1
|
Hamade S, Traver M, Bartel B. The Atypical Pectin Methylesterase Family Member PME31 Promotes Seedling Lipid Droplet Utilization. PLANT DIRECT 2025; 9:e70054. [PMID: 40212536 PMCID: PMC11982519 DOI: 10.1002/pld3.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/14/2024] [Accepted: 01/04/2025] [Indexed: 04/15/2025]
Abstract
In plants, the primary form of energy stored in seed lipid droplets, triacylglycerol (TAG), is catabolized during germination to support pre-photosynthetic growth. Although this process is essential for seedling development, it is incompletely understood. In a screen for Arabidopsis thaliana mutants displaying delayed degradation of the lipid droplet coat protein oleosin, five independent mutations in PECTIN METHYLESTERASE31 (PME31) were recovered. In addition to delayed oleosin degradation, pme31 mutant seedlings exhibited sustained lipid droplets and elevated levels of several TAG and diacylglycerol species. Although structural prediction classified PME31 as a pectinesterase, this structural family also includes a putative E. coli lipase, YbhC. Moreover, PME31 lacks an N-terminal signal peptide that would target it to the cell wall, where pectin resides. We found that a fluorescent PME31 reporter was cytosolic and partially associated with peroxisomes, the site of fatty acid catabolism, during lipid mobilization. Our findings suggest that, in contrast to canonical PMEs, which modify cell wall pectin, PME31 functions at peroxisomes to directly or indirectly promote lipid mobilization.
Collapse
Affiliation(s)
- Sarah Hamade
- Biosciences DepartmentRice UniversityHoustonTexasUSA
| | | | - Bonnie Bartel
- Biosciences DepartmentRice UniversityHoustonTexasUSA
| |
Collapse
|
2
|
Scholz P, Doner NM, Gutbrod K, Herrfurth C, Niemeyer PW, Lim MSS, Blersch KF, Schmitt K, Valerius O, Shanklin J, Feussner I, Dörmann P, Braus GH, Mullen RT, Ischebeck T. Plasticity of the Arabidopsis leaf lipidome and proteome in response to pathogen infection and heat stress. PLANT PHYSIOLOGY 2025; 197:kiae274. [PMID: 38781317 PMCID: PMC11823117 DOI: 10.1093/plphys/kiae274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Plants must cope with a variety of stressors during their life cycle, and the adaptive responses to these environmental cues involve all cellular organelles. Among them, comparatively little is known about the contribution of cytosolic lipid droplets (LDs) and their core set of neutral lipids and associated surface proteins to the rewiring of cellular processes in response to stress. Here, we analyzed the changes that occur in the lipidome and proteome of Arabidopsis (Arabidopsis thaliana) leaves after pathogen infection with Botrytis cinerea or Pseudomonas syringae, or after heat stress. Analyses were carried out in wild-type plants and the oil-rich double mutant trigalactosyldiacylglycerol1-1 sugar dependent 1-4 (tgd1-1 sdp1-4) that allowed for an allied study of the LD proteome in stressed leaves. Using liquid chromatography-tandem mass spectrometry-based methods, we showed that a hyperaccumulation of the primary LD core lipid TAG is a general response to stress and that acyl chain and sterol composition are remodeled during cellular adaptation. Likewise, comparative analysis of the LD protein composition in stress-treated leaves highlighted the plasticity of the LD proteome as part of the general stress response. We further identified at least two additional LD-associated proteins, whose localization to LDs in leaves was confirmed by confocal microscopy of fluorescent protein fusions. Taken together, these results highlight LDs as dynamic contributors to the cellular adaptation processes that underlie how plants respond to environmental stress.
Collapse
Affiliation(s)
- Patricia Scholz
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen 37077, Germany
| | - Nathan M Doner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Katharina Gutbrod
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn 53115, Germany
| | - Cornelia Herrfurth
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen 37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen 37077, Germany
| | - Philipp W Niemeyer
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen 37077, Germany
| | - Magdiel S S Lim
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster 48143, Germany
| | - Katharina F Blersch
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster 48143, Germany
| | - Kerstin Schmitt
- Institute for Microbiology and Genetics, Service Unit LCMS Protein Analytics Department for Molecular Microbiology and Genetics, University of Goettingen, Goettingen 37077, Germany
| | - Oliver Valerius
- Institute for Microbiology and Genetics, Service Unit LCMS Protein Analytics Department for Molecular Microbiology and Genetics, University of Goettingen, Goettingen 37077, Germany
| | - John Shanklin
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Ivo Feussner
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen 37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen 37077, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn 53115, Germany
| | - Gerhard H Braus
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen 37077, Germany
- Institute for Microbiology and Genetics, Service Unit LCMS Protein Analytics Department for Molecular Microbiology and Genetics, University of Goettingen, Goettingen 37077, Germany
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Till Ischebeck
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen 37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen 37077, Germany
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster 48143, Germany
| |
Collapse
|
3
|
Cai Y, Horn PJ. Packaging "vegetable oils": Insights into plant lipid droplet proteins. PLANT PHYSIOLOGY 2025; 197:kiae533. [PMID: 39566075 DOI: 10.1093/plphys/kiae533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/06/2024] [Indexed: 11/22/2024]
Abstract
Plant neutral lipids, also known as "vegetable oils", are synthesized within the endoplasmic reticulum (ER) membrane and packaged into subcellular compartments called lipid droplets (LDs) for stable storage in the cytoplasm. The biogenesis, modulation, and degradation of cytoplasmic LDs in plant cells are orchestrated by a variety of proteins localized to the ER, LDs, and peroxisomes. Recent studies of these LD-related proteins have greatly advanced our understanding of LDs not only as steady oil depots in seeds but also as dynamic cell organelles involved in numerous physiological processes in different tissues and developmental stages of plants. In the past 2 decades, technology advances in proteomics, transcriptomics, genome sequencing, cellular imaging and protein structural modeling have markedly expanded the inventory of LD-related proteins, provided unprecedented structural and functional insights into the protein machinery modulating LDs in plant cells, and shed new light on the functions of LDs in nonseed plant tissues as well as in unicellular algae. Here, we review critical advances in revealing new LD proteins in various plant tissues, point out structural and mechanistic insights into key proteins in LD biogenesis and dynamic modulation, and discuss future perspectives on bridging our knowledge gaps in plant LD biology.
Collapse
Affiliation(s)
- Yingqi Cai
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | - Patrick J Horn
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| |
Collapse
|
4
|
Tangpranomkorn S, Kimura Y, Igarashi M, Ishizuna F, Kato Y, Suzuki T, Nagae T, Fujii S, Takayama S. A land plant-specific VPS13 mediates polarized vesicle trafficking in germinating pollen. THE NEW PHYTOLOGIST 2025; 245:1072-1089. [PMID: 39617642 PMCID: PMC11712023 DOI: 10.1111/nph.20277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/29/2024] [Indexed: 01/11/2025]
Abstract
Pollen has an extraordinary ability to convert from a dry state to an extremely rapidly growing state. During pollination, pollen receives water and Ca2+ from the contacting pistil, which will be a directional cue for pollen tube germination. The subsequent rapid activation of directional vesicular transport must support the pollen tube growth, but the molecular mechanism leading to this process is largely unknown. We established a luciferase-based pollination assay to screen genetic mutants defective in the early stage after pollination. We identified a plant-specific VPS13, Arabidopsis thaliana VPS13a as important for pollen germination, and studied its molecular function. AtVPS13a mutation severely affected pollen germination and lipid droplet discharge from the rough endoplasmic reticulum. Cellular accumulation patterns of AtVPS13a and a secretory vesicle marker were synchronized at the polarized site, with a slight delay to the local Ca2+ elevation. We found a brief Ca2+ spike after initiation of pollen hydration, which may be related to the directional cues for pollen tube emergence. Although this Ca2+ dynamics after pollination was unaffected by the absence of AtVPS13a, the mutant suffered reduced cell wall deposition during pollen germination. AtVPS13a mediates pollen polarization, by regulating proper directional vesicular transport following Ca2+ signaling for directional tube outgrowth.
Collapse
Grants
- JP15K14626 Ministry of Education, Culture, Sports, Science and Technology
- JP16H01467 Ministry of Education, Culture, Sports, Science and Technology
- JP16H06380 Ministry of Education, Culture, Sports, Science and Technology
- JP16H06464 Ministry of Education, Culture, Sports, Science and Technology
- JP16H06467 Ministry of Education, Culture, Sports, Science and Technology
- JP18H02456 Ministry of Education, Culture, Sports, Science and Technology
- JP18H04776 Ministry of Education, Culture, Sports, Science and Technology
- JP18J13423 Ministry of Education, Culture, Sports, Science and Technology
- JP19J01563 Ministry of Education, Culture, Sports, Science and Technology
- JP21H05030 Ministry of Education, Culture, Sports, Science and Technology
- JP22H05172 Ministry of Education, Culture, Sports, Science and Technology
- JP22H05174 Ministry of Education, Culture, Sports, Science and Technology
- JP23K17987 Ministry of Education, Culture, Sports, Science and Technology
- JP24K01692 Ministry of Education, Culture, Sports, Science and Technology
- Suntory Foundation for Life Sciences
- JPMJPR16Q8 Japan Science and Technology Agency (JST)
- Ministry of Education, Culture, Sports, Science and Technology
- Suntory Foundation for Life Sciences
Collapse
Affiliation(s)
| | - Yuka Kimura
- Graduate School of Agricultural and Life SciencesUniversity of TokyoTokyo113‐8657Japan
| | - Motoko Igarashi
- Graduate School of Biological SciencesNara Institute of Science and TechnologyNara630‐0192Japan
| | - Fumiko Ishizuna
- Department of Human Life Science and Design, Faculty of Contemporary Human Life ScienceTokyo Kasei Gakuin University2600 Aihara‐machi, Machida‐shiTokyo194‐0292Japan
| | - Yoshinobu Kato
- Graduate School of Agricultural and Life SciencesUniversity of TokyoTokyo113‐8657Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and TechnologySaitama332‐0012Japan
| | - Takamasa Suzuki
- Graduate School of Bioscience and BiotechnologyChubu UniversityAichi487‐8501Japan
| | - Takuya Nagae
- Graduate School of Agricultural and Life SciencesUniversity of TokyoTokyo113‐8657Japan
| | - Sota Fujii
- Graduate School of Agricultural and Life SciencesUniversity of TokyoTokyo113‐8657Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE)Kyoto619‐0284Japan
| | - Seiji Takayama
- Graduate School of Agricultural and Life SciencesUniversity of TokyoTokyo113‐8657Japan
| |
Collapse
|
5
|
Kaur M, Sinha K, Eastmond PJ, Bhunia RK. Exploiting lipid droplet metabolic pathway to foster lipid production: oleosin in focus. PLANT CELL REPORTS 2024; 44:12. [PMID: 39724216 DOI: 10.1007/s00299-024-03390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/23/2024] [Indexed: 12/28/2024]
Abstract
In the past decade, there has been an emerging gap between the demand and supply of vegetable oils globally for both edible and industrial use. Lipids are important biomolecules with enormous applications in the industrial sector and a major source of energy for animals and plants. Hence, to elevate the lipid content through metabolic engineering, new strategies have come up for triacylglycerol (TAG) accumulation and in raising the lipid or oil yield in crop plants. Increased levels of energy density can be achieved by single and multiple gene strategies that re-orient the carbon flux into TAG. Transcription factors and enzymes of the metabolic pathways have been targeted to foster lipid production. Oleosin, a structural protein of the lipid droplet plays a vital role in its stabilization and subsequently in its mobilization for seed germination and seedling growth. Maintenance of increased lipid content with optimal composition is a major target. Knowledge gained from genetic engineering strategies suggests that oleosin co-expression can result in a significant shift in carbon allocation to LDs. In this review, we present a detailed analysis of the recent advancements in metabolic engineering of plant lipids with emphasis on oleosin with its distinct patterns and functions in plants.
