1
|
Wang Z, Ye X, Huang L, Yuan Y. Modulation of morphogenesis and metabolism by plant cell biomechanics: from model plants to traditional herbs. HORTICULTURE RESEARCH 2025; 12:uhaf011. [PMID: 40093376 PMCID: PMC11908831 DOI: 10.1093/hr/uhaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/05/2025] [Indexed: 03/19/2025]
Abstract
The quality of traditional herbs depends on organ morphogenesis and the accumulation of active pharmaceutical ingredients. While recent research highlights the significance of cell mechanobiology in model plant morphogenesis, our understanding of mechanical signal initiation and transduction in traditional herbs remains incomplete. Recent studies reveal a close correlation between cell wall (CW) biosynthesis and active ingredient production, yet the role of cell mechanics in balancing morphogenesis and secondary metabolism is often overlooked. This review explores how the cell wall, plasma membrane, cytoskeleton, and vacuole collaborate to regulate cell mechanics and respond to mechanical changes. We propose CW biosynthesis as a hub in connecting cell mechanics with secondary metabolism and emphasize that understanding the relationship between mechanical remodeling and secondary metabolism could provide new insights into plant cell mechanobiology and the breeding of high-quality herbs.
Collapse
Affiliation(s)
- Zhengpeng Wang
- Experimental Research Center, China Academy of Chinese Medical Science, Beijing 100700, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaoming Ye
- Peking University Health Science Center, Peking University, Beijing 100700, China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuan Yuan
- Experimental Research Center, China Academy of Chinese Medical Science, Beijing 100700, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
| |
Collapse
|
2
|
Cheung AY. FERONIA: A Receptor Kinase at the Core of a Global Signaling Network. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:345-375. [PMID: 38424067 PMCID: PMC12034098 DOI: 10.1146/annurev-arplant-102820-103424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Initially identified as a key regulator of female fertility in Arabidopsis, the FERONIA (FER) receptor kinase is now recognized as crucial for almost all aspects of plant growth and survival. FER partners with a glycosylphosphatidylinositol-anchored protein of the LLG family to act as coreceptors on the cell surface. The FER-LLG coreceptor interacts with different RAPID ALKALINIZATION FACTOR (RALF) peptide ligands to function in various growth and developmental processes and to respond to challenges from the environment. The RALF-FER-LLG signaling modules interact with molecules in the cell wall, cell membrane, cytoplasm, and nucleus and mediate an interwoven signaling network. Multiple FER-LLG modules, each anchored by FER or a FER-related receptor kinase, have been studied, illustrating the functional diversity and the mechanistic complexity of the FER family signaling modules. The challenges going forward are to distill from this complexity the unifying schemes where possible and attain precision and refinement in the knowledge of critical details upon which future investigations can be built. By focusing on the extensively characterized FER, this review provides foundational information to guide the next phase of research on FER in model as well as crop species and potential applications for improving plant growth and resilience.
Collapse
Affiliation(s)
- Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular Biology Program, Plant Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA;
| |
Collapse
|
3
|
Zhang Y, Zhang D, Huang S, Ye N, He Y. Real-time calcium imaging in living plants. TRENDS IN PLANT SCIENCE 2023; 28:1326-1327. [PMID: 37580224 DOI: 10.1016/j.tplants.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/26/2023] [Accepted: 07/17/2023] [Indexed: 08/16/2023]
Affiliation(s)
- Yachun Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100000, China
| | - Nenghui Ye
- Key Laboratory of Crop Physiological and Molecular Biology, Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Yuchi He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
4
|
Pacheco JM, Song L, Kuběnová L, Ovečka M, Berdion Gabarain V, Peralta JM, Lehuedé TU, Ibeas MA, Ricardi MM, Zhu S, Shen Y, Schepetilnikov M, Ryabova LA, Alvarez JM, Gutierrez RA, Grossmann G, Šamaj J, Yu F, Estevez JM. Cell surface receptor kinase FERONIA linked to nutrient sensor TORC signaling controls root hair growth at low temperature linked to low nitrate in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2023; 238:169-185. [PMID: 36716782 DOI: 10.1111/nph.18723] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Root hairs (RH) are excellent model systems for studying cell size and polarity since they elongate several hundred-fold their original size. Their tip growth is determined both by intrinsic and environmental signals. Although nutrient availability and temperature are key factors for a sustained plant growth, the molecular mechanisms underlying their sensing and downstream signaling pathways remain unclear. We use genetics to address the roles of the cell surface receptor kinase FERONIA (FER) and the nutrient sensing TOR Complex 1 (TORC) in RH growth. We identified that low temperature (10°C) triggers a strong RH elongation response in Arabidopsis thaliana involving FER and TORC. We found that FER is required to perceive limited nutrient availability caused by low temperature. FERONIA interacts with and activates TORC-downstream components to trigger RH growth. In addition, the small GTPase Rho of plants 2 (ROP2) is also involved in this RH growth response linking FER and TOR. We also found that limited nitrogen nutrient availability can mimic the RH growth response at 10°C in a NRT1.1-dependent manner. These results uncover a molecular mechanism by which a central hub composed by FER-ROP2-TORC is involved in the control of RH elongation under low temperature and nitrogen deficiency.
