1
|
Blomme J, Arraiza Ribera J, De Clerck O, Jacobs TB. Consolidating Ulva functional genomics: gene editing and new selection systems. THE NEW PHYTOLOGIST 2025; 246:1710-1723. [PMID: 40088038 DOI: 10.1111/nph.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/21/2025] [Indexed: 03/17/2025]
Abstract
The green seaweed Ulva compressa is a promising model for functional biology. In addition to historical research on growth and development, -omics data and molecular tools for stable transformation are available. However, more efficient tools are needed to study gene function. Here, we expand the molecular toolkit for Ulva. We screened the survival of Ulva and its mutualistic bacteria on 14 selective agents and established that Blasticidin deaminases (BSD or bsr) can be used as selectable markers to generate stable transgenic lines. We show that Cas9 and Cas12a RNPs are suitable for targeted mutagenesis and can generate genomic deletions of up to 20 kb using the marker gene ADENINE PHOSPHORIBOSYLTRANSFERASE (APT). We demonstrate that the targeted insertion of a selectable marker via homology-directed repair or co-editing with APT is possible for nonmarker genes. We evaluated 31 vector configurations and found that the bicistronic fusion of Cas9 to a resistance marker or the incorporation of introns in Cas9 led to the most mutants. We used this to generate mutants in three nonmarker genes using a co-editing strategy. This expanded molecular toolkit now enables us to reliably make gain- and loss-of-function mutants; additional optimizations will be necessary to allow for vector-based multiplex genome editing in Ulva.
Collapse
Affiliation(s)
- Jonas Blomme
- Department of Biology, Phycology Research Group, Ghent University, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Júlia Arraiza Ribera
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Olivier De Clerck
- Department of Biology, Phycology Research Group, Ghent University, 9052, Ghent, Belgium
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| |
Collapse
|
2
|
Nievergelt AP. Genome editing in the green alga Chlamydomonas: past, present practice and future prospects. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70140. [PMID: 40186543 PMCID: PMC11971955 DOI: 10.1111/tpj.70140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
The green alga Chlamydomonas is an important and versatile model organism for research topics ranging from photosynthesis and metabolism, cilia, and basal bodies to cellular communication and the cellular cycle and is of significant interest for green bioengineering processes. The genome in this unicellular green alga is contained in 17 haploid chromosomes and codes for 16 883 protein coding genes. Functional genomics, as well as biotechnological applications, rely on the ability to remove, add, and change these genes in a controlled and efficient manner. In this review, the history of gene editing in Chlamydomonas is put in the context of the wider developments in genetics to demonstrate how many of the key developments to engineer these algae follow the global trends and the availability of technology. Building on this background, an overview of the state of the art in Chlamydomonas engineering is given, focusing primarily on the practical aspects while giving examples of recent applications. Commonly encountered Chlamydomonas-specific challenges, recent developments, and community resources are presented, and finally, a comprehensive discussion on the emergence and evolution of CRISPR/Cas-based precision gene editing is given. An outline of possible future paths for gene editing based on current global trends in genetic engineering and tools for gene editing is presented.
Collapse
Affiliation(s)
- Adrian P. Nievergelt
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstraße 108Dresden01307Germany
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 1Potsdam14476Germany
| |
Collapse
|
3
|
Liu D, Wang M, Gent JI, Sun P, Dawe RK, Umen J. Two CENH3 paralogs in the green alga Chlamydomonas reinhardtii have a redundantly essential function and associate with ZeppL-LINE1 elements. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70153. [PMID: 40289909 DOI: 10.1111/tpj.70153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/30/2025]
Abstract
Centromeres in eukaryotes are defined by the presence of histone H3 variant CENP-A/CENH3. Chlamydomonas encodes two predicted CENH3 paralogs, CENH3.1 and CENH3.2, that have not been previously characterized. We generated peptide antibodies to unique N-terminal epitopes for each of the two predicted Chlamydomonas CENH3 paralogs as well as an antibody against a shared CENH3 epitope. All three CENH3 antibodies recognized proteins of the expected size on immunoblots and had punctate nuclear immunofluorescence staining patterns. These results are consistent with both paralogs being expressed and localized to centromeres. CRISPR-Cas9-mediated insertional mutagenesis was used to generate predicted null mutations in either CENH3.1 or CENH3.2. Single mutants were viable but cenh3.1 cenh3.2 double mutants were not recovered, confirming that the function of CENH3 is essential. We sequenced and assembled two chromosome-scale Chlamydomonas genomes from strains CC-400 and UL-1690 (a derivative of CC-1690) with complete centromere sequences for 17/17 and 14/17 chromosomes respectively, enabling us to compare centromere evolution across four isolates with near complete assemblies. These data revealed significant changes across isolates between homologous centromeres including mobility and degeneration of ZeppL-LINE1 (ZeppL) transposons that comprise the major centromere repeat sequence in Chlamydomonas. We used cleavage under targets and tagmentation (CUT&Tag) to purify and map CENH3-bound genomic sequences and found enrichment of CENH3-binding almost exclusively at predicted centromere regions. An interesting exception was chromosome 2 in UL-1690, which had enrichment at its genetically mapped centromere repeat region as well as a second, distal location, centered around a single recently acquired ZeppL insertion. The CENH3-bound regions of the 17 Chlamydomonas centromeres ranged from 63.5 kb (average lower estimate) to 175 kb (average upper estimate). The relatively small size of its centromeres suggests that Chlamydomonas may be a useful organism for testing and deploying artificial chromosome technologies.
Collapse
Affiliation(s)
- Dianyi Liu
- Donald Danforth Plant Science Center, 975 N. Warson Rd., St. Louis, Missouri, 63132, USA
| | - Mingyu Wang
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, 30602, USA
| | - Jonathan I Gent
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Peipei Sun
- Donald Danforth Plant Science Center, 975 N. Warson Rd., St. Louis, Missouri, 63132, USA
| | - R Kelly Dawe
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, 30602, USA
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, USA
- Department of Genetics, University of Georgia, Athens, Georgia, 30602, USA
| | - James Umen
- Donald Danforth Plant Science Center, 975 N. Warson Rd., St. Louis, Missouri, 63132, USA
| |
Collapse
|
4
|
Yuan Y, Iannetta AA, Kim M, Sadecki PW, Arend M, Tsichla A, Águila Ruiz-Sola M, Kepesidis G, Falconet D, Thevenon E, Tardif M, Brugière S, Couté Y, Kleman JP, Sizova I, Schilling M, Jouhet J, Hegemann P, Li-Beisson Y, Nikoloski Z, Bastien O, Hicks LM, Petroutsos D. Phototropin connects blue light perception to starch metabolism in green algae. Nat Commun 2025; 16:2545. [PMID: 40087266 PMCID: PMC11909140 DOI: 10.1038/s41467-025-57809-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 02/21/2025] [Indexed: 03/17/2025] Open
Abstract
In photosynthetic organisms, light acts as an environmental signal to control their development and physiology, as well as energy source to drive the conversion of CO2 into carbohydrates used for growth or storage. The main storage carbohydrate in green algae is starch, which accumulates during the day and is broken down at night to meet cellular energy demands. The signaling role of light quality in the regulation of starch accumulation remains unexplored. Here, we identify PHOTOTROPIN-MEDIATED SIGNALING KINASE 1 (PMSK1) as a key regulator of starch metabolism in Chlamydomonas reinhardtii. In its phosphorylated form (PMSK1-P), it activates GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE (GAP1), promoting starch biosynthesis. We show that blue light, perceived by PHOTOTROPIN, induces PMSK1 dephosphorylation that in turn represses GAP1 mRNA levels and reduces starch accumulation. These findings reveal a previously uncharacterized blue light-mediated signaling pathway that advances our understanding of photoreceptor-controlled carbon metabolism in microalgae.
Collapse
Affiliation(s)
- Yizhong Yuan
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, Grenoble, France
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Anthony A Iannetta
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Minjae Kim
- Institute de Biosciences et Biotechnologies Aix-Marseille, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Patric W Sadecki
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marius Arend
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Bioinformatics and Mathematical Modeling Department, Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Angeliki Tsichla
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, Grenoble, France
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - M Águila Ruiz-Sola
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, Grenoble, France
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Sevilla, Spain
| | - Georgios Kepesidis
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, Grenoble, France
- Sandia National Laboratories, Livermore, CA, USA
| | - Denis Falconet
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, Grenoble, France
| | - Emmanuel Thevenon
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, Grenoble, France
| | - Marianne Tardif
- Université Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEA, FR2048, Grenoble, France
| | - Sabine Brugière
- Université Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEA, FR2048, Grenoble, France
| | - Yohann Couté
- Université Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEA, FR2048, Grenoble, France
| | | | - Irina Sizova
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marion Schilling
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, Grenoble, France
| | - Juliette Jouhet
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, Grenoble, France
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yonghua Li-Beisson
- Institute de Biosciences et Biotechnologies Aix-Marseille, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Zoran Nikoloski
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Bioinformatics and Mathematical Modeling Department, Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Olivier Bastien
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, Grenoble, France
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dimitris Petroutsos
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, Grenoble, France.
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Le TT, Choi HI, Kim JW, Yun JH, Lee YH, Jeon EJ, Kwon KK, Cho DH, Choi DY, Park SB, Yoon HR, Lee J, Sim EJ, Lee YJ, Kim HS. Cas9-mediated gene-editing frequency in microalgae is doubled by harnessing the interaction between importin α and phytopathogenic NLSs. Proc Natl Acad Sci U S A 2025; 122:e2415072122. [PMID: 40030016 PMCID: PMC11912399 DOI: 10.1073/pnas.2415072122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/22/2025] [Indexed: 03/19/2025] Open
Abstract
Pathogen-derived nuclear localization signals (NLSs) enable vigorous nuclear invasion in the host by the virulence proteins harboring them. Herein, inspired by the robust nuclear import mechanism, we show that NLSs originating from the plant infection-associated Agrobacterium proteins VirD2 and VirE2 can be incorporated into the Cas9 system as efficient nuclear delivery enhancers, thereby improving the low gene-editing frequency in a model microalga, Chlamydomonas reinhardtii, caused by poor nuclear localization of the bulky nuclease. Prior to evaluation of the NLSs, IPA1 (Cre04.g215850) was first defined in the alga as the nuclear import-related importin alpha (Impα) that serves as a counterpart adaptor protein of the NLSs, based on extensive in silico analyses considering the protein's sequence, tertiary folding behavior, and structural basis when interacting with a well-studied SV40TAg NLS. Through precursive affinity explorations, we reproducibly found that the NLSs mediated the binding between the Cas9 and Impα with nM affinities and visually confirmed that the fusion of the NLSs strictly localized the peptide-bearing cargoes in the microalgal nucleus without compensating for their cleavage ability. When employed in a real-world application, the VirD2 NLS increases the mutation frequency (~1.12 × 10-5) over 2.4-fold compared to an archetypal SV40TAg NLS (~0.46 × 10-5) when fused with Cas9. We demonstrate the cross-species versatility of the Impα-dependent strategy by successfully applying it to an industrial alga, Chlorella Sp. HS2. This work, focused on affinity augmentation, provides insights into increasing the frequency of gene editing, which can be advantageously used in programmable mutagenesis with broad applicability.
Collapse
Affiliation(s)
- Trang Thi Le
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
| | - Hong Il Choi
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
| | - Ji Won Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
| | - Jin-Ho Yun
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon-si, Gyeonggi-do16419, South Korea
| | - Yoon Hyeok Lee
- Design AI Lab, AI Center Samsung Electronics, Suwon-si, Gyeonggi-do16678, South Korea
| | - Eun Jung Jeon
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
| | - Kil Koang Kwon
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
| | - Dae-Hyun Cho
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
| | - Dong-Yun Choi
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
| | - Su-Bin Park
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
| | - Hyang Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
| | - Jeongmi Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Bio-Molecular Science, University of Science and Technology, Daejeon34113, South Korea
| | - Eun Jeong Sim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
| | - Yong Jae Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
| |
Collapse
|
6
|
Tran QG, Le TT, Choi DY, Cho DH, Yun JH, Choi HI, Kim HS, Lee YJ. Progress and challenges in CRISPR/Cas applications in microalgae. J Microbiol 2025; 63:e2501028. [PMID: 40195838 DOI: 10.71150/jm.2501028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/06/2025] [Indexed: 04/09/2025]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technologies have emerged as powerful tools for precise genome editing, leading to a revolution in genetic research and biotechnology across diverse organisms including microalgae. Since the 1950s, microalgal production has evolved from initial cultivation under controlled conditions to advanced metabolic engineering to meet industrial demands. However, effective genetic modification in microalgae has faced significant challenges, including issues with transformation efficiency, limited target selection, and genetic differences between species, as interspecies genetic variation limits the use of genetic tools from one species to another. This review summarized recent advancements in CRISPR systems applied to microalgae, with a focus on improving gene editing precision and efficiency, while addressing organism-specific challenges. We also discuss notable successes in utilizing the class 2 CRISPR-associated (Cas) proteins, including Cas9 and Cas12a, as well as emerging CRISPR-based approaches tailored to overcome microalgal cellular barriers. Additionally, we propose future perspectives for utilizing CRISPR/Cas strategies in microalgal biotechnology.
