1
|
Shen S, Zhou Y, Yin M, Liu S, Sun H, Guan Y, Huan C, Zheng X. CitUNE1 inhibits (+)-valencene synthesis by regulating CsTPS1 in 'Newhall' sweet orange. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109854. [PMID: 40194505 DOI: 10.1016/j.plaphy.2025.109854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/22/2025] [Accepted: 03/28/2025] [Indexed: 04/09/2025]
Abstract
(+)-Valencene is the characteristic volatile compound in 'Newhall' sweet orange, and CsTPS1 is the gene that codes for the (+)-valencene synthase. Here, four transcription factors, including CitUNE1, CitUNE3, CitSCL1, and CitSCL13, were screened as candidate proteins by yeast one-hybrid (Y1H) library screening with CsTPS1 promoter as the bait. Among them, CitUNE1 bound to the G-box on the promoter of CsTPS1 and suppressed CsTPS1 expression, confirmed by Y1H, dual-luciferase assay, point-mutation experiment and EMSA. The expression pattern of CitUNE1 showed a negative correlation with both the content of (+)-valencene and CsTPS1 transcripts level, both during fruit development and after ethylene treatment. Furthermore, the role of CitUNE1 in (+)-valencene synthesis was confirmed using the transient over-expression and silencing in 'Newhall' sweet orange. Transient over-expression of CitUNE1 inhibited CsTPS1 expression and reduced the accumulation of (+)-valencene, while silencing of CitUNE1 induced CsTPS1 expression and triggered (+)-valencene synthesis in 'Newhall' sweet orange.
Collapse
Affiliation(s)
- Shuling Shen
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China; Zhejiang-UK Joint Laboratory of Food Sensory Science, Zhejiang Gongshang University, Hangzhou, 310018, PR China.
| | - Yuwei Zhou
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Mengyao Yin
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Sijia Liu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Hui Sun
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Yue Guan
- Hangzhou Food Service Group, Hangzhou, 310001, PR China
| | - Chen Huan
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China; Zhejiang-UK Joint Laboratory of Food Sensory Science, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Xiaolin Zheng
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China.
| |
Collapse
|
2
|
Bao M, Xu Y, Wei G, Bai M, Wang J, Feng L. The MYC Gene RrbHLH105 Contributes to Salt Stress-Induced Geraniol in Rose by Regulating Trehalose-6-Phosphate Signalling. PLANT, CELL & ENVIRONMENT 2025; 48:1947-1962. [PMID: 39526398 DOI: 10.1111/pce.15266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Rose (Rosa rugosa) is an important perfume plant, but its cultivation is significantly constrained by salt stress. Terpenes represent the most abundant volatile aromatic compounds in roses, yet little is known about how terpene metabolism responds to salt stress. In this study, salt-treated rose petals presented significant accumulation of monoterpenes, including geraniol, due to the disruption of jasmonic acid (JA) biosynthesis and signalling. Overexpression and silencing analyses revealed a MYC transcription factor involved in JA signalling (RrbHLH105) as a repressor of geraniol biosynthesis. RrbHLH105 was shown to activate the trehalose-6-phosphate synthase genes RrTPS5 and RrTPS8 by binding to the E-box (5'-CANNTG-3'). The increased trehalose-6-phosphate content and decreased geraniol content in rose petals overexpressing TPS5 or RrTPS8, along with the high accumulation of geraniol in petals where both RrbHLH105 and TPSs were cosilenced, indicate that trehalose signalling plays a role in the negative regulation of geraniol accumulation via the RrbHLH105-TPS module. In summary, the suppression of RrbHLH105 by salt stress leads to excessive geraniol accumulation through the inhibition of both RrbHLH105-mediated JA signalling and RrTPS-mediated trehalose signalling in rose petals. Additionally, this study highlights the emerging role of RrbHLH105 as a critical integrator of JA and trehalose signalling crosstalk.
Collapse
Affiliation(s)
- Mingyue Bao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Yong Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Guo Wei
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Mengjuan Bai
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Jianwen Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Liguo Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Nyikó T, Gyula P, Ráth S, Sós‐Hegedűs A, Csorba T, Abbas SH, Bóka K, Pettkó‐Szandtner A, Móricz ÁM, Molnár BP, Erdei AL, Szittya G. INCREASED DNA METHYLATION 3 forms a potential chromatin remodelling complex with HAIRPLUS to regulate DNA methylation and trichome development in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70085. [PMID: 40121617 PMCID: PMC11930289 DOI: 10.1111/tpj.70085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/13/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
DNA methylation, a dynamic epigenetic mark influencing gene expression, is regulated by DNA demethylases that remove methylated cytosines at genomic regions marked by the INCREASED DNA METHYLATION (IDM) complex. In Arabidopsis, IDM3, a small α-crystalline domain-containing protein, stabilises the IDM complex. To investigate its role in tomato, we generated slidm3 mutants using genome editing. These mutants displayed a 'hairy' phenotype with increased glandular trichomes, resembling the hairplus (hap) mutant. Affinity purification of SlIDM3-GFP associated proteins identified several chromatin remodelling factors, including HAP. Genome-wide DNA methylation analysis revealed sequence context dependent alterations in the slidm3-1 plants, similar to the hap mutant. CHH methylation was predominantly increased, while CG methylation, particularly in intergenic regions, was decreased in both mutants. This imbalanced methylation suggests the presence of a 'methylstat' mechanism attempting to restore methylation levels at abnormally demethylated sites in the mutants. Comparative functional analysis of differentially methylated regions in the slidm3-1 and hap mutants identified potential methylation-regulated genes that could be linked to the hairy phenotype. Our findings indicate that SlIDM3 may form a chromatin remodelling complex with HAP, epigenetically regulating trichome development.
Collapse
Affiliation(s)
- Tünde Nyikó
- Department of Plant BiotechnologyHungarian University of Agriculture and Life SciencesGödöllőHungary
| | - Péter Gyula
- Department of Plant BiotechnologyHungarian University of Agriculture and Life SciencesGödöllőHungary
| | - Szilvia Ráth
- Department of Plant BiotechnologyHungarian University of Agriculture and Life SciencesGödöllőHungary
| | - Anita Sós‐Hegedűs
- Department of Plant BiotechnologyHungarian University of Agriculture and Life SciencesGödöllőHungary
| | - Tibor Csorba
- Department of Plant BiotechnologyHungarian University of Agriculture and Life SciencesGödöllőHungary
| | - Syed Hussam Abbas
- Department of Plant BiotechnologyHungarian University of Agriculture and Life SciencesGödöllőHungary
| | - Károly Bóka
- Department of Plant AnatomyEötvös Loránd UniversityBudapestHungary
| | | | - Ágnes M. Móricz
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research NetworkBudapestHungary
| | - Béla Péter Molnár
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research NetworkBudapestHungary
| | - Anna Laura Erdei
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research NetworkBudapestHungary
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - György Szittya
- Department of Plant BiotechnologyHungarian University of Agriculture and Life SciencesGödöllőHungary
| |
Collapse
|
4
|
Wang Y, Gao R, Gu T, Li X, Wang M, Wang A, Qiu Y. Metabolomics and Transcriptomics Reveal the Role of the Terpene Biosynthetic Pathway in the Mechanism of Insect Resistance in Solanum habrochaites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 39998954 DOI: 10.1021/acs.jafc.4c10397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Terpenes are a large variety of natural organic compounds that can enhance the resistance of plants to phytophagous insects through induction. In this study, differential expression genes and metabolites of Alice Craig (AC) and Solanum habrochaite (SH) were screened and analyzed by transcriptomics and metabolomics. The results show that terpene biosynthesis is one of the most crucial secondary metabolic pathways in plants. SH significantly accumulates more terpenes than AC by up regulating the expression of relevant genes. It is worth noting that virus-induced SlHDR silencing not only reduces the expression of downstream genes (SlTPS3, SlFPP, and SlGGPPS) in the terpene biosynthesis pathway, but also significantly affects the synthesis of related terpenoids, there by reducing the insect resistance of tomatoes. The results will be beneficial for understanding the synthesis mechanism of terpenoids in tomatoes and supply new genetic resources for the development of insect-resistant tomatoes.
Collapse
Affiliation(s)
- Yudan Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ruihua Gao
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Tingting Gu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xinzhi Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Meiliang Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Aoxue Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Youwen Qiu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
5
|
Dimopoulos N, Guo Q, Liu L, Nolan M, Das R, Garcia-de Heer L, Mieog JC, Barkla BJ, Kretzschmar T. An In Vitro Phytohormone Survey Reveals Concerted Regulation of the Cannabis Glandular Trichome Disc Cell Proteome. PLANTS (BASEL, SWITZERLAND) 2025; 14:694. [PMID: 40094644 PMCID: PMC11901956 DOI: 10.3390/plants14050694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025]
Abstract
Cannabis (Cannabis sativa L.) flower glandular trichomes (GTs) are the main site of cannabinoid synthesis. Phytohormones, such as jasmonic acid (JA) and salicylic acid (SA), have been shown to increase cannabinoid content in cannabis flowers, but how this is regulated remains unknown. This study aimed to understand which biological processes in GT disc cells phytohormones control by using an in vitro assay. Live GT disc cells were isolated from a high-tetrahydrocannabinol cannabis cultivar and incubated on basal media plates supplemented with either kinetin (KIN), JA, SA, abscisic acid, ethephon, gibberellic acid, brassinolide, or sodium diethyldithiocarbamate. Quantitative proteomic analysis revealed that KIN, JA, and SA caused the greatest number of changes in the GT disc cell proteome. Surprisingly, none of the treatments concertedly increased cannabinoid content or the abundance of related biosynthetic proteins in the GT, suggesting that cannabinoid increases in previous in planta phytohormone studies are likely due to other processes, such as increased GT density. As well, KIN-, JA-, and SA-treated GTs had numerous differentially abundant proteins in common. Several were key proteins for leucoplast differentiation, cuticular wax and fatty acid metabolism, and primary metabolism regulation, denoting that cytokinin, JA, and SA signalling are likely important for coordinating cannabis GT differentiation and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tobias Kretzschmar
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia; (N.D.)
| |
Collapse
|
6
|
Yuan M, Sheng Y, Bao J, Wu W, Nie G, Wang L, Cao J. AaMYC3 bridges the regulation of glandular trichome density and artemisinin biosynthesis in Artemisia annua. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:315-332. [PMID: 39189077 PMCID: PMC11772365 DOI: 10.1111/pbi.14449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024]
Abstract
Artemisinin, the well-known natural product for treating malaria, is biosynthesised and stored in the glandular-secreting trichomes (GSTs) of Artemisia annua. While numerous efforts have clarified artemisinin metabolism and regulation, the molecular association between artemisinin biosynthesis and GST development remains elusive. Here, we identified AaMYC3, a bHLH transcription factor of A. annua, induced by jasmonic acid (JA), which simultaneously regulates GST density and artemisinin biosynthesis. Overexpressing AaMYC3 led to a substantial increase in GST density and artemisinin accumulation. Conversely, in the RNAi-AaMYC3 lines, both GST density and artemisinin content were markedly reduced. Through RNA-seq and analyses conducted both in vivo and in vitro, AaMYC3 not only directly activates AaHD1 transcription, initiating GST development, but also up-regulates the expression of artemisinin biosynthetic genes, including CYP71AV1 and ALDH1, thereby promoting artemisinin production. Furthermore, AaMYC3 acts as a co-activator, interacting with AabHLH1 and AabHLH113, to trigger the transcription of two crucial enzymes in the artemisinin biosynthesis pathway, ADS and DBR2, ultimately boosting yield. Our findings highlight a critical connection between GST initiation and artemisinin biosynthesis in A. annua, providing a new target for molecular design breeding of traditional Chinese medicine.
Collapse
Affiliation(s)
- Mingyuan Yuan
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life Sciences, Nanjing UniversityNanjing210023China
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of SciencesShanghai200032China
| | - Yinguo Sheng
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of SciencesShanghai200032China
| | - Jingjing Bao
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of SciencesShanghai200032China
| | - Wenkai Wu
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of SciencesShanghai200032China
| | - Guibin Nie
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of SciencesShanghai200032China
| | - Lingjian Wang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of SciencesShanghai200032China
| | - Junfeng Cao
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of SciencesShanghai200032China
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinHong Kong
| |
Collapse
|
7
|
Zheng X, Jian Y, Long Q, Luo Y, Xu X, Zhang Q, Cheng Y, Huang B, Qiu D, Li Z, Zheng J, Zhang W, Deng W. SlASR3 mediates crosstalk between auxin and jasmonic acid signaling to regulate trichome formation in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70053. [PMID: 39981944 DOI: 10.1111/tpj.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
Trichomes play a pivotal role in plant resistance to biotic and abiotic stresses. Both auxin and jasmonic acid (JA) could induce tomato type II, V, and VI trichome formation. However, the existence of crosstalk between auxin and JA in trichome formation is not yet fully elucidated. In this study, we identified a Trihelix/MYB-like gene, SlASR3, is inhibited by both auxin and JA and is expressed in type II and VI trichomes in tomatoes. Knock-down or knockout of SlASR3 increased the densities of type II and VI trichomes, whereas overexpression of SlASR3 reduced the densities of type II and VI trichomes. SlASR3 was involved in the indole acetic acid (IAA)- and JA-induced formation of these trichome types. SlARF4 negatively regulated the transcription of SlASR3, and its effect on IAA-induced trichome formation depended on SlASR3. Likewise, SlMYC1 negatively regulated the transcription of SlASR3, and the regulation of SlMYC1 on JA-induced trichome formation was also SlASR3-dependent. Knock-down or knockout of SlASR3 increased the resistance to two-spotted spider mites in tomatoes. The research findings demonstrate that SlASR3 acts as a mediator in the crosstalk between JA and auxin signaling to regulate trichome formation and provide a new candidate gene for enhancing resistance to two-spotted spider mites.