Collapse
Affiliation(s)
- Javier Martínez Pacheco
- Fundación Instituto Leloir and IIBBA-CONICET, Av Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Limei Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
- Laborarory of Species Interaction and Biological Invasion, School of Life Science, Hebei University, Baoding, 071002, China
| | - Lenka Kuběnová
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Miroslav Ovečka
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Victoria Berdion Gabarain
- Fundación Instituto Leloir and IIBBA-CONICET, Av Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Juan Manuel Peralta
- Fundación Instituto Leloir and IIBBA-CONICET, Av Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Tomás Urzúa Lehuedé
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186, Santiago, Chile
- ANID - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), 8331150, Santiago, Chile
| | - Miguel Angel Ibeas
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186, Santiago, Chile
- ANID - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), 8331150, Santiago, Chile
| | - Martiniano M Ricardi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Yanan Shen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Mikhail Schepetilnikov
- Institut de Biologie Moléculaire des Plantes, CNRS, UPR 2357, Université de Strasbourg, 67084, Strasbourg, France
| | - Lyubov A Ryabova
- Institut de Biologie Moléculaire des Plantes, CNRS, UPR 2357, Université de Strasbourg, 67084, Strasbourg, France
| | - José M Alvarez
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186, Santiago, Chile
- ANID - Millennium Institute for Integrative Biology (iBio), 7500000, Santiago, Chile
| | - Rodrigo A Gutierrez
- ANID - Millennium Institute for Integrative Biology (iBio), 7500000, Santiago, Chile
- Millennium Institute Center for Genome Regulation, 6904411, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
| | - Guido Grossmann
- Institute of Cell and Interaction Biology, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
- Cluster of Excellence in Plant Sciences, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Jozef Šamaj
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Av Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186, Santiago, Chile
- ANID - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), 8331150, Santiago, Chile
- ANID - Millennium Institute for Integrative Biology (iBio), 7500000, Santiago, Chile
| |
Collapse
|
5
|
Ishida K, Noutoshi Y. The function of the plant cell wall in plant-microbe interactions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:273-284. [PMID: 36279746 DOI: 10.1016/j.plaphy.2022.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/07/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The plant cell wall is an interface of plant-microbe interactions. The ability of microbes to decompose cell wall polysaccharides contributes to microbial pathogenicity. Plants have evolved mechanisms to prevent cell wall degradation. However, the role of the cell wall in plant-microbe interactions is not well understood. Here, we discuss four functions of the plant cell wall-physical defence, storage of antimicrobial compounds, production of cell wall-derived elicitors, and provision of carbon sources-in the context of plant-microbe interactions. In addition, we discuss the four families of cell surface receptors associated with plant cell walls (malectin-like receptor kinase family, wall-associated kinase family, leucine-rich repeat receptor-like kinase family, and lysin motif receptor-like kinase family) that have been the subject of several important studies in recent years. This review summarises the findings on both plant cell wall and plant immunity, improving our understanding and may provide impetus to various researchers.
Collapse
Affiliation(s)
- Konan Ishida
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
6
|
Faye A, Barnaud A, Kane NA, Cubry P, Mariac C, Burgarella C, Rhoné B, Faye A, Olodo KF, Cisse A, Couderc M, Dequincey A, Zekraouï L, Moussa D, Tidjani M, Vigouroux Y, Berthouly-Salazar C. Genomic footprints of selection in early-and late-flowering pearl millet landraces. FRONTIERS IN PLANT SCIENCE 2022; 13:880631. [PMID: 36311100 PMCID: PMC9597309 DOI: 10.3389/fpls.2022.880631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Pearl millet is among the top three-cereal production in one of the most climate vulnerable regions, sub-Saharan Africa. Its Sahelian origin makes it adapted to grow in poor sandy soils under low soil water regimes. Pearl millet is thus considered today as one of the most interesting crops to face the global warming. Flowering time, a trait highly correlated with latitude, is one of the key traits that could be modulated to face future global changes. West African pearl millet landraces, can be grouped into early- (EF) and late-flowering (LF) varieties, each flowering group playing a specific role in the functioning and resilience of Sahelian smallholders. The aim of this study was thus to detect genes linked to flowering but also linked to relevant traits within each flowering group. We thus investigated genomic and phenotypic diversity in 109 pearl millet landrace accessions, i.e., 66 early-flowering and 43 late-flowering, grown in the groundnut basin, the first area of rainfed agriculture in Senegal dominated by dry cereals (millet, maize, and sorghum) and legumes (groundnuts, cowpeas). We were able to confirm the role of PhyC gene in pearl millet flowering and identify several other genes that appear to be as much as important, such as FSR12 and HAC1. HAC1 and two other genes appear to be part of QTLs previously identified and deserve further investigation. At the same time, we were able to highlight a several genes and variants that could contribute to the improvement of pearl millet yield, especially since their impact was demonstrated across flowering cycles.
Collapse
Affiliation(s)
- Adama Faye
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
- LNRPV, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar, Senegal
- Laboratoire Mixte International LAPSE, Campus de Bel Air, route des Hydrocarbures, Dakar, Senegal
| | - Adeline Barnaud
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
- Laboratoire Mixte International LAPSE, Campus de Bel Air, route des Hydrocarbures, Dakar, Senegal
| | - Ndjido Ardo Kane
- LNRPV, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar, Senegal
- Laboratoire Mixte International LAPSE, Campus de Bel Air, route des Hydrocarbures, Dakar, Senegal
- CERAAS, Institut Sénégalais de Recherches Agricoles, Thiès, Senegal
| | - Philippe Cubry
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Cédric Mariac
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Concetta Burgarella
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Bénédicte Rhoné
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Aliou Faye
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
- LNRPV, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar, Senegal
- Laboratoire Mixte International LAPSE, Campus de Bel Air, route des Hydrocarbures, Dakar, Senegal
| | - Katina Floride Olodo
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
- LNRPV, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar, Senegal
- Laboratoire Mixte International LAPSE, Campus de Bel Air, route des Hydrocarbures, Dakar, Senegal
- CERAAS, Institut Sénégalais de Recherches Agricoles, Thiès, Senegal
| | - Aby Cisse
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
- LNRPV, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar, Senegal
- Laboratoire Mixte International LAPSE, Campus de Bel Air, route des Hydrocarbures, Dakar, Senegal
- CERAAS, Institut Sénégalais de Recherches Agricoles, Thiès, Senegal
| | - Marie Couderc
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Anaïs Dequincey
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Leïla Zekraouï