Collapse
Affiliation(s)
- Manmehar Kaur
- Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Kshitija Sinha
- Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India
- National Agri-Food and Biomanufacturing Institute (NABI), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, Punjab, 140306, India
| | | | - Rupam Kumar Bhunia
- National Agri-Food and Biomanufacturing Institute (NABI), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
6
|
Amari C, Carletti M, Yan S, Michaud M, Salvaing J. Lipid droplets degradation mechanisms from microalgae to mammals, a comparative overview. Biochimie 2024; 227:19-34. [PMID: 39299537 DOI: 10.1016/j.biochi.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Lipid droplets (LDs) are organelles composed of a hydrophobic core (mostly triacylglycerols and steryl esters) delineated by a lipid monolayer and found throughout the tree of life. LDs were seen for a long time as simple energy storage organelles but recent works highlighted their versatile roles in several fundamental cellular processes, particularly during stress response. LDs biogenesis occurs in the ER and their number and size can be dynamically regulated depending on their function, e.g. during development or stress. Understanding their biogenesis and degradation mechanisms is thus essential to better apprehend their roles. LDs degradation can occur in the cytosol by lipolysis or after their internalization into lytic compartments (e.g. vacuoles or lysosomes) using diverse mechanisms that depend on the considered organism, tissue, developmental stage or environmental condition. In this review, we summarize our current knowledge on the different LDs degradation pathways in several main phyla of model organisms, unicellular or pluricellular, photosynthetic or not (budding yeast, mammals, land plants and microalgae). We highlight the conservation of the main degradation pathways throughout evolution, but also the differences between organisms, or inside an organism between different organs. Finally, we discuss how this comparison can help to shed light on relationships between LDs degradation pathways and LDs functions.
Collapse
Affiliation(s)
- Chems Amari
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France; Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Marta Carletti
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France
| | - Siqi Yan
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France
| | - Morgane Michaud
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France
| | - Juliette Salvaing
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France.
| |
Collapse
|
7
|
Li N, Jarvis RP. Recruitment of Cdc48 to chloroplasts by a UBX-domain protein in chloroplast-associated protein degradation. NATURE PLANTS 2024; 10:1400-1417. [PMID: 39160348 PMCID: PMC11410653 DOI: 10.1038/s41477-024-01769-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/20/2024] [Indexed: 08/21/2024]
Abstract
The translocon at the outer chloroplast membrane (TOC) is the gateway for chloroplast protein import and so is vital for photosynthetic establishment and plant growth. Chloroplast-associated protein degradation (CHLORAD) is a ubiquitin-dependent proteolytic system that regulates TOC. In CHLORAD, cytosolic Cdc48 provides motive force for the retrotranslocation of ubiquitinated TOC proteins to the cytosol but how Cdc48 is recruited is unknown. Here, we identify plant UBX-domain protein PUX10 as a component of the CHLORAD machinery. We show that PUX10 is an integral chloroplast outer membrane protein that projects UBX and ubiquitin-associated domains into the cytosol. It interacts with Cdc48 via its UBX domain, bringing it to the chloroplast surface, and with ubiquitinated TOC proteins via its ubiquitin-associated domain. Genetic analyses in Arabidopsis revealed a requirement for PUX10 during CHLORAD-mediated regulation of TOC function and plant development. Thus, PUX10 coordinates ubiquitination and retrotranslocation activities of CHLORAD to enable efficient TOC turnover.
Collapse
Affiliation(s)
- Na Li
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford, UK
| | - R Paul Jarvis
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Wang S, Wang X, Li S, Sun X, Xue M, Di D, Zhang A, Zhang Y, Xia Y, Zhou T, Fan Z. Maize lipid droplet-associated protein 2 is recruited by a virus to enhance viral multiplication and infection through regulating cellular fatty acid metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2484-2499. [PMID: 39007841 DOI: 10.1111/tpj.16934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024]
Abstract
Pathogen infection induces massive reprogramming of host primary metabolism. Lipid and fatty acid (FA) metabolism is generally disrupted by pathogens and co-opted for their proliferation. Lipid droplets (LDs) that play important roles in regulating cellular lipid metabolism are utilized by a variety of pathogens in mammalian cells. However, the function of LDs during pathogenic infection in plants remains unknown. We show here that infection by rice black streaked dwarf virus (RBSDV) affects the lipid metabolism of maize, which causes elevated accumulation of C18 polyunsaturated fatty acids (PUFAs) leading to viral proliferation and symptom development. The overexpression of one of the two novel LD-associated proteins (LDAPs) of maize (ZmLDAP1 and ZmLDAP2) induces LD clustering. The core capsid protein P8 of RBSDV interacts with ZmLDAP2 and prevents its degradation through the ubiquitin-proteasome system mediated by a UBX domain-containing protein, PUX10. In addition, silencing of ZmLDAP2 downregulates the expression of FA desaturase genes in maize, leading to a decrease in C18 PUFAs levels and suppression of RBSDV accumulation. Our findings reveal that plant virus may recruit LDAP to regulate cellular FA metabolism to promote viral multiplication and infection. These results expand the knowledge of LD functions and viral infection mechanisms in plants.
Collapse
Affiliation(s)
- Siyuan Wang
- MARA-Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, and State Key Laboratory for Maize Bio-breeding, China Agricultural University, Beijing, 100193, China
| | - Xinyu Wang
- MARA-Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, and State Key Laboratory for Maize Bio-breeding, China Agricultural University, Beijing, 100193, China
| | - Siqi Li
- MARA-Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, and State Key Laboratory for Maize Bio-breeding, China Agricultural University, Beijing, 100193, China
| | - Xi Sun
- MARA-Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, and State Key Laboratory for Maize Bio-breeding, China Agricultural University, Beijing, 100193, China
| | - Mingshuo Xue
- MARA-Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, and State Key Laboratory for Maize Bio-breeding, China Agricultural University, Beijing, 100193, China
| | - Dianping Di
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Baoding, 071000, China
| | - Aihong Zhang
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Baoding, 071000, China
| | - Yongjiang Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Hong Kong, SAR, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Tao Zhou
- MARA-Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, and State Key Laboratory for Maize Bio-breeding, China Agricultural University, Beijing, 100193, China
| | - Zaifeng Fan
- MARA-Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, and State Key Laboratory for Maize Bio-breeding, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| |
Collapse
|
9
|
Wang J, Chistov G, Zhang J, Huntington B, Salem I, Sandholu A, Arold ST. P-NADs: PUX-based NAnobody degraders for ubiquitin-independent degradation of target proteins. Heliyon 2024; 10:e34487. [PMID: 39130484 PMCID: PMC11315185 DOI: 10.1016/j.heliyon.2024.e34487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
Targeted protein degradation (TPD) allows cells to maintain a functional proteome and to rapidly adapt to changing conditions. Methods that repurpose TPD for the deactivation of specific proteins have demonstrated significant potential in therapeutic and research applications. Most of these methods are based on proteolysis targeting chimaeras (PROTACs) which link the protein target to an E3 ubiquitin ligase, resulting in the ubiquitin-based degradation of the target protein. In this study, we introduce a method for ubiquitin-independent TPD based on nanobody-conjugated plant ubiquitin regulatory X domain-containing (PUX) adaptor proteins. We show that the PUX-based NAnobody Degraders (P-NADs) can unfold a target protein through the Arabidopsis and human orthologues of the CDC48 unfoldase without the need for ubiquitination or initiating motifs. We demonstrate that P-NAD plasmids can be transfected into a human cell line, where the produced P-NADs use the endogenous CDC48 machinery for ubiquitin-independent TPD of a 143 kDa multidomain protein. Thus, P-NADs pave the road for ubiquitin-independent therapeutic TPD approaches. In addition, the modular P-NAD design combined with in vitro and cellular assays provide a versatile platform for elucidating functional aspects of CDC48-based TPD in plants and animals.
Collapse
Affiliation(s)
- Jun Wang
- Biological and Environmental Science and Engineering Division, Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | | | - Junrui Zhang
- Biological and Environmental Science and Engineering Division, Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Brandon Huntington
- Biological and Environmental Science and Engineering Division, Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Israa Salem
- Biological and Environmental Science and Engineering Division, Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Anandsukeerthi Sandholu
- Biological and Environmental Science and Engineering Division, Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Stefan T. Arold
- Biological and Environmental Science and Engineering Division, Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Anaokar S, Liang Y, Yu XH, Cai Y, Cai Y, Shanklin J. The expression of genes encoding novel Sesame oleosin variants facilitates enhanced triacylglycerol accumulation in Arabidopsis leaves and seeds. THE NEW PHYTOLOGIST 2024; 243:271-283. [PMID: 38329350 DOI: 10.1111/nph.19548] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024]
Abstract
Triacylglycerols (TAG), accumulate within lipid droplets (LD), predominantly surrounded by OLEOSINs (OLE), that protect TAG from hydrolysis. We tested the hypothesis that identifying and removing degradation signals from OLE would promote its abundance, preventing TAG degradation and enhancing TAG accumulation. We tested whether mutating potential ubiquitin-conjugation sites in a previously reported improved Sesamum indicum OLE (SiO) variant, o3-3 Cys-OLE (SiCO herein), would stabilize it and increase its lipogenic potential. SiCOv1 was created by replacing all five lysines in SiCO with arginines. Separately, six cysteine residues within SiCO were deleted to create SiCOv2. SiCOv1 and SiCOv2 mutations were combined to create SiCOv3. Transient expression of SiCOv3 in Nicotiana benthamiana increased TAG by two-fold relative to SiCO. Constitutive expression of SiCOv3 or SiCOv5, containing the five predominant TAG-increasing mutations from SiCOv3, in Arabidopsis along with mouse DGAT2 (mD) increased TAG accumulation by 54% in leaves and 13% in seeds compared with control lines coexpressing SiCO and mD. Lipid synthesis rates increased, consistent with an increase in lipid sink strength that sequesters newly synthesized TAG, thereby relieving the constitutive BADC-dependent inhibition of ACCase reported for WT Arabidopsis. These OLE variants represent novel factors for potentially increasing TAG accumulation in a variety of oil crops.
Collapse
Affiliation(s)
- Sanket Anaokar
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Yuanxue Liang
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Xiao-Hong Yu
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Yingqi Cai
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Yuanheng Cai
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| |
Collapse
|
11
|
Inès D, Courty PE, Wendehenne D, Rosnoblet C. CDC48 in plants and its emerging function in plant immunity. TRENDS IN PLANT SCIENCE 2024; 29:786-798. [PMID: 38218650 DOI: 10.1016/j.tplants.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/15/2024]
Abstract
Protein homeostasis, namely the balance between protein synthesis and degradation, must be finely controlled to ensure cell survival, notably through the ubiquitin-proteasome system (UPS). In all species, including plants, homeostasis is disrupted by biotic and abiotic stresses. A key player in the maintenance of protein balance, the protein CDC48, shows emerging functions in plants, particularly in response to biotic stress. In this review on CDC48 in plants, we detail its highly conserved structure, describe a gene expansion that is only present in Viridiplantae, discuss its various functions and regulations, and finally highlight its recruitment, still not clear, during the plant immune response.
Collapse
Affiliation(s)
- Damien Inès
- Agroécologie, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Université de Bourgogne, Université Bourgogne-Franche-Comté, Dijon, France
| | - Pierre-Emmanuel Courty
- Agroécologie, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Université de Bourgogne, Université Bourgogne-Franche-Comté, Dijon, France
| | - David Wendehenne
- Agroécologie, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Université de Bourgogne, Université Bourgogne-Franche-Comté, Dijon, France
| | - Claire Rosnoblet
- Agroécologie, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Université de Bourgogne, Université Bourgogne-Franche-Comté, Dijon, France.
| |
Collapse
|
12
|
Shi X, Xie X, Guo Y, Zhang J, Gong Z, Zhang K, Mei J, Xia X, Xia H, Ning N, Xiao Y, Yang Q, Wang GL, Liu W. A fungal core effector exploits the OsPUX8B.2-OsCDC48-6 module to suppress plant immunity. Nat Commun 2024; 15:2559. [PMID: 38519521 PMCID: PMC10959940 DOI: 10.1038/s41467-024-46903-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Proteins containing a ubiquitin regulatory X (UBX) domain are cofactors of Cell Division Cycle 48 (CDC48) and function in protein quality control. However, whether and how UBX-containing proteins participate in host-microbe interactions remain unclear. Here we show that MoNLE1, an effector from the fungal pathogen Magnaporthe oryzae, is a core virulence factor that suppresses rice immunity by specifically interfering with OsPUX8B.2. The UBX domain of OsPUX8B.2 is required for its binding to OsATG8 and OsCDC48-6 and controls its 26 S proteasome-dependent stability. OsPUX8B.2 and OsCDC48-6 positively regulate plant immunity against blast fungus, while the high-temperature tolerance heat-shock protein OsBHT, a putative cytoplasmic substrate of OsPUX8B.2-OsCDC48-6, negatively regulates defense against blast infection. MoNLE1 promotes the nuclear migration and degradation of OsPUX8B.2 and disturbs its association with OsBHT. Given the high conservation of MoNLE1 among fungal isolates, plants with broad and durable blast resistance might be generated by engineering intracellular proteins resistant to MoNLE1.