Collapse
Affiliation(s)
- Xianzhe Zheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
- Southwest Research Center for Cross Breeding of Special Economic Plants, School of Life Science, Leshan Normal University, Sichuan, 614000, China
| | - Yongfei Jian
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Qian Long
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Yingqing Luo
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Xin Xu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Qiongdan Zhang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Yulin Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Baowen Huang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Dan Qiu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Jirong Zheng
- Hangzhou Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310024, China
| | - Weiqing Zhang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
8
|
Ding G, Shi Y, Xie K, Li H, Xiao G. Genome-wide identification and expression analysis of bHLH gene family revealed their potential roles in abiotic stress response, anthocyanin biosynthesis and trichome formation in Glycyrrhiza uralensis. FRONTIERS IN PLANT SCIENCE 2025; 15:1485757. [PMID: 39906234 PMCID: PMC11790457 DOI: 10.3389/fpls.2024.1485757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/27/2024] [Indexed: 02/06/2025]
Abstract
Introduction Licorice stands out as an exceptional medicinal resource with a long history of application, attributed to its substantial pharmacological potential. The basic helix-loop-helix (bHLH) transcription factors (TFs) gene family, being the second-largest in plants, is vital for plant development and adapting to environmental shifts. Despite this, the comprehensive characteristics of licorice bHLH gene family are not well-documented. Results In this study, a detailed and thorough genome-wide identification and expression analysis of Glycyrrhiza uralensis bHLH gene family was carried out, resulting in the identification of 139 licorice bHLH members. Our duplication analysis highlighted the significant contribution of segmental duplications to the expansion of G. uralensis bHLH genes, with GubHLH genes experiencing negative selection throughout evolution. It was discovered that GubHLH64 and GubHLH38 could be importantly linked to the licorice trichome initiation and anthocyanin biosynthesis and GubHLH64 was also involved in the abiotic stress response. Additionally, certain subfamily III (d+e) GubHLH members could be implicated in the licorice drought response. GubHLH108, GubHLH109, and GubHLH116 were suggested to form a tightly related cluster, initiating transcriptional responses via JA signaling pathway. Discussion In summary, our findings furnish a foundational understanding for future investigations of GubHLH gene functions and regulation mechanisms, shedding light on the potential applications of licorice in medicine and agriculture.
Collapse
Affiliation(s)
- Guohua Ding
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Yanping Shi
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi, China
| | - Kerui Xie
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi, China
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
9
|
Li J, Li G, Zhu C, Wang S, Zhang S, Li F, Zhang H, Sun R, Yuan L, Chen G, Tang X, Wang C, Zhang S. Genome-Wide Identification and Expression Analysis of bHLH-MYC Family Genes from Mustard That May Be Important in Trichome Formation. PLANTS (BASEL, SWITZERLAND) 2025; 14:268. [PMID: 39861625 PMCID: PMC11769027 DOI: 10.3390/plants14020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/03/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
The trichomes of mustard leaves have significance due to their ability to combat unfavorable external conditions and enhance disease resistance. It was demonstrated that the MYB-bHLH-WD40 (MBW) ternary complex consists of MYB, basic Helix-Loop-Helix (bHLH), and WD40-repeat (WD40) family proteins and plays a key role in regulating trichome formation and density. The bHLH gene family, particularly the Myelocytomatosis (MYC) proteins that possess the structural bHLH domain (termed bHLH-MYC), are crucial to the formation and development of leaf trichomes in plants. bHLH constitutes one of the largest families of transcription factors in eukaryotes, of which MYC is a subfamily member. However, studies on bHLH-MYC transcription factors in mustard have yet to be reported. In this study, a total of 45 bHLH-MYC transcription factors were identified within the Brassica juncea genome, and a comprehensive series of bioinformatic analyses were conducted on their structures and properties: an examination of protein physicochemical properties, an exploration of conserved structural domains, an assessment of chromosomal positional distributions, an analysis of the conserved motifs, an evaluation of the gene structures, microsynteny analyses, three-dimensional structure prediction, and an analysis of sequence signatures. Finally, transcriptome analyses and a subcellular localization examination were performed. The results revealed that these transcription factors were unevenly distributed across 18 chromosomes, showing relatively consistent conserved motifs and gene structures and high homology. The final results of the transcriptome analysis and gene annotation showed a high degree of variability in the expression of bHLH-MYC transcription factors. Five genes that may be associated with trichome development (BjuVA09G22490, BjuVA09G13750, BjuVB04G14560, BjuVA05G24810, and BjuVA06G44820) were identified. The subcellular localization results indicated that the transcription and translation products of these five genes were expressed in the same organelle: the nucleus. This finding provides a basis for elucidating the roles of bHLH-MYC family members in plant growth and development, and the molecular mechanisms underlying trichome development in mustard leaves.
Collapse
Affiliation(s)
- Jianzhong Li
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (J.L.)
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.L.)
| | - Guoliang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.L.)
| | - Caishuo Zhu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.L.)
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Shaoxing Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.L.)
| | - Shifan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.L.)
| | - Fei Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.L.)
| | - Hui Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.L.)
| | - Rifei Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.L.)
| | - Lingyun Yuan
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (J.L.)
| | - Guohu Chen
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (J.L.)
| | - Xiaoyan Tang
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (J.L.)
| | - Chenggang Wang
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (J.L.)
| | - Shujiang Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.L.)
| |
Collapse
|
10
|
Sun L, Feng Z, Wang F, Qi Y, An M, Yang L, Feng M, Wang M, Ren H, Liu X. A Highly Efficient System for Separating Glandular and Non-glandular Trichome of Cucumber Fruit for Transcriptomic and Metabolomic Analysis. Bio Protoc 2025; 15:e5154. [PMID: 39803323 PMCID: PMC11717712 DOI: 10.21769/bioprotoc.5154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 01/16/2025] Open
Abstract
Cucumber (Cucumis sativus) trichomes play a critical role in resisting external biological and abiotic stresses. Glandular trichomes are particularly significant as they serve as sites for the synthesis and secretion of secondary metabolites, while non-glandular trichomes are pivotal for determining the appearance quality of cucumbers. However, current methods for separating trichomes encounter challenges such as low efficiency and insufficient accuracy, limiting their applicability in multi-omics sequencing studies. This protocol introduces an efficient system designed for the precise separation of glandular and non-glandular trichomes from cucumber fruit. The process begins with the pre-cooling of sorbitol buffer or ethanol solution and the RNA-free treatment of laboratory supplies, followed by sterilization and pre-cooling. After filling glass bottles with pre-cooling buffer and glass beads, cucumber ovaries are then placed in the glass bottles and the trichome is harvested by bead-beating method. The separation process involves sequential filtration through various steel sieves and centrifugation to separate trichomes. The separated trichomes obtained from this method are well-suited for subsequent multi-omics sequencing analyses. This protocol achieved high precision in separating glandular and non-glandular trichomes, significantly enhancing the efficiency of separation and sample collection processes. This advancement not only addresses existing limitations but also facilitates comprehensive studies aimed at exploring the genetic and biochemical diversity present within cucumber trichomes, thereby opening avenues for broader agricultural and biological research applications. Key features • Use cucumber fruits on the day of flowering. • Pre-cooling and RNA-free treatment ensure supply quality and purity. • Efficiently separate glandular and non-glandular trichomes. • Trichome samples are suitable for multi-omics sequencing analysis.
Collapse
Affiliation(s)
- Lei Sun
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
- Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Zhongxuan Feng
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
- Syngenta Biotechnology (China) Co., Ltd, Beijing, China
| | - Fang Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Yu Qi
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Menghang An
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Lin Yang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Min Feng
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Mingqi Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Huazhong Ren
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
- Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Xingwang Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Wang J, Gong Y, Li M, Bai Y, Wu T. A CsWRKY48 Gene from Tea Plants Intercropped with Chinese Chestnut Plays an Important Role in Resistance to Biotic and Abiotic Stresses. Int J Mol Sci 2024; 25:13526. [PMID: 39769291 PMCID: PMC11677473 DOI: 10.3390/ijms252413526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Tea plant (Camellia sinensis) is an important horticultural crop. The quality and productivity of tea plants is always threatened by various adverse environmental factors. Numerous studies have shown that intercropping tea plants with other plants can greatly improve the quality of their products. The intercropping system of Chinese chestnut (Castanea mollissima) and tea plants is an agricultural planting model in which the two species are grown on the same piece of land following a specific spacing and cultivation method. Based on a comparative transcriptome analysis between Chinese chestnut tea intercropped plantations and a pure tea plantation, it was found that the expression levels of the WRKY genes were significantly upregulated under the intercropping pattern. In this study, we cloned a candidate gene, CsWRKY48, and verified its functions in tobacco (Nicotiana tabacum) via heterologous transformation. The contents of protective enzyme activities and osmoregulatory substances were significantly increased, and the trichomes length and density were improved in the transgenic tobacco lines. This phenotype offered an enhanced resistance to both low temperatures and aphids for transgenic lines overexpressing CsWRKY48. Further analysis indicated that the CsWRKY48 transcription factor might interact with other regulators, such as CBF, ERF, MYC, and MYB, to enhance the resistance of tea plants to biotic and abiotic stresses. These findings not only confirm the elevated resistance of tea plants under intercropping, but also indicate a potential regulatory network mediated by the WRKY transcription factor.
Collapse
Affiliation(s)
| | | | | | | | - Tian Wu
- College of Landscape Architecture and Horticulture, Southwest Forestry University, Kunming 650224, China; (J.W.); (Y.G.); (M.L.); (Y.B.)
| |
Collapse
|
12
|
Tong YR, Chen K, Jiang ZQ, Tu LC, Luo YF, Zheng H, Zhao YQ, Shen SY, Hu YT, Gao W. Spatiotemporal expression analysis of jasmonic acid and saponin-related genes uncovers a potential biosynthetic regulation in Panax notoginseng. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9772-9781. [PMID: 39118479 DOI: 10.1002/jsfa.13800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Sanqi, the root of Panax notoginseng, has long been recognized for its therapeutic effects on cardiovascular diseases. Saponins, including ginsenosides and notoginsenosides, are the main bioactive components of P. notoginseng. The biosynthesis of saponins is closely related to the defense responses orchestrated by endogenous hormones. RESULTS To provide new insights into the underlying role of phytohormone jasmonic acid (JA) in the synthesis and regulation of saponins, we performed an ultra-performance liquid chromatography analysis of different tissues of P. notoginseng aged 2-4 years. Moreover, by combined evaluation of saponin content and transcriptome profiling of each tissue, the spatial and temporal distribution of saponins was analyzed. N notoginsenoside R1, ginsenoside Rb1 and ginsenoside Rd accumulated in the underground tissues, including the root, tuqi, fibril and rhizome. In agreement with this data, the corresponding genes of the endogenous hormone JAs, especially coronatine insensitive 1 (COI1) and myelocytomatosis proteins 2 (MYC2), were predominantly expressed in the underground tissues. The tissue- and age-specific distribution of saponins was consistent with the expression of genes involved in JA biosynthetic, metabolic and signaling pathways. CONCLUSION The present study has revealed the temporal and spatial effects of endogenous phtohormones in the synthesis and regulation of notoginsenosides, which will provide a significant impact on improving the ecological planting technology, cultivating new high-quality varieties and protecting the rare resources of medicinal P. notoginseng. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu-Ru Tong
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Kang Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
| | - Zhou-Qian Jiang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Li-Chan Tu
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Yun-Feng Luo
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Han Zheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
| | - Ya-Qiu Zhao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
| | - Si-Yu Shen
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ya-Ting Hu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Guan Y, Jiang L, Wang Y, Liu G, Wu J, Luo H, Chen S, Chen F, Niinemets Ü, Chen F, Jiang Y. CmMYC2-CmMYBML1 module orchestrates the resistance to herbivory by synchronously regulating the trichome development and constitutive terpene biosynthesis in Chrysanthemum. THE NEW PHYTOLOGIST 2024; 244:914-933. [PMID: 39223898 DOI: 10.1111/nph.20081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Trichomes are specialized epidermal outgrowths covering the aerial parts of most terrestrial plants. There is a large species variability in occurrence of different types of trichomes such that the molecular regulatory mechanism underlying the formation and the biological function of trichomes in most plant species remain unexplored. Here, we used Chrysanthemum morifolium as a model plant to explore the regulatory network in trichome formation and terpenoid synthesis and unravel the physical and chemical roles of trichomes in constitutive defense against herbivore feeding. By analyzing the trichome-related genes from transcriptome database of the trichomes-removed leaves and intact leaves, we identified CmMYC2 to positively regulate both development of T-shaped and glandular trichomes as well as the content of terpenoids stored in glandular trichomes. Furthermore, we found that the role of CmMYC2 in trichome formation and terpene synthesis was mediated by interaction with CmMYBML1. Our results reveal a sophisticated molecular mechanism wherein the CmMYC2-CmMYBML1 feedback inhibition loop regulates the formation of trichomes (non-glandular and glandular) and terpene biosynthesis, collectively contributing to the enhanced resistance to Spodoptera litura larvae feeding. Our findings provide new insights into the novel regulatory network by which the plant synchronously regulates trichome density for the physical and chemical defense against herbivory.