Collapse
Affiliation(s)
- Quynh-Giao Tran
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Trang Thi Le
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Dong-Yun Choi
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Dae-Hyun Cho
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jin-Ho Yun
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hong Il Choi
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Yong Jae Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
7
|
Dannay M, Bertin C, Cavallari E, Albanese P, Tolleter D, Giustini C, Menneteau M, Brugière S, Couté Y, Finazzi G, Demarsy E, Ulm R, Allorent G. Photoreceptor-induced LHL4 protects the photosystem II monomer in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2025; 122:e2418687122. [PMID: 39946539 PMCID: PMC11848305 DOI: 10.1073/pnas.2418687122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/09/2025] [Indexed: 02/26/2025] Open
Abstract
Photosynthesis, the fundamental process using light energy to convert carbon dioxide to organic matter, is vital for life on Earth. It relies on capturing light through light-harvesting complexes (LHC) in photosystem I (PSI) and PSII and on the conversion of light energy into chemical energy. Composition and organization of PSI and PSII core complexes are well conserved across evolution. PSII is particularly sensitive to photodamage but benefits from a large diversity of photoprotective mechanisms, finely tuned to handle the dynamic and ever-changing light conditions. Light Harvesting Complex protein family members (LHC and LHC-like families) have acquired a dual function during evolution. Members of the LHC antenna complexes of PS capture light energy, whereas others dissipate excess energy that cannot be harnessed for photosynthesis. This process mainly occurs through nonphotochemical quenching (NPQ). In this work, we focus on the Light Harvesting complex-Like 4 (LHL4) protein, a LHC-like protein induced by ultraviolet-B (UV-B) and blue light through UV Resistance locus 8 (UVR8) and phototropin photoreceptor-activated signaling pathways in the model green microalgae Chlamydomonas reinhardtii. We demonstrate that alongside established NPQ effectors, LHL4 plays a key role in photoprotection, preventing singlet oxygen accumulation in PSII and promoting cell survival upon light stress. LHL4 protective function is distinct from that of NPQ-related proteins, as LHL4 specifically and uniquely binds to the transient monomeric form of the core PSII complex, safeguarding its integrity. LHL4 characterization expands our understanding of the interplay between light harvesting and photoprotection mechanisms upon light stress in photosynthetic microalgae.
Collapse
Affiliation(s)
- Marie Dannay
- Université Grenoble Alpes, CNRS, CEA, INRAE, Interdisciplinary Research Institute of Grenoble, Cell and Plant Physiology Laboratory, Grenoble38000, France
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, Geneva1211, Switzerland
| | - Chloé Bertin
- Université Grenoble Alpes, CNRS, CEA, INRAE, Interdisciplinary Research Institute of Grenoble, Cell and Plant Physiology Laboratory, Grenoble38000, France
| | - Eva Cavallari
- Université Grenoble Alpes, CNRS, CEA, INRAE, Interdisciplinary Research Institute of Grenoble, Cell and Plant Physiology Laboratory, Grenoble38000, France
| | - Pascal Albanese
- Université Grenoble Alpes, CNRS, CEA, INRAE, Interdisciplinary Research Institute of Grenoble, Cell and Plant Physiology Laboratory, Grenoble38000, France
- Université Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, GrenobleFR2048, France
| | - Dimitri Tolleter
- Université Grenoble Alpes, CNRS, CEA, INRAE, Interdisciplinary Research Institute of Grenoble, Cell and Plant Physiology Laboratory, Grenoble38000, France
| | - Cécile Giustini
- Université Grenoble Alpes, CNRS, CEA, INRAE, Interdisciplinary Research Institute of Grenoble, Cell and Plant Physiology Laboratory, Grenoble38000, France
| | - Mathilde Menneteau
- Université Grenoble Alpes, CNRS, CEA, INRAE, Interdisciplinary Research Institute of Grenoble, Cell and Plant Physiology Laboratory, Grenoble38000, France
| | - Sabine Brugière
- Université Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, GrenobleFR2048, France
| | - Yohann Couté
- Université Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, GrenobleFR2048, France
| | - Giovanni Finazzi
- Université Grenoble Alpes, CNRS, CEA, INRAE, Interdisciplinary Research Institute of Grenoble, Cell and Plant Physiology Laboratory, Grenoble38000, France
| | - Emilie Demarsy
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, Geneva1211, Switzerland
| | - Roman Ulm
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, Geneva1211, Switzerland
- Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva1211, Switzerland
| | - Guillaume Allorent
- Université Grenoble Alpes, CNRS, CEA, INRAE, Interdisciplinary Research Institute of Grenoble, Cell and Plant Physiology Laboratory, Grenoble38000, France
| |
Collapse
|
8
|
Vuong T, Shetty P, Kurtoglu E, Schultz C, Schrader L, Then P, Petersen J, Westermann M, Rredhi A, Chowdhury S, Mukherji R, Schmitt M, Popp J, Stallforth P, Mittag M. Metamorphosis of a unicellular green alga in the presence of acetate and a spatially structured three-dimensional environment. THE NEW PHYTOLOGIST 2025; 245:1180-1196. [PMID: 39639794 PMCID: PMC11711948 DOI: 10.1111/nph.20299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
Photosynthetic protists, named microalgae, are key players in global primary production. The green microalga Chlamydomonas reinhardtii is a well-studied model organism. In nature, it dwells in acetate-rich paddy rice soil, which is not mimicked by standard liquid laboratory conditions. Here, we maintained the algae in a liquid environment with spatially structured 3-D components (S3-D) and acetate recreating natural conditions. We perform transcriptome sequencing, immunoblotting, fluorescence and electron microscopy, and Raman microspectroscopy to characterize the algae in S3-D vs homogeneous conditions. The algae undergo a metamorphosis-like process when transitioned from homogeneous aquatic to a lifestyle simulating acetate-rich rice soil. These conditions result in reduced cell size and cilia length, an enlarged eyespot and many cells with double-layered cell walls. RNA-Seq reveals alterations in c. 2400 transcripts. Four key photoreceptors including CRY-DASH1 and phototropin governing plastid metabolism along with its eyespot are altered in their protein expression. Consequently, photosynthetic pigments, lipids and starch levels vary as do starch distribution patterns. Fitness against antagonistic bacteria is enhanced concurrently with the downregulation of an involved Ca2+ channel transcript. This study highlights the profound impact of S3-D initiating processes inaccessible under homogeneous laboratory conditions. Thus, overexpression lines for certain photoreceptors and starch are naturally created.
Collapse
Affiliation(s)
- Trang Vuong
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyFriedrich Schiller University Jena07743JenaGermany
| | - Prateek Shetty
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyFriedrich Schiller University Jena07743JenaGermany
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07743JenaGermany
| | - Ece Kurtoglu
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyFriedrich Schiller University Jena07743JenaGermany
| | - Constanze Schultz
- Leibniz Institute of Photonic Technology (Leibniz‐IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infection Research (LPI)Albert‐Einstein‐Str. 907745JenaGermany
| | - Laura Schrader
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyFriedrich Schiller University Jena07743JenaGermany
| | - Patrick Then
- Microverse Imaging Center, Balance of the Microverse Cluster of ExcellenceFriedrich Schiller University JenaPhilosophenweg 707743JenaGermany
| | - Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyFriedrich Schiller University Jena07743JenaGermany
| | | | - Anxhela Rredhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyFriedrich Schiller University Jena07743JenaGermany
| | - Somak Chowdhury
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection BiologyHans Knöll Institute (HKI)Beutenbergstraße 11a07745JenaGermany
| | - Ruchira Mukherji
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection BiologyHans Knöll Institute (HKI)Beutenbergstraße 11a07745JenaGermany
| | - Michael Schmitt
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Center for Photonics in Infection Research (LPI)Friedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Jürgen Popp
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07743JenaGermany
- Leibniz Institute of Photonic Technology (Leibniz‐IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infection Research (LPI)Albert‐Einstein‐Str. 907745JenaGermany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Center for Photonics in Infection Research (LPI)Friedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Pierre Stallforth
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07743JenaGermany
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection BiologyHans Knöll Institute (HKI)Beutenbergstraße 11a07745JenaGermany
- Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University JenaHumboldtstrasse 1007743JenaGermany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyFriedrich Schiller University Jena07743JenaGermany
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
9
|
Arshad S, Qadir ML, Hussain N, Ali Q, Han S, Ali D. Advances in CRISPR/Cas9 technology: shaping the future of photosynthetic microorganisms for biofuel production. FUNCTIONAL PLANT BIOLOGY : FPB 2025; 52:FP24255. [PMID: 39932844 DOI: 10.1071/fp24255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/15/2025] [Indexed: 02/13/2025]
Abstract
Use of fossil fuels causes environmental issues due to its inefficiency and and imminent depletion. This has led to interest in identifying alternative and renewable energy sources such as biofuel generation from photosynthetic organisms. A wide variety of prokaryotic and eukaryotic microorganisms, known as microalgae, have the potential to be economical and ecologically sustainable in the manufacture of biofuels such as bio-hydrogen, biodiesel, bio-oils, and bio-syngas. By using contemporary bioengineering techniques, the innate potential of algae to produce biomass of superior quality may be enhanced. In algal biotechnology, directed genome modification via RNA-guided endonucleases is a new approach. CRISPR/Cas systems have recently been frequently used to modify the genetic makeup of several aquatic and freshwater microalgae. The majority of research has used the Cas9-driven Type II system, one of two classes and six unique kinds of CRISPR systems, to specifically target desired genes in algae, and knock them out and down, or both. Using CRISPR technology to modify its genetic makeup, microalgae has produced more biomass and increased in lipid content. This review highlights the attempts made so far to target microalgae genome modification, discusses the prospects for developing the CRISPR platform for large-scale genome modification of microalgae, and identifies the opportunities and challenges in the development and distribution of CRISPR/Cas9 components.
Collapse
Affiliation(s)
- Samreen Arshad
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Luqman Qadir
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Shiming Han
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui 553004, China
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Strain A, Kratzberg N, Vu D, Miller E, Wakabayashi KI, Melvin A, Kato N. COP5/HKR1 changes ciliary beat pattern and biases cell steering during chemotaxis in Chlamydomonas reinhardtii. Sci Rep 2024; 14:30354. [PMID: 39639079 PMCID: PMC11621555 DOI: 10.1038/s41598-024-81455-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
This study investigates the control of ciliary beat patterns during ammonium chemotaxis in the model ciliate microalga Chlamydomonas reinhardtii. Screening the chemotaxis response of mutant strains with ciliary defects revealed that a strain lacking CAV2, the alpha subunit of the voltage-gated calcium channel, is deficient in ammonium chemotaxis. CAV2 regulates the switching of the ciliary beat pattern from the asymmetric to the symmetric waveform. Strains lacking COP5/HKR1 (chlamyopsin 5/histidine kinase rhodopsin 1) are also deficient in ammonium chemotaxis. Conversely, strains defective in phototaxis perform ammonium chemotaxis normally. Cell motility analysis revealed wild-type cells reduce the incidences of switching the ciliary beat pattern from the asymmetric to symmetric waveform when swimming up the ammonium gradient. In contrast, the COP5/HKR1 disrupted strain does not bias ciliary beat pattern switching in the gradient. This finding reveals that COP5/HKR1 plays a critical role in Chlamydomonas chemotaxis signaling transduction, similarly to animal chemotaxis. On the other hand, ciliary beat pattern switching induces randomized directional changes, analogous to run-and-tumble chemotaxis of bacteria and archaea. This study reveals that Chlamydomonas signaling transduction is similar to the eukaryotic mechanism, yet the cellular locomotion follows the bacteria and archaea mechanism.
Collapse
Affiliation(s)
- Alexis Strain
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Nathan Kratzberg
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Dan Vu
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Emmaline Miller
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ken-Ichi Wakabayashi
- Department of Industrial Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan
| | - Adam Melvin
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Naohiro Kato
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
11
|
Ross IL, Le HP, Budiman S, Xiong D, Hemker F, Millen EA, Oey M, Hankamer B. A cyclical marker system enables indefinite series of oligonucleotide-directed gene editing in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2024; 196:2330-2345. [PMID: 39179421 PMCID: PMC11637769 DOI: 10.1093/plphys/kiae427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 08/26/2024]
Abstract
CRISPR/Cas9 gene editing in the model green alga Chlamydomonas reinhardtii relies on the use of selective marker genes to enrich for nonselectable target mutations. This becomes challenging when many sequential modifications are required in a single-cell line, as useful markers are limited. Here, we demonstrate a cyclical selection process which only requires a single marker gene to identify an almost infinite sequential series of CRISPR-based target gene modifications. We used the NIA1 (Nit1, NR; nitrate reductase) gene as the selectable marker in this study. In the forward stage of the cycle, a stop codon was engineered into the NIA1 gene at the CRISPR target location. Cells retaining the wild-type NIA1 gene were killed by chlorate, while NIA1 knockout mutants survived. In the reverse phase of the cycle, the stop codon engineered into the NIA1 gene during the forward phase was edited back to the wild-type sequence. Using nitrate as the sole nitrogen source, only the reverted wild-type cells survived. By using CRISPR to specifically deactivate and reactivate the NIA1 gene, a marker system was established that flipped back and forth between chlorate- and auxotrophic (nitrate)-based selection. This provided a scarless cyclical marker system that enabled an indefinite series of CRISPR edits in other, nonselectable genes. We demonstrate that this "Sequential CRISPR via Recycling Endogenous Auxotrophic Markers (SCREAM)" technology enables an essentially limitless series of genetic modifications to be introduced into a single-cell lineage of C. reinhardtii in a fast and efficient manner to complete complex genetic engineering.
