1
|
Lapous R, Magot F, Larbat R, Denancé C, Cattanéo C, Muranty H, Durel CE, Ferreira de Carvalho J. Metabolomic datasets of an apple progeny carrying resistance quantitative trait loci to apple scab before or after inoculation of the pathogen Venturia inaequalis. Data Brief 2025; 60:111566. [PMID: 40322506 PMCID: PMC12048810 DOI: 10.1016/j.dib.2025.111566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Phytosanitary treatments are massively used in orchards to fight apple scab, a disease caused by the fungus Venturia inaequalis (Vi). To reduce these treatments, resistant varieties are largely deployed but their effectiveness can decrease over time. The combination of complementary molecular mechanisms within new varieties could enhance the durability of genetic resistance however, the underlying resistance mechanisms remain poorly understood. An apple pseudo-F1 progeny was previously widely investigated for its quantitative trait loci (QTL) controlling resistance to scab and at least three of them seem to act complementarily; notably, one of them is specific to some Vi isolates while the others have a broader spectra of action. The aim of this approach is to better understand the underlying molecular mechanisms and metabolites associated with resistance alleles by exploring apple leaf specialized metabolism. A total of three experiments was conducted: one experiment included non-inoculated leaves whereas in the two other experiments, leaf samples were collected five days after inoculation with two different Vi isolates, including one known to overcome one QTL. Metabolic content was extracted in aqueous methanol before performing an untargeted metabolomic analysis using an Orbitrap IDXTM mass spectrometer, allowing high-resolution mass spectrometry (HRMS) detection. This approach without a priori enables the detection of potentially new chemical families involved in resistance to apple scab. The current data article includes 1) the protocol of plant sample production with a table summarizing key elements of the experimental designs, 2) overview of the raw metabolomic profiles from all three experiments and 3) assessment of metabolic feature reproducibility between replicates in each dataset through Principal Component Analysis. The raw data files are available on the recherche.data.gouv repository (10.57745/XJBD8V). These datasets are valuable resources to further investigate the molecular mechanisms underlying genetic resistance to apple scab, with a focus on specialized metabolism. In the long term, it should improve apple breeding strategies by informing on how to combine appropriate genetic and biochemical factors in new varieties to ensure a more durable resistance.
Collapse
Affiliation(s)
- Romane Lapous
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Florent Magot
- Université de Lorraine, LAE, INRAE, F-54000 Nancy, France
| | - Romain Larbat
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Caroline Denancé
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Christian Cattanéo
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Hélène Muranty
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Charles-Eric Durel
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | | |
Collapse
|
2
|
Ninkuu V, Liu Z, Liu H, Li C, Zhou Y, Zhao Q, Qin A, Li M, Gao P, Yan L, Song X, Kong L, Xie Y, Guo E, Sun X. Genome sequencing of a novel Verticillium dahliae strain (huangweibingjun). Sci Rep 2025; 15:15143. [PMID: 40307341 PMCID: PMC12044074 DOI: 10.1038/s41598-025-99279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 04/18/2025] [Indexed: 05/02/2025] Open
Abstract
Verticillium dahliae is a soilborne pathogenic fungus that causes vascular discoloration and wilting in a broad spectrum of plant hosts, affecting about 400 species, such as cotton, potatoes, watermelon, cucumber, spinach, etc. In 2021, V. dahliae was estimated to cause about 15-20% reduction in cotton in China. Here, we report the genome sequencing of a novel strain named huangweibingjun, isolated from diseased cotton roots in the Henan province of China. The huangweibingjun genome consists of a total size of 35.84 Mb, GC content of 59.835%, and harbors six chromosomes (scaffold7561, scaffold7329, scaffold7795, scaffold5491, scaffold5473, and scaffold4511). The genome architecture showed a high diversity of cell wall-degrading secretory proteins that might influence the pathogenicity of the fungal strain. Moreover, preliminary metabolic pathway prediction showed that this novel strain synthesizes polyketide, terpenoids, shikimic acid-derived compounds and could also be aflatoxigenic. Consistent with other pathogenic microbes, the huangweibingjun genome comprises several virulent-associated genes. This genome assembly lays the foundation for further investigation of the pathogenicity of huangweibingjun.
Collapse
Affiliation(s)
- Vincent Ninkuu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Zhixin Liu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Hao Liu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Chunyang Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Yaping Zhou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Qianli Zhao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Aizhi Qin
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Mengfan Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Peibo Gao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Lulu Yan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Xiao Song
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Luyao Kong
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Yajie Xie
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Enzhi Guo
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Xuwu Sun
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China.
| |
Collapse
|
3
|
Korchanová Z, Milovanov A, Švec M, Doležel J, Bartoš J, Valárik M. Progress and innovations of gene cloning in wheat and its close relatives. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:106. [PMID: 40295316 PMCID: PMC12037653 DOI: 10.1007/s00122-025-04897-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 04/02/2025] [Indexed: 04/30/2025]
Abstract
KEY MESSAGE Wheat and its close relatives have large and complex genomes, making gene cloning difficult. Nevertheless, developments in genomics over the past decade have made it more feasible. The large and complex genomes of cereals, especially bread wheat, have always been a challenge for gene mapping and cloning. Nevertheless, recent advances in genomics have led to significant progress in this field. Currently, high-quality reference sequences are available for major wheat species and their relatives. New high-throughput genotyping platforms and next-generation sequencing technologies combined with genome complexity reduction techniques and mutagenesis have opened new avenues for gene cloning. In this review, we provide a comprehensive overview of the genes cloned in wheat so far and discuss the strategies used for cloning these genes. We highlight the advantages and drawbacks of individual approaches and show how particular genomic progress contributed to wheat gene cloning. A wide range of new resources and approaches have led to a significant increase in the number of successful cloning projects over the past decade, demonstrating that it is now feasible to perform rapid gene cloning of agronomically important genes, even in a genome as large and complex as that of wheat.
Collapse
Affiliation(s)
- Zuzana Korchanová
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, 77900, Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, 77900, Olomouc, Czech Republic
| | - Alexander Milovanov
- Department of Botany, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, 84104, Slovakia
| | - Miroslav Švec
- Department of Botany, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, 84104, Slovakia
| | - Jaroslav Doležel
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, 77900, Olomouc, Czech Republic
| | - Jan Bartoš
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, 77900, Olomouc, Czech Republic
| | - Miroslav Valárik
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, 77900, Olomouc, Czech Republic.
| |
Collapse
|
4
|
Chen Y, Song Y, Tu Z, Bi W, Sun C, Zhao T, Wang X, Dou D, Xu G. Reciprocal phosphorylation between SOAK1 and SOBIR1 fine-tunes receptor-like protein (RLP)-mediated plant immunity. SCIENCE ADVANCES 2025; 11:eadt2315. [PMID: 40249808 PMCID: PMC12007577 DOI: 10.1126/sciadv.adt2315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/13/2025] [Indexed: 04/20/2025]
Abstract
SUPPRESSOR OF BIR1-1 (SOBIR1) is a receptor-like kinase (RLK) that acts as a coreceptor for multiple receptor-like proteins (RLPs) to mediate pathogen-associated molecular pattern)-triggered immunity. However, the regulation of SOBIR1 homeostasis and activity remains largely unknown. Our study reveals that SOBIR1-ASSOCIATED PROTEIN KINASE 1 (SOAK1), a member of the receptor-like cytoplasmic kinase (RLCK)-V subfamily with a transmembrane domain, negatively regulates multiple RLP-mediated immune responses. SOAK1 constitutively interacts with SOBIR1 and modulates SOBIR1-dependent immune signaling. SOAK1 directly phosphorylates SOBIR1 at serine-406, substantially impairing its ability to transphosphorylate itself and BAK1. The conservation of serine-406 residue among various flowering plants suggests that phosphorylation at this site plays a critical role in regulating plant immunity. Conversely, SOBIR1 also phosphorylates SOAK1 primarily at serine-73, inhibiting SOAK1's kinase activity and derepressing SOBIR1 activity. This study elucidates a regulatory mechanism for SOBIR1 activity and highlights an uncharacterized role of RLCK-V subfamily members in plant immunity.
Collapse
Affiliation(s)
- Yongming Chen
- State Key Laboratory of Agricultural and Forestry Biosecurity, Ministry of Agriculture Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yingying Song
- State Key Laboratory of Agricultural and Forestry Biosecurity, Ministry of Agriculture Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhipeng Tu
- State Key Laboratory of Agricultural and Forestry Biosecurity, Ministry of Agriculture Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Weishuai Bi
- State Key Laboratory of Agricultural and Forestry Biosecurity, Ministry of Agriculture Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Congcong Sun
- State Key Laboratory of Agricultural and Forestry Biosecurity, Ministry of Agriculture Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Tingting Zhao
- State Key Laboratory of Agricultural and Forestry Biosecurity, Ministry of Agriculture Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xiaodan Wang
- State Key Laboratory of Agricultural and Forestry Biosecurity, Ministry of Agriculture Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Daolong Dou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangyuan Xu
- State Key Laboratory of Agricultural and Forestry Biosecurity, Ministry of Agriculture Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
He T, Wang J, Hu D, Yang Y, Chae E, Lee C. Epidermal electronic-tattoo for plant immune response monitoring. Nat Commun 2025; 16:3244. [PMID: 40185801 PMCID: PMC11971386 DOI: 10.1038/s41467-025-58584-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/27/2025] [Indexed: 04/07/2025] Open
Abstract
Real-time monitoring of plant immune responses is crucial for understanding plant immunity and mitigating economic losses from pathogen and pest attacks. However, current methods relying on molecular-level assessment are destructive and time-consuming. Here, we report an ultrathin, substrate-free, and highly conductive electronic tattoo (e-tattoo) designed for plants, enabling immune response monitoring through non-invasive electrical impedance spectroscopy (EIS). The e-tattoo's biocompatibility, high conductivity, and sub-100 nm thickness allow it to conform to leaf tissue morphology and provide robust impedance data. We demonstrate continuous EIS analysis of live transgenic Arabidopsis thaliana plants for over 24 h, capturing the onset of NLR-mediated acute immune responses within three hours post-induction, prior to visible symptoms. RNA-seq and tissue ion leakage tests validate that EIS data accurately represent the physiological and molecular changes associated with immune activation. This non-invasive tissue-assessment technology has the potential to enhance our comprehension of immune activation mechanisms in plants and paves the way for real-time monitoring for plant health management.
Collapse
Affiliation(s)
- Tianyiyi He
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
- Research Center for Sustainable Urban Farming (SUrF), National University of Singapore, Singapore, 117558, Singapore
- Artificial Intelligence Research Institute, Shenzhen MSU-BIT University, Shenzhen, 518172, China
| | - Jinge Wang
- Research Center for Sustainable Urban Farming (SUrF), National University of Singapore, Singapore, 117558, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Donghui Hu
- Research Center for Sustainable Urban Farming (SUrF), National University of Singapore, Singapore, 117558, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Yanqin Yang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Eunyoung Chae
- Research Center for Sustainable Urban Farming (SUrF), National University of Singapore, Singapore, 117558, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore.
- Research Center for Sustainable Urban Farming (SUrF), National University of Singapore, Singapore, 117558, Singapore.
- NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, 119077, Singapore.
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou, 215123, China.
| |
Collapse
|
6
|
Valente IDL, Wancura JHC, Zabot GL, Mazutti MA. Endophytic and Rhizospheric Microorganisms: An Alternative for Sustainable, Organic, and Regenerative Bioinput Formulations for Modern Agriculture. Microorganisms 2025; 13:813. [PMID: 40284649 PMCID: PMC12029156 DOI: 10.3390/microorganisms13040813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Large amounts of chemical fertilizers are still used to suppress pathogens and boost agricultural productivity and food generation. However, their use can cause harmful environmental imbalance. Furthermore, plants typically absorb limited amounts of the nutrients provided by chemical fertilizers. Recent studies are recommending the use of microbiota present in the soil in different formulations, considering that several microorganisms are found in nature in association with plants in a symbiotic, antagonistic, or synergistic way. This ecological alternative is positive because no undesirable significant alterations occur in the environment while stimulating plant nutrition development and protection against damage caused by control pathogens. Therefore, this review presents a comprehensive discussion regarding endophytic and rhizospheric microorganisms and their interaction with plants, including signaling and bio-control processes concerning the plant's defense against pathogenic spread. A discussion is provided about the importance of these bioinputs as a microbial resource that promotes plant development and their sustainable protection methods aiming to increase resilience in the agricultural system. In modern agriculture, the manipulation of bioinputs through Rhizobium contributes to reducing the effects of greenhouse gases by managing nitrogen runoff and decreasing nitrous oxide. Additionally, mycorrhizal fungi extend their root systems, providing plants with greater access to water and nutrients.