Collapse
Affiliation(s)
- Yaqin Guan
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Jiang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - You Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guanhua Liu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiayi Wu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong Luo
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sumei Chen
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Yifan Jiang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
14
|
Li W, Zhan Q, Guan Y, Wang L, Li S, Zheng S, Ma H, Liu Y, Ding L, Zhao S, Wang Z, Jiang J, Fang W, Chen F, Chen S, Guan Z. Heterografting enhances chrysanthemum resistance to Alternaria alternata via jasmonate-mediated increases in trichomes and terpenoids. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6523-6541. [PMID: 38745476 DOI: 10.1093/jxb/erae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Trichomes are specialized hair-like structures in the epidermal cells of the above-ground parts of plants and help to protect them from pests and pathogens, and produce valuable metabolites. Chrysanthemum morifolium, which is used in tea products, has both ornamental and medicinal value; however, it is susceptible to infection by the fungus Alternaria alternata, which can result in substantial economic losses. Increasing the density of glandular trichomes enhances disease resistance and improves the production of medicinal metabolites in chrysanthemums, and jasmonate (JA) is known to promote the formation of trichomes in various plants. However, it remains unclear whether glandular trichomes in chrysanthemums are regulated by JA. In addition, grafting, a technique that can improve plant resistance to biotic stresses, has been poorly examined for its impact on glandular trichomes, terpenoids, and disease resistance. In this study, we demonstrate that grafting with Artemisia vulgaris rootstocks improves the resistance of chrysanthemum scions to A. alternata. Heterografted chrysanthemums exhibited higher trichome density and terpenoid content compared to self-grafted counterparts. Transcriptome analysis highlighted the significant role of CmJAZ1-like in disease resistance in heterografted chrysanthemums. Lines overexpressing CmJAZ1-like exhibited sensitivity to A. alternata, and this was characterized by reduced glandular trichome density and limited terpenoid content. Conversely, CmJAZ1-like silenced lines exhibited resistance to A. alternata and showed increased glandular trichome density and terpenoid content. Higher JA content was found in the heterografted chrysanthemum scions compared to self-grafted ones. Furthermore, we established that JA promoted the development of glandular trichomes and the synthesis of terpenoids while also inducing the degradation of CmJAZ1-like proteins in chrysanthemums. Our findings suggest that higher JA increases trichome density and terpenoid content, thereby enhancing resistance to A. alternata by regulating CmJAZ1-like in heterografted chrysanthemums.
Collapse
Affiliation(s)
- Wenjie Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingling Zhan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunxiao Guan
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Likai Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Song Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shanhu Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongyu Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ye Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lian Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenxing Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Sun C, Wei J, Gu X, Wu M, Li M, Liu Y, An N, Wu K, Wu S, Wu J, Xu M, Wu JC, Wang YL, Chao DY, Zhang Y, Wu S. Different multicellular trichome types coordinate herbivore mechanosensing and defense in tomato. THE PLANT CELL 2024; 36:koae269. [PMID: 39404780 PMCID: PMC11638769 DOI: 10.1093/plcell/koae269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/12/2024] [Accepted: 10/03/2024] [Indexed: 12/15/2024]
Abstract
Herbivore-induced wounding can elicit a defense response in plants. However, whether plants possess a surveillance system capable of detecting herbivore threats and initiating preparatory defenses before wounding occurs remains unclear. In this study, we reveal that tomato (Solanum lycopersicum) trichomes can detect and respond to the mechanical stimuli generated by herbivores. Mechanical stimuli are preferentially perceived by long trichomes, and this mechanosensation is transduced via intra-trichome communication. This communication presumably involves calcium waves, and the transduced signals activate the jasmonic acid (JA) signaling pathway in short glandular trichomes, resulting in the upregulation of the Woolly (Wo)-SlMYC1 regulatory module for terpene biosynthesis. This induced defense mechanism provides plants with an early warning system against the threat of herbivore invasion. Our findings represent a perspective on the role of multicellular trichomes in plant defense and the underlying intra-trichome communication.
Collapse
Affiliation(s)
- Chao Sun
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - JinBo Wei
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - XinYun Gu
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - MinLiang Wu
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meng Li
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - YiXi Liu
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - NingKai An
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - KeMeng Wu
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - ShaSha Wu
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - JunQing Wu
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - MeiZhi Xu
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jia-Chen Wu
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ya-Ling Wang
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dai-Yin Chao
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - YouJun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuang Wu
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
16
|
Ke C, Guan W, Jiang J, Huang L, Li H, Li W, Lin Y, Lin L, Xie X, Wu W, Gao W, Zheng Y. Map-based cloning of LPD, a major gene positively regulates leaf prickle development in eggplant. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:216. [PMID: 39249556 DOI: 10.1007/s00122-024-04726-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
KEY MESSAGE A critical gene for leaf prickle development (LPD) in eggplant was mapped on chromosome E06 and was confirmed to be SmARF10B through RNA interference using a new genetic transformation technique called SACI developed in this study Prickles on eggplant pose challenges for agriculture and are undesirable in cultivated varieties. This study aimed to uncover the genetic mechanisms behind prickle formation in eggplant. Using the F2 and F2:3 populations derived from a cross between the prickly wild eggplant, YQ, and the prickle-free cultivated variety, YZQ, we identified a key genetic locus (LPD, leaf prickle development) on chromosome E06 associated with leaf prickle development through BSA-seq and QTL mapping. An auxin response factor gene, SmARF10B, was predicted as the candidate gene as it exhibited high expression in YQ's mature leaves, while being significantly low in YZQ. Downregulating SmARF10B in YQ through RNAi using a simple and efficient Agrobacterium-mediated genetic transformation method named Seedling Apical Cut Infection (SACI) developed in this study substantially reduced the size and density of leaf prickles, confirming the role of this gene in prickle development. Besides, an effective SNP was identified in SmARF10B, resulting in an amino acid change between YQ and YZQ. However, this SNP did not consistently correlate with prickle formation in eight other eggplant materials examined. This study sheds light on the pivotal role of SmARF10B in eggplant prickle development and introduces a new genetic transformation method for eggplant, paving the way for future research in this field.
Collapse
Affiliation(s)
- Changjiao Ke
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiang Guan
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jialong Jiang
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Likun Huang
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui Li
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenjing Li
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanyu Lin
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lihui Lin
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaofang Xie
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiren Wu
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| | - Wenxia Gao
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Yan Zheng
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
17
|
Desika J, Yogendra K, Hepziba SJ, Patne N, Vivek BS, Ravikesavan R, Nair SK, Jaba J, Razak TA, Srinivasan S, Shettigar N. Exploring Metabolomics to Innovate Management Approaches for Fall Armyworm ( Spodoptera frugiperda [J.E. Smith]) Infestation in Maize ( Zea mays L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2451. [PMID: 39273935 PMCID: PMC11397220 DOI: 10.3390/plants13172451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024]
Abstract
The Fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), is a highly destructive lepidopteran pest known for its extensive feeding on maize (Zea mays L.) and other crops, resulting in a substantial reduction in crop yields. Understanding the metabolic response of maize to FAW infestation is essential for effective pest management and crop protection. Metabolomics, a powerful analytical tool, provides insights into the dynamic changes in maize's metabolic profile in response to FAW infestation. This review synthesizes recent advancements in metabolomics research focused on elucidating maize's metabolic responses to FAW and other lepidopteran pests. It discusses the methodologies used in metabolomics studies and highlights significant findings related to the identification of specific metabolites involved in FAW defense mechanisms. Additionally, it explores the roles of various metabolites, including phytohormones, secondary metabolites, and signaling molecules, in mediating plant-FAW interactions. The review also examines potential applications of metabolomics data in developing innovative strategies for integrated pest management and breeding maize cultivars resistant to FAW by identifying key metabolites and associated metabolic pathways involved in plant-FAW interactions. To ensure global food security and maximize the potential of using metabolomics in enhancing maize resistance to FAW infestation, further research integrating metabolomics with other omics techniques and field studies is necessary.
Collapse
Affiliation(s)
- Jayasaravanan Desika
- V.O.C. Agricultural College and Research Institute, Tamil Nadu Agricultural University (TNAU), Killikulam 628252, India
- International Maize and Wheat Improvement Center (CIMMYT), Hyderabad 502324, India
| | - Kalenahalli Yogendra
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Sundararajan Juliet Hepziba
- V.O.C. Agricultural College and Research Institute, Tamil Nadu Agricultural University (TNAU), Killikulam 628252, India
| | - Nagesh Patne
- International Maize and Wheat Improvement Center (CIMMYT), Hyderabad 502324, India
| | | | - Rajasekaran Ravikesavan
- Centre for Plant Breeding & Genetics, Tamil Nadu Agricultural University (TNAU), Coimbatore 641003, India
| | - Sudha Krishnan Nair
- International Maize and Wheat Improvement Center (CIMMYT), Hyderabad 502324, India
| | - Jagdish Jaba
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Thurapmohideen Abdul Razak
- V.O.C. Agricultural College and Research Institute, Tamil Nadu Agricultural University (TNAU), Killikulam 628252, India
| | - Subbiah Srinivasan
- V.O.C. Agricultural College and Research Institute, Tamil Nadu Agricultural University (TNAU), Killikulam 628252, India
| | - Nivedita Shettigar
- International Maize and Wheat Improvement Center (CIMMYT), Hyderabad 502324, India
- Department of Genetics and Plant Breeding, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Hyderabad 500030, India
| |
Collapse
|
18
|
Cui Z, Huang X, Li M, Li M, Gu L, Gao L, Li C, Qin S, Liu D, Zhang Z. Integrated multi-omics analysis reveals genes involved in flavonoid biosynthesis and trichome development of Artemisia argyi. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112158. [PMID: 38880338 DOI: 10.1016/j.plantsci.2024.112158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/05/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
Artemisia argyi is an herbaceous plant of the genus Artemisia. Its young and mature leaves are used as food and medicine, respectively. Glandular trichomes (GTs) are distributed on the leaf surface in A. argyi and are generally considered the location of flavonoid biosynthesis and accumulation. However, the mechanism of flavonoid biosynthesis and accumulation in A. argyi remains unclear. In this study, the coregulatory genes involved in flavonoid biosynthesis and trichome development in this species were screened and evaluated, and the biosynthetic pathways for key flavonoids in A. argyi were uncovered. AaMYB1 and AaYABBY1 were screened using weighted gene co-expression network analysis, and both genes were then genetically transformed into Nicotiana tabacum L. cv. K326 (tobacco). Simultaneously, AaYABBY1 was also genetically transformed into Arabidopsis thaliana. The total flavonoid and rutin contents were increased in tobacco plants overexpressing AaMYB1 and AaYABBY1, and the expression levels of genes participating in the flavonoid synthesis pathway, such as PAL, FLS, and F3H, were significantly up-regulated in plants overexpressing these genes. These results indicated that AaMYB1 and AaYABBY1 promote flavonoid biosynthesis in tobacco. Furthermore, compared to that in the wild-type, the trichome density was significantly increased in tobacco and A. thaliana plants overexpressing AaYABBY1. These results confirm that AaYABBY1 might be involved in regulating trichome formation in A. argyi. This indicates the potential genes involved in and provides new insights into the development of trichome cellular factories based on the "development-metabolism" interaction network and the cultivation of high-quality A. argyi.
Collapse
Affiliation(s)
- Zhanhu Cui
- Zhang Zhongjing Chinese Medical Research Institute, Nanyang Medical College, Nanyang, China; Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xianzhang Huang
- Henan Province Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, China; State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Mengzhi Li
- Henan Province Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, China
| | - Mingjie Li
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li Gu
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li Gao
- Henan Province Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, China
| | - Chao Li
- Henan Province Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, China
| | | | - Dahui Liu
- Hubei University of Chinese Medicine, Wuhan, China
| | - Zhongyi Zhang
- Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
19
|
Khan RA, Kumar A, Abbas N. A bHLH transcription factor AaMYC2-type positively regulates glandular trichome density and artemisinin biosynthesis in Artemisia annua. PHYSIOLOGIA PLANTARUM 2024; 176:e14581. [PMID: 39440419 DOI: 10.1111/ppl.14581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024]
Abstract
Artemisinin-based combinational therapies (ACTs) constitute the first line of malaria treatment. However, due to its trichome-specific biosynthesis, low concentration, and poor understanding of regulatory mechanisms involved in artemisinin biosynthesis and trichome development, it becomes very difficult to meet the increased demand for ACTs. Here, we have reported that a bHLH transcription factor, AaMYC2-type, plays an important role in regulating GST development and artemisinin biosynthesis in Artemisia annua. AaMYC2-type encodes a protein that is transcriptionally active and localised to the nucleus. It is prominently expressed in aerial parts like leaves, stems, inflorescence and least expressed in roots. AaMYC2-type expression is significantly increased under different hormonal treatments. In transgenic overexpression lines, AaMYC2-type OE, a significant increase in the expression of trichome development and artemisinin biosynthesis genes was observed. While in knockdown lines, Aamyc2-type, expression of trichome development and artemisinin biosynthesis genes were significantly reduced. Yeast one-hybrid assay clearly shows that the AaMYC2-type directly binds to the E-boxes in the promoter regions of ADS and CYP71AVI. The SEM microscopy depicted the number of trichomes elevated from 11 mm-2 in AaMYC2-type OE lines to 6.1 mm-2 in Aamyc2-type. The final effect of the alteration in biosynthetic and trichome developmental genes was observed in the accumulation of artemisinin. In the AaMYC2-type OE, the artemisinin content was 12 mg g-1DW, which was reduced to 3.2 mg g-1DW in the Aamyc2-type. Altogether, the above findings suggest that the AaMYC2-type play a dual regulating role in controlling both trichome developmental and artemisinin biosynthetic genes.