Collapse
Affiliation(s)
- Ian L Ross
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hong Phuong Le
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sabar Budiman
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dake Xiong
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fritz Hemker
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Elizabeth A Millen
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Melanie Oey
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ben Hankamer
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
12
|
Battarra C, Angstenberger M, Bassi R, Dall'Osto L. Efficient DNA-free co-targeting of nuclear genes in Chlamydomonas reinhardtii. Biol Direct 2024; 19:108. [PMID: 39529073 PMCID: PMC11556018 DOI: 10.1186/s13062-024-00545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Chlamydomonas reinhardtii, a model organism for unicellular green microalgae, is widely used in basic and applied research. Nonetheless, proceeding towards synthetic biology requires a full set of manipulation techniques for inserting, removing, or editing genes. Despite recent advancements in CRISPR/Cas9, still significant limitations in producing gene knock-outs are standing, including (i) unsatisfactory genome editing (GE) efficiency and (ii) uncontrolled DNA random insertion of antibiotic resistance markers. Thus, obtaining efficient gene targeting without using marker genes is instrumental in developing a pipeline for efficient engineering of strains for biotechnological applications. We developed an efficient DNA-free gene disruption strategy, relying on phenotypical identification of mutants, to (i) precisely determine its efficiency compared to marker-relying approaches and (ii) establish a new DNA-free editing tool. This study found that classical CRISPR Cas9-based GE for gene disruption in Chlamydomonas reinhardtii is mainly limited by DNA integration. With respect to previous results achieved on synchronized cell populations, we succeeded in increasing the GE efficiency of single gene targeting by about 200 times and up to 270 times by applying phosphate starvation. Moreover, we determined the efficiency of multiplex simultaneous gene disruption by using an additional gene target whose knock-out did not lead to a visible phenotype, achieving a co-targeting efficiency of 22%. These results expand the toolset of GE techniques and, additionally, lead the way to future strategies to generate complex genotypes or to functionally investigate gene families. Furthermore, the approach provides new perspectives on how GE can be applied to (non-) model microalgae species, targeting groups of candidate genes of high interest for basic research and biotechnological applications.
Collapse
Affiliation(s)
- Claudia Battarra
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada le Grazie 15, 31734, Verona, Italy
| | - Max Angstenberger
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada le Grazie 15, 31734, Verona, Italy.
- Institute of Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue-Str.9, 60438, Frankfurt am Main, Germany.
| | - Roberto Bassi
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada le Grazie 15, 31734, Verona, Italy.
| | - Luca Dall'Osto
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada le Grazie 15, 31734, Verona, Italy
| |
Collapse
|
13
|
Wolfram M, Greif A, Baidukova O, Voll H, Tauber S, Lindacher J, Hegemann P, Kreimer G. Insights into degradation and targeting of the photoreceptor channelrhodopsin-1. PLANT, CELL & ENVIRONMENT 2024; 47:4188-4211. [PMID: 38935876 DOI: 10.1111/pce.15017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
In Chlamydomonas, the directly light-gated, plasma membrane-localized cation channels channelrhodopsins ChR1 and ChR2 are the primary photoreceptors for phototaxis. Their targeting and abundance is essential for optimal movement responses. However, our knowledge how Chlamydomonas achieves this is still at its infancy. Here we show that ChR1 internalization occurs via light-stimulated endocytosis. Prior or during endocytosis ChR1 is modified and forms high molecular mass complexes. These are the solely detectable ChR1 forms in extracellular vesicles and their abundance therein dynamically changes upon illumination. The ChR1-containing extracellular vesicles are secreted via the plasma membrane and/or the ciliary base. In line with this, ciliogenesis mutants exhibit increased ChR1 degradation rates. Further, we establish involvement of the cysteine protease CEP1, a member of the papain-type C1A subfamily. ΔCEP1-knockout strains lack light-induced ChR1 degradation, whereas ChR2 degradation was unaffected. Low light stimulates CEP1 expression, which is regulated via phototropin, a SPA1 E3 ubiquitin ligase and cyclic AMP. Further, mutant and inhibitor analyses revealed involvement of the small GTPase ARL11 and SUMOylation in ChR1 targeting to the eyespot and cilia. Our study thus defines the degradation pathway of this central photoreceptor of Chlamydomonas and identifies novel elements involved in its homoeostasis and targeting.
Collapse
Affiliation(s)
- Michaela Wolfram
- Department of Biology, Cell Biology, Friedrich-Alexander Universität, Erlangen-Nürnberg, Germany
| | - Arne Greif
- Department of Biology, Cell Biology, Friedrich-Alexander Universität, Erlangen-Nürnberg, Germany
| | - Olga Baidukova
- Institute of Biology, Experimental Biophysics, Humboldt Universität, Berlin, Germany
| | - Hildegard Voll
- Department of Biology, Cell Biology, Friedrich-Alexander Universität, Erlangen-Nürnberg, Germany
| | - Sandra Tauber
- Department of Biology, Cell Biology, Friedrich-Alexander Universität, Erlangen-Nürnberg, Germany
| | - Jana Lindacher
- Department of Biology, Cell Biology, Friedrich-Alexander Universität, Erlangen-Nürnberg, Germany
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt Universität, Berlin, Germany
| | - Georg Kreimer
- Department of Biology, Cell Biology, Friedrich-Alexander Universität, Erlangen-Nürnberg, Germany
| |
Collapse
|
14
|
Hwang J, Yanagisawa H, Davis KC, Hunter EL, Fox LA, Jimenez AR, Goodwin RE, Gordon SA, Stuart CDE, Bower R, Porter ME, Dutcher SK, Sale WS, Lechtreck KF, Alford LM. Assembly of FAP93 at the proximal axoneme in Chlamydomonas cilia. Cytoskeleton (Hoboken) 2024; 81:539-555. [PMID: 38224153 DOI: 10.1002/cm.21818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
To identify proteins specific to the proximal ciliary axoneme, we used iTRAQ to compare short (~2 μm) and full-length (~11 μm) axonemes of Chlamydomonas. Known components of the proximal axoneme such as minor dynein heavy chains and LF5 kinase as well as the ciliary tip proteins FAP256 (CEP104) and EB1 were enriched in short axonemes whereas proteins present along the length of the axoneme were of similar abundance in both samples. The iTRAQ analysis revealed that FAP93, a protein of unknown function, and protein phosphatase 2A (PP2A) are enriched in the short axonemes. Consistently, immunoblots show enrichment of FAP93 and PP2A in short axonemes and immunofluorescence confirms the localization of FAP93 and enrichment of PP2A at the proximal axoneme. Ciliary regeneration reveals that FAP93 assembles continuously but more slowly than other axonemal structures and terminates at 1.03 μm in steady-state axonemes. The length of FAP93 assembly correlates with ciliary length, demonstrating ciliary length-dependent assembly of FAP93. Dikaryon rescue experiments show that FAP93 can assemble independently of IFT transport. In addition, FRAP analysis of GFP-tagged FAP93 demonstrates that FAP93 is stably anchored in the axoneme. FAP93 may function as a scaffold for assembly of other specific proteins at the proximal axoneme.
Collapse
Affiliation(s)
- Juyeon Hwang
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA
| | | | - Keira C Davis
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA
- College of Arts & Sciences, Clayton State University, Morrow, Georgia, USA
| | - Emily L Hunter
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA
- Science Communication Group, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Laura A Fox
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA
| | - Ariana R Jimenez
- Division of Natural Sciences, Oglethorpe University, Atlanta, Georgia, USA
| | - Reagan E Goodwin
- Division of Natural Sciences, Oglethorpe University, Atlanta, Georgia, USA
| | - Sarah A Gordon
- Division of Natural Sciences, Oglethorpe University, Atlanta, Georgia, USA
| | | | - Raqual Bower
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mary E Porter
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University St. Louis, St. Louis, Missouri, USA
| | - Winfield S Sale
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA
| | - Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Lea M Alford
- Division of Natural Sciences, Oglethorpe University, Atlanta, Georgia, USA
| |
Collapse
|
15
|
Li X, Zhang Y, Wen X, Pan J. Utilizing codon degeneracy in the design of donor DNA for CRISPR/Cas9-mediated gene editing to streamline the screening process for single amino acid mutations. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2133-2143. [PMID: 38963727 DOI: 10.1111/tpj.16903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
Chlamydomonas reinhardtii, a unicellular green alga, has been widely used as a model organism for studies of algal, plant and ciliary biology. The generation of targeted amino acid mutations is often necessary, and this can be achieved using CRISPR/Cas9 induced homology-directed repair to install genomic modifications from exogenous donor DNA. Due to the low gene editing efficiency, the technical challenge lies in identifying the mutant cells. Direct sequencing is not practical, and pre-screening is required. Here, we report a strategy for generating and screening for amino acid point mutations using the CRISPR/Cas9 gene editing system. The strategy is based on designing donor DNA using codon degeneracy, which enables the design of specific primers to facilitate mutant screening by PCR. An in vitro assembled RNP complex, along with a dsDNA donor and an antibiotic resistance marker, was electroporated into wild-type cells, followed by PCR screening. To demonstrate this principle, we have generated the E102K mutation in centrin and the K40R mutation in α-tubulin. The editing efficiencies at the target sites for Centrin, TUA1, TUA2 were 4, 24 and 8% respectively, based on PCR screening. More than 80% of the mutants with the expected size of PCR products were precisely edited, as revealed by DNA sequencing. Subsequently, the precision-edited mutants were biochemically verified. The introduction of codon degeneracy did not affect the gene expression of centrin and α-tubulins. Thus, this approach can be used to facilitate the identification of point mutations, especially in genes with low editing rates.
Collapse
Affiliation(s)
- Xuecheng Li
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yongli Zhang
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xin Wen
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong Province, 266000, China
| |
Collapse
|
16
|
Kneip JS, Kniepkamp N, Jang J, Mortaro MG, Jin E, Kruse O, Baier T. CRISPR/Cas9-Mediated Knockout of the Lycopene ε-Cyclase for Efficient Astaxanthin Production in the Green Microalga Chlamydomonas reinhardtii. PLANTS (BASEL, SWITZERLAND) 2024; 13:1393. [PMID: 38794462 PMCID: PMC11125023 DOI: 10.3390/plants13101393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Carotenoids are valuable pigments naturally occurring in all photosynthetic plants and microalgae as well as in selected fungi, bacteria, and archaea. Green microalgae developed a complex carotenoid profile suitable for efficient light harvesting and light protection and harbor great capacity for carotenoid production through the substantial power of the endogenous 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Previous works established successful genome editing and induced significant changes in the cellular carotenoid content in Chlamydomonas reinhardtii. This study employs a tailored carotenoid pathway for engineered bioproduction of the valuable ketocarotenoid astaxanthin. Functional knockout of lycopene ε-cyclase (LCYE) and non-homologous end joining (NHEJ)-based integration of donor DNA at the target site inhibit the accumulation of α-carotene and consequently lutein and loroxanthin, abundant carotenoids in C. reinhardtii without changes in cellular fitness. PCR-based screening indicated that 4 of 96 regenerated candidate lines carried (partial) integrations of donor DNA and increased ß-carotene as well as derived carotenoid contents. Iterative overexpression of CrBKT, PacrtB, and CrCHYB resulted in a 2.3-fold increase in astaxanthin accumulation in mutant ΔLCYE#3 (1.8 mg/L) compared to the parental strain UVM4, which demonstrates the potential of genome editing for the design of a green cell factory for astaxanthin bioproduction.
Collapse
Affiliation(s)
- Jacob Sebastian Kneip
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Niklas Kniepkamp
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Junhwan Jang
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Maria Grazia Mortaro
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Olaf Kruse
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Thomas Baier
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
17
|
Olsen ML, Olsen K, Jensen PE. Consumer acceptance of microalgae as a novel food - Where are we now? And how to get further. PHYSIOLOGIA PLANTARUM 2024; 176:e14337. [PMID: 38716544 DOI: 10.1111/ppl.14337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/24/2024]
Abstract
Microalgae provide a potential new food resource for sustainable human nutrition. Many microalgae species can produce a high content of total protein with a balanced composition of essential amino acids, healthy oils rich in polyunsaturated fatty acids, carotenoids, fibers, and vitamins. These components can be made available via unprocessed microalgae or refined as individual ingredients. In either case, if added to foods, microalgae may affect taste, smell, texture, and appearance. This review focuses on how consumer acceptance of new foods - such as microalgae - can be accessed in the world of sensory science by bringing together examples from recent consumer surveys. The main aim is to obtain an overview of the attitude towards microalgae as a food ingredient in Europe. The overarching finding suggests that European consumers generally find microalgae acceptable as ingredients in food products. However, there is a prevailing preference for keeping inclusion levels low, primarily attributed to the vivid green color that algae impart to food items upon addition. Additionally, consumers tend to favor the taste of freshwater algae over marine species, often finding the latter's pronounced fishy flavor less appealing.