Collapse
Affiliation(s)
- Isabela de L. Valente
- Department of Chemical Engineering, Federal University of Santa Maria (UFSM), 1000 Roraima Av., Camobi, Santa Maria 97105-340, RS, Brazil; (I.d.L.V.); (M.A.M.)
| | - João H. C. Wancura
- Laboratory of Biomass and Biofuels (L2B), Federal University of Santa Maria (UFSM), 1000 Roraima Av., Camobi, Santa Maria 97105-340, RS, Brazil;
| | - Giovani L. Zabot
- Laboratory of Agroindustrial Process Engineering (LAPE), Federal University of Santa Maria (UFSM), 3013 Taufik Germano Rd, Universitário II, Cachoeira do Sul 96503-205, RS, Brazil
| | - Marcio A. Mazutti
- Department of Chemical Engineering, Federal University of Santa Maria (UFSM), 1000 Roraima Av., Camobi, Santa Maria 97105-340, RS, Brazil; (I.d.L.V.); (M.A.M.)
| |
Collapse
|
7
|
Sugihara Y, Kourelis J, Contreras MP, Pai H, Harant A, Selvaraj M, Toghani A, Martínez-Anaya C, Kamoun S. Helper NLR immune protein NRC3 evolved to evade inhibition by a cyst nematode virulence effector. PLoS Genet 2025; 21:e1011653. [PMID: 40202957 PMCID: PMC11981194 DOI: 10.1371/journal.pgen.1011653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/09/2025] [Indexed: 04/11/2025] Open
Abstract
Parasites can counteract host immunity by suppressing nucleotide binding and leucine-rich repeat (NLR) proteins that function as immune receptors. We previously showed that a cyst nematode virulence effector SPRYSEC15 (SS15) binds and inhibits oligomerisation of helper NLR proteins in the expanded NRC1/2/3 clade by preventing intramolecular rearrangements required for NRC oligomerisation into an activated resistosome. Here we examined the degree to which NRC proteins from multiple Solanaceae species are sensitive to suppression by SS15 and tested hypotheses about adaptive evolution of the binding interface between the SS15 inhibitor and NRC proteins. Whereas all tested orthologs of NRC2 were inhibited by SS15, some natural variants of NRC1 and NRC3 are insensitive to SS15 suppression. Ancestral sequence reconstruction combined with functional assays revealed that NRC3 transitioned from an ancestral suppressed form to an insensitive one over 19 million years ago. Our analyses revealed the evolutionary trajectory of an NLR immune receptor against a parasite inhibitor, identifying key evolutionary transitions in helper NLRs that counteract this inhibition. This work reveals a distinct type of gene-for-gene interaction between parasite or pathogen immunosuppressors and host immune receptors that contrasts with the coevolution between AVR effectors and immune receptors.
Collapse
Affiliation(s)
- Yu Sugihara
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | | | - Hsuan Pai
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Adeline Harant
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Muniyandi Selvaraj
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - AmirAli Toghani
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Claudia Martínez-Anaya
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
8
|
Fick A, Fick JLM, Swart V, van den Berg N. In silico prediction method for plant Nucleotide-binding leucine-rich repeat- and pathogen effector interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70169. [PMID: 40304719 PMCID: PMC12042882 DOI: 10.1111/tpj.70169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025]
Abstract
Plant Nucleotide-binding leucine-rich repeat (NLR) proteins play a crucial role in effector recognition and activation of Effector triggered immunity following pathogen infection. Genome sequencing advancements have led to the identification of a myriad of NLRs in numerous agriculturally important plant species. However, deciphering which NLRs recognize specific pathogen effectors remains challenging. Predicting NLR-effector interactions in silico will provide a more targeted approach for experimental validation, critical for elucidating function, and advancing our understanding of NLR-triggered immunity. In this study, NLR-effector protein complex structures were predicted using AlphaFold2-Multimer for all experimentally validated NLR-effector interactions reported in literature. Binding affinities- and energies were predicted using 97 machine learning models from Area-Affinity. We show that AlphaFold2-Multimer predicted structures have acceptable accuracy and can be used to investigate NLR-effector interactions in silico. Binding affinities for 58 NLR-effector complexes ranged between -8.5 and -10.6 log(K), and binding energies between -11.8 and -14.4 kcal/mol-1, depending on the Area-Affinity model used. For 2427 "forced" NLR-effector complexes, these estimates showed larger variability, enabling identification of novel NLR-effector interactions with 99% accuracy using an Ensemble machine learning model. The narrow range of binding energies- and affinities for "true" interactions suggest a specific change in Gibbs free energy, and thus conformational change, is required for NLR activation. This is the first study to provide a method for predicting NLR-effector interactions, applicable to all pathosystems. Finally, the NLR-Effector Interaction Classification (NEIC) resource can streamline research efforts by identifying NLRs important for plant-pathogen resistance, advancing our understanding of plant immunity.
Collapse
Affiliation(s)
- Alicia Fick
- Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaGautengSouth Africa
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaGautengSouth Africa
| | | | - Velushka Swart
- Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaGautengSouth Africa
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaGautengSouth Africa
| | - Noëlani van den Berg
- Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaGautengSouth Africa
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaGautengSouth Africa
| |
Collapse
|
9
|
Li Y, Qu X, Yang W, Wu Q, Wang X, Jiang Q, Ma J, Zhang Y, Qi P, Chen G, Zheng Y, Wang X, Wei Y, Xu Q. A fungal pathogen suppresses host leaf senescence to increase infection. Nat Commun 2025; 16:2864. [PMID: 40128252 PMCID: PMC11933281 DOI: 10.1038/s41467-025-58277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 03/14/2025] [Indexed: 03/26/2025] Open
Abstract
Phytopathogens such as Puccinia striiformis f. sp. tritici (Pst) induce pigment retention at pathogen infection sites. Although pigment retention is commonly observed in diverse pathosystems, its underlying physiological mechanism remains largely unclear. Herein, we identify and characterize a wheat leaf senescence gene, TaSGR1, which enhances resistance against Pst by promoting leaf senescence and H2O2 accumulation while inhibiting photosynthesis. Knockout of TaSGR1 (STAYGREEN) in wheat increases pigment retention and plant susceptibility. Pst_TTP1 (TaTrx-Targeting Protein 1), a secreted rust fungal effector critical for Pst virulence, binds to the plastidial thioredoxin TaTrx (Thioredoxin), preventing its translocation into chloroplasts. Within the chloroplasts, TaTrx catalyzes the transformation of TaSGR1 oligomers into monomers. These TaSGR1 monomers accumulate in the chloroplasts, accelerating leaf senescence, H2O2 accumulation, and cell death. The inhibition of this oligomer-to-monomer transformation, caused by the failure of TaTrx to enter the chloroplast due to Pst_TTP1, impairs plant resistance against Pst. Overall, our study reveals the suppression of redox signaling cascade that catalyzes the transformation of TaSGR1 oligomers into monomers within chloroplasts and the inhibition of leaf chlorosis by rust effectors as key mechanisms underlying disease susceptibility.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiangru Qu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenjuan Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qin Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaodong Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaojie Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Grewal S, Yang CY, Krasheninnikova K, Collins J, Wood JMD, Ashling S, Scholefield D, Kaithakottil GG, Swarbreck D, Yao E, Sen TZ, King IP, King J. Chromosome-level haplotype-resolved genome assembly of bread wheat's wild relative Aegilops mutica. Sci Data 2025; 12:438. [PMID: 40082453 PMCID: PMC11906796 DOI: 10.1038/s41597-025-04737-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
Bread wheat (Triticum aestivum) is a vital staple crop, with an urgent need for increased production to help feed the world's growing population. Aegilops mutica (2n = 2x = 14; T genome) is a diploid wild relative of wheat carrying valuable agronomic traits resulting in its extensive exploitation for wheat improvement. This paper reports a chromosome-scale, haplotype-resolved genome assembly of Ae. mutica using HiFi reads and Omni-C data. The final lengths for the curated genomes were ~4.65 Gb (haplotype 1) and 4.56 Gb (haplotype 2), featuring a contig N50 of ~4.35 Mb and ~4.60 Mb, respectively. Genome annotation predicted 96,723 gene models and repeats. In summary, the genome assembly of Ae. mutica provides a valuable resource for the wheat breeding community, facilitating faster and more efficient pre-breeding of wheat to enhance food security.
Collapse
Affiliation(s)
- Surbhi Grewal
- Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK.
| | - Cai-Yun Yang
- Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | | | - Joanna Collins
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1RQ, UK
| | - Jonathan M D Wood
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1RQ, UK
| | - Stephen Ashling
- Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Duncan Scholefield
- Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | | | - David Swarbreck
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Eric Yao
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, 800 Buchanan St., Albany, CA, 94710, USA
| | - Taner Z Sen
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, 800 Buchanan St., Albany, CA, 94710, USA
- University of California, Department of Bioengineering, Berkeley, CA, 94720, USA
| | - Ian P King
- Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Julie King
- Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| |
Collapse
|
11
|
Jwa NS, Hwang BK. Ferroptosis in plant immunity. PLANT COMMUNICATIONS 2025:101299. [PMID: 40057824 DOI: 10.1016/j.xplc.2025.101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/15/2025] [Accepted: 03/05/2025] [Indexed: 04/13/2025]
Abstract
Plant cell death is mediated by calcium, iron, and reactive oxygen species (ROS) signaling in plant immunity. The reconstruction of a nucleotide-binding leucine-rich-repeat receptor (NLR) supramolecular structure, called the resistosome, is intimately involved in the hypersensitive response (HR), a type of cell death involved in effector-triggered immunity (ETI). Iron is a crucial redox catalyst in various cellular reactions. Ferroptosis is a regulated, non-apoptotic form of iron- and ROS-dependent cell death in plants. Pathogen infections trigger iron accumulation and ROS bursts in plant cells, leading to lipid peroxidation via the Fenton reaction and subsequent ferroptosis in plant cells similar to that in mammalian cells. The small-molecule inducer erastin triggers iron-dependent lipid ROS accumulation and glutathione depletion, leading to HR cell death in plant immunity. Calcium (Ca2+) is another major mediator of plant immunity. Cytoplasmic Ca2+ influx through calcium-permeable channels, the resistosomes, mediates iron- and ROS-dependent ferroptotic cell death under reduced glutathione reductase (GR) expression levels in the ETI response. Acibenzolar-S-methyl (ASM), a plant defense activator, enhances Ca2+ influx, ROS and iron accumulation, and lipid peroxidation to trigger ferroptotic cell death. These breakthroughs suggest a potential role for Ca2+ signaling in ferroptosis and its coordination with iron and ROS signaling in plant immunity. In this review, we highlight the essential roles of calcium, iron, and ROS signaling in ferroptosis during plant immunity and discuss advances in the understanding of how Ca2+-mediated ferroptotic cell death orchestrates effective plant immune responses against invading pathogens.
Collapse
Affiliation(s)
- Nam-Soo Jwa
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea.
| | - Byung Kook Hwang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| |
Collapse
|
12
|
Hao W, Wu Y, Guo Q, Wu J, Lin M, Hu Q, Tandayu E, Lu J, Si H, Ma C, Wang X, Chen C. Fine mapping of stripe rust resistance gene YrAn1589 in common wheat using Wheat660K SNP array and BSR-Seq. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:63. [PMID: 40021553 DOI: 10.1007/s00122-025-04838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/27/2025] [Indexed: 03/03/2025]
Abstract
KEY MESSAGE A new stripe rust resistance gene YrAn1589 in Chinese wheat Annong1589 was mapped to a 160.9-166.6 kb interval on chromosome arm 3BL and co-segregated with a marker CAPS9 developed from candidate gene TraesCS3B03G1054600. Stripe rust, caused by Puccinia. striiformis f. sp. tritici (Pst), is a devastating fungal disease that can significantly reduce wheat yield. The Chinese wheat cultivar Annong1589 demonstrates high resistance against the predominant Pst races in the Huang-Huai valley wheat region. The present study aimed to identify the stripe rust resistance gene in Annong1589. Genetic analysis indicated that the resistance in Annong1589 was conferred by a single dominant gene, provisionally designated YrAn1589. Using Wheat660K SNP array, bulked segregant RNA sequencing and new molecular markers developed, the resistance gene was mapped to a 160.9-166.6 kb region between CAPS8 and CAPS10 on chromosome 3BL based on IWGSC CS RefSeq v2.1 and eight other reference genome sequences, including eight high-confidence annotated genes. Transcriptome and qRT-PCR analyses revealed significantly upregulated expression of TraesCS3B03G1054600 in resistant plants following CYR32 inoculation, suggesting it is a potential candidate gene for YrAn1589. A functional marker CAPS9 developed from a A/G polymorphic SNP in the candidate co-segregated with YrAn1589 in the F2 population. Subcellular localization experiments showed that TraesCS3B03G1054600 protein was localized in the cytoplasm and nucleus, implying its role in immune response and resistance. Our findings establish YrAn1589 as a new stripe rust resistance gene, providing valuable gene resource and molecular markers for improvement of stripe rust resistance in wheat.
Collapse
Affiliation(s)
- Weihao Hao
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Yingjie Wu
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Qi Guo
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Jingchun Wu
- National Key Laboratory of Wheat Improvement, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong Province, China
| | - Meng Lin
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Qiwei Hu
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Erwin Tandayu
- Agriculture Victoria, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - Jie Lu
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Hongqi Si
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Chuanxi Ma
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaobo Wang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Can Chen
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
13
|
Tian H, Xu L, Li X, Zhang Y. Salicylic acid: The roles in plant immunity and crosstalk with other hormones. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:773-785. [PMID: 39714102 PMCID: PMC11951402 DOI: 10.1111/jipb.13820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024]
Abstract
Land plants use diverse hormones to coordinate their growth, development and responses against biotic and abiotic stresses. Salicylic acid (SA) is an essential hormone in plant immunity, with its levels and signaling tightly regulated to ensure a balanced immune output. Over the past three decades, molecular genetic analyses performed primarily in Arabidopsis have elucidated the biosynthesis and signal transduction pathways of key plant hormones, including abscisic acid, jasmonic acid, ethylene, auxin, cytokinin, brassinosteroids, and gibberellin. Crosstalk between different hormones has become a major focus in plant biology with the goal of obtaining a full picture of the plant hormone signaling network. This review highlights the roles of SA in plant immunity and summarizes our current understanding of the pairwise interactions of SA with other major plant hormones. The complexity of these interactions is discussed, with the hope of stimulating research to address existing knowledge gaps in hormone crosstalk, particularly in the context of balancing plant growth and defense.