Collapse
Affiliation(s)
- Rameez Ahmad Khan
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| | - Amit Kumar
- Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Nazia Abbas
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| |
Collapse
|
20
|
Zhou Y, Wang M, Liu Y, Li Z, Hu Z, Zhang M, Yang J. An HD-Zip III transcription factor, BjPHVa, negatively regulates non-glandular trichome formation in Brassica juncea. PHYSIOLOGIA PLANTARUM 2024; 176:e14553. [PMID: 39377147 DOI: 10.1111/ppl.14553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024]
Abstract
Trichomes are specialized structures derived from epidermal cells. Non-glandular trichomes primarily protect plants from herbivores and intense ultraviolet radiation by acting as a physical barrier. Recent research has highlighted the importance of homeodomain leucine zipper (HD-Zip) IV transcription factors (TFs) in promoting trichome development. In this study, an HD-Zip III TF called PHAVOLUTA (BjPHVa) was identified as a negative regulator of non-glandular trichome initiation in Brassica juncea. Genome editing of BjPHVa resulted in a significant increase in trichome number in B. juncea. Co-expression networks revealed a strong association between trichome development and the HD-Zip family, which was supported by transcriptomic analysis findings. An R2R3-MYB TF, BjGL1a, a key regulator of trichome development, was found to be associated with BjPHVa-regulated trichome development. Knockdown of BjGL1a expression resulted in reduced trichome number in B. juncea. BjPHVa was observed to interact directly with BjGL1a while binding to the BjGL1a promoter, resulting in the inhibition of BjGL1a transcription. These results provide new insights into the identification of regulators involved in trichome development and offer new opportunities to enhance resistance to predicted stresses through genome editing targeting PHVa within Brassicaceae.
Collapse
Affiliation(s)
- Yulan Zhou
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Mingyun Wang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Yutong Liu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Zhangping Li
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
- Zhejiang Provincial Key Laboratory of Vegetable Germplasm Innovation and Quality Breeding, Hangzhou, China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
- Zhejiang Provincial Key Laboratory of Vegetable Germplasm Innovation and Quality Breeding, Hangzhou, China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
- Zhejiang Provincial Key Laboratory of Vegetable Germplasm Innovation and Quality Breeding, Hangzhou, China
| |
Collapse
|
21
|
Li Z, Huang Y, Shen Z, Wu M, Huang M, Hong SB, Xu L, Zang Y. Advances in functional studies of plant MYC transcription factors. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:195. [PMID: 39103657 DOI: 10.1007/s00122-024-04697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
Myelocytomatosis (MYC) transcription factors (TFs) belong to the basic helix-loop-helix (bHLH) family in plants and play a central role in governing a wide range of physiological processes. These processes encompass plant growth, development, adaptation to biotic and abiotic stresses, as well as secondary metabolism. In recent decades, significant strides have been made in comprehending the multifaceted regulatory functions of MYCs. This advancement has been achieved through the cloning of MYCs and the characterization of plants with MYC deficiencies or overexpression, employing comprehensive genome-wide 'omics' and protein-protein interaction technologies. MYCs act as pivotal components in integrating signals from various phytohormones' transcriptional regulators to orchestrate genome-wide transcriptional reprogramming. In this review, we have compiled current research on the role of MYCs as molecular switches that modulate signal transduction pathways mediated by phytohormones and phytochromes. This comprehensive overview allows us to address lingering questions regarding the interplay of signals in response to environmental cues and developmental shift. It also sheds light on the potential implications for enhancing plant resistance to diverse biotic and abiotic stresses through genetic improvements achieved by plant breeding and synthetic biology efforts.
Collapse
Affiliation(s)
- Zewei Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yunshuai Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zhiwei Shen
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Meifang Wu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Mujun Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX, 77058-1098, USA
| | - Liai Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Yunxiang Zang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
22
|
Li Q, Wang J, Yin Z, Pan Y, Mao W, Peng L, Guo X, Li B, Leng P. SlPP2C2 interacts with FZY/SAUR and regulates tomato development via signaling crosstalk of ABA and auxin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1073-1090. [PMID: 38795008 DOI: 10.1111/tpj.16818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 04/28/2024] [Accepted: 05/07/2024] [Indexed: 05/27/2024]
Abstract
Abscisic acid (ABA) signaling interacts frequently with auxin signaling when it regulates plant development, affecting multiple physiological processes; however, to the best of our knowledge, their interaction during tomato development has not yet been reported. Here, we found that type 2C protein phosphatase (SlPP2C2) interacts with both flavin monooxygenase FZY, an indole-3-acetic acid (IAA) biosynthetic enzyme, and small auxin upregulated RNA (SAUR) of an IAA signaling protein and regulates their activity, thereby affecting the expression of IAA-responsive genes. The expression level of SlPP2C2 was increased by exogenous ABA, IAA, NaCl, or dehydration treatment of fruits, leaves, and seeds, and it decreased in imbibed seeds. Manipulating SlPP2C2 with overexpression, RNA interference, and CRISPR/Cas9-mediated genome editing resulted in pleiotropic changes, such as morphological changes in leaves, stem trichomes, floral organs and fruits, accompanied by alterations in IAA and ABA levels. Furthermore, the RNA-seq analysis indicated that SlPP2C2 regulates the expression of auxin-/IAA-responsive genes in different tissues of tomato. The results demonstrate that SlPP2C2-mediated ABA signaling regulates the development of both vegetative and reproductive organs via interaction with FZY/SAUR, which integrates the cross-talk of ABA and auxin signals during development and affects the expressions of development-related genes in tomato.
Collapse
Affiliation(s)
- Qian Li
- College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Juan Wang
- Yunnan Key Laboratory of Potato Biology, The AGISCAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, 650000, P. R. China
| | - Zhaonan Yin
- College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Yingfang Pan
- College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Wei Mao
- College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Liangyu Peng
- College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Xinyue Guo
- College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Bao Li
- College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Ping Leng
- College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| |
Collapse
|
23
|
Güngör E, Savary J, Adema K, Dijkhuizen LW, Keilwagen J, Himmelbach A, Mascher M, Koppers N, Bräutigam A, Van Hove C, Riant O, Nierzwicki-Bauer S, Schluepmann H. The crane fly glycosylated triketide δ-lactone cornicinine elicits akinete differentiation of the cyanobiont in aquatic Azolla fern symbioses. PLANT, CELL & ENVIRONMENT 2024; 47:2675-2692. [PMID: 38600764 DOI: 10.1111/pce.14907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/02/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
The restriction of plant-symbiont dinitrogen fixation by an insect semiochemical had not been previously described. Here we report on a glycosylated triketide δ-lactone from Nephrotoma cornicina crane flies, cornicinine, that causes chlorosis in the floating-fern symbioses from the genus Azolla. Only the glycosylated trans-A form of chemically synthesized cornicinine was active: 500 nM cornicinine in the growth medium turned all cyanobacterial filaments from Nostoc azollae inside the host leaf-cavities into akinetes typically secreting CTB-bacteriocins. Cornicinine further inhibited akinete germination in Azolla sporelings, precluding re-establishment of the symbiosis during sexual reproduction. It did not impact development of the plant Arabidopsis thaliana or several free-living cyanobacteria from the genera Anabaena or Nostoc but affected the fern host without cyanobiont. Fern-host mRNA sequencing from isolated leaf cavities confirmed high NH4-assimilation and proanthocyanidin biosynthesis in this trichome-rich tissue. After cornicinine treatment, it revealed activation of Cullin-RING ubiquitin-ligase-pathways, known to mediate metabolite signaling and plant elicitation consistent with the chlorosis phenotype, and increased JA-oxidase, sulfate transport and exosome formation. The work begins to uncover molecular mechanisms of cyanobiont differentiation in a seed-free plant symbiosis important for wetland ecology or circular crop-production today, that once caused massive CO2 draw-down during the Eocene geological past.
Collapse
Affiliation(s)
- Erbil Güngör
- Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Jérôme Savary
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Kelvin Adema
- Department of Biology, Utrecht University, Utrecht, The Netherlands
| | | | | | - Axel Himmelbach
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Martin Mascher
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Nils Koppers
- Computational Biology, Center for Biotechnology and Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Andrea Bräutigam
- Computational Biology, Center for Biotechnology and Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Charles Van Hove
- Emeritus Professor from the Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Olivier Riant
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
24
|
Chen M, Li Z, He X, Zhang Z, Wang D, Cui L, Xie M, Zhao Z, Sun Q, Wang D, Dai J, Gong D. Comparative transcriptome analysis reveals genes involved in trichome development and metabolism in tobacco. BMC PLANT BIOLOGY 2024; 24:541. [PMID: 38872084 DOI: 10.1186/s12870-024-05265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The glandular trichomes of tobacco (Nicotiana tabacum) can efficiently produce secondary metabolites. They act as natural bioreactors, and their natural products function to protect plants against insect-pests and pathogens and are also components of industrial chemicals. To clarify the molecular mechanisms of tobacco glandular trichome development and secondary metabolic regulation, glandular trichomes and glandless trichomes, as well as other different developmental tissues, were used for RNA sequencing and analysis. RESULTS By comparing glandless and glandular trichomes with other tissues, we obtained differentially expressed genes. They were obviously enriched in KEGG pathways, such as cutin, suberine, and wax biosynthesis, flavonoid and isoflavonoid biosynthesis, terpenoid biosynthesis, and plant-pathogen interaction. In particular, the expression levels of genes related to the terpenoid, flavonoid, and wax biosynthesis pathway mainly showed down-regulation in glandless trichomes, implying that they lack the capability to synthesize certain exudate compounds. Among the differentially expressed genes, 234 transcription factors were found, including AP2-ERFs, MYBs, bHLHs, WRKYs, Homeoboxes (HD-ZIP), and C2H2-ZFs. These transcription factor and genes that highly expressed in trichomes or specially expressed in GT or GLT. Following the overexpression of R2R3-MYB transcription factor Nitab4.5_0011760g0030.1 in tobacco, an increase in the number of branched glandular trichomes was observed. CONCLUSIONS Our data provide comprehensive gene expression information at the transcriptional level and an understanding of the regulatory pathways involved in glandular trichome development and secondary metabolism.
Collapse
Affiliation(s)
- Mingli Chen
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhiyuan Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xinxi He
- China Tobacco Hunan Industry Co., Ltd, Changsha, China
| | - Zhe Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of the Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dong Wang
- China Tobacco Hunan Industry Co., Ltd, Changsha, China
| | - Luying Cui
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Minmin Xie
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zeyu Zhao
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Quan Sun
- College of Bioinformation, Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Dahai Wang
- Shandong Weifang Tobacco Co., Ltd, Weifang, China
| | - Jiameng Dai
- Yunnan Key Laboratory of Tobacco Chemistry, China , Tobacco Yunnan Industrial Co., Ltd, Kunming, China.
| | - Daping Gong
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China.
| |
Collapse
|
25
|
Zhang Z, Gao L, Tao L, Wu T, Suo J, Hu Y, Yu W, Wu J, Song L. Gas Chromatography-Mass Spectrometry Metabolites and Transcriptome Profiling Reveal Molecular Mechanisms and Differences in Terpene Biosynthesis in Two Torrya grandis Cultivars during Postharvest Ripening. Int J Mol Sci 2024; 25:5581. [PMID: 38891770 PMCID: PMC11171539 DOI: 10.3390/ijms25115581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Terpene aroma compounds are key quality attributes of postharvest Torreya grandis nuts, contributing to their commercial value. However, terpene biosynthesis and regulatory networks in different T. grandis cvs. are still poorly understood. Here, chief cvs. 'Xi Fei' and 'Xiangya Fei' were investigated for their differences in terpene biosynthesis and gene expression levels during postharvest ripening using headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) and transcriptomic datasets. A total of 28 and 22 aroma compounds were identified in 'Xi Fei' and 'Xiangya Fei', respectively. Interestingly, differences in aroma composition between the two cvs. were mostly attributed to D-limonene and α-pinene levels as key determinants in Torreya nuts' flavor. Further, transcriptome profiling, correlation analysis, and RT-qPCR annotated two novel genes, TgTPS1 in 'Xi Fei' and TgTPS2 in 'Xiangya Fei', involved in terpene biosynthesis. In addition, six transcription factors (TFs) with comparable expression patterns to TgTPS1 and four TFs to TgTPS2 were identified via correlation analysis of a volatile and transcriptome dataset to be involved in terpene biosynthesis. Our study provides novel insight into terpene biosynthesis and its regulation at the molecular level in T. grandis nut and presents a valuable reference for metabolic engineering and aroma improvement in this less explored nut.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Z.Z.); (L.G.); (L.T.); (T.W.); (J.S.); (Y.H.); (W.Y.)