Collapse
Affiliation(s)
- Malene Lihme Olsen
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Karsten Olsen
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Poul Erik Jensen
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
18
|
Sandor R, Wagh SG, Kelterborn S, Großkinsky DK, Novak O, Olsen N, Paul B, Petřík I, Wu S, Hegemann P, Strnad M, Červený J, Roitsch T. Cytokinin-deficient Chlamydomonas reinhardtii CRISPR-Cas9 mutants show reduced ability to prime resistance of tobacco against bacterial infection. PHYSIOLOGIA PLANTARUM 2024; 176:e14311. [PMID: 38715208 DOI: 10.1111/ppl.14311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024]
Abstract
Although microalgae have only recently been recognized as part of the plant and soil microbiome, their application as biofertilizers has a tradition in sustainable crop production. Under consideration of their ability to produce the plant growth-stimulating hormone cytokinin (CK), known to also induce pathogen resistance, we have assessed the biocontrol ability of CK-producing microalgae. All pro- and eukaryotic CK-producing microalgae tested were able to enhance the tolerance of tobacco against Pseudomonas syringae pv. tabaci (PsT) infection. Since Chlamydomonas reinhardtii (Cre) proved to be the most efficient, we functionally characterized its biocontrol ability. We employed the CRISPR-Cas9 system to generate the first knockouts of CK biosynthetic genes in microalgae. Specifically, we targeted Cre Lonely Guy (LOG) and isopentenyltransferase (IPT) genes, the key genes of CK biosynthesis. While Cre wild-type exhibits a strong protection, the CK-deficient mutants have a reduced ability to induce plant defence. The degree of protection correlates with the CK levels, with the IPT mutants showing less protection than the LOG mutants. Gene expression analyses showed that Cre strongly stimulates tobacco resistance through defence gene priming. This study functionally verifies that Cre primes defence responses with CK, which contributes to the robustness of the effect. This work contributes to elucidate microalgae-mediated plant defence priming and identifies the role of CKs. In addition, these results underscore the potential of CK-producing microalgae as biologicals in agriculture by combining biofertilizer and biocontrol ability for sustainable and environment-friendly crop management.
Collapse
Affiliation(s)
- Roman Sandor
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| | - Sopan Ganpatrao Wagh
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| | - Simon Kelterborn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for translational physiology, Berlin, Germany
| | - Dominik K Großkinsky
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Bioresources Unit, Tulln a. d. Donau, Austria
| | - Ondrej Novak
- Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Niels Olsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Bichitra Paul
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Ivan Petřík
- Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Shujie Wu
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Peter Hegemann
- Humboldt Universität zu Berlin, Institute of Biology, Experimental Biophysics, Berlin, Germany
| | - Miroslav Strnad
- Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Jan Červený
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| | - Thomas Roitsch
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
19
|
Nievergelt AP, Diener DR, Bogdanova A, Brown T, Pigino G. Protocol for precision editing of endogenous Chlamydomonas reinhardtii genes with CRISPR-Cas. STAR Protoc 2024; 5:102774. [PMID: 38096061 PMCID: PMC10762519 DOI: 10.1016/j.xpro.2023.102774] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
CRISPR-Cas genome engineering in the unicellular green algal model Chlamydomonas reinhardtii has until recently suffered from low integration efficiencies despite traditional genetics being well established. Here, we present a protocol for efficient homology-directed knockin mutagenesis in all commonly used strains of Chlamydomonas. We describe steps for scarless integration of fusion tags and sequence modifications of almost all proteins without the need for a preceding mutant line. We further empower this genetic-editing approach by efficient crossing and highly robust screening protocols. For complete details on the use and execution of this protocol, please refer to Nievergelt et al. (2023).1.
Collapse
Affiliation(s)
- Adrian Pascal Nievergelt
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; Human Technopole, V.le Rita Levi-Montalcini, 1, 20017 Milan, Italy.
| | - Dennis Ray Diener
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Aliona Bogdanova
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Thomas Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; DRESDEN-concept Genome Center (DcGC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Gaia Pigino
- Human Technopole, V.le Rita Levi-Montalcini, 1, 20017 Milan, Italy.
| |
Collapse
|
20
|
Strenkert D, Schmollinger S, Paruthiyil S, Brown BC, Green S, Shafer CM, Salomé P, Nelson H, Blaby-Haas CE, Moseley JL, Merchant SS. Distinct function of Chlamydomonas CTRA-CTR transporters in Cu assimilation and intracellular mobilization. Metallomics 2024; 16:mfae013. [PMID: 38439674 PMCID: PMC10959442 DOI: 10.1093/mtomcs/mfae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/02/2024] [Indexed: 03/06/2024]
Abstract
Successful acclimation to copper (Cu) deficiency involves a fine balance between Cu import and export. In the green alga Chlamydomonas reinhardtii, Cu import is dependent on a transcription factor, Copper Response Regulator 1 (CRR1), responsible for activating genes in Cu-deficient cells. Among CRR1 target genes are two Cu transporters belonging to the CTR/COPT gene family (CTR1 and CTR2) and a related soluble protein (CTR3). The ancestor of these green algal proteins was likely acquired from an ancient chytrid and contained conserved cysteine-rich domains (named the CTR-associated domains, CTRA) that are predicted to be involved in Cu acquisition. We show by reverse genetics that Chlamydomonas CTR1 and CTR2 are canonical Cu importers albeit with distinct affinities, while loss of CTR3 did not result in an observable phenotype under the conditions tested. Mutation of CTR1, but not CTR2, recapitulates the poor growth of crr1 in Cu-deficient medium, consistent with a dominant role for CTR1 in high-affinity Cu(I) uptake. On the other hand, the overaccumulation of Cu(I) (20 times the quota) in zinc (Zn) deficiency depends on CRR1 and both CTR1 and CTR2. CRR1-dependent activation of CTR gene expression needed for Cu over-accumulation can be bypassed by the provision of excess Cu in the growth medium. Over-accumulated Cu is sequestered into the acidocalcisome but can become remobilized by restoring Zn nutrition. This mobilization is also CRR1-dependent, and requires activation of CTR2 expression, again distinguishing CTR2 from CTR1 and consistent with the lower substrate affinity of CTR2. ONE SENTENCE SUMMARY Regulation of Cu uptake and sequestration by members of the CTR family of proteins in Chlamydomonas.
Collapse
Affiliation(s)
- Daniela Strenkert
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - Stefan Schmollinger
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - Srinand Paruthiyil
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - Bonnie C Brown
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Sydnee Green
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Catherine M Shafer
- Molecular Toxicology Inter-departmental Ph.D. program, University of California, Los Angeles, CA 90095, USA
| | - Patrice Salomé
- Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Hosea Nelson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Crysten E Blaby-Haas
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jeffrey L Moseley
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
- Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
- Department of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
21
|
De Saeger J, Coulembier Vandelannoote E, Lee H, Park J, Blomme J. Genome editing in macroalgae: advances and challenges. Front Genome Ed 2024; 6:1380682. [PMID: 38516199 PMCID: PMC10955705 DOI: 10.3389/fgeed.2024.1380682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 03/23/2024] Open
Abstract
This minireview examines the current state and challenges of genome editing in macroalgae. Despite the ecological and economic significance of this group of organisms, genome editing has seen limited applications. While CRISPR functionality has been established in two brown (Ectocarpus species 7 and Saccharina japonica) and one green seaweed (Ulva prolifera), these studies are limited to proof-of-concept demonstrations. All studies also (co)-targeted ADENINE PHOSPHORIBOSYL TRANSFERASE to enrich for mutants, due to the relatively low editing efficiencies. To advance the field, there should be a focus on advancing auxiliary technologies, particularly stable transformation, so that novel editing reagents can be screened for their efficiency. More work is also needed on understanding DNA repair in these organisms, as this is tightly linked with the editing outcomes. Developing efficient genome editing tools for macroalgae will unlock the ability to characterize their genes, which is largely uncharted terrain. Moreover, given their economic importance, genome editing will also impact breeding campaigns to develop strains that have better yields, produce more commercially valuable compounds, and show improved resilience to the impacts of global change.
Collapse
Affiliation(s)
- Jonas De Saeger
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, Yeonsu-gu, Republic of Korea
| | - Emma Coulembier Vandelannoote
- Department of Biology, Phycology Research Group, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Hojun Lee
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, Yeonsu-gu, Republic of Korea
| | - Jihae Park
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, Yeonsu-gu, Republic of Korea
| | - Jonas Blomme
- Department of Biology, Phycology Research Group, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
22
|
Rredhi A, Petersen J, Wagner V, Vuong T, Li W, Li W, Schrader L, Mittag M. The UV-A Receptor CRY-DASH1 Up- and Downregulates Proteins Involved in Different Plastidial Pathways. J Mol Biol 2024; 436:168271. [PMID: 37699454 DOI: 10.1016/j.jmb.2023.168271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/18/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
Algae encode up to five different types of cryptochrome photoreceptors. So far, relatively little is known about the biological functions of the DASH (Drosophila, Arabidopsis, Synechocystis and Homo)-type cryptochromes. The green alga Chlamydomonas reinhardtii encodes two of them. CRY-DASH1 also called DCRY1 has its maximal absorption peak in the UV-A range. It is localized in the chloroplast and plays an important role in balancing the photosynthetic machinery. Here, we performed a comparative analysis of chloroplast proteins from wild type and a knockout mutant of CRY-DASH1 named cry-dash1mut, using label-free quantitative proteomics as well as immunoblotting. Our results show upregulation of enzymes involved in specific pathways in the mutant including key enzymes of chlorophyll and carotenoid biosynthesis consistent with increased levels of photosynthetic pigments in cry-dash1mut. There is also an increase in certain redox as well as photosystem I and II proteins, including D1. Strikingly, CRY-DASH1 is coregulated in a D1 deletion mutant, where its amount is increased. In contrast, key proteins of the central carbon metabolism, including glycolysis/gluconeogenesis, dark fermentation and the oxidative pentose phosphate pathway are downregulated in cry-dash1mut. Similarly, enzymes of histidine biosynthesis are downregulated in cry-dash1mut leading to a reduction in the amount of free histidine. Yet, transcripts encoding for several of these proteins are at a similar level in the wild type and cry-dash1mut or even opposite. We show that CRY-DASH1 can bind to RNA, taking the psbA RNA encoding D1 as target. These data suggest that CRY-DASH1 regulates plastidial metabolic pathways at the posttranscriptional level.
Collapse
Affiliation(s)
- Anxhela Rredhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany. https://twitter.com/1anPetersen
| | - Volker Wagner
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Trang Vuong
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany. https://twitter.com/trangha593
| | - Wenshuang Li
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Wei Li
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Laura Schrader
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany.
| |
Collapse
|
23
|
Siau JW, Siddiqui AA, Lau SY, Kannan S, Peter S, Zeng Y, Verma C, Droge P, Ghadessy JF. Expanding the DNA editing toolbox: Novel lambda integrase variants targeting microalgal and human genome sequences. PLoS One 2024; 19:e0292479. [PMID: 38349923 PMCID: PMC10863862 DOI: 10.1371/journal.pone.0292479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
Recombinase enzymes are extremely efficient at integrating very large DNA fragments into target genomes. However, intrinsic sequence specificities curtail their use to DNA sequences with sufficient homology to endogenous target motifs. Extensive engineering is therefore required to broaden applicability and robustness. Here, we describe the directed evolution of novel lambda integrase variants capable of editing exogenous target sequences identified in the diatom Phaeodactylum tricornutum and the algae Nannochloropsis oceanica. These microorganisms hold great promise as conduits for green biomanufacturing and carbon sequestration. The evolved enzyme variants show >1000-fold switch in specificity towards the non-natural target sites when assayed in vitro. A single-copy target motif in the human genome with homology to the Nannochloropsis oceanica site can also be efficiently targeted using an engineered integrase, both in vitro and in human cells. The developed integrase variants represent useful additions to the DNA editing toolbox, with particular application for targeted genomic insertion of large DNA cargos.