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Djibo Moussa
- DIADE, Institut de Recherche pour le Développement (IRD), Niamey, Niger
| | - Moussa Tidjani
- DIADE, Institut de Recherche pour le Développement (IRD), Niamey, Niger
| | - Yves Vigouroux
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Cécile Berthouly-Salazar
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
- LNRPV, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar, Senegal
- Laboratoire Mixte International LAPSE, Campus de Bel Air, route des Hydrocarbures, Dakar, Senegal
| |
Collapse
|
7
|
Ying S, Scheible W. A novel calmodulin-interacting Domain of Unknown Function 506 protein represses root hair elongation in Arabidopsis. PLANT, CELL & ENVIRONMENT 2022; 45:1796-1812. [PMID: 35312071 PMCID: PMC9314033 DOI: 10.1111/pce.14316] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/13/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Domain of Unknown Function 506 proteins are ubiquitous in plants. The phosphorus (P) stress-inducible REPRESSOR OF EXCESSIVE ROOT HAIR GROWTH1 (AtRXR1) gene encodes the first characterized DUF506. AtRXR1 inhibits root hair elongation by interacting with RabD2c GTPase. However, functions of other P-responsive DUF506 genes are still missing. Here, we selected two additional P-inducible DUF506 genes for further investigation. The expression of both genes was induced by auxin. Under P-stress, At3g07350 gene expressed ubiquitously in seedlings, whereas At1g62420 (AtRXR3) expression was strongest in roots. AtRXR3 overexpressors and knockouts had shorter and longer root hairs, respectively. A functional AtRXR3-green fluorescent protein fusion localized to root epidermal cells. Chromatin immunoprecipitation and quantitative reverse-transcriptase-polymerase chain reaction revealed that AtRXR3 was transcriptionally activated by RSL4. Bimolecular fluorescence complementation and calmodulin (CaM)-binding assays showed that AtRXR3 interacted with CaM in the presence of Ca2+ . Moreover, cytosolic Ca2+ ([Ca2+ ]cyt ) oscillations in root hairs of rxr3 mutants exhibited elevated frequencies and dampened amplitudes compared to those of wild type. Thus, AtRXR3 is another DUF506 protein that attenuates P-limitation-induced root hair growth through mechanisms that involve RSL4 and interaction with CaM to modulate tip-focused [Ca2+ ]cyt oscillations.
Collapse
Affiliation(s)
- Sheng Ying
- Noble Research Institute LLCArdmoreOklahomaUSA
| | | |
Collapse
|
8
|
Du J, Anderson CT, Xiao C. Dynamics of pectic homogalacturonan in cellular morphogenesis and adhesion, wall integrity sensing and plant development. NATURE PLANTS 2022; 8:332-340. [PMID: 35411046 DOI: 10.1038/s41477-022-01120-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Homogalacturonan (HG) is the most abundant pectin subtype in plant cell walls. Although it is a linear homopolymer, its modification states allow for complex molecular encoding. HG metabolism affects its structure, chemical properties, mobility and binding capacity, allowing it to interact dynamically with other polymers during wall assembly and remodelling and to facilitate anisotropic cell growth, cell adhesion and separation, and organ morphogenesis. HGs have also recently been found to function as signalling molecules that transmit information about wall integrity to the cell. Here we highlight recent advances in our understanding of the dual functions of HG as a dynamic structural component of the cell wall and an initiator of intrinsic and environmental signalling. We also predict how HG might interconnect the cell wall, plasma membrane and intracellular components with transcriptional networks to regulate plant growth and development.
Collapse
Affiliation(s)
- Juan Du
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Charles T Anderson
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Chaowen Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Ying S, Blancaflor EB, Liao F, Scheible W. A phosphorus-limitation induced, functionally conserved DUF506 protein is a repressor of root hair elongation in plants. THE NEW PHYTOLOGIST 2022; 233:1153-1171. [PMID: 34775627 PMCID: PMC9300206 DOI: 10.1111/nph.17862] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Root hairs (RHs) function in nutrient and water acquisition, root metabolite exudation, soil anchorage and plant-microbe interactions. Longer or more abundant RHs are potential breeding traits for developing crops that are more resource-use efficient and can improve soil health. While many genes are known to promote RH elongation, relatively little is known about genes and mechanisms that constrain RH growth. Here we demonstrate that a DOMAIN OF UNKNOWN FUNCTION 506 (DUF506) protein, AT3G25240, negatively regulates Arabidopsis thaliana RH growth. The AT3G25240 gene is strongly and specifically induced during phosphorus (P)-limitation. Mutants of this gene, which we call REPRESSOR OF EXCESSIVE ROOT HAIR ELONGATION 1 (RXR1), have much longer RHs, higher phosphate content and seedling biomass, while overexpression of the gene exhibits opposite phenotypes. Co-immunoprecipitation, pull-down and bimolecular fluorescence complementation (BiFC) analyses reveal that RXR1 physically interacts with a RabD2c GTPase in nucleus, and a rabd2c mutant phenocopies the rxr1 mutant. Furthermore, N-terminal variable region of RXR1 is crucial for inhibiting RH growth. Overexpression of a Brachypodium distachyon RXR1 homolog results in repression of RH elongation in Brachypodium. Taken together, our results reveal a novel DUF506-GTPase module with a prominent role in repression of plant RH elongation especially under P stress.
Collapse
Affiliation(s)
- Sheng Ying
- Noble Research Institute LLCArdmoreOK73401USA
- Present address:
Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48823USA
| | | | - Fuqi Liao
- Noble Research Institute LLCArdmoreOK73401USA
| | | |
Collapse
|
10
|
Yang H, Wang D, Guo L, Pan H, Yvon R, Garman S, Wu HM, Cheung AY. Malectin/Malectin-like domain-containing proteins: A repertoire of cell surface molecules with broad functional potential. Cell Surf 2021; 7:100056. [PMID: 34308005 PMCID: PMC8287233 DOI: 10.1016/j.tcsw.2021.100056] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/06/2021] [Accepted: 06/18/2021] [Indexed: 11/26/2022] Open
Abstract
Cell walls are at the front line of interactions between walled-organisms and their environment. They support cell expansion, ensure cell integrity and, for multicellular organisms such as plants, they provide cell adherence, support cell shape morphogenesis and mediate cell-cell communication. Wall-sensing, detecting perturbations in the wall and signaling the cell to respond accordingly, is crucial for growth and survival. In recent years, plant signaling research has suggested that a large family of receptor-like kinases (RLKs) could function as wall sensors partly because their extracellular domains show homology with malectin, a diglucose binding protein from the endoplasmic reticulum of animal cells. Studies of several malectin/malectin-like (M/ML) domain-containing RLKs (M/MLD-RLKs) from the model plant Arabidopsis thaliana have revealed an impressive array of biological roles, controlling growth, reproduction and stress responses, processes that in various ways rely on or affect the cell wall. Malectin homologous sequences are widespread across biological kingdoms, but plants have uniquely evolved a highly expanded family of proteins with ML domains embedded within various protein contexts. Here, we present an overview on proteins with malectin homologous sequences in different kingdoms, discuss the chromosomal organization of Arabidopsis M/MLD-RLKs and the phylogenetic relationship between these proteins from several model and crop species. We also discuss briefly the molecular networks that enable the diverse biological roles served by M/MLD-RLKs studied thus far.