Collapse
Affiliation(s)
- Xuetao Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Xin Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuanwen Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junqi Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ziwen Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Kai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie Mei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Xinyao Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Haoxue Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Na Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
13
|
Hembach L, Niemeyer PW, Schmitt K, Zegers JMS, Scholz P, Brandt D, Dabisch JJ, Valerius O, Braus GH, Schwarzländer M, de Vries J, Rensing SA, Ischebeck T. Proteome plasticity during Physcomitrium patens spore germination - from the desiccated phase to heterotrophic growth and reconstitution of photoautotrophy. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1466-1486. [PMID: 38059656 DOI: 10.1111/tpj.16574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
The establishment of moss spores is considered a milestone in plant evolution. They harbor protein networks underpinning desiccation tolerance and accumulation of storage compounds that can be found already in algae and that are also utilized in seeds and pollen. Furthermore, germinating spores must produce proteins that drive the transition through heterotrophic growth to the autotrophic plant. To get insight into the plasticity of this proteome, we investigated it at five timepoints of moss (Physcomitrium patens) spore germination and in protonemata and gametophores. The comparison to previously published Arabidopsis proteome data of seedling establishment showed that not only the proteomes of spores and seeds are functionally related, but also the proteomes of germinating spores and young seedlings. We observed similarities with regard to desiccation tolerance, lipid droplet proteome composition, control of dormancy, and β-oxidation and the glyoxylate cycle. However, there were also striking differences. For example, spores lacked any obvious storage proteins. Furthermore, we did not detect homologs to the main triacylglycerol lipase in Arabidopsis seeds, SUGAR DEPENDENT1. Instead, we discovered a triacylglycerol lipase of the oil body lipase family and a lipoxygenase as being the overall most abundant proteins in spores. This finding indicates an alternative pathway for triacylglycerol degradation via oxylipin intermediates in the moss. The comparison of spores to Nicotiana tabacum pollen indicated similarities for example in regards to resistance to desiccation and hypoxia, but the overall developmental pattern did not align as in the case of seedling establishment and spore germination.
Collapse
Affiliation(s)
- Lea Hembach
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, 48143, Münster, Germany
| | - Philipp W Niemeyer
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Kerstin Schmitt
- Department for Molecular Microbiology and Genetics, Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Institute for Microbiology, University of Göttingen, 37077, Göttingen, Germany
| | - Jaccoline M S Zegers
- Department of Applied Bioinformatics, Göttingen Center for Molecular Biosciences (GZMB) and Campus Institute Data Science (CIDAS), Institute for Microbiology and Genetics, University of Göttingen, 37077, Göttingen, Germany
| | - Patricia Scholz
- Laboratoire Reproduction et Développement des Plantes (RDP), UCB Lyon 1, CNRS, INRAE, Université de Lyon, ENS de Lyon, Lyon, France
| | - Dennis Brandt
- Plant Energy Biology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, 48143, Münster, Germany
| | - Janis J Dabisch
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, 48143, Münster, Germany
| | - Oliver Valerius
- Department for Molecular Microbiology and Genetics, Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Institute for Microbiology, University of Göttingen, 37077, Göttingen, Germany
| | - Gerhard H Braus
- Department for Molecular Microbiology and Genetics, Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Institute for Microbiology, University of Göttingen, 37077, Göttingen, Germany
| | - Markus Schwarzländer
- Plant Energy Biology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, 48143, Münster, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Göttingen Center for Molecular Biosciences (GZMB) and Campus Institute Data Science (CIDAS), Institute for Microbiology and Genetics, University of Göttingen, 37077, Göttingen, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Till Ischebeck
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, 48143, Münster, Germany
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| |
Collapse
|
14
|
Tailor A, Bhatla SC. Polyamine depletion enhances oil body mobilization through possible regulation of oleosin degradation and aquaporin abundance on its membrane. PLANT SIGNALING & BEHAVIOR 2023; 18:2217027. [PMID: 37243675 DOI: 10.1080/15592324.2023.2217027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/29/2023]
Abstract
Oil body (OB) mobilization, a crucial event associated with early seedling growth, is delayed in response to salt stress. Previous reports suggest that careful regulation of polyamine (PA) metabolism is essential for salt stress tolerance in plants. Many aspects of PA-mediated regulation of metabolism have been uncovered. However, their role in the process of OB mobilization remains unexplored. Interestingly, the present investigations reveal a possible influence of PA homeostasis on OB mobilization, while implicating complex regulation of oleosin degradation and aquaporin abundance in OB membranes in the process. Application of PA inhibitors resulted in the accumulation of smaller OBs when compared to control (-NaCl) and the salt-stressed counterparts, suggesting a faster rate of mobilization. PA deficit also resulted in reduced retention of some larger oleosins under controlled conditions but enhanced retention of all oleosins under salt stress. Additionally, with respect to aquaporins, a higher abundance of PIP2 under PA deficit both under control and saline conditions, is correlated with a faster mobilization of OBs. Contrarily, TIP1s, and TIP2s remained almost undetectable in response to PA depletion and were differentially regulated by salt stress. The present work, thus, provides novel insights into PA homeostasis-mediated regulation of OB mobilization, oleosin degradation, and aquaporin abundance on OB membranes.
Collapse
Affiliation(s)
- Aditi Tailor
- Department of Botany, University of Delhi, Delhi, India
| | | |
Collapse
|
15
|
Kim ES, Han JH, Olejar KJ, Park SH. Degeneration of oil bodies by rough endoplasmic reticulum -associated protein during seed germination in Cannabis sativa. AOB PLANTS 2023; 15:plad082. [PMID: 38094511 PMCID: PMC10718813 DOI: 10.1093/aobpla/plad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/21/2023] [Indexed: 02/15/2024]
Abstract
Oil bodies serve as a vital energy source of embryos during germination and contribute to sustaining the initial growth of seedlings until photosynthesis initiation. Despite high stability in chemical properties, how oil bodies break down and go into the degradation process during germination is still unknown. This study provides a morphological understanding of the mobilization of stored compounds in the seed germination of Cannabis. The achenes of fibrous hemp cultivar (Cannabis sativa cv. 'Chungsam') were examined in this study using light microscopy, scanning electron microscopy and transmission electron microscopy. Oil bodies in Cannabis seeds appeared spherical and sporadically distributed in the cotyledonary cells. Protein bodies contained electron-dense globoid and heterogeneous protein matrices. During seed germination, rough endoplasmic reticulum (rER) and high electron-dense substances were present adjacent to the oil bodies. The border of the oil bodies became a dense cluster region and appeared as a sinuous outline. Later, irregular hyaline areas were distributed throughout oil bodies, showing the destabilized emulsification of oil bodies. Finally, the oil bodies lost their morphology and fused with each other. The storage proteins were concentrated in the centre of the protein body as a dense homogenous circular mass surrounded by a light heterogeneous area. Some storage proteins are considered emulsifying agents on the surface region of oil bodies, enabling them to remain stable and distinct within and outside cotyledon cells. At the early germination stage, rER appeared and dense substances aggregated adjacent to the oil bodies. Certain proteins were synthesized within the rER and then translocated into the oil bodies by crossing the half membrane of oil bodies. Our data suggest that rER-associated proteins function as enzymes to lyse the emulsifying proteins, thereby weakening the emulsifying agent on the surface of the oil bodies. This process plays a key role in the degeneration of oil bodies and induces coalescence during seed germination.
Collapse
Affiliation(s)
- Eun-Soo Kim
- Institute of Cannabis Research, Colorado State University-Pueblo, 2200 Bonforte Blvd. Pueblo, CO 81001-4901, USA
| | - Joon-Hee Han
- Institute of Biological Resources, Chuncheon Bioindustry Foundation, 32, Soyanggang-ro, Chuncheon-si, Gangwon-do 24232, Republic of Korea
| | - Kenneth J Olejar
- Department of Chemistry, Colorado State University-Pueblo, 2200 Bonforte Blvd. Pueblo, CO 81001-4901, USA
| | - Sang-Hyuck Park
- Institute of Cannabis Research, Colorado State University-Pueblo, 2200 Bonforte Blvd. Pueblo, CO 81001-4901, USA
| |
Collapse
|
16
|
Miklaszewska M, Zienkiewicz K, Klugier-Borowska E, Rygielski M, Feussner I, Zienkiewicz A. CALEOSIN 1 interaction with AUTOPHAGY-RELATED PROTEIN 8 facilitates lipid droplet microautophagy in seedlings. PLANT PHYSIOLOGY 2023; 193:2361-2380. [PMID: 37619984 PMCID: PMC10663143 DOI: 10.1093/plphys/kiad471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/16/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023]
Abstract
Lipid droplets (LDs) of seed tissues are storage organelles for triacylglycerols (TAGs) that provide the energy and carbon for seedling establishment. In the major route of LD degradation (lipolysis), TAGs are mobilized by lipases. However, LDs may also be degraded via lipophagy, a type of selective autophagy, which mediates LD delivery to vacuoles or lysosomes. The exact mechanisms of LD degradation and the mobilization of their content in plants remain unresolved. Here, we provide evidence that LDs are degraded via a process morphologically resembling microlipophagy in Arabidopsis (Arabidopsis thaliana) seedlings. We observed the entry and presence of LDs in the central vacuole as well as their breakdown. Moreover, we show co-localization of AUTOPHAGY-RELATED PROTEIN 8b (ATG8b) and LDs during seed germination and localization of lipidated ATG8 (ATG8-PE) to the LD fraction. We further demonstrate that structural LD proteins from the caleosin family, CALEOSIN 1 (CLO1), CALEOSIN 2 (CLO2), and CALEOSIN 3 (CLO3), interact with ATG8 proteins and possess putative ATG8-interacting motifs (AIMs). Deletion of the AIM localized directly before the proline knot disrupts the interaction of CLO1 with ATG8b, suggesting a possible role of this region in the interaction between these proteins. Collectively, we provide insights into LD degradation by microlipophagy in germinating seeds with a particular focus on the role of structural LD proteins in this process.
Collapse
Affiliation(s)
- Magdalena Miklaszewska
- Department of Plant Physiology and Biotechnology, University of Gdańsk, Wita Stwosza 59, Gdańsk 80-308, Poland
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen 37077, Germany
| | - Krzysztof Zienkiewicz
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen 37077, Germany
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Ewa Klugier-Borowska
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Marcin Rygielski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Ivo Feussner
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen 37077, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen 37077, Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen 37077, Germany
| | - Agnieszka Zienkiewicz
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen 37077, Germany
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| |
Collapse
|
17
|
Qin Z, Wang T, Zhao Y, Ma C, Shao Q. Molecular Machinery of Lipid Droplet Degradation and Turnover in Plants. Int J Mol Sci 2023; 24:16039. [PMID: 38003229 PMCID: PMC10671748 DOI: 10.3390/ijms242216039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Lipid droplets (LDs) are important organelles conserved across eukaryotes with a fascinating biogenesis and consumption cycle. Recent intensive research has focused on uncovering the cellular biology of LDs, with emphasis on their degradation. Briefly, two major pathways for LD degradation have been recognized: (1) lipolysis, in which lipid degradation is catalyzed by lipases on the LD surface, and (2) lipophagy, in which LDs are degraded by autophagy. Both of these pathways require the collective actions of several lipolytic and proteolytic enzymes, some of which have been purified and analyzed for their in vitro activities. Furthermore, several genes encoding these proteins have been cloned and characterized. In seed plants, seed germination is initiated by the hydrolysis of stored lipids in LDs to provide energy and carbon equivalents for the germinating seedling. However, little is known about the mechanism regulating the LD mobilization. In this review, we focus on recent progress toward understanding how lipids are degraded and the specific pathways that coordinate LD mobilization in plants, aiming to provide an accurate and detailed outline of the process. This will set the stage for future studies of LD dynamics and help to utilize LDs to their full potential.
Collapse
Affiliation(s)
| | | | | | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Qun Shao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
18
|
Hatzianestis IH, Mountourakis F, Stavridou S, Moschou PN. Plant condensates: no longer membrane-less? TRENDS IN PLANT SCIENCE 2023; 28:1101-1112. [PMID: 37183142 DOI: 10.1016/j.tplants.2023.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/16/2023]
Abstract
Cellular condensation is a reinvigorated area of study in biology, with scientific discussions focusing mainly on the forces that drive condensate formation, properties, and functions. Usually, condensates are called 'membrane-less' to highlight the absence of a surrounding membrane and the lack of associated contacts. In this opinion article we take a different direction, focusing on condensates that may be interfacing with membranes and their possible functions. We also highlight changes in condensate material properties brought about by condensate-membrane interactions, proposing how condensates-membrane interfaces could potentially affect interorganellar communication, development, and growth, but also adaptation in an evolutionary context. We would thus like to stimulate research in this area, which is much less understood in plants compared with the animal field.