Collapse
Affiliation(s)
- Jia Wei Siau
- Protein and Peptide Engineering Research Laboratory, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore, Singapore
| | - Asim Azhar Siddiqui
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sze Yi Lau
- Protein and Peptide Engineering Research Laboratory, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore, Singapore
| | | | - Sabrina Peter
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yingying Zeng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Chandra Verma
- Bioinformatics Institute, Agency for Science Technology and Research, Singapore, Singapore
| | - Peter Droge
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- LambdaGen Pte. Ltd., Singapore, Singapore
| | - John F. Ghadessy
- Protein and Peptide Engineering Research Laboratory, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore, Singapore
| |
Collapse
|
24
|
Zhang N, Venn B, Bailey CE, Xia M, Mattoon EM, Mühlhaus T, Zhang R. Moderate high temperature is beneficial or detrimental depending on carbon availability in the green alga Chlamydomonas reinhardtii. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:979-1003. [PMID: 37877811 DOI: 10.1093/jxb/erad405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 10/21/2023] [Indexed: 10/26/2023]
Abstract
High temperatures impair plant growth and reduce agricultural yields, but the underlying mechanisms remain elusive. The unicellular green alga Chlamydomonas reinhardtii is an excellent model to study heat responses in photosynthetic cells due to its fast growth rate, many similarities in cellular processes to land plants, simple and sequenced genome, and ample genetic and genomics resources. Chlamydomonas grows in light by photosynthesis and with externally supplied acetate as an organic carbon source. Understanding how organic carbon sources affect heat responses is important for the algal industry but remains understudied. We cultivated wild-type Chlamydomonas under highly controlled conditions in photobioreactors at 25 °C (control), 35 °C (moderate high temperature), or 40 °C (acute high temperature) with or without constant acetate supply for 1 or 4 day. Treatment at 35 °C increased algal growth with constant acetate supply but reduced algal growth without sufficient acetate. The overlooked and dynamic effects of 35 °C could be explained by induced acetate uptake and metabolism. Heat treatment at 40 °C for more than 2 day was lethal to algal cultures with or without constant acetate supply. Our findings provide insights to understand algal heat responses and help improve thermotolerance in photosynthetic cells.
Collapse
Affiliation(s)
- Ningning Zhang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Benedikt Venn
- Computational Systems Biology, RPTU Kaiserslautern, 67663 Kaiserslautern, Germany
| | | | - Ming Xia
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Erin M Mattoon
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Plant and Microbial Biosciences Program, Division of Biology and Biomedical Sciences, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Timo Mühlhaus
- Computational Systems Biology, RPTU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Ru Zhang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| |
Collapse
|
25
|
Gupta A, Kang K, Pathania R, Saxton L, Saucedo B, Malik A, Torres-Tiji Y, Diaz CJ, Dutra Molino JV, Mayfield SP. Harnessing genetic engineering to drive economic bioproduct production in algae. Front Bioeng Biotechnol 2024; 12:1350722. [PMID: 38347913 PMCID: PMC10859422 DOI: 10.3389/fbioe.2024.1350722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024] Open
Abstract
Our reliance on agriculture for sustenance, healthcare, and resources has been essential since the dawn of civilization. However, traditional agricultural practices are no longer adequate to meet the demands of a burgeoning population amidst climate-driven agricultural challenges. Microalgae emerge as a beacon of hope, offering a sustainable and renewable source of food, animal feed, and energy. Their rapid growth rates, adaptability to non-arable land and non-potable water, and diverse bioproduct range, encompassing biofuels and nutraceuticals, position them as a cornerstone of future resource management. Furthermore, microalgae's ability to capture carbon aligns with environmental conservation goals. While microalgae offers significant benefits, obstacles in cost-effective biomass production persist, which curtails broader application. This review examines microalgae compared to other host platforms, highlighting current innovative approaches aimed at overcoming existing barriers. These approaches include a range of techniques, from gene editing, synthetic promoters, and mutagenesis to selective breeding and metabolic engineering through transcription factors.
Collapse
Affiliation(s)
- Abhishek Gupta
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Kalisa Kang
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Ruchi Pathania
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Lisa Saxton
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Barbara Saucedo
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Ashleyn Malik
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Yasin Torres-Tiji
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Crisandra J. Diaz
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - João Vitor Dutra Molino
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Stephen P. Mayfield
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
- California Center for Algae Biotechnology, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
26
|
Wang M, Ye X, Bi H, Shen Z. Microalgae biofuels: illuminating the path to a sustainable future amidst challenges and opportunities. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:10. [PMID: 38254224 PMCID: PMC10804497 DOI: 10.1186/s13068-024-02461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
The development of microalgal biofuels is of significant importance in advancing the energy transition, alleviating food pressure, preserving the natural environment, and addressing climate change. Numerous countries and regions across the globe have conducted extensive research and strategic planning on microalgal bioenergy, investing significant funds and manpower into this field. However, the microalgae biofuel industry has faced a downturn due to the constraints of high costs. In the past decade, with the development of new strains, technologies, and equipment, the feasibility of large-scale production of microalgae biofuel should be re-evaluated. Here, we have gathered research results from the past decade regarding microalgae biofuel production, providing insights into the opportunities and challenges faced by this industry from the perspectives of microalgae selection, modification, and cultivation. In this review, we suggest that highly adaptable microalgae are the preferred choice for large-scale biofuel production, especially strains that can utilize high concentrations of inorganic carbon sources and possess stress resistance. The use of omics technologies and genetic editing has greatly enhanced lipid accumulation in microalgae. However, the associated risks have constrained the feasibility of large-scale outdoor cultivation. Therefore, the relatively controllable cultivation method of photobioreactors (PBRs) has made it the mainstream approach for microalgae biofuel production. Moreover, adjusting the performance and parameters of PBRs can also enhance lipid accumulation in microalgae. In the future, given the relentless escalation in demand for sustainable energy sources, microalgae biofuels should be deemed a pivotal constituent of national energy planning, particularly in the case of China. The advancement of synthetic biology helps reduce the risks associated with genetically modified (GM) microalgae and enhances the economic viability of their biofuel production.
Collapse
Affiliation(s)
- Min Wang
- Institute of Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| | - Xiaoxue Ye
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, China
| | - Hongwen Bi
- Institute of Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Zhongbao Shen
- Grass and Science Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| |
Collapse
|
27
|
Poirier M, Osmers P, Wilkins K, Morgan-Kiss RM, Cvetkovska M. Aberrant light sensing and motility in the green alga Chlamydomonas priscuii from the ice-covered Antarctic Lake Bonney. PLANT SIGNALING & BEHAVIOR 2023; 18:2184588. [PMID: 38126947 PMCID: PMC10012900 DOI: 10.1080/15592324.2023.2184588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/20/2023] [Indexed: 12/23/2023]
Abstract
The Antarctic green alga Chlamydomonas priscuii is an obligate psychrophile and an emerging model for photosynthetic adaptation to extreme conditions. Endemic to the ice-covered Lake Bonney, this alga thrives at highly unusual light conditions characterized by very low light irradiance (<15 μmol m-2 s-1), a narrow wavelength spectrum enriched in blue light, and an extreme photoperiod. Genome sequencing of C. priscuii exposed an unusually large genome, with hundreds of highly similar gene duplicates and expanded gene families, some of which could be aiding its survival in extreme conditions. In contrast to the described expansion in the genetic repertoire in C. priscuii, here we suggest that the gene family encoding for photoreceptors is reduced when compared to related green algae. This alga also possesses a very small eyespot and exhibits an aberrant phototactic response, compared to the model Chlamydomonas reinhardtii. We also investigated the genome and behavior of the closely related psychrophilic alga Chlamydomonas sp. ICE-MDV, that is found throughout the photic zone of Lake Bonney and is naturally exposed to higher light levels. Our analyses revealed a photoreceptor gene family and a robust phototactic response similar to those in the model Chlamydomonas reinhardtii. These results suggest that the aberrant phototactic response in C. priscuii is a result of life under extreme shading rather than a common feature of all psychrophilic algae. We discuss the implications of these results on the evolution and survival of shade adapted polar algae.
Collapse
Affiliation(s)
| | - Pomona Osmers
- Department of Biology, University of Ottawa, Ottawa, OH, Canada
| | - Kieran Wilkins
- Department of Biology, University of Ottawa, Ottawa, OH, Canada
| | | | | |
Collapse
|
28
|
Chaux F, Jarrige D, Rodrigues-Azevedo M, Bujaldon S, Caspari OD, Ozawa SI, Drapier D, Vallon O, Choquet Y, de Vitry C. Chloroplast ATP synthase biogenesis requires peripheral stalk subunits AtpF and ATPG and stabilization of atpE mRNA by OPR protein MDE1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1582-1599. [PMID: 37824282 DOI: 10.1111/tpj.16448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 10/14/2023]
Abstract
Chloroplast ATP synthase contains subunits of plastid and nuclear genetic origin. To investigate the coordinated biogenesis of this complex, we isolated novel ATP synthase mutants in the green alga Chlamydomonas reinhardtii by screening for high light sensitivity. We report here the characterization of mutants affecting the two peripheral stalk subunits b and b', encoded respectively by the atpF and ATPG genes, and of three independent mutants which identify the nuclear factor MDE1, required to stabilize the chloroplast-encoded atpE mRNA. Whole-genome sequencing revealed a transposon insertion in the 3'UTR of ATPG while mass spectrometry shows a small accumulation of functional ATP synthase in this knock-down ATPG mutant. In contrast, knock-out ATPG mutants, obtained by CRISPR-Cas9 gene editing, fully prevent ATP synthase function and accumulation, as also observed in an atpF frame-shift mutant. Crossing ATP synthase mutants with the ftsh1-1 mutant of the major thylakoid protease identifies AtpH as an FTSH substrate, and shows that FTSH significantly contributes to the concerted accumulation of ATP synthase subunits. In mde1 mutants, the absence of atpE transcript fully prevents ATP synthase biogenesis and photosynthesis. Using chimeric atpE genes to rescue atpE transcript accumulation, we demonstrate that MDE1, a novel octotricopeptide repeat (OPR) protein, genetically targets the atpE 5'UTR. In the perspective of the primary endosymbiosis (~1.5 Gy), the recruitment of MDE1 to its atpE target exemplifies a nucleus/chloroplast interplay that evolved rather recently, in the ancestor of the CS clade of Chlorophyceae, ~300 My ago.
Collapse
Affiliation(s)
- Frédéric Chaux
- Unité Mixte de Recherche (UMR) 7141, Centre National de la Recherche Scientifique (CNRS) and Sorbonne Université, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Domitille Jarrige
- Unité Mixte de Recherche (UMR) 7141, Centre National de la Recherche Scientifique (CNRS) and Sorbonne Université, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Marcio Rodrigues-Azevedo
- Unité Mixte de Recherche (UMR) 7141, Centre National de la Recherche Scientifique (CNRS) and Sorbonne Université, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Sandrine Bujaldon
- Unité Mixte de Recherche (UMR) 7141, Centre National de la Recherche Scientifique (CNRS) and Sorbonne Université, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Oliver D Caspari
- Unité Mixte de Recherche (UMR) 7141, Centre National de la Recherche Scientifique (CNRS) and Sorbonne Université, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Shin-Ichiro Ozawa
- Unité Mixte de Recherche (UMR) 7141, Centre National de la Recherche Scientifique (CNRS) and Sorbonne Université, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Dominique Drapier
- Unité Mixte de Recherche (UMR) 7141, Centre National de la Recherche Scientifique (CNRS) and Sorbonne Université, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Olivier Vallon
- Unité Mixte de Recherche (UMR) 7141, Centre National de la Recherche Scientifique (CNRS) and Sorbonne Université, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Yves Choquet
- Unité Mixte de Recherche (UMR) 7141, Centre National de la Recherche Scientifique (CNRS) and Sorbonne Université, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Catherine de Vitry
- Unité Mixte de Recherche (UMR) 7141, Centre National de la Recherche Scientifique (CNRS) and Sorbonne Université, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005, Paris, France
| |
Collapse
|
29
|
Zinzius K, Marchetti GM, Fischer R, Milrad Y, Oltmanns A, Kelterborn S, Yacoby I, Hegemann P, Scholz M, Hippler M. Calredoxin regulates the chloroplast NADPH-dependent thioredoxin reductase in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2023; 193:2122-2140. [PMID: 37474113 PMCID: PMC10602609 DOI: 10.1093/plphys/kiad426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 07/22/2023]
Abstract
Calredoxin (CRX) is a calcium (Ca2+)-dependent thioredoxin (TRX) in the chloroplast of Chlamydomonas (Chlamydomonas reinhardtii) with a largely unclear physiological role. We elucidated the CRX functionality by performing in-depth quantitative proteomics of wild-type cells compared with a crx insertional mutant (IMcrx), two CRISPR/Cas9 KO mutants, and CRX rescues. These analyses revealed that the chloroplast NADPH-dependent TRX reductase (NTRC) is co-regulated with CRX. Electron transfer measurements revealed that CRX inhibits NADPH-dependent reduction of oxidized chloroplast 2-Cys peroxiredoxin (PRX1) via NTRC and that the function of the NADPH-NTRC complex is under strict control of CRX. Via non-reducing SDS-PAGE assays and mass spectrometry, our data also demonstrated that PRX1 is more oxidized under high light (HL) conditions in the absence of CRX. The redox tuning of PRX1 and control of the NADPH-NTRC complex via CRX interconnect redox control with active photosynthetic electron transport and metabolism, as well as Ca2+ signaling. In this way, an economic use of NADPH for PRX1 reduction is ensured. The finding that the absence of CRX under HL conditions severely inhibited light-driven CO2 fixation underpins the importance of CRX for redox tuning, as well as for efficient photosynthesis.