Collapse
Affiliation(s)
- Hainan Tian
- Key Laboratory of Bio‐resource and Eco‐environment of Ministry of EducationThe College of Life SciencesSichuan UniversityChengdu610064SichuanChina
| | - Lu Xu
- Department of BotanyUniversity of British ColumbiaVancouverV6T 1Z4BCCanada
| | - Xin Li
- Department of BotanyUniversity of British ColumbiaVancouverV6T 1Z4BCCanada
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverV6T 1Z4BCCanada
| | - Yuelin Zhang
- Key Laboratory of Bio‐resource and Eco‐environment of Ministry of EducationThe College of Life SciencesSichuan UniversityChengdu610064SichuanChina
| |
Collapse
|
14
|
Zhu M, Feng M, Tao X. NLR-mediated antiviral immunity in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:786-800. [PMID: 39777907 DOI: 10.1111/jipb.13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Plant viruses cause substantial agricultural devastation and economic losses worldwide. Plant nucleotide-binding domain leucine-rich repeat receptors (NLRs) play a pivotal role in detecting viral infection and activating robust immune responses. Recent advances, including the elucidation of the interaction mechanisms between NLRs and pathogen effectors, the discovery of helper NLRs, and the resolution of the ZAR1 resistosome structure, have significantly deepened our understanding of NLR-mediated immune responses, marking a new era in NLR research. In this scenario, significant progress has been made in the study of NLR-mediated antiviral immunity. This review comprehensively summarizes the progress made in plant antiviral NLR research over the past decades, with a focus on NLR recognition of viral pathogen effectors, NLR activation and regulation, downstream immune signaling, and the engineering of NLRs.
Collapse
Affiliation(s)
- Min Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingfeng Feng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
15
|
Zhong C, Li W, Zhang X, Zhang D, Wen Z, Song W, Jiang Z, Gao Z, Guo H, Bi G, Liu Z, Li D, Dinesh-Kumar SP, Zhang Y. A cell wall-associated kinase phosphorylates NLR immune receptor to negatively regulate resistosome formation. NATURE PLANTS 2025; 11:561-579. [PMID: 40119183 DOI: 10.1038/s41477-025-01949-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/21/2025] [Indexed: 03/24/2025]
Abstract
Plants deploy intracellular nucleotide-binding leucine-rich repeats (NLRs) to detect pathogen effectors and initiate immune responses. Although the activation mechanism of some plant NLRs forming resistosomes has been elucidated, whether NLR resistosome assembly is regulated to fine-tune immunity remains enigmatic. Here we used an antiviral coiled coil-nucleotide-binding site-leucine rich repeat, Barley Stripe Resistance 1 (BSR1), as a model and demonstrate that BSR1 is phosphorylated. Using a proximity labelling approach, we identified a wall-associated kinase-like protein 20 (WAKL20) which negatively regulates BSR1-mediated immune responses by directly phosphorylating the Ser470 residue in the NB-ARC domain of BSR1. Mechanistically, Ser470 phosphorylation results in a steric clash of intramolecular domains of BSR1, thereby compromising BSR1 oligomerization. The phosphorylation site is conserved among multiple plant NLRs and our results show that WAKL20 participates in other NLR-mediated immune responses besides BSR1. Together, our data reveal phosphorylation as a mechanism for modulating plant resistosome assembly, and provide new insight into NLR-mediated plant immunity.
Collapse
Affiliation(s)
- Chenchen Zhong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenli Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xinyu Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dingliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhiyan Wen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen Song
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhihao Jiang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zongyu Gao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hailong Guo
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Guozhi Bi
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Science, Beijing, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
16
|
Guo S, Zhang F, Du X, Zhang X, Huang X, Li Z, Zhang Y, Gan P, Li H, Li M, Wang X, Tang C, Wang X, Kang Z, Zhang X. TaANK-TPR1 enhances wheat resistance against stripe rust via controlling gene expression and protein activity of NLR protein TaRPP13L1. Dev Cell 2025:S1534-5807(25)00037-1. [PMID: 39954677 DOI: 10.1016/j.devcel.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/22/2024] [Accepted: 01/27/2025] [Indexed: 02/17/2025]
Abstract
Nucleotide-binding site, leucine-rich repeat (NLR) proteins activate a robust immune response on recognition of pathogen invasion. However, the function and regulatory mechanisms of NLRs during Puccinia striiformis f. sp. tritici (Pst) infection in wheat remain elusive. Here, we identify an ankyrin (ANK) repeat and tetratricopeptide repeat (TPR)-containing protein, TaANK-TPR1, which plays a positive role in the regulation of wheat resistance against Pst and the immune response of NLR. TaANK-TPR1 targets the NLR protein TaRPP13L1 (Recognition of PeronosporaParasitica 13-like 1) to facilitate its homodimerization and cell death to enhance the resistance of wheat against Pst. Meanwhile, TaANK-TPR1 binds to the TGACGT motif (methyl jasmonate-responsive element) of the TaRPP13L1 promoter and activates TaRPP13L1 transcription. Both TaANK-TPR1 and TaRPP13L1 respond to jasmonic acid (JA) signaling via the TGACGT element. Importantly, overexpressing TaRPP13L1 confers robust rust resistance without impacting important agronomic traits in the field. These findings identify a regulatory mechanism of NLR protein and provide targets for improving crop disease resistance.
Collapse
Affiliation(s)
- Shuangyuan Guo
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Feng Zhang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoya Du
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinmei Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xueling Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zelong Li
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanqin Zhang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengfei Gan
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huankun Li
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Li
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyue Wang
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunlei Tang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojie Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xinmei Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
17
|
Bae SH, Zoclanclounon YAB, Park GH, Lee JD, Kim TH. Genome-Wide In Silico Analysis of Leucine-Rich Repeat R-Genes in Perilla citriodora: Classification and Expression Insights. Genes (Basel) 2025; 16:200. [PMID: 40004529 PMCID: PMC11855831 DOI: 10.3390/genes16020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Resistance (R) genes are crucial for defending Perilla against pathogens like anthracnose, downy mildew, and phytophthora blight. Nucleotide-binding site leucine-rich repeat (NBS-LRR) genes, the largest R-gene family, play a central role in immunity. This study aimed to identify and characterize NBS-LRR genes in P. citriodora 'Jeju17'. METHODS Previously conducted genome-wide data for 'Jeju17' were analyzed in silico to identify NBS-LRR genes. RESULTS A total of 535 NBS-LRR genes were identified, with clusters on chromosomes 2, 4, and 10. A unique RPW8-type R-gene was located on chromosome 7. CONCLUSIONS This study provides insights into the NBS-LRR gene family in 'Je-ju17', highlighting its role in disease resistance and evolutionary dynamics. By identifying can-didate R-genes, this research supports breeding programs to develop disease-resistant cultivars and improves our understanding of plant immunity.
Collapse
Affiliation(s)
- Seon-Hwa Bae
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Iseo-myeon, Wanju-gun 55365, Republic of Korea;
| | | | - Gyu-Hwang Park
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju-si 54874, Republic of Korea;
| | - Jun-Dae Lee
- Department of Horticulture, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju-si 54896, Republic of Korea
| | - Tae-Ho Kim
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju-si 54874, Republic of Korea;
| |
Collapse
|
18
|
Ouaja M, Ghimire B, Bahri BA, Maher M, Ferjaoui S, Udupa S, Hamza S. Genome-wide association study reveals major loci for resistance to septoria tritici blotch in a Tunisian durum wheat collection. PLoS One 2025; 20:e0310390. [PMID: 39913360 PMCID: PMC11801541 DOI: 10.1371/journal.pone.0310390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/30/2024] [Indexed: 02/09/2025] Open
Abstract
Septoria tritici blotch (STB) is a devastating fungal disease affecting durum and bread wheat worldwide. Tunisian durum wheat landraces are reported to be valuable genetic resources for resistance to STB and should prominently be deployed in breeding programs to develop new varieties resistant to STB disease. In this study, a collection of 367 old durum and 6 modern wheat genotypes previously assessed using single Tunisian Zymoseptoria tritici isolate TUN06 during 2016 and 2017 and TM220 isolate during 2017 were phenotyped for resistance to a mixture of isolates (BULK) under field conditions. Significant correlations for disease traits using the three different inoculums were observed. Using 7638 SNP markers, fifty-one marker-trait associations (MTAs) for STB resistance were identified by genome-wide association study (GWAS) at Bonferroni correction threshold of -log10(P) > 5.184 with phenotypic variance explained (PVE) reaching up to 58%. A total of eleven QTL were identified using TUN06 isolate mean disease scoring (TUNMeanD and TUNMeanA) including threeQTL controlling resistance to both isolates TUN06 and TM220. A major QTL was identified on each of chromosomes 1B, 4B, 5A, and 7B, respectively. The QTL on 7B chromosome colocalized with Stb8 identified in bread wheat. Four QTL including the major QTL identified on chromosome 1B were considered as novel. SNP linked to the significant QTL have the potential to be used in marker-assisted selection for breeding for resistance to STB.
Collapse
Affiliation(s)
- Maroua Ouaja
- Laboratory of Cereal Breeding, Institut National Agronomique de Tunisie, University of Carthage, Tunis, Tunisia
| | - Bikash Ghimire
- Department of Plant Pathology, Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, GA, United States of America
| | - Bochra Amina Bahri
- Department of Plant Pathology, Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, GA, United States of America
| | - Medini Maher
- Banque Nationale des Gènes, Boulevard du Leader Yasser Arafat Z. I Charguia 1, Tunis, Tunisia
| | - Sahbi Ferjaoui
- Centre Régional des Recherches en Grandes Cultures, Beja, Tunisia
| | - Sripada Udupa
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Sonia Hamza
- Laboratory of Cereal Breeding, Institut National Agronomique de Tunisie, University of Carthage, Tunis, Tunisia
| |
Collapse
|
19
|
Xu C, Zhang J, Li W, Guo J. The role of Exo70s in plant defense against pathogens and insect pests and their application for crop breeding. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:17. [PMID: 39850652 PMCID: PMC11751289 DOI: 10.1007/s11032-025-01539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 01/15/2025] [Indexed: 01/25/2025]
Abstract
Plant diseases caused by pathogens and pests lead to crop losses, posing a threat to global food security. The secretory pathway is an integral component of plant defense. The exocyst complex regulates the final step of the secretory pathway and is thus essential for secretory defense. In the last decades, several subunits of the exocyst complex have been reported to be involved in plant defense, especially Exo70s. This comprehensive review focuses on the functions of the exocyst Exo70s in plant immunity, particularly in recognizing pathogen and pest signatures. We discussed Exo70's interactions with immune receptors and other immune-related proteins, its symbiotic relationships with microbes, and its role in non-host resistance. Finally, we discussed the future engineering breeding of crops with resistance to pathogens and pests based on our current understanding of Exo70s.
Collapse
Affiliation(s)
- Chunxue Xu
- Department of Early Childhood Education, Wuhan City Polytechnic, Wuhan, 430072 China
| | - Jing Zhang
- School of Agricultural Science, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Wenqian Li
- Department of Early Childhood Education, Wuhan City Polytechnic, Wuhan, 430072 China
| | - Jianping Guo
- National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| |
Collapse
|
20
|
Li SX, Liu Y, Zhang YM, Chen JQ, Shao ZQ. Convergent reduction of immune receptor repertoires during plant adaptation to diverse special lifestyles and habitats. NATURE PLANTS 2025; 11:248-262. [PMID: 39821112 DOI: 10.1038/s41477-024-01901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
Plants deploy cell-surface pattern recognition receptors (PRRs) and intracellular nucleotide-binding site-leucine-rich repeat receptors (NLRs) to recognize pathogens. However, how plant immune receptor repertoires evolve in responding to changed pathogen burdens remains elusive. Here we reveal the convergent reduction of NLR repertoires in plants with diverse special lifestyles/habitats (SLHs) encountering low pathogen burdens. Furthermore, a parallel but milder reduction of PRR genes in SLH species was observed. The reduction of PRR and NLR genes was attributed to both increased gene loss and decreased gene duplication. Notably, pronounced loss of immune receptors was associated with the complete absence of signalling components from the enhanced disease susceptibility 1 (EDS1) and the resistance to powdery mildew 8 (RPW8)-NLR (RNL) families. In addition, evolutionary pattern analysis suggested that the conserved toll/interleukin-1 receptor (TIR)-only proteins might function tightly with EDS1/RNL. Taken together, these results reveal the hierarchically adaptive evolution of the two-tiered immune receptor repertoires during plant adaptation to diverse SLHs.
Collapse
Affiliation(s)
- Sai-Xi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yan-Mei Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Jian-Qun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
21
|
Zhao F, Wang Y, Cheng W, Antwi-Boasiako A, Yan W, Zhang C, Gao X, Kong J, Liu W, Zhao T. Genome-Wide Association Study of Bacterial Blight Resistance in Soybean. PLANT DISEASE 2025; 109:341-351. [PMID: 39254851 DOI: 10.1094/pdis-01-24-0162-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Bacterial blight caused by Pseudomonas syringae pv. glycinea (Psg) is a widespread foliar disease. Although four Resistance to Pseudomonas syringae pv. glycinea (Rpg) 1 to 4 (Rpg1∼4) genes that have been observed to segregate in a Mendelian pattern have been reported to confer resistance to Psg in soybean, the genetic basis of quantitative resistance to bacterial blight in soybean remains unclear. In the present study, the Psg resistance of two soybean association panels consisting of 573 and 213 lines, respectively, was phenotyped in multiple environments in 2014 to 2016. Genome-wide association study was performed using two models, FarmCPU and BLINK, to identify Psg resistance loci. A total of 40 soybean varieties with high level of Psg resistance were identified, and 14 quantitative trait loci (QTLs) were detected on 12 soybean chromosomes. These QTLs were identified for the first time. The majority of the QTLs were detected only in one or the other association panels, while qRPG-18-1 was detected in both association panels for at least one growing season. A total of 46 candidate Psg resistance genes were identified from the qRpg_13_1, qRPG-15-1, and qRPG-18-1 loci based on gene function annotation. In addition, we found the genomic region covering rpg1-b and rpg1-r harbored the synteny with a genomic region on chromosome 15 and identified 16 nucleotide binding site-leucine-rich repeat (NBS-LRR) genes as the candidate Psg resistance genes from the synteny blocks. This study provides new information for dissecting the genetic control of Psg resistance in soybean.