Collapse
Affiliation(s)
- Ioannis H Hatzianestis
- Department of Biology, University of Crete, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
| | - Fanourios Mountourakis
- Department of Biology, University of Crete, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
| | | | - Panagiotis N Moschou
- Department of Biology, University of Crete, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece; Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.
| |
Collapse
|
19
|
Traver MS, Bartel B. The ubiquitin-protein ligase MIEL1 localizes to peroxisomes to promote seedling oleosin degradation and lipid droplet mobilization. Proc Natl Acad Sci U S A 2023; 120:e2304870120. [PMID: 37410814 PMCID: PMC10629534 DOI: 10.1073/pnas.2304870120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/02/2023] [Indexed: 07/08/2023] Open
Abstract
Lipid droplets are organelles conserved across eukaryotes that store and release neutral lipids to regulate energy homeostasis. In oilseed plants, fats stored in seed lipid droplets provide fixed carbon for seedling growth before photosynthesis begins. As fatty acids released from lipid droplet triacylglycerol are catabolized in peroxisomes, lipid droplet coat proteins are ubiquitinated, extracted, and degraded. In Arabidopsis seeds, the predominant lipid droplet coat protein is OLEOSIN1 (OLE1). To identify genes modulating lipid droplet dynamics, we mutagenized a line expressing mNeonGreen-tagged OLE1 expressed from the OLE1 promoter and isolated mutants with delayed oleosin degradation. From this screen, we identified four miel1 mutant alleles. MIEL1 (MYB30-interacting E3 ligase 1) targets specific MYB transcription factors for degradation during hormone and pathogen responses [D. Marino et al., Nat. Commun. 4, 1476 (2013); H. G. Lee and P. J. Seo, Nat. Commun. 7, 12525 (2016)] but had not been implicated in lipid droplet dynamics. OLE1 transcript levels were unchanged in miel1 mutants, indicating that MIEL1 modulates oleosin levels posttranscriptionally. When overexpressed, fluorescently tagged MIEL1 reduced oleosin levels, causing very large lipid droplets. Unexpectedly, fluorescently tagged MIEL1 localized to peroxisomes. Our data suggest that MIEL1 ubiquitinates peroxisome-proximal seed oleosins, targeting them for degradation during seedling lipid mobilization. The human MIEL1 homolog (PIRH2; p53-induced protein with a RING-H2 domain) targets p53 and other proteins for degradation and promotes tumorigenesis [A. Daks et al., Cells 11, 1515 (2022)]. When expressed in Arabidopsis, human PIRH2 also localized to peroxisomes, hinting at a previously unexplored role for PIRH2 in lipid catabolism and peroxisome biology in mammals.
Collapse
Affiliation(s)
- Melissa S. Traver
- Department of Biosciences, Biochemistry and Cell Biology Program, Rice University, Houston, TX77005
| | - Bonnie Bartel
- Department of Biosciences, Biochemistry and Cell Biology Program, Rice University, Houston, TX77005
| |
Collapse
|
20
|
Bouchnak I, Coulon D, Salis V, D’Andréa S, Bréhélin C. Lipid droplets are versatile organelles involved in plant development and plant response to environmental changes. FRONTIERS IN PLANT SCIENCE 2023; 14:1193905. [PMID: 37426978 PMCID: PMC10327486 DOI: 10.3389/fpls.2023.1193905] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/23/2023] [Indexed: 07/11/2023]
Abstract
Since decades plant lipid droplets (LDs) are described as storage organelles accumulated in seeds to provide energy for seedling growth after germination. Indeed, LDs are the site of accumulation for neutral lipids, predominantly triacylglycerols (TAGs), one of the most energy-dense molecules, and sterol esters. Such organelles are present in the whole plant kingdom, from microalgae to perennial trees, and can probably be found in all plant tissues. Several studies over the past decade have revealed that LDs are not merely simple energy storage compartments, but also dynamic structures involved in diverse cellular processes like membrane remodeling, regulation of energy homeostasis and stress responses. In this review, we aim to highlight the functions of LDs in plant development and response to environmental changes. In particular, we tackle the fate and roles of LDs during the plant post-stress recovery phase.
Collapse
Affiliation(s)
- Imen Bouchnak
- Centre National de la Recherche Scientifique (CNRS), University of Bordeaux, Laboratoire de Biogenèse Membranaire UMR5200, Villenave d’Ornon, France
| | - Denis Coulon
- Centre National de la Recherche Scientifique (CNRS), University of Bordeaux, Laboratoire de Biogenèse Membranaire UMR5200, Villenave d’Ornon, France
| | - Vincent Salis
- Université Paris-Saclay, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Sabine D’Andréa
- Université Paris-Saclay, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Claire Bréhélin
- Centre National de la Recherche Scientifique (CNRS), University of Bordeaux, Laboratoire de Biogenèse Membranaire UMR5200, Villenave d’Ornon, France
| |
Collapse
|
21
|
Chen A, Hu S, Zhu D, Zhao R, Huang C, Gao Y. Lipid droplets proteome reveals dynamic changes of lipid droplets protein during embryonic development of Carya cathayensis nuts. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023:111753. [PMID: 37268111 DOI: 10.1016/j.plantsci.2023.111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/11/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
Lipid droplets (LD) is an important intracellular organelle for triacylglycerols (TAGs) storage. A variety of proteins on the surface of LD coordinately control the contents, size, stability and biogenesis of LD. However, the LD proteins in Chinese hickory (Carya cathayensis) nuts, which rich in oil and composed of unsaturated fatty acids, have not been identified and their roles in LD formation still remain largely unknown. In present study, LD fractions from three developmental stages of Chinese hickory seed were enriched and the LD fraction accumulated proteins were then isolated and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Protein compositions throughout the various developmental phases were calculated using label-free intensity-based absolute quantification (iBAQ) algorithm. The dynamic proportion of high abundance lipid droplets proteins such as oleosins 2 (OLE2), caleosins 1 (CLO1) and steroleosin 5 (HSD5) increased parallelly with the embryo development. For low abundance lipid droplets proteins, SEED LD PROTEIN 2 (SLDP2), STEROL METHYLTRANSFERASE 1 (SMT1) and LD-ASSOCIATED PROTEIN 1 (LDAP1) were the predominant proteins. Moreover, 14 low abundance OB proteins such as oil body-associated protein 2A (OBAP2A) were selected for future investigation that may associate with embryo development. Overall, 62 differentially expressed proteins (DEPs) were determined by label free quantification (LFQ) algorithms and may involve in LD biogenesis. Furthermore, the subcellular localization validation indicated that selected LD proteins were targeted to the lipid droplets, confirming the promising of proteome data. Taken together, this comparative study may shed light on further study to understand the lipid droplets function in the seed, which contains high oil content. DATA AVAILABILITY STATEMENT: The mass spectrometry proteomics data are available in the ProteomeXchange Consortium (accession number: PXD038646).
Collapse
Affiliation(s)
- Anjing Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Shuai Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Dongmei Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Rui Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Chunying Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Yanli Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
22
|
Zhao Y, Dong Q, Geng Y, Ma C, Shao Q. Dynamic Regulation of Lipid Droplet Biogenesis in Plant Cells and Proteins Involved in the Process. Int J Mol Sci 2023; 24:ijms24087476. [PMID: 37108639 PMCID: PMC10138601 DOI: 10.3390/ijms24087476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Lipid droplets (LDs) are ubiquitous, dynamic organelles found in almost all organisms, including animals, protists, plants and prokaryotes. The cell biology of LDs, especially biogenesis, has attracted increasing attention in recent decades because of their important role in cellular lipid metabolism and other newly identified processes. Emerging evidence suggests that LD biogenesis is a highly coordinated and stepwise process in animals and yeasts, occurring at specific sites of the endoplasmic reticulum (ER) that are defined by both evolutionarily conserved and organism- and cell type-specific LD lipids and proteins. In plants, understanding of the mechanistic details of LD formation is elusive as many questions remain. In some ways LD biogenesis differs between plants and animals. Several homologous proteins involved in the regulation of animal LD formation in plants have been identified. We try to describe how these proteins are synthesized, transported to the ER and specifically targeted to LD, and how these proteins participate in the regulation of LD biogenesis. Here, we review current work on the molecular processes that control LD formation in plant cells and highlight the proteins that govern this process, hoping to provide useful clues for future research.
Collapse
Affiliation(s)
- Yiwu Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Qingdi Dong
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Yuhu Geng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Qun Shao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
23
|
Skodra C, Michailidis M, Moysiadis T, Stamatakis G, Ganopoulou M, Adamakis IDS, Angelis L, Ganopoulos I, Tanou G, Samiotaki M, Bazakos C, Molassiotis A. Disclosing the molecular basis of salinity priming in olive trees using proteogenomic model discovery. PLANT PHYSIOLOGY 2023; 191:1913-1933. [PMID: 36508356 PMCID: PMC10022641 DOI: 10.1093/plphys/kiac572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/23/2022] [Accepted: 11/11/2022] [Indexed: 05/13/2023]
Abstract
Plant responses to salinity are becoming increasingly understood, however, salt priming mechanisms remain unclear, especially in perennial fruit trees. Herein, we showed that low-salt pre-exposure primes olive (Olea europaea) plants against high salinity stress. We then performed a proteogenomic study to characterize priming responses in olive roots and leaves. Integration of transcriptomic and proteomic data along with metabolic data revealed robust salinity changes that exhibit distinct or overlapping patterns in olive tissues, among which we focused on sugar regulation. Using the multi-crossed -omics data set, we showed that major differences between primed and nonprimed tissues are mainly associated with hormone signaling and defense-related interactions. We identified multiple genes and proteins, including known and putative regulators, that reported significant proteomic and transcriptomic changes between primed and nonprimed plants. Evidence also supported the notion that protein post-translational modifications, notably phosphorylations, carbonylations and S-nitrosylations, promote salt priming. The proteome and transcriptome abundance atlas uncovered alterations between mRNA and protein quantities within tissues and salinity conditions. Proteogenomic-driven causal model discovery also unveiled key interaction networks involved in salt priming. Data generated in this study are important resources for understanding salt priming in olive tree and facilitating proteogenomic research in plant physiology.
Collapse
Affiliation(s)
- Christina Skodra
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi 57001, Greece
| | - Michail Michailidis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi 57001, Greece
| | - Theodoros Moysiadis
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki-Thermi 570001, Greece
- Department of Computer Science, School of Sciences and Engineering, University of Nicosia, Nicosia 2417, Cyprus
| | - George Stamatakis
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Vari 16672, Greece
| | - Maria Ganopoulou
- School of Informatics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | | | - Lefteris Angelis
- School of Informatics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki-Thermi 570001, Greece
- Joint Laboratory of Horticulture, ELGO-DIMITRA, Thessaloniki-Thermi 57001, Greece
| | - Georgia Tanou
- Joint Laboratory of Horticulture, ELGO-DIMITRA, Thessaloniki-Thermi 57001, Greece
- Institute of Soil and Water Resources, ELGO-DIMITRA, Thessaloniki-Thermi 57001, Greece
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Vari 16672, Greece
| | - Christos Bazakos
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki-Thermi 570001, Greece
- Joint Laboratory of Horticulture, ELGO-DIMITRA, Thessaloniki-Thermi 57001, Greece
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | | |
Collapse
|
24
|
Sagun JV, Yadav UP, Alonso AP. Progress in understanding and improving oil content and quality in seeds. FRONTIERS IN PLANT SCIENCE 2023; 14:1116894. [PMID: 36778708 PMCID: PMC9909563 DOI: 10.3389/fpls.2023.1116894] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
The world's population is projected to increase by two billion by 2050, resulting in food and energy insecurity. Oilseed crops have been identified as key to address these challenges: they produce and store lipids in the seeds as triacylglycerols that can serve as a source of food/feed, renewable fuels, and other industrially-relevant chemicals. Therefore, improving seed oil content and composition has generated immense interest. Research efforts aiming to unravel the regulatory pathways involved in fatty acid synthesis and to identify targets for metabolic engineering have made tremendous progress. This review provides a summary of the current knowledge of oil metabolism and discusses how photochemical activity and unconventional pathways can contribute to high carbon conversion efficiency in seeds. It also highlights the importance of 13C-metabolic flux analysis as a tool to gain insights on the pathways that regulate oil biosynthesis in seeds. Finally, a list of key genes and regulators that have been recently targeted to enhance seed oil production are reviewed and additional possible targets in the metabolic pathways are proposed to achieve desirable oil content and quality.