Collapse
Affiliation(s)
- Karen Zinzius
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Giulia Maria Marchetti
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Ronja Fischer
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Yuval Milrad
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Anne Oltmanns
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Simon Kelterborn
- Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, 10099 Berlin, Germany
| | - Iftach Yacoby
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, 10099 Berlin, Germany
| | - Martin Scholz
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
30
|
Strenkert D, Schmollinger S, Paruthiyil S, Brown BC, Green S, Shafer CM, Salomé P, Nelson H, Blaby-Haas CE, Moseley JL, Merchant SS. Distinct function of Chlamydomonas CTRA-CTR transporters in Cu assimilation and intracellular mobilization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563170. [PMID: 37905083 PMCID: PMC10614975 DOI: 10.1101/2023.10.19.563170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Successful acclimation to copper (Cu) deficiency involves a fine balance between Cu import and export. In the unicellular green alga Chlamydomonas reinhardtii , Cu import is dependent on C opper R esponse R egulator 1 (CRR1), the master regulator of Cu homeostasis. Among CRR1 target genes are two Cu transporters belonging to the CTR/COPT gene family ( CTR1 and CTR2 ) and a related soluble cysteine-rich protein (CTR3). The ancestor of these green algal proteins was likely acquired from an ancient chytrid and contained conserved cysteine-rich domains (named the CTR-associated domains, CTRA) that are predicted to be involved in Cu acquisition. We show by reverse genetics that Chlamydomonas CTR1 and CTR2 are canonical Cu importers albeit with distinct affinities, while loss of CTR3 did not result in an observable phenotype under the conditions tested. Mutation of CTR1 , but not CTR2 , recapitulate the poor growth of crr1 in Cu-deficient medium, consistent with a dominant role for CTR1 in high affinity Cu(I) uptake. Notably, the over-accumulation of Cu(I) in Zinc (Zn)-deficiency (20 times the quota) depends on CRR1 and both CTR1 and CTR2. CRR1-dependent activation of CTR gene expression needed for Cu over-accumulation can be bypassed by the provision of excess Cu in the growth medium. Over-accumulated Cu is sequestered into the acidocalcisome but can become remobilized by restoring Zn nutrition. This mobilization is also CRR1-dependent, and requires activation of CTR2 expression, again distinguishing CTR2 from CTR1 and is consistent with the lower substrate affinity of CTR2.
Collapse
|
31
|
Pivato M, Grenzi M, Costa A, Ballottari M. Compartment-specific Ca 2+ imaging in the green alga Chlamydomonas reinhardtii reveals high light-induced chloroplast Ca 2+ signatures. THE NEW PHYTOLOGIST 2023; 240:258-271. [PMID: 37488718 DOI: 10.1111/nph.19142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/26/2023] [Indexed: 07/26/2023]
Abstract
To investigate the role of intracellular Ca2+ signaling in the perception and response mechanisms to light in unicellular microalgae, the genetically encoded ratiometric Ca2+ indicator Yellow Cameleon (YC3.6) was expressed in the model organism for green algae Chlamydomonas reinhardtii, targeted to cytosol, chloroplast, and mitochondria. Through in vivo single-cell confocal microscopy imaging, light-induced Ca2+ signaling was investigated in different conditions and different genotypes, including the photoreceptors mutants phot and acry. A genetically encoded H2 O2 sensor was also adopted to investigate the possible role of H2 O2 formation in light-dependent Ca2+ signaling. Light-dependent Ca2+ response was observed in Chlamydomonas reinhardtii cells only in the chloroplast as an organelle-autonomous response, influenced by light intensity and photosynthetic electron transport. The absence of blue and red-light photoreceptor aCRY strongly reduced the light-dependent chloroplast Ca2+ response, while the absence of the blue photoreceptor PHOT had no significant effects. A correlation between high light-induced chloroplast H2 O2 gradients and Ca2+ transients was drawn, supported by H2 O2 -induced chloroplast Ca2+ transients in the dark. In conclusion, different triggers are involved in the light-induced chloroplast Ca2+ signaling as saturation of the photosynthetic electron transport, H2 O2 formation, and aCRY-dependent light perception.
Collapse
Affiliation(s)
- Matteo Pivato
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Matteo Grenzi
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133, Milan, Italy
| | - Alex Costa
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133, Milan, Italy
- Institute of Biophysics, National Research Council of Italy (CNR), Milan, 20133, Italy
| | - Matteo Ballottari
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| |
Collapse
|
32
|
Govorunova EG, Sineshchekov OA. Channelrhodopsins: From Phototaxis to Optogenetics. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1555-1570. [PMID: 38105024 DOI: 10.1134/s0006297923100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/09/2023] [Accepted: 07/09/2023] [Indexed: 12/19/2023]
Abstract
Channelrhodopsins stand out among other retinal proteins because of their capacity to generate passive ionic currents following photoactivation. Owing to that, channelrhodopsins are widely used in neuroscience and cardiology as instruments for optogenetic manipulation of the activity of excitable cells. Photocurrents generated by channelrhodopsins were first discovered in the cells of green algae in the 1970s. In this review we describe this discovery and discuss the current state of research in the field.
Collapse
|
33
|
Gu X, Huang L, Lian J. Biomanufacturing of γ-linolenic acid-enriched galactosyldiacylglycerols: Challenges in microalgae and potential in oleaginous yeasts. Synth Syst Biotechnol 2023; 8:469-478. [PMID: 37692201 PMCID: PMC10485790 DOI: 10.1016/j.synbio.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 09/12/2023] Open
Abstract
γ-Linolenic acid-enriched galactosyldiacylglycerols (GDGs-GLA), as the natural form of γ-linolenic acid in microalgae, have a range of functional activities, including anti-inflammatory, antioxidant, and anti-allergic properties. The low abundance of microalgae and the structural stereoselectivity complexity impede microalgae extraction or chemical synthesis, resulting in a lack of supply of GDGs-GLA with a growing demand. At present, there is a growing interest in engineering oleaginous yeasts for mass production of GDGs-GLA based on their ability to utilize a variety of hydrophobic substrates and a high metabolic flux toward fatty acid and lipid (triacylglycerol, TAG) production. Here, we first introduce the GDGs-GLA biosynthetic pathway in microalgae and challenges in the engineering of the native host. Subsequently, we describe in detail the applications of oleaginous yeasts with Yarrowia lipolytica as the representative for GDGs-GLA biosynthesis, including the development of synthetic biology parts, gene editing tools, and metabolic engineering of lipid biosynthesis. Finally, we discuss the development trend of GDGs-GLA biosynthesis in Y. lipolytica.
Collapse
Affiliation(s)
- Xiaosong Gu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Zhejiang Key Laboratory of Smart Biomaterials, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
34
|
Boisset ND, Favoino G, Meloni M, Jomat L, Cassier-Chauvat C, Zaffagnini M, Lemaire SD, Crozet P. Phosphoribulokinase abundance is not limiting the Calvin-Benson-Bassham cycle in Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2023; 14:1230723. [PMID: 37719215 PMCID: PMC10501310 DOI: 10.3389/fpls.2023.1230723] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/21/2023] [Indexed: 09/19/2023]
Abstract
Improving photosynthetic efficiency in plants and microalgae is of utmost importance to support the growing world population and to enable the bioproduction of energy and chemicals. Limitations in photosynthetic light conversion efficiency can be directly attributed to kinetic bottlenecks within the Calvin-Benson-Bassham cycle (CBBC) responsible for carbon fixation. A better understanding of these bottlenecks in vivo is crucial to overcome these limiting factors through bio-engineering. The present study is focused on the analysis of phosphoribulokinase (PRK) in the unicellular green alga Chlamydomonas reinhardtii. We have characterized a PRK knock-out mutant strain and showed that in the absence of PRK, Chlamydomonas cannot grow photoautotrophically while functional complementation with a synthetic construct allowed restoration of photoautotrophy. Nevertheless, using standard genetic elements, the expression of PRK was limited to 40% of the reference level in complemented strains and could not restore normal growth in photoautotrophic conditions suggesting that the CBBC is limited. We were subsequently able to overcome this initial limitation by improving the design of the transcriptional unit expressing PRK using diverse combinations of DNA parts including PRK endogenous promoter and introns. This enabled us to obtain strains with PRK levels comparable to the reference strain and even overexpressing strains. A collection of strains with PRK levels between 16% and 250% of WT PRK levels was generated and characterized. Immunoblot and growth assays revealed that a PRK content of ≈86% is sufficient to fully restore photoautotrophic growth. This result suggests that PRK is present in moderate excess in Chlamydomonas. Consistently, the overexpression of PRK did not increase photosynthetic growth indicating that that the endogenous level of PRK in Chlamydomonas is not limiting the Calvin-Benson-Bassham cycle under optimal conditions.
Collapse
Affiliation(s)
- Nicolas D. Boisset
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Parie-Seine, Sorbonne Université, CNRS, UMR 7238, Paris, France
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, Sorbonne Université, CNRS, UMR 8226, Paris, France
- Doctoral School of Plant Sciences, Université Paris-Saclay, Saint-Aubin, France
| | - Giusi Favoino
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Parie-Seine, Sorbonne Université, CNRS, UMR 7238, Paris, France
| | - Maria Meloni
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| | - Lucile Jomat
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Parie-Seine, Sorbonne Université, CNRS, UMR 7238, Paris, France
| | - Corinne Cassier-Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), UMR 9198, Gif-sur-Yvette, France
| | - Mirko Zaffagnini
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| | - Stéphane D. Lemaire
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Parie-Seine, Sorbonne Université, CNRS, UMR 7238, Paris, France
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, Sorbonne Université, CNRS, UMR 8226, Paris, France
| | - Pierre Crozet
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Parie-Seine, Sorbonne Université, CNRS, UMR 7238, Paris, France
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, Sorbonne Université, CNRS, UMR 8226, Paris, France
- Polytech-Sorbonne, Sorbonne Université, Paris, France
| |
Collapse
|
35
|
Nievergelt AP, Diener DR, Bogdanova A, Brown T, Pigino G. Efficient precision editing of endogenous Chlamydomonas reinhardtii genes with CRISPR-Cas. CELL REPORTS METHODS 2023; 3:100562. [PMID: 37671018 PMCID: PMC10475843 DOI: 10.1016/j.crmeth.2023.100562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 07/28/2023] [Indexed: 09/07/2023]
Abstract
CRISPR-Cas genome engineering in the unicellular green algal model Chlamydomonas reinhardtii has until now been primarily applied to targeted gene disruption, whereas scarless knockin transgenesis has generally been considered difficult in practice. We have developed an efficient homology-directed method for knockin mutagenesis in Chlamydomonas by delivering CRISPR-Cas ribonucleoproteins and a linear double-stranded DNA (dsDNA) donor into cells by electroporation. Our method allows scarless integration of fusion tags and sequence modifications of proteins without the need for a preceding mutant line. We also present methods for high-throughput crossing of transformants and a custom quantitative PCR (qPCR)-based high-throughput screening of mutants as well as meiotic progeny. We demonstrate how to use this pipeline to facilitate the generation of mutant lines without residual selectable markers by co-targeted insertion. Finally, we describe how insertional cassettes can be erroneously mutated during insertion and suggest strategies to select for lines that are modified as designed.
Collapse
Affiliation(s)
- Adrian Pascal Nievergelt
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Dennis Ray Diener
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Aliona Bogdanova
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Thomas Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
- DRESDEN-concept Genome Center (DcGC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Gaia Pigino
- Human Technopole, V.le Rita Levi-Montalcini, 1, 20017 Milan, Italy
| |
Collapse
|
36
|
Teh JT, Leitz V, Holzer VJC, Neusius D, Marino G, Meitzel T, García-Cerdán JG, Dent RM, Niyogi KK, Geigenberger P, Nickelsen J. NTRC regulates CP12 to activate Calvin-Benson cycle during cold acclimation. Proc Natl Acad Sci U S A 2023; 120:e2306338120. [PMID: 37549282 PMCID: PMC10433458 DOI: 10.1073/pnas.2306338120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 08/09/2023] Open
Abstract
NADPH-dependent thioredoxin reductase C (NTRC) is a chloroplast redox regulator in algae and plants. Here, we used site-specific mutation analyses of the thioredoxin domain active site of NTRC in the green alga Chlamydomonas reinhardtii to show that NTRC mediates cold tolerance in a redox-dependent manner. By means of coimmunoprecipitation and mass spectrometry, a redox- and cold-dependent binding of the Calvin-Benson Cycle Protein 12 (CP12) to NTRC was identified. NTRC was subsequently demonstrated to directly reduce CP12 of C. reinhardtii as well as that of the vascular plant Arabidopsis thaliana in vitro. As a scaffold protein, CP12 joins the Calvin-Benson cycle enzymes phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to form an autoinhibitory supracomplex. Using size-exclusion chromatography, NTRC from both organisms was shown to control the integrity of this complex in vitro and thereby PRK and GAPDH activities in the cold. Thus, NTRC apparently reduces CP12, hence triggering the dissociation of the PRK/CP12/GAPDH complex in the cold. Like the ntrc::aphVIII mutant, CRISPR-based cp12::emx1 mutants also exhibited a redox-dependent cold phenotype. In addition, CP12 deletion resulted in robust decreases in both PRK and GAPDH protein levels implying a protein protection effect of CP12. Both CP12 functions are critical for preparing a repertoire of enzymes for rapid activation in response to environmental changes. This provides a crucial mechanism for cold acclimation.