Collapse
Affiliation(s)
- He Yang
- Department of Biochemistry and Molecular Biology, University of Massachusetts, USA
- Molecular and Cellular Biology Program, University of Massachusetts, USA
| | - Dong Wang
- Department of Biochemistry and Molecular Biology, University of Massachusetts, USA
- Molecular and Cellular Biology Program, University of Massachusetts, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Li Guo
- Molecular and Cellular Biology Program, University of Massachusetts, USA
- Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Huairong Pan
- Molecular and Cellular Biology Program, University of Massachusetts, USA
- College of Biology, Hunan University, Changsha 410082, China
| | - Robert Yvon
- Department of Biochemistry and Molecular Biology, University of Massachusetts, USA
- Molecular and Cellular Biology Program, University of Massachusetts, USA
| | - Scott Garman
- Department of Biochemistry and Molecular Biology, University of Massachusetts, USA
- Molecular and Cellular Biology Program, University of Massachusetts, USA
| | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, USA
- Molecular and Cellular Biology Program, University of Massachusetts, USA
| | - Alice Y. Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, USA
- Molecular and Cellular Biology Program, University of Massachusetts, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
11
|
Freschet GT, Pagès L, Iversen CM, Comas LH, Rewald B, Roumet C, Klimešová J, Zadworny M, Poorter H, Postma JA, Adams TS, Bagniewska‐Zadworna A, Bengough AG, Blancaflor EB, Brunner I, Cornelissen JHC, Garnier E, Gessler A, Hobbie SE, Meier IC, Mommer L, Picon‐Cochard C, Rose L, Ryser P, Scherer‐Lorenzen M, Soudzilovskaia NA, Stokes A, Sun T, Valverde‐Barrantes OJ, Weemstra M, Weigelt A, Wurzburger N, York LM, Batterman SA, Gomes de Moraes M, Janeček Š, Lambers H, Salmon V, Tharayil N, McCormack ML. A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. THE NEW PHYTOLOGIST 2021; 232:973-1122. [PMID: 34608637 PMCID: PMC8518129 DOI: 10.1111/nph.17572] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/22/2021] [Indexed: 05/17/2023]
Abstract
In the context of a recent massive increase in research on plant root functions and their impact on the environment, root ecologists currently face many important challenges to keep on generating cutting-edge, meaningful and integrated knowledge. Consideration of the below-ground components in plant and ecosystem studies has been consistently called for in recent decades, but methodology is disparate and sometimes inappropriate. This handbook, based on the collective effort of a large team of experts, will improve trait comparisons across studies and integration of information across databases by providing standardised methods and controlled vocabularies. It is meant to be used not only as starting point by students and scientists who desire working on below-ground ecosystems, but also by experts for consolidating and broadening their views on multiple aspects of root ecology. Beyond the classical compilation of measurement protocols, we have synthesised recommendations from the literature to provide key background knowledge useful for: (1) defining below-ground plant entities and giving keys for their meaningful dissection, classification and naming beyond the classical fine-root vs coarse-root approach; (2) considering the specificity of root research to produce sound laboratory and field data; (3) describing typical, but overlooked steps for studying roots (e.g. root handling, cleaning and storage); and (4) gathering metadata necessary for the interpretation of results and their reuse. Most importantly, all root traits have been introduced with some degree of ecological context that will be a foundation for understanding their ecological meaning, their typical use and uncertainties, and some methodological and conceptual perspectives for future research. Considering all of this, we urge readers not to solely extract protocol recommendations for trait measurements from this work, but to take a moment to read and reflect on the extensive information contained in this broader guide to root ecology, including sections I-VII and the many introductions to each section and root trait description. Finally, it is critical to understand that a major aim of this guide is to help break down barriers between the many subdisciplines of root ecology and ecophysiology, broaden researchers' views on the multiple aspects of root study and create favourable conditions for the inception of comprehensive experiments on the role of roots in plant and ecosystem functioning.