Collapse
Affiliation(s)
| | | | - Ana Paula Alonso
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, United States
| |
Collapse
|
25
|
Cai Y, Yu XH, Shanklin J. A toolkit for plant lipid engineering: Surveying the efficacies of lipogenic factors for accumulating specialty lipids. FRONTIERS IN PLANT SCIENCE 2022; 13:1064176. [PMID: 36589075 PMCID: PMC9795026 DOI: 10.3389/fpls.2022.1064176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Plants produce energy-dense lipids from carbohydrates using energy acquired via photosynthesis, making plant oils an economically and sustainably attractive feedstock for conversion to biofuels and value-added bioproducts. A growing number of strategies have been developed and optimized in model plants, oilseed crops and high-biomass crops to enhance the accumulation of storage lipids (mostly triacylglycerols, TAGs) for bioenergy applications and to produce specialty lipids with increased uses and value for chemical feedstock and nutritional applications. Most successful metabolic engineering strategies involve heterologous expression of lipogenic factors that outperform those from other sources or exhibit specialized functionality. In this review, we summarize recent progress in engineering the accumulation of triacylglycerols containing - specialized fatty acids in various plant species and tissues. We also provide an inventory of specific lipogenic factors (including accession numbers) derived from a wide variety of organisms, along with their reported efficacy in supporting the accumulation of desired lipids. A review of previously obtained results serves as a foundation to guide future efforts to optimize combinations of factors to achieve further enhancements to the production and accumulation of desired lipids in a variety of plant tissues and species.
Collapse
Affiliation(s)
- Yingqi Cai
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Xiao-Hong Yu
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| |
Collapse
|
26
|
Hauvermale AL, Cárdenas JJ, Bednarek SY, Steber CM. GA signaling expands: The plant UBX domain-containing protein 1 is a binding partner for the GA receptor. PLANT PHYSIOLOGY 2022; 190:2651-2670. [PMID: 36149293 PMCID: PMC9706445 DOI: 10.1093/plphys/kiac406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/19/2022] [Indexed: 06/07/2023]
Abstract
The plant Ubiquitin Regulatory X (UBX) domain-containing protein 1 (PUX1) functions as a negative regulator of gibberellin (GA) signaling. GAs are plant hormones that stimulate seed germination, the transition to flowering, and cell elongation and division. Loss of Arabidopsis (Arabidopsis thaliana) PUX1 resulted in a "GA-overdose" phenotype including early flowering, increased stem and root elongation, and partial resistance to the GA-biosynthesis inhibitor paclobutrazol during seed germination and root elongation. Furthermore, GA application failed to stimulate further stem elongation or flowering onset suggesting that elongation and flowering response to GA had reached its maximum. GA hormone partially repressed PUX1 protein accumulation, and PUX1 showed a GA-independent interaction with the GA receptor GA-INSENSITIVE DWARF-1 (GID1). This suggests that PUX1 is GA regulated and/or regulates elements of the GA signaling pathway. Consistent with PUX1 function as a negative regulator of GA signaling, the pux1 mutant caused increased GID1 expression and decreased accumulation of the DELLA REPRESSOR OF GA1-3, RGA. PUX1 is a negative regulator of the hexameric AAA+ ATPase CDC48, a protein that functions in diverse cellular processes including unfolding proteins in preparation for proteasomal degradation, cell division, and expansion. PUX1 binding to GID1 required the UBX domain, a binding motif necessary for CDC48 interaction. Moreover, PUX1 overexpression in cell culture not only stimulated the disassembly of CDC48 hexamer but also resulted in co-fractionation of GID1, PUX1, and CDC48 subunits in velocity sedimentation assays. Based on our results, we propose that PUX1 and CDC48 are additional factors that need to be incorporated into our understanding of GA signaling.
Collapse
Affiliation(s)
- Amber L Hauvermale
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, USA
- Molecular Plant Sciences, Washington State University, Pullman, Washington, USA
| | - Jessica J Cárdenas
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
27
|
Scholz P, Chapman KD, Mullen RT, Ischebeck T. Finding new friends and revisiting old ones - how plant lipid droplets connect with other subcellular structures. THE NEW PHYTOLOGIST 2022; 236:833-838. [PMID: 35851478 DOI: 10.1111/nph.18390] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
The number of described contact sites between different subcellular compartments and structures in eukaryotic cells has increased dramatically in recent years and, as such, has substantially reinforced the well-known premise that these kinds of connections are essential for overall cellular organization and the proper functioning of cellular metabolic and signaling pathways. Here, we discuss contact sites involving plant lipid droplets (LDs), including LD-endoplasmic reticulum (ER) connections that mediate the biogenesis of new LDs at the ER, LD-peroxisome connections, that facilitate the degradation of LD-stored triacylglycerols (TAGs), and the more recently discovered LD-plasma membrane connections, which involve at least three novel proteins, but have a yet unknown physiological function(s).
Collapse
Affiliation(s)
- Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Kent D Chapman
- Bio-Discovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Till Ischebeck
- Institute of Plant Biology and Biotechnology (IBBP), Green Biotechnology, University of Münster, 48143, Münster, Germany
| |
Collapse
|
28
|
Zhang J, Vancea AI, Arold ST. Targeting plant UBX proteins: AI-enhanced lessons from distant cousins. TRENDS IN PLANT SCIENCE 2022; 27:1099-1108. [PMID: 35718708 DOI: 10.1016/j.tplants.2022.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Across all eukaryotic kingdoms, ubiquitin regulatory X (UBX) domain-containing adaptor proteins control the segregase cell division control protein 48 (CDC48), and thereby also control cellular proteostasis and adaptation. The structures and biological roles of UBX proteins in animals and fungi have garnered considerable attention. However, their counterparts in plants remain markedly understudied. Since 2021, the artificial intelligence (AI)-based algorithm AlphaFold has provided predictions of protein structural features that can be highly accurate. Predictions of the proteomes of all major model organisms are now freely accessible to the entire research community through user-friendly web interfaces. We propose that the combination of cross-kingdom comparison with AF analysis produces a wealth of testable hypotheses to inspire and guide experimental research on plant UBX domain-containing (PUX) proteins.
Collapse
Affiliation(s)
- Junrui Zhang
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Alexandra I Vancea
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia; Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, 34090 Montpellier, France.
| |
Collapse
|
29
|
Huang S, Liu Z, Cao W, Li H, Zhang W, Cui Y, Hu S, Luo M, Zhu Y, Zhao Q, Xie L, Gao C, Xiao S, Jiang L. The plant ESCRT component FREE1 regulates peroxisome-mediated turnover of lipid droplets in germinating Arabidopsis seedlings. THE PLANT CELL 2022; 34:4255-4273. [PMID: 35775937 PMCID: PMC9614499 DOI: 10.1093/plcell/koac195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/20/2022] [Indexed: 05/28/2023]
Abstract
Lipid droplets (LDs) stored during seed development are mobilized and provide essential energy and lipids to support seedling growth upon germination. Triacylglycerols (TAGs) are the main neutral lipids stored in LDs. The lipase SUGAR DEPENDENT 1 (SDP1), which hydrolyzes TAGs in Arabidopsis thaliana, is localized on peroxisomes and traffics to the LD surface through peroxisomal extension, but the underlying mechanism remains elusive. Here, we report a previously unknown function of a plant-unique endosomal sorting complex required for transport (ESCRT) component FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING 1 (FREE1) in regulating peroxisome/SDP1-mediated LD turnover in Arabidopsis. We showed that LD degradation was impaired in germinating free1 mutant; moreover, the tubulation of SDP1- or PEROXIN 11e (PEX11e)-marked peroxisomes and the migration of SDP1-positive peroxisomes to the LD surface were altered in the free1 mutant. Electron tomography analysis showed that peroxisomes failed to form tubules to engulf LDs in free1, unlike in the wild-type. FREE1 interacted directly with both PEX11e and SDP1, suggesting that these interactions may regulate peroxisomal extension and trafficking of the lipase SDP1 to LDs. Taken together, our results demonstrate a pivotal role for FREE1 in LD degradation in germinating seedlings via regulating peroxisomal tubulation and SDP1 targeting.
Collapse
Affiliation(s)
- Shuxian Huang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, China
| | - Zhiqi Liu
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, China
| | - Wenhan Cao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, China
| | - Hongbo Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, 510631, China
| | - Wenxin Zhang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, China
| | - Yong Cui
- School of Life Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, 361102, China
| | - Shuai Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Mengqian Luo
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, China
| | - Ying Zhu
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, China
| | - Qiong Zhao
- School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Lijuan Xie
- College of Plant Protection, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, 510631, China
| | - Shi Xiao
- School of Life Sciences, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China
| | | |
Collapse
|
30
|
Ge S, Zhang RX, Wang YF, Sun P, Chu J, Li J, Sun P, Wang J, Hetherington AM, Liang YK. The Arabidopsis Rab protein RABC1 affects stomatal development by regulating lipid droplet dynamics. THE PLANT CELL 2022; 34:4274-4292. [PMID: 35929087 PMCID: PMC9614440 DOI: 10.1093/plcell/koac239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/13/2022] [Indexed: 05/13/2023]
Abstract
Lipid droplets (LDs) are evolutionarily conserved organelles that serve as hubs of cellular lipid and energy metabolism in virtually all organisms. Mobilization of LDs is important in light-induced stomatal opening. However, whether and how LDs are involved in stomatal development remains unknown. We show here that Arabidopsis thaliana LIPID DROPLETS AND STOMATA 1 (LDS1)/RABC1 (At1g43890) encodes a member of the Rab GTPase family that is involved in regulating LD dynamics and stomatal morphogenesis. The expression of RABC1 is coordinated with the different phases of stomatal development. RABC1 targets to the surface of LDs in response to oleic acid application in a RABC1GEF1-dependent manner. RABC1 physically interacts with SEIPIN2/3, two orthologues of mammalian seipin, which function in the formation of LDs. Disruption of RABC1, RABC1GEF1, or SEIPIN2/3 resulted in aberrantly large LDs, severe defects in guard cell vacuole morphology, and stomatal function. In conclusion, these findings reveal an aspect of LD function and uncover a role for lipid metabolism in stomatal development in plants.
Collapse
Affiliation(s)
| | | | - Yi-Fei Wang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Pengyue Sun
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jiaheng Chu
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jiao Li
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Peng Sun
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Alistair M Hetherington
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | | |
Collapse
|
31
|
Niemeyer PW, Irisarri I, Scholz P, Schmitt K, Valerius O, Braus GH, Herrfurth C, Feussner I, Sharma S, Carlsson AS, de Vries J, Hofvander P, Ischebeck T. A seed-like proteome in oil-rich tubers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:518-534. [PMID: 36050843 DOI: 10.1111/tpj.15964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/09/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
There are numerous examples of plant organs or developmental stages that are desiccation-tolerant and can withstand extended periods of severe water loss. One prime example are seeds and pollen of many spermatophytes. However, in some plants, also vegetative organs can be desiccation-tolerant. One example are the tubers of yellow nutsedge (Cyperus esculentus), which also store large amounts of lipids similar to seeds. Interestingly, the closest known relative, purple nutsedge (Cyperus rotundus), generates tubers that do not accumulate oil and are not desiccation-tolerant. We generated nanoLC-MS/MS-based proteomes of yellow nutsedge in five replicates of four stages of tuber development and compared them to the proteomes of roots and leaves, yielding 2257 distinct protein groups. Our data reveal a striking upregulation of hallmark proteins of seeds in the tubers. A deeper comparison to the tuber proteome of the close relative purple nutsedge (C. rotundus) and a previously published proteome of Arabidopsis seeds and seedlings indicates that indeed a seed-like proteome was found in yellow but not purple nutsedge. This was further supported by an analysis of the proteome of a lipid droplet-enriched fraction of yellow nutsedge, which also displayed seed-like characteristics. One reason for the differences between the two nutsedge species might be the expression of certain transcription factors homologous to ABSCISIC ACID INSENSITIVE3, WRINKLED1, and LEAFY COTYLEDON1 that drive gene expression in Arabidopsis seed embryos.