Collapse
Affiliation(s)
- Fangzhou Zhao
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)/National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yanan Wang
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)/National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Cheng
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)/National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Augustine Antwi-Boasiako
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)/National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Council for Scientific and Industrial Research - Crops Research Institute (CSIR-CRI), Kumasi AK000-AK911, Fumesua, Ghana
| | - Wenkai Yan
- Bioinformatics Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunting Zhang
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)/National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuewen Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiejie Kong
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)/National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, U.S.A
| | - Tuanjie Zhao
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)/National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
22
|
Du T, Meng D, Cao H, Lian Y, Wu R, Liu T, Wang T, Qin C, Song Z, Dong B, Fu Y, Yang Q. Sorbitol induces flavonoid accumulation as a secondary signal via the nanoencapsulated SPc/lncRNA809-MmNAC17 module against Alternaria alternata in Malus micromalus. MOLECULAR HORTICULTURE 2025; 5:5. [PMID: 39885599 PMCID: PMC11783756 DOI: 10.1186/s43897-024-00125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/29/2024] [Indexed: 02/01/2025]
Abstract
Sorbitol is an important primary metabolite that serves as both a carbon source and signal to pathogens. The leaf diseases caused by Alternata alternata are particularly serious in crabapple (Malus micromalus). Here, we found that sorbitol can enhance the resistance of crabapple to A. alternata R1 by increasing the content of flavonoid catechin. Nanomaterials as an emerging technology tool can efficiently deliver lncRNA to target cells. Here, we found nanoencapsulated lncRNA809 (SPc/lncRNA809) exhibits significant resistance to R1strain. To elucidate the effect of SPc/lncRNA809 on flavonoids catechin synthesis, we observed the expression of lncRNA809 was consistent with that of MmNAC17 which regulates the synthesis of catechin and both could jointly respond to sorbitol. MmNAC17 induced the accumulation of catechin in vivo by directly activating the expression of catechin synthase genes MmF3H and MmLAR. Correspondingly, overexpression of lncRNA809 significantly upregulated the expression of MmNAC17 and enhanced the disease resistance. This study reveals for the first time that sorbitol positively regulates the expression of MmNAC17 through lncRNA809, promoting the accumulation of catechin via the expression of MmF3H and MmLAR, ultimately improving the defense response of M. micromalus. This research provides a crucial foundation for the establishment and application of sorbitol-based signaling regulatory networks.
Collapse
Affiliation(s)
- Tingting Du
- Beijing Forestry University, Beijing, 100000, China
| | - Dong Meng
- Beijing Forestry University, Beijing, 100000, China
| | - Hongyan Cao
- Beijing Forestry University, Beijing, 100000, China
| | - Yi Lian
- Beijing Forestry University, Beijing, 100000, China
| | - Rui Wu
- Beijing Forestry University, Beijing, 100000, China
| | - Tengyue Liu
- Beijing Forestry University, Beijing, 100000, China
| | - Tianyi Wang
- Beijing Forestry University, Beijing, 100000, China
| | - Cai Qin
- Beijing Forestry University, Beijing, 100000, China
| | - Zhihua Song
- Beijing Forestry University, Beijing, 100000, China
| | - Biying Dong
- Beijing Forestry University, Beijing, 100000, China
| | - Yujie Fu
- Beijing Forestry University, Beijing, 100000, China
| | - Qing Yang
- Beijing Forestry University, Beijing, 100000, China.
| |
Collapse
|
23
|
Smith M, Jones JT, Hein I. Resistify: A Novel NLR Classifier That Reveals Helitron-Associated NLR Expansion in Solanaceae. Bioinform Biol Insights 2025; 19:11779322241308944. [PMID: 39845701 PMCID: PMC11752215 DOI: 10.1177/11779322241308944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/05/2024] [Indexed: 01/24/2025] Open
Abstract
Nucleotide-binding domain leucine-rich repeat (NLR) proteins are a key component of the plant innate immune system. In plant genomes, NLRs exhibit considerable presence/absence variation and sequence diversity. Recent advances in sequencing technologies have made the generation of high-quality novel plant genome assemblies considerably more straightforward. Accurately identifying NLRs from these genomes is a prerequisite for improving our understanding of NLRs and identifying novel sources of disease resistance. While several tools have been developed to predict NLRs, they are hampered by low accuracy, speed, and availability. Here, the NLR annotation tool Resistify is presented. Resistify is an easy-to-use, rapid, and accurate tool to identify and classify NLRs from protein sequences. Applying Resistify to the RefPlantNLR database demonstrates that it can correctly identify NLRs from a diverse range of species. Applying Resistify in combination with tools to identify transposable elements to a panel of Solanaceae genomes reveals a previously undescribed association between NLRs and Helitron transposable elements.
Collapse
Affiliation(s)
- Moray Smith
- Cell and Molecular Sciences Department, The James Hutton Institute, Dundee, UK
- School of Biology, University of St Andrews, St Andrews, UK
| | - John T Jones
- Cell and Molecular Sciences Department, The James Hutton Institute, Dundee, UK
- School of Biology, University of St Andrews, St Andrews, UK
| | - Ingo Hein
- Cell and Molecular Sciences Department, The James Hutton Institute, Dundee, UK
- School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
24
|
Jia Y, Wei K, Qin J, Zhai W, Li Q, Li Y. The Roles of MicroRNAs in the Regulation of Rice-Pathogen Interactions. PLANTS (BASEL, SWITZERLAND) 2025; 14:136. [PMID: 39795396 PMCID: PMC11722856 DOI: 10.3390/plants14010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025]
Abstract
Rice is exposed to attacks by the three most destructive pathogens, Magnaporthe oryzae (M. oryzae), Xanthomonas oryzae pv. oryzae (Xoo), and Rhizoctonia solani (R. solani), which cause substantial yield losses and severely threaten food security. To cope with pathogenic infections, rice has evolved diverse molecular mechanisms to respond to a wide range of pathogens. Among these strategies, plant microRNAs (miRNAs), endogenous single-stranded short non-coding RNA molecules, have emerged as promising candidates in coordinating plant-pathogen interactions. MiRNAs can modulate target gene expression at the post-transcriptional level through mRNA cleavage and/or translational inhibition. In rare instances, they also influence gene expression at the transcriptional level through DNA methylation. In recent years, substantial advancements have been achieved in the investigation of microRNA-mediated molecular mechanisms in rice immunity. Therefore, we attempt to summarize the current advances of immune signaling mechanisms in rice-pathogen interactions that are regulated by osa-miRNAs, including their functions and molecular mechanisms. We also focus on recent findings concerning the role of osa-miRNAs that respond to M. oryzae, Xoo, and R. solani, respectively. These insights enhance our understanding of how the mechanisms of osa-miRNAs mediate rice immunity and may facilitate the development of improved strategies for breeding pathogen-resistant rice varieties.
Collapse
Affiliation(s)
- Yanfeng Jia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.J.); (K.W.); (J.Q.)
| | - Kai Wei
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.J.); (K.W.); (J.Q.)
| | - Jiawang Qin
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.J.); (K.W.); (J.Q.)
| | - Wenxue Zhai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Quanlin Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Yalan Li
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
25
|
Mencia R, Arce AL, Houriet C, Xian W, Contreras A, Shirsekar G, Weigel D, Manavella PA. Transposon-triggered epigenetic chromatin dynamics modulate EFR-related pathogen response. Nat Struct Mol Biol 2025; 32:199-211. [PMID: 39730887 PMCID: PMC11746138 DOI: 10.1038/s41594-024-01440-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/30/2024] [Indexed: 12/29/2024]
Abstract
Infectious diseases drive wild plant evolution and impact crop yield. Plants, like animals, sense biotic threats through pattern recognition receptors (PRRs). Overly robust immune responses can harm plants; thus, understanding the tuning of defense response mechanisms is crucial for developing pathogen-resistant crops. In this study, we found that an inverted-repeat transposon (EFR-associated IR, Ea-IR) located between the loci encoding PRRs ELONGATION FACTOR-TU RECEPTOR (EFR) and myosin XI-k (XI-k) in Arabidopsis affects chromatin organization, promoting the formation of a repressive chromatin loop. Upon pathogen infection, chromatin changes around EFR and XI-k correlate with increased EFR transcription. Pathogen-induced chromatin opening causes RNA polymerase II readthrough, producing a longer, Ea-IR-containing XI-k transcript, processed by Dicer-like enzymes into small RNAs, which reset chromatin to a repressive state attenuating the immune response after infection. Arabidopsis accessions lacking Ea-IR have higher basal EFR levels and resistance to pathogens. We show a scenario in which a transposon, chromatin organization and gene expression interact to fine-tune immune responses, during both the course of infection and the course of evolution.
Collapse
Affiliation(s)
- Regina Mencia
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Agustín L Arce
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Candela Houriet
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Wenfei Xian
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Adrián Contreras
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Gautam Shirsekar
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
| | - Pablo A Manavella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Cientificas (UMA-CSIC), Campus Teatinos, Málaga, Spain.
| |
Collapse
|
26
|
Yu W, Li M, Wang W, Zhuang H, Luo J, Sang Y, Segonzac C, Macho AP. A bacterial type III effector hijacks plant ubiquitin proteases to evade degradation. PLoS Pathog 2025; 21:e1012882. [PMID: 39841799 PMCID: PMC11771917 DOI: 10.1371/journal.ppat.1012882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/27/2025] [Accepted: 01/04/2025] [Indexed: 01/24/2025] Open
Abstract
Gram-negative bacterial pathogens inject effector proteins inside plant cells using a type III secretion system. These effectors manipulate plant cellular functions and suppress the plant immune system in order to promote bacterial proliferation. Despite the fact that bacterial effectors are exogenous threatening proteins potentially exposed to the protein degradation systems inside plant cells, effectors are relative stable and able to perform their virulence functions. In this work, we found that RipE1, an effector protein secreted by the bacterial wilt pathogen, Ralstonia solanacearum, undergoes phosphorylation of specific residues inside plant cells, and this promotes its stability. Moreover, RipE1 associates with plant ubiquitin proteases, which contribute to RipE1 deubiquitination and stabilization. The absence of those specific phosphorylation sites or specific host ubiquitin proteases leads to a substantial decrease in RipE1 protein accumulation, indicating that RipE1 hijacks plant post-translational modification regulators in order to promote its own stability. These results suggest that effector stability or degradation in plant cells constitute another molecular event subject to co-evolution between plants and pathogens.
Collapse
Affiliation(s)
- Wenjia Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Meng Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Wenjun Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Haiyan Zhuang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiamin Luo
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yuying Sang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Cecile Segonzac
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, Republic of Korea
| | - Alberto P. Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
27
|
Wang Y, Feng XY, Wu WQ, Li MH, Li SX, Zeng Z, Shao ZQ, Zhang YM. Deciphering the landscape and evolutionary trajectory of NLR immune receptors in Dioscorea alata. PLANT MOLECULAR BIOLOGY 2024; 115:13. [PMID: 39720984 DOI: 10.1007/s11103-024-01541-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/01/2024] [Indexed: 12/26/2024]
Abstract
Dioscorea alata, a key tuber crop for global food security, is threatened by anthracnose disease caused by Colletotrichum gloeosporioides. However, identification of functional resistance genes against C. gloeosporioides in D. alata is challenging due to low flowering and hybridization efficiency of this plant. Nucleotide-binding leucine-rich repeat (NLR) genes constitute the largest group of plant disease resistance genes, from which functional genes against diverse pathogens across various crops have been cloned. In this study, a comprehensive genome-wide analysis identified 346 NLR genes from D. alata, including one RNL and 345 CNLs. These NLRs were unequally distributed on 20 chromosomes, with chromosome 3 harboring the highest number (78 NLR genes). The majority of NLR genes (91%) were located in multigene clusters, implying that tandem or proximal duplication was the primary driving force for NLR gene expansion in D. alata. Comparative analysis of Dioscoreaceae species revealed high variability and differential expansion patterns of NLR genes. In addition, transcriptome profiling of D. alata post-infection with C. gloeosporioides identified 12 differentially expressed NLR genes. In summary, this study sheds new light on the genetic architecture and evolutionary dynamics of D. alata NLR genes, offering valuable insights for cloning functional genes against C. gloeosporioides.
Collapse
Affiliation(s)
- Yue Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China
| | - Xing-Yu Feng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Wen-Qiang Wu
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Ming-Han Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China
| | - Sai-Xi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhen Zeng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yan-Mei Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China.
| |
Collapse
|
28
|
Shukla M, Kaundal P, Purwar S, Kumar M, Maurya C, Chirag, Mishra AK, Baek KH, Singh CM. Salicylic Acid-Induced Expression Profiles of LRR and LRR-RLK Candidate Genes Modulate Mungbean Yellow Mosaic India Virus Resistance in Blackgram and Its Two Wild Non-Progenitors. PLANTS (BASEL, SWITZERLAND) 2024; 13:3601. [PMID: 39771299 PMCID: PMC11678391 DOI: 10.3390/plants13243601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
Blackgram is an important short-duration grain legume, but its yield is highly affected by various stresses. Among biotic stresses, yellow mosaic disease (YMD) is known as a devastating disease that leads to 100% yield loss under severe conditions. The cultivated lines possess resistance, but exploring more diverse sources of resistance may be useful for pyramiding to improve the durability of said resistance. Some wild Vigna species have potentially demonstrated a high level of resistance. R-genes, including gene families of leucine-rich repeats (LRRs) and leucine-rich repeat receptor-like kinases (LRR-RLKs), are known for modulating the resistance in plants against various biotic stresses. The first comprehensive analysis of the LRR and LRR-RLK gene families in mungbean is reported in the present study. A total of forty-six candidate genes were identified and grouped into eight clades. Protein motif analysis showed that the "Pkinase domain" and "LRR domains" were conserved in most of the R-proteins. The expression of candidate genes viz. VrNBS_TNLRR-8, VrLRR_RLK-20, VrLRR_RLK-17, and VrLRR_RLK-19 demonstrated significantly up-regulated expression upon YMD infection in control and salicylic acid-primed (SA-primed) plants. The analysis provides insight into the diversity and robust candidate genes for functional studies modulating YMD resistance altered by salicylic acid.
Collapse
Affiliation(s)
- Mansi Shukla
- Department of Genetics and Plant Breeding, Banda University of Agriculture and Technology, Banda 210 001, India; (M.S.); (P.K.); (M.K.); (C.M.); (C.)
| | - Priyanka Kaundal
- Department of Genetics and Plant Breeding, Banda University of Agriculture and Technology, Banda 210 001, India; (M.S.); (P.K.); (M.K.); (C.M.); (C.)
| | - Shalini Purwar
- Department of Basic and Social Sciences, Banda University of Agriculture and Technology, Banda 210 001, India;
| | - Mukul Kumar
- Department of Genetics and Plant Breeding, Banda University of Agriculture and Technology, Banda 210 001, India; (M.S.); (P.K.); (M.K.); (C.M.); (C.)
| | - Chandragupt Maurya
- Department of Genetics and Plant Breeding, Banda University of Agriculture and Technology, Banda 210 001, India; (M.S.); (P.K.); (M.K.); (C.M.); (C.)
| | - Chirag
- Department of Genetics and Plant Breeding, Banda University of Agriculture and Technology, Banda 210 001, India; (M.S.); (P.K.); (M.K.); (C.M.); (C.)
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Chandra Mohan Singh
- Department of Genetics and Plant Breeding, Banda University of Agriculture and Technology, Banda 210 001, India; (M.S.); (P.K.); (M.K.); (C.M.); (C.)
| |
Collapse
|
29
|
Wiersma AT, Hamilton JP, Vaillancourt B, Brose J, Awale HE, Wright EM, Kelly JD, Buell CR. k-mer genome-wide association study for anthracnose and BCMV resistance in a Phaseolus vulgaris Andean Diversity Panel. THE PLANT GENOME 2024; 17:e20523. [PMID: 39397345 PMCID: PMC11628888 DOI: 10.1002/tpg2.20523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
Access to broad genomic resources and closely linked marker-trait associations for common beans (Phaseolus vulgaris L.) can facilitate development of improved varieties with increased yield, improved market quality traits, and enhanced disease resistance. The emergence of virulent races of anthracnose (caused by Colletotrichum lindemuthianum) and bean common mosaic virus (BCMV) highlight the need for improved methods to identify and incorporate pan-genomic variation in breeding for disease resistance. We sequenced the P. vulgaris Andean Diversity Panel (ADP) and performed a genome-wide association study (GWAS) to identify associations for resistance to BCMV and eight races of anthracnose. Historical single nucleotide polymorphism (SNP)-chip and phenotypic data enabled a three-way comparison between SNP-chip, reference-based whole genome shotgun sequence (WGS)-SNP, and reference-free k-mer (short nucleotide subsequence) GWAS. Across all traits, there was excellent concordance between SNP-chip, WGS-SNP, and k-mer GWAS results-albeit at a much higher marker resolution for the WGS data sets. Significant k-mer haplotype variation revealed selection of the linked I-gene and Co-u traits in North American breeding lines and cultivars. Due to structural variation, only 9.1 to 47.3% of the significantly associated k-mers could be mapped to the reference genome. Thus, to determine the genetic context of cis-associated k-mers, we generated draft whole genome assemblies of four ADP accessions and identified an expanded local repertoire of disease resistance genes associated with resistance to anthracnose and BCMV. With access to variant data in the context of a pan-genome, high resolution mapping of agronomic traits for common bean is now feasible.
Collapse
Affiliation(s)
- Andrew T. Wiersma
- Archer Daniels Midland CompanyNew PlymouthIdahoUSA
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
- Plant Resilience InstituteMichigan State UniversityEast LansingMichiganUSA
| | - John P. Hamilton
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
- Department of Crop and Soil SciencesUniversity of GeorgiaAthensGeorgiaUSA
| | - Brieanne Vaillancourt
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
| | - Julia Brose
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
| | - Halima E. Awale
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Evan M. Wright
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - James D. Kelly
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - C. Robin Buell
- Plant Resilience InstituteMichigan State UniversityEast LansingMichiganUSA
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
- Department of Crop and Soil SciencesUniversity of GeorgiaAthensGeorgiaUSA
- Institute of Plant Breeding, Genetics & GenomicsUniversity of GeorgiaAthensGeorgiaUSA
- The Plant CenterUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
30
|
Ning W, Wang W, Liu Z, Xie W, Chen H, Hong D, Yang QY, Cheng S, Guo L. The pan-NLRome analysis based on 23 genomes reveals the diversity of NLRs in Brassica napus. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:2. [PMID: 39713061 PMCID: PMC11655762 DOI: 10.1007/s11032-024-01522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024]
Abstract
Brassica napus, a globally significant oilseed crop, exhibits a wide distribution across diverse climatic zones. B. napus is being increasingly susceptible to distinct diseases, such as blackleg, clubroot and sclerotinia stem rot, leading to substantial reductions in yield. Nucleotide-binding site leucine-rich repeat genes (NLRs), the most pivotal family of resistance genes, can be effectively harnessed by identifying and uncovering their diversity to acquire premium disease-resistant gene resources. Here, we collected the genomes of 23 accessions and established the first comprehensive pan-NLRome in B. napus by leveraging multiple genomic resources. We observe significant variation in the number of NLR genes across different B. napus accessions, ranging from 189 to 474. Notably, TNL (TIR-NBS-LRR) genes constitute approximately half of the total count, indicating their predominant presence in B. napus. The number of NLRs in the C subgenome is significantly higher than that in the A subgenome, and chromosome C09 exhibits the highest density of NLR genes with featuring multiple NLR clusters. Domain analysis reveals that the integrated domains significantly enhance the diversity of NLRs, with B3 DNA binding, VQ, and zinc fingers being the most prevalent integrated domains. Pan-genomic analysis reveals that the core type of NLR genes, which is present in most accessions, constitutes approximately 58% of the total NLRs. Furthermore, we conduct a comparative analysis of the diversity of NLR genes across distinct ecotypes, leading to the identification of ecotype-specific NLRs and their integrated domains. In conclusion, our study effectively addresses the limitations of a single reference genome and provides valuable insights into the diversity of NLR genes in B. napus, thereby contributing to disease resistance breeding.
Collapse
Affiliation(s)
- Weidong Ning
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070 China
- Yazhouwan National Laboratory, Sanya, 572025 Hainan China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the , Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Wenzheng Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Zijian Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the , Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Hanchen Chen
- Yazhouwan National Laboratory, Sanya, 572025 Hainan China
| | - Dengfeng Hong
- Yazhouwan National Laboratory, Sanya, 572025 Hainan China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Qing-Yong Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070 China
- Yazhouwan National Laboratory, Sanya, 572025 Hainan China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the , Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Liang Guo
- Yazhouwan National Laboratory, Sanya, 572025 Hainan China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the , Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
31
|
González-Cardona C, López WR, Jovel J, Soto-Suárez M, Ceballos-Aguirre N. Paraburkholderia tropica Primes a Multilayered Transcriptional Defense Response to the Nematode Meloidogyne spp. in Tomato. Int J Mol Sci 2024; 25:12584. [PMID: 39684296 DOI: 10.3390/ijms252312584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Meloidogyne causes a devastating disease known as root-knot that affects tomatoes and other cash crops worldwide. Conversely, Paraburkholderia tropica has proven beneficial in mitigating the effects of various pathogens in plants. We aimed to unravel the molecular events that underlie the beneficial effects of the bacterium and the detrimental impacts of the nematode when inoculated separately or together in tomato plants. The transcriptional responses induced by P. tropica (TB group (tomato-bacteria group)), Meloidogyne spp. (TN group (tomato-nematode group)) or by the two agents (TBN group (tomato-bacteria-nematode group)) in tomato were assessed by RNA-seq. We implemented a transcript discovery pipeline which allowed the identification of 2283 putative novel transcripts. Differential expression analysis revealed that upregulated transcripts were much more numerous than downregulated ones. At the gene ontology level, the most activated term was 'hydrolase activity acting on ester bonds' in all groups. In addition, when both microbes were inoculated together, 'hydrolase activity acting on O-glycosyl compounds' was activated. This finding suggests defense responses related to lipid and carbohydrate metabolism, membrane remodeling and signal transduction. Notably, defense genes, transcription factors and protein kinases stood out. Differentially expressed transcripts suggest the activation of a multifaceted plant defense response against the nematode occurred, which was exacerbated by pre-inoculation of P. tropica.
Collapse
Affiliation(s)
- Carolina González-Cardona
- Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170003, Caldas, Colombia
| | - Walter Ricardo López
- Departamento de Física y Química, Facultad de Ciencias Naturales, Universidad Nacional de Colombia Sede Manizales, km 9 vía Aeropuerto la Nubia, Manizales 170003, Caldas, Colombia
| | - Juan Jovel
- Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170003, Caldas, Colombia
- Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB T2N 4Z6, Canada
| | - Mauricio Soto-Suárez
- Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170003, Caldas, Colombia
- Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA, km 14 vía Mosquera-Bogotá, Mosquera 250047, Cundinamarca, Colombia
| | - Nelson Ceballos-Aguirre
- Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170003, Caldas, Colombia
| |
Collapse
|
32
|
Liu H, Zhang W, He Q, Aikemu R, Xu H, Guo Z, Wang L, Li W, Wang G, Wang X, Guo W. Re-localization of a repeat-containing fungal effector by apoplastic protein Chitinase-like 1 blocks its toxicity. Nat Commun 2024; 15:10122. [PMID: 39578470 PMCID: PMC11584738 DOI: 10.1038/s41467-024-54470-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
A fungal effector that is toxic to plant cells was identified in Verticillium dahliae. The effector contains a non-canonical Common in several Fungal Extracellular Membrane proteins (CFEM) domain, a tandem repeat region consisting of four 14-amino acid repeats rich in proline, and a C-terminal region, thus is designated V. dahliae tetrapeptide repeat protein (VdTRP). The membrane targeting of VdTRP is vital for its cell toxicity. CFEM mediates the membrane targeting and the tandem repeat region exerts the toxic function upon cell membrane. The chitinase-like 1 (CTL1), an essential apoplastic protein of cotton, can redirect VdTRP from cell membrane to apoplast. Transgenic cotton overexpressing CTL1 greatly enhances cotton resistance to V. dahliae without affecting cotton growth and development, implicating its potential application in breeding cotton with high wilt resistance. Our data demonstrates that genetic manipulation of effector target constitutes potential strategy for improving crop resistance to fungal pathogens.
Collapse
Affiliation(s)
- Hanqiao Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenshu Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qinqfei He
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Reyila Aikemu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huijuan Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhan Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lu Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guilin Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyu Wang
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China.
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
33
|
Cao HX, Michels D, Vu GTH, Gailing O. Applications of CRISPR Technologies in Forestry and Molecular Wood Biotechnology. Int J Mol Sci 2024; 25:11792. [PMID: 39519342 PMCID: PMC11547103 DOI: 10.3390/ijms252111792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/27/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Forests worldwide are under increasing pressure from climate change and emerging diseases, threatening their vital ecological and economic roles. Traditional breeding approaches, while valuable, are inherently slow and limited by the long generation times and existing genetic variation of trees. CRISPR technologies offer a transformative solution, enabling precise and efficient genome editing to accelerate the development of climate-resilient and productive forests. This review provides a comprehensive overview of CRISPR applications in forestry, exploring its potential for enhancing disease resistance, improving abiotic stress tolerance, modifying wood properties, and accelerating growth. We discuss the mechanisms and applications of various CRISPR systems, including base editing, prime editing, and multiplexing strategies. Additionally, we highlight recent advances in overcoming key challenges such as reagent delivery and plant regeneration, which are crucial for successful implementation of CRISPR in trees. We also delve into the potential and ethical considerations of using CRISPR gene drive for population-level genetic alterations, as well as the importance of genetic containment strategies for mitigating risks. This review emphasizes the need for continued research, technological advancements, extensive long-term field trials, public engagement, and responsible innovation to fully harness the power of CRISPR for shaping a sustainable future for forests.
Collapse
Affiliation(s)
- Hieu Xuan Cao
- Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077 Göttingen, Germany; (H.X.C.)
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany
| | - David Michels
- Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077 Göttingen, Germany; (H.X.C.)
| | - Giang Thi Ha Vu
- Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077 Göttingen, Germany; (H.X.C.)
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077 Göttingen, Germany; (H.X.C.)
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
34
|
Kim SB, Kim KT, In S, Jaiswal N, Lee GW, Jung S, Rogers A, Gómez-Trejo LF, Gautam S, Helm M, Ahn HK, Lee HY, Read QD, Woo J, Holan KL, Whitham SA, Jones JDG, Choi D, Dean R, Park E, Balint-Kurti P. Use of the Puccinia sorghi haustorial transcriptome to identify and characterize AvrRp1-D recognized by the maize Rp1-D resistance protein. PLoS Pathog 2024; 20:e1012662. [PMID: 39514589 PMCID: PMC11578463 DOI: 10.1371/journal.ppat.1012662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 11/20/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
The common rust disease of maize is caused by the obligate biotrophic fungus Puccinia sorghi. The maize Rp1-D allele imparts resistance against the P. sorghi IN2 isolate by initiating a defense response that includes a rapid localized programmed cell death process, the hypersensitive response (HR). In this study, to identify AvrRp1-D from P. sorghi IN2, we employed the isolation of haustoria, facilitated by a biotin-streptavidin interaction, as a powerful approach. This method proves particularly advantageous in cases where the genome information for the fungal pathogen is unavailable, enhancing our ability to explore and understand the molecular interactions between maize and P. sorghi. The haustorial transcriptome generated through this technique, in combination with bioinformatic analyses such as SignalP and TMHMM, enabled the identification of 251 candidate effectors. We ultimately identified two closely related genes, AvrRp1-D.1 and AvrRp1-D.2, which triggered an Rp1-D-dependent defense response in Nicotiana benthamiana. AvrRp1-D-induced Rp1-D-dependent HR was further confirmed in maize protoplasts. We demonstrated that AvrRp1-D.1 interacts directly and specifically with the leucine-rich repeat (LRR) domain of Rp1-D through yeast two-hybrid assay. We also provide evidence that, in the absence of Rp1-D, AvrRp1-D.1 plays a role in suppressing the plant immune response. Our research provides valuable insights into the molecular interactions driving resistance against common rust in maize.
Collapse
Affiliation(s)
- Saet-Byul Kim
- Department of Plant Pathology and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Ki-Tae Kim
- Department of Agricultural Life Science, Sunchon National University, Suncheon, Korea
| | - Solhee In
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
- Plant Immunity Research Center, Seoul National University, Seoul, Republic of Korea
| | - Namrata Jaiswal
- United States Department of Agriculture, Agricultural Research Service, Crop Production and Pest Control Research Unit, West Lafayette, Indiana, United States of America
| | - Gir-Won Lee
- SML Genetree Co. Ltd., Seoul, Republic of Korea
| | - Seungmee Jung
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - Abigail Rogers
- United States Department of Agriculture, Agricultural Research Service, Crop Production and Pest Control Research Unit, West Lafayette, Indiana, United States of America
| | - Libia F. Gómez-Trejo
- Department of Plant Pathology and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Sujan Gautam
- Department of Plant Pathology and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Matthew Helm
- United States Department of Agriculture, Agricultural Research Service, Crop Production and Pest Control Research Unit, West Lafayette, Indiana, United States of America
| | - Hee-Kyung Ahn
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Hye-Young Lee
- Plant Immunity Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Horticulture, Gyeongsang National University, Jinju, Republic of Korea
| | - Quentin D. Read
- USDA-ARS, Southeast Area, Raleigh, North Carolina, United States of America
| | - Jongchan Woo
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - Katerina L. Holan
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Steven A. Whitham
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | | | - Doil Choi
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - Ralph Dean
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Eunsook Park
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - Peter Balint-Kurti
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
- Plant Science Research Unit, USDA-ARS, Raleigh, North Carolina, United States of America
| |
Collapse
|
35
|
Hao Y, Fan R, Zhao Y, Nie K, Wang L, Zhao T, Zhang Z, Tao X, Wu H, Pan J, Hao C, Guan X. Intra species dissection of phytophthora capsici resistance in black pepper. J Adv Res 2024:S2090-1232(24)00469-7. [PMID: 39442874 DOI: 10.1016/j.jare.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/30/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
INTRODUCTION Black pepper, a financially significant tropical crop, assumes a pivotal role in global agriculture for the major source of specie flavor. Nonetheless, the growth and productivity of black pepper face severe impediments due to the destructive pathogen Phytophthora capsici, ultimately resulting in black pepper blight. The dissecting for the genetic source of pathogen resistance for black pepper is beneficial for its global production. The genetic sources include the variations on gene coding sequences, transcription capabilities and epigenetic modifications, which exerts hierarchy of influences on plant defense against pathogen. However, the understanding of genetic source of disease resistance in black pepper remains limited. METHODS The wild species Piper flaviflorum (P. flaviflorum, Pf) is known for blight resistance, while the cultivated species P. nigrum is susceptible. To dissecting the genetic sources of pathogen resistance for black pepper, the chromatin modification on H3K4me3 and transcriptome of black pepper species were profiled for genome wide comparative studies, applied with CUT&Tag and RNA sequencing technologies. RESULTS The intraspecies difference between P. flaviflorum and P. nigrum on gene body region led to coding variations on 5137 genes, including 359 gene with biotic stress responses and regulation. P. flaviflorum exhibited a more comprehensive resistance response to Phytophthora capsici in terms of transcriptome features. The pathogen responsive transcribing was significant associated with histone modification mark of H3K4me3 in black pepper. The collective data on variations of sequence, transcription activity and chromatin structure lead to an exclusive jasmonic acid-responsive pathway for disease resistance in P. flaviflorum was revealed. This research provides a comprehensive frame work to identify the fine genetic source for pathogen resistance from wild species of black pepper.
Collapse
Affiliation(s)
- Yupeng Hao
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China
| | - Rui Fan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, China
| | - Yongyan Zhao
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ke Nie
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China
| | - Luyao Wang
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China
| | - Ting Zhao
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China
| | - Zhiyuan Zhang
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China
| | | | - Hongyu Wu
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiaying Pan
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China
| | - Chaoyun Hao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, China.
| | - Xueying Guan
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China.
| |
Collapse
|
36
|
Das AK, Hussain A, Methela NJ, Lee DS, Lee GJ, Woo YJ, Yun BW. Genome-wide characterization of nitric oxide-induced NBS-LRR genes from Arabidopsis thaliana and their association in monocots and dicots. BMC PLANT BIOLOGY 2024; 24:934. [PMID: 39379841 PMCID: PMC11462825 DOI: 10.1186/s12870-024-05587-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Nitric oxide (NO) is pivotal in regulating the activity of NBS-LRR specific R genes, crucial components of the plant's immune system. It is noteworthy that previous research has not included a genome-wide analysis of NO-responsive NBS-LRR genes in plants. RESULTS The current study examined 29 NO-induced NBS-LRR genes from Arabidopsis thaliana, along with two monocots (rice and maize) and two dicots (soybean and tomato) using genome-wide analysis tools. These NBS-LRR genes were subjected to comprehensive characterization, including analysis of their physio-chemical properties, phylogenetic relationships, domain and motif identification, exon/intron structures, cis-elements, protein-protein interactions, prediction of S-Nitrosylation sites, and comparison of transcriptomic and qRT-PCR data. Results showed the diverse distribution of NBS-LRR genes across chromosomes, and variations in amino acid number, exons/introns, molecular weight, and theoretical isoelectric point, and they were found in various cellular locations like the plasma membrane, cytoplasm, and nucleus. These genes predominantly harbor the NB-ARC superfamily, LRR, LRR_8, and TIR domains, as also confirmed by motif analysis. Additionally, they feature species-specific PLN00113 superfamily and RX-CC_like domain in dicots and monocots, respectively, both responsive to defense against pathogen attacks. The NO-induced NBS-LRR genes of Arabidopsis reveal the presence of cis-elements responsive to phytohormones, light, stress, and growth, suggesting a wide range of responses mediated by NO. Protein-protein interactions, coupled with the prediction of S-Nitrosylation sites, offer valuable insights into the regulatory role of NO at the protein level within each respective species. CONCLUSION These above findings aimed to provide a thorough understanding of the impact of NO on NBS-LRR genes and their relationships with key plant species.
Collapse
Affiliation(s)
- Ashim Kumar Das
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Adil Hussain
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea.
- Department of Agriculture, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan.
| | - Nusrat Jahan Methela
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Da-Sol Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Geum-Jin Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Youn-Ji Woo
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Byung-Wook Yun
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
37
|
Atem JEC, Gan L, Yu W, Huang F, Wang Y, Baloch A, Nwafor CC, Barrie AU, Chen P, Zhang C. Bioinformatics and functional analysis of EDS1 genes in Brassica napus in response to Plasmodiophora brassicae infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112175. [PMID: 38986913 DOI: 10.1016/j.plantsci.2024.112175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
Enhanced Disease Susceptibility 1 (EDS1) is a key regulator of plant-pathogen-associated molecular pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) responses. In the Brassica napus genome, we identified six novel EDS1 genes, among which four were responsive to clubroot infection, a major rapeseed disease resistant to chemical control. Developing resistant cultivars is a potent and economically viable strategy to control clubroot infection. Bioinformatics analysis revealed conserved domains and structural uniformity in Bna-EDS1 homologs. Bna-EDS1 promoters harbored elements associated with diverse phytohormones and stress responses, highlighting their crucial roles in plant defense. A functional analysis was performed with Bna-EDS1 overexpression and RNAi transgenic lines. Bna-EDS1 overexpression boosted resistance to clubroot and upregulated defense-associated genes (PR1, PR2, ICS1, and CBP60), while Bna-EDS1 RNAi increased plant susceptibility, indicating suppression of the defense signaling pathway downstream of NBS-LRRs. RNA-Seq analysis identified key transcripts associated with clubroot resistance, including phenylpropanoid biosynthesis. Activation of SA regulator NPR1, defense signaling markers PR1 and PR2, and upregulation of MYC-TFs suggested that EDS1-mediated clubroot resistance potentially involves the SA pathway. Our findings underscore the pivotal role of Bna-EDS1-dependent mechanisms in resistance of B. napus to clubroot disease, and provide valuable insights for fortifying resistance against Plasmodiophora brassicae infection in rapeseed.
Collapse
Affiliation(s)
- Jalal Eldeen Chol Atem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Longcai Gan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Wenlin Yu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Fan Huang
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln NE68588, USA; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Yanyan Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Amanullah Baloch
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Chinedu Charles Nwafor
- Guangdong Ocean University, Zhanjiang 524088, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Alpha Umaru Barrie
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Peng Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Chunyu Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria.
| |
Collapse
|
38
|
Mahadevan C, Shafi KM, Nagarathnam B, Sakuntala M, Sowdhamini R. Transcriptional regulation of hormone signalling genes in black pepper in response to Phytophthora capsici. BMC Genomics 2024; 25:910. [PMID: 39350031 PMCID: PMC11440725 DOI: 10.1186/s12864-024-10802-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
INTRODUCTION Black pepper (Piper nigrum L.) is a non-model spice crop of significant agricultural and biological importance. The 'quick wilt' disease caused by the oomycete Phytophthora capsici is a major threat, leading to substantial crop loss. The molecular mechanisms governing the plant immune responses to this pathogen remain unclear. This study employs RNA sequencing and transcriptome analysis to explore the defense mechanisms of P. nigrum against P. capsici. RESULTS Two-month-old P. nigrum plantlets were subjected to infection with P. capsici, and leaf samples were collected at 6- and 12-hours post-inoculation. RNA was extracted, sequenced, and the resulting data were processed and assembled. Differential gene expression analysis was conducted to identify genes responding to the infection. Additionally, the study investigated the involvement of Salicylic acid (SA), Jasmonic acid (JA), and Ethylene (ET) signalling pathways. Our transcriptome assembly comprised 64,667 transcripts with 96.7% completeness, providing valuable insights into the P. nigrum transcriptome. Annotation of these transcripts identified functional categories and domains, provided details on molecular processes. Gene expression analysis identified 4,714 transcripts at 6 h post-infection (hpi) and 9,416 at 12 hpi as differentially expressed, revealing dynamic regulation of immune-related genes. Furthermore, the study investigated key genes involved in biosynthesis pathways of Salicylic acid, Jasmonic acid, and Ethylene signalling. Notably, we found differential regulation of critical genes associated with these pathways while comparing data before and after infection, thereby shedding light on their roles in defense mechanism in P. nigrum defense. CONCLUSIONS This comprehensive transcriptome analysis of P. nigrum response to P. capsici attack provides valuable insights into the plant defense mechanisms. The dynamic regulation of innate immunity and the involvement of key signalling pathways highlight the complexity of the plant-pathogen interaction. This study contributes to our understanding of plant immunity and offers potential strategies for enhancing P. nigrum resistance to this harmful pathogen.
Collapse
Grants
- BT/PR17789/BPA/118/189/2016 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR17789/BPA/118/189/2016 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR17789/BPA/118/189/2016 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR17789/BPA/118/189/2016 Department of Biotechnology, Ministry of Science and Technology, India
- IBAB/MSCB/182/2022 Institute of Bioinformatics and Applied Biotechnology, India
- IBAB/MSCB/182/2022 Institute of Bioinformatics and Applied Biotechnology, India
- SB/S2/JC-071/2015 Science and Engineering Research Board, India
Collapse
Affiliation(s)
- Chidambareswaren Mahadevan
- Plant Disease Biology and Biotechnology, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O, Thiruvananthapuram, 695014, Kerala, India
| | - K Mohamed Shafi
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bangalore, 560065, Karnataka, India
- Department of Biology, University of Oxford, Oxford, England
| | - B Nagarathnam
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bangalore, 560065, Karnataka, India
| | - Manjula Sakuntala
- Plant Disease Biology and Biotechnology, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O, Thiruvananthapuram, 695014, Kerala, India.
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bangalore, 560065, Karnataka, India.
| |
Collapse
|
39
|
Soler-Garzón A, Mulube M, Kamfwa K, Lungu DM, Hamabwe S, Roy J, Salegua V, Fourie D, Porch TG, McClean PE, Miklas PN. GWAS of resistance to three bacterial diseases in the Andean common bean diversity panel. FRONTIERS IN PLANT SCIENCE 2024; 15:1469381. [PMID: 39301162 PMCID: PMC11410698 DOI: 10.3389/fpls.2024.1469381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
Bacterial brown spot (BBS) caused by Pseudomonas syringae pv. syringae (Pss), common bacterial blight (CBB) caused by Xanthomonas axonopodis pv. phaseoli (Xap) and Xanthomonas fuscans subsp. fuscans (Xff), and halo bacterial blight (HBB), caused by Pseudomonas syringae pv. phaseolicola (Psph), are major bacterial diseases that severely affect common bean yields and global food security. Andean-origin dry beans, representing large-seeded market classes, are particularly susceptible. Using 140,325 SNPs, a multi-locus GWAS was conducted on subsets of the Andean diversity panel (ADP) phenotyped for BBS in South Africa, CBB in Puerto Rico, South Africa, and Zambia, and HBB in South Africa, through natural infection, artificial inoculation, or both. Twenty-four QTL associated with resistance were identified: nine for BBS, eight for CBB, and seven for HBB. Four QTL intervals on Pv01, Pv03, Pv05, and Pv08 overlapped with BBS and HBB resistance. A genomic interval on Pv01, near the fin gene, which determines growth habit, was linked to resistance to all three pathogens. Different QTLs were detected for BBS and CBB resistance when phenotyped under natural infection versus artificial inoculation. These results underscore the importance of combining phenotyping methods in multi-GWAS to capture the full genetic spectrum. Previously recognized CBB resistance QTL SAP6 and SU91 and HBB resistance QTL HB4.2, and HB5.1, were observed. Other common (MAF >0.25) and rare (MAF <0.05) resistance QTL were also detected. Overall, these findings enhance the understanding and utilization of bacterial resistance present in ADP for the development of common beans with improved resistance.
Collapse
Affiliation(s)
- Alvaro Soler-Garzón
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, United States
| | - Mwiinga Mulube
- Department of Plant Science, University of Zambia, Lusaka, Zambia
| | - Kelvin Kamfwa
- Department of Plant Science, University of Zambia, Lusaka, Zambia
| | - Davies M Lungu
- Department of Plant Science, University of Zambia, Lusaka, Zambia
| | - Swivia Hamabwe
- Department of Plant Science, University of Zambia, Lusaka, Zambia
| | - Jayanta Roy
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Venâncio Salegua
- Mozambique Agricultural Research Institute (IIAM), Nampula, Mozambique
| | - Deidré Fourie
- Dry Bean Producers Organization, Pretoria, South Africa
| | - Timothy G Porch
- Tropical Agriculture Research Station, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Mayagüez, Puerto Rico
| | - Phillip E McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Phillip N Miklas
- Grain Legume Genetics and Physiology Research Unit, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Prosser, WA, United States
| |
Collapse
|
40
|
Castanho FM, Costa BLCD, Abe VY, Yokoyama A, Darben LM, Oliveira LS, Ferreira EGC, Lopes IDON, Carvalho MCDCGD, Balbi-Peña MI, Marcelino-Guimarães FC. Variability and functional characterization of the Phakopsora pachyrhizi Egh16-like effectors. Genet Mol Biol 2024; 47:e20230192. [PMID: 39239924 PMCID: PMC11378017 DOI: 10.1590/1678-4685-gmb-2023-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 06/05/2024] [Indexed: 09/07/2024] Open
Abstract
Effector proteins in Phakopsora pachyrhizi (Pp), the causative agent of Asian Soybean rust, are involved in the infection process. A previous study identified a rust effector Egh16-like family based expression profile during the interaction with soybean. Herein, we scrutinized available the Pp genomes to validate the predicted Egh16-like family of Pp and identify new family members. We described 22 members of the Egh16-like gene family in the Pp MT2006 genome and 18 in the UFV02 and K8108 genomes, highlighting a family expansion. Family members have a small signal peptide, conserved cysteine-rich R/Y/FxC motifs in the C-terminal region, and a virulence-related Egh16-like domain and were able to suppress PTI related responses in Benthamiana. Phylogenetic analysis placed the family members into eight clusters, with members induced during the early stages of rust infection. Members of clusters VI and VII are present in different copy numbers in Pp genomes and suppressed PAMP-related responses.
Collapse
Affiliation(s)
- Fernanda Machado Castanho
- Centro de Ciências Biológicas, Programa de Pós-Graduação em Genética e Biologia Molecular, Londrina, PR, Brazil
| | | | - Valéria Yukari Abe
- Empresa Brasileira de Pesquisa e Agropecuária (Embrapa Soja), Laboratório de Biotecnologia Vegetal e Bioinformática, Londrina, PR, Brazil
| | - Alessandra Yokoyama
- Departamento de Bioquímica e Biotecnologia, Programa de Pós-Graduação em Biotecnologia, Londrina, PR, Brazil
| | | | - Liliane Santana Oliveira
- Empresa Brasileira de Pesquisa e Agropecuária (Embrapa Soja), Laboratório de Biotecnologia Vegetal e Bioinformática, Londrina, PR, Brazil
| | | | | | | | | | | |
Collapse
|
41
|
Ayala FM, Hernández-Sánchez IE, Chodasiewicz M, Wulff BBH, Svačina R. Engineering a One Health Super Wheat. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:193-215. [PMID: 38857542 DOI: 10.1146/annurev-phyto-121423-042128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Wheat is the predominant crop worldwide, contributing approximately 20% of protein and calories to the human diet. However, the yield potential of wheat faces limitations due to pests, diseases, and abiotic stresses. Although conventional breeding has improved desirable traits, the use of modern transgenesis technologies has been limited in wheat in comparison to other crops such as maize and soybean. Recent advances in wheat gene cloning and transformation technology now enable the development of a super wheat consistent with the One Health goals of sustainability, food security, and environmental stewardship. This variety combines traits to enhance pest and disease resistance, elevate grain nutritional value, and improve resilience to climate change. In this review, we explore ways to leverage current technologies to combine and transform useful traits into wheat. We also address the requirements of breeders and legal considerations such as patents and regulatory issues.
Collapse
Affiliation(s)
- Francisco M Ayala
- Bioceres Crop Solutions, Rosario, Santa Fe, Argentina
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; ,
| | - Itzell Eurídice Hernández-Sánchez
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; ,
| | - Monika Chodasiewicz
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; ,
| | - Brande B H Wulff
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; ,
| | - Radim Svačina
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; ,
| |
Collapse
|
42
|
Feng XY, Li Q, Liu Y, Zhang YM, Shao ZQ. Evolutionary and immune-activating character analyses of NLR genes in algae suggest the ancient origin of plant intracellular immune receptors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2316-2330. [PMID: 38972042 DOI: 10.1111/tpj.16919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/24/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024]
Abstract
Nucleotide-binding leucine-rich repeat (NLR) proteins are crucial intracellular immune receptors in plants, responsible for detecting invading pathogens and initiating defense responses. While previous studies on the evolution and function of NLR genes were mainly limited to land plants, the evolutionary trajectory and immune-activating character of NLR genes in algae remain less explored. In this study, genome-wide NLR gene analysis was conducted on 44 chlorophyte species across seven classes and seven charophyte species across five classes. A few but variable number of NLR genes, ranging from one to 20, were identified in five chlorophytes and three charophytes, whereas no NLR gene was identified from the remaining algal genomes. Compared with land plants, algal genomes possess fewer or usually no NLR genes, implying that the expansion of NLR genes in land plants can be attributed to their adaptation to the more complex terrestrial pathogen environments. Through phylogenetic analysis, domain composition analysis, and conserved motifs profiling of the NBS domain, we detected shared and lineage-specific features between NLR genes in algae and land plants, supporting the common origin and continuous evolution of green plant NLR genes. Immune-activation assays revealed that both TNL and RNL proteins from green algae can elicit hypersensitive responses in Nicotiana benthamiana, indicating the molecular basis for immune activation has emerged in the early evolutionary stage of different types of NLR proteins. In summary, the results from this study suggest that NLR proteins may have taken a role as intracellular immune receptors in the common ancestor of green plants.
Collapse
Affiliation(s)
- Xing-Yu Feng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Qian Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yan-Mei Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
43
|
Du Y, Liu G, Jia H, Liu Y, Tan Y, Wang S, Mu J, Yu J, Xue K, Zhang R, Gleason ML, Liang X, Sun G. Changes in planta K nutrient content altered the interaction pattern between Nicotiana benthamiana and Alternaria longipes. PLANT, CELL & ENVIRONMENT 2024; 47:3619-3637. [PMID: 38747645 DOI: 10.1111/pce.14956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/09/2024] [Accepted: 05/06/2024] [Indexed: 08/16/2024]
Abstract
Potassium (K) fertilisation has frequently been shown to enhance plant resistance against pathogens, though the mechanisms remain elusive. This study investigates the interaction dynamics between Nicotiana benthamiana and the pathogen Alternaria longipes under different planta K levels. On the host side, adding K activated the expressions of three NLR (nucleotide-binding domain and leucine-rich repeat-containing proteins) resistance genes, including NbRPM1, NbR1B23 and NbNBS12. Silencing these NLRs attenuated resistance in high-K (HK, 40.8 g/kg) plant, whereas their overexpression strengthened resistance in low-K (LK, 23.9 g/kg) plant. Typically, these NLRs mainly strengthened plant resistance via promoting the expression of pathogenesis-related genes (PRs), ROS burst and synthesis of antifungal metabolites in HK plant. On the pathogen side, the expression of effectors HKCSP1, HKCSP2 and LKCSP were shown to be related to planta K content. A. longipes mainly expressed effectors HKCSP1 and HKCSP2 in HK plant to interfere host resistance. HKCSP1 physically interacted with NbRPM1 to promote the degradation of NbRPM1, then attenuated related resistance in HK N. benthamiana. Meanwhile, HKCSP2 directly interacted with NbPR5 to suppress resistance in HK plant. In LK plant, A. longipes mainly deployed LKCSP that interacted with NbR1B23 to interfere reduce resistance in N. benthamiana. Overall, our research insights that both pathogen and host mobilise distinct strategies to outcompete each other during interactions in different K nutrient environments.
Collapse
Affiliation(s)
- Youwei Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Guangli Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongchen Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Tan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuanghong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Junxiang Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingbo Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Ke Xue
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Rong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Mark L Gleason
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Xiaofei Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Guangyu Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
44
|
Wang B, Chougule K, Jiao Y, Olson A, Kumar V, Gladman N, Huang J, Llaca V, Fengler K, Wei X, Wang L, Wang X, Regulski M, Drenkow J, Gingeras T, Hayes C, Armstrong J, Huang Y, Xin Z, Ware D. High-quality chromosome scale genome assemblies of two important Sorghum inbred lines, Tx2783 and RTx436. NAR Genom Bioinform 2024; 6:lqae097. [PMID: 39131819 PMCID: PMC11310780 DOI: 10.1093/nargab/lqae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 07/01/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
Sorghum bicolor (L.) Moench is a significant grass crop globally, known for its genetic diversity. High quality genome sequences are needed to capture the diversity. We constructed high-quality, chromosome-level genome assemblies for two vital sorghum inbred lines, Tx2783 and RTx436. Through advanced single-molecule techniques, long-read sequencing and optical maps, we improved average sequence continuity 19-fold and 11-fold higher compared to existing Btx623 v3.0 reference genome and obtained 19 and 18 scaffolds (N50 of 25.6 and 14.4) for Tx2783 and RTx436, respectively. Our gene annotation efforts resulted in 29 612 protein-coding genes for the Tx2783 genome and 29 265 protein-coding genes for the RTx436 genome. Comparative analyses with 26 plant genomes which included 18 sorghum genomes and 8 outgroup species identified around 31 210 protein-coding gene families, with about 13 956 specific to sorghum. Using representative models from gene trees across the 18 sorghum genomes, a total of 72 579 pan-genes were identified, with 14% core, 60% softcore and 26% shell genes. We identified 99 genes in Tx2783 and 107 genes in RTx436 that showed functional enrichment specifically in binding and metabolic processes, as revealed by the GO enrichment Pearson Chi-Square test. We detected 36 potential large inversions in the comparison between the BTx623 Bionano map and the BTx623 v3.1 reference sequence. Strikingly, these inversions were notably absent when comparing Tx2783 or RTx436 with the BTx623 Bionano map. These inversion were mostly in the pericentromeric region which is known to have low complexity regions and harder to assemble and suggests the presence of potential artifacts in the public BTx623 reference assembly. Furthermore, in comparison to Tx2783, RTx436 exhibited 324 883 additional Single Nucleotide Polymorphisms (SNPs) and 16 506 more Insertions/Deletions (INDELs) when using BTx623 as the reference genome. We also characterized approximately 348 nucleotide-binding leucine-rich repeat (NLR) disease resistance genes in the two genomes. These high-quality genomes serve as valuable resources for discovering agronomic traits and structural variation studies.
Collapse
Affiliation(s)
- Bo Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Yinping Jiao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Texas Tech University, 1006 Canton Ave, Lubbock, TX 79409-2122, USA
| | - Andrew Olson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Vivek Kumar
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Nicholas Gladman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- USDA ARS Robert W. Holley Center for Agriculture and Health Cornell University, Ithaca, NY, USA
| | - Jian Huang
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078-6028, USA
| | - Victor Llaca
- Corteva Agriscience™, 8325 NW 62nd Avenue, Johnston, IA 50131, USA
| | - Kevin Fengler
- Corteva Agriscience™, 8325 NW 62nd Avenue, Johnston, IA 50131, USA
| | - Xuehong Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Liya Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Xiaofei Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Jorg Drenkow
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Chad Hayes
- U.S. Department of Agriculture-Agricultural Research Service, Plant Stress and Germplasm Development Unit, Cropping Systems Research Laboratory, Lubbock, TX 79415, USA
| | - J Scott Armstrong
- Peanut and Small Grains Research Unit, 1301 N. Western Rd. Stillwater, OK 74075, USA
| | - Yinghua Huang
- USDA-ARS Plant Science Research Laboratory, 1301 N. Western Road, Stillwater, OK 74075-2714, USA
- Dept. of Plant Biology, Ecology, and Evolution, 301 Physical Sciences, Stillwater, OK 74078-3013, USA
| | - Zhanguo Xin
- U.S. Department of Agriculture-Agricultural Research Service, Plant Stress and Germplasm Development Unit, Cropping Systems Research Laboratory, Lubbock, TX 79415, USA
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- USDA ARS Robert W. Holley Center for Agriculture and Health Cornell University, Ithaca, NY, USA
| |
Collapse
|
45
|
Wang C, Zhu M, Hong H, Li J, Zuo C, Zhang Y, Shi Y, Liu S, Yu H, Yan Y, Chen J, Shangguan L, Zhi A, Chen R, Devendrakumar KT, Tao X. A viral effector blocks the turnover of a plant NLR receptor to trigger a robust immune response. EMBO J 2024; 43:3650-3676. [PMID: 39020150 PMCID: PMC11377725 DOI: 10.1038/s44318-024-00174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024] Open
Abstract
Plant intracellular nucleotide-binding and leucine-rich repeat immune receptors (NLRs) play a key role in activating a strong pathogen defense response. Plant NLR proteins are tightly regulated and accumulate at very low levels in the absence of pathogen effectors. However, little is known about how this low level of NLR proteins is able to induce robust immune responses upon recognition of pathogen effectors. Here, we report that, in the absence of effector, the inactive form of the tomato NLR Sw-5b is targeted for ubiquitination by the E3 ligase SBP1. Interaction of SBP1 with Sw-5b via only its N-terminal domain leads to slow turnover. In contrast, in its auto-active state, Sw-5b is rapidly turned over as SBP1 is upregulated and interacts with both its N-terminal and NB-LRR domains. During infection with the tomato spotted wilt virus, the viral effector NSm interacts with Sw-5b and disrupts the interaction of Sw-5b with SBP1, thereby stabilizing the active Sw-5b and allowing it to induce a robust immune response.
Collapse
Affiliation(s)
- Chunli Wang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Min Zhu
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Hao Hong
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Jia Li
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Chongkun Zuo
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yu Zhang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yajie Shi
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Suyu Liu
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Haohua Yu
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yuling Yan
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Jing Chen
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Lingna Shangguan
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Aiping Zhi
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Rongzhen Chen
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Karen Thulasi Devendrakumar
- Department of Botany and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xiaorong Tao
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| |
Collapse
|
46
|
Aoyagi LN, Ferreira EGC, da Silva DCG, Dos Santos AB, Avelino BB, Lopes-Caitar VS, de Oliveira MF, Abdelnoor RV, de Souto ER, Arias CA, Belzile F, Marcelino-Guimarães FC. Allelic variability in the Rpp1 locus conferring resistance to Asian soybean rust revealed by genome-wide association. BMC PLANT BIOLOGY 2024; 24:743. [PMID: 39095733 PMCID: PMC11297723 DOI: 10.1186/s12870-024-05454-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Soybean is a crucial crop for the Brazilian economy, but it faces challenges from the biotrophic fungus Phakopsora pachyrhizi, which causes Asian Soybean Rust (ASR). In this study, we aimed to identify SNPs associated with resistance within the Rpp1 locus, which is effective against Brazilian ASR populations. We employed GWAS and re-sequencing analyzes to pinpoint SNP markers capable of differentiating between soybean accessions harboring the Rpp1, Rpp1-b and other alternative alleles in the Rpp1 locus and from susceptible soybean cultivars. Seven SNP markers were found to be associated with ASR resistance through GWAS, with three of them defining haplotypes that efficiently distinguished the accessions based on their ASR resistance and source of the Rpp gene. These haplotypes were subsequently validated using a bi-parental population and a diverse set of Rpp sources, demonstrating that the GWAS markers co-segregate with ASR resistance. We then examined the presence of these haplotypes in a diverse set of soybean genomes worldwide, finding a few new potential sources of Rpp1/Rpp1-b. Further genomic sequence analysis revealed nucleotide differences within the genes present in the Rpp1 locus, including the ULP1-NBS-LRR genes, which are potential R gene candidates. These results provide valuable insights into ASR resistance in soybean, thus helping the development of resistant soybean varieties through genetic breeding programs.
Collapse
Affiliation(s)
- Luciano Nobuhiro Aoyagi
- National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
- Maringá State University (UEM), Colombo Avenue, No. 5790, Maringá, PR, Brazil
| | | | - Danielle C Gregorio da Silva
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil
| | - Adriana Brombini Dos Santos
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil
| | - Bruna Barbosa Avelino
- Department of Computer Science, Federal University of Technology of Paraná (UTFPR), Paraná, Brazil
| | | | - Marcelo Fernandes de Oliveira
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil
| | - Ricardo V Abdelnoor
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil
| | | | - Carlos Arrabal Arias
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil
| | - François Belzile
- Department of Plant Sciences and Institute of Integrative Biology and Systems (IBIS), Université Laval, Quebec City, Quebec, G1V 0A6, Canada
| | - Francismar C Marcelino-Guimarães
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil.
| |
Collapse
|
47
|
Schreiber M, Jayakodi M, Stein N, Mascher M. Plant pangenomes for crop improvement, biodiversity and evolution. Nat Rev Genet 2024; 25:563-577. [PMID: 38378816 PMCID: PMC7616794 DOI: 10.1038/s41576-024-00691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2023] [Indexed: 02/22/2024]
Abstract
Plant genome sequences catalogue genes and the genetic elements that regulate their expression. Such inventories further research aims as diverse as mapping the molecular basis of trait diversity in domesticated plants or inquiries into the origin of evolutionary innovations in flowering plants millions of years ago. The transformative technological progress of DNA sequencing in the past two decades has enabled researchers to sequence ever more genomes with greater ease. Pangenomes - complete sequences of multiple individuals of a species or higher taxonomic unit - have now entered the geneticists' toolkit. The genomes of crop plants and their wild relatives are being studied with translational applications in breeding in mind. But pangenomes are applicable also in ecological and evolutionary studies, as they help classify and monitor biodiversity across the tree of life, deepen our understanding of how plant species diverged and show how plants adapt to changing environments or new selection pressures exerted by human beings.
Collapse
Affiliation(s)
- Mona Schreiber
- Department of Biology, University of Marburg, Marburg, Germany
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| |
Collapse
|
48
|
Tian J, Tang Z, Niu R, Zhou Y, Yang D, Chen D, Luo M, Mou R, Yuan M, Xu G. Engineering disease-resistant plants with alternative translation efficiency by switching uORF types through CRISPR. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1715-1726. [PMID: 38679667 DOI: 10.1007/s11427-024-2588-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
Engineering disease-resistant plants can be a powerful solution to the issue of food security. However, it requires addressing two fundamental questions: what genes to express and how to control their expressions. To find a solution, we screen CRISPR-edited upstream open reading frame (uORF) variants in rice, aiming to optimize translational control of disease-related genes. By switching uORF types of the 5'-leader from Arabidopsis TBF1, we modulate the ribosome accessibility to the downstream firefly luciferase. We assume that by switching uORF types using CRISPR, we could generate uORF variants with alternative translation efficiency (CRISPR-aTrE-uORF). These variants, capable of boosting translation for resistance-associated genes and dampening it for susceptible ones, can help pinpoint previously unidentified genes with optimal expression levels. To test the assumption, we screened edited uORF variants and found that enhanced translational suppression of the plastic glutamine synthetase 2 can provide broad-spectrum disease resistance in rice with minimal fitness costs. This strategy, which involves modifying uORFs from none to some, or from some to none or different ones, demonstrates how translational agriculture can speed up the development of disease-resistant crops. This is vital for tackling the food security challenges we face due to growing populations and changing climates.
Collapse
Affiliation(s)
- Jingjing Tian
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhijuan Tang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Ruixia Niu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Yulu Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Dan Yang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Dan Chen
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Luo
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Rui Mou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
49
|
Roeschlin RA, Azad SM, Grove RP, Chuan A, García L, Niñoles R, Uviedo F, Villalobos L, Massimino ME, Marano MR, Boch J, Gadea J. Designer TALEs enable discovery of cell death-inducer genes. PLANT PHYSIOLOGY 2024; 195:2985-2996. [PMID: 38723194 PMCID: PMC11288752 DOI: 10.1093/plphys/kiae230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/26/2024] [Indexed: 08/02/2024]
Abstract
Transcription activator-like effectors (TALEs) in plant-pathogenic Xanthomonas bacteria activate expression of plant genes and support infection or cause a resistance response. PthA4AT is a TALE with a particularly short DNA-binding domain harboring only 7.5 repeats which triggers cell death in Nicotiana benthamiana; however, the genetic basis for this remains unknown. To identify possible target genes of PthA4AT that mediate cell death in N. benthamiana, we exploited the modularity of TALEs to stepwise enhance their specificity and reduce potential target sites. Substitutions of individual repeats suggested that PthA4AT-dependent cell death is sequence specific. Stepwise addition of repeats to the C-terminal or N-terminal end of the repeat region narrowed the sequence requirements in promoters of target genes. Transcriptome profiling and in silico target prediction allowed the isolation of two cell death inducer genes, which encode a patatin-like protein and a bifunctional monodehydroascorbate reductase/carbonic anhydrase protein. These two proteins are not linked to known TALE-dependent resistance genes. Our results show that the aberrant expression of different endogenous plant genes can cause a cell death reaction, which supports the hypothesis that TALE-dependent executor resistance genes can originate from various plant processes. Our strategy further demonstrates the use of TALEs to scan genomes for genes triggering cell death and other relevant phenotypes.
Collapse
Affiliation(s)
- Roxana A Roeschlin
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/n, S2002LRK, Rosario, Argentina
| | - Sepideh M Azad
- Instituto de Biología Molecular y celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Ingeniero Fausto Elio S/N., 46022, Valencia, España
| | - René P Grove
- Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Ana Chuan
- Instituto de Biología Molecular y celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Ingeniero Fausto Elio S/N., 46022, Valencia, España
| | - Lucila García
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/n, S2002LRK, Rosario, Argentina
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 590, S2002LRK, Rosario, Argentina
| | - Regina Niñoles
- Instituto de Biología Molecular y celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Ingeniero Fausto Elio S/N., 46022, Valencia, España
| | - Facundo Uviedo
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/n, S2002LRK, Rosario, Argentina
| | - Liara Villalobos
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/n, S2002LRK, Rosario, Argentina
| | - Maria E Massimino
- Instituto de Biología Molecular y celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Ingeniero Fausto Elio S/N., 46022, Valencia, España
| | - María R Marano
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/n, S2002LRK, Rosario, Argentina
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 590, S2002LRK, Rosario, Argentina
| | - Jens Boch
- Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - José Gadea
- Instituto de Biología Molecular y celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Ingeniero Fausto Elio S/N., 46022, Valencia, España
| |
Collapse
|
50
|
Botkin JR, Curtin SJ. Transcriptome analysis of resistant and susceptible Medicago truncatula genotypes in response to spring black stem and leaf spot disease. BMC PLANT BIOLOGY 2024; 24:720. [PMID: 39075348 PMCID: PMC11285230 DOI: 10.1186/s12870-024-05444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Ascochyta blights cause yield losses in all major legume crops. Spring black stem (SBS) and leaf spot disease is a major foliar disease of Medicago truncatula and Medicago sativa (alfalfa) caused by the necrotrophic fungus Ascochyta medicaginicola. This present study sought to identify candidate genes for SBS disease resistance for future functional validation. We employed RNA-seq to profile the transcriptomes of a resistant (HM078) and susceptible (A17) genotype of M. truncatula at 24, 48, and 72 h post inoculation. Preliminary microscopic examination showed reduced pathogen growth on the resistant genotype. In total, 192 and 2,908 differentially expressed genes (DEGs) were observed in the resistant and susceptible genotype, respectively. Functional enrichment analysis revealed the susceptible genotype engaged in processes in the cell periphery and plasma membrane, as well as flavonoid biosynthesis whereas the resistant genotype utilized calcium ion binding, cell wall modifications, and external encapsulating structures. Candidate genes for disease resistance were selected based on the following criteria; among the top ten upregulated or downregulated genes in the resistant genotype, upregulated over time in the resistant genotype, hormone pathway genes, plant disease resistance genes, receptor-like kinases, contrasting expression profiles in QTL for disease resistance, and upregulated genes in enriched pathways. Overall, 22 candidate genes for SBS disease resistance were identified with support from the literature. These genes will be sources for future targeted mutagenesis and candidate gene validation potentially helping to improve disease resistance to this devastating foliar pathogen.
Collapse
Affiliation(s)
- Jacob R Botkin
- Plant Science Research Unit, United States Department of Agriculture, St Paul, MN, 55108, USA
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Shaun J Curtin
- Plant Science Research Unit, United States Department of Agriculture, St Paul, MN, 55108, USA.
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA.
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA.
- Center for Plant Precision Genomics, University of Minnesota, St. Paul, MN, 55108, USA.
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|