Collapse
Affiliation(s)
- Grégoire T. Freschet
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
- Station d’Ecologie Théorique et ExpérimentaleCNRS2 route du CNRS09200MoulisFrance
| | - Loïc Pagès
- UR 1115 PSHCentre PACA, site AgroparcINRAE84914Avignon cedex 9France
| | - Colleen M. Iversen
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Louise H. Comas
- USDA‐ARS Water Management Research Unit2150 Centre Avenue, Bldg D, Suite 320Fort CollinsCO80526USA
| | - Boris Rewald
- Department of Forest and Soil SciencesUniversity of Natural Resources and Life SciencesVienna1190Austria
| | - Catherine Roumet
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
| | - Jitka Klimešová
- Department of Functional EcologyInstitute of Botany CASDukelska 13537901TrebonCzech Republic
| | - Marcin Zadworny
- Institute of DendrologyPolish Academy of SciencesParkowa 562‐035KórnikPoland
| | - Hendrik Poorter
- Plant Sciences (IBG‐2)Forschungszentrum Jülich GmbHD‐52425JülichGermany
- Department of Biological SciencesMacquarie UniversityNorth RydeNSW2109Australia
| | | | - Thomas S. Adams
- Department of Plant SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Agnieszka Bagniewska‐Zadworna
- Department of General BotanyInstitute of Experimental BiologyFaculty of BiologyAdam Mickiewicz UniversityUniwersytetu Poznańskiego 661-614PoznańPoland
| | - A. Glyn Bengough
- The James Hutton InstituteInvergowrie, Dundee,DD2 5DAUK
- School of Science and EngineeringUniversity of DundeeDundee,DD1 4HNUK
| | | | - Ivano Brunner
- Forest Soils and BiogeochemistrySwiss Federal Research Institute WSLZürcherstr. 1118903BirmensdorfSwitzerland
| | - Johannes H. C. Cornelissen
- Department of Ecological ScienceFaculty of ScienceVrije Universiteit AmsterdamDe Boelelaan 1085Amsterdam1081 HVthe Netherlands
| | - Eric Garnier
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
| | - Arthur Gessler
- Forest DynamicsSwiss Federal Research Institute WSLZürcherstr. 1118903BirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsETH Zurich8092ZurichSwitzerland
| | - Sarah E. Hobbie
- Department of Ecology, Evolution and BehaviorUniversity of MinnesotaSt PaulMN55108USA
| | - Ina C. Meier
- Functional Forest EcologyUniversity of HamburgHaidkrugsweg 122885BarsbütelGermany
| | - Liesje Mommer
- Plant Ecology and Nature Conservation GroupDepartment of Environmental SciencesWageningen University and ResearchPO Box 476700 AAWageningenthe Netherlands
| | | | - Laura Rose
- Station d’Ecologie Théorique et ExpérimentaleCNRS2 route du CNRS09200MoulisFrance
- Senckenberg Biodiversity and Climate Research Centre (BiK-F)Senckenberganlage 2560325Frankfurt am MainGermany
| | - Peter Ryser
- Laurentian University935 Ramsey Lake RoadSudburyONP3E 2C6Canada
| | | | - Nadejda A. Soudzilovskaia
- Environmental Biology DepartmentInstitute of Environmental SciencesCMLLeiden UniversityLeiden2300 RAthe Netherlands
| | - Alexia Stokes
- INRAEAMAPCIRAD, IRDCNRSUniversity of MontpellierMontpellier34000France
| | - Tao Sun
- Institute of Applied EcologyChinese Academy of SciencesShenyang110016China
| | - Oscar J. Valverde‐Barrantes
- International Center for Tropical BotanyDepartment of Biological SciencesFlorida International UniversityMiamiFL33199USA
| | - Monique Weemstra
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
| | - Alexandra Weigelt
- Systematic Botany and Functional BiodiversityInstitute of BiologyLeipzig UniversityJohannisallee 21-23Leipzig04103Germany
| | - Nina Wurzburger
- Odum School of EcologyUniversity of Georgia140 E. Green StreetAthensGA30602USA
| | - Larry M. York
- Biosciences Division and Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Sarah A. Batterman
- School of Geography and Priestley International Centre for ClimateUniversity of LeedsLeedsLS2 9JTUK
- Cary Institute of Ecosystem StudiesMillbrookNY12545USA
| | - Moemy Gomes de Moraes
- Department of BotanyInstitute of Biological SciencesFederal University of Goiás1974690-900Goiânia, GoiásBrazil
| | - Štěpán Janeček
- School of Biological SciencesThe University of Western Australia35 Stirling HighwayCrawley (Perth)WA 6009Australia
| | - Hans Lambers
- School of Biological SciencesThe University of Western AustraliaCrawley (Perth)WAAustralia
| | - Verity Salmon
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Nishanth Tharayil
- Department of Plant and Environmental SciencesClemson UniversityClemsonSC29634USA
| | - M. Luke McCormack
- Center for Tree ScienceMorton Arboretum, 4100 Illinois Rt. 53LisleIL60532USA
| |
Collapse
|
12
|
Freschet GT, Pagès L, Iversen CM, Comas LH, Rewald B, Roumet C, Klimešová J, Zadworny M, Poorter H, Postma JA, Adams TS, Bagniewska-Zadworna A, Bengough AG, Blancaflor EB, Brunner I, Cornelissen JHC, Garnier E, Gessler A, Hobbie SE, Meier IC, Mommer L, Picon-Cochard C, Rose L, Ryser P, Scherer-Lorenzen M, Soudzilovskaia NA, Stokes A, Sun T, Valverde-Barrantes OJ, Weemstra M, Weigelt A, Wurzburger N, York LM, Batterman SA, Gomes de Moraes M, Janeček Š, Lambers H, Salmon V, Tharayil N, McCormack ML. A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. THE NEW PHYTOLOGIST 2021. [PMID: 34608637 DOI: 10.1111/nph.17572.hal-03379708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In the context of a recent massive increase in research on plant root functions and their impact on the environment, root ecologists currently face many important challenges to keep on generating cutting-edge, meaningful and integrated knowledge. Consideration of the below-ground components in plant and ecosystem studies has been consistently called for in recent decades, but methodology is disparate and sometimes inappropriate. This handbook, based on the collective effort of a large team of experts, will improve trait comparisons across studies and integration of information across databases by providing standardised methods and controlled vocabularies. It is meant to be used not only as starting point by students and scientists who desire working on below-ground ecosystems, but also by experts for consolidating and broadening their views on multiple aspects of root ecology. Beyond the classical compilation of measurement protocols, we have synthesised recommendations from the literature to provide key background knowledge useful for: (1) defining below-ground plant entities and giving keys for their meaningful dissection, classification and naming beyond the classical fine-root vs coarse-root approach; (2) considering the specificity of root research to produce sound laboratory and field data; (3) describing typical, but overlooked steps for studying roots (e.g. root handling, cleaning and storage); and (4) gathering metadata necessary for the interpretation of results and their reuse. Most importantly, all root traits have been introduced with some degree of ecological context that will be a foundation for understanding their ecological meaning, their typical use and uncertainties, and some methodological and conceptual perspectives for future research. Considering all of this, we urge readers not to solely extract protocol recommendations for trait measurements from this work, but to take a moment to read and reflect on the extensive information contained in this broader guide to root ecology, including sections I-VII and the many introductions to each section and root trait description. Finally, it is critical to understand that a major aim of this guide is to help break down barriers between the many subdisciplines of root ecology and ecophysiology, broaden researchers' views on the multiple aspects of root study and create favourable conditions for the inception of comprehensive experiments on the role of roots in plant and ecosystem functioning.