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Z.Z.); (L.G.); (L.T.); (T.W.); (J.S.); (Y.H.); (W.Y.)
| |
Collapse
|
26
|
Huang X, Chen W, Zhao Y, Chen J, Ouyang Y, Li M, Gu Y, Wu Q, Cai S, Guo F, Zhu P, Ao D, You S, Vasseur L, Liu Y. Deep learning-based quantification and transcriptomic profiling reveal a methyl jasmonate-mediated glandular trichome formation pathway in Cannabis sativa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1155-1173. [PMID: 38332528 DOI: 10.1111/tpj.16663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Cannabis glandular trichomes (GTs) are economically and biotechnologically important structures that have a remarkable morphology and capacity to produce, store, and secrete diverse classes of secondary metabolites. However, our understanding of the developmental changes and the underlying molecular processes involved in cannabis GT development is limited. In this study, we developed Cannabis Glandular Trichome Detection Model (CGTDM), a deep learning-based model capable of differentiating and quantifying three types of cannabis GTs with a high degree of efficiency and accuracy. By profiling at eight different time points, we captured dynamic changes in gene expression, phenotypes, and metabolic processes associated with GT development. By integrating weighted gene co-expression network analysis with CGTDM measurements, we established correlations between phenotypic variations in GT traits and the global transcriptome profiles across the developmental gradient. Notably, we identified a module containing methyl jasmonate (MeJA)-responsive genes that significantly correlated with stalked GT density and cannabinoid content during development, suggesting the existence of a MeJA-mediated GT formation pathway. Our findings were further supported by the successful promotion of GT development in cannabis through exogenous MeJA treatment. Importantly, we have identified CsMYC4 as a key transcription factor that positively regulates GT formation via MeJA signaling in cannabis. These findings provide novel tools for GT detection and counting, as well as valuable information for understanding the molecular regulatory mechanism of GT formation, which has the potential to facilitate the molecular breeding, targeted engineering, informed harvest timing, and manipulation of cannabinoid production.
Collapse
Affiliation(s)
- Xiaoqin Huang
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Chen
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuqing Zhao
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingjing Chen
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuzeng Ouyang
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Minxuan Li
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yu Gu
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qinqin Wu
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Sen Cai
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Foqin Guo
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Panpan Zhu
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Deyong Ao
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shijun You
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liette Vasseur
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Yuanyuan Liu
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
27
|
Zhang K, Zhang J, Zheng T, Gu W, Zhang Y, Li W, Zhou P, Fang Y, Chen K. Preharvest application of MeJA enhancing the quality of postharvest grape berries via regulating terpenes biosynthesis and phenylpropanoid metabolisms. Food Chem 2024; 438:137958. [PMID: 38000159 DOI: 10.1016/j.foodchem.2023.137958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
Methyl jasmonate (MeJA) is an important phytohormone that regulates the development of grape, but the effect and underpin mechanism of its preharvest application on secondary metabolites accumulation in postharvest grape berries are still unclear. In this study, the transcriptome profiles combined with metabolic components analysis were used to determine the effect of preharvest MeJA application on the quality formation of postharvest rose-flavor table grape Shine Muscat. The results indicated that preharvest MeJA treatment had no significant effect on TSS content, but had a down-regulation effect on the accumulation of reducing sugar and titratable acid in the berries. The content of chlorophylls and carotenoids in treated berries was significantly higher than that of the control. Many phenolic components, such as trans-ferulic acid, resveratrol, quercetin, and kaempferol, were sensitive to MeJA and their contents were also significantly higher than that of the control under MeJA treatments during the shelf life. Compared with other volatile aroma components, terpenoid components were more sensitive to preharvest MeJA signals, the content of which presented an overall upward trend with increasing MeJA concentration and prolonging storage time. Furthermore, most of the differentially expressed genes in the general phenylpropanoid pathway and terpenoid biosynthesis pathway were up-regulated responding to MeJA signals. The most upregulated regulatory factors, such as VvWRKY72, VvMYB24, and VvWRI1, may be involved in MeJA signal transduction and regulation. Preharvest MeJA may be an effective technique for enhancing the quality of postharvest Shine Muscat grape berries, with its positive effect on enhancing the characteristic aroma and nutritional components.
Collapse
Affiliation(s)
- Kekun Zhang
- College of Enology, Heyang Viti-Viniculture Station, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling 712100, China
| | - Junxia Zhang
- College of Enology, Heyang Viti-Viniculture Station, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling 712100, China
| | - Tianyi Zheng
- College of Enology, Heyang Viti-Viniculture Station, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling 712100, China
| | - Weijie Gu
- College of Enology, Heyang Viti-Viniculture Station, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling 712100, China
| | - Yingying Zhang
- College of Enology, Heyang Viti-Viniculture Station, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling 712100, China
| | - Wanping Li
- College of Enology, Heyang Viti-Viniculture Station, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling 712100, China
| | - Penghui Zhou
- Shandong Technology Innovation Center of Wine Grape and Wine, COFCO Great Wall Wine (Penglai) Co., Ltd, Yantai 265600, China
| | - Yulin Fang
- College of Enology, Heyang Viti-Viniculture Station, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling 712100, China.
| | - Keqin Chen
- College of Enology, Heyang Viti-Viniculture Station, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
28
|
Zhan J, Di T, Chen X, Zheng T, Sun W, Yang M, Zhou M, Shen Z, Chen H, Su N. CbMYB108 integrates the regulation of diterpene biosynthesis and trichome development in Conyza blinii against UV-B. PLANT, CELL & ENVIRONMENT 2024; 47:1300-1318. [PMID: 38221803 DOI: 10.1111/pce.14809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/03/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024]
Abstract
Plants synthesize abundant terpenes through glandular trichomes (GTs), thereby protecting themselves from environmental stresses and increasing the economic value in some medicinal plants. However, the potential mechanisms for simultaneously regulating terpenes synthesis and GTs development remain unclear. Here, we showed that terpenes in Conyza blinii could be synthesized through capitate GTs. By treating with appropriate intensity of UV-B, the density of capitate GTs and diterpene content can be increased. Through analyzing corresponding transcriptome, we identified a MYB transcription factor CbMYB108 as a positive regulator of both diterpene synthesis and capitate GT density. Transiently overexpressing/silencing CbMYB108 on C. blinii leaves could increase diterpene synthesis and capitate GT density. Further verification showed that CbMYB108 upregulated CbDXS and CbGGPPS expression in diterpene synthesis pathway. Moreover, CbMYB108 could also upregulated the expression of CbTTG1, key WD40 protein confirmed in this study to promote GT development, rather than through interaction between CbMYB108 and CbTTG1 proteins. Thus, results showed that the UV-B-induced CbMYB108 owned dual-function of simultaneously improving diterpene synthesis and GT development. Our research lays a theoretical foundation for cultivating C. blinii with high terpene content, and broadens the understanding of the integrated mechanism on terpene synthesis and GT development in plants.
Collapse
Affiliation(s)
- Junyi Zhan
- College of Life Science, Nanjing Agricultural University, Nanjing, China
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Tiantian Di
- College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Xuan Chen
- College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Tianrun Zheng
- Traditional Chinese Medicine Planting Institute, Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing, China
| | - Wenjun Sun
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Ming Yang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Min Zhou
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Zhenguo Shen
- College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Nana Su
- College of Life Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
29
|
Dong Y, Wei Z, Zhang W, Li J, Han M, Bai H, Li H, Shi L. LaMYC7, a positive regulator of linalool and caryophyllene biosynthesis, confers plant resistance to Pseudomonas syringae. HORTICULTURE RESEARCH 2024; 11:uhae044. [PMID: 38623075 PMCID: PMC11017519 DOI: 10.1093/hr/uhae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/13/2024] [Indexed: 04/17/2024]
Abstract
Linalool and caryophyllene are the main monoterpene and sesquiterpene compounds in lavender; however, the genes regulating their biosynthesis still remain many unknowns. Here, we identified LaMYC7, a positive regulator of linalool and caryophyllene biosynthesis, confers plant resistance to Pseudomonas syringae. LaMYC7 was highly expressed in glandular trichomes, and LaMYC7 overexpression could significantly increase the linalool and caryophyllene contents and reduce susceptibility to P. syringae in Nicotiana. In addition, the linalool possessed antimicrobial activity against P. syringae growth and acted dose-dependently. Further analysis demonstrated that LaMYC7 directly bound to the promoter region of LaTPS76, which encodes the terpene synthase (TPS) for caryophyllene biosynthesis, and that LaTPS76 was highly expressed in glandular trichomes. Notably, the LaMYC7 promoter contained hormone and stress-responsive regulatory elements and responded to various treatments, including ultraviolet, low temperature, salt, drought, methyl jasmonate, and P. syringae infection treatments. Under these treatments, the changes in the linalool and caryophyllene contents were similar to those in LaMYC7 transcript abundance. Based on the results, LaMYC7 could respond to P. syringae infection in addition to being involved in linalool and caryophyllene biosynthesis. Thus, the MYC transcription factor gene LaMYC7 can be used in the breeding of high-yielding linalool and caryophyllene lavender varieties with pathogen resistance.
Collapse
Affiliation(s)
- Yanmei Dong
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Ziling Wei
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenying Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingrui Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Meixian Han
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongtong Bai
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Hui Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Lei Shi
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
30
|
Wang M, Wang Y, Li X, Zhang Y, Chen X, Liu J, Qiua Y, Wang A. Integration of metabolomics and transcriptomics reveals the regulation mechanism of the phenylpropanoid biosynthesis pathway in insect resistance traits in Solanum habrochaites. HORTICULTURE RESEARCH 2024; 11:uhad277. [PMID: 38344649 PMCID: PMC10857935 DOI: 10.1093/hr/uhad277] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/10/2023] [Indexed: 03/19/2025]
Abstract
Solanum habrochaites (SH), a wild species closely related to 'Ailsa Craig' (AC), is an important germplasm resource for modern tomato breeding. Trichomes, developed from epidermal cells, have a role in defense against insect attack, and their secretions are of non-negligible value. Here, we found that the glandular heads of type VI trichomes were clearly distinguishable between AC and SH under cryo-scanning electron microscopy, the difference indicating that SH could secrete more anti-insect metabolites than AC. Pest preference experiments showed that aphids and mites preferred to feed near AC compared with SH. Integration analysis of transcriptomics and metabolomics data revealed that the phenylpropanoid biosynthesis pathway was an important secondary metabolic pathway in plants, and SH secreted larger amounts of phenylpropanoids and flavonoids than AC by upregulating the expression of relevant genes in this pathway, and this may contribute to the greater resistance of SH to phytophagous insects. Notably, virus-induced silencing of Sl4CLL6 not only decreased the expression of genes downstream of the phenylpropanoid biosynthesis pathway (SlHCT, SlCAD, and SlCHI), but also reduced resistance to mites in tomato. These findings provided new genetic resources for the synthesis of phenylpropanoid compounds and anti-insect breeding in S. habrochaites and a new theoretical basis for the improvement of important traits in cultivated tomato.
Collapse
Affiliation(s)
- Meiliang Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yudan Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xinzhi Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yao Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xiuling Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Jiayin Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Youwen Qiua
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Aoxue Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
31
|
Zhang ZN, Long L, Zhao XT, Shang SZ, Xu FC, Zhao JR, Hu GY, Mi LY, Song CP, Gao W. The dual role of GoPGF reveals that the pigment glands are synthetic sites of gossypol in aerial parts of cotton. THE NEW PHYTOLOGIST 2024; 241:314-328. [PMID: 37865884 DOI: 10.1111/nph.19331] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
Gossypol and the related terpenoids are stored in the pigment gland to protect cotton plants from biotic stresses, but little is known about the synthetic sites of these metabolites. Here, we showed that GoPGF, a key gene regulating gland formation, was expressed in gland cells and roots. The chromatin immunoprecipitation sequencing (ChIP-seq) analysis demonstrated that GoPGF targets GhJUB1 to regulate gland morphogenesis. RNA-sequencing (RNA-seq) showed high accumulation of gossypol biosynthetic genes in gland cells. Moreover, integrated analysis of the ChIP-seq and RNA-seq data revealed that GoPGF binds to the promoter of several gossypol biosynthetic genes. The cotton callus overexpressing GoPGF had dramatically increased the gossypol levels, indicating that GoPGF can directly activate the biosynthesis of gossypol. In addition, the gopgf mutant analysis revealed the existence of both GoPGF-dependent and -independent regulation of gossypol production in cotton roots. Our study revealed that the pigment glands are synthetic sites of gossypol in aerial parts of cotton and that GoPGF plays a dual role in regulating gland morphogenesis and gossypol biosynthesis. The study provides new insights for exploring the complex relationship between glands and the metabolites they store in cotton and other plant species.