Collapse
Affiliation(s)
- Philipp William Niemeyer
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Iker Irisarri
- Department of Applied Bioinformatics, Göttingen Center for Molecular Biosciences (GZMB) and Campus Institute Data Science (CIDAS), Institute for Microbiology and Genetics, University of Göttingen, 37077, Göttingen, Germany
| | - Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Kerstin Schmitt
- Department for Molecular Microbiology and Genetics, Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Institute for Microbiology, University of Göttingen, 37077, Göttingen, Germany
| | - Oliver Valerius
- Department for Molecular Microbiology and Genetics, Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Institute for Microbiology, University of Göttingen, 37077, Göttingen, Germany
| | - Gerhard H Braus
- Department for Molecular Microbiology and Genetics, Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Institute for Microbiology, University of Göttingen, 37077, Göttingen, Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
- Department of Plant Biochemistry, Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
- Department of Plant Biochemistry, Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Shrikant Sharma
- Department of Plant Breeding, SLU Alnarp, Swedish University of Agricultural Sciences, Box 190, SE-234 22, Lomma, Sweden
| | - Anders S Carlsson
- Department of Plant Breeding, SLU Alnarp, Swedish University of Agricultural Sciences, Box 190, SE-234 22, Lomma, Sweden
| | - Jan de Vries
- Department of Applied Bioinformatics, Göttingen Center for Molecular Biosciences (GZMB) and Campus Institute Data Science (CIDAS), Institute for Microbiology and Genetics, University of Göttingen, 37077, Göttingen, Germany
| | - Per Hofvander
- Department of Plant Breeding, SLU Alnarp, Swedish University of Agricultural Sciences, Box 190, SE-234 22, Lomma, Sweden
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, 48143, Münster, Germany
| |
Collapse
|
32
|
Chu Z, Wang H, Wang Y, Chang S, Jia S, Pang L, Xi C, Liu J, Zhao H, Zhou X, Han S, Wang Y. OsHSD2 interaction with and phosphorylation by OsCPK21 is essential for lipid metabolism during rice caryopsis development. JOURNAL OF PLANT PHYSIOLOGY 2022; 274:153714. [PMID: 35569367 DOI: 10.1016/j.jplph.2022.153714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Rice calcium-dependent protein kinase 21 (OsCPK21) is specifically and highly expressed throughout reproductive development and plays a critical role in rice pollen development by indirectly regulating the MIKC*-type MADS box transcription factor. However, little is known about the function of OsCPK21 in rice caryopsis development. In this study, we performed an in vitro pull-down experiment followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and identified hydroxysteroid dehydrogenase 2 (HSD2) as a candidate OsCPK21-interacting protein in 25 DAF (days after flowering) rice caryopses. Then, we verified the interaction between OsCPK21 and OsHSD2 using yeast two-hybrid and bimolecular fluorescence assays and revealed the in vitro phosphorylation of OsHSD2 by OsCPK21. Furthermore, oscpk21 and oshsd2 mutants were generated by the CRISPR/Cas9 technique, and we found that the lipid profiles were drastically changed in both oscpk21 and oshsd2, implying that OsHSD2 phosphorylated by OsCPK21 regulates lipid abundance in caryopsis development, thereby providing a potential target for the genetic improvement of rice grain quality in future lipid-related breeding and biotechnology applications.
Collapse
Affiliation(s)
- Zhilin Chu
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Hanmeng Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yinxing Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Shu Chang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Shenghua Jia
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Lu Pang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Chao Xi
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jin Liu
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xiaojin Zhou
- Department of Crop Genomic & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China; Academy of Plateau Science and Sustainability of the People's Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Xining, 810008, Qinghai, China.
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China; Academy of Plateau Science and Sustainability of the People's Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Xining, 810008, Qinghai, China.
| |
Collapse
|
33
|
Li F, Han X, Guan H, Xu MC, Dong YX, Gao XQ. PALD encoding a lipid droplet-associated protein is critical for the accumulation of lipid droplets and pollen longevity in Arabidopsis. THE NEW PHYTOLOGIST 2022; 235:204-219. [PMID: 35348222 DOI: 10.1111/nph.18123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Pollen longevity is critical for plant pollination and hybrid seed production, but few studies have focused on pollen longevity. In this study, we identified an Arabidopsis thaliana gene, Protein associated with lipid droplets (PALD), which is strongly expressed in pollen and critical for the regulation of pollen longevity. PALD was expressed specifically in mature pollen grains and the pollen tube, and its expression was upregulated under dry conditions. PALD encoded a lipid droplet (LD)-associated protein and its N terminus was critical for the LD localization of PALD. The number of LDs and diameter were reduced in pollen grains of the loss-of-function PALD mutants. The viability and germination of the mature pollen grains of the pald mutants were comparable with those of the wild-type, but after the pollen grains were stored under dry conditions, pollen germination and male transmission of the mutant were compromised compared with those of the wild-type. Our study suggests that PALD was required for the maintenance of LD quality in mature pollen grains and regulation of pollen longevity.
Collapse
Affiliation(s)
- Fei Li
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xiao Han
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Huan Guan
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Mei Chen Xu
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Yu Xiu Dong
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xin-Qi Gao
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
34
|
Liu X, Yang Z, Wang Y, Shen Y, Jia Q, Zhao C, Zhang M. Multiple caleosins have overlapping functions in oil accumulation and embryo development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3946-3962. [PMID: 35419601 DOI: 10.1093/jxb/erac153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Caleosins are lipid droplet- and endoplasmic reticulum-associated proteins. To investigate their functions in oil accumulation, expression levels of caleosins in developing seeds of Arabidopsis thaliana were examined and four seed-expressed caleosins (CLO1, CLO2, CLO4, and CLO6) were identified. The four single mutants showed similar minor changes of fatty acid composition in seeds. Two double mutants (clo1 clo2 and clo1×clo2) demonstrated distinct changes of fatty acid composition, a 16-23% decrease of oil content, and a 10-13% decrease of seed weight. Moreover, a 40% decrease of oil content, further fatty acid changes, and misshapen membranes of smaller lipid droplets were found in seeds of quadruple CLO RNAi lines. Notably, ~40% of quadruple CLO RNAi T1 seeds failed to germinate, and deformed embryos and seedlings were also observed. Complementation experiments showed that CLO1 rescued the phenotype of clo1 clo2. Overexpression of CLO1 in seedlings and BY2 cells increased triacylglycerol content up to 73.6%. Transcriptome analysis of clo1 clo2 developing seeds showed that expression levels of some genes related to lipid, embryo development, calcium signaling, and stress responses were affected. Together, these results suggest that the major seed-expressed caleosins have overlapping functions in oil accumulation and show pleiotropic effects on embryo development.
Collapse
Affiliation(s)
- Xiangling Liu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | - Yun Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | - Qingli Jia
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cuizhu Zhao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meng Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
35
|
Jiang M, Ning W, Wu S, Wang X, Zhu K, Li A, Li Y, Cheng S, Song B. Three-nucleotide periodicity of nucleotide diversity in a population enables the identification of open reading frames. Brief Bioinform 2022; 23:6607611. [PMID: 35698834 PMCID: PMC9294425 DOI: 10.1093/bib/bbac210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/25/2022] [Accepted: 05/06/2022] [Indexed: 11/14/2022] Open
Abstract
Accurate prediction of open reading frames (ORFs) is important for studying and using genome sequences. Ribosomes move along mRNA strands with a step of three nucleotides and datasets carrying this information can be used to predict ORFs. The ribosome-protected footprints (RPFs) feature a significant 3-nt periodicity on mRNAs and are powerful in predicting translating ORFs, including small ORFs (sORFs), but the application of RPFs is limited because they are too short to be accurately mapped in complex genomes. In this study, we found a significant 3-nt periodicity in the datasets of populational genomic variants in coding sequences, in which the nucleotide diversity increases every three nucleotides. We suggest that this feature can be used to predict ORFs and develop the Python package ‘OrfPP’, which recovers ~83% of the annotated ORFs in the tested genomes on average, independent of the population sizes and the complexity of the genomes. The novel ORFs, including sORFs, identified from single-nucleotide polymorphisms are supported by protein mass spectrometry evidence comparable to that of the annotated ORFs. The application of OrfPP to tetraploid cotton and hexaploid wheat genomes successfully identified 76.17% and 87.43% of the annotated ORFs in the genomes, respectively, as well as 4704 sORFs, including 1182 upstream and 2110 downstream ORFs in cotton and 5025 sORFs, including 232 upstream and 234 downstream ORFs in wheat. Overall, we propose an alternative and supplementary approach for ORF prediction that can extend the studies of sORFs to more complex genomes.
Collapse
Affiliation(s)
- Mengyun Jiang
- Chinese Academy of Agricultural Sciences and Henan University, China
| | - Weidong Ning
- Chinese Academy of Agricultural Sciences and Huazhong Agricultural University, China
| | - Shishi Wu
- Chinese Academy of Agricultural Sciences and Henan University, China
| | - Xingwei Wang
- Chinese Academy of Agricultural Sciences and Henan University, China
| | - Kun Zhu
- Chinese Academy of Agricultural Sciences and Henan University, China
| | - Aomei Li
- Chinese Academy of Agricultural Sciences, China
| | - Yongyao Li
- Chinese Academy of Agricultural Sciences, China
| | | | - Bo Song
- Chinese Academy of Agricultural Sciences, China
| |
Collapse
|
36
|
Krawczyk HE, Rotsch AH, Herrfurth C, Scholz P, Shomroni O, Salinas-Riester G, Feussner I, Ischebeck T. Heat stress leads to rapid lipid remodeling and transcriptional adaptations in Nicotiana tabacum pollen tubes. PLANT PHYSIOLOGY 2022; 189:490-515. [PMID: 35302599 PMCID: PMC9157110 DOI: 10.1093/plphys/kiac127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/19/2022] [Indexed: 06/12/2023]
Abstract
After reaching the stigma, pollen grains germinate and form a pollen tube that transports the sperm cells to the ovule. Due to selection pressure between pollen tubes, pollen grains likely evolved mechanisms to quickly adapt to temperature changes to sustain elongation at the highest possible rate. We investigated these adaptions in tobacco (Nicotiana tabacum) pollen tubes grown in vitro under 22°C and 37°C by a multi-omics approach including lipidomic, metabolomic, and transcriptomic analysis. Both glycerophospholipids and galactoglycerolipids increased in saturated acyl chains under heat stress (HS), while triacylglycerols (TGs) changed less in respect to desaturation but increased in abundance. Free sterol composition was altered, and sterol ester levels decreased. The levels of sterylglycosides and several sphingolipid classes and species were augmented. Most amino acid levels increased during HS, including the noncodogenic amino acids γ-amino butyrate and pipecolate. Furthermore, the sugars sedoheptulose and sucrose showed higher levels. Also, the transcriptome underwent pronounced changes with 1,570 of 24,013 genes being differentially upregulated and 813 being downregulated. Transcripts coding for heat shock proteins and many transcriptional regulators were most strongly upregulated but also transcripts that have so far not been linked to HS. Transcripts involved in TG synthesis increased, while the modulation of acyl chain desaturation seemed not to be transcriptionally controlled, indicating other means of regulation. In conclusion, we show that tobacco pollen tubes are able to rapidly remodel their lipidome under HS likely by post-transcriptional and/or post-translational regulation.
Collapse
Affiliation(s)
- Hannah Elisa Krawczyk
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen 37077, Germany
| | - Alexander Helmut Rotsch
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen 37077, Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen 37077, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen 37077, Germany
| | - Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen 37077, Germany
| | - Orr Shomroni
- NGS—Integrative Genomics Core Unit (NIG), University Medical Center Göttingen (UMG), Institute of Human Genetics, Göttingen 37077, Germany
| | - Gabriela Salinas-Riester
- NGS—Integrative Genomics Core Unit (NIG), University Medical Center Göttingen (UMG), Institute of Human Genetics, Göttingen 37077, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen 37077, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen 37077, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen 37077, Germany
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Green Biotechnology, Münster 48143, Germany
| |
Collapse
|
37
|
Krawczyk HE, Sun S, Doner NM, Yan Q, Lim MSS, Scholz P, Niemeyer PW, Schmitt K, Valerius O, Pleskot R, Hillmer S, Braus GH, Wiermer M, Mullen RT, Ischebeck T. SEED LIPID DROPLET PROTEIN1, SEED LIPID DROPLET PROTEIN2, and LIPID DROPLET PLASMA MEMBRANE ADAPTOR mediate lipid droplet-plasma membrane tethering. THE PLANT CELL 2022; 34:2424-2448. [PMID: 35348751 PMCID: PMC9134073 DOI: 10.1093/plcell/koac095] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 05/27/2023]
Abstract
Membrane contact sites (MCSs) are interorganellar connections that allow for the direct exchange of molecules, such as lipids or Ca2+ between organelles, but can also serve to tether organelles at specific locations within cells. Here, we identified and characterized three proteins of Arabidopsis thaliana that form a lipid droplet (LD)-plasma membrane (PM) tethering complex in plant cells, namely LD-localized SEED LD PROTEIN (SLDP) 1 and SLDP2 and PM-localized LD-PLASMA MEMBRANE ADAPTOR (LIPA). Using proteomics and different protein-protein interaction assays, we show that both SLDPs associate with LIPA. Disruption of either SLDP1 and SLDP2 expression, or that of LIPA, leads to an aberrant clustering of LDs in Arabidopsis seedlings. Ectopic co-expression of one of the SLDPs with LIPA is sufficient to reconstitute LD-PM tethering in Nicotiana tabacum pollen tubes, a cell type characterized by dynamically moving LDs in the cytosolic streaming. Furthermore, confocal laser scanning microscopy revealed both SLDP2.1 and LIPA to be enriched at LD-PM contact sites in seedlings. These and other results suggest that SLDP and LIPA interact to form a tethering complex that anchors a subset of LDs to the PM during post-germinative seedling growth in Arabidopsis.