Collapse
Affiliation(s)
- Grégoire T Freschet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier, 34293, France
- Station d'Ecologie Théorique et Expérimentale, CNRS, 2 route du CNRS, 09200, Moulis, France
| | - Loïc Pagès
- UR 1115 PSH, Centre PACA, site Agroparc, INRAE, 84914, Avignon cedex 9, France
| | - Colleen M Iversen
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Louise H Comas
- USDA-ARS Water Management Research Unit, 2150 Centre Avenue, Bldg D, Suite 320, Fort Collins, CO, 80526, USA
| | - Boris Rewald
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Catherine Roumet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier, 34293, France
| | - Jitka Klimešová
- Department of Functional Ecology, Institute of Botany CAS, Dukelska 135, 37901, Trebon, Czech Republic
| | - Marcin Zadworny
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Hendrik Poorter
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Johannes A Postma
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Thomas S Adams
- Department of Plant Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - A Glyn Bengough
- The James Hutton Institute, Invergowrie, Dundee,, DD2 5DA, UK
- School of Science and Engineering, University of Dundee, Dundee,, DD1 4HN, UK
| | - Elison B Blancaflor
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Zürcherstr. 111, 8903, Birmensdorf, Switzerland
| | - Johannes H C Cornelissen
- Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands
| | - Eric Garnier
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier, 34293, France
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Research Institute WSL, Zürcherstr. 111, 8903, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, 8092, Zurich, Switzerland
| | - Sarah E Hobbie
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, 55108, USA
| | - Ina C Meier
- Functional Forest Ecology, University of Hamburg, Haidkrugsweg 1, 22885, Barsbütel, Germany
| | - Liesje Mommer
- Plant Ecology and Nature Conservation Group, Department of Environmental Sciences, Wageningen University and Research, PO Box 47, 6700 AA, Wageningen, the Netherlands
| | | | - Laura Rose
- Station d'Ecologie Théorique et Expérimentale, CNRS, 2 route du CNRS, 09200, Moulis, France
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Peter Ryser
- Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada
| | | | - Nadejda A Soudzilovskaia
- Environmental Biology Department, Institute of Environmental Sciences, CML, Leiden University, Leiden, 2300 RA, the Netherlands
| | - Alexia Stokes
- INRAE, AMAP, CIRAD, IRD, CNRS, University of Montpellier, Montpellier, 34000, France
| | - Tao Sun
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Oscar J Valverde-Barrantes
- International Center for Tropical Botany, Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Monique Weemstra
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier, 34293, France
| | - Alexandra Weigelt
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Johannisallee 21-23, Leipzig, 04103, Germany
| | - Nina Wurzburger
- Odum School of Ecology, University of Georgia, 140 E. Green Street, Athens, GA, 30602, USA
| | - Larry M York
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sarah A Batterman
- School of Geography and Priestley International Centre for Climate, University of Leeds, Leeds, LS2 9JT, UK
- Cary Institute of Ecosystem Studies, Millbrook, NY, 12545, USA
| | - Moemy Gomes de Moraes
- Department of Botany, Institute of Biological Sciences, Federal University of Goiás, 19, 74690-900, Goiânia, Goiás, Brazil
| | - Štěpán Janeček
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley (Perth), WA 6009, Australia
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, Crawley (Perth), WA, Australia
| | - Verity Salmon
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Nishanth Tharayil
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634, USA
| | - M Luke McCormack
- Center for Tree Science, Morton Arboretum, 4100 Illinois Rt. 53, Lisle, IL, 60532, USA
| |
Collapse
|
13
|
Imaging the Cytoskeleton in Living Plant Roots. Methods Mol Biol 2021; 2364:139-148. [PMID: 34542851 DOI: 10.1007/978-1-0716-1661-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
For the past two decades, genetically encoded fluorescent proteins have emerged as the most popular method to image the plant cytoskeleton. Because fluorescent protein technology involves handling living plant cells, it is important to implement protocols that enable these delicate plant specimens to maintain optimal growth for the entire duration of the imaging experiment. To this end, we rely on a system that consists of a large coverslip coated with nutrient-supplemented agar. This agar-coverslip system is planted with surface-sterilized Arabidopsis thaliana seeds expressing cytoskeletal fluorescent protein reporters. The agar-coverslip system with planted seeds is then maintained in an environmentally controlled growth chamber. The entire setup is transferred onto the stage of a confocal microscope for imaging when roots of germinated seedlings reach a desired length. For plants with larger roots such as Medicago truncatula, the polymerized nutrient-supplemented agar is gently lifted or cut and used to secure pre-germinated seeds on the coverslip prior to root imaging. The agar-coverslip system we use for imaging the cytoskeleton in living roots along with general methods for expressing green fluorescent protein (GFP)-based cytoskeletal reporters in hairy roots of Medicago truncatula is described here.
Collapse
|
14
|
de Bang TC, Husted S, Laursen KH, Persson DP, Schjoerring JK. The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. THE NEW PHYTOLOGIST 2021; 229:2446-2469. [PMID: 33175410 DOI: 10.1111/nph.17074] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/15/2020] [Indexed: 05/22/2023]
Abstract
The visual deficiency symptoms developing on plants constitute the ultimate manifestation of suboptimal nutrient supply. In classical plant nutrition, these symptoms have been extensively used as a tool to characterise the nutritional status of plants and to optimise fertilisation. Here we expand this concept by bridging the typical deficiency symptoms for each of the six essential macronutrients to their molecular and physiological functionalities in higher plants. We focus on the most recent insights obtained during the last decade, which now allow us to better understand the links between symptom and function for each element. A deep understanding of the mechanisms underlying the visual deficiency symptoms enables us to thoroughly understand how plants react to nutrient limitations and how these disturbances may affect the productivity and biodiversity of terrestrial ecosystems. A proper interpretation of visual deficiency symptoms will support the potential for sustainable crop intensification through the development of new technologies that facilitate automatised management practices based on imaging technologies, remote sensing and in-field sensors, thereby providing the basis for timely application of nutrients via smart and more efficient fertilisation.