Collapse
Affiliation(s)
- Jing Tsong Teh
- Department of Molecular Plant Science, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg82152, Germany
| | - Verena Leitz
- Department of Plant Metabolism, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg82152, Germany
| | - Victoria J. C. Holzer
- Department of Molecular Plant Science, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg82152, Germany
| | - Daniel Neusius
- Department of Molecular Plant Science, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg82152, Germany
| | - Giada Marino
- Department of Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg82152, Germany
| | - Tobias Meitzel
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben06466, Germany
| | - José G. García-Cerdán
- HHMI, University of California, Berkeley, CA94720-3102
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720-3102
| | - Rachel M. Dent
- HHMI, University of California, Berkeley, CA94720-3102
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720-3102
| | - Krishna K. Niyogi
- HHMI, University of California, Berkeley, CA94720-3102
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720-3102
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Peter Geigenberger
- Department of Plant Metabolism, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg82152, Germany
| | - Jörg Nickelsen
- Department of Molecular Plant Science, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg82152, Germany
| |
Collapse
|
37
|
Findinier J, Grossman AR. Chlamydomonas: Fast tracking from genomics. JOURNAL OF PHYCOLOGY 2023; 59:644-652. [PMID: 37417760 DOI: 10.1111/jpy.13356] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023]
Abstract
Elucidating biological processes has relied on the establishment of model organisms, many of which offer advantageous features such as rapid axenic growth, extensive knowledge of their physiological features and gene content, and the ease with which they can be genetically manipulated. The unicellular green alga Chlamydomonas reinhardtii has been an exemplary model that has enabled many scientific breakthroughs over the decades, especially in the fields of photosynthesis, cilia function and biogenesis, and the acclimation of photosynthetic organisms to their environment. Here, we discuss recent molecular/technological advances that have been applied to C. reinhardtii and how they have further fostered its development as a "flagship" algal system. We also explore the future promise of this alga in leveraging advances in the fields of genomics, proteomics, imaging, and synthetic biology for addressing critical future biological issues.
Collapse
Affiliation(s)
- Justin Findinier
- The Carnegie Institution for Science, Biosphere Science and Engineering, Stanford, California, USA
| | - Arthur R Grossman
- The Carnegie Institution for Science, Biosphere Science and Engineering, Stanford, California, USA
| |
Collapse
|
38
|
Milito A, Aschern M, McQuillan JL, Yang JS. Challenges and advances towards the rational design of microalgal synthetic promoters in Chlamydomonas reinhardtii. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3833-3850. [PMID: 37025006 DOI: 10.1093/jxb/erad100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Microalgae hold enormous potential to provide a safe and sustainable source of high-value compounds, acting as carbon-fixing biofactories that could help to mitigate rapidly progressing climate change. Bioengineering microalgal strains will be key to optimizing and modifying their metabolic outputs, and to render them competitive with established industrial biotechnology hosts, such as bacteria or yeast. To achieve this, precise and tuneable control over transgene expression will be essential, which would require the development and rational design of synthetic promoters as a key strategy. Among green microalgae, Chlamydomonas reinhardtii represents the reference species for bioengineering and synthetic biology; however, the repertoire of functional synthetic promoters for this species, and for microalgae generally, is limited in comparison to other commercial chassis, emphasizing the need to expand the current microalgal gene expression toolbox. Here, we discuss state-of-the-art promoter analyses, and highlight areas of research required to advance synthetic promoter development in C. reinhardtii. In particular, we exemplify high-throughput studies performed in other model systems that could be applicable to microalgae, and propose novel approaches to interrogating algal promoters. We lastly outline the major limitations hindering microalgal promoter development, while providing novel suggestions and perspectives for how to overcome them.
Collapse
Affiliation(s)
- Alfonsina Milito
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Moritz Aschern
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Josie L McQuillan
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Jae-Seong Yang
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| |
Collapse
|
39
|
Perozeni F, Baier T. Current Nuclear Engineering Strategies in the Green Microalga Chlamydomonas reinhardtii. Life (Basel) 2023; 13:1566. [PMID: 37511941 PMCID: PMC10381326 DOI: 10.3390/life13071566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The green model microalga Chlamydomonas reinhardtii recently emerged as a sustainable production chassis for the efficient biosynthesis of recombinant proteins and high-value metabolites. Its capacity for scalable, rapid and light-driven growth in minimal salt solutions, its simplicity for genetic manipulation and its "Generally Recognized As Safe" (GRAS) status are key features for its application in industrial biotechnology. Although nuclear transformation has typically resulted in limited transgene expression levels, recent developments now allow the design of powerful and innovative bioproduction concepts. In this review, we summarize the main obstacles to genetic engineering in C. reinhardtii and describe all essential aspects in sequence adaption and vector design to enable sufficient transgene expression from the nuclear genome. Several biotechnological examples of successful engineering serve as blueprints for the future establishment of C. reinhardtii as a green cell factory.
Collapse
Affiliation(s)
- Federico Perozeni
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Thomas Baier
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
40
|
Nelson G, Strain A, Isu A, Rahnama A, Wakabayashi KI, Melvin AT, Kato N. Cells collectively migrate during ammonium chemotaxis in Chlamydomonas reinhardtii. Sci Rep 2023; 13:10781. [PMID: 37402785 DOI: 10.1038/s41598-023-36818-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/10/2023] [Indexed: 07/06/2023] Open
Abstract
The mechanisms governing chemotaxis in Chlamydomonas reinhardtii are largely unknown compared to those regulating phototaxis despite equal importance on the migratory response in the ciliated microalga. To study chemotaxis, we made a simple modification to a conventional Petri dish assay. Using the assay, a novel mechanism governing Chlamydomonas ammonium chemotaxis was revealed. First, we found that light exposure enhances the chemotactic response of wild-type Chlamydomonas strains, yet phototaxis-incompetent mutant strains, eye3-2 and ptx1, exhibit normal chemotaxis. This suggests that Chlamydomonas transduces the light signal pathway in chemotaxis differently from that in phototaxis. Second, we found that Chlamydomonas collectively migrate during chemotaxis but not phototaxis. Collective migration during chemotaxis is not clearly observed when the assay is conducted in the dark. Third, the Chlamydomonas strain CC-124 carrying agg1-, the AGGREGATE1 gene (AGG1) null mutation, exhibited a more robust collective migratory response than strains carrying the wild-type AGG1 gene. The expression of a recombinant AGG1 protein in the CC-124 strain suppressed this collective migration during chemotaxis. Altogether, these findings suggest a unique mechanism; ammonium chemotaxis in Chlamydomonas is mainly driven by collective cell migration. Furthermore, it is proposed that collective migration is enhanced by light and suppressed by the AGG1 protein.
Collapse
Affiliation(s)
- Gabela Nelson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Alexis Strain
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Atsuko Isu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Alireza Rahnama
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ken-Ichi Wakabayashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Adam T Melvin
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Naohiro Kato
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
41
|
Sharma K, Sizova I, Sanyal SK, Pandey GK, Hegemann P, Kateriya S. Deciphering the role of cytoplasmic domain of Channelrhodopsin in modulating the interactome and SUMOylome of Chlamydomonas reinhardtii. Int J Biol Macromol 2023:125135. [PMID: 37247713 DOI: 10.1016/j.ijbiomac.2023.125135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Translocation of channelrhodopsins (ChRs) is mediated by the intraflagellar transport (IFT) machinery. However, the functional role of the network involving photoreceptors, IFT and other proteins in controlling algal ciliary motility is still not fully delineated. In the current study, we have identified two important motifs at the C-terminus of ChR1, VXPX and LKNE. VXPX is a known ciliary targeting sequence in animals, and LKNE is a well-known SUMOylation motif. To the best of our knowledge, this study gives prima facie insight into the role of SUMOylation in Chlamydomonas. We prove that VMPS of ChR1 is important for interaction with GTPase CrARL11. We show that SUMO motifs are present in the C-terminus of putative ChR1s from green algae. Performing experiments with n-Ethylmaleimide (NEM) and Ubiquitin-like protease 1 (ULP-1) we show that SUMOylation may modulate ChR1 protein in Chlamydomonas. Experiments with 2D08, a known sumoylation blocker, increased the concentration of ChR1 protein. Finally, we show the endogenous SUMOylated proteins (SUMOylome) of C. reinhardtii, identified by using immunoprecipitation followed by nano-LC-MS/MS detection. This report establishes a link between evolutionarily conserved SUMOylation, and ciliary machinery for the maintenance and functioning of cilia across the eukaryotes. Our enriched SUMOylome of C. reinhardtii comprehends the proteins related to ciliary development and, photo-signaling, along with orthologue(s) associated to human ciliopathies as SUMO targets.
Collapse
Affiliation(s)
- Komal Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India; Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Irina Sizova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre, «Kurchatov Institute», St. Petersburg, Gatchina 1 188300, Russia
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India; Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Peter Hegemann
- Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany.
| | - Suneel Kateriya
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
42
|
Zadabbas Shahabadi H, Akbarzadeh A, Ofoghi H, Kadkhodaei S. Site-specific gene knock-in and bacterial phytase gene expression in Chlamydomonas reinhardtii via Cas9 RNP-mediated HDR. FRONTIERS IN PLANT SCIENCE 2023; 14:1150436. [PMID: 37275253 PMCID: PMC10235511 DOI: 10.3389/fpls.2023.1150436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/28/2023] [Indexed: 06/07/2023]
Abstract
In the present study, we applied the HDR (homology-directed DNA repair) CRISPR-Cas9-mediated knock-in system to accurately insert an optimized foreign bacterial phytase gene at a specific site of the nitrate reductase (NR) gene (exon 2) to achieve homologous recombination with the stability of the transgene and reduce insertion site effects or gene silencing. To this end, we successfully knocked-in the targeted NR gene of Chlamydomonas reinhardtii using the bacterial phytase gene cassette through direct delivery of the CRISPR/Cas9 system as the ribonucleoprotein (RNP) complex consisting of Cas9 protein and the specific single guide RNAs (sgRNAs). The NR insertion site editing was confirmed by PCR and sequencing of the transgene positive clones. Moreover, 24 clones with correct editing were obtained, where the phytase gene cassette was located in exon 2 of the NR gene, and the editing efficiency was determined to be 14.81%. Additionally, site-specific gene expression was analyzed and confirmed using RT-qPCR. Cultivation of the positive knocked-in colonies on the selective media during 10 generations indicated the stability of the correct editing without gene silencing or negative insertion site effects. Our results demonstrated that CRISPR-Cas9-mediated knock-in could be applied for nuclear expression of the heterologous gene of interest, and also confirmed its efficacy as an effective tool for site-specific gene knock-in, avoiding nuclear positional effects and gene silencing in C. reinhardtii. These findings could also provide a new perspective on the advantageous application of RNP-CRISPR/Cas9 gene-editing to accelerate the commercial production of complex recombinant proteins in the food-grade organism "C. reinhardtii".
Collapse
Affiliation(s)
- Hassan Zadabbas Shahabadi
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
- Agricultural Biotechnology Research Institute of Iran (ABRII), Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
| | - Arash Akbarzadeh
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Hamideh Ofoghi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Saeid Kadkhodaei
- Agricultural Biotechnology Research Institute of Iran (ABRII), Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
| |
Collapse
|
43
|
Arend M, Yuan Y, Ruiz-Sola MÁ, Omranian N, Nikoloski Z, Petroutsos D. Widening the landscape of transcriptional regulation of green algal photoprotection. Nat Commun 2023; 14:2687. [PMID: 37164999 PMCID: PMC10172295 DOI: 10.1038/s41467-023-38183-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/17/2023] [Indexed: 05/12/2023] Open
Abstract
Availability of light and CO2, substrates of microalgae photosynthesis, is frequently far from optimal. Microalgae activate photoprotection under strong light, to prevent oxidative damage, and the CO2 Concentrating Mechanism (CCM) under low CO2, to raise intracellular CO2 levels. The two processes are interconnected; yet, the underlying transcriptional regulators remain largely unknown. Employing a large transcriptomic data compendium of Chlamydomonas reinhardtii's responses to different light and carbon supply, we reconstruct a consensus genome-scale gene regulatory network from complementary inference approaches and use it to elucidate transcriptional regulators of photoprotection. We show that the CCM regulator LCR1 also controls photoprotection, and that QER7, a Squamosa Binding Protein, suppresses photoprotection- and CCM-gene expression under the control of the blue light photoreceptor Phototropin. By demonstrating the existence of regulatory hubs that channel light- and CO2-mediated signals into a common response, our study provides an accessible resource to dissect gene expression regulation in this microalga.