Collapse
Affiliation(s)
- Zhen-Nan Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
| | - Lu Long
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng, Henan, 475004, China
| | - Xiao-Tong Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
| | - Shen-Zhai Shang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
| | - Fu-Chun Xu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
- Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Jing-Ruo Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
| | - Gai-Yuan Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
- Sanya Institute of Henan University, Sanya, Hainan, 572024, China
| | - Ling-Yu Mi
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng, Henan, 475004, China
| | - Chun-Peng Song
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng, Henan, 475004, China
| | - Wei Gao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng, Henan, 475004, China
| |
Collapse
|
32
|
Jolliffe JB, Pilati S, Moser C, Lashbrooke JG. Beyond skin-deep: targeting the plant surface for crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6468-6486. [PMID: 37589495 PMCID: PMC10662250 DOI: 10.1093/jxb/erad321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
The above-ground plant surface is a well-adapted tissue layer that acts as an interface between the plant and its surrounding environment. As such, its primary role is to protect against desiccation and maintain the gaseous exchange required for photosynthesis. Further, this surface layer provides a barrier against pathogens and herbivory, while attracting pollinators and agents of seed dispersal. In the context of agriculture, the plant surface is strongly linked to post-harvest crop quality and yield. The epidermal layer contains several unique cell types adapted for these functions, while the non-lignified above-ground plant organs are covered by a hydrophobic cuticular membrane. This review aims to provide an overview of the latest understanding of the molecular mechanisms underlying crop cuticle and epidermal cell formation, with focus placed on genetic elements contributing towards quality, yield, drought tolerance, herbivory defence, pathogen resistance, pollinator attraction, and sterility, while highlighting the inter-relatedness of plant surface development and traits. Potential crop improvement strategies utilizing this knowledge are outlined in the context of the recent development of new breeding techniques.
Collapse
Affiliation(s)
- Jenna Bryanne Jolliffe
- South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, 7600, South Africa
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, 38098, Italy
| | - Stefania Pilati
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, 38098, Italy
| | - Claudio Moser
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, 38098, Italy
| | - Justin Graham Lashbrooke
- South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, 7600, South Africa
- Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa
| |
Collapse
|
33
|
Huang X, Zhang W, Liao Y, Ye J, Xu F. Contemporary understanding of transcription factor regulation of terpenoid biosynthesis in plants. PLANTA 2023; 259:2. [PMID: 37971670 DOI: 10.1007/s00425-023-04268-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
KEY MESSAGE This review summarized how TFs function independently or in response to environmental factors to regulate terpenoid biosynthesis via fine-tuning the expression of rate-limiting enzymes. Terpenoids are derived from various species and sources. They are essential for interacting with the environment and defense mechanisms, such as antimicrobial, antifungal, antiviral, and antiparasitic properties. Almost all terpenoids have high medicinal value and economic performance. Recently, the control of enzyme genes on terpenoid biosynthesis has received a great deal of attention, but transcriptional factors regulatory network on terpenoid biosynthesis and accumulation has yet to get a thorough review. Transcription factors function as activators or suppressors independently or in response to environmental stimuli, fine-tuning terpenoid accumulation through regulating rate-limiting enzyme expression. This study investigates the advancements in transcription factors related to terpenoid biosynthesis and systematically summarizes previous works on the specific mechanisms of transcription factors that regulate terpenoid biosynthesis via hormone signal-transcription regulatory networks in plants. This will help us to better comprehend the regulatory network of terpenoid biosynthesis and build the groundwork for terpenoid development and effective utilization.
Collapse
Affiliation(s)
- Xinru Huang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
34
|
Zhang Z, Tao L, Gao L, Gao Y, Suo J, Yu W, Hu Y, Wei C, Farag MA, Wu J, Song L. Transcription factors TgbHLH95 and TgbZIP44 cotarget terpene biosynthesis gene TgGPPS in Torreya grandis nuts. PLANT PHYSIOLOGY 2023; 193:1161-1176. [PMID: 37399247 PMCID: PMC10517253 DOI: 10.1093/plphys/kiad385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 07/05/2023]
Abstract
Terpenes are volatile compounds responsible for aroma and the postharvest quality of commercially important xiangfei (Torreya grandis) nuts, and there is interest in understanding the regulation of their biosynthesis. Here, a transcriptomics analysis of xiangfei nuts after harvest identified 156 genes associated with the terpenoid metabolic pathway. A geranyl diphosphate (GPP) synthase (TgGPPS) involved in production of the monoterpene precursor GPP was targeted for functional characterization, and its transcript levels positively correlated with terpene levels. Furthermore, transient overexpression of TgGPPS in tobacco (Nicotiana tabacum) leaves or tomato (Solanum lycopersicum) fruit led to monoterpene accumulation. Analysis of differentially expressed transcription factors identified one basic helix-loop-helix protein (TgbHLH95) and one basic leucine zipper protein (TgbZIP44) as potential TgGPPS regulators. TgbHLH95 showed significant transactivation of the TgGPPS promoter, and its transient overexpression in tobacco leaves led to monoterpene accumulation, whereas TgbZIP44 directly bound to an ACGT-containing element in the TgGPPS promoter, as determined by yeast 1-hybrid test and electrophoretic mobility shift assay. Bimolecular fluorescence complementation, firefly luciferase complementation imaging, co-immunoprecipitation, and GST pull-down assays confirmed a direct protein-protein interaction between TgbHLH95 and TgbZIP44 in vivo and in vitro, and in combination these proteins induced the TgGPPS promoter up to 4.7-fold in transactivation assays. These results indicate that a TgbHLH95/TgbZIP44 complex activates the TgGPPS promoter and upregulates terpene biosynthesis in xiangfei nuts after harvest, thereby contributing to its aroma.
Collapse
Affiliation(s)
- Zuying Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, 311300 Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Lin’an, 311300 Zhejiang Province, China
| | - Liu Tao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, 311300 Zhejiang Province, China
| | - Lingling Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, 311300 Zhejiang Province, China
| | - Yadi Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, 311300 Zhejiang Province, China
| | - Jinwei Suo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, 311300 Zhejiang Province, China
| | - Weiyu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, 311300 Zhejiang Province, China
| | - Yuanyuan Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, 311300 Zhejiang Province, China
| | - Chunyan Wei
- Zhejiang Academy of Agricultural Sciences, Institute of Horticulture, Desheng Middle Road No. 298, Hangzhou, 310021 Zhejiang Province, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., Cairo 11562, Egypt
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, 311300 Zhejiang Province, China
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, 311300 Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Lin’an, 311300 Zhejiang Province, China
| |
Collapse
|
35
|
Luo C, Qiu J, Zhang Y, Li M, Liu P. Jasmonates Coordinate Secondary with Primary Metabolism. Metabolites 2023; 13:1008. [PMID: 37755288 PMCID: PMC10648981 DOI: 10.3390/metabo13091008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
Jasmonates (JAs), including jasmonic acid (JA), its precursor 12-oxo-phytodienoic acid (OPDA) and its derivatives jasmonoyl-isoleucine (JA-Ile), methyl jasmonate (MeJA), cis-jasmone (CJ) and other oxylipins, are important in the regulation of a range of ecological interactions of plants with their abiotic and particularly their biotic environments. Plant secondary/specialized metabolites play critical roles in implementing these ecological functions of JAs. Pathway and transcriptional regulation analyses have established a central role of JA-Ile-mediated core signaling in promoting the biosynthesis of a great diversity of secondary metabolites. Here, we summarized the advances in JAs-induced secondary metabolites, particularly in secondary metabolites induced by OPDA and volatile organic compounds (VOCs) induced by CJ through signaling independent of JA-Ile. The roles of JAs in integrating and coordinating the primary and secondary metabolism, thereby orchestrating plant growth-defense tradeoffs, were highlighted and discussed. Finally, we provided perspectives on the improvement of the adaptability and resilience of plants to changing environments and the production of valuable phytochemicals by exploiting JAs-regulated secondary metabolites.
Collapse
Affiliation(s)
- Chen Luo
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jianfang Qiu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Zhang
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Mengya Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Pei Liu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
36
|
Dong Y, Li S, Wu H, Gao Y, Feng Z, Zhao X, Shan L, Zhang Z, Ren H, Liu X. Advances in understanding epigenetic regulation of plant trichome development: a comprehensive review. HORTICULTURE RESEARCH 2023; 10:uhad145. [PMID: 37691965 PMCID: PMC10483894 DOI: 10.1093/hr/uhad145] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/14/2023] [Indexed: 09/12/2023]
Abstract
Plant growth and development are controlled by a complex gene regulatory network, which is currently a focal point of research. It has been established that epigenetic factors play a crucial role in plant growth. Trichomes, specialized appendages that arise from epidermal cells, are of great significance in plant growth and development. As a model system for studying plant development, trichomes possess both commercial and research value. Epigenetic regulation has only recently been implicated in the development of trichomes in a limited number of studies, and microRNA-mediated post-transcriptional regulation appears to dominate in this context. In light of this, we have conducted a review that explores the interplay between epigenetic regulations and the formation of plant trichomes, building upon existing knowledge of hormones and transcription factors in trichome development. Through this review, we aim to deepen our understanding of the regulatory mechanisms underlying trichome formation and shed light on future avenues of research in the field of epigenetics as it pertains to epidermal hair growth.
Collapse
Affiliation(s)
- Yuming Dong
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Sen Li
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Haoying Wu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yiming Gao
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhongxuan Feng
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xi Zhao
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Li Shan
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhongren Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Huazhong Ren
- College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya Hainan 572000, China
| | - Xingwang Liu
- College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya Hainan 572000, China
| |
Collapse
|
37
|
Riahi C, Urbaneja A, Fernández-Muñoz R, Fortes IM, Moriones E, Pérez-Hedo M. Induction of Glandular Trichomes to Control Bemisia tabaci in Tomato Crops: Modulation by the Natural Enemy Nesidiocoris tenuis. PHYTOPATHOLOGY 2023; 113:1677-1685. [PMID: 36998120 DOI: 10.1094/phyto-11-22-0440-v] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Whitefly-transmitted viruses are one of the biggest threats to tomato (Solanum lycopersicum) growing worldwide. Strategies based on the introgression of resistance traits from wild relatives are promoted to control tomato pests and diseases. Recently, a trichome-based resistance characterizing the wild species Solanum pimpinellifolium was introgressed into a cultivated tomato. An advanced backcross line (BC5S2) exhibiting the presence of acylsugar-associated type IV trichomes, which are lacking in cultivated tomatoes, was effective at controlling whiteflies (Hemiptera: Aleyrodidae) and limiting the spread of whitefly-transmitted viruses. However, at early growth stages, type IV trichome density and acylsugar production are limited; thus, protection against whiteflies and whitefly-transmitted viruses remains irrelevant. In this work, we demonstrate that young BC5S2 tomato plants feeding-punctured by the zoophytophagous predator Nesidiocoris tenuis (Hemiptera: Miridae) displayed an increase (above 50%) in type IV trichome density. Acylsugar production was consistently increased in N. tenuis-punctured BC5S2 plants, which was more likely associated with upregulated expression of the BCKD-E2 gene related to acylsugar biosynthesis. In addition, the infestation of BC5S2 plants with N. tenuis effectively induced the expression of defensive genes involved in the jasmonic acid signaling pathway, resulting in strong repellence to Bemisia tabaci and attractiveness to N. tenuis. Thus, through preplant release of N. tenuis in tomato nurseries carried out in some integrated pest management programs, type IV trichome-expressing plants can be prepared to control whiteflies and whitefly-transmitted viruses at early growth stages. This study emphasizes the advantage of reinforcing constitutive resistance using defense inducers to guarantee robust protection against pests and transmitted viruses.
Collapse
Affiliation(s)
- Chaymaa Riahi
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, (IVIA), 46113 Moncada, Valencia, Spain
| | - Alberto Urbaneja
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, (IVIA), 46113 Moncada, Valencia, Spain
| | - Rafael Fernández-Muñoz
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Málaga, Spain
| | - Isabel M Fortes
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Málaga, Spain
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Málaga, Spain
| | - Meritxell Pérez-Hedo
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, (IVIA), 46113 Moncada, Valencia, Spain
| |
Collapse
|
38
|
Kamran HM, Fu X, Wang H, Yang N, Chen L. Genome-Wide Identification and Expression Analysis of the bHLH Transcription Factor Family in Wintersweet ( Chimonanthus praecox). Int J Mol Sci 2023; 24:13462. [PMID: 37686265 PMCID: PMC10487621 DOI: 10.3390/ijms241713462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Wintersweet (Chimonanthus praecox (L.) Link, Calycanthaceae) is an esteemed ornamental flowering shrub known for its distinct blooming period in winter, vibrant color petals, and captivating floral fragrance. Basic helix-loop-helix (bHLH) transcription factors (TFs) play pivotal roles as key regulators in secondary metabolites biosynthesis, growth, and development in plants. However, the systematic analysis of the bHLH family members and their role in the regulation of floral traits in Wintersweet remains insufficiently understood. To bridge this knowledge gap, we conducted a comprehensive genome-wide analysis of the C. praecox bHLH (CpbHLH) gene family, identifying a total of 131 CpbHLH genes across 11 chromosomes. Phylogenetic analysis classified these CpbHLH genes into 23 subfamilies, wherein most members within the same subfamily exhibited analogous intron/exon patterns and motif composition. Moreover, the expansion of the CpbHLH gene family was primarily driven by segmental duplication, with duplicated gene pairs experiencing purifying selection during evolution. Transcriptomic analysis revealed diverse expression patterns of CpbHLH genes in various tissues and distinct stages of Wintersweet flower development, thereby suggesting their involvement in a diverse array of physiological processes. Furthermore, yeast 2-hybrid assay demonstrated interaction between CpbHLH25 and CpbHLH59 (regulators of floral scent and color) as well as with CpbHLH112 and CpMYB2, suggesting potential coordinately regulation of secondary metabolites biosynthesis in Wintersweet flowers. Collectively, our comprehensive analysis provides valuable insights into the structural attributes, evolutionary dynamics, and expression profiles of the CpbHLH gene family, laying a solid foundation for further explorations of the multifaceted physiological and molecular roles of bHLH TFs in Wintersweet.