Collapse
Affiliation(s)
- Thomas Christian de Bang
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| | - Søren Husted
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| | - Kristian Holst Laursen
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| | - Daniel Pergament Persson
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| | - Jan Kofod Schjoerring
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| |
Collapse
|
15
|
Ou Y, Kui H, Li J. Receptor-like Kinases in Root Development: Current Progress and Future Directions. MOLECULAR PLANT 2021; 14:166-185. [PMID: 33316466 DOI: 10.1016/j.molp.2020.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/17/2020] [Accepted: 12/09/2020] [Indexed: 05/11/2023]
Abstract
Cell-to-cell and cell-to-environment communications are critical to the growth and development of plants. Cell surface-localized receptor-like kinases (RLKs) are mainly involved in sensing various extracellular signals to initiate their corresponding cellular responses. As important vegetative organs for higher plants to adapt to a terrestrial living situation, roots play a critical role for the survival of plants. It has been demonstrated that RLKs control many biological processes during root growth and development. In this review, we summarize several key regulatory processes during Arabidopsis root development in which RLKs play critical roles. We also put forward a number of relevant questions that are required to be explored in future studies.
Collapse
Affiliation(s)
- Yang Ou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hong Kui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
16
|
Krogman W, Sparks JA, Blancaflor EB. Cell Type-Specific Imaging of Calcium Signaling in Arabidopsis thaliana Seedling Roots Using GCaMP3. Int J Mol Sci 2020; 21:ijms21176385. [PMID: 32887481 PMCID: PMC7503278 DOI: 10.3390/ijms21176385] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Cytoplasmic calcium ([Ca2+]cyt) is a well-characterized second messenger in eukaryotic cells. An elevation in [Ca2+]cyt levels is one of the earliest responses in plant cells after exposure to a range of environmental stimuli. Advances in understanding the role of [Ca2+]cyt in plant development has been facilitated by the use of genetically-encoded reporters such as GCaMP. Most of these studies have relied on promoters such as Cauliflower Mosaic Virus (35S) and Ubiquitin10 (UBQ10) to drive expression of GCaMP in all cell/tissue types. Plant organs such as roots consist of various cell types that likely exhibit unique [Ca2+]cyt responses to exogenous and endogenous signals. However, few studies have addressed this question. Here, we introduce a set of Arabidopsis thaliana lines expressing GCaMP3 in five root cell types including the columella, endodermis, cortex, epidermis, and trichoblasts. We found similarities and differences in the [Ca2+]cyt signature among these root cell types when exposed to adenosine tri-phosphate (ATP), glutamate, aluminum, and salt, which are known to trigger [Ca2+]cyt increases in root cells. These cell type-targeted GCaMP3 lines provide a new resource that should enable more in depth studies that address how a particular environmental stimulus is linked to specific root developmental pathways via [Ca2+]cyt.
Collapse
|
17
|
Herger A, Dünser K, Kleine-Vehn J, Ringli C. Leucine-Rich Repeat Extensin Proteins and Their Role in Cell Wall Sensing. Curr Biol 2020; 29:R851-R858. [PMID: 31505187 DOI: 10.1016/j.cub.2019.07.039] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Plant cells are surrounded by a cell wall that provides shape and physically limits cell expansion. To sense the environment and status of cell wall structures, plants have evolved cell wall integrity-sensing mechanisms that involve a number of receptors at the plasma membrane. These receptors can bind cell wall components and/or hormones to coordinate processes in the cell wall and the cytoplasm. This review focuses on the role of leucine-rich repeat extensins (LRXs) during cell wall development. LRXs are chimeric proteins that insolubilize in the cell wall and form protein-protein interaction platforms. LRXs bind RALF peptide hormones that modify cell wall expansion and also directly interact with the transmembrane receptor FERONIA, which is involved in cell growth regulation. LRX proteins, therefore, also represent a link between the cell wall and plasma membrane, perceiving extracellular signals and indirectly relaying this information to the cytoplasm.
Collapse
Affiliation(s)
- Aline Herger
- Institute of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Kai Dünser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Christoph Ringli
- Institute of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland.
| |
Collapse
|
18
|
Herger A, Gupta S, Kadler G, Franck CM, Boisson-Dernier A, Ringli C. Overlapping functions and protein-protein interactions of LRR-extensins in Arabidopsis. PLoS Genet 2020; 16:e1008847. [PMID: 32559234 PMCID: PMC7357788 DOI: 10.1371/journal.pgen.1008847] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 07/13/2020] [Accepted: 05/11/2020] [Indexed: 02/01/2023] Open
Abstract
Plant cell growth requires the coordinated expansion of the protoplast and the cell wall, which is controlled by an elaborate system of cell wall integrity (CWI) sensors linking the different cellular compartments. LRR-eXtensins (LRXs) are cell wall-attached extracellular regulators of cell wall formation and high-affinity binding sites for RALF (Rapid ALkalinization Factor) peptide hormones that trigger diverse physiological processes related to cell growth. LRXs function in CWI sensing and in the case of LRX4 of Arabidopsis thaliana, this activity was shown to involve interaction with the transmembrane CatharanthusroseusReceptor-Like Kinase1-Like (CrRLK1L) protein FERONIA (FER). Here, we demonstrate that binding of RALF1 and FER is common to most tested LRXs of vegetative tissue, including LRX1, the main LRX protein of root hairs. Consequently, an lrx1-lrx5 quintuple mutant line develops shoot and root phenotypes reminiscent of the fer-4 knock-out mutant. The previously observed membrane-association of LRXs, however, is FER-independent, suggesting that LRXs bind not only FER but also other membrane-localized proteins to establish a physical link between intra- and extracellular compartments. Despite evolutionary diversification of various LRX proteins, overexpression of several chimeric LRX constructs causes cross-complementation of lrx mutants, indicative of comparable functions among members of this protein family. Suppressors of the pollen-growth defects induced by mutations in the CrRLK1Ls ANXUR1/2 also alleviate lrx1 lrx2-induced mutant root hair phenotypes. This suggests functional similarity of LRX-CrRLK1L signaling processes in very different cell types and indicates that LRX proteins are components of conserved processes regulating cell growth. Cell growth in plants requires the coordinated enlargement of the cell and the surrounding cell wall, which is regulated by an elaborate system of cell wall integrity sensors, proteins involved in the exchange of information between the cell and the cell wall. In Arabidopsis thaliana, LRR-extensins (LRXs) are localized in the cell wall and bind RALF peptides, hormones that regulate cell growth-related processes. LRX4 also binds the plasma membrane-localized protein FERONIA (FER), thereby establishing a link between the cell and the cell wall. Here, we show that membrane association of LRX4 is not dependent on FER, suggesting that LRX4 binds other, so far unknown proteins. The LRR domain of several LRXs can bind to FER, consistent with the observation that mutations in multiple LRX genes are required to recapitulate a fer knock-out phenotype. Our results support the notion that LRX-FER interactions are key to proper cell growth.