Collapse
Affiliation(s)
- Hannah Elisa Krawczyk
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
| | - Siqi Sun
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
| | - Nathan M Doner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Qiqi Yan
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Molecular Biology of Plant-Microbe Interactions Research Group, University of Göttingen, Göttingen, Germany
| | - Magdiel Sheng Satha Lim
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
| | - Patricia Scholz
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
| | - Philipp William Niemeyer
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
| | - Kerstin Schmitt
- Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Department for Molecular Microbiology and Genetics, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Oliver Valerius
- Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Department for Molecular Microbiology and Genetics, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Roman Pleskot
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Stefan Hillmer
- Electron Microscopy Core Facility, Heidelberg University, Heidelberg, Germany
| | - Gerhard H Braus
- Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Department for Molecular Microbiology and Genetics, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Marcel Wiermer
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Molecular Biology of Plant-Microbe Interactions Research Group, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Till Ischebeck
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
- Institute of Plant Biology and Biotechnology (IBBP), Green Biotechnology, University of Münster, Münster, Germany
| |
Collapse
|
38
|
Choi YJ, Zaikova K, Yeom SJ, Kim YS, Lee DW. Biogenesis and Lipase-Mediated Mobilization of Lipid Droplets in Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:1243. [PMID: 35567244 PMCID: PMC9105935 DOI: 10.3390/plants11091243] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Cytosolic lipid droplets (LDs) derived from the endoplasmic reticulum (ER) mainly contain neutral lipids, such as triacylglycerols (TAGs) and sterol esters, which are considered energy reserves. The metabolic pathways associated with LDs in eukaryotic species are involved in diverse cellular functions. TAG synthesis in plants is mediated by the sequential involvement of two subcellular organelles, i.e., plastids - plant-specific organelles, which serve as the site of lipid synthesis, and the ER. TAGs and sterol esters synthesized in the ER are sequestered to form LDs through the cooperative action of several proteins, such as SEIPINs, LD-associated proteins, LDAP-interacting proteins, and plant-specific proteins such as oleosins. The integrity and stability of LDs are highly dependent on oleosins, especially in the seeds, and oleosin degradation is critical for efficient mobilization of the TAGs of plant LDs. As the TAGs mobilize in LDs during germination and post-germinative growth, a plant-specific lipase-sugar-dependent 1 (SDP1)-plays a major role, through the inter-organellar communication between the ER and peroxisomes. In this review, we briefly recapitulate the different processes involved in the biogenesis and degradation of plant LDs, followed by a discussion of future perspectives in this field.
Collapse
Affiliation(s)
- Yun Ju Choi
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (Y.J.C.); (K.Z.)
| | - Kseniia Zaikova
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (Y.J.C.); (K.Z.)
| | - Soo-Jin Yeom
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea;
| | - Yeong-Su Kim
- Wild Plants Industrialization Research Division, Baekdudaegan National Arboretum, Bonghwa 36209, Korea
| | - Dong Wook Lee
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (Y.J.C.); (K.Z.)
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea
- Bio-Energy Research Center, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
39
|
Calvanese E, Gu Y. Towards understanding inner nuclear membrane protein degradation in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2266-2274. [PMID: 35139191 DOI: 10.1093/jxb/erac037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
The inner nuclear membrane (INM) hosts a unique set of membrane proteins that play essential roles in various aspects of the nuclear function. However, overaccumulation or malfunction of INM protein has been associated with a range of rare genetic diseases; therefore, maintaining the homeostasis and integrity of INM proteins by active removal of aberrantly accumulated proteins and replacing defective molecules through proteolysis is of critical importance. Within the last decade, it has been shown that INM proteins are degraded in yeasts by a process very similar to endoplasmic reticulum-associated degradation (ERAD), which is accomplished by retrotranslocation of membrane substrates followed by proteasome-dependent proteolysis, and this process was named inner nuclear membrane-associated degradation (INMAD). INMAD is distinguished from ERAD by specific INM-localized E3 ubiquitin ligases and proteolysis regulators. While much is yet to be determined about the INMAD pathway in yeasts, virtually no knowledge of it exists for higher eukaryotes, and only very recently have several critical regulators that participate in INM protein degradation been discovered in plants. Here, we review key molecular components of the INMAD pathway and draw parallels between the yeast and plant system to discuss promising directions in the future study of the plant INMAD process.
Collapse
Affiliation(s)
- Enrico Calvanese
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Yangnan Gu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
40
|
Kang BH, Anderson CT, Arimura SI, Bayer E, Bezanilla M, Botella MA, Brandizzi F, Burch-Smith TM, Chapman KD, Dünser K, Gu Y, Jaillais Y, Kirchhoff H, Otegui MS, Rosado A, Tang Y, Kleine-Vehn J, Wang P, Zolman BK. A glossary of plant cell structures: Current insights and future questions. THE PLANT CELL 2022; 34:10-52. [PMID: 34633455 PMCID: PMC8846186 DOI: 10.1093/plcell/koab247] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 05/03/2023]
Abstract
In this glossary of plant cell structures, we asked experts to summarize a present-day view of plant organelles and structures, including a discussion of outstanding questions. In the following short reviews, the authors discuss the complexities of the plant cell endomembrane system, exciting connections between organelles, novel insights into peroxisome structure and function, dynamics of mitochondria, and the mysteries that need to be unlocked from the plant cell wall. These discussions are focused through a lens of new microscopy techniques. Advanced imaging has uncovered unexpected shapes, dynamics, and intricate membrane formations. With a continued focus in the next decade, these imaging modalities coupled with functional studies are sure to begin to unravel mysteries of the plant cell.
Collapse
Affiliation(s)
- Byung-Ho Kang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | - Shin-ichi Arimura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Emmanuelle Bayer
- Université de Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, Villenave d'Ornon F-33140, France
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga 29071, Spain
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | - Kai Dünser
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Yangnan Gu
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Abel Rosado
- Department of Botany, University of British Columbia, Vancouver V6T1Z4, Canada
| | - Yu Tang
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Jürgen Kleine-Vehn
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Bethany Karlin Zolman
- Department of Biology, University of Missouri, St. Louis, St. Louis, Missouri 63121, USA
| |
Collapse
|
41
|
Pyc M, Gidda SK, Seay D, Esnay N, Kretzschmar FK, Cai Y, Doner NM, Greer MS, Hull JJ, Coulon D, Bréhélin C, Yurchenko O, de Vries J, Valerius O, Braus GH, Ischebeck T, Chapman KD, Dyer JM, Mullen RT. LDIP cooperates with SEIPIN and LDAP to facilitate lipid droplet biogenesis in Arabidopsis. THE PLANT CELL 2021; 33:3076-3103. [PMID: 34244767 PMCID: PMC8462815 DOI: 10.1093/plcell/koab179] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/26/2021] [Indexed: 05/19/2023]
Abstract
Cytoplasmic lipid droplets (LDs) are evolutionarily conserved organelles that store neutral lipids and play critical roles in plant growth, development, and stress responses. However, the molecular mechanisms underlying their biogenesis at the endoplasmic reticulum (ER) remain obscure. Here we show that a recently identified protein termed LD-associated protein [LDAP]-interacting protein (LDIP) works together with both endoplasmic reticulum-localized SEIPIN and the LD-coat protein LDAP to facilitate LD formation in Arabidopsis thaliana. Heterologous expression in insect cells demonstrated that LDAP is required for the targeting of LDIP to the LD surface, and both proteins are required for the production of normal numbers and sizes of LDs in plant cells. LDIP also interacts with SEIPIN via a conserved hydrophobic helix in SEIPIN and LDIP functions together with SEIPIN to modulate LD numbers and sizes in plants. Further, the co-expression of both proteins is required to restore normal LD production in SEIPIN-deficient yeast cells. These data, combined with the analogous function of LDIP to a mammalian protein called LD Assembly Factor 1, are discussed in the context of a new model for LD biogenesis in plant cells with evolutionary connections to LD biogenesis in other eukaryotes.
Collapse
Affiliation(s)
| | | | - Damien Seay
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Arid-Land Agricultural Research Center, Maricopa, Arizona 85138, USA
| | - Nicolas Esnay
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | - Franziska K. Kretzschmar
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, 37077 Göttingen, Germany
| | | | - Nathan M. Doner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - J. Joe Hull
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Arid-Land Agricultural Research Center, Maricopa, Arizona 85138, USA
| | - Denis Coulon
- Université de Bordeaux, Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, UMR5200, F-33140 Villenave d’Ornon, France
| | - Claire Bréhélin
- Université de Bordeaux, Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, UMR5200, F-33140 Villenave d’Ornon, France
| | | | - Jan de Vries
- Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences and Campus Institute Data Science, Department of Applied Bioinformatics, University of Göttingen, 37077 Göttingen, Germany
| | - Oliver Valerius
- Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences, Department for Molecular Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany
| | - Gerhard H. Braus
- Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences, Department for Molecular Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, 37077 Göttingen, Germany
| | - Kent D. Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | | | | |
Collapse
|
42
|
Zang Y, Hu Y, Xu C, Wu S, Wang Y, Ning Z, Han Z, Si Z, Shen W, Zhang Y, Fang L, Zhang T. GhUBX controlling helical growth results in production of stronger cotton fiber. iScience 2021; 24:102930. [PMID: 34409276 PMCID: PMC8361218 DOI: 10.1016/j.isci.2021.102930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/09/2021] [Accepted: 07/27/2021] [Indexed: 12/18/2022] Open
Abstract
Cotton fiber is an excellent model for studying plant cell elongation and cell wall biogenesis as well because they are highly polarized and use conserved polarized diffuse growth mechanism. Fiber strength is an important trait among cotton fiber qualities due to ongoing changes in spinning technology. However, the molecular mechanism of fiber strength forming is obscure. Through map-based cloning, we identified the fiber strength gene GhUBX. Increasing its expression, the fiber strength of the transgenic cotton was significantly enhanced compared to the receptor W0 and the helices number of the transgenic fiber was remarkably increased. Additionally, we proved that GhUBX regulates the fiber helical growth by degrading the GhSPL1 via the ubiquitin 26S–proteasome pathway. Taken together, we revealed the internal relationship between fiber helices and fiber stronger. It will be useful for improving the fiber quality in cotton breeding and illustrating the molecular mechanism for plant twisted growth. Isolation of the first fiber strength gene GhUBX using map-based cloning strategy Verification of the function of GhUBX experimentally in transgenic cotton Link helices to the cotton fiber strength, that more helices make fiber stronger An ubiquitin–proteasome system regulating the development of cotton fiber
Collapse
Affiliation(s)
- Yihao Zang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.,Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Yan Hu
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Chenyu Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.,Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Shenjie Wu
- Biotechnology Research Center, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China
| | - Yangkun Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Ning
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zegang Han
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhanfeng Si
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Weijuan Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yayao Zhang
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Lei Fang
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - TianZhen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.,Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
43
|
Abstract
Lipid droplets (LDs) are endoplasmic reticulum-derived organelles that consist of a core of neutral lipids encircled by a phospholipid monolayer decorated with proteins. As hubs of cellular lipid and energy metabolism, LDs are inherently involved in the etiology of prevalent metabolic diseases such as obesity and nonalcoholic fatty liver disease. The functions of LDs are regulated by a unique set of associated proteins, the LD proteome, which includes integral membrane and peripheral proteins. These proteins control key activities of LDs such as triacylglycerol synthesis and breakdown, nutrient sensing and signal integration, and interactions with other organelles. Here we review the mechanisms that regulate the composition of the LD proteome, such as pathways that mediate selective and bulk LD protein degradation and potential connections between LDs and cellular protein quality control.