Collapse
Affiliation(s)
- Marius Arend
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
- Systems Biology and Mathematical Modeling Group, Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
- Bioinformatics and Mathematical Modeling Department, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Yizhong Yuan
- University of Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - M Águila Ruiz-Sola
- University of Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, 41092, Sevilla, Spain
| | - Nooshin Omranian
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
- Systems Biology and Mathematical Modeling Group, Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
- Bioinformatics and Mathematical Modeling Department, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Zoran Nikoloski
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.
- Systems Biology and Mathematical Modeling Group, Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany.
- Bioinformatics and Mathematical Modeling Department, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| | - Dimitris Petroutsos
- University of Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France.
| |
Collapse
|
44
|
Blomme J, Wichard T, Jacobs TB, De Clerck O. Ulva: An emerging green seaweed model for systems biology. JOURNAL OF PHYCOLOGY 2023. [PMID: 37256696 DOI: 10.1111/jpy.13341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023]
Abstract
Green seaweeds exhibit a wide range of morphologies and occupy various ecological niches, spanning from freshwater to marine and terrestrial habitats. These organisms, which predominantly belong to the class Ulvophyceae, showcase a remarkable instance of parallel evolution toward complex multicellularity and macroscopic thalli in the Viridiplantae lineage. Within the green seaweeds, several Ulva species ("sea lettuce") are model organisms for studying carbon assimilation, interactions with bacteria, life cycle progression, and morphogenesis. Ulva species are also notorious for their fast growth and capacity to dominate nutrient-rich, anthropogenically disturbed coastal ecosystems during "green tide" blooms. From an economic perspective, Ulva has garnered increasing attention as a promising feedstock for the production of food, feed, and biobased products, also as a means of removing excess nutrients from the environment. We propose that Ulva is poised to further develop as a model in green seaweed research. In this perspective, we focus explicitly on Ulva mutabilis/compressa as a model species and highlight the molecular data and tools that are currently available or in development. We discuss several areas that will benefit from future research or where exciting new developments have been reported in other Ulva species.
Collapse
Affiliation(s)
- Jonas Blomme
- Department of Biology, Phycology Research Group, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Jena School for Microbial Communication, Friedrich Schiller University Jena, Jena, Germany
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Olivier De Clerck
- Department of Biology, Phycology Research Group, Ghent University, Ghent, Belgium
| |
Collapse
|
45
|
Yamasaki T, Tokutsu R, Sawa H, Razali NN, Hayashi M, Minagawa J. Small RNA-mediated silencing of phototropin suppresses the induction of photoprotection in the green alga Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2023; 120:e2302185120. [PMID: 37098057 PMCID: PMC10160981 DOI: 10.1073/pnas.2302185120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/30/2023] [Indexed: 04/26/2023] Open
Abstract
Small RNAs (sRNAs) form complexes with Argonaute proteins and bind to transcripts with complementary sequences to repress gene expression. sRNA-mediated regulation is conserved in a diverse range of eukaryotes and is involved in the control of various physiological functions. sRNAs are present in the unicellular green alga Chlamydomonas reinhardtii, and genetic analyses revealed that the core sRNA biogenesis and action mechanisms are conserved with those of multicellular organisms. However, the roles of sRNAs in this organism remain largely unknown. Here, we report that Chlamydomonas sRNAs contribute to the induction of photoprotection. In this alga, photoprotection is mediated by LIGHT HARVESTING COMPLEX STRESS-RELATED 3 (LHCSR3), whose expression is induced by light signals through the blue-light receptor phototropin (PHOT). We demonstrate here that sRNA-defective mutants showed increased PHOT abundance leading to greater LHCSR3 expression. Disruption of the precursor for two sRNAs predicted to bind to the PHOT transcript also increased PHOT accumulation and LHCSR3 expression. The induction of LHCSR3 in the mutants was enhanced by light containing blue wavelengths, but not by red light, indicating that the sRNAs regulate the degree of photoprotection via regulation of PHOT expression. Our results suggest that sRNAs are involved not only in the regulation of photoprotection but also in biological phenomena regulated by PHOT signaling.
Collapse
Affiliation(s)
- Tomohito Yamasaki
- Science and Technology Department, Natural Science Cluster, Kochi University, Kochi780-8520, Japan
| | - Ryutaro Tokutsu
- Division of Environmental Photobiology, National Institute for Basic Biology, Myodaiji, Okazaki444-8585, Japan
| | - Haruhi Sawa
- Department of Chemistry and Biotechnology, Faculty of Science and Technology, Kochi University, Kochi780-8520, Japan
| | - Nazifa Naziha Razali
- Department of Chemistry and Biotechnology, Faculty of Science and Technology, Kochi University, Kochi780-8520, Japan
| | - Momoka Hayashi
- Department of Chemistry and Biotechnology, Faculty of Science and Technology, Kochi University, Kochi780-8520, Japan
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Myodaiji, Okazaki444-8585, Japan
| |
Collapse
|
46
|
Chen H, Yang QL, Xu JX, Deng X, Zhang YJ, Liu T, Rots MG, Xu GL, Huang KY. Efficient methods for multiple types of precise gene-editing in Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37310200 DOI: 10.1111/tpj.16265] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 06/14/2023]
Abstract
Precise gene-editing using CRISPR/Cas9 technology remains a long-standing challenge, especially for genes with low expression and no selectable phenotypes in Chlamydomonas reinhardtii, a classic model for photosynthesis and cilia research. Here, we developed a multi-type and precise genetic manipulation method in which a DNA break was generated by Cas9 nuclease and the repair was mediated using a homologous DNA template. The efficacy of this method was demonstrated for several types of gene editing, including inactivation of two low-expression genes (CrTET1 and CrKU80), the introduction of a FLAG-HA epitope tag into VIPP1, IFT46, CrTET1 and CrKU80 genes, and placing a YFP tag into VIPP1 and IFT46 for live-cell imaging. We also successfully performed a single amino acid substitution for the FLA3, FLA10 and FTSY genes, and documented the attainment of the anticipated phenotypes. Lastly, we demonstrated that precise fragment deletion from the 3'-UTR of MAA7 and VIPP1 resulted in a stable knock-down effect. Overall, our study has established efficient methods for multiple types of precise gene editing in Chlamydomonas, enabling substitution, insertion and deletion at the base resolution, thus improving the potential of this alga in both basic research and industrial applications.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qing-Lin Yang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jia-Xi Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuan Deng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yun-Jie Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Ting Liu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Marianne G Rots
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| | - Guo-Liang Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Key Laboratory of Medical Epigenetics, Laboratory of Cancer Epigenetics, Institutes of Biomedical Sciences, Medical College of Fudan University, Chinese Academy of Medical Sciences (RU069), Shanghai, China
| | - Kai-Yao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
47
|
Jeong BR, Jang J, Jin E. Genome engineering via gene editing technologies in microalgae. BIORESOURCE TECHNOLOGY 2023; 373:128701. [PMID: 36746216 DOI: 10.1016/j.biortech.2023.128701] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
CRISPR-Cas has revolutionized genetic modification with its comparative simplicity and accuracy, and it can be used even at the genomic level. Microalgae are excellent feedstocks for biofuels and nutraceuticals because they contain high levels of fatty acids, carotenoids, and other metabolites; however, genome engineering for microalgae is not yet as developed as for other model organisms. Microalgal engineering at the genetic and metabolic levels is relatively well established, and a few genomic resources are available. Their genomic information was used for a "safe harbor" site for stable transgene expression in microalgae. This review proposes further genome engineering schemes including the construction of sgRNA libraries, pan-genomic and epigenomic resources, and mini-genomes, which can together be developed into synthetic biology for carbon-based engineering in microalgae. Acetyl-CoA is at the center of carbon metabolic pathways and is further reviewed for the production of molecules including terpenoids in microalgae.
Collapse
Affiliation(s)
- Byeong-Ryool Jeong
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Junhwan Jang
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea.
| |
Collapse
|
48
|
Belshaw N, Grouneva I, Aram L, Gal A, Hopes A, Mock T. Efficient gene replacement by CRISPR/Cas-mediated homologous recombination in the model diatom Thalassiosira pseudonana. THE NEW PHYTOLOGIST 2023; 238:438-452. [PMID: 36307966 DOI: 10.1111/nph.18587] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
CRISPR/Cas enables targeted genome editing in many different plant and algal species including the model diatom Thalassiosira pseudonana. However, efficient gene targeting by homologous recombination (HR) to date is only reported for photosynthetic organisms in their haploid life-cycle phase. Here, a CRISPR/Cas construct, assembled using Golden Gate cloning, enabled highly efficient HR in a diploid photosynthetic organism. Homologous recombination was induced in T. pseudonana using sequence-specific CRISPR/Cas, paired with a dsDNA donor matrix, generating substitution of the silacidin, nitrate reductase and urease genes by a resistance cassette (FCP:NAT). Up to c. 85% of NAT-resistant T. pseudonana colonies screened positive for HR by nested PCR. Precise integration of FCP:NAT at each locus was confirmed using an inverse PCR approach. The knockout of the nitrate reductase and urease genes impacted growth on nitrate and urea, respectively, while the knockout of the silacidin gene in T. pseudonana caused a significant increase in cell size, confirming the role of this gene for cell-size regulation in centric diatoms. Highly efficient gene targeting by HR makes T. pseudonana as genetically tractable as Nannochloropsis and Physcomitrella, hence rapidly advancing functional diatom biology, bionanotechnology and biotechnological applications targeted on harnessing the metabolic potential of diatoms.
Collapse
Affiliation(s)
- Nigel Belshaw
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Irina Grouneva
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Lior Aram
- Department of Plant and Environmental Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Assaf Gal
- Department of Plant and Environmental Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Amanda Hopes
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
49
|
Sanyal SK, Sharma K, Bisht D, Sharma S, Kateriya S, Pandey GK. Role of calcium sensor protein module CBL-CIPK in abiotic stress and light signaling responses in green algae. Int J Biol Macromol 2023; 237:124163. [PMID: 36965564 DOI: 10.1016/j.ijbiomac.2023.124163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
Ca2+ signaling is an important biological process that enable to perceive and communicate information in the cell. Our current understanding of the signaling system suggests that plants and animals have certain differences in signal-sensing mechanisms. The Ca2+-mediated CBL-CIPK module has emerged as a major sensor responder network for Ca2+ signaling and has been speculated to be involved in plant terrestrial life adaptation. This module has previously been reported in Archaeplastids, Chromalveolates, and Excavates. In our experimental analysis of Chlamydomonas reinhardtii CBLs, we proved that the CrCBL1 protein interacts with Phototropin and Channelrhodopsin, and the expression of CrCBLs is modulated by light. Further analysis using chlorophyte and streptophyte algal sequences allowed us to identify the differences that have evolved in CBL and CIPK proteins since plants have progressed from aquatic to terrestrial habitats. Moreover, an investigation of Klebsormidium CBL and CIPK genes led us to know that they are abiotic stress stimuli-responsive, indicating that their role was defined very early during terrestrial adaptations. Structure-based prediction and Ca2+-binding assays indicated that the KnCBL1 protein in Klebsormidium showed a typical Ca2+-binding pocket. In summary, the results of this study suggest that these stress-responsive proteins enable crosstalk between Ca2+ and light signaling pathways very early during plant adaptation from aquatic to terrestrial habitats.
Collapse
Affiliation(s)
- Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India; Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Komal Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India; Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Diksha Bisht
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Sunita Sharma
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Suneel Kateriya
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
50
|
Govorunova EG, Sineshchekov OA, Spudich JL. Potassium-selective channelrhodopsins. Biophys Physicobiol 2023; 20:e201011. [PMID: 38362336 PMCID: PMC10865875 DOI: 10.2142/biophysico.bppb-v20.s011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/03/2023] [Indexed: 02/05/2023] Open
Abstract
Since their discovery 21 years ago, channelrhodopsins have come of age and have become indispensable tools for optogenetic control of excitable cells such as neurons and myocytes. Potential therapeutic utility of channelrhodopsins has been proven by partial vision restoration in a human patient. Previously known channelrhodopsins are either proton channels, non-selective cation channels almost equally permeable to Na+ and K+ besides protons, or anion channels. Two years ago, we discovered a group of channelrhodopsins that exhibit over an order of magnitude higher selectivity for K+ than for Na+. These proteins, known as "kalium channelrhodopsins" or KCRs, lack the canonical tetrameric selectivity filter found in voltage- and ligand-gated K+ channels, and use a unique selectivity mechanism intrinsic to their individual protomers. Mutant analysis has revealed that the key residues responsible for K+ selectivity in KCRs are located at both ends of the putative cation conduction pathway, and their role has been confirmed by high-resolution KCR structures. Expression of KCRs in mouse neurons and human cardiomyocytes enabled optical inhibition of these cells' electrical activity. In this minireview we briefly discuss major results of KCR research obtained during the last two years and suggest some directions of future research.
Collapse
Affiliation(s)
- Elena G. Govorunova
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA
| | - Oleg A. Sineshchekov
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA
| | - John L. Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA
| |
Collapse
|