Collapse
Affiliation(s)
- Aline Herger
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Shibu Gupta
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gabor Kadler
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Christina Maria Franck
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Biocenter, Botanical Institute, University of Cologne, Cologne, Germany
| | | | - Christoph Ringli
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
19
|
Brost C, Studtrucker T, Reimann R, Denninger P, Czekalla J, Krebs M, Fabry B, Schumacher K, Grossmann G, Dietrich P. Multiple cyclic nucleotide-gated channels coordinate calcium oscillations and polar growth of root hairs. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:910-923. [PMID: 31033043 DOI: 10.1111/tpj.14371] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/18/2019] [Accepted: 04/08/2019] [Indexed: 05/04/2023]
Abstract
Calcium gradients underlie polarization in eukaryotic cells. In plants, a tip-focused Ca2+ -gradient is fundamental for rapid and unidirectional cell expansion during epidermal root hair development. Here we report that three members of the cyclic nucleotide-gated channel family are required to maintain cytosolic Ca2+ oscillations and the normal growth of root hairs. CNGC6, CNGC9 and CNGC14 were expressed in root hairs, with CNGC9 displaying the highest root hair specificity. In individual channel mutants, morphological defects including root hair swelling and branching, as well as bursting, were observed. The developmental phenotypes were amplified in the three cngc double mutant combinations. Finally, cngc6/9/14 triple mutants only developed bulging trichoblasts and could not form normal root hair protrusions because they burst after the transition to the rapid growth phase. Prior to developmental defects, single and double mutants showed increasingly disturbed patterns of Ca2+ oscillations. We conclude that CNGC6, CNGC9 and CNGC14 fulfill partially but not fully redundant functions in generating and maintaining tip-focused Ca2+ oscillations, which are fundamental for proper root hair growth and polarity. Furthermore, the results suggest that these calmodulin-binding and Ca2+ -permeable channels organize a robust tip-focused oscillatory calcium gradient, which is not essential for root hair initiation but is required to control the integrity of the root hair after the transition to the rapid growth phase. Our findings also show that root hairs possess a large ability to compensate calcium-signaling defects, and add new players to the regulatory network, which coordinates cell wall properties and cell expansion during polar root hair growth.
Collapse
Affiliation(s)
- Christa Brost
- Molecular Plant Physiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Tanja Studtrucker
- Molecular Plant Physiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Ronny Reimann
- Molecular Plant Physiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Philipp Denninger
- CellNetworks Cluster of Excellence and Centre for Organismal Studies, Universität Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Jennifer Czekalla
- Molecular Plant Physiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Melanie Krebs
- Plant Developmental Biology, Centre for Organismal Studies, Universität Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Ben Fabry
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, Henkestrasse 91, 91052, Erlangen, Germany
| | - Karin Schumacher
- Plant Developmental Biology, Centre for Organismal Studies, Universität Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Guido Grossmann
- CellNetworks Cluster of Excellence and Centre for Organismal Studies, Universität Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Petra Dietrich
- Molecular Plant Physiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany
| |
Collapse
|
20
|
Arabidopsis ABCG28 is required for the apical accumulation of reactive oxygen species in growing pollen tubes. Proc Natl Acad Sci U S A 2019; 116:12540-12549. [PMID: 31152136 DOI: 10.1073/pnas.1902010116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Tip-focused accumulation of reactive oxygen species (ROS) is tightly associated with pollen tube growth and is thus critical for fertilization. However, it is unclear how tip-growing cells establish such specific ROS localization. Polyamines have been proposed to function in tip growth as precursors of the ROS, hydrogen peroxide. The ABC transporter AtABCG28 may regulate ROS status, as it contains multiple cysteine residues, a characteristic of proteins involved in ROS homeostasis. In this study, we found that AtABCG28 was specifically expressed in the mature pollen grains and pollen tubes. AtABCG28 was localized to secretory vesicles inside the pollen tube that moved toward and fused with the plasma membrane of the pollen tube tip. Knocking out AtABCG28 resulted in defective pollen tube growth, failure to localize polyamine and ROS to the growing pollen tube tip, and complete male sterility, whereas ectopic expression of this gene in root hair could recover ROS accumulation at the tip and improved the growth under high-pH conditions, which normally prevent ROS accumulation and tip growth. Together, these data suggest that AtABCG28 is critical for localizing polyamine and ROS at the growing tip. In addition, this function of AtABCG28 is likely to protect the pollen tube from the cytotoxicity of polyamine and contribute to the delivery of polyamine to the growing tip for incorporation into the expanding cell wall.
Collapse
|
21
|
Malhó R. Expand, colonize and consolidate. NATURE PLANTS 2018; 4:861-862. [PMID: 30390077 DOI: 10.1038/s41477-018-0297-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Rui Malhó
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|