Collapse
Affiliation(s)
| | | | | | - Nan Yang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China; (H.M.K.)
| | - Longqing Chen
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China; (H.M.K.)
| |
Collapse
|
39
|
Wang Y, Wang G, Lin D, Luo Q, Xu W, Qu S. QTL mapping and stability analysis of trichome density in zucchini ( Cucurbita pepo L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1232154. [PMID: 37636121 PMCID: PMC10457680 DOI: 10.3389/fpls.2023.1232154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/06/2023] [Indexed: 08/29/2023]
Abstract
Trichomes provide an excellent model for studying cell differentiation and proliferation. The aboveground tissues of plants with long dense trichomes (LDTs) can cause skin itching in people working in a zucchini field, in which management, pollination, and fruit harvesting are difficult. In this study, an F2 population was constructed with the LDT inbred line "16" and the sparse micro trichome (SMT) inbred line "63" for QTL analysis of type I and II trichome density. Two QTLs were identified on chromosomes 3 and 15 using the QTL-seq method. Additionally, 191 InDel markers were developed on 20 chromosomes, a genetic map was constructed for QTL mapping, and three QTLs were identified on chromosomes 3, 6, and 15. Two QTLs, CpTD3.1 and CpTD15.1, were identified in both QTL-seq and genetic map-based QTL analyses, and CpTD15.1 was the major-effect QTL. The stability of CpTD3.1 and CpTD15.1 was confirmed using data from F2 plants under different environmental conditions. The major-effect QTL CpTD15.1 was located between markers chr15-4991349 and chr15-5766791, with a physical distance of 775.44 kb, and explained 12.71%-29.37% of the phenotypic variation observed in the three environments. CpTD3.1 was located between markers chr3-218350 and chr3-2891236, in a region with a physical distance of 2,672.89 kb, and explained 5.00%-10.64% of the phenotypic variation observed in the three environments. The functional annotations of the genes within the CpTD15.1 region were predicted, and five genes encoding transcription factors regulating trichome development were selected. Cp4.1LG15g04400 encoded zinc finger protein (ZFP) and harbored nonsynonymous SNPs in the conserved ring finger domain between the two parental lines. There were significant differences in Cp4.1LG15g04400 expression between "16" and "63", and a similar pattern was found between germplasm resources of LDT lines and SMT lines. It was presumed that Cp4.1LG15g04400 might regulate trichome density in zucchini. These results lay a foundation for better understanding the density of multicellular nonglandular trichomes and the regulatory mechanism of trichome density in zucchini.
Collapse
Affiliation(s)
- Yunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Guichao Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Dongjuan Lin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Qinfen Luo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Wenlong Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Shuping Qu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
40
|
Sharma P, Wajid MA, Fayaz M, Bhat S, Nautiyal AK, Jeet S, Yadav AK, Singh D, Shankar R, Gairola S, Misra P. Morphological, phytochemical, and transcriptome analyses provide insights into the biosynthesis of monoterpenes in Monarda citriodora. PLANTA 2023; 258:49. [PMID: 37480390 DOI: 10.1007/s00425-023-04207-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
MAIN CONCLUSION Morphological, phytochemical, and transcriptome analyses revealed candidate genes involved in the biosynthesis of volatile monoterpenes and development of glandular trichomes in Monarda citriodora. Monarda citriodora Cerv. ex Lag. is a valuable aromatic plant due to the presence of monoterpenes as major constituents in its essential oil (EO). Thus, it is of sheer importance to gain knowledge about the site of the biosynthesis of these terpenoid compounds in M. citriodora, as well as the genes involved in their biosynthesis. In this study, we studied different types of trichomes and their relative densities in three different developmental stages of leaves, early stage of leaf development (L1), mid-stage of leaf development (L2), and later stage of leaf development (L3) and the histochemistry of trichomes for the presence of lipid and terpenoid compounds. Further, the phytochemical analysis of this plant through GC-MS indicated a higher content of monoterpenes (thymol, thymoquinone, γ-terpinene, p-cymene, and carvacrol) in the L1 stage with a substantial decrease in the L3 stage of leaf development. This considerable decrease in the content of monoterpenes was attributed to the decrease in the trichome density from L1 to L3. Further, we developed a de novo transcriptome assembly by carrying out RNA sequencing of different plant parts of M. citriodora. The transcriptome data revealed several putative unigenes involved in the biosynthesis of specialized terpenoid compounds, as well as regulatory genes involved in glandular trichome development. The data generated in the present study build a strong foundation for further improvement of M. citriodora, in terms of quantity and quality of its essential oil, through genetic engineering.
Collapse
Affiliation(s)
- Priyanka Sharma
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mir Abdul Wajid
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohd Fayaz
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sheetal Bhat
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abhishek Kumar Nautiyal
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Sabha Jeet
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Arvind Kumar Yadav
- Quality Management and Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Deepika Singh
- Quality Management and Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Ravi Shankar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Sumeet Gairola
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prashant Misra
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
41
|
Zhang Y, Wang D, Li H, Bai H, Sun M, Shi L. Formation mechanism of glandular trichomes involved in the synthesis and storage of terpenoids in lavender. BMC PLANT BIOLOGY 2023; 23:307. [PMID: 37291504 DOI: 10.1186/s12870-023-04275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Lavender (genus Lavandula, family Lamiaceae) is an aromatic plant widely grown as an ornamental plant. The chemical composition of lavender is characterized by monoterpenoids, sesquiterpenoids, and other compounds, which are primarily synthesized and stored in epidermal secretory structures called glandular trichomes (GTs). Volatile organic compounds (VOCs) are responsible for the aroma characteristics of plant oil that drive consumer preference. Aroma is usually regarded as a characteristic trait for the classification of aromatic plants. Interestingly, VOCs are synthesized and stored in GTs. Lamiaceae species such as purple perilla, peppermint, basil, thyme, and oregano usually possess two types of GTs: peltate glandular trichomes (PGTs) and capitate glandular trichomes (CGTs). But the development process of PGTs in lavender has been reported in only a few studies to date. RESULTS In this study, we identified and quantified the VOCs in four lavender cultivars by headspace-solid phase micro extraction-gas chromatography mass spectrometry (HS-SPME-GC-MS). A total of 66 VOCs were identified in these four cultivars, the most prominent of which were linalyl acetate and linalool, and flowers were the main site of accumulation of these VOCs. Here, we examined the developmental process of PGTs, including the formation of their base, body, and apex. The apex cells contained secretory cavities, which produced VOCs. Based on the reference genome sequence of the lavender cultivar 'Jingxun 2', several R2R3-MYB subfamily genes related to GT formation were identified. These results will guide the engineering of GTs and molecular breeding of lavender for improving the VOC content. CONCLUSIONS In this study, we identified the VOCs in four lavender cultivars. We analyzed the formation of GTs, and compared the number and diameter size of PGTs among four lavender cultivars. Additionally, we identified four candidate genes belonging to the R2R3-MYB family.
Collapse
Affiliation(s)
- Yanan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Di Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Hui Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Hongtong Bai
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Meiyu Sun
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| | - Lei Shi
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
42
|
Feng Z, Sun L, Dong M, Fan S, Shi K, Qu Y, Zhu L, Shi J, Wang W, Liu Y, Song L, Weng Y, Liu X, Ren H. Novel players in organogenesis and flavonoid biosynthesis in cucumber glandular trichomes. PLANT PHYSIOLOGY 2023:kiad236. [PMID: 37099480 PMCID: PMC10400037 DOI: 10.1093/plphys/kiad236] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/24/2023] [Accepted: 04/25/2023] [Indexed: 06/19/2023]
Abstract
Glandular trichomes (GTs) are outgrowths of plant epidermal cells that secrete and store specialized secondary metabolites that protect plants against biotic and abiotic stresses and have economic importance for human use. While extensive work has been done to understand the molecular mechanisms of trichome organogenesis in Arabidopsis (Arabidopsis thaliana), which forms unicellular, non-glandular trichomes (NGTs), little is known about the mechanisms of GT development or regulation of secondary metabolites in plants with multicellular GTs. Here, we identified and functionally characterized genes associated with GT organogenesis and secondary metabolism in GTs of cucumber (Cucumis sativus). We developed a method for effective separation and isolation of cucumber GTs and NGTs. Transcriptomic and metabolomic analyses showed that flavonoid accumulation in cucumber GTs is positively associated with increased expression of related biosynthesis genes. We identified 67 GT development-related genes, the functions of 7 of which were validated by virus-induced gene silencing. We further validated the role of cucumber ECERIFERUM1 (CsCER1) in GT organogenesis by overexpression and RNA interference transgenic approaches. We further show that the transcription factor TINY BRANCHED HAIR (CsTBH) serves as a central regulator of flavonoid biosynthesis in cucumber glandular trichomes. Work from this study provides insight into the development of secondary metabolite biosynthesis in multi-cellular glandular trichomes.
Collapse
Affiliation(s)
- Zhongxuan Feng
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lei Sun
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Mingming Dong
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Shanshan Fan
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Kexin Shi
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yixin Qu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Liyan Zhu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jinfeng Shi
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Wujun Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yihan Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Liyan Song
- Agricultural and Rural Bureau of Qingxian in Hebei Province, Qingxian 062650, China
| | - Yiqun Weng
- USDA-ARS, Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin, 1575 Linden Dr., Madison, WI 53706, USA
| | - Xingwang Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya, Hainan 572019, China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Huazhong Ren
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya, Hainan 572019, China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
43
|
Zhang H, Xu H, Xu M, Yan X, Wang Z, Yu J, Lei B, Cui H. Transcription factors NtHD9 and NtHD12 control long glandular trichome formation via jasmonate signaling. PLANT PHYSIOLOGY 2023; 191:2385-2399. [PMID: 36617228 PMCID: PMC10069880 DOI: 10.1093/plphys/kiad003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/12/2022] [Indexed: 06/17/2023]
Abstract
Glandular trichomes are universal epidermal structures that produce abundant specialized metabolites. However, knowledge of the initiation of glandular heads in glandular trichomes is limited. Herein, we found an intrinsic link of morphogenesis between glandular trichomes and non-glandular trichomes. Two novel homeodomain leucine zipper II members in tobacco (Nicotiana tabacum), NtHD9 and NtHD12, played important roles in long glandular trichome formation: NtHD9 was responsible for glandular head formation, while NtHD12 simultaneously controlled the formation of stalks and glandular heads. DAP-seq analysis suggested that NtHD9 can bind to the KKGCATTWAWTR motif of the cytochromes P450 94C1 (NtCYP94C1) promoter, which is involved in jasmonoyl-isoleucine oxidation. RNA-seq analysis of non-transformed tobacco and nthd9 plants revealed that NtHD9 modulates the expression of jasmonate (JA) signaling- and six trichome development-related genes. Notably, MeJA treatment restored the morphogenesis of long glandular trichomes in nthd9 and nthd12 plants, and the size of glandular heads increased with increasing MeJA concentration. However, the phenotype of long glandular trichome absence in double mutants of NtHD9 and NtHD12 could not be restored by MeJA. Our data demonstrate that NtHD9 and NtHD12 have distinct major functions yet overlapping roles in long glandular trichome formation via JA signaling.
Collapse
Affiliation(s)
- Hongying Zhang
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Hanchi Xu
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Mengxiao Xu
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoxiao Yan
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhaojun Wang
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Jing Yu
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Bo Lei
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Hong Cui
- Key Laboratory for Cultivation of Tobacco Industry, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
44
|
Wang C, Chen T, Li Y, Liu H, Qin W, Wu Z, Peng B, Wang X, Yan X, Fu X, Li L, Tang K. AaWIN1, an AP2/ERF protein, positively regulates glandular secretory trichome initiation in Artemisia annua. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111602. [PMID: 36690278 DOI: 10.1016/j.plantsci.2023.111602] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/30/2022] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Exploring the genetic network of glandular trichomes and manipulating genes relevant to secondary metabolite biosynthesis are of great importance and value. Artemisinin, a key antimalarial drug ingredient, is synthesized and stored in glandular secretory trichomes (GSTs) in Artemisia annua. WIN/SHN proteins, a clade of AP2/ERF family, are known as regulators for cuticle biosynthesis. However, their function in glandular trichome development is less unknown. In this study, we identified a WIN/SHN gene from A. annua and named it as AaWIN1. AaWIN1 was predominantly expressed in buds, flowers and trichomes, and encoded a nuclear-localized protein. Overexpressing AaWIN1 in A. annua significantly increased the density of GST as well as the artemisinin content. Furthermore, AaGSW2 was reported to play an important role in promoting GST initiation, and the expression of AaGSW2 was induced in AaWIN1-overexpression lines. AaMIXTA1, a MYB protein positively regulating trichome initiation and cuticle biosynthesis, was confirmed to interact with AaWIN1. In addition, the ectopic expression of AaWIN1 resulted in slender and curled leaves, fewer trichomes, and rising expressions of cuticle biosynthesis genes in Arabidopsis thaliana. Taken together, based on phenotype observations, content measurements and gene expression detections, AaWIN1 was considered as a positive regulator for GST initiation in A. annua.
Collapse
Affiliation(s)
- Chen Wang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tiantian Chen
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yongpeng Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hang Liu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Qin
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhangkuanyu Wu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Bowen Peng
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiuyun Wang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Yan
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xueqing Fu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kexuan Tang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
45
|
Feng Z, Sun L, Dong M, Fan S, Shi K, Qu Y, Zhu L, Shi J, Wang W, Liu Y, Chen X, Weng Y, Liu X, Ren H. Identification and Functional Characterization of CsMYCs in Cucumber Glandular Trichome Development. Int J Mol Sci 2023; 24:ijms24076435. [PMID: 37047408 PMCID: PMC10094329 DOI: 10.3390/ijms24076435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Glandular trichomes (GTs), specialized structures formed by the differentiation of plant epidermal cells, are known to play important roles in the resistance of plants to external biotic and abiotic stresses. These structures are capable of storing and secreting secondary metabolites, which often have important agricultural and medicinal values. In order to better understand the molecular developmental mechanisms of GTs, studies have been conducted in a variety of crops, including tomato (Solanum lycopersicum), sweetworm (Artemisia annua), and cotton (Gossypium hirsutum). The MYC transcription factor of the basic helix-loop-helix (bHLH) transcription factor family has been found to play an important role in GT development. In this study, a total of 13 cucumber MYC transcription factors were identified in the cucumber (Cucumis sativus L.) genome. After performing phylogenetic analyses and conserved motifs on the 13 CsMYCs in comparison to previously reported MYC transcription factors that regulate trichome development, seven candidate MYC transcription factors were selected. Through virus-induced gene silencing (VIGS), CsMYC2 is found to negatively regulate GT formation while CsMYC4, CsMYC5, CsMYC6, CsMYC7, and CsMYC8 are found to positively regulate GT formation. Furthermore, the two master effector genes, CsMYC2 and CsMYC7, are observed to have similar expression patterns indicating that they co-regulate the balance of GT development in an antagonistic way.
Collapse
Affiliation(s)
- Zhongxuan Feng
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lei Sun
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Mingming Dong
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Shanshan Fan
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Kexin Shi
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yixin Qu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Liyan Zhu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jinfeng Shi
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Wujun Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yihan Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiaofeng Chen
- Yantai Institute, China Agricultural University, Yantai 264670, China
| | - Yiqun Weng
- USDA-ARS, Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706, USA
| | - Xingwang Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572019, China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Huazhong Ren
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572019, China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
46
|
Kortbeek RWJ, Galland MD, Muras A, Therezan R, Maia S, Haring MA, Schuurink RC, Bleeker PM. Genetic and physiological requirements for high-level sesquiterpene-production in tomato glandular trichomes. FRONTIERS IN PLANT SCIENCE 2023; 14:1139274. [PMID: 36938050 PMCID: PMC10020594 DOI: 10.3389/fpls.2023.1139274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Type-VI glandular trichomes of wild tomato Solanum habrochaites PI127826 produce high levels of the sesquiterpene 7-epizingiberene and its derivatives, making the plant repellent and toxic to several pest insects and pathogens. How wild tomato trichomes achieve such high terpene production is still largely unknown. Here we show that a cross (F1) with a cultivated tomato produced only minute levels of 7-epizingiberene. In the F2-progeny, selected for the presence of the 7-epizingiberene biosynthesis genes, only three percent produced comparable amounts the wild parent, indicating this trait is recessive and multigenic. Moreover, trichome density alone did not explain the total levels of terpene levels found on the leaves. We selected F2 plants with the "high-production active-trichome phenotype" of PI127826, having trichomes producing about 150 times higher levels of terpenes than F2 individuals that displayed a "low-production lazy-trichome phenotype". Terpene quantities in trichomes of these F2 plants correlated with the volume of the storage cavity and shape of the gland. We found that trichome morphology is not a predetermined characteristic, but cavity volume rather depended on gland-cell metabolic activity. Inhibitor assays showed that the plastidial-precursor pathway (MEP) is fundamental for high-level production of both cytosolic as well as plastid-derived terpenes in tomato trichomes. Additionally, gene expression profiles of isolated secretory cells showed that key enzymes in the MEP pathway were higher expressed in active trichomes. We conclude that the MEP pathway is the primary precursor-supply route in wild tomato type-VI trichomes and that the high-production phenotype of the wild tomato trichome is indeed a multigenic trait.
Collapse
|
47
|
Wu M, Chang J, Han X, Shen J, Yang L, Hu S, Huang BB, Xu H, Xu M, Wu S, Li P, Hua B, Yang M, Yang Z, Wu S. A HD-ZIP transcription factor specifies fates of multicellular trichomes via dosage-dependent mechanisms in tomato. Dev Cell 2023; 58:278-288.e5. [PMID: 36801006 DOI: 10.1016/j.devcel.2023.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/25/2022] [Accepted: 01/26/2023] [Indexed: 02/19/2023]
Abstract
Hair-like structures are shared by most living organisms. The hairs on plant surfaces, commonly referred to as trichomes, form diverse types to sense and protect against various stresses. However, it is unclear how trichomes differentiate into highly variable forms. Here, we show that a homeodomain leucine zipper (HD-ZIP) transcription factor named Woolly controls the fates of distinct trichomes in tomato via a dosage-dependent mechanism. The autocatalytic reinforcement of Woolly is counteracted by an autoregulatory negative feedback loop, creating a circuit with a high or low Woolly level. This biases the transcriptional activation of separate antagonistic cascades that lead to different trichome types. Our results identify the developmental switch of trichome formation and provide mechanistic insights into the progressive fate specification in plants, as well as a path to enhancing plant stress resistance and the production of beneficial chemicals.
Collapse
Affiliation(s)
- Minliang Wu
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiang Chang
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoqian Han
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingyuan Shen
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liling Yang
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shourong Hu
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ben-Ben Huang
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huimin Xu
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengyuan Xu
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shurong Wu
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pengxue Li
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Hua
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meina Yang
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenbiao Yang
- Institute of Integrative Genome Biology and Department of Botany and Plant Science, University of California, Riverside, CA, USA
| | - Shuang Wu
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
48
|
Sun M, Zhang Y, Bai H, Sun G, Zhang J, Shi L. Population diversity analyses provide insights into key horticultural traits of Chinese native thymes. HORTICULTURE RESEARCH 2023; 10:uhac262. [PMID: 36778183 PMCID: PMC9907056 DOI: 10.1093/hr/uhac262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 12/02/2022] [Accepted: 11/25/2022] [Indexed: 06/18/2023]
Abstract
Chinese native thymes (CNTs) in the genus Thymus (family Lamiaceae) are rich in bioactive terpenes, which exert antiviral, anti-inflammatory, antioxidation, immunological, and antimicrobial effects. Plants exhibit morphological variation, including erect-type and creeping-type growth forms; however, the molecular mechanisms underlying important horticultural traits have not been determined. Here, we collected 39 CNTs providing strategic plant resources for studies of lignin, terpenoids, and glandular trichomes of thymes. Using resequencing data as well as phenotypic, metabonomic, phylogenetic, population genetic, and transcriptomic analyses, we identified and characterized key genes involved in lignin biosynthesis, terpenoid biosynthesis, and glandular trichome formation. We found many regulatory genes or transcription factors related to these three important horticultural traits, including genes encoding caffeic acid O-methyltransferase (COMT), terpene synthase (TPS), v-myb avian myeloblastosis viral oncogene homolog (MYB), and homeodomain-leucine zipper (HD-ZIP). Population diversity analyses provided insights into growth form, terpenoid, and glandular trichome evolution in CNTs. Furthermore, our results revealed that T. mongolicus accessions might be wild ancestors, and T. quinquecostatus, T. quinquecostatus var. asiaticus, and T. quinquecostatus var. przewalskii might be transitional accessions that derived from T. mongolicus accessions. Finally, T. nervulosus, T. inaequalis, T. mandschuricus, T. curtus, T. amurensis, T. proximus, T. altaicus, T. roseus, and T. marschallianus showed high divergence. We found evidence for introgression between erect-type European cultivated thymes and CNTs. These findings improve our understanding of the determinants of variation in horticultural traits and provide candidate loci for research and breeding.
Collapse
Affiliation(s)
| | | | - Hongtong Bai
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Guofeng Sun
- China National Botanical Garden, Beijing 100093, China
| | | | - Lei Shi
- Corresponding author. E-mail: ,
| |
Collapse
|
49
|
Jiao Y, Long Y, Xu K, Zhao F, Zhao J, Li S, Geng S, Gao W, Sun P, Deng X, Chen Q, Li C, Qu Y. Weighted Gene Co-Expression Network Analysis Reveals Hub Genes for Fuzz Development in Gossypium hirsutum. Genes (Basel) 2023; 14:208. [PMID: 36672949 PMCID: PMC9858766 DOI: 10.3390/genes14010208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
Fuzzless Gossypium hirsutum mutants are ideal materials for investigating cotton fiber initiation and development. In this study, we used the fuzzless G. hirsutum mutant Xinluzao 50 FLM as the research material and combined it with other fuzzless materials for verification by RNA sequencing to explore the gene expression patterns and differences between genes in upland cotton during the fuzz period. A gene ontology (GO) enrichment analysis showed that differentially expressed genes (DEGs) were mainly enriched in the metabolic process, microtubule binding, and other pathways. A weighted gene co-expression network analysis (WGCNA) showed that two modules of Xinluzao 50 and Xinluzao 50 FLM and four modules of CSS386 and Sicala V-2 were highly correlated with fuzz. We selected the hub gene with the highest KME value among the six modules and constructed an interaction network. In addition, we selected some genes with high KME values from the six modules that were highly associated with fuzz in the four materials and found 19 common differential genes produced by the four materials. These 19 genes are likely involved in the formation of fuzz in upland cotton. Several hub genes belong to the arabinogalactan protein and GDSL lipase, which play important roles in fiber development. According to the differences in expression level, 4 genes were selected from the 19 genes and tested for their expression level in some fuzzless materials. The modules, hub genes, and common genes identified in this study can provide new insights into the formation of fiber and fuzz, and provide a reference for molecular design breeding for the genetic improvement of cotton fiber.
Collapse
Affiliation(s)
- Yang Jiao
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yilei Long
- Institute of Cash Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Kaixiang Xu
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Fuxiang Zhao
- Xinjiang Academy of Agricultural Reclamation, Shihezi 832000, China
| | - Jieyin Zhao
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Shengmei Li
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Shiwei Geng
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Wenju Gao
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Peng Sun
- Xinjiang Kuitun Agricultural and Rural Bureau, KuiTun 833200, China
| | - Xiaojuan Deng
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Quanjia Chen
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Chunpin Li
- Institute of Cash Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Yanying Qu
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
50
|
Xie Q, Xiong C, Yang Q, Zheng F, Larkin RM, Zhang J, Wang T, Zhang Y, Ouyang B, Lu Y, Ye J, Ye Z, Yang C. A novel regulatory complex mediated by Lanata (Ln) controls multicellular trichome formation in tomato. THE NEW PHYTOLOGIST 2022; 236:2294-2310. [PMID: 36102042 DOI: 10.1111/nph.18492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Trichomes that originate from plant aerial epidermis act as mechanical and chemical barriers against herbivores. Although several regulators have recently been identified, the regulatory pathway underlying multicellular trichome formation remains largely unknown in tomato. Here, we report a novel HD-ZIP IV transcription factor, Lanata (Ln), a missense mutation which caused the hairy phenotype. Biochemical analyses demonstrate that Ln separately interacts with two trichome regulators, Woolly (Wo) and Hair (H). Genetic and molecular evidence demonstrates that Ln directly regulates the expression of H. The interaction between Ln and Wo can increase trichome density by enhancing the expression of SlCycB2 and SlCycB3, which we previously showed are involved in tomato trichome formation. Furthermore, SlCycB2 represses the transactivation of the SlCycB3 gene by Ln and vice versa. Our findings provide new insights into the novel regulatory network controlling multicellular trichome formation in tomato.
Collapse
Affiliation(s)
- Qingmin Xie
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Xiong
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qihong Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangyan Zheng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Robert M Larkin
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongen Lu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changxian Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|