Collapse
Affiliation(s)
- Melissa A Roberts
- Department of Molecular and Cell Biology and Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA;
| | - James A Olzmann
- Department of Molecular and Cell Biology and Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA; .,Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| |
Collapse
|
44
|
Rosnoblet C, Chatelain P, Klinguer A, Bègue H, Winckler P, Pichereaux C, Wendehenne D. The chaperone-like protein Cdc48 regulates ubiquitin-proteasome system in plants. PLANT, CELL & ENVIRONMENT 2021; 44:2636-2655. [PMID: 33908641 DOI: 10.1111/pce.14073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/23/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
The degradation of misfolded proteins is mainly mediated by the ubiquitin-proteasome system (UPS). UPS can be assisted by the protein Cdc48 but the relationship between UPS and Cdc48 in plants has been poorly investigated. Here, we analysed the regulation of UPS by Cdc48 in tobacco thanks to two independent cell lines overexpressing Cdc48 constitutively and plant leaves overexpressing Cdc48 transiently. In the cell lines, the accumulation of ubiquitinated proteins was affected both quantitatively and qualitatively and the number of proteasomal subunits was modified, while proteolytic activities were unchanged. Similarly, the over-expression of Cdc48 in planta impacted the accumulation of ubiquitinated proteins. A similar process occurred in leaves overexpressing transiently Rpn3, a proteasome subunit. Cdc48 being involved in plant immunity, its regulation of UPS was also investigated in response to cryptogein, an elicitor of immune responses. In the cell lines stably overexpressing Cdc48 and in leaves transiently overexpressing Cdc48 and/or Rpn3, cryptogein triggered a premature cell death while no increase of the proteasomal activity occurred. Overall, this study highlights a role for Cdc48 in ubiquitin homeostasis and confirms its involvement, as well as that of Rpn3, in the processes underlying the hypersensitive response.
Collapse
Affiliation(s)
- Claire Rosnoblet
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Pauline Chatelain
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Agnès Klinguer
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Hervé Bègue
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
- Laboratory of Parasitology and Mycology, Dijon University Hospital, Dijon, France
| | - Pascale Winckler
- Plateforme DimaCell, PAM UMR A 02.102, Université Bourgogne Franche-Comté, AgroSup Dijon, Dijon, France
| | - Carole Pichereaux
- Fédération de Recherche (FR3450), Agrobiosciences, Interactions et Biodiversité (AIB), CNRS, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse UPS, CNRS, Toulouse, France
| | - David Wendehenne
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
45
|
Li-Beisson Y, Kong F, Wang P, Lee Y, Kang BH. The disassembly of lipid droplets in Chlamydomonas. THE NEW PHYTOLOGIST 2021; 231:1359-1364. [PMID: 34028037 DOI: 10.1111/nph.17505] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Lipid droplets (LDs) are ubiquitous and specialized organelles in eukaryotic cells. Consisting of a triacylglycerol core surrounded by a monolayer of membrane lipids, LDs are decorated with proteins and have myriad functions, from carbon/energy storage to membrane lipid remodeling and signal transduction. The biogenesis and turnover of LDs are therefore tightly coordinated with cellular metabolic needs in a fluctuating environment. Lipid droplet turnover requires remodeling of the protein coat, lipolysis, autophagy and fatty acid β-oxidation. Several key components of these processes have been identified in Chlamydomonas (Chlamydomonas reinhardtii), including the major lipid droplet protein, a CXC-domain containing regulatory protein, the phosphatidylethanolamine-binding DTH1 (DELAYED IN TAG HYDROLYSIS1), two lipases and two enzymes involved in fatty acid β-oxidation. Here, we review LD turnover and discuss its physiological significance in Chlamydomonas, a major model green microalga in research on algal oil.
Collapse
Affiliation(s)
- Yonghua Li-Beisson
- CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Aix-Marseille Univ, Saint Paul-Lez-Durance, 13108, France
| | - Fantao Kong
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Pengfei Wang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Youngsook Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Byung-Ho Kang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| |
Collapse
|
46
|
Song B, Jiang M, Gao L. RiboNT: A Noise-Tolerant Predictor of Open Reading Frames from Ribosome-Protected Footprints. Life (Basel) 2021; 11:life11070701. [PMID: 34357073 PMCID: PMC8307163 DOI: 10.3390/life11070701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/27/2023] Open
Abstract
Ribo-seq, also known as ribosome profiling, refers to the sequencing of ribosome-protected mRNA fragments (RPFs). This technique has greatly advanced our understanding of translation and facilitated the identification of novel open reading frames (ORFs) within untranslated regions or non-coding sequences as well as the identification of non-canonical start codons. However, the widespread application of Ribo-seq has been hindered because obtaining periodic RPFs requires a highly optimized protocol, which may be difficult to achieve, particularly in non-model organisms. Furthermore, the periodic RPFs are too short (28 nt) for accurate mapping to polyploid genomes, but longer RPFs are usually produced with a compromise in periodicity. Here we present RiboNT, a noise-tolerant ORF predictor that can utilize RPFs with poor periodicity. It evaluates RPF periodicity and automatically weighs the support from RPFs and codon usage before combining their contributions to identify translated ORFs. The results demonstrate the utility of RiboNT for identifying both long and small ORFs using RPFs with either good or poor periodicity. We implemented the pipeline on a dataset of RPFs with poor periodicity derived from membrane-bound polysomes of Arabidopsis thaliana seedlings and identified several small ORFs (sORFs) evolutionarily conserved in diverse plant species. RiboNT should greatly broaden the application of Ribo-seq by minimizing the requirement of RPF quality and allowing the use of longer RPFs, which is critical for organisms with complex genomes because these RPFs can be more accurately mapped to the position from which they were derived.
Collapse
Affiliation(s)
- Bo Song
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
- Correspondence: (B.S.); (L.G.)
| | - Mengyun Jiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Correspondence: (B.S.); (L.G.)
| |
Collapse
|
47
|
Abstract
Cytosolic lipid droplets (LDs) are organelles which emulsify a variety of hydrophobic molecules in the aqueous cytoplasm of essentially all plant cells. Most familiar are the LDs from oilseeds or oleaginous fruits that primarily store triacylglycerols and serve a storage function. However, similar hydrophobic particles are found in cells of plant tissues that package terpenoids, sterol esters, wax esters, or other types of nonpolar lipids. The various hydrophobic lipids inside LDs are coated with a phospholipid monolayer, mostly derived from membrane phospholipids during their ontogeny. Various proteins have been identified to be associated with LDs, and these may be cell-type, tissue-type, or even species specific. While major LD proteins like oleosins have been known for decades, more recently a growing list of LD proteins has been identified, primarily by proteomics analyses of isolated LDs and confirmation of their localization by confocal microscopy. LDs, unlike other organelles, have a density less than that of water, and consequently can be isolated and enriched in cellular fractions by flotation centrifugation for composition studies. However, due to its deep coverage, modern proteomics approaches are also prone to identify contaminants, making control experiments necessary. Here, procedures for the isolation of LDs, and analysis of LD components are provided as well as methods to validate the LD localization of proteins.
Collapse
|
48
|
Zhang J, Vancea AI, Shahul Hameed UF, Arold ST. Versatile control of the CDC48 segregase by the plant UBX-containing (PUX) proteins. Comput Struct Biotechnol J 2021; 19:3125-3132. [PMID: 34141135 PMCID: PMC8181520 DOI: 10.1016/j.csbj.2021.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/26/2022] Open
Abstract
In plants, AAA-adenosine triphosphatase (ATPase) Cell Division Control Protein 48 (CDC48) uses the force generated through ATP hydrolysis to pull, extract, and unfold ubiquitylated or sumoylated proteins from the membrane, chromatin, or protein complexes. The resulting changes in protein or RNA content are an important means for plants to control protein homeostasis and thereby adapt to shifting environmental conditions. The activity and targeting of CDC48 are controlled by adaptor proteins, of which the plant ubiquitin regulatory X (UBX) domain-containing (PUX) proteins constitute the largest family. Emerging knowledge on the structure and function of PUX proteins highlights that these proteins are versatile factors for plant homeostasis and adaptation that might inspire biotechnological applications.
Collapse
Affiliation(s)
- Junrui Zhang
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Alexandra I Vancea
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Umar F Shahul Hameed
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.,Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, 34090 Montpellier, France
| |
Collapse
|
49
|
Ao K, Tong M, Li L, Lüdke D, Lipka V, Chen S, Wiermer M, Li X. SCF SNIPER7 controls protein turnover of unfoldase CDC48A to promote plant immunity. THE NEW PHYTOLOGIST 2021; 229:2795-2811. [PMID: 33156518 DOI: 10.1111/nph.17071] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
The unfoldase CDC48 (Cell Division Cycle 48) is highly conserved in eukaryotes, serving as an AAA + ATPase to extract ubiquitinated proteins from large protein complexes and membranes. Although its biochemical properties have been studied extensively in yeast and animal systems, the biological roles and regulations of the plant CDC48s have been explored only recently. Here we describe the identification of a novel E3 ligase from the SNIPER (snc1-influencing plant E3 ligase reverse genetic) screen, which contributes to plant defense regulation by targeting CDC48A for degradation. SNIPER7 encodes an F-box protein and its overexpression leads to autoimmunity. We identified CDC48s as interactors of SNIPER7 through immunoprecipitation followed by mass spectrometry proteomic analysis. SNIPER7 overexpression lines phenocopy the autoimmune mutant Atcdc48a-4. Furthermore, CDC48A protein levels are reduced or stabilized when SNIPER7 is overexpressed or inhibited, respectively, suggesting that CDC48A is the ubiquitination substrate of SCFSNIPER7 . Taken together, this study reveals a new mechanism where a SCFSNIPER7 complex regulates CDC48 unfoldase levels and modulates immune output.
Collapse
Affiliation(s)
- Kevin Ao
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Meixuezi Tong
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Lin Li
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Daniel Lüdke
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, D-37077, Germany
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, D-37077, Germany
- Central Microscopy Facility of the Faculty of Biology and Psychology, University of Goettingen, Goettingen, D-37077, Germany
| | - She Chen
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Marcel Wiermer
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, D-37077, Germany
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
50
|
Veerabagu M, Rinne PLH, Skaugen M, Paul LK, van der Schoot C. Lipid Body Dynamics in Shoot Meristems: Production, Enlargement, and Putative Organellar Interactions and Plasmodesmal Targeting. FRONTIERS IN PLANT SCIENCE 2021; 12:674031. [PMID: 34367200 PMCID: PMC8335594 DOI: 10.3389/fpls.2021.674031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/14/2021] [Indexed: 05/20/2023]
Abstract
Post-embryonic cells contain minute lipid bodies (LBs) that are transient, mobile, engage in organellar interactions, and target plasmodesmata (PD). While LBs can deliver γ-clade 1,3-β-glucanases to PD, the nature of other cargo is elusive. To gain insight into the poorly understood role of LBs in meristems, we investigated their dynamics by microscopy, gene expression analyzes, and proteomics. In developing buds, meristems accumulated LBs, upregulated several LB-specific OLEOSIN genes and produced OLEOSINs. During bud maturation, the major gene OLE6 was strongly downregulated, OLEOSINs disappeared from bud extracts, whereas lipid biosynthesis genes were upregulated, and LBs were enlarged. Proteomic analyses of the LB fraction of dormant buds confirmed that OLEOSINs were no longer present. Instead, we identified the LB-associated proteins CALEOSIN (CLO1), Oil Body Lipase 1 (OBL1), Lipid Droplet Interacting Protein (LDIP), Lipid Droplet Associated Protein1a/b (LDAP1a/b) and LDAP3a/b, and crucial components of the OLEOSIN-deubiquitinating and degradation machinery, such as PUX10 and CDC48A. All mRFP-tagged LDAPs localized to LBs when transiently expressed in Nicotiana benthamiana. Together with gene expression analyzes, this suggests that during bud maturation, OLEOSINs were replaced by LDIP/LDAPs at enlarging LBs. The LB fraction contained the meristem-related actin7 (ACT7), "myosin XI tail-binding" RAB GTPase C2A, an LB/PD-associated γ-clade 1,3-β-glucanase, and various organelle- and/or PD-localized proteins. The results are congruent with a model in which LBs, motorized by myosin XI-k/1/2, traffic on F-actin, transiently interact with other organelles, and deliver a diverse cargo to PD.
Collapse
Affiliation(s)
- Manikandan Veerabagu
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Päivi L. H. Rinne
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Morten Skaugen
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Laju K. Paul
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Christiaan van der Schoot
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
- *Correspondence: Christiaan van der Schoot
| |
Collapse
|