1
|
Liao H, Feng B, Wen M, Du C, Zhong X, Lu Q, Gong G, Mo J, Huang H, Zhang S, Huang R. The transcription factors PIF4 and PIF5 interact with WRINKLED1 to modulate fatty acid biosynthesis during seed maturation. PLANT PHYSIOLOGY 2025; 197:kiaf141. [PMID: 40208194 DOI: 10.1093/plphys/kiaf141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 02/18/2025] [Indexed: 04/11/2025]
Abstract
PHYTOCHROME-INTERACTING FACTORS (PIFs), members of the basic helix-loop-helix (bHLH) transcription factor (TF) family, regulate various developmental processes in Arabidopsis (Arabidopsis thaliana). However, their involvement in fatty acid biosynthesis and seed maturation is largely unknown. WRINKLED1 (WRI1) is a pivotal TF regulating plant fatty acid biosynthesis. In this study, we identified WRI1 as an interacting partner of PIF4 and PIF5. PIF4 and PIF5, similar to WRI1, are expressed during seed maturation. Over-expressing PIF4 or PIF5 triggers increased seed fatty acid biosynthesis, while loss-of-function pif4 and pif5 mutants exhibit reduced seed fatty acid biosynthesis and delayed seed maturation. Further analysis revealed that PIF4 and PIF5 promote WRI1-dependent expression of fatty acid biosynthesis genes. Together, our findings suggest that PIF4 and PIF5 interact with WRI1, thereby promoting fatty acid biosynthesis gene expression and increasing fatty acid biosynthesis. This study reports a previously uncharacterized regulatory mechanism that fine-tunes seed fatty acid biosynthesis and seed maturation.
Collapse
Affiliation(s)
- Huimei Liao
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Bojing Feng
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Mengrui Wen
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Chang Du
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaoqing Zhong
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qiuchan Lu
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Guanping Gong
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jianhai Mo
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Huizi Huang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shengchun Zhang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ruihua Huang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
2
|
Han X, Peng Y, Yin S, Zhao H, Zong Z, Tan Z, Zhang Y, Ma W, Guo L. Transcriptional regulation of transcription factor genes WRI1 and LAFL during Brassica napus seed development. PLANT PHYSIOLOGY 2025; 197:kiae378. [PMID: 39041422 DOI: 10.1093/plphys/kiae378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/24/2024]
Abstract
The WRINKLED1 (WRI1) and LAFL (LEAFY COTYLEDON1 [LEC1], ABSCISIC ACID INSENSITIVE3 [ABI3], FUSCA3 [FUS3], and LEC2) transcription factors play essential roles in governing seed development and oil biosynthesis. To gain a comprehensive understanding of the transcriptional regulation of WRI1 and LAFL, we conducted genome-wide association studies for the expression profiles of WRI1 and LAFL in developing seeds at 20 and 40 days after flowering (DAF) using 302 rapeseed (Brassica napus) accessions. We identified a total of 237 expression quantitative trait nucleotides (eQTNs) and 51 expression QTN-by-environment interactions (eQEIs) associated with WRI1 and LAFL. Around these eQTNs and eQEIs, we pinpointed 41 and 8 candidate genes with known transcriptional regulations or protein interactions with their expression traits, respectively. Based on RNA-sequencing and assay for transposase-accessible chromatin with high-throughput sequencing data, we employed the Extreme Gradient Boosting and Basenji models which predicted 15 candidate genes potentially regulating the expression of WRI1 and LAFL. We further validated the predictions via tissue expression profile, haplotype analysis, and expression correlation analysis and verified the transcriptional activation activity of BnaC03.MYB56 (R2R3-MYB transcription factor 56) on the expression of BnaA09.LEC1 by dual-luciferase reporter and yeast 1-hybrid assays. BnaA10.AGL15 (AGAMOUS-LIKE 15), BnaC04.VAL1 (VIVIPAROUS1/ABSCISIC ACID INSENSITIVE3-LIKE 1), BnaC03.MYB56, and BnaA10.MYB56 were coexpressed with WRI1 and LAFL at 20 DAF in M35, a key module for seed development and oil biosynthesis. We further validated the positive regulation of MYB56 on seed oil accumulation using Arabidopsis (Arabidopsis thaliana) mutants. This study not only delivers a framework for future eQEI identification but also offers insights into the developmental regulation of seed oil accumulation.
Collapse
Affiliation(s)
- Xu Han
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Sijie Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhanxiang Zong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zengdong Tan
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Yuting Zhang
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Yazhouwan National Laboratory, Sanya 572025, China
| |
Collapse
|
3
|
Kaushal C, Sachdev M, Parekh M, Gowrishankar H, Jain M, Sankaranarayanan S, Pathak B. Transcriptional engineering for value enhancement of oilseed crops: a forward perspective. Front Genome Ed 2025; 6:1488024. [PMID: 39840374 PMCID: PMC11747156 DOI: 10.3389/fgeed.2024.1488024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Plant-derived oils provide 20%-35% of dietary calories and are a primary source of essential omega-6 (linoleic) and omega-3 (α-linolenic) fatty acids. While traditional breeding has significantly increased yields in key oilseed crops like soybean, sunflower, canola, peanut, and cottonseed, overall gains have plateaued over the past few decades. Oilseed crops also experience substantial yield losses in both prime and marginal agricultural areas due to biotic and abiotic stresses and shifting agro-climates. Recent genomic, transcriptomic, and metabolomics research has expanded our understanding of the genetic and physiological control of fatty acid biosynthesis and composition. Many oilseed species have inherent stress-combating mechanisms, including transcription factor regulation. Advances in genome editing tools like CRISPR/Cas9 offer precise genetic modifications, targeting transcription factors and binding sites to enhance desirable traits, such as the nutritional profile and chemical composition of fatty acids. This review explores the application of genome editing in oilseed improvement, covering recent progress, challenges, and future potential to boost yield and oil content. These advancements could play a transformative role in developing resilient, nutritious crop varieties essential for sustainable food security in a changing climate.
Collapse
Affiliation(s)
- Charli Kaushal
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Mahak Sachdev
- Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Mansi Parekh
- Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Harini Gowrishankar
- Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Mukesh Jain
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Subramanian Sankaranarayanan
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Bhuvan Pathak
- Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| |
Collapse
|
4
|
Liang Z, Zhu T, Yu Y, Wu C, Huang Y, Hao Y, Song X, Fu W, Yuan L, Cui Y, Huang S, Li C. PICKLE-mediated nucleosome condensing drives H3K27me3 spreading for the inheritance of Polycomb memory during differentiation. Mol Cell 2024; 84:3438-3454.e8. [PMID: 39232583 DOI: 10.1016/j.molcel.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/19/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Spreading of H3K27me3 is crucial for the maintenance of mitotically inheritable Polycomb-mediated chromatin silencing in animals and plants. However, how Polycomb repressive complex 2 (PRC2) accesses unmodified nucleosomes in spreading regions for spreading H3K27me3 remains unclear. Here, we show in Arabidopsis thaliana that the chromatin remodeler PICKLE (PKL) plays a specialized role in H3K27me3 spreading to safeguard cell identity during differentiation. PKL specifically localizes to H3K27me3 spreading regions but not to nucleation sites and physically associates with PRC2. Loss of PKL disrupts the occupancy of the PRC2 catalytic subunit CLF in spreading regions and leads to aberrant dedifferentiation. Nucleosome density increase endowed by the ATPase function of PKL ensures that unmodified nucleosomes are accessible to PRC2 catalytic activity for H3K27me3 spreading. Our findings demonstrate that PKL-dependent nucleosome compaction is critical for PRC2-mediated H3K27me3 read-and-write function in H3K27me3 spreading, thus revealing a mechanism by which repressive chromatin domains are established and propagated.
Collapse
Affiliation(s)
- Zhenwei Liang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tao Zhu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yaoguang Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Caihong Wu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yisui Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuanhao Hao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xin Song
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wei Fu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liangbing Yuan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuhai Cui
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Shangzhi Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chenlong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
5
|
Go D, Lu B, Alizadeh M, Gazzarrini S, Song L. Voice from both sides: a molecular dialogue between transcriptional activators and repressors in seed-to-seedling transition and crop adaptation. FRONTIERS IN PLANT SCIENCE 2024; 15:1416216. [PMID: 39166233 PMCID: PMC11333834 DOI: 10.3389/fpls.2024.1416216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/20/2024] [Indexed: 08/22/2024]
Abstract
High-quality seeds provide valuable nutrients to human society and ensure successful seedling establishment. During maturation, seeds accumulate storage compounds that are required to sustain seedling growth during germination. This review focuses on the epigenetic repression of the embryonic and seed maturation programs in seedlings. We begin with an extensive overview of mutants affecting these processes, illustrating the roles of core proteins and accessory components in the epigenetic machinery by comparing mutants at both phenotypic and molecular levels. We highlight how omics assays help uncover target-specific functional specialization and coordination among various epigenetic mechanisms. Furthermore, we provide an in-depth discussion on the Seed dormancy 4 (Sdr4) transcriptional corepressor family, comparing and contrasting their regulation of seed germination in the dicotyledonous species Arabidopsis and two monocotyledonous crops, rice and wheat. Finally, we compare the similarities in the activation and repression of the embryonic and seed maturation programs through a shared set of cis-regulatory elements and discuss the challenges in applying knowledge largely gained in model species to crops.
Collapse
Affiliation(s)
- Dongeun Go
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Bailan Lu
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Milad Alizadeh
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Sonia Gazzarrini
- Department of Biological Science, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Adhikari PB, Kasahara RD. An Overview on MADS Box Members in Plants: A Meta-Review. Int J Mol Sci 2024; 25:8233. [PMID: 39125803 PMCID: PMC11311456 DOI: 10.3390/ijms25158233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Most of the studied MADS box members are linked to flowering and fruit traits. However, higher volumes of studies on type II of the two types so far suggest that the florigenic effect of the gene members could just be the tip of the iceberg. In the current study, we used a systematic approach to obtain a general overview of the MADS box members' cross-trait and multifactor associations, and their pleiotropic potentials, based on a manually curated local reference database. While doing so, we screened for the co-occurrence of terms of interest within the title or abstract of each reference, with a threshold of three hits. The analysis results showed that our approach can retrieve multi-faceted information on the subject of study (MADS box gene members in the current case), which could otherwise have been skewed depending on the authors' expertise and/or volume of the literature reference base. Overall, our study discusses the roles of MADS box members in association with plant organs and trait-linked factors among plant species. Our assessment showed that plants with most of the MADS box member studies included tomato, apple, and rice after Arabidopsis. Furthermore, based on the degree of their multi-trait associations, FLC, SVP, and SOC1 are suggested to have relatively higher pleiotropic potential among others in plant growth, development, and flowering processes. The approach devised in this study is expected to be applicable for a basic understanding of any study subject of interest, regardless of the depth of prior knowledge.
Collapse
Affiliation(s)
- Prakash Babu Adhikari
- Biotechnology and Bioscience Research Center, Nagoya University, Nagoya 464-8601, Japan
| | | |
Collapse
|
7
|
Gazzarrini S, Song L. LAFL Factors in Seed Development and Phase Transitions. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:459-488. [PMID: 38657282 DOI: 10.1146/annurev-arplant-070623-111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Development is a chain reaction in which one event leads to another until the completion of a life cycle. Phase transitions are milestone events in the cycle of life. LEAFY COTYLEDON1 (LEC1), ABA INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEC2 proteins, collectively known as LAFL, are master transcription factors (TFs) regulating seed and other developmental processes. Since the initial characterization of the LAFL genes, more than three decades of active research has generated tremendous amounts of knowledge about these TFs, whose roles in seed development and germination have been comprehensively reviewed. Recent advances in cell biology with genetic and genomic tools have allowed the characterization of the LAFL regulatory networks in previously challenging tissues at a higher throughput and resolution in reference species and crops. In this review, we provide a holistic perspective by integrating advances at the epigenetic, transcriptional, posttranscriptional, and protein levels to exemplify the spatiotemporal regulation of the LAFL networks in Arabidopsis seed development and phase transitions, and we briefly discuss the evolution of these TF networks.
Collapse
Affiliation(s)
- Sonia Gazzarrini
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada;
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada;
| |
Collapse
|
8
|
Yuan HY, Kagale S, Ferrie AMR. Multifaceted roles of transcription factors during plant embryogenesis. FRONTIERS IN PLANT SCIENCE 2024; 14:1322728. [PMID: 38235196 PMCID: PMC10791896 DOI: 10.3389/fpls.2023.1322728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Transcription factors (TFs) are diverse groups of regulatory proteins. Through their specific binding domains, TFs bind to their target genes and regulate their expression, therefore TFs play important roles in various growth and developmental processes. Plant embryogenesis is a highly regulated and intricate process during which embryos arise from various sources and undergo development; it can be further divided into zygotic embryogenesis (ZE) and somatic embryogenesis (SE). TFs play a crucial role in the process of plant embryogenesis with a number of them acting as master regulators in both ZE and SE. In this review, we focus on the master TFs involved in embryogenesis such as BABY BOOM (BBM) from the APETALA2/Ethylene-Responsive Factor (AP2/ERF) family, WUSCHEL and WUSCHEL-related homeobox (WOX) from the homeobox family, LEAFY COTYLEDON 2 (LEC2) from the B3 family, AGAMOUS-Like 15 (AGL15) from the MADS family and LEAFY COTYLEDON 1 (LEC1) from the Nuclear Factor Y (NF-Y) family. We aim to present the recent progress pertaining to the diverse roles these master TFs play in both ZE and SE in Arabidopsis, as well as other plant species including crops. We also discuss future perspectives in this context.
Collapse
Affiliation(s)
| | | | - Alison M. R. Ferrie
- Aquatic and Crop Resource Development Research Center, National Research Council Canada, Saskatoon, SK, Canada
| |
Collapse
|
9
|
Bu M, Fan W, Li R, He B, Cui P. Lipid Metabolism and Improvement in Oilseed Crops: Recent Advances in Multi-Omics Studies. Metabolites 2023; 13:1170. [PMID: 38132852 PMCID: PMC10744971 DOI: 10.3390/metabo13121170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Oilseed crops are rich in plant lipids that not only provide essential fatty acids for the human diet but also play important roles as major sources of biofuels and indispensable raw materials for the chemical industry. The regulation of lipid metabolism genes is a major factor affecting oil production. In this review, we systematically summarize the metabolic pathways related to lipid production and storage in plants and highlight key research advances in characterizing the genes and regulatory factors influencing lipid anabolic metabolism. In addition, we integrate the latest results from multi-omics studies on lipid metabolism to provide a reference to better understand the molecular mechanisms underlying oil anabolism in oilseed crops.
Collapse
Affiliation(s)
- Mengjia Bu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Fan
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Ruonan Li
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Bing He
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Peng Cui
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| |
Collapse
|
10
|
Zhai Z, Blanford JK, Cai Y, Sun J, Liu H, Shi H, Schwender J, Shanklin J. CYCLIN-DEPENDENT KINASE 8 positively regulates oil synthesis by activating WRINKLED1 transcription. THE NEW PHYTOLOGIST 2023; 238:724-736. [PMID: 36683527 DOI: 10.1111/nph.18764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
CYCLIN-DEPENDENT KINASE 8 (CDK8), a component of the kinase module of the Mediator complex in Arabidopsis, is involved in many processes, including flowering, plant defense, drought, and energy stress responses. Here, we investigated cdk8 mutants and CDK8-overexpressing lines to evaluate whether CDK8 also plays a role in regulating lipid synthesis, an energy-demanding anabolism. Quantitative lipid analysis demonstrated significant reductions in lipid synthesis rates and lipid accumulation in developing siliques and seedlings of cdk8, and conversely, elevated lipid contents in wild-type seed overexpressing CDK8. Transactivation assays show that CDK8 is necessary for maximal transactivation of the master seed oil activator WRINKLED1 (WRI1) by the seed maturation transcription factor ABSCISIC ACID INSENSITIVE3, supporting a direct regulatory role of CDK8 in oil synthesis. Thermophoretic studies show GEMINIVIRUS REP INTERACTING KINASE1, an activating kinase of KIN10 (a catalytic subunit of SUCROSE NON-FERMENTING1-RELATED KINASE1), physically interacts with CDK8, resulting in its phosphorylation and degradation in the presence of KIN10. This work defines a mechanism whereby, once activated, KIN10 downregulates WRI1 expression and suppresses lipid synthesis via promoting the degradation of CDK8. The KIN10-CDK8-dependent regulation of lipid synthesis described herein is additional to our previously reported KIN10-dependent phosphorylation and degradation of WRI1.
Collapse
Affiliation(s)
- Zhiyang Zhai
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - Jantana K Blanford
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - Yingqi Cai
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - Jing Sun
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - Hui Liu
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - Hai Shi
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - Jorg Schwender
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - John Shanklin
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| |
Collapse
|
11
|
Pan J, Zhang H, Zhan Z, Zhao T, Jiang D. A REF6-dependent H3K27me3-depleted state facilitates gene activation during germination in Arabidopsis. J Genet Genomics 2023; 50:178-191. [PMID: 36113770 DOI: 10.1016/j.jgg.2022.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
Seed germination is a critical developmental switch from a quiescent state to active growth, which involves extensive changes in metabolism, gene expression, and cellular identity. However, our understanding of epigenetic and transcriptional reprogramming during this process is limited. The histone H3 lysine 27 trimethylation (H3K27me3) plays a key role in regulating gene repression and cell fate specification. Here, we profile H3K27me3 dynamics and dissect the function of H3K27 demethylation during germination in Arabidopsis. Our temporal genome-wide profiling of H3K27me3 and transcription reveals delayed H3K27me3 reprogramming compared with transcriptomic changes during germination, with H3K27me3 changes mainly occurring when the embryo is entering into vegetative development. RELATIVE OF EARLY FLOWERING 6 (REF6)-mediated H3K27 demethylation is necessary for robust germination but does not significantly contribute to H3K27me3 dynamics during germination, but rather stably establishes an H3K27me3-depleted state that facilitates the activation of hormone-related and expansin-coding genes important for germination. We also show that the REF6 chromatin occupancy is gradually established during germination to counteract increased Polycomb repressive complex 2 (PRC2). Our study provides key insights into the H3K27me3 dynamics during germination and suggests the function of H3K27me3 in facilitating cell fate switch. Furthermore, we reveal the importance of H3K27 demethylation-established transcriptional competence in gene activation during germination and likely other developmental processes.
Collapse
Affiliation(s)
- Jie Pan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huairen Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenping Zhan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Danhua Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Genome-Wide Analysis of the Molecular Functions of B3 Superfamily in Oil Biosynthesis in Olive ( Olea europaea L.). BIOMED RESEARCH INTERNATIONAL 2023; 2023:6051511. [PMID: 36825035 PMCID: PMC9943606 DOI: 10.1155/2023/6051511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/14/2022] [Accepted: 01/19/2023] [Indexed: 02/16/2023]
Abstract
The plant B3 gene superfamily contains a large number of transcription factors playing a vital role in both vegetative growth and reproductive development in plants. Although several B3 genes have been well studied, molecular functions of the B3 genes in olive are largely unknown. In our study, a total of 200 B3 genes were identified in olive genome based on RNA-seq and comparative genomic analyses and further classified into five groups (i.e., REM, RAV, LAV, HSI, and ARF) based on phylogenetic analysis. Results of gene structure and motif composition analyses revealed diversified functions among these five groups of B3 genes. Results of genomic duplication and syntenic analyses indicated the gene expansion in the B3 genes. Results of gene expression based on both transcriptomics and relative expression revealed the tissue-biased expression patterns in B3 genes. The results of the comparative expression analysis of B3 genes between two olive cultivars with high and low oil contents identified several potential REM genes which may be involved in oil biosynthesis in olive. Based on the comprehensive characterization of the molecular structures and functions of B3 genes in olive genome, our study provided novel insights into the potential roles of B3 transcription factors in oil biosynthesis in olive and lays the groundwork for the functional explorations into this research field.
Collapse
|
13
|
Gao Z, Zhou Y, He Y. Molecular epigenetic mechanisms for the memory of temperature stresses in plants. J Genet Genomics 2022; 49:991-1001. [PMID: 35870761 DOI: 10.1016/j.jgg.2022.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 12/29/2022]
Abstract
The sessile plants encounter various stresses; some are prolonged, whereas some others are recurrent. Temperature is crucial for plant growth and development, and plants often encounter adverse high temperature fluctuations (heat stresses) as well as prolonged cold exposure such as seasonal temperature drops in winter when grown in temperate regions. Many plants can remember past temperature stresses to get adapted to adverse local temperature changes to ensure survival and/or reproductive success. Here, we summarize chromatin-based mechanisms underlying acquired thermotolerance or thermomemory in plants and review recent progresses on molecular epigenetic understanding of 'remembering of prolonged cold in winter' or vernalization, a process critical for various over-wintering plants to acquire competence to flower in the coming spring. In addition, perspectives on future study in temperature stress memories of economically-important crops are discussed.
Collapse
Affiliation(s)
- Zhaoxu Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yue Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuehui He
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261325, China.
| |
Collapse
|
14
|
Liang Z, Yuan L, Xiong X, Hao Y, Song X, Zhu T, Yu Y, Fu W, Lei Y, Xu J, Liu J, Li JF, Li C. The transcriptional repressors VAL1 and VAL2 mediate genome-wide recruitment of the CHD3 chromatin remodeler PICKLE in Arabidopsis. THE PLANT CELL 2022; 34:3915-3935. [PMID: 35866997 PMCID: PMC9516181 DOI: 10.1093/plcell/koac217] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/19/2022] [Indexed: 05/30/2023]
Abstract
PICKLE (PKL) is a chromodomain helicase DNA-binding domain 3 (CHD3) chromatin remodeler that plays essential roles in controlling the gene expression patterns that determine developmental identity in plants, but the molecular mechanisms through which PKL is recruited to its target genes remain elusive. Here, we define a cis-motif and trans-acting factors mechanism that governs the genomic occupancy profile of PKL in Arabidopsis thaliana. We show that two homologous trans-factors VIVIPAROUS1/ABI3-LIKE1 (VAL1) and VAL2 physically interact with PKL in vivo, localize extensively to PKL-occupied regions in the genome, and promote efficient PKL recruitment at thousands of target genes, including those involved in seed maturation. Transcriptome analysis and genetic interaction studies reveal a close cooperation of VAL1/VAL2 and PKL in regulating gene expression and developmental fate. We demonstrate that this recruitment operates at two master regulatory genes, ABSCISIC ACID INSENSITIVE3 and AGAMOUS-LIKE 15, to repress the seed maturation program and ensure the seed-to-seedling transition. Together, our work unveils a general rule through which the CHD3 chromatin remodeler PKL binds to its target chromatin in plants.
Collapse
Affiliation(s)
- Zhenwei Liang
- School of Life Sciences, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liangbing Yuan
- School of Life Sciences, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, Sun Yat-Sen University, Guangzhou 510275, China
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Xiangyu Xiong
- School of Life Sciences, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuanhao Hao
- School of Life Sciences, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xin Song
- School of Life Sciences, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tao Zhu
- School of Life Sciences, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yaoguang Yu
- School of Life Sciences, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wei Fu
- School of Life Sciences, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yawen Lei
- School of Life Sciences, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jianqu Xu
- School of Life Sciences, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jun Liu
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jian-Feng Li
- School of Life Sciences, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, Sun Yat-Sen University, Guangzhou 510275, China
| | | |
Collapse
|
15
|
Yang Y, Kong Q, Lim ARQ, Lu S, Zhao H, Guo L, Yuan L, Ma W. Transcriptional regulation of oil biosynthesis in seed plants: Current understanding, applications, and perspectives. PLANT COMMUNICATIONS 2022; 3:100328. [PMID: 35605194 PMCID: PMC9482985 DOI: 10.1016/j.xplc.2022.100328] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/28/2022] [Accepted: 04/14/2022] [Indexed: 05/11/2023]
Abstract
Plants produce and accumulate triacylglycerol (TAG) in their seeds as an energy reservoir to support the processes of seed germination and seedling development. Plant seed oils are vital not only for the human diet but also as renewable feedstocks for industrial use. TAG biosynthesis consists of two major steps: de novo fatty acid biosynthesis in the plastids and TAG assembly in the endoplasmic reticulum. The latest advances in unraveling transcriptional regulation have shed light on the molecular mechanisms of plant oil biosynthesis. We summarize recent progress in understanding the regulatory mechanisms of well-characterized and newly discovered transcription factors and other types of regulators that control plant fatty acid biosynthesis. The emerging picture shows that plant oil biosynthesis responds to developmental and environmental cues that stimulate a network of interacting transcriptional activators and repressors, which in turn fine-tune the spatiotemporal regulation of the pathway genes.
Collapse
Affiliation(s)
- Yuzhou Yang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Que Kong
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Audrey R Q Lim
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| |
Collapse
|
16
|
Interaction Analysis between the Arabidopsis Transcription Repressor VAL1 and Transcription Coregulators SIN3-LIKEs (SNLs). Int J Mol Sci 2022; 23:ijms23136987. [PMID: 35805982 PMCID: PMC9266683 DOI: 10.3390/ijms23136987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 01/19/2023] Open
Abstract
VIVIPAROUS1/ABSCISIC ACID INSENSITIVE3-LIKE1 (VAL1) encodes a DNA-binding B3 domain protein and plays essential roles in seed maturation and flowering transition by repressing genes through epigenetic silencing in Arabidopsis. SWI-INDEPENDENT3 (SIN3)-LIKEs (SNLs), which encode scaffold proteins for the assembly of histone deacetylase complexes and have six SIN3 homologues (SNL1–SNL6) in Arabidopsis thaliana, directly repress gene expression to regulate seed maturation and flowering transition. However, it remains unclear whether VAL1 and SNLs work together in repressing the expression of related genes. In this study, yeast two-hybrid and firefly luciferase complementation imaging assays revealed that VAL1 interacts with SNLs, which can be attributed to its own zinc-finger CW (conserved Cys (C) and Trp (W) residues) domain and the PAH (Paired Amphipathic Helices) domains of SNLs. Furthermore, pull-down experiments confirmed that the CW domain of VAL1 interacts with both intact protein and the PAH domains of SNLs proteins, and the co-immunoprecipitation assays also confirmed the interaction between VAL1 and SNLs. In addition, quantitative real-time PCR (qRT-PCR) analysis showed that VAL1 and SNLs were expressed in seedlings, and transient expression assays showed that VAL1 and SNLs were localized in the nucleus. Considered together, these results reveal that VAL1 physically interacts with SNLs both in vitro and in vivo, and suggest that VAL1 and SNLs may work together to repress the expression of genes related to seed maturation and flowering transition in Arabidopsis.
Collapse
|
17
|
Kim DH, Lee SW, Moon H, Choi D, Kim S, Kang H, Kim J, Choi G, Huq E. ABI3- and PIF1-mediated regulation of GIG1 enhances seed germination by detoxification of methylglyoxal in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1578-1591. [PMID: 35365944 DOI: 10.1111/tpj.15755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/22/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Methylglyoxal (MG) is a toxic by-product of the glycolysis pathway in most living organisms and was previously shown to inhibit seed germination. MG is detoxified by glyoxalase I and II family proteins in plants. MG is abundantly produced during early embryogenesis in Arabidopsis seeds. However, the mechanism that alleviates the toxic effect of MG in maturing seeds is poorly understood. In this study, by T-DNA mutant population screening, we found that mutations in a glyoxalase I gene (named GERMINATION-IMPAIRED GLYOXALASE 1, GIG1) led to significantly impaired germination compared with wild-type seeds. Transformation of full-length GIG1 cDNA under the constitutively active cauliflower mosaic virus 35S promoter in the gig1 background completely recovered the seed germination phenotype. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analyses revealed that GIG1 is uniquely expressed in seeds and is upregulated by abscisic acid (ABA) and downregulated by gibberellic acid (GA) during seed germination. An ABA signaling component, ABI3, directly activated GIG1 in maturing seeds. In addition, PHYTOCHROME INTERACTING FACTOR 1 (PIF1) also plays cooperatively with ABI3 in the regulation of GIG1 expression in the early stage of imbibed seeds. Furthermore, GIG1 expression is stably silenced by epigenetic repressors such as polycomb repressor complexes. Altogether, our results indicate that light and ABA signaling cooperate to enhance seed germination by the upregulation of GIG1 to detoxify MG in maturing seeds.
Collapse
Affiliation(s)
- Dong-Hwan Kim
- Department of Plant Science and Technology, College of Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Woo Lee
- Department of Plant Science and Technology, College of Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heewon Moon
- Department of Plant Science and Technology, College of Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Dasom Choi
- Department of Plant Science and Technology, College of Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Sujeong Kim
- Department of Plant Science and Technology, College of Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hajeong Kang
- Department of Plant Science and Technology, College of Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Jungtae Kim
- Department of Plant Science and Technology, College of Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Enamul Huq
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
18
|
Xu G, Tao Z, He Y. Embryonic reactivation of FLOWERING LOCUS C by ABSCISIC ACID-INSENSITIVE 3 establishes the vernalization requirement in each Arabidopsis generation. THE PLANT CELL 2022; 34:2205-2221. [PMID: 35234936 PMCID: PMC9134069 DOI: 10.1093/plcell/koac077] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Many over-wintering plants grown in temperate climate acquire competence to flower upon prolonged cold exposure in winter, through vernalization. In Arabidopsis thaliana, prolonged cold exposure induces the silencing of the potent floral repressor FLOWERING LOCUS C (FLC) through repressive chromatin modifications by Polycomb proteins. This repression is maintained to enable flowering after return to warmth, but is reset during seed development. Here, we show that embryonic FLC reactivation occurs in two phases: resetting of cold-induced FLC silencing during embryogenesis and further FLC activation during embryo maturation. We found that the B3 transcription factor (TF) ABSCISIC ACID-INSENSITIVE 3 (ABI3) mediates both FLC resetting in embryogenesis and further activation of FLC expression in embryo maturation. ABI3 binds to the cis-acting cold memory element at FLC and recruits a scaffold protein with active chromatin modifiers to reset FLC chromatin into an active state in late embryogenesis. Moreover, in response to abscisic acid (ABA) accumulation during embryo maturation, ABI3, together with the basic leucine zipper TF ABI5, binds to an ABA-responsive cis-element to further activate FLC expression to high level. Therefore, we have uncovered the molecular circuitries underlying embryonic FLC reactivation following parental vernalization, which ensures that each generation must experience winter cold prior to flowering.
Collapse
|
19
|
Nam JW, Lee HG, Do H, Kim HU, Seo PJ. Transcriptional regulation of triacylglycerol accumulation in plants under environmental stress conditions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2905-2917. [PMID: 35560201 DOI: 10.1093/jxb/erab554] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/15/2021] [Indexed: 06/15/2023]
Abstract
Triacylglycerol (TAG), a major energy reserve in lipid form, accumulates mainly in seeds. Although TAG concentrations are usually low in vegetative tissues because of the repression of seed maturation programs, these programs are derepressed upon the exposure of vegetative tissues to environmental stresses. Metabolic reprogramming of TAG accumulation is driven primarily by transcriptional regulation. A substantial proportion of transcription factors regulating seed TAG biosynthesis also participates in stress-induced TAG accumulation in vegetative tissues. TAG accumulation leads to the formation of lipid droplets and plastoglobules, which play important roles in plant tolerance to environmental stresses. Toxic lipid intermediates generated from environmental-stress-induced lipid membrane degradation are captured by TAG-containing lipid droplets and plastoglobules. This review summarizes recent advances in the transcriptional control of metabolic reprogramming underlying stress-induced TAG accumulation, and provides biological insight into the plant adaptive strategy, linking TAG biosynthesis with plant survival.
Collapse
Affiliation(s)
- Jeong-Won Nam
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Hong Gil Lee
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Hyungju Do
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
20
|
Chen Q, Zhang J, Li G. Dynamic epigenetic modifications in plant sugar signal transduction. TRENDS IN PLANT SCIENCE 2022; 27:379-390. [PMID: 34865981 DOI: 10.1016/j.tplants.2021.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 05/21/2023]
Abstract
In eukaryotes, dynamic chromatin states are closely related to changes in gene expression. Epigenetic modifications help plants adapt to their ever-changing environment by modulating gene expression via covalent modification at specific sites on DNA or histones. Sugars provide energy, but also function as signaling molecules to control plant growth and development. Various epigenetic modifications participate in sensing and transmitting sugar signals. Here we summarize recent progress in uncovering the epigenetic mechanisms involved in sugar signal transduction, including histone acetylation and deacetylation, histone methylation and demethylation, and DNA methylation. We also highlight changes in chromatin marks when crosstalk occurs between sugar signaling and the light, temperature, and phytohormone signaling pathways, and describe potential questions and approaches for future research.
Collapse
Affiliation(s)
- Qingshuai Chen
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Jing Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| |
Collapse
|
21
|
Joshi S, Paul P, Hartman JM, Perry SE. AGL15 Promotion of Somatic Embryogenesis: Role and Molecular Mechanism. FRONTIERS IN PLANT SCIENCE 2022; 13:861556. [PMID: 35419012 PMCID: PMC8996056 DOI: 10.3389/fpls.2022.861556] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Plants have amazing regenerative properties with single somatic cells, or groups of cells able to give rise to fully formed plants. One means of regeneration is somatic embryogenesis, by which an embryonic structure is formed that "converts" into a plantlet. Somatic embryogenesis has been used as a model for zygotic processes that are buried within layers of maternal tissues. Understanding mechanisms of somatic embryo induction and development are important as a more accessible model for seed development. We rely on seed development not only for most of our caloric intake, but also as a delivery system for engineered crops to meet agricultural challenges. Regeneration of transformed cells is needed for this applied work as well as basic research to understand gene function. Here we focus on a MADS-domain transcription factor, AGAMOUS-Like15 (AGL15) that shows a positive correlation between accumulation levels and capacity for somatic embryogenesis. We relate AGL15 function to other transcription factors, hormones, and epigenetic modifiers involved in somatic embryo development.
Collapse
Affiliation(s)
- Sanjay Joshi
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Priyanka Paul
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| | - Jeanne M. Hartman
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Sharyn E. Perry
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
22
|
Verma S, Attuluri VPS, Robert HS. Transcriptional control of Arabidopsis seed development. PLANTA 2022; 255:90. [PMID: 35318532 PMCID: PMC8940821 DOI: 10.1007/s00425-022-03870-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/04/2022] [Indexed: 05/04/2023]
Abstract
The entire process of embryo development is under the tight control of various transcription factors. Together with other proteins, they act in a combinatorial manner and control distinct events during embryo development. Seed development is a complex process that proceeds through sequences of events regulated by the interplay of various genes, prominent among them being the transcription factors (TFs). The members of WOX, HD-ZIP III, ARF, and CUC families have a preferential role in embryonic patterning. While WOX TFs are required for initiating body axis, HD-ZIP III TFs and CUCs establish bilateral symmetry and SAM. And ARF5 performs a major role during embryonic root, ground tissue, and vasculature development. TFs such as LEC1, ABI3, FUS3, and LEC2 (LAFL) are considered the master regulators of seed maturation. Furthermore, several new TFs involved in seed storage reserves and dormancy have been identified in the last few years. Their association with those master regulators has been established in the model plant Arabidopsis. Also, using chromatin immunoprecipitation (ChIP) assay coupled with transcriptomics, genome-wide target genes of these master regulators have recently been proposed. Many seed-specific genes, including those encoding oleosins and albumins, have appeared as the direct target of LAFL. Also, several other TFs act downstream of LAFL TFs and perform their function during maturation. In this review, the function of different TFs in different phases of early embryogenesis and maturation is discussed in detail, including information about their genetic and molecular interactors and target genes. Such knowledge can further be leveraged to understand and manipulate the regulatory mechanisms involved in seed development. In addition, the genomics approaches and their utilization to identify TFs aiming to study embryo development are discussed.
Collapse
Affiliation(s)
- Subodh Verma
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Venkata Pardha Saradhi Attuluri
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Hélène S. Robert
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
23
|
Godwin J, Farrona S. The Importance of Networking: Plant Polycomb Repressive Complex 2 and Its Interactors. EPIGENOMES 2022; 6:epigenomes6010008. [PMID: 35323212 PMCID: PMC8948837 DOI: 10.3390/epigenomes6010008] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
Polycomb Repressive Complex 2 (PRC2) is arguably the best-known plant complex of the Polycomb Group (PcG) pathway, formed by a group of proteins that epigenetically represses gene expression. PRC2-mediated deposition of H3K27me3 has amply been studied in Arabidopsis and, more recently, data from other plant model species has also been published, allowing for an increasing knowledge of PRC2 activities and target genes. How PRC2 molecular functions are regulated and how PRC2 is recruited to discrete chromatin regions are questions that have brought more attention in recent years. A mechanism to modulate PRC2-mediated activity is through its interaction with other protein partners or accessory proteins. Current evidence for PRC2 interactors has demonstrated the complexity of its protein network and how far we are from fully understanding the impact of these interactions on the activities of PRC2 core subunits and on the formation of new PRC2 versions. This review presents a list of PRC2 interactors, emphasizing their mechanistic action upon PRC2 functions and their effects on transcriptional regulation.
Collapse
|
24
|
Osadchuk K, Cheng CL, Irish EE. The integration of leaf-derived signals sets the timing of vegetative phase change in maize, a process coordinated by epigenetic remodeling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111035. [PMID: 34620439 DOI: 10.1016/j.plantsci.2021.111035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
After germination, the maize shoot proceeds through a series of developmental stages before flowering. The first transition occurs during the vegetative phase where the shoot matures from the juvenile to the adult phase, called vegetative phase change (VPC). In maize, both phases exhibit easily-scored morphological characteristics, facilitating the elucidation of molecular mechanisms directing the characteristic gene expression patterns and resulting physiological features of each phase. miR156 expression is high during the juvenile phase, suppressing expression of squamosa promoter binding proteins/SBP-like transcription factors and miR172. The decline in miR156 and subsequent increase in miR172 expression marks the transition into the adult phase, where miR172 represses transcripts that confer juvenile traits. Leaf-derived signals attenuate miR156 expression and thus the duration of the juvenile phase. As found in other species, VPC in maize utilizes signals that consist of hormones, stress, and sugar to direct epigenetic modifiers. In this review we identify the intersection of leaf-derived signaling with components that contribute to the epigenetic changes which may, in turn, manage the distinct global gene expression patterns of each phase. In maize, published research regarding chromatin remodeling during VPC is minimal. Therefore, we identified epigenetic regulators in the maize genome and, using published gene expression data and research from other plant species, identify VPC candidates.
Collapse
Affiliation(s)
- Krista Osadchuk
- 129 E. Jefferson Street, Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Chi-Lien Cheng
- 129 E. Jefferson Street, Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Erin E Irish
- 129 E. Jefferson Street, Department of Biology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
25
|
Bieluszewski T, Xiao J, Yang Y, Wagner D. PRC2 activity, recruitment, and silencing: a comparative perspective. TRENDS IN PLANT SCIENCE 2021; 26:1186-1198. [PMID: 34294542 DOI: 10.1016/j.tplants.2021.06.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 05/22/2023]
Abstract
Polycomb repressive complex (PRC)-mediated gene silencing is vital for cell identity and development in both the plant and the animal kingdoms. It also modulates responses to stress. Two major protein complexes, PRC1 and PRC2, execute conserved nuclear functions in metazoans and plants through covalent modification of histones and by compacting chromatin. While a general requirement for Polycomb complexes in mitotically heritable gene repression in the context of chromatin is well established, recent studies have brought new insights into the regulation of Polycomb complex activity and recruitment. Here, we discuss these recent advances with emphasis on PRC2.
Collapse
Affiliation(s)
- Tomasz Bieluszewski
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19103, USA
| | - Jun Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Centre of Excellence for Plant and Microbial Science (CEPAMS), the John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Yiman Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19103, USA.
| |
Collapse
|
26
|
Ruiz KA, Pelletier JM, Wang Y, Feng MJ, Behr JS, Ðào TQ, Li B, Kliebenstein D, Harada JJ, Jenik PD. A reevaluation of the role of the ASIL trihelix transcription factors as repressors of the seed maturation program. PLANT DIRECT 2021; 5:e345. [PMID: 34622120 PMCID: PMC8483069 DOI: 10.1002/pld3.345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/27/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Developmental transitions are typically tightly controlled at the transcriptional level. Two of these transitions involve the induction of the embryo maturation program midway through seed development and its repression during the vegetative phase of plant growth. Very little is known about the factors responsible for this regulation during early embryogenesis, and only a couple of transcription factors have been characterized as repressors during the postgerminative phase. Arabidopsis 6b-INTERACTING PROTEIN-LIKE1 (ASIL1), a trihelix transcription factor, has been proposed to repress maturation both embryonically and postembryonically. Preliminary data also suggested that its closest paralog, ASIL2, might play a role as well. We used a transcriptomic approach, coupled with phenotypical observations, to test the hypothesis that ASIL1 and ASIL2 redundantly turn off maturation during both phases of growth. Our results indicate that, contrary to what was previously published, neither of the ASIL genes plays a role in the regulation of maturation, at any point during plant development. Analyses of gene ontology (GO)-enriched terms and published transcriptomic datasets suggest that these genes might be involved in responses during the vegetative phase to certain biotic and abiotic stresses.
Collapse
Affiliation(s)
- Kevin A. Ruiz
- Department of BiologyFranklin & Marshall CollegeLancasterPAUSA
| | - Julie M. Pelletier
- Department of Plant Biology, College of Biological SciencesUniversity of CaliforniaDavisCAUSA
| | - Yuchi Wang
- Department of BiologyFranklin & Marshall CollegeLancasterPAUSA
- Present address:
Chimera (Shanghai) Biotec Ltd.Shanghai CityChina
| | - Min Jun Feng
- Department of BiologyFranklin & Marshall CollegeLancasterPAUSA
- Present address:
Medical University of South CarolinaCharlestonSCUSA
| | - Jacqueline S. Behr
- Department of BiologyFranklin & Marshall CollegeLancasterPAUSA
- Present address:
Hoboken University Medical CenterHobokenNJUSA
| | - Thái Q. Ðào
- Department of BiologyFranklin & Marshall CollegeLancasterPAUSA
- Present address:
Department of Botany and Plant Biology, College of Agricultural SciencesOregon State UniversityCorvallisORUSA
| | - Baohua Li
- Department of Plant Sciences, College of Agricultural and Environmental SciencesUniversity of CaliforniaDavisCAUSA
- Present address:
College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Daniel Kliebenstein
- Department of Plant Sciences, College of Agricultural and Environmental SciencesUniversity of CaliforniaDavisCAUSA
| | - John J. Harada
- Department of Plant Biology, College of Biological SciencesUniversity of CaliforniaDavisCAUSA
| | - Pablo D. Jenik
- Department of BiologyFranklin & Marshall CollegeLancasterPAUSA
| |
Collapse
|
27
|
Alizadeh M, Hoy R, Lu B, Song L. Team effort: Combinatorial control of seed maturation by transcription factors. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102091. [PMID: 34343847 DOI: 10.1016/j.pbi.2021.102091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/07/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Seed development is under tight spatiotemporal regulation. Here, we summarize how transcriptional regulation helps shape the major traits during seed maturation, which include storage reserve accumulation, dormancy, desiccation tolerance, and longevity. The regulation is rarely a solo task by an individual transcription factor (TF). Rather, it often involves coordinated recruitment or replacement of multiple TFs to achieve combinatorial regulation. We highlight recent progress on the transcriptional integration of activation and repression of seed maturation genes, and discuss potential research directions to further understand the TF networks of seed maturation.
Collapse
Affiliation(s)
- Milad Alizadeh
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Ryan Hoy
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Bailan Lu
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
28
|
Chen B, Fiers M, Dekkers BJW, Maas L, van Esse GW, Angenent GC, Zhao Y, Boutilier K. ABA signalling promotes cell totipotency in the shoot apex of germinating embryos. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6418-6436. [PMID: 34175924 PMCID: PMC8483786 DOI: 10.1093/jxb/erab306] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/25/2021] [Indexed: 05/03/2023]
Abstract
Somatic embryogenesis (SE) is a type of induced cell totipotency where embryos develop from vegetative tissues of the plant instead of from gamete fusion after fertilization. SE can be induced in vitro by exposing explants to growth regulators, such as the auxinic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The plant hormone abscisic acid (ABA) has been proposed to be a downstream signalling component at the intersection between 2,4-D- and stress-induced SE, but it is not known how these pathways interact to induce cell totipotency. Here we show that 2,4-D-induced SE from the shoot apex of germinating Arabidopsis thaliana seeds is characterized by transcriptional maintenance of an ABA-dependent seed maturation pathway. Molecular-genetic analysis of Arabidopsis mutants revealed a role for ABA in promoting SE at three different levels: ABA biosynthesis, ABA receptor complex signalling, and ABA-mediated transcription, with essential roles for the ABSCISIC ACID INSENSITIVE 3 (ABI3) and ABI4 transcription factors. Our data suggest that the ability of mature Arabidopsis embryos to maintain the ABA seed maturation environment is an important first step in establishing competence for auxin-induced cell totipotency. This finding provides further support for the role of ABA in directing processes other than abiotic stress response.
Collapse
Affiliation(s)
- Baojian Chen
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
- Laboratory for Molecular Biology, Wageningen University and Research, AP, Wageningen, Netherlands
| | - Martijn Fiers
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
| | - Bas J W Dekkers
- Wageningen Seed Lab, Laboratory for Plant Physiology, Wageningen University and Research Centre, AA, Netherlands
| | - Lena Maas
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
- Laboratory for Molecular Biology, Wageningen University and Research, AP, Wageningen, Netherlands
| | - G Wilma van Esse
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
- Laboratory for Molecular Biology, Wageningen University and Research, AP, Wageningen, Netherlands
| | - Gerco C Angenent
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
- Laboratory for Molecular Biology, Wageningen University and Research, AP, Wageningen, Netherlands
| | - Yang Zhao
- Shanghai Center for Plant Stress Biology, and CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kim Boutilier
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
- Correspondence:
| |
Collapse
|
29
|
Singer SD, Jayawardhane KN, Jiao C, Weselake RJ, Chen G. The effect of AINTEGUMENTA-LIKE 7 over-expression on seed fatty acid biosynthesis, storage oil accumulation and the transcriptome in Arabidopsis thaliana. PLANT CELL REPORTS 2021; 40:1647-1663. [PMID: 34215912 DOI: 10.1007/s00299-021-02715-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023]
Abstract
AIL7 over-expression modulates fatty acid biosynthesis and triacylglycerol accumulation in Arabidopsis developing seeds through the transcriptional regulation of associated genes. Seed fatty acids (FAs) and triacylglycerol (TAG) contribute to many functions in plants, and seed lipids have broad food, feed and industrial applications. As a result, an enormous amount of attention has been dedicated towards uncovering the regulatory cascade responsible for the fine-tuning of the lipid biosynthetic pathway in seeds, which is regulated in part through the action of LEAFY COTYLEDON1, ABSCISSIC ACID INSENSITIVE 3, FUSCA3 and LEC2 (LAFL) transcription factors. Although AINTEGUMENTA-LIKE 7 (AIL7) is involved in meristematic function and shoot phyllotaxy, its effect in the context of lipid biosynthesis has yet to be assessed. Here, we generated AIL7 seed-specific over-expression lines and found that they exhibited significant alterations in FA composition and decreased total lipid accumulation in seeds. Seeds and seedlings from transgenic lines also exhibited morphological deviations compared to wild type. Correspondingly, RNA-Seq analysis demonstrated that the expression of many genes related to FA biosynthesis and TAG breakdown were significantly altered in developing siliques from transgenic lines compared to wild-type plants. The seed-specific over-expression of AIL7 also altered the expression profiles of many genes related to starch metabolism, photosynthesis and stress response, suggesting further roles for AIL7 in plants. These findings not only advance our understanding of the lipid biosynthetic pathway in seeds, but also provide evidence for additional functions of AIL7, which could prove valuable in downstream breeding and/or metabolic engineering endeavors.
Collapse
Affiliation(s)
- Stacy D Singer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada.
| | - Kethmi N Jayawardhane
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Chen Jiao
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
30
|
Baile F, Merini W, Hidalgo I, Calonje M. EAR domain-containing transcription factors trigger PRC2-mediated chromatin marking in Arabidopsis. THE PLANT CELL 2021; 33:2701-2715. [PMID: 34003929 PMCID: PMC8408475 DOI: 10.1093/plcell/koab139] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 05/14/2021] [Indexed: 05/22/2023]
Abstract
Polycomb group (PcG) complexes ensure that every cell in an organism expresses the genes needed at a particular stage, time, or condition. However, it is still not fully understood how PcG complexes PcG-repressive complex 1 (PRC1) and PRC2 are recruited to target genes in plants. Recent findings in Arabidopsis thaliana support the notion that PRC2 recruitment is mediated by different transcription factors (TFs). However, it is unclear how all these TFs interact with PRC2 and whether they also recruit PRC1 activity. Here, by using a system to bind selected TFs to a synthetic promoter lacking the complexity of PcG target promoters in vivo, we show that while binding of the TF VIVIPAROUS1/ABSCISIC ACID-INSENSITIVE3-LIKE1 recapitulates PRC1 and PRC2 marking, the binding of other TFs only renders PRC2 marking. Interestingly, all these TFs contain an Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) domain that triggers both HISTONE DEACETYLASE COMPLEX and PRC2 activities, connecting two different repressive mechanisms. Furthermore, we show that different TFs can have an additive effect on PRC2 activity, which may be required to maintain long-term repression of gene expression.
Collapse
Affiliation(s)
- Fernando Baile
- Institute of Plant Biochemistry and Photosynthesis (IBVF-CSIC-US), Avenida Américo Vespucio 49, 41092, Seville, Spain
| | - Wiam Merini
- Institute of Plant Biochemistry and Photosynthesis (IBVF-CSIC-US), Avenida Américo Vespucio 49, 41092, Seville, Spain
| | - Inés Hidalgo
- Institute of Plant Biochemistry and Photosynthesis (IBVF-CSIC-US), Avenida Américo Vespucio 49, 41092, Seville, Spain
| | - Myriam Calonje
- Institute of Plant Biochemistry and Photosynthesis (IBVF-CSIC-US), Avenida Américo Vespucio 49, 41092, Seville, Spain
- Author for correspondence:
| |
Collapse
|
31
|
Ruan CC, Chen Z, Hu FC, Fan W, Wang XH, Guo LJ, Fan HY, Luo ZW, Zhang ZL. Genome-wide characterization and expression profiling of B3 superfamily during ethylene-induced flowering in pineapple (Ananas comosus L.). BMC Genomics 2021; 22:561. [PMID: 34289810 PMCID: PMC8296579 DOI: 10.1186/s12864-021-07854-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The B3 superfamily (B3s) represents a class of large plant-specific transcription factors, which play diverse roles in plant growth and development process including flowering induction. However, identification and functional surveys of B3 superfamily have not been reported in ethylene-induced pineapple flowering (Ananas comosus). RESULTS 57 B3 genes containing B3 domain were identified and phylogenetically classified into five subfamilies. Chromosomal localization analysis revealed that 54 of 57 AcB3s were located on 21 Linkage Groups (LG). Collinearity analysis demonstrated that the segmental duplication was the main event in the evolution of B3 gene superfamily, and most of them were under purifying selection. The analysis of cis-element composition suggested that most of these genes may have function in response to abscisic acid, ethylene, MeJA, light, and abiotic stress. qRT-PCR analysis of 40 AcB3s containing ethylene responsive elements exhibited that the expression levels of 35 genes were up-regulated within 1 d after ethephon treatment and some were highly expressed in flower bud differentiation period in stem apex, such as Aco012003, Aco019552 and Aco014401. CONCLUSION This study provides a basic information of AcB3s and clues for involvement of some AcB3s in ethylene-induced flowering in pineapple.
Collapse
Affiliation(s)
- Cheng Cheng Ruan
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Zhe Chen
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Fu Chu Hu
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Wei Fan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Xiang He Wang
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Li Jun Guo
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Hong Yan Fan
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Zhi Wen Luo
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Zhi Li Zhang
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences, Haikou, 571100, China.
| |
Collapse
|
32
|
Jia H, Suzuki M, McCarty DR. Structural variation affecting DNA backbone interactions underlies adaptation of B3 DNA binding domains to constraints imposed by protein architecture. Nucleic Acids Res 2021; 49:4989-5002. [PMID: 33872371 PMCID: PMC8136769 DOI: 10.1093/nar/gkab257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 11/25/2022] Open
Abstract
Functional and architectural diversification of transcription factor families has played a central role in the independent evolution of complex development in plants and animals. Here, we investigate the role of architectural constraints on evolution of B3 DNA binding domains that regulate plant embryogenesis. B3 domains of ABI3, FUS3, LEC2 and VAL1 proteins recognize the same cis-element. Complex architectures of ABI3 and VAL1 integrate cis-element recognition with other signals, whereas LEC2 and FUS3 have reduced architectures conducive to roles as pioneer activators. In yeast and plant in vivo assays, B3 domain functions correlate with architectural complexity of the parent transcription factor rather than phylogenetic relatedness. In a complex architecture, attenuated ABI3-B3 and VAL1-B3 activities enable integration of cis-element recognition with hormone signaling, whereas hyper-active LEC2-B3 and FUS3-B3 over-ride hormonal control. Three clade-specific amino acid substitutions (β4-triad) implicated in interactions with the DNA backbone account for divergence of LEC2-B3 and ABI3-B3. We find a striking correlation between differences in in vitro DNA binding affinity and in vivo activities of B3 domains in plants and yeast. Our results highlight the role of DNA backbone interactions that preserve DNA sequence specificity in adaptation of B3 domains to functional constraints associated with domain architecture.
Collapse
Affiliation(s)
- Haiyan Jia
- Horticultural Sciences Department, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611-0690, USA
| | - Masaharu Suzuki
- Horticultural Sciences Department, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611-0690, USA
| | - Donald R McCarty
- Horticultural Sciences Department, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611-0690, USA
| |
Collapse
|
33
|
Fouracre JP, He J, Chen VJ, Sidoli S, Poethig RS. VAL genes regulate vegetative phase change via miR156-dependent and independent mechanisms. PLoS Genet 2021; 17:e1009626. [PMID: 34181637 PMCID: PMC8270478 DOI: 10.1371/journal.pgen.1009626] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/09/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
How organisms control when to transition between different stages of development is a key question in biology. In plants, epigenetic silencing by Polycomb repressive complex 1 (PRC1) and PRC2 plays a crucial role in promoting developmental transitions, including from juvenile-to-adult phases of vegetative growth. PRC1/2 are known to repress the master regulator of vegetative phase change, miR156, leading to the transition to adult growth, but how this process is regulated temporally is unknown. Here we investigate whether transcription factors in the VIVIPAROUS/ABI3-LIKE (VAL) gene family provide the temporal signal for the epigenetic repression of miR156. Exploiting a novel val1 allele, we found that VAL1 and VAL2 redundantly regulate vegetative phase change by controlling the overall level, rather than temporal dynamics, of miR156 expression. Furthermore, we discovered that VAL1 and VAL2 also act independently of miR156 to control this important developmental transition. In combination, our results highlight the complexity of temporal regulation in plants. During their life-cycles multicellular organisms progress through a series of different developmental phases. The correct timing of the transitions between these phases is essential to ensure that development occurs at an appropriate rate and in the right order. In plants, vegetative phase change—the switch from a juvenile to an adult stage of vegetative growth prior to the onset of reproductive development–is a widely conserved transition associated with a number of phenotypic changes. It is therefore an excellent model to investigate the regulation of developmental timing. The timing of vegetative phase change is determined by a decline in the expression of a regulatory microRNA–miRNA156. However, what controls the temporal decline in miR156 expression is a major unknown in the field. In this study we tested whether members of the VAL gene family, known to be important for coordinating plant developmental transitions, are critical regulators of vegetative phase change. Using a series of genetic and biochemical approaches we found that VAL genes are important determinants of the timing of vegetative phase change. However, we discovered that VAL genes function largely to control the overall level, rather than temporal expression pattern, of miR156.
Collapse
Affiliation(s)
- Jim P. Fouracre
- Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jia He
- Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Victoria J. Chen
- Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - R. Scott Poethig
- Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
34
|
Shen Q, Lin Y, Li Y, Wang G. Dynamics of H3K27me3 Modification on Plant Adaptation to Environmental Cues. PLANTS 2021; 10:plants10061165. [PMID: 34201297 PMCID: PMC8228231 DOI: 10.3390/plants10061165] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
Given their sessile nature, plants have evolved sophisticated regulatory networks to confer developmental plasticity for adaptation to fluctuating environments. Epigenetic codes, like tri-methylation of histone H3 on Lys27 (H3K27me3), are evidenced to account for this evolutionary benefit. Polycomb repressive complex 2 (PRC2) and PRC1 implement and maintain the H3K27me3-mediated gene repression in most eukaryotic cells. Plants take advantage of this epigenetic machinery to reprogram gene expression in development and environmental adaption. Recent studies have uncovered a number of new players involved in the establishment, erasure, and regulation of H3K27me3 mark in plants, particularly highlighting new roles in plants’ responses to environmental cues. Here, we review current knowledge on PRC2-H3K27me3 dynamics occurring during plant growth and development, including its writers, erasers, and readers, as well as targeting mechanisms, and summarize the emerging roles of H3K27me3 mark in plant adaptation to environmental stresses.
Collapse
|
35
|
Ruan J, Chen H, Zhu T, Yu Y, Lei Y, Yuan L, Liu J, Wang ZY, Kuang JF, Lu WJ, Huang S, Li C. Brassinosteroids repress the seed maturation program during the seed-to-seedling transition. PLANT PHYSIOLOGY 2021; 186:534-548. [PMID: 33620498 PMCID: PMC8154094 DOI: 10.1093/plphys/kiab089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 05/27/2023]
Abstract
In flowering plants, repression of the seed maturation program is essential for the transition from the seed to the vegetative phase, but the underlying mechanisms remain poorly understood. The B3-domain protein VIVIPAROUS1/ABSCISIC ACID-INSENSITIVE3-LIKE 1 (VAL1) is involved in repressing the seed maturation program. Here we uncovered a molecular network triggered by the plant hormone brassinosteroid (BR) that inhibits the seed maturation program during the seed-to-seedling transition in Arabidopsis (Arabidopsis thaliana). val1-2 mutant seedlings treated with a BR biosynthesis inhibitor form embryonic structures, whereas BR signaling gain-of-function mutations rescue the embryonic structure trait. Furthermore, the BR-activated transcription factors BRI1-EMS-SUPPRESSOR 1 and BRASSINAZOLE-RESISTANT 1 bind directly to the promoter of AGAMOUS-LIKE15 (AGL15), which encodes a transcription factor involved in activating the seed maturation program, and suppress its expression. Genetic analysis indicated that BR signaling is epistatic to AGL15 and represses the seed maturation program by downregulating AGL15. Finally, we showed that the BR-mediated pathway functions synergistically with the VAL1/2-mediated pathway to ensure the full repression of the seed maturation program. Together, our work uncovered a mechanism underlying the suppression of the seed maturation program, shedding light on how BR promotes seedling growth.
Collapse
Affiliation(s)
- Jiuxiao Ruan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Huhui Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tao Zhu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yaoguang Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yawen Lei
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liangbing Yuan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jun Liu
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Shangzhi Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chenlong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
36
|
Wolabu TW, Wang H, Tadesse D, Zhang F, Behzadirad M, Tvorogova VE, Abdelmageed H, Liu Y, Chen N, Chen J, Allen RD, Tadege M. WOX9 functions antagonistic to STF and LAM1 to regulate leaf blade expansion in Medicago truncatula and Nicotiana sylvestris. THE NEW PHYTOLOGIST 2021; 229:1582-1597. [PMID: 32964420 DOI: 10.1111/nph.16934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
WOX family transcription factors regulate multiple developmental programs. The intermediate clade transcriptional activator WOX9 functions together with the modern clade transcriptional repressor WOX genes in embryogenesis and meristems maintenance, but the mechanism of this interaction is unclear. STF and LAM1 are WOX1 orthologs required for leaf blade outgrowth in Medicago truncatula and Nicotiana sylvestris, respectively. Using biochemical methods and genome editing technology, here we show that WOX9 is an abaxial factor and functions antagonistically to STF and LAM1 to regulate leaf blade development. While NsWOX9 ectopic expression enhances the lam1 mutant phenotype, and antisense expression partially rescues the lam1 mutant, both overexpression and knockout of NsWOX9 in N. sylvestris resulted in a range of severe leaf blade distortions, indicating important role in blade development. Our results indicate that direct repression of WOX9 by WUS clade repressor STF/LAM1 is required for correct blade architecture and patterning in M. truncatula and N. sylvestris. These findings suggest that controlling transcriptional activation and repression mechanisms by direct interaction of activator and repressor WOX genes may be required for cell proliferation and differentiation homeostasis, and could be an evolutionarily conserved mechanism for the development of complex and diverse morphology in flowering plants.
Collapse
Affiliation(s)
- Tezera W Wolabu
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Hui Wang
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dimiru Tadesse
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Fei Zhang
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06520-8104, USA
| | - Marjan Behzadirad
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Varvara E Tvorogova
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, 199034, Russia
| | - Haggag Abdelmageed
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Department of Agricultural Botany, Faculty of Agriculture, Cairo University, Giza,, 12613, Egypt
| | - Ye Liu
- School of Life Science, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Naichong Chen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jianghua Chen
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Randy D Allen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Million Tadege
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
37
|
Yuan L, Song X, Zhang L, Yu Y, Liang Z, Lei Y, Ruan J, Tan B, Liu J, Li C. The transcriptional repressors VAL1 and VAL2 recruit PRC2 for genome-wide Polycomb silencing in Arabidopsis. Nucleic Acids Res 2021; 49:98-113. [PMID: 33270882 PMCID: PMC7797069 DOI: 10.1093/nar/gkaa1129] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/19/2020] [Accepted: 11/07/2020] [Indexed: 12/11/2022] Open
Abstract
The Polycomb repressive complex 2 (PRC2) catalyzes histone H3 Lys27 trimethylation (H3K27me3) to repress gene transcription in multicellular eukaryotes. Despite its importance in gene silencing and cellular differentiation, how PRC2 is recruited to target loci is still not fully understood. Here, we report genome-wide evidence for the recruitment of PRC2 by the transcriptional repressors VIVIPAROUS1/ABI3-LIKE1 (VAL1) and VAL2 in Arabidopsis thaliana. We show that the val1 val2 double mutant possesses somatic embryonic phenotypes and a transcriptome strikingly similar to those of the swn clf double mutant, which lacks the PRC2 catalytic subunits SWINGER (SWN) and CURLY LEAF (CLF). We further show that VAL1 and VAL2 physically interact with SWN and CLF in vivo. Genome-wide binding profiling demonstrated that they colocalize with SWN and CLF at PRC2 target loci. Loss of VAL1/2 significantly reduces SWN and CLF enrichment at PRC2 target loci and leads to a genome-wide redistribution of H3K27me3 that strongly affects transcription. Finally, we provide evidence that the VAL1/VAL2-RY regulatory system is largely independent of previously identified modules for Polycomb silencing in plants. Together, our work demonstrates an extensive genome-wide interaction between VAL1/2 and PRC2 and provides mechanistic insights into the establishment of Polycomb silencing in plants.
Collapse
Affiliation(s)
- Liangbing Yuan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xin Song
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lu Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.,Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Yaoguang Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhenwei Liang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yawen Lei
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jiuxiao Ruan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Bin Tan
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510624, China
| | - Jun Liu
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Chenlong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
38
|
Sertse D, You FM, Ravichandran S, Soto-Cerda BJ, Duguid S, Cloutier S. Loci harboring genes with important role in drought and related abiotic stress responses in flax revealed by multiple GWAS models. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:191-212. [PMID: 33047220 DOI: 10.1007/s00122-020-03691-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/18/2020] [Indexed: 05/19/2023]
Abstract
QTNs associated with drought tolerance traits and indices were identified in a flax mini-core collection through multiple GWAS models and phenotyping at multiple locations under irrigated and non-irrigated field conditions. Drought is a critical phenomenon challenging today's agricultural sector. Crop varieties adapted to moisture deficit are becoming vital. Flax can be greatly affected by limiting moisture conditions, especially during the early development and reproductive stages. Here, a mini-core collection comprising genotypes from more than 20 major growing countries was evaluated for 11 drought-related traits in irrigated and non-irrigated fields for 3 years. Heritability of the traits ranged from 44.7 to 86%. Six of the 11 traits showed significant phenotypic difference between irrigated and non-irrigated conditions. A genome-wide association study (GWAS) was performed for these six traits and their corresponding stress indices based on 106 genotypes and 12,316 single nucleotide polymorphisms (SNPs) using six multi-locus and one single-locus models. The SNPs were then assigned to 8050 linkage disequilibrium (LD) blocks to which a restricted two-stage multi-locus multi-allele GWAS was applied. A total of 144 quantitative trait nucleotides (QTNs) and 13 LD blocks were associated with at least one trait or stress index. Of these, 16 explained more than 15% of the genetic variance. Most large-effect QTN loci harbored gene(s) previously predicted to play role(s) in the associated traits. Genes mediating responses to abiotic stresses resided at loci associated with stress indices. Flax genes Lus10009480 and Lus10030150 that are predicted to encode WAX INDUCER1 and STRESS-ASSOCIATED PROTEIN (SAP), respectively, are among the important candidates detected. Accessions with multiple favorable alleles outperformed others for grain yield, thousand seed weight and fiber/biomass in non-irrigated conditions, suggesting their potential usefulness in breeding and genomic selection.
Collapse
Affiliation(s)
- Demissew Sertse
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, Canada
| | - Frank M You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, Canada
| | - Sridhar Ravichandran
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, Canada
| | - Braulio J Soto-Cerda
- Agriaquaculture Nutritional Genomic Centre (CGNA), Las Heras 350, 4781158, Temuco, Chile
| | - Scott Duguid
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, Canada
| | - Sylvie Cloutier
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada.
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, Canada.
| |
Collapse
|
39
|
Tian R, Paul P, Joshi S, Perry SE. Genetic activity during early plant embryogenesis. Biochem J 2020; 477:3743-3767. [PMID: 33045058 PMCID: PMC7557148 DOI: 10.1042/bcj20190161] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Seeds are essential for human civilization, so understanding the molecular events underpinning seed development and the zygotic embryo it contains is important. In addition, the approach of somatic embryogenesis is a critical propagation and regeneration strategy to increase desirable genotypes, to develop new genetically modified plants to meet agricultural challenges, and at a basic science level, to test gene function. We briefly review some of the transcription factors (TFs) involved in establishing primary and apical meristems during zygotic embryogenesis, as well as TFs necessary and/or sufficient to drive somatic embryo programs. We focus on the model plant Arabidopsis for which many tools are available, and review as well as speculate about comparisons and contrasts between zygotic and somatic embryo processes.
Collapse
Affiliation(s)
- Ran Tian
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, U.S.A
| | - Priyanka Paul
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, U.S.A
| | - Sanjay Joshi
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, U.S.A
| | - Sharyn E. Perry
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, U.S.A
| |
Collapse
|
40
|
Yu Y, Qiao L, Chen J, Rong Y, Zhao Y, Cui X, Xu J, Hou X, Dong CH. Arabidopsis REM16 acts as a B3 domain transcription factor to promote flowering time via directly binding to the promoters of SOC1 and FT. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1386-1398. [PMID: 32391591 DOI: 10.1111/tpj.14807] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 04/22/2020] [Accepted: 05/01/2020] [Indexed: 05/25/2023]
Abstract
Actin depolymerizing factor (ADF) is a key modulator for dynamic organization of actin cytoskeleton. Interestingly, it was found that the ADF1 gene silencing delays flowering, but its mechanism remains unclear. In this study, ADF1 was used as a bait to screen its interacting proteins by the yeast two-hybrid (Y2H) system. One of them, the REM16 transcription factor was identified. As one of the AP2/B3-like transcriptional factor family members, the REM16 contains two B3 domains and its transcript levels kept increasing during the floral transition stage. Overexpression of REM16 accelerates flowering while silencing of REM16 delays flowering. Gene expression analysis indicated that the key flowering activation genes such as CONSTANS (CO), FLOWERING LOCUS T (FT), LEAFY (LFY) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS (SOC1) were upregulated in the REM16 overexpression lines, while the transcription of the flowering suppression gene FLOWERING LOCUS C (FLC) was decreased. In contrast, the REM16 gene silencing lines contained lower transcript levels of the CO, FT, LFY and SOC1 but higher transcript levels of the FLC compared with the wild-type plants. It was proved that REM16 could directly bind to the promoter regions of SOC1 and FT by in vitro and in vivo assays. Genetic analysis supported that REM16 acts upstream of SOC1 and FT in flowering pathways. All these studies provided strong evidence demonstrating that REM16 promotes flowering by directly activating SOC1 and FT.
Collapse
Affiliation(s)
- Yanchong Yu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Longfei Qiao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jiacai Chen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yongheng Rong
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yuhang Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xiankui Cui
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jinpeng Xu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xiaomin Hou
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Chun-Hai Dong
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
41
|
Chen N, Wang H, Abdelmageed H, Veerappan V, Tadege M, Allen RD. HSI2/VAL1 and HSL1/VAL2 function redundantly to repress DOG1 expression in Arabidopsis seeds and seedlings. THE NEW PHYTOLOGIST 2020; 227:840-856. [PMID: 32201955 PMCID: PMC7383879 DOI: 10.1111/nph.16559] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/16/2020] [Indexed: 05/21/2023]
Abstract
DELAY OF GERMINATION1 (DOG1) is a primary regulator of seed dormancy. Accumulation of DOG1 in seeds leads to deep dormancy and delayed germination in Arabidopsis. B3 domain-containing transcriptional repressors HSI2/VAL1 and HSL1/VAL2 silence seed dormancy and enable the subsequent germination and seedling growth. However, the roles of HSI2 and HSL1 in regulation of DOG1 expression and seed dormancy remain elusive. Seed dormancy was analysed by measurement of maximum germination percentage of freshly harvested Arabidopsis seeds. In vivo protein-protein interaction analysis, ChIP-qPCR and EMSA were performed and suggested that HSI2 and HSL1 can form dimers to directly regulate DOG1. HSI2 and HSL1 dimers interact with RY elements at DOG1 promoter. Both B3 and PHD-like domains are required for enrichment of HSI2 and HSL1 at the DOG1 promoter. HSI2 and HSL1 recruit components of polycomb-group proteins, including CURLY LEAF (CLF) and LIKE HETERCHROMATIN PROTEIN 1 (LHP1), for consequent deposition of H3K27me3 marks, leading to repression of DOG1 expression. Our findings suggest that HSI2- and HSL1-dependent histone methylation plays critical roles in regulation of seed dormancy during seed germination and early seedling growth.
Collapse
Affiliation(s)
- Naichong Chen
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwater74078OKUSA
| | - Hui Wang
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
| | - Haggag Abdelmageed
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
- Department of Agricultural BotanyFaculty of AgricultureCairo UniversityGiza12613Egypt
| | | | - Million Tadege
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| | - Randy D. Allen
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwater74078OKUSA
| |
Collapse
|
42
|
Tian R, Wang F, Zheng Q, Niza VMAGE, Downie AB, Perry SE. Direct and indirect targets of the arabidopsis seed transcription factor ABSCISIC ACID INSENSITIVE3. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1679-1694. [PMID: 32445409 DOI: 10.1111/tpj.14854] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 05/09/2020] [Accepted: 05/15/2020] [Indexed: 05/04/2023]
Abstract
Arabidopsis thaliana ABSCISIC ACID INSENSITIVE3 (ABI3) is a transcription factor in the B3 domain family. ABI3, along with B3 domain transcription factors LEAFY COTYLEDON2 (LEC2) and FUSCA3 (FUS3), and LEC1, a subunit of the CCAAT box-binding complex, form the so-called LAFL network to control various aspects of seed development and maturation. ABI3 also contributes to the abscisic acid (ABA) response. We report on chromatin immunoprecipitation-tiling array experiments to map binding sites for ABI3 globally. We also assessed transcriptomes in response to ABI3 by comparing developing abi3-5 and wild-type seeds and combined this information to ascertain direct and indirect responsive ABI3 target genes. ABI3 can induce and repress its transcription of target genes directly and some intriguing differences exist in cis motifs between these groups of genes. Directly regulated targets reflect the role of ABI3 in seed maturation, desiccation tolerance, entry into a quiescent state and longevity. Interestingly, ABI3 directly represses a gene encoding a microRNA (MIR160B) that targets AUXIN RESPONSE FACTOR (ARF)10 and ARF16 that are involved in establishment of dormancy. In addition, ABI3, like FUS3, regulates genes encoding MIR156 but while FUS3 only induces genes encoding this product, ABI3 induces these genes during the early stages of seed development, but represses these genes during late development. The interplay between ABI3, the other LAFL genes, and the VP1/ABI3-LIKE (VAL) genes, which are involved in the transition to seedling development are examined and reveal complex interactions controlling development.
Collapse
Affiliation(s)
- Ran Tian
- UK Seed Biology Group, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546-0312, USA
| | - Fangfang Wang
- UK Seed Biology Group, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546-0312, USA
| | - Qiaolin Zheng
- UK Seed Biology Group, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546-0312, USA
| | - Venus M A G E Niza
- UK Seed Biology Group, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546-0312, USA
| | - A Bruce Downie
- UK Seed Biology Group, Department of Horticulture, University of Kentucky, Lexington, KY, 40546-0312, USA
| | - Sharyn E Perry
- UK Seed Biology Group, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546-0312, USA
| |
Collapse
|
43
|
Luo X, He Y. Experiencing winter for spring flowering: A molecular epigenetic perspective on vernalization. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:104-117. [PMID: 31829495 DOI: 10.1111/jipb.12896] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/10/2019] [Indexed: 05/17/2023]
Abstract
Many over-wintering plants, through vernalization, overcome a block to flowering and thus acquire competence to flower in the following spring after experiencing prolonged cold exposure or winter cold. The vernalization pathways in different angiosperm lineages appear to have convergently evolved to adapt to temperate climates. Molecular and epigenetic mechanisms for vernalization regulation have been well studied in the crucifer model plant Arabidopsis thaliana. Here, we review recent progresses on the vernalization pathway in Arabidopsis. In addition, we summarize current molecular and genetic understandings of vernalization regulation in temperate grasses including wheat and Brachypodium, two monocots from Pooideae, followed by a brief discussion on divergence of the vernalization pathways between Brassicaceae and Pooideae.
Collapse
Affiliation(s)
- Xiao Luo
- National Key Laboratory of Plant Molecular Genetics & Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Sciences, Shanghai, 201602, China
| | - Yuehui He
- National Key Laboratory of Plant Molecular Genetics & Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Sciences, Shanghai, 201602, China
| |
Collapse
|
44
|
Zeng X, Gao Z, Jiang C, Yang Y, Liu R, He Y. HISTONE DEACETYLASE 9 Functions with Polycomb Silencing to Repress FLOWERING LOCUS C Expression. PLANT PHYSIOLOGY 2020; 182:555-565. [PMID: 31641076 PMCID: PMC6945841 DOI: 10.1104/pp.19.00793] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/08/2019] [Indexed: 05/20/2023]
Abstract
Polycomb repressive complex 2 (PRC2) catalyzes repressive histone 3 Lys-27 trimethylation (H3K27me3) to mediate genome-wide transcriptional repression in plants and animals. PRC2 controls various developmental processes in plants and plays a critical role in the developmental transition to flowering. FLOWERING LOCUS C (FLC), first identified in Arabidopsis (Arabidopsis thaliana), is a potent floral repressor in crucifers and some other plants that is subjected to complex regulation. Here, we show that HISTONE DEACETYLASE 9 (HDA9)-mediated H3K27 deacetylation is required for PRC2-mediated H3K27me3 in Arabidopsis. We further demonstrate that through physical association with the epigenome readers VP1/ABI3-LIKE 1 (VAL1) and VAL2, which recognize a cis-regulatory element at the FLC locus, HDA9 and PRC2 function in concert to mediate H3K27 deacetylation and subsequent trimethylation at this residue. This leads to FLC repression in the rapid-cycling Arabidopsis accessions. Our study uncovers roles for HDA9 in PRC2-mediated H3K27me3, FLC repression, and flowering-time regulation.
Collapse
Affiliation(s)
- Xiaolin Zeng
- National Key Laboratory of Plant Molecular Genetics & Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Gao
- National Key Laboratory of Plant Molecular Genetics & Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan Jiang
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai 201602, China
| | - Yupeng Yang
- National Key Laboratory of Plant Molecular Genetics & Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renyi Liu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai 201602, China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuehui He
- National Key Laboratory of Plant Molecular Genetics & Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai 201602, China
| |
Collapse
|
45
|
Jing Y, Guo Q, Lin R. The B3-Domain Transcription Factor VAL1 Regulates the Floral Transition by Repressing FLOWERING LOCUS T. PLANT PHYSIOLOGY 2019; 181:236-248. [PMID: 31289216 PMCID: PMC6716252 DOI: 10.1104/pp.19.00642] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/25/2019] [Indexed: 05/23/2023]
Abstract
Many plants monitor changes in day length (or photoperiod) and adjust the timing of the floral transition accordingly to ensure reproductive success. In long-day plants, a long-day photoperiod triggers the production of florigen, which promotes the floral transition. FLOWERING LOCUS T (FT) in Arabidopsis (Arabidopsis thaliana) encodes a major component of florigen, and FT expression is activated in leaf veins specifically at dusk through the photoperiod pathway. Repression of FT mediated by Polycomb group (PcG) proteins prevents precocious flowering and adds another layer to FT regulation. Here, we identified high-level trimethylation of histone H3 at Lys 27 (H3K27me3) in the high trimethylation region (HTR) of the FT locus from the second intron to the 3' untranslated region. The HTR contains a cis-regulatory DNA element required for H3K27me3 enrichment that is recognized by the transcriptional repressor VIVIPAROUS1/ABSCISIC ACID INSENSITIVE3-LIKE1 (VAL1). VAL1 directly represses FT expression before dusk and at night, coinciding with the high abundance of both VAL1 mRNA and VAL1 homodimer. Furthermore, VAL1 recruits LIKE HETEROCHROMATIN PROTEIN1 and MULTICOPY SUPRESSOR OF IRA1 to FT chromatin, leading to an H3K27me3 peak at the HTR of FT These findings reveal a mechanism for PcG repression of FT mediated by an intronic cis-silencing element and suggest a possible role for VAL1 in modulating PcG repression of FT during the flowering response.
Collapse
Affiliation(s)
- Yanjun Jing
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qiang Guo
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
46
|
Huang Y, Jiang L, Liu BY, Tan CF, Chen DH, Shen WH, Ruan Y. Evolution and conservation of polycomb repressive complex 1 core components and putative associated factors in the green lineage. BMC Genomics 2019; 20:533. [PMID: 31253095 PMCID: PMC6599366 DOI: 10.1186/s12864-019-5905-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 06/13/2019] [Indexed: 01/14/2023] Open
Abstract
Background Polycomb group (PcG) proteins play important roles in animal and plant development and stress response. Polycomb repressive complex 1 (PRC1) and PRC2 are the key epigenetic regulators of gene expression, and are involved in almost all developmental stages. PRC1 catalyzes H2A monoubiquitination resulting in transcriptional silencing or activation. The PRC1 components in the green lineage were identified and evolution and conservation was analyzed by bioinformatics techniques. RING Finger Protein 1 (RING1), B lymphoma Mo-MLV insertion region 1 homolog (BMI1), Like Heterochromatin Protein 1 (LHP1) and Embryonic Flower 1 (EMF1) are the PRC1 core components and Vernalization 1 (VRN1), VP1/ABI3-Like 1/2/3 (VAL1/2/3), Alfin-like 1–7 (AL1–7), Inhibitor of growth 1/2 (ING1/2), and Early Bolting in Short Days (EBS) / Short Life (SHL) are the associated factors. Results Each PRC1 subunit possesses special domain organizations, such as RING and the ring finger and WD40-associated ubiquitin-like (RAWUL) domains for RING1 and BMI1, chromatin organization modifier (CHROMO) and chromo shadow (ChSh) domains for LHP1, one or two B3 DNA binding domain(s) for VRN1, B3 and zf-CW domains for VAL1/2/3, Alfin and Plant HomeoDomain (PHD) domains for AL1–7, ING and PHD domains for ING1/2, Bromoadjacent homology (BAT) and PHD domains for EBS/SHL. Six new motifs are uncovered in EMF1. The PRC1 core components RING1 and BMI1, and the associated factors VAL1/2/3, AL1–7, ING1/2, and EBS/SHL exist from alga to higher plants, whereas LHP1 only occurs in higher plants. EMF1 and VRN1 are present only in eudicots. PRC1 components undergo duplication in the plant evolution. Most of plants carry the homologous core component LHP1, the associated factor EMF1, and several homologs in RING1, BMI1, VRN1, AL1–7, ING1/2/3, and EBS/SHL. Cabbage, cotton, poplar, orange and maize often exhibit more gene copies than other species. Domain organization analysis shows that duplicated gene functions may be of diverse. Conclusions The PRC1 core components RING1 and BMI1, and the associated factors VAL1/2/3, AL1–7, ING1/2, and EBS/SHL originate from algae. The core component LHP1 is from moss and the associated factors EMF1 and VRN1 are from dicotyledon. PRC1 components are of functional redundancy and diversity in evolution. Electronic supplementary material The online version of this article (10.1186/s12864-019-5905-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Huang
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China.,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Ling Jiang
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China.,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Bo-Yu Liu
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China.,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Cheng-Fang Tan
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China.,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Dong-Hong Chen
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, 311300, China
| | - Wen-Hui Shen
- International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Institut de Biologie Mole'culaire des Plantes du CNRS, Universite' de Strasbourg, 12 rue du Ge'ne'ralZimmer, 67084, Strasbourg Cedex, France
| | - Ying Ruan
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China. .,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China. .,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
47
|
Hong J, Lee H, Lee J, Kim H, Ryu H. ABSCISIC ACID-INSENSITIVE 3 is involved in brassinosteroid-mediated regulation of flowering in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:207-214. [PMID: 30908972 DOI: 10.1016/j.plaphy.2019.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/28/2019] [Accepted: 03/12/2019] [Indexed: 05/22/2023]
Abstract
ABSCISIC ACID-INSENSITIVE 3 (ABI3) is one of the essential transcription factors of ABSCISIC ACID (ABA) signaling, functioning in seed germination, early seedling development, and abiotic stress tolerance. A recent study showed that epigenetic repression of ABI3 by brassinosteroid (BR)-activated BRI1 EMS SUPPRESSOR1 (BES1)-TOPLESS (TPL)HISTONE DEACETYLASE 19 (HDA19) repressor complex is a critical event for promoting seed germination and early seedling development. However, other physiological roles of the repression of ABI3 and ABA responses by BES1-mediated BR signaling pathways remain elusive. Here, we show that BES1-mediated suppression of ABI3 promotes floral transition and ABI3 acts as a negative regulator for flowering. Ectopic expression of ABI3 specifically compromised the early flowering phenotype of bes1-D and induced severe late-flowering phenotypes in wild-type Arabidopsis and Solanum lycopersicum plants. Both spatiotemporal expression patterns and global transcriptome analysis of ABI3-overexpressing plants supported the biological roles of ABI3 in the negative regulation of floral transition and reproduction. Finally, we confirmed that the loss of function of ABI3 induced early-flowering phenotypes in both long- and short-day conditions. In conclusion, our data suggest that BES1-mediated regulation of ABI3 is important in the reproductive phase transition of plants.
Collapse
Affiliation(s)
- Jeongeui Hong
- Department of Biology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Horim Lee
- Department of Biotechnology, Duksung Women's University, Seoul, 01369, Republic of Korea.
| | - Jinsu Lee
- Department of Biology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Hyemin Kim
- Department of Biology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
48
|
Gou J, Tang C, Chen N, Wang H, Debnath S, Sun L, Flanagan A, Tang Y, Jiang Q, Allen RD, Wang ZY. SPL7 and SPL8 represent a novel flowering regulation mechanism in switchgrass. THE NEW PHYTOLOGIST 2019; 222:1610-1623. [PMID: 30688366 DOI: 10.1111/nph.15712] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/11/2019] [Indexed: 05/20/2023]
Abstract
The aging pathway in flowering regulation is controlled mainly by microRNA156 (miR156). Studies in Arabidopsis thaliana reveal that nine miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE (SPL) genes are involved in the control of flowering. However, the roles of SPLs in flowering remain elusive in grasses. Inflorescence development in switchgrass was characterized using scanning electron microscopy (SEM). Microarray, quantitative reverse transcription polymerase chain reaction (qRT-PCR), chromatin immunoprecipitation (ChIP)-PCR and EMSA were used to identify regulators of phase transition and flowering. Gene function was characterized by downregulation and overexpression of the target genes. Overexpression of SPL7 and SPL8 promotes flowering, whereas downregulation of individual genes moderately delays flowering. Simultaneous downregulation of SPL7/SPL8 results in extremely delayed or nonflowering plants. Furthermore, downregulation of both genes leads to a vegetative-to-reproductive reversion in the inflorescence, a phenomenon that has not been reported in any other grasses. Detailed analyses demonstrate that SPL7 and SPL8 induce phase transition and flowering in grasses by directly upregulating SEPALLATA3 (SEP3) and MADS32. Thus, the SPL7/8 pathway represents a novel regulatory mechanism in grasses that is largely different from that in Arabidopsis. Additionally, genetic modification of SPL7 and SPL8 results in much taller plants with significantly increased biomass yield and sugar release.
Collapse
Affiliation(s)
- Jiqing Gou
- Noble Research Institute, Ardmore, OK, 73401, USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Chaorong Tang
- Noble Research Institute, Ardmore, OK, 73401, USA
- Hainan University, Haiko, 570228, China
| | - Naichong Chen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Hui Wang
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Smriti Debnath
- Noble Research Institute, Ardmore, OK, 73401, USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Liang Sun
- Noble Research Institute, Ardmore, OK, 73401, USA
| | - Amy Flanagan
- Noble Research Institute, Ardmore, OK, 73401, USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Yuhong Tang
- Noble Research Institute, Ardmore, OK, 73401, USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | | | - Randy D Allen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Zeng-Yu Wang
- Noble Research Institute, Ardmore, OK, 73401, USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
49
|
Tao Z, Hu H, Luo X, Jia B, Du J, He Y. Embryonic resetting of the parental vernalized state by two B3 domain transcription factors in Arabidopsis. NATURE PLANTS 2019; 5:424-435. [PMID: 30962525 DOI: 10.1038/s41477-019-0402-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/06/2019] [Indexed: 05/02/2023]
Abstract
Some overwintering plants acquire competence to flower, after experiencing prolonged cold in winter, through a process termed vernalization. In the crucifer plant Arabidopsis thaliana, prolonged cold induces chromatin-mediated silencing of the potent floral repressor FLOWERING LOCUS C (FLC) by Polycomb proteins. This vernalized state is epigenetically maintained or 'memorized' in warm rendering plants competent to flower in spring, but is reset in the next generation. Here, we show that in early embryogenesis, two homologous B3 domain transcription factors LEAFY COTYLEDON 2 (LEC2) and FUSCA3 (FUS3) compete against two repressive B3-containing epigenome readers and Polycomb partners known as VAL1 and VAL2 for the cis-regulatory cold memory element (CME) of FLC to disrupt Polycomb silencing. Consistently, crystal structures of B3-CME complexes show that B3FUS3, B3LEC2 and B3VAL1 employ a nearly identical binding interface for CME. We further found that LEC2 and FUS3 recruit the scaffold protein FRIGIDA in association with active chromatin modifiers to establish an active chromatin state at FLC, which results in resetting of the silenced FLC to active and erasing the epigenetic parental memory of winter cold in early embryos. Following embryo development, LEC2 and FUS3 are developmentally silenced throughout post-embryonic stages, enabling VALs to bind to the CME again at seedling stages at which plants experience winter cold. Our findings illustrate how overwintering crucifer annuals or biennials in temperate climates employ a subfamily of B3 domain proteins to switch on, off and on again the expression of a key flowering gene in the embryo-to-plant-to-embryo cycle, and thus to synchronize growth and development with seasonal temperature changes in their life cycles.
Collapse
Affiliation(s)
- Zeng Tao
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hongmiao Hu
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Luo
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Bei Jia
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Jiamu Du
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, China.
| | - Yuehui He
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, China.
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
50
|
Roscoe TJ, Vaissayre V, Paszkiewicz G, Clavijo F, Kelemen Z, Michaud C, Lepiniec LC, Dubreucq B, Zhou DX, Devic M. Regulation of FUSCA3 Expression During Seed Development in Arabidopsis. PLANT & CELL PHYSIOLOGY 2019; 60:476-487. [PMID: 30462310 DOI: 10.1093/pcp/pcy224] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
FUSCA3 (FUS3) is a master regulator of seed development important in establishing and maintaining embryonic identity whose expression is tightly regulated at genetic and epigenetic levels. Despite this prominent role, the control of FUS3 expression remains poorly understood. Promoter and functional complementation analyses provided insight into the regulation of FUS3. W-boxes present in the promoter proximal to the start of transcription are recognized by WRKY type-1 factors which are necessary for the activation of FUS3 expression. The RY motif, the binding site of B3 factors, is important for the activation of FUS3 in the embryo proper but not in the suspensor. The loss of a negative regulatory sequence (NRS) leads to preferential expression of FUS3 in the vasculature of vegetative tissues. Since the NRS includes the RY motif, mechanisms of activation and repression target adjacent or overlapping regions. These findings discriminate the regulation of FUS3 from that of LEAFY COTYLEDON2 by the control exerted by WRKY factors and by the presence of the RY motif, yet also confirm conservation of certain regulatory elements, thereby implicating potential regulation by BASIC PENTACYSTEINE (BPC) factors and POLYCOMB REPRESSIVE COMPLEX2 (PRC2).
Collapse
Affiliation(s)
| | - Virginie Vaissayre
- DIADE, ERL 5300 CNRS-IRD, Universit� de Montpellier, Montpellier, France
| | - Gael Paszkiewicz
- DIADE, ERL 5300 CNRS-IRD, Universit� de Montpellier, Montpellier, France
| | - Fernando Clavijo
- DIADE, ERL 5300 CNRS-IRD, Universit� de Montpellier, Montpellier, France
| | - Zsolt Kelemen
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Universit� Paris-Saclay, Versailles Cedex, France
| | - Caroline Michaud
- DIADE, ERL 5300 CNRS-IRD, Universit� de Montpellier, Montpellier, France
| | - Loï C Lepiniec
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Universit� Paris-Saclay, Versailles Cedex, France
| | - Bertrand Dubreucq
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Universit� Paris-Saclay, Versailles Cedex, France
| | - Dao-Xiu Zhou
- Universit� Paris-sud 11, Institut de Biologie des Plantes, CNRS, UMR8618, Saclay Plant Science, Orsay, France
| | - Martine Devic
- DIADE, ERL 5300 CNRS-IRD, Universit� de Montpellier, Montpellier, France
| |
Collapse
|