1
|
Groenenberg L, Duhamel M, Bai Y, Aarts MGM, Polder G, van der Lee TAJ. Advances in digital camera-based phenotyping of Botrytis disease development. TRENDS IN PLANT SCIENCE 2025:S1360-1385(24)00310-8. [PMID: 39855998 DOI: 10.1016/j.tplants.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 01/27/2025]
Abstract
Botrytis cinerea is an important generalist fungal plant pathogen that causes great economic losses. Conventional detection methods to identify B. cinerea infections rely on visual assessments, which are error prone, subjective, labor intensive, hard to quantify, and unsuitable for artificial intelligence (AI) and machine learning (ML) applications. New, often camera-based, techniques provide objective digital data by remote and proximal sensing. We detail the B. cinerea infection process and link this with conventional and novel detection methods. We evaluate the effectiveness of current digital phenotyping methods to detect, quantify, and classify disease symptoms for disease management and breeding for resistance. Finally, we discuss the needs, prospects, and challenges of digital camera-based phenotyping.
Collapse
Affiliation(s)
- Laura Groenenberg
- Laboratory of Plant Breeding, Wageningen University and Research, 6708PB Wageningen, The Netherlands
| | - Marie Duhamel
- Biointeractions and Plant Health, Laboratory of Genetics, Wageningen University and Research, 6708PB Wageningen, The Netherlands
| | - Yuling Bai
- Laboratory of Plant Breeding, Wageningen University and Research, 6708PB Wageningen, The Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University and Research, 6708PB Wageningen, The Netherlands
| | - Gerrit Polder
- Greenhouse Horticulture, Wageningen University and Research, 6708PB Wageningen, The Netherlands
| | - Theo A J van der Lee
- Biointeractions and Plant Health, Wageningen University and Research, 6708PB Wageningen, The Netherlands.
| |
Collapse
|
2
|
Sia J, Zhang W, Cheng M, Bogdan P, Cook DE. Machine learning-based identification of general transcriptional predictors for plant disease. THE NEW PHYTOLOGIST 2025; 245:785-806. [PMID: 39573924 DOI: 10.1111/nph.20264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/10/2024] [Indexed: 12/20/2024]
Abstract
This study investigated the generalizability of Arabidopsis thaliana immune responses across diverse pathogens, including Botrytis cinerea, Sclerotinia sclerotiorum, and Pseudomonas syringae, using a data-driven, machine learning approach. Machine learning models were trained to predict disease development from early transcriptional responses. Feature selection techniques based on network science and topology were used to train models employing only a fraction of the transcriptome. Machine learning models trained on one pathosystem where then validated by predicting disease development in new pathosystems. The identified feature selection gene sets were enriched for pathways related to biotic, abiotic, and stress responses, though the specific genes involved differed between feature sets. This suggests common immune responses to diverse pathogens that operate via different gene sets. The study demonstrates that machine learning can uncover both established and novel components of the plant's immune response, offering insights into disease resistance mechanisms. These predictive models highlight the potential to advance our understanding of multigenic outcomes in plant immunity and can be further refined for applications in disease prediction.
Collapse
Affiliation(s)
- Jayson Sia
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Wei Zhang
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Mingxi Cheng
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Paul Bogdan
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Center for Complex Particle Systems (COMPASS), University of Southern California, Los Angeles, USA
| | - David E Cook
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
3
|
Caseys C, Muhich AJ, Vega J, Ahmed M, Hopper A, Kelly D, Kim S, Madrone M, Plaziak T, Wang M, Kliebenstein DJ. Leaf abaxial and adaxial surfaces differentially affect the interaction of Botrytis cinerea across several eudicots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1377-1391. [PMID: 39367581 DOI: 10.1111/tpj.17055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024]
Abstract
Eudicot plant species have leaves with two surfaces: the lower abaxial and the upper adaxial surface. Each surface varies in a diversity of components and molecular signals, resulting in potentially different degrees of resistance to pathogens. We tested how Botrytis cinerea, a necrotroph fungal pathogen, interacts with the two different leaf surfaces across 16 crop species and 20 Arabidopsis genotypes. This showed that the abaxial surface is generally more susceptible to the pathogen than the adaxial surface. In Arabidopsis, the differential lesion area between leaf surfaces was associated with jasmonic acid (JA) and salicylic acid (SA) signaling and differential induction of defense chemistry across the two surfaces. When infecting the adaxial surface, leaves mounted stronger defenses by producing more glucosinolates and camalexin defense compounds, partially explaining the differential susceptibility across surfaces. Testing a collection of 96 B. cinerea strains showed the genetic heterogeneity of growth patterns, with a few strains preferring the adaxial surface while most are more virulent on the abaxial surface. Overall, we show that leaf-Botrytis interactions are complex with host-specific, surface-specific, and strain-specific patterns.
Collapse
Affiliation(s)
- Celine Caseys
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Anna Jo Muhich
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
- Plant Biology Graduate Group, University of California, Davis, Davis, California, USA
| | - Josue Vega
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Maha Ahmed
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Aleshia Hopper
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - David Kelly
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Sydney Kim
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Matisse Madrone
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Taylor Plaziak
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Melissa Wang
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
- Plant Biology Graduate Group, University of California, Davis, Davis, California, USA
| |
Collapse
|
4
|
Einspanier S, Tominello-Ramirez C, Hasler M, Barbacci A, Raffaele S, Stam R. High-Resolution Disease Phenotyping Reveals Distinct Resistance Mechanisms of Tomato Crop Wild Relatives against Sclerotinia sclerotiorum. PLANT PHENOMICS (WASHINGTON, D.C.) 2024; 6:0214. [PMID: 39105186 PMCID: PMC11298253 DOI: 10.34133/plantphenomics.0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/19/2024] [Indexed: 08/07/2024]
Abstract
Besides the well-understood qualitative disease resistance, plants possess a more complex quantitative form of resistance: quantitative disease resistