraniec M, Goormaghtigh E, Posmyk MM, Verbruggen N. An ecotype-specific effect of osmopriming and melatonin during salt stress in Arabidopsis thaliana. BMC PLANT BIOLOGY 2024; 24:707. [PMID: 39054444 PMCID: PMC11270801 DOI: 10.1186/s12870-024-05434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Natural populations of Arabidopsis thaliana exhibit phenotypic variations in specific environments and growth conditions. However, this variation has not been explored after seed osmopriming treatments. The natural variation in biomass production and root system architecture (RSA) was investigated across the Arabidopsis thaliana core collection in response to the pre-sawing seed treatments by osmopriming, with and without melatonin (Mel). The goal was to identify and characterize physiologically contrasting ecotypes. RESULTS Variability in RSA parameters in response to PEG-6000 seed osmopriming with and without Mel was observed across Arabidopsis thaliana ecotypes with especially positive impact of Mel addition under both control and 100 mM NaCl stress conditions. Two ecotypes, Can-0 and Kn-0, exhibited contrasted root phenotypes: seed osmopriming with and without Mel reduced the root growth of Can-0 plants while enhancing it in Kn-0 ones under both control and salt stress conditions. To understand the stress responses in these two ecotypes, main stress markers as well as physiological analyses were assessed in shoots and roots. Although the effect of Mel addition was evident in both ecotypes, its protective effect was more pronounced in Kn-0. Antioxidant enzymes were induced by osmopriming with Mel in both ecotypes, but Kn-0 was characterized by a higher responsiveness, especially in the activities of peroxidases in roots. Kn-0 plants experienced lower oxidative stress, and salt-induced ROS accumulation was reduced by osmopriming with Mel. In contrast, Can-0 exhibited lower enzyme activities but the accumulation of proline in its organs was particularly high. In both ecotypes, a greater response of antioxidant enzymes and proline accumulation was observed compared to mechanisms involving the reduction of Na+ content and prevention of K+ efflux. CONCLUSIONS In contrast to Can-0, Kn-0 plants grown from seeds osmoprimed with and without Mel displayed a lower root sensitivity to NaCl-induced oxidative stress. The opposite root growth patterns, enhanced by osmopriming treatments might result from different protective mechanisms employed by these two ecotypes which in turn result from adaptive strategies proper to specific habitats from which Can-0 and Kn-0 originate. The isolation of contrasting phenotypes paves the way for the identification of genetic factors affecting osmopriming efficiency.
Collapse
Affiliation(s)
- Michał Juraniec
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, 90 237, Poland.
| | - Erik Goormaghtigh
- Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Faculté des Sciences, Université libre de Bruxelles, Brussels, 1050, Belgium
| | - Małgorzata M Posmyk
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, 90 237, Poland.
| | - Nathalie Verbruggen
- Laboratoire de Physiologie et de Génétique Moléculaire des Plantes, Faculté des Sciences, Université libre de Bruxelles, Brussels, 1050, Belgium
| |
Collapse
|
12
|
Mal S, Panchal S. Drought and salt stress mitigation in crop plants using stress-tolerant auxin-producing endophytic bacteria: a futuristic approach towards sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2024; 15:1422504. [PMID: 39015292 PMCID: PMC11250085 DOI: 10.3389/fpls.2024.1422504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024]
Abstract
Abiotic stresses, especially drought stress and salt stress in crop plants are accelerating due to climate change. The combined impact of drought and salt is anticipated to lead to the loss of up to 50% of arable land globally, resulting in diminished growth and substantial yield losses threatening food security. Addressing the challenges, agriculture through sustainable practices emerges as a potential solution to achieve Zero Hunger, one of the sustainable development goals set by the IUCN. Plants deploy a myriad of mechanisms to effectively address drought and salt stress with phytohormones playing pivotal roles as crucial signaling molecules for stress tolerance. The phytohormone auxin, particularly indole acetic acid (IAA) emerges as a paramount regulator integral to numerous aspects of plant growth and development. During both drought and salt stress conditions, auxin plays crucial roles for tolerance, but stress-induced processes lead to decreased levels of endogenous free auxin in the plant, leading to an urgent need for auxin production. With an aim to augment this auxin deficiency, several researchers have extensively investigated auxin production, particularly IAA by plant-associated microorganisms, including endophytic bacteria. These endophytic bacteria have been introduced into various crop plants subjected to drought or salt stress and potential isolates promoting plant growth have been identified. However, post-identification, essential studies on translational research to advance these potential isolates from the laboratory to the field are lacking. This review aims to offer an overview of stress tolerant auxin-producing endophytic bacterial isolates while identifying research gaps that need to be fulfilled to utilize this knowledge for the formulation of crop-specific and stress-specific endophyte bioinoculants for the plant to cope with auxin imbalance occurring during these stress conditions.
Collapse
Affiliation(s)
| | - Shweta Panchal
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
13
|
Bellucci M, Mostofa MG, Weraduwage SM, Xu Y, Abdelrahman M, De Gara L, Loreto F, Sharkey TD. The effect of constitutive root isoprene emission on root phenotype and physiology under control and salt stress conditions. PLANT DIRECT 2024; 8:e617. [PMID: 38973810 PMCID: PMC11227114 DOI: 10.1002/pld3.617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/13/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
Isoprene, a volatile hydrocarbon, is typically emitted from the leaves of many plant species. Given its well-known function in plant growth and defense aboveground, we examined its effects on root physiology. We used isoprene-emitting (IE) lines and a non-emitting (NE) line of Arabidopsis and investigated their performance by analyzing root phenotype, hormone levels, transcriptome, and metabolite profiles under both normal and salt stress conditions. We show that IE lines emitted tiny amounts of isoprene from roots and showed an increased root/shoot ratio compared with NE line. Isoprene emission exerted a noteworthy influence on hormone profiles related to plant growth and stress response, promoting root development and salt-stress resistance. Methyl erythritol 4-phosphate pathway metabolites, precursors of isoprene and hormones, were higher in the roots of IE lines than in the NE line. Transcriptome data indicated that the presence of isoprene increased the expression of key genes involved in hormone metabolism/signaling. Our findings reveal that constitutive root isoprene emission sustains root growth under saline conditions by regulating and/or priming hormone biosynthesis and signaling mechanisms and expression of key genes relevant to salt stress defense.
Collapse
Affiliation(s)
- Manuel Bellucci
- Department of Energy Plant Research LaboratoryMichigan State UniversityEast LansingMichiganUSA
- Department of Science and Technology for Humans and the EnvironmentUniversità Campus Bio‐Medico di RomaRomeItaly
- Plant Resilience InstituteMichigan State UniversityEast LansingMichiganUSA
| | - Mohammad Golam Mostofa
- Department of Energy Plant Research LaboratoryMichigan State UniversityEast LansingMichiganUSA
- Plant Resilience InstituteMichigan State UniversityEast LansingMichiganUSA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| | | | - Yuan Xu
- Department of Energy Plant Research LaboratoryMichigan State UniversityEast LansingMichiganUSA
| | - Mostafa Abdelrahman
- Institute of Genomics for Crop Abiotic Stress ToleranceTexas Tech UniversityLubbockTexasUSA
| | - Laura De Gara
- Department of Science and Technology for Humans and the EnvironmentUniversità Campus Bio‐Medico di RomaRomeItaly
| | - Francesco Loreto
- Department of BiologyUniversity of Naples Federico IINaplesItaly
- Institute for Sustainable Plant ProtectionThe National Research Council of Italy (CNR‐IPSP)Sesto Fiorentino (Florence)Italy
| | - Thomas D. Sharkey
- Department of Energy Plant Research LaboratoryMichigan State UniversityEast LansingMichiganUSA
- Plant Resilience InstituteMichigan State UniversityEast LansingMichiganUSA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
14
|
de Lima Silva JR, Dos Santos LB, Hassan W, Kamdem JP, Duarte AE, Soufan W, El Sabagh A, Ibrahim M. Exploring the therapeutic potential of the oxygenated monoterpene linalool in alleviating saline stress effects on Allium cepa L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47598-47610. [PMID: 38997599 DOI: 10.1007/s11356-024-34285-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Sodium chloride (NaCl) can cause oxidative stress in plants, which represents a potential obstacle to the development of monocultures worldwide. Onion (Allium cepa L.) is a famous vegetable consumed and used in world cuisine. In the present study, we analyzed the influence of soil physicochemical profile and the remedial capacity of linalool on seed emergence, roots, and leaf growth in onions subjected to salt stress, as well as its in vivo and in vitro antioxidant potential, Fe2+chelating activity, and reducing power of Fe3+. The outcome of the soil analysis established the following order of abundance: sulfur (S) > calcium (Ca) > potassium (K) > magnesium (Mg) > sodium (Na). NaCl (150 mM) significantly reduced the emergence speed index (ESI), leaf and root length, while increasing the peroxidation content. The length of leaves and roots significantly increased after treatment with linalool (300 and 500 μg/mL). Our data showed negative correlations between seed emergence and K+ concentration, which was reversed after treatments. Linalool (500 μg/mL) significantly reduced oxidative stress, but increased Fe2+ concentration and did not show potential to reduce Fe3+. The in vivo antioxidant effect of linalool is thought to primarily result from an enzymatic activation process. This mechanism underscores its potential as a therapeutic agent for oxidative stress-related conditions. Further investigation into this process could unveil new avenues for antioxidant therapy.
Collapse
Affiliation(s)
| | - Larisse Bernardino Dos Santos
- Biology and Toxicology Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil
- Microscopy Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil
| | - Waseem Hassan
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Jean Paul Kamdem
- Biology and Toxicology Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil
- Department of Biochemistry, Microbiology and Immunology (BMI), College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Antonia Eliene Duarte
- Biology and Toxicology Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Walid Soufan
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Ayman El Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, 33516, Egypt
| | - Mohammad Ibrahim
- Department of Chemistry, Abdul Wali Khan University Mardan (AWKUM) KPK, Mardan, 23200, Pakistan.
| |
Collapse
|
15
|
López-Ruíz BA, García-Ponce B, de la Paz Sánchez M, Álvarez-Buylla ER, Urrutia AO, Garay-Arroyo A. Genome-wide association studies meta-analysis uncovers NOJO and SGS3 novel genes involved in Arabidopsis thaliana primary root development and plasticity. Mol Biol Rep 2024; 51:763. [PMID: 38874813 PMCID: PMC11178574 DOI: 10.1007/s11033-024-09623-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Arabidopsis thaliana primary root growth has become a model for evo-devo studies due to its simplicity and facility to record cell proliferation and differentiation. To identify new genetic components relevant to primary root growth, we used a Genome-Wide Association Studies (GWAS) meta-analysis approach using data published in the last decade. In this work, we performed intra and inter-studies analyses to discover new genetic components that could participate in primary root growth. METHODS AND RESULTS We used 639 accessions from nine different studies under control conditions and performed different GWAS tests. We found that primary root growth changes were associated with 41 genes, of which six (14.6%) have been previously described as inhibitors or promoters of primary root growth. The knockdown lines of two genes, Suppressor of Gene Silencing (SGS3), involved in tasiRNA processing, and a gene with a Sterile Alpha Motif (SAM) motif named NOJOCH MOOTS (NOJO), confirmed their role as repressors of primary root growth, none has been shown to participate in this developmental process before. CONCLUSIONS In summary, our GWAS analysis of different available studies identified new genes that participate in primary root growth; two of them were identified as repressors of primary root growth.
Collapse
Affiliation(s)
- Brenda Anabel López-Ruíz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Depto. de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), C. U. CDMX, México
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Depto. de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), C. U. CDMX, México
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Depto. de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), C. U. CDMX, México
| | - Elena R Álvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Depto. de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), C. U. CDMX, México
- Centro de Ciencias de la Complejidad, UNAM, CDMX, México
| | - Araxi O Urrutia
- Laboratorio de Genómica Evolutiva y Funcional, Instituto de Ecología, UNAM, Mexico City, México.
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK.
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Depto. de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), C. U. CDMX, México.
- Centro de Ciencias de la Complejidad, UNAM, CDMX, México.
| |
Collapse
|
16
|
Chang H, Wu T, Shalmani A, Xu L, Li C, Zhang W, Pan R. Heat shock protein HvHSP16.9 from wild barley enhances tolerance to salt stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:687-704. [PMID: 38846458 PMCID: PMC11150235 DOI: 10.1007/s12298-024-01455-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/13/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
Heat shock proteins (HSPs) are known to play a crucial role in the response of plants to environmental stress, particularly heat stress. Nevertheless, the function of HSPs in salt stress tolerance in plants, especially in barley, remains largely unexplored. Here, we aimed to investigate and compare the salt tolerance mechanisms between wild barley EC_S1 and cultivated barley RGT Planet through a comprehensive analysis of physiological parameters and transcriptomic profiles. Results demonstrated that the number of differentially expressed genes (DEGs) in EC_S1 was significantly higher than in RGT Planet, indicating that wild barley gene regulation is more adaptive to salt stress. KEGG enrichment analysis revealed that DEGs were mainly enriched in the processes of photosynthesis, plant hormone signal transduction, and reactive oxygen species metabolism. Furthermore, the application of weighted gene correlation network analysis (WGCNA) enabled the identification of a set of key genes, including small heat shock protein (sHSP), Calmodulin-like proteins (CML), and protein phosphatases 2C (PP2C). Subsequently, a novel sHSP gene, HvHSP16.9 encoding a protein of 16.9 kDa, was cloned from wild barley, and its role in plant response to salt stress was elucidated. In Arabidopsis, overexpression of HvHSP16.9 increased the salt tolerance. Meanwhile, barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) of HvHSP16.9 significantly reduced the salt tolerance in wild barley. Overall, this study offers a new theoretical framework for comprehending the tolerance and adaptation mechanisms of wild barley under salt stress. It provides valuable insights into the salt tolerance function of HSP, and identifies new candidate genes for enhancing cultivated barley varieties. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01455-4.
Collapse
Affiliation(s)
- Haowen Chang
- Research Center of Crop Stresses Resistance Technologies/MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, 434025 China
| | - Tiantian Wu
- Research Center of Crop Stresses Resistance Technologies/MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, 434025 China
| | - Abdullah Shalmani
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100 China
| | - Le Xu
- Research Center of Crop Stresses Resistance Technologies/MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, 434025 China
| | - Chengdao Li
- Western Crop Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6105 Australia
| | - Wenying Zhang
- Research Center of Crop Stresses Resistance Technologies/MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, 434025 China
| | - Rui Pan
- Research Center of Crop Stresses Resistance Technologies/MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, 434025 China
| |
Collapse
|
17
|
Zhang Y, Li Y, de Zeeuw T, Duijts K, Kawa D, Lamers J, Munzert KS, Li H, Zou Y, Meyer AJ, Yan J, Verstappen F, Wang Y, Gijsberts T, Wang J, Gigli-Bisceglia N, Engelsdorf T, van Dijk ADJ, Testerink C. Root branching under high salinity requires auxin-independent modulation of LATERAL ORGAN BOUNDARY DOMAIN 16 function. THE PLANT CELL 2024; 36:899-918. [PMID: 38142228 PMCID: PMC10980347 DOI: 10.1093/plcell/koad317] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/17/2023] [Accepted: 12/08/2023] [Indexed: 12/25/2023]
Abstract
Salinity stress constrains lateral root (LR) growth and severely affects plant growth. Auxin signaling regulates LR formation, but the molecular mechanism by which salinity affects root auxin signaling and whether salt induces other pathways that regulate LR development remains unknown. In Arabidopsis thaliana, the auxin-regulated transcription factor LATERAL ORGAN BOUNDARY DOMAIN 16 (LBD16) is an essential player in LR development under control conditions. Here, we show that under high-salt conditions, an alternative pathway regulates LBD16 expression. Salt represses auxin signaling but, in parallel, activates ZINC FINGER OF ARABIDOPSIS THALIANA 6 (ZAT6), a transcriptional activator of LBD16. ZAT6 activates LBD16 expression, thus contributing to downstream cell wall remodeling and promoting LR development under high-salt conditions. Our study thus shows that the integration of auxin-dependent repressive and salt-activated auxin-independent pathways converging on LBD16 modulates root branching under high-salt conditions.
Collapse
Affiliation(s)
- Yanxia Zhang
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
- Plant Cell Biology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
- College of Agriculture, South China Agricultural University, 510642 Guangzhou, China
| | - Yiyun Li
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Thijs de Zeeuw
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Kilian Duijts
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Dorota Kawa
- Plant Cell Biology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Jasper Lamers
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Kristina S Munzert
- Molecular Plant Physiology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Hongfei Li
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Yutao Zou
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - A Jessica Meyer
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Jinxuan Yan
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Francel Verstappen
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Yixuan Wang
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Tom Gijsberts
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Jielin Wang
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Nora Gigli-Bisceglia
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Timo Engelsdorf
- Molecular Plant Physiology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
18
|
Liu L, Ma Y, Zhao H, Guo L, Guo Y, Liu CM. Genome-wide association studies identified OsTMF as a gene regulating rice seed germination under salt stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1384246. [PMID: 38601316 PMCID: PMC11004275 DOI: 10.3389/fpls.2024.1384246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/15/2024] [Indexed: 04/12/2024]
Abstract
Introduction Salt tolerance during seed germination is an important trait for direct seeding and low-cost rice production. Nevertheless, it is still not clear how seed germination under salt stress is regulated genetically. Methods In this study, genome-wide association studies (GWAS) were performed to decipher the genetic basis of seed germination under salt stress using 541 rice varieties collected worldwide. Results and discussion Three quantitative trait loci (QTLs) were identified including qGRG3-1 on chromosome 3, qGRG3-2 on chromosome 5, and qGRG4 on chromosome 4. Assessment of candidate genes in these loci for their responses to salt stress identified a TATA modulatory factor (OsTMF) in qGRG3-2. The expression of OsTMF was up-regulated in both roots and shoots after exposure to salt stress, and OsTMF knockout mutants exhibited delayed seed germination under salt stress. Haplotype analysis showed that rice varieties carrying OsTMF-Hap2 displayed elevated salt tolerance during seed germination. These results provide important knowledge and resources to improve rice seed germination under salt stress in the future.
Collapse
Affiliation(s)
- Lifeng Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yanling Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Heng Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chun-Ming Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| |
Collapse
|
19
|
Yu B, Chao DY, Zhao Y. How plants sense and respond to osmotic stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:394-423. [PMID: 38329193 DOI: 10.1111/jipb.13622] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
Drought is one of the most serious abiotic stresses to land plants. Plants sense and respond to drought stress to survive under water deficiency. Scientists have studied how plants sense drought stress, or osmotic stress caused by drought, ever since Charles Darwin, and gradually obtained clues about osmotic stress sensing and signaling in plants. Osmotic stress is a physical stimulus that triggers many physiological changes at the cellular level, including changes in turgor, cell wall stiffness and integrity, membrane tension, and cell fluid volume, and plants may sense some of these stimuli and trigger downstream responses. In this review, we emphasized water potential and movements in organisms, compared putative signal inputs in cell wall-containing and cell wall-free organisms, prospected how plants sense changes in turgor, membrane tension, and cell fluid volume under osmotic stress according to advances in plants, animals, yeasts, and bacteria, summarized multilevel biochemical and physiological signal outputs, such as plasma membrane nanodomain formation, membrane water permeability, root hydrotropism, root halotropism, Casparian strip and suberin lamellae, and finally proposed a hypothesis that osmotic stress responses are likely to be a cocktail of signaling mediated by multiple osmosensors. We also discussed the core scientific questions, provided perspective about the future directions in this field, and highlighted the importance of robust and smart root systems and efficient source-sink allocations for generating future high-yield stress-resistant crops and plants.
Collapse
Affiliation(s)
- Bo Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Sciences, Shanghai, 200032, China
- Key Laboratory of Plant Carbon Capture, The Chinese Academy of Sciences, Shanghai, 200032, China
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, The Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Sciences, Shanghai, 200032, China
- Key Laboratory of Plant Carbon Capture, The Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
20
|
Phosuwan S, Nounjan N, Theerakulpisut P, Siangliw M, Charoensawan V. Comparative quantitative trait loci analysis framework reveals relationships between salt stress responsive phenotypes and pathways. FRONTIERS IN PLANT SCIENCE 2024; 15:1264909. [PMID: 38463565 PMCID: PMC10920293 DOI: 10.3389/fpls.2024.1264909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
Soil salinity is a complex abiotic stress that involves several biological pathways. Hence, focusing on a specific or a few salt-tolerant phenotypes is unlikely to provide comprehensive insights into the intricate and interwinding mechanisms that regulate salt responsiveness. In this study, we develop a heuristic framework for systematically integrating and comprehensively evaluating quantitative trait loci (QTL) analyses from multiple stress-related traits obtained by different studies. Making use of a combined set of 46 salinity-related traits from three independent studies that were based on the same chromosome segment substitution line (CSSL) population of rice (Oryza sativa), we demonstrate how our approach can address technical biases and limitations from different QTL studies and calling methods. This allows us to compile a comprehensive list of trait-specific and multi-trait QTLs, as well as salinity-related candidate genes. In doing so, we discover several novel relationships between traits that demonstrate similar trends of phenotype scores across the CSSLs, as well as the similarities between genomic locations that the traits were mapped to. Finally, we experimentally validate our findings by expression analyses and functional validations of several selected candidate genes from multiple pathways in rice and Arabidopsis orthologous genes, including OsKS7 (ENT-KAURENE SYNTHASE 7), OsNUC1 (NUCLEOLIN 1) and OsFRO1 (FERRIC REDUCTASE OXIDASE 1) to name a few. This work not only introduces a novel approach for conducting comparative analyses of multiple QTLs, but also provides a list of candidate genes and testable hypotheses for salinity-related mechanisms across several biological pathways.
Collapse
Affiliation(s)
- Sunadda Phosuwan
- Doctor of Philosophy Program in Biochemistry (International Program), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Noppawan Nounjan
- Biodiversity and Environmental Management Division, International College, Khon Kaen University, Khon Kaen, Thailand
| | - Piyada Theerakulpisut
- Salt-tolerant Rice Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Meechai Siangliw
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Thailand
| | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
21
|
Wang Z, Li X, Gao XR, Dai ZR, Peng K, Jia LC, Wu YK, Liu QC, Zhai H, Gao SP, Zhao N, He SZ, Zhang H. IbMYB73 targets abscisic acid-responsive IbGER5 to regulate root growth and stress tolerance in sweet potato. PLANT PHYSIOLOGY 2024; 194:787-804. [PMID: 37815230 DOI: 10.1093/plphys/kiad532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 10/11/2023]
Abstract
Root development influences plant responses to environmental conditions, and well-developed rooting enhances plant survival under abiotic stress. However, the molecular and genetic mechanisms underlying root development and abiotic stress tolerance in plants remain unclear. In this study, we identified the MYB transcription factor-encoding gene IbMYB73 by cDNA-amplified fragment length polymorphism and RNA-seq analyses. IbMYB73 expression was greatly suppressed under abiotic stress in the roots of the salt-tolerant sweet potato (Ipomoea batatas) line ND98, and its promoter activity in roots was significantly reduced by abscisic acid (ABA), NaCl, and mannitol treatments. Overexpression of IbMYB73 significantly inhibited adventitious root growth and abiotic stress tolerance, whereas IbMYB73-RNAi plants displayed the opposite pattern. IbMYB73 influenced the transcription of genes involved in the ABA pathway. Furthermore, IbMYB73 formed homodimers and activated the transcription of ABA-responsive protein IbGER5 by binding to an MYB binding sites I motif in its promoter. IbGER5 overexpression significantly inhibited adventitious root growth and abiotic stress tolerance concomitantly with a reduction in ABA content, while IbGER5-RNAi plants showed the opposite effect. Collectively, our results demonstrated that the IbMYB73-IbGER5 module regulates ABA-dependent adventitious root growth and abiotic stress tolerance in sweet potato, which provides candidate genes for the development of elite crop varieties with well-developed root-mediated abiotic stress tolerance.
Collapse
Affiliation(s)
- Zhen Wang
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xu Li
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiao-Ru Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhuo-Ru Dai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Kui Peng
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Li-Cong Jia
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Yin-Kui Wu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Qing-Chang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shao-Pei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shao-Zhen He
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huan Zhang
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
22
|
Song Q, He F, Kong L, Yang J, Wang X, Zhao Z, Zhang Y, Xu C, Fan C, Luo K. The IAA17.1/HSFA5a module enhances salt tolerance in Populus tomentosa by regulating flavonol biosynthesis and ROS levels in lateral roots. THE NEW PHYTOLOGIST 2024; 241:592-606. [PMID: 37974487 DOI: 10.1111/nph.19382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023]
Abstract
Auxin signaling provides a promising approach to controlling root system architecture and improving stress tolerance in plants. However, how the auxin signaling is transducted in this process remains unclear. The Aux indole-3-acetic acid (IAA) repressor IAA17.1 is stabilized by salinity, and primarily expressed in the lateral root (LR) primordia and tips in poplar. Overexpression of the auxin-resistant form of IAA17.1 (IAA17.1m) led to growth inhibition of LRs, markedly reduced salt tolerance, increased reactive oxygen species (ROS) levels, and decreased flavonol content. We further identified that IAA17.1 can interact with the heat shock protein HSFA5a, which was highly expressed in roots and induced by salt stress. Overexpression of HSFA5a significantly increased flavonol content, reduced ROS accumulation, enhanced LR growth and salt tolerance in transgenic poplar. Moreover, HSFA5a could rescue the defective phenotypes caused by IAA17.1m. Expression analysis showed that genes associated with flavonol biosynthesis were altered in IAA17.1m- and HAFA5a-overexpressing plants. Furthermore, we identified that HSFA5a directly activated the expression of key enzyme genes in the flavonol biosynthesis pathway, while IAA17.1 suppressed HSFA5a-mediated activation of these genes. Collectively, the IAA17.1/HSFA5a module regulates flavonol biosynthesis, controls ROS accumulation, thereby modulating the root system of poplar to adapt to salt stress.
Collapse
Affiliation(s)
- Qin Song
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Fu He
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang, 443000, China
| | - Lingfei Kong
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiarui Yang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaojing Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Zhengjie Zhao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yuqian Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chunfen Fan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
23
|
Jing H, Wilkinson EG, Sageman-Furnas K, Strader LC. Auxin and abiotic stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:7000-7014. [PMID: 37591508 PMCID: PMC10690732 DOI: 10.1093/jxb/erad325] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Plants are exposed to a variety of abiotic stresses; these stresses have profound effects on plant growth, survival, and productivity. Tolerance and adaptation to stress require sophisticated stress sensing, signaling, and various regulatory mechanisms. The plant hormone auxin is a key regulator of plant growth and development, playing pivotal roles in the integration of abiotic stress signals and control of downstream stress responses. In this review, we summarize and discuss recent advances in understanding the intersection of auxin and abiotic stress in plants, with a focus on temperature, salt, and drought stresses. We also explore the roles of auxin in stress tolerance and opportunities arising for agricultural applications.
Collapse
Affiliation(s)
- Hongwei Jing
- Department of Biology, Duke University, Durham, NC 27008, USA
| | | | | | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| |
Collapse
|
24
|
Hunpatin OS, Yuan G, Nong T, Shi C, Wu X, Liu H, Ning Y, Wang Q. The Roles of Calcineurin B-like Proteins in Plants under Salt Stress. Int J Mol Sci 2023; 24:16958. [PMID: 38069281 PMCID: PMC10707636 DOI: 10.3390/ijms242316958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Salinity stands as a significant environmental stressor, severely impacting crop productivity. Plants exposed to salt stress undergo physiological alterations that influence their growth and development. Meanwhile, plants have also evolved mechanisms to endure the detrimental effects of salinity-induced salt stress. Within plants, Calcineurin B-like (CBL) proteins act as vital Ca2+ sensors, binding to Ca2+ and subsequently transmitting signals to downstream response pathways. CBLs engage with CBL-interacting protein kinases (CIPKs), forming complexes that regulate a multitude of plant growth and developmental processes, notably ion homeostasis in response to salinity conditions. This review introduces the repercussions of salt stress, including osmotic stress, diminished photosynthesis, and oxidative damage. It also explores how CBLs modulate the response to salt stress in plants, outlining the functions of the CBL-CIPK modules involved. Comprehending the mechanisms through which CBL proteins mediate salt tolerance can accelerate the development of cultivars resistant to salinity.
Collapse
Affiliation(s)
- Oluwaseyi Setonji Hunpatin
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.S.H.); (G.Y.); (T.N.); (C.S.); (X.W.); (H.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guang Yuan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.S.H.); (G.Y.); (T.N.); (C.S.); (X.W.); (H.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tongjia Nong
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.S.H.); (G.Y.); (T.N.); (C.S.); (X.W.); (H.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuhan Shi
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.S.H.); (G.Y.); (T.N.); (C.S.); (X.W.); (H.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xue Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.S.H.); (G.Y.); (T.N.); (C.S.); (X.W.); (H.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haobao Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.S.H.); (G.Y.); (T.N.); (C.S.); (X.W.); (H.L.)
| | - Yang Ning
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.S.H.); (G.Y.); (T.N.); (C.S.); (X.W.); (H.L.)
| | - Qian Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.S.H.); (G.Y.); (T.N.); (C.S.); (X.W.); (H.L.)
| |
Collapse
|
25
|
Akhiyarova G, Vafina G, Veselov D, Kudoyarova G. Immunolocalization of Jasmonates and Auxins in Pea Roots in Connection with Inhibition of Root Growth under Salinity Conditions. Int J Mol Sci 2023; 24:15148. [PMID: 37894828 PMCID: PMC10606536 DOI: 10.3390/ijms242015148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Inhibition of root elongation is an important growth response to salinity, which is thought to be regulated by the accumulation of jasmonates and auxins in roots. Nevertheless, the mechanisms of the interaction of these hormones in the regulation of the growth response to salinity are still not clear enough. Their better understanding depends on the study of the distribution of jasmonates and auxins between root cells. This was achieved with the help of immunolocalization of auxin (indoleacetic acid) and jasmonates on the root sections of pea plants. Salinity inhibited root elongation and decreased the size of the meristem zone and the length of cells in the elongation zone. Immunofluorescence based on the use of appropriate, specific antibodies that recognize auxins and jasmonates revealed an increased abundance of both hormones in the meristem zone. The obtained data suggests the participation of either auxins or jasmonates in the inhibition of cell division, which leads to a decrease in the size of the meristem zone. The level of only auxin and not jasmonate increased in the elongation zone. However, since some literature evidence argues against inhibition of root cell division by auxins, while jasmonates have been shown to inhibit this process, we came to the conclusion that elevated jasmonate is a more likely candidate for inhibiting root meristem activity under salinity conditions. Data suggests that auxins, not jasmonates, reduce cell size in the elongation zone of salt-stressed plants, a suggestion supported by the known ability of auxins to inhibit root cell elongation.
Collapse
Affiliation(s)
| | | | | | - Guzel Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya 69, 450054 Ufa, Russia; (G.A.); (G.V.); (D.V.)
| |
Collapse
|
26
|
Rahmati Ishka M, Julkowska M. Tapping into the plasticity of plant architecture for increased stress resilience. F1000Res 2023; 12:1257. [PMID: 38434638 PMCID: PMC10905174 DOI: 10.12688/f1000research.140649.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 03/05/2024] Open
Abstract
Plant architecture develops post-embryonically and emerges from a dialogue between the developmental signals and environmental cues. Length and branching of the vegetative and reproductive tissues were the focus of improvement of plant performance from the early days of plant breeding. Current breeding priorities are changing, as we need to prioritize plant productivity under increasingly challenging environmental conditions. While it has been widely recognized that plant architecture changes in response to the environment, its contribution to plant productivity in the changing climate remains to be fully explored. This review will summarize prior discoveries of genetic control of plant architecture traits and their effect on plant performance under environmental stress. We review new tools in phenotyping that will guide future discoveries of genes contributing to plant architecture, its plasticity, and its contributions to stress resilience. Subsequently, we provide a perspective into how integrating the study of new species, modern phenotyping techniques, and modeling can lead to discovering new genetic targets underlying the plasticity of plant architecture and stress resilience. Altogether, this review provides a new perspective on the plasticity of plant architecture and how it can be harnessed for increased performance under environmental stress.
Collapse
|
27
|
Hu Y, Zeng L, Lv X, Guo J, Li X, Zhang X, Wang D, Wang J, Bi J, Julkowska MM, Li B. NIGT1.4 maintains primary root elongation in response to salt stress through induction of ERF1 in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:173-186. [PMID: 37366219 DOI: 10.1111/tpj.16369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/22/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Plants employ various molecular mechanisms to maintain primary root elongation upon salt stress. Identification of key functional genes, therein, is important for improving crop salt tolerance. Through analyzing natural variation of the primary root length of Arabidopsis natural population under salt stress, we identified NIGT1.4, encoding an MYB transcription factor, as a novel contributor to maintained root growth under salt stress. Using both T-DNA knockout and functional complementation, NIGT1.4 was confirmed to have a role in promoting primary root growth in response to salt stress. The expression of NIGT1.4 in the root was shown induced by NaCl treatments in an ABA-dependent manner. SnRK2.2 and 2.3 were shown to interact with and phosphorylate NIGT1.4 individually. The growth of the primary root of snrk2.2/2.3/2.6 triple mutant was shown sensitive to salt stress, which was similar to nigt1.4 plants. Using DNA affinity purification sequencing, ERF1, a known positive regulator for primary root elongation and salt tolerance, was identified as a target gene for NIGT1.4. The transcriptional induction of ERF1 by salt stress was shown absent in nigt1.4 background. NIGT1.4 was also confirmed to bind to the promoter region of ERF1 by yeast one-hybrid experiment and to induce the expression of ERF1 by dual-luciferase analysis. All data support the notion that salt- and ABA-elicited NIGT1.4 induces the expression of ERF1 to regulate downstream functional genes that contribute to maintained primary root elongation. NIGT1.4-ERF1, therefore, acts as a signaling node linking regulators for stress resilience and root growth, providing new insights for breeding salt-tolerant crops.
Collapse
Affiliation(s)
- Yunfei Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Li Zeng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Xiaodong Lv
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Junhua Guo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Xiaoyan Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Xiaohua Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Dan Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Jingya Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Jinlong Bi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | | | - Bo Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| |
Collapse
|
28
|
Xu S, Williams J, Ferreira MAR. BG2: Bayesian variable selection in generalized linear mixed models with nonlocal priors for non-Gaussian GWAS data. BMC Bioinformatics 2023; 24:343. [PMID: 37715138 PMCID: PMC10503129 DOI: 10.1186/s12859-023-05468-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Genome-wide association studies (GWASes) aim to identify single nucleotide polymorphisms (SNPs) associated with a given phenotype. A common approach for the analysis of GWAS is single marker analysis (SMA) based on linear mixed models (LMMs). However, LMM-based SMA usually yields a large number of false discoveries and cannot be directly applied to non-Gaussian phenotypes such as count data. RESULTS We present a novel Bayesian method to find SNPs associated with non-Gaussian phenotypes. To that end, we use generalized linear mixed models (GLMMs) and, thus, call our method Bayesian GLMMs for GWAS (BG2). To deal with the high dimensionality of GWAS analysis, we propose novel nonlocal priors specifically tailored for GLMMs. In addition, we develop related fast approximate Bayesian computations. BG2 uses a two-step procedure: first, BG2 screens for candidate SNPs; second, BG2 performs model selection that considers all screened candidate SNPs as possible regressors. A simulation study shows favorable performance of BG2 when compared to GLMM-based SMA. We illustrate the usefulness and flexibility of BG2 with three case studies on cocaine dependence (binary data), alcohol consumption (count data), and number of root-like structures in a model plant (count data).
Collapse
Affiliation(s)
- Shuangshuang Xu
- Department of Statistics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jacob Williams
- Department of Statistics, Virginia Tech, Blacksburg, VA, 24061, USA
| | | |
Collapse
|
29
|
Zhang X, Wang H, Yang M, Liu R, Zhang X, Jia Z, Li P. Natural variation in ZmNAC087 contributes to total root length regulation in maize seedlings under salt stress. BMC PLANT BIOLOGY 2023; 23:392. [PMID: 37580686 PMCID: PMC10424409 DOI: 10.1186/s12870-023-04393-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023]
Abstract
Soil salinity poses a significant challenge to crop growth and productivity, particularly affecting the root system, which is vital for water and nutrient uptake. To identify genetic factors that influence root elongation in stressful environments, we conducted a genome-wide association study (GWAS) to investigate the natural variation associated with total root length (TRL) under salt stress and normal conditions in maize seedlings. Our study identified 69 genetic variants associated with 38 candidate genes, among which a specific single nucleotide polymorphism (SNP) in ZmNAC087 was significantly associated with TRL under salt stress. Transient expression and transactivation assays revealed that ZmNAC087 encodes a nuclear-localized protein with transactivation activity. Further candidate gene association analysis showed that non-coding variations in ZmNAC087 promoter contribute to differential ZmNAC087 expression among maize inbred lines, potentially influencing the variation in salt-regulated TRL. In addition, through nucleotide diversity analysis, neutrality tests, and coalescent simulation, we demonstrated that ZmNAC087 underwent selection during maize domestication and improvement. These findings highlight the significance of natural variation in ZmNAC087, particularly the favorable allele, in maize salt tolerance, providing theoretical basis and valuable genetic resources for the development of salt-tolerant maize germplasm.
Collapse
Affiliation(s)
- Xiaomin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Sanya Institute, Henan University, Sanya, 572025, China
| | - Houmiao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Mengling Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Runxiao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Zhongtao Jia
- State Key Laboratory of Nutrient Use and Management (SKL-NUM), College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China.
| | - Pengcheng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
30
|
Li W, Zhao P, Sun J, Yu X, Zou L, Li S, Di R, Ruan M, Peng M. Biological function research of Fusarium oxysporum f. sp. cubense inducible banana long noncoding RNA Malnc2310 in Arabidopsis. PLANT MOLECULAR BIOLOGY 2023:10.1007/s11103-023-01360-6. [PMID: 37507516 DOI: 10.1007/s11103-023-01360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/20/2023] [Indexed: 07/30/2023]
Abstract
Long noncoding RNAs (lncRNAs) participate in plant biological processes under biotic and abiotic stresses. However, little is known about the function and regulation mechanism of lncRNAs related to the pathogen at a molecular level. A banana lncRNA, Malnc2310, is a Fusarium oxysporum f. sp. cubense inducible lncRNA in roots. In this study, we demonstrate the nuclear localization of Malnc2310 by fluorescence in situ hybridization and it can bind to several proteins that are related to flavonoid pathway, pathogen response and programmed cell death. Overexpression of Malnc2310 increases susceptibility to Fusarium crude extract (Fu), salinity, and cold in transgenic Arabidopsis. In addition, Malnc2310 transgenic Arabidopsis accumulated more anthocyanins under Fusarium crude extract and cold treatments that are related to upregulation of these genes involved in anthocyanin biosynthesis. Based on our findings, we propose that Malnc2310 may participate in flavonoid metabolism in plants under stress. Furthermore, phenylalanine ammonia lyase (PAL) protein expression was enhanced in Malnc2310 overexpressed transgenic Arabidopsis, and Malnc2310 may participate in PAL regulation by binding to it. This study provides new insights into the role of Malnc2310 in mediating plant stress adaptation.
Collapse
Affiliation(s)
- Wenbin Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, P.R.China / Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory of Conservation and Utilization of Tropical Agricultural Biological Resources, Hainan Institute for Tropical Agricultural Resources, Haikou, China
| | - Pingjuan Zhao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, P.R.China / Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jianbo Sun
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, P.R.China / Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiaoling Yu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, P.R.China / Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Liangping Zou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, P.R.China / Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shuxia Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, P.R.China / Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory of Conservation and Utilization of Tropical Agricultural Biological Resources, Hainan Institute for Tropical Agricultural Resources, Haikou, China
| | - Rong Di
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, USA
| | - Mengbin Ruan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, P.R.China / Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
- Hainan Key Laboratory of Conservation and Utilization of Tropical Agricultural Biological Resources, Hainan Institute for Tropical Agricultural Resources, Haikou, China.
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China.
| | - Ming Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, P.R.China / Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China.
| |
Collapse
|
31
|
van Zelm E, Bugallo-Alfageme S, Behrouzi P, Meyer AJ, Testerink C, Gommers CMM. Natural variation in salt-induced root growth phases and their contribution to root architecture plasticity. PLANT, CELL & ENVIRONMENT 2023; 46:2174-2186. [PMID: 36912402 DOI: 10.1111/pce.14583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/14/2023] [Accepted: 03/10/2023] [Indexed: 06/08/2023]
Abstract
The root system architecture of a plant changes during salt stress exposure. Different accessions of Arabidopsis thaliana have adopted different strategies in remodelling their root architecture during salt stress. Salt induces a multiphase growth response in roots, consisting of a stop phase, quiescent phase, recovery phase and eventually a new level of homoeostasis. We explored natural variation in the length of and growth rate during these phases in both main and lateral roots and find that some accessions lack the quiescent phase. Using mathematical models and correlation-based network, allowed us to correlate dynamic traits to overall root architecture and discover that both the main root growth rate during homoeostasis and lateral root appearance are the strongest determinants of overall root architecture. In addition, this approach revealed a trade-off between investing in main or lateral root length during salt stress. By studying natural variation in high-resolution temporal root growth using mathematical modelling, we gained new insights in the interactions between dynamic root growth traits and we identified key traits that modulate overall root architecture during salt stress.
Collapse
Affiliation(s)
- Eva van Zelm
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Silvia Bugallo-Alfageme
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Pariya Behrouzi
- Mathematical-Statistical Method Group, Wageningen University & Research, Wageningen, The Netherlands
| | - A Jessica Meyer
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Charlotte M M Gommers
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
32
|
Luo S, Liu Z, Wan Z, He X, Lv J, Yu J, Zhang G. Foliar Spraying of NaHS Alleviates Cucumber Salt Stress by Maintaining N +/K + Balance and Activating Salt Tolerance Signaling Pathways. PLANTS (BASEL, SWITZERLAND) 2023; 12:2450. [PMID: 37447010 DOI: 10.3390/plants12132450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
Hydrogen sulfide (H2S) is involved in the regulation of plant salt stress as a potential signaling molecule. This work investigated the effect of H2S on cucumber growth, photosynthesis, antioxidation, ion balance, and other salt tolerance pathways. The plant height, stem diameter, leaf area and photosynthesis of cucumber seedlings were significantly inhibited by 50 mmol·L-1 NaCl. Moreover, NaCl treatment induced superoxide anion (O2·-) and Na+ accumulation and affected the absorption of other mineral ions. On the contrary, exogenous spraying of 200 μmol·L-1 sodium hydrosulfide (NaHS) maintained the growth of cucumber seedlings, increased photosynthesis, enhanced the ascorbate-glutathione cycle (AsA-GSH), and promoted the absorption of mineral ions under salt stress. Meanwhile, NaHS upregulated SOS1, SOS2, SOS3, NHX1, and AKT1 genes to maintain Na+/K+ balance and increased the relative expression of MAPK3, MAPK4, MAPK6, and MAPK9 genes to enhance salt tolerance. These positive effects of H2S could be reversed by 150 mmol·L-1 propargylglycine (PAG, a specific inhibitor of H2S biosynthesis). These results indicated that H2S could mitigate salt damage in cucumber, mainly by improving photosynthesis, enhancing the AsA-GSH cycle, reducing the Na+/K+ ratio, and inducing the SOS pathway and MAPK pathway.
Collapse
Affiliation(s)
- Shilei Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zilong Wan
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xianxia He
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
| | - Guobin Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
33
|
Tessi TM, Maurino VG, Shahriari M, Meissner E, Novak O, Pasternak T, Schumacher BS, Ditengou F, Li Z, Duerr J, Flubacher NS, Nautscher M, Williams A, Kazimierczak Z, Strnad M, Thumfart JO, Palme K, Desimone M, Teale WD. AZG1 is a cytokinin transporter that interacts with auxin transporter PIN1 and regulates the root stress response. THE NEW PHYTOLOGIST 2023; 238:1924-1941. [PMID: 36918499 DOI: 10.1111/nph.18879] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/29/2023] [Indexed: 05/04/2023]
Abstract
An environmentally responsive root system is crucial for plant growth and crop yield, especially in suboptimal soil conditions. This responsiveness enables the plant to exploit regions of high nutrient density while simultaneously minimizing abiotic stress. Despite the vital importance of root systems in regulating plant growth, significant gaps of knowledge exist in the mechanisms that regulate their architecture. Auxin defines both the frequency of lateral root (LR) initiation and the rate of LR outgrowth. Here, we describe a search for proteins that regulate root system architecture (RSA) by interacting directly with a key auxin transporter, PIN1. The native separation of Arabidopsis plasma membrane protein complexes identified several PIN1 co-purifying proteins. Among them, AZG1 was subsequently confirmed as a PIN1 interactor. Here, we show that, in Arabidopsis, AZG1 is a cytokinin (CK) import protein that co-localizes with and stabilizes PIN1, linking auxin and CK transport streams. AZG1 expression in LR primordia is sensitive to NaCl, and the frequency of LRs is AZG1-dependent under salt stress. This report therefore identifies a potential point for auxin:cytokinin crosstalk, which shapes RSA in response to NaCl.
Collapse
Affiliation(s)
- Tomás M Tessi
- Instituto Multidisciplinario de Biología Vegetal, Velez Sarsfield 249, 5000, Córdoba, Argentina
| | - Veronica G Maurino
- Molecular Plant Physiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Mojgan Shahriari
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Esther Meissner
- Conservation Ecology, Department Biology, Philipps-Universität Marburg, Karl-von-Frisch-Straße 8, 35032, Marburg, Germany
| | - Ondrej Novak
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR and Palacky, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Taras Pasternak
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Benjamin S Schumacher
- Zentrum für Molekularbiologie der Pflanzen, Universität Tübingen, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Franck Ditengou
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Zenglin Li
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Jasmin Duerr
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Noemi S Flubacher
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Moritz Nautscher
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Alyssa Williams
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Zuzanna Kazimierczak
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR and Palacky, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Jörg-Oliver Thumfart
- Faculty of Medicine, Institute of Physiology II, University of Freiburg, Hermann-Herder-Strasse 7, 79104, Freiburg, Germany
- Labormedizinisches Zentrum Ostschweiz, Lagerstrasse 30, 9470, Buchs, SG, Switzerland
| | - Klaus Palme
- Molecular Plant Physiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
- Centre of Biological Systems Analysis, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Marcelo Desimone
- Instituto Multidisciplinario de Biología Vegetal, Velez Sarsfield 249, 5000, Córdoba, Argentina
| | - William D Teale
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| |
Collapse
|
34
|
Williams J, Xu S, Ferreira MAR. BGWAS: Bayesian variable selection in linear mixed models with nonlocal priors for genome-wide association studies. BMC Bioinformatics 2023; 24:194. [PMID: 37170185 PMCID: PMC10176706 DOI: 10.1186/s12859-023-05316-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/30/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) seek to identify single nucleotide polymorphisms (SNPs) that cause observed phenotypes. However, with highly correlated SNPs, correlated observations, and the number of SNPs being two orders of magnitude larger than the number of observations, GWAS procedures often suffer from high false positive rates. RESULTS We propose BGWAS, a novel Bayesian variable selection method based on nonlocal priors for linear mixed models specifically tailored for genome-wide association studies. Our proposed method BGWAS uses a novel nonlocal prior for linear mixed models (LMMs). BGWAS has two steps: screening and model selection. The screening step scans through all the SNPs fitting one LMM for each SNP and then uses Bayesian false discovery control to select a set of candidate SNPs. After that, a model selection step searches through the space of LMMs that may have any number of SNPs from the candidate set. A simulation study shows that, when compared to popular GWAS procedures, BGWAS greatly reduces false positives while maintaining the same ability to detect true positive SNPs. We show the utility and flexibility of BGWAS with two case studies: a case study on salt stress in plants, and a case study on alcohol use disorder. CONCLUSIONS BGWAS maintains and in some cases increases the recall of true SNPs while drastically lowering the number of false positives compared to popular SMA procedures.
Collapse
Affiliation(s)
- Jacob Williams
- Department of Statistics, Virginia Tech, Blacksburg, 24061, USA.
| | - Shuangshuang Xu
- Department of Statistics, Virginia Tech, Blacksburg, 24061, USA
| | | |
Collapse
|
35
|
Shelden MC, Munns R. Crop root system plasticity for improved yields in saline soils. FRONTIERS IN PLANT SCIENCE 2023; 14:1120583. [PMID: 36909408 PMCID: PMC9999379 DOI: 10.3389/fpls.2023.1120583] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Crop yields must increase to meet the demands of a growing world population. Soil salinization is increasing due to the impacts of climate change, reducing the area of arable land for crop production. Plant root systems are plastic, and their architecture can be modulated to (1) acquire nutrients and water for growth, and (2) respond to hostile soil environments. Saline soils inhibit primary root growth and alter root system architecture (RSA) of crop plants. In this review, we explore how crop root systems respond and adapt to salinity, focusing predominately on the staple cereal crops wheat, maize, rice, and barley, that all play a major role in global food security. Cereal crops are classified as glycophytes (salt-sensitive) however salt-tolerance can differ both between species and within a species. In the past, due to the inherent difficulties associated with visualising and measuring root traits, crop breeding strategies have tended to focus on optimising shoot traits. High-resolution phenotyping techniques now make it possible to visualise and measure root traits in soil systems. A steep, deep and cheap root ideotype has been proposed for water and nitrogen capture. Changes in RSA can be an adaptive strategy to avoid saline soils whilst optimising nutrient and water acquisition. In this review we propose a new model for designing crops with a salt-tolerant root ideotype. The proposed root ideotype would exhibit root plasticity to adapt to saline soils, root anatomical changes to conserve energy and restrict sodium (Na+) uptake, and transport mechanisms to reduce the amount of Na+ transported to leaves. In the future, combining high-resolution root phenotyping with advances in crop genetics will allow us to uncover root traits in complex crop species such as wheat, that can be incorporated into crop breeding programs for yield stability in saline soils.
Collapse
Affiliation(s)
- Megan C. Shelden
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Rana Munns
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
36
|
Ahmad R, Manzoor M, Muhammad HMD, Altaf MA, Shakoor A. Exogenous Melatonin Spray Enhances Salinity Tolerance in Zizyphus Germplasm: A Brief Theory. Life (Basel) 2023; 13:life13020493. [PMID: 36836849 PMCID: PMC9958626 DOI: 10.3390/life13020493] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Fruit orchards are frequently irrigated with brackish water. Irrigation with poor quality water is also a major cause of salt accumulation in soil. An excess of salts results in stunted growth, poor yield, inferior quality and low nutritional properties. Melatonin is a low molecular weight protein that shows multifunctional, regulatory and pleiotropic behavior in the plant kingdom. Recently, its discovery brought a great revolution in sustainable fruit production under salinity-induced environments. Melatonin contributed to enhanced tolerance in Zizyphus fruit species by improving the plant defense system's potential to cope with the adverse effects of salinity. The supplemental application of melatonin has improved the generation of antioxidant assays and osmolytes involved in the scavenging of toxic ROS. The tolerance level of the germplasm is chiefly based on the activation of the defense system against the adverse effects of salinity. The current study explored the contribution of melatonin against salinity stress and provides information regarding which biochemical mechanism can be effective and utilized for the development of salt-tolerant germplasm in Zizyphus.
Collapse
Affiliation(s)
- Riaz Ahmad
- Department of Horticulture, The University of Agriculture, Dera Ismail Khan 29220, Pakistan
| | - Meryam Manzoor
- Department of Horticulture, Bahauddin Zakariya University, Multan 60800, Pakistan
| | | | | | - Awais Shakoor
- Teagasc, Environment, Soils and Land Use Department, Johnstown Castle, Co., Y35 Y521 Wexford, Ireland
| |
Collapse
|
37
|
Li S, Liu J, Xue C, Lin Y, Yan Q, Chen J, Wu R, Chen X, Yuan X. Identification and Functional Characterization of WRKY, PHD and MYB Three Salt Stress Responsive Gene Families in Mungbean ( Vigna radiata L.). Genes (Basel) 2023; 14:463. [PMID: 36833390 PMCID: PMC9956968 DOI: 10.3390/genes14020463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
WRKY-, PHD-, and MYB-like proteins are three important types of transcription factors in mungbeans, and play an important role in development and stress resistance. The genes' structures and characteristics were clearly reported and were shown to contain the conservative WRKYGQK heptapeptide sequence, Cys4-His-cys3 zinc binding motif, and HTH (helix) tryptophan cluster W structure, respectively. Knowledge on the response of these genes to salt stress is largely unknown. To address this issue, 83 VrWRKYs, 47 VrPHDs, and 149 VrMYBs were identified by using comparative genomics, transcriptomics, and molecular biology methods in mungbeans. An intraspecific synteny analysis revealed that the three gene families had strong co-linearity and an interspecies synteny analysis showed that mungbean and Arabidopsis were relatively close in genetic relationship. Moreover, 20, 10, and 20 genes showed significantly different expression levels after 15 days of salt treatment (p < 0.05; Log2 FC > 0.5), respectively. Additionally, in the qRT-PCR analysis, VrPHD14 had varying degrees of response to NaCl and PEG treatments after 12 h. VrWRKY49 was upregulated by ABA treatment, especially in the beginning (within 24 h). VrMYB96 was significantly upregulated in the early stages of ABA, NaCl, and PEG stress treatments (during the first 4 h). VrWRKY38 was significantly upregulated by ABA and NaCl treatments, but downregulated by PEG treatment. We also constructed a gene network centered on the seven DEGs under NaCl treatment; the results showed that VrWRKY38 was in the center of the PPI network and most of the homologous Arabidopsis genes of the interacted genes were reported to have response to biological stress. Candidate genes identified in this study provide abundant gene resources for the study of salt tolerance in mungbeans.
Collapse
Affiliation(s)
- Shicong Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210000, China
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Jinyang Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Chenchen Xue
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Qiang Yan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Jingbin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Ranran Wu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| |
Collapse
|
38
|
Urbanavičiūtė I, Bonfiglioli L, Pagnotta MA. Phenotypic and Genotypic Diversity of Roots Response to Salt in Durum Wheat Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:412. [PMID: 36679125 PMCID: PMC9865824 DOI: 10.3390/plants12020412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Soil salinity is a serious threat to food production now and in the near future. In this study, the root system of six durum wheat genotypes, including one highly salt-tolerant (J. Khetifa) used as a check genotype, was evaluated, by a high-throughput phenotyping system, under control and salt conditions at the seedling stage. Genotyping was performed using 11 SSR markers closely linked with genome regions associated with root traits. Based on phenotypic cluster analysis, genotypes were grouped differently under control and salt conditions. Under control conditions, genotypes were clustered mainly due to a root angle, while under salt stress, genotypes were grouped according to their capacity to maintain higher roots length, volume, and surface area, as J. Khetifa, Sebatel, and Azeghar. SSR analysis identified a total of 42 alleles, with an average of about three alleles per marker. Moreover, quite a high number of Private alleles in total, 18 were obtained. The UPGMA phenogram of the Nei (1972) genetic distance clusters for 11 SSR markers and all phenotypic data under control conditions discriminate genotypes almost into the same groups. The study revealed as the combination of high-throughput systems for phenotyping with SSR markers for genotyping it's a useful tool to provide important data for the selection of suitable parental lines for salt-tolerance breeding. Nevertheless, the narrow root angle, which is an important trait in drought tolerance, is not a good indicator of salt tolerance. Instated for salt tolerance is more important the amount of roots.
Collapse
Affiliation(s)
| | | | - Mario A. Pagnotta
- Department of Agricultural and Forest Sciences, Tuscia University, Via S. C. de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
39
|
Ortega-Albero N, González-Orenga S, Vicente O, Rodríguez-Burruezo A, Fita A. Responses to Salt Stress of the Interspecific Hybrid Solanum insanum × Solanum melongena and Its Parental Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020295. [PMID: 36679008 PMCID: PMC9867010 DOI: 10.3390/plants12020295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 05/14/2023]
Abstract
Soil salinity is becoming one of the most critical problems for agriculture in the current climate change scenario. Growth parameters, such as plant height, root length and fresh weight, and several biochemical stress markers (chlorophylls, total flavonoids and proline), have been determined in young plants of Solanum melongena, its wild relative Solanum insanum, and their interspecific hybrid, grown in the presence of 200 and 400 mM of NaCl, and in adult plants in the long-term presence of 80 mM of NaCl, in order to assess their responses to salt stress. Cultivated eggplant showed a relatively high salt tolerance, compared to most common crops, primarily based on the control of ion transport and osmolyte biosynthesis. S. insanum exhibited some specific responses, such as the salt-induced increase in leaf K+ contents (653.8 μmol g-1 dry weight) compared to S. melongena (403 μmol g-1 dry weight) at 400 mM of NaCl. Although there were no substantial differences in growth in the presence of salt, biochemical evidence of a better response to salt stress of the wild relative was detected, such as a higher proline content. The hybrid showed higher tolerance than either of the parents with better growth parameters, such as plant height increment (7.3 cm) and fresh weight (240.4% root fresh weight and 113.3% shoot fresh weight) at intermediate levels of salt stress. For most biochemical variables, the hybrid showed an intermediate behaviour between the two parent species, but for proline it was closer to S. insanum (ca. 2200 μmol g-1 dry weight at 200 mM NaCl). These results show the possibility of developing new salt tolerance varieties in eggplant by introducing genes from S. insanum.
Collapse
Affiliation(s)
- Neus Ortega-Albero
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera S/N, 46022 Valencia, Spain
| | - Sara González-Orenga
- Department of Plant Biology and Soil Science, Faculty of Biology, Universidad de Vigo, Campus Lagoas-Marcosendre, 36310 Vigo, Spain
| | - Oscar Vicente
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera S/N, 46022 Valencia, Spain
| | - Adrián Rodríguez-Burruezo
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera S/N, 46022 Valencia, Spain
| | - Ana Fita
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera S/N, 46022 Valencia, Spain
- Correspondence:
| |
Collapse
|
40
|
Perez VC, Zhao H, Lin M, Kim J. Occurrence, Function, and Biosynthesis of the Natural Auxin Phenylacetic Acid (PAA) in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:266. [PMID: 36678978 PMCID: PMC9867223 DOI: 10.3390/plants12020266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Auxins are a class of plant hormones playing crucial roles in a plant's growth, development, and stress responses. Phenylacetic acid (PAA) is a phenylalanine-derived natural auxin found widely in plants. Although the auxin activity of PAA in plants was identified several decades ago, PAA homeostasis and its function remain poorly understood, whereas indole-3-acetic acid (IAA), the most potent auxin, has been used for most auxin studies. Recent studies have revealed unique features of PAA distinctive from IAA, and the enzymes and intermediates of the PAA biosynthesis pathway have been identified. Here, we summarize the occurrence and function of PAA in plants and highlight the recent progress made in PAA homeostasis, emphasizing PAA biosynthesis and crosstalk between IAA and PAA homeostasis.
Collapse
Affiliation(s)
- Veronica C. Perez
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611, USA
| | - Haohao Zhao
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Makou Lin
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611, USA
| | - Jeongim Kim
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611, USA
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
- Genetic Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
41
|
Almira Casellas MJ, Pérez‐Martín L, Busoms S, Boesten R, Llugany M, Aarts MGM, Poschenrieder C. A genome-wide association study identifies novel players in Na and Fe homeostasis in Arabidopsis thaliana under alkaline-salinity stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:225-245. [PMID: 36433704 PMCID: PMC10108281 DOI: 10.1111/tpj.16042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
In nature, multiple stress factors occur simultaneously. The screening of natural diversity panels and subsequent Genome-Wide Association Studies (GWAS) is a powerful approach to identify genetic components of various stress responses. Here, the nutritional status variation of a set of 270 natural accessions of Arabidopsis thaliana grown on a natural saline-carbonated soil is evaluated. We report significant natural variation on leaf Na (LNa) and Fe (LFe) concentrations in the studied accessions. Allelic variation in the NINJA and YUC8 genes is associated with LNa diversity, and variation in the ALA3 is associated with LFe diversity. The allelic variation detected in these three genes leads to changes in their mRNA expression and correlates with plant differential growth performance when plants are exposed to alkaline salinity treatment under hydroponic conditions. We propose that YUC8 and NINJA expression patters regulate auxin and jasmonic signaling pathways affecting plant tolerance to alkaline salinity. Finally, we describe an impairment in growth and leaf Fe acquisition associated with differences in root expression of ALA3, encoding a phospholipid translocase active in plasma membrane and the trans Golgi network which directly interacts with proteins essential for the trafficking of PIN auxin transporters, reinforcing the role of phytohormonal processes in regulating ion homeostasis under alkaline salinity.
Collapse
Affiliation(s)
- Maria Jose Almira Casellas
- Plant Physiology Laboratory, Bioscience FacultyUniversitat Autònoma de BarcelonaC/de la Vall Moronta s/nE‐08193BellaterraSpain
| | - Laura Pérez‐Martín
- Plant Physiology Laboratory, Bioscience FacultyUniversitat Autònoma de BarcelonaC/de la Vall Moronta s/nE‐08193BellaterraSpain
- Department of Botany and Plant BiologyUniversity of Geneva1211GenevaSwitzerland
| | - Silvia Busoms
- Plant Physiology Laboratory, Bioscience FacultyUniversitat Autònoma de BarcelonaC/de la Vall Moronta s/nE‐08193BellaterraSpain
| | - René Boesten
- Laboratory of GeneticsWageningen University and ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Mercè Llugany
- Plant Physiology Laboratory, Bioscience FacultyUniversitat Autònoma de BarcelonaC/de la Vall Moronta s/nE‐08193BellaterraSpain
| | - Mark G. M. Aarts
- Laboratory of GeneticsWageningen University and ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Charlotte Poschenrieder
- Plant Physiology Laboratory, Bioscience FacultyUniversitat Autònoma de BarcelonaC/de la Vall Moronta s/nE‐08193BellaterraSpain
| |
Collapse
|
42
|
Du N, Xue L, Xue D, Dong X, Yang Q, Shah Jahan M, Guo H, Fu R, Wang Y, Piao F. The transcription factor SlNAP1 increases salt tolerance by modulating ion homeostasis and ROS metabolism in Solanum lycopersicum. Gene X 2023; 849:146906. [DOI: 10.1016/j.gene.2022.146906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/03/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022] Open
|
43
|
Wang C, Wei L, Zhang J, Hu D, Gao R, Liu Y, Feng L, Gong W, Liao W. Nitric Oxide Enhances Salt Tolerance in Tomato Seedlings by Regulating Endogenous S-nitrosylation Levels. JOURNAL OF PLANT GROWTH REGULATION 2023; 42:275-293. [PMID: 0 DOI: 10.1007/s00344-021-10546-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 10/22/2021] [Indexed: 05/21/2023]
|
44
|
López-Ruiz BA, Quezada-Rodríguez EH, Piñeyro-Nelson A, Tovar H, García-Ponce B, Sánchez MDLP, Álvarez-Buylla ER, Garay-Arroyo A. Combined Approach of GWAS and Phylogenetic Analyses to Identify New Candidate Genes That Participate in Arabidopsis thaliana Primary Root Development Using Cellular Measurements and Primary Root Length. PLANTS (BASEL, SWITZERLAND) 2022; 11:3162. [PMID: 36432890 PMCID: PMC9697774 DOI: 10.3390/plants11223162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Genome-wide association studies (GWAS) have allowed the identification of different loci associated with primary root (PR) growth, and Arabidopsis is an excellent model for these studies. The PR length is controlled by cell proliferation, elongation, and differentiation; however, the specific contribution of proliferation and differentiation in the control of PR growth is still poorly studied. To this end, we analyzed 124 accessions and used a GWAS approach to identify potential causal genomic regions related to four traits: PR length, growth rate, cell proliferation and cell differentiation. Twenty-three genes and five statistically significant SNPs were identified. The SNP with the highest score mapped to the fifth exon of NAC048 and this change makes a missense variant in only 33.3% of the accessions with a large PR, compared with the accessions with a short PR length. Moreover, we detected five more SNPs in this gene and in NAC3 that allow us to discover closely related accessions according to the phylogenetic tree analysis. We also found that the association between genetic variants among the 18 genes with the highest scores in our GWAS and the phenotypic classes into which we divided our accessions are not straightforward and likely follow historical patterns.
Collapse
Affiliation(s)
- Brenda Anabel López-Ruiz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Elsa H. Quezada-Rodríguez
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México 04510, Mexico
| | - Alma Piñeyro-Nelson
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México 04510, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Hugo Tovar
- División de Genómica Computacional, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México 14610, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
45
|
Williams J, Ferreira MAR, Ji T. BICOSS: Bayesian iterative conditional stochastic search for GWAS. BMC Bioinformatics 2022; 23:475. [DOI: 10.1186/s12859-022-05030-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/31/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background
Single marker analysis (SMA) with linear mixed models for genome wide association studies has uncovered the contribution of genetic variants to many observed phenotypes. However, SMA has weak false discovery control. In addition, when a few variants have large effect sizes, SMA has low statistical power to detect small and medium effect sizes, leading to low recall of true causal single nucleotide polymorphisms (SNPs).
Results
We present the Bayesian Iterative Conditional Stochastic Search (BICOSS) method that controls false discovery rate and increases recall of variants with small and medium effect sizes. BICOSS iterates between a screening step and a Bayesian model selection step. A simulation study shows that, when compared to SMA, BICOSS dramatically reduces false discovery rate and allows for smaller effect sizes to be discovered. Finally, two real world applications show the utility and flexibility of BICOSS.
Conclusions
When compared to widely used SMA, BICOSS provides higher recall of true SNPs while dramatically reducing false discovery rate.
Collapse
|
46
|
Ferrari C, Manosalva Pérez N, Vandepoele K. MINI-EX: Integrative inference of single-cell gene regulatory networks in plants. MOLECULAR PLANT 2022; 15:1807-1824. [PMID: 36307979 DOI: 10.1016/j.molp.2022.10.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/30/2022] [Accepted: 10/21/2022] [Indexed: 05/26/2023]
Abstract
Multicellular organisms, such as plants, are characterized by highly specialized and tightly regulated cell populations, establishing specific morphological structures and executing distinct functions. Gene regulatory networks (GRNs) describe condition-specific interactions of transcription factors (TFs) regulating the expression of target genes, underpinning these specific functions. As efficient and validated methods to identify cell-type-specific GRNs from single-cell data in plants are lacking, limiting our understanding of the organization of specific cell types in both model species and crops, we developed MINI-EX (Motif-Informed Network Inference based on single-cell EXpression data), an integrative approach to infer cell-type-specific networks in plants. MINI-EX uses single-cell transcriptomic data to define expression-based networks and integrates TF motif information to filter the inferred regulons, resulting in networks with increased accuracy. Next, regulons are assigned to different cell types, leveraging cell-specific expression, and candidate regulators are prioritized using network centrality measures, functional annotations, and expression specificity. This embedded prioritization strategy offers a unique and efficient means to unravel signaling cascades in specific cell types controlling a biological process of interest. We demonstrate the stability of MINI-EX toward input data sets with low number of cells and its robustness toward missing data, and show that it infers state-of-the-art networks with a better performance compared with other related single-cell network tools. MINI-EX successfully identifies key regulators controlling root development in Arabidopsis and rice, leaf development in Arabidopsis, and ear development in maize, enhancing our understanding of cell-type-specific regulation and unraveling the roles of different regulators controlling the development of specific cell types in plants.
Collapse
Affiliation(s)
- Camilla Ferrari
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Nicolás Manosalva Pérez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium; Bioinformatics Institute Ghent, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|
47
|
Abbas M, Abid MA, Meng Z, Abbas M, Wang P, Lu C, Askari M, Akram U, Ye Y, Wei Y, Wang Y, Guo S, Liang C, Zhang R. Integrating advancements in root phenotyping and genome-wide association studies to open the root genetics gateway. PHYSIOLOGIA PLANTARUM 2022; 174:e13787. [PMID: 36169590 DOI: 10.1111/ppl.13787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Plant adaptation to challenging environmental conditions around the world has made root growth and development an important research area for plant breeders and scientists. Targeted manipulation of root system architecture (RSA) to increase water and nutrient use efficiency can minimize the adverse effects of climate change on crop production. However, phenotyping of RSA is a major bottleneck since the roots are hidden in the soil. Recently the development of 2- and 3D root imaging techniques combined with the genome-wide association studies (GWASs) have opened up new research tools to identify the genetic basis of RSA. These approaches provide a comprehensive understanding of the RSA, by accelerating the identification and characterization of genes involved in root growth and development. This review summarizes the latest developments in phenotyping techniques and GWAS for RSA, which are used to map important genes regulating various aspects of RSA under varying environmental conditions. Furthermore, we discussed about the state-of-the-art image analysis tools integrated with various phenotyping platforms for investigating and quantifying root traits with the highest phenotypic plasticity in both artificial and natural environments which were used for large scale association mapping studies, leading to the identification of RSA phenotypes and their underlying genetics with the greatest potential for RSA improvement. In addition, challenges in root phenotyping and GWAS are also highlighted, along with future research directions employing machine learning and pan-genomics approaches.
Collapse
Affiliation(s)
- Mubashir Abbas
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Ali Abid
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhigang Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Manzar Abbas
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Peilin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Askari
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Umar Akram
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yulu Ye
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunxiao Wei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sandui Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengzhen Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rui Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
48
|
Zhang X, Zhu T, Li Z, Jia Z, Wang Y, Liu R, Yang M, Chen QB, Wang Z, Guo S, Li P. Natural variation and domestication selection of ZmSULTR3;4 is associated with maize lateral root length in response to salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:992799. [PMID: 36388478 PMCID: PMC9644038 DOI: 10.3389/fpls.2022.992799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Soil salinity is a major constraint that restricts crop productivity worldwide. Lateral roots (LRs) are important for water and nutrient acquisition, therefore understanding the genetic basis of natural variation in lateral root length (LRL) is of great agronomic relevance to improve salt tolerance in cultivated germplasms. Here, using a genome-wide association study, we showed that the genetic variation in ZmSULTR3;4, which encodes a plasma membrane-localized sulfate transporter, is associated with natural variation in maize LRL under salt stress. The transcript of ZmSULTR3;4 was found preferentially in the epidermal and vascular tissues of root and increased by salt stress, supporting its essential role in the LR formation under salt stress. Further candidate gene association analysis showed that DNA polymorphisms in the promoter region differentiate the expression of ZmSULTR3;4 among maize inbred lines that may contribute to the natural variation of LRL under salt stress. Nucleotide diversity and neutrality tests revealed that ZmSULTR3;4 has undergone selection during maize domestication and improvement. Overall, our results revealed a regulatory role of ZmSULTR3;4 in salt regulated LR growth and uncovered favorable alleles of ZmSULTR3;4, providing an important selection target for breeding salt-tolerant maize cultivar.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Sanya Institute, Henan University, Sanya, Hainan, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Tianze Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Zhi Li
- Sanya Institute, Henan University, Sanya, Hainan, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhongtao Jia
- Key Laboratory of Plant-Soil Interactions, Ministry of Education (MOE), College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Yunyun Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Runxiao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Mengling Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Qing-Bin Chen
- Sanya Institute, Henan University, Sanya, Hainan, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhenjie Wang
- Sanya Institute, Henan University, Sanya, Hainan, China
| | - Siyi Guo
- Sanya Institute, Henan University, Sanya, Hainan, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Pengcheng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
49
|
Yang X, Zhu X, Wei J, Li W, Wang H, Xu Y, Yang Z, Xu C, Li P. Primary root response to combined drought and heat stress is regulated via salicylic acid metabolism in maize. BMC PLANT BIOLOGY 2022; 22:417. [PMID: 36038847 PMCID: PMC9425997 DOI: 10.1186/s12870-022-03805-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/18/2022] [Indexed: 05/22/2023]
Abstract
The primary root is the first organ to perceive the stress signals for abiotic stress. In this study, maize plants subjected to drought, heat and combined stresses displayed a significantly reduced primary root length. Metabolic and transcriptional analyses detected 72 and 5,469 differentially expressed metabolites and genes in response to stress conditions, respectively. The functional annotation of differentially expressed metabolites and genes indicated that primary root development was mediated by pathways involving phenylalanine metabolism, hormone metabolism and signaling under stress conditions. Furthermore, we found that the concentration of salicylic acid and two precursors, shikimic acid and phenylalanine, showed rapid negative accumulation after all three stresses. The expression levels of some key genes involved in salicylic acid metabolism and signal transduction were differentially expressed under stress conditions. This study extends our understanding of the mechanism of primary root responses to abiotic stress tolerance in maize.
Collapse
Affiliation(s)
- Xiaoyi Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xinjie Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Jie Wei
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huai'an, 223001, Jiangsu, China
| | - Wentao Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Houmiao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yang Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Chenwu Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Pengcheng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
50
|
Kherfi-Nacer A, Yan Z, Bouherama A, Schmitz L, Amrane SO, Franken C, Schneijderberg M, Cheng X, Amrani S, Geurts R, Bisseling T. High Salt Levels Reduced Dissimilarities in Root-Associated Microbiomes of Two Barley Genotypes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:592-603. [PMID: 35316093 DOI: 10.1094/mpmi-12-21-0294-fi] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plants harbor in and at their roots bacterial microbiomes that contribute to their health and fitness. The microbiome composition is controlled by the environment and plant genotype. Previously, it was shown that the plant genotype-dependent dissimilarity of root microbiome composition of different species becomes smaller under drought stress. However, it remains unknown whether this reduced plant genotype-dependent effect is a specific response to drought stress or a more generic response to abiotic stress. To test this, we studied the effect of salt stress on two distinct barley (Hordeum vulgare L.) genotypes: the reference cultivar Golden Promise and the Algerian landrace AB. As inoculum, we used soil from salinized and degraded farmland on which barley was cultivated. Controlled laboratory experiments showed that plants inoculated with this soil displayed growth stimulation under high salt stress (200 mM) in a plant genotype-independent manner, whereas the landrace AB also showed significant growth stimulation at low salt concentrations. Subsequent analysis of the root microbiomes revealed a reduced dissimilarity of the bacterial communities of the two barley genotypes in response to high salt, especially in the endophytic compartment. High salt level did not reduce α-diversity (richness) in the endophytic compartment of both plant genotypes but was associated with an increased number of shared strains that respond positively to high salt. Among these, Pseudomonas spp. were most abundant. These findings suggest that the plant genotype-dependent microbiome composition is altered generically by abiotic stress.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Asma Kherfi-Nacer
- Laboratory of Biology and Physiology of Organisms (LBPO), Biological Sciences Faculty, Houari Boumediène Sciences and Technology University (USTHB), BP 32, El-Alia, Bab Ezzouar, Algiers 16111, Algeria
- Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Plant Science Group, Wageningen University and Research (WUR), Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| | - Zhichun Yan
- Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Plant Science Group, Wageningen University and Research (WUR), Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| | - Amina Bouherama
- Laboratory of Biology and Physiology of Organisms (LBPO), Biological Sciences Faculty, Houari Boumediène Sciences and Technology University (USTHB), BP 32, El-Alia, Bab Ezzouar, Algiers 16111, Algeria
- Sciences Faculty, Yahia Farès University, Médéa 26000, Algeria
| | - Lucas Schmitz
- Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Plant Science Group, Wageningen University and Research (WUR), Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| | - Saadia Ouled Amrane
- Laboratory of Biology and Physiology of Organisms (LBPO), Biological Sciences Faculty, Houari Boumediène Sciences and Technology University (USTHB), BP 32, El-Alia, Bab Ezzouar, Algiers 16111, Algeria
- Research Experimental Field Station, Belbachir, El-Meniaa, Ghardaïa 47001, Algeria
| | - Carolien Franken
- Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Plant Science Group, Wageningen University and Research (WUR), Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| | - Martinus Schneijderberg
- Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Plant Science Group, Wageningen University and Research (WUR), Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| | - Xu Cheng
- Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Plant Science Group, Wageningen University and Research (WUR), Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Said Amrani
- Laboratory of Biology and Physiology of Organisms (LBPO), Biological Sciences Faculty, Houari Boumediène Sciences and Technology University (USTHB), BP 32, El-Alia, Bab Ezzouar, Algiers 16111, Algeria
| | - Rene Geurts
- Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Plant Science Group, Wageningen University and Research (WUR), Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| | - Ton Bisseling
- Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Plant Science Group, Wageningen University and Research (WUR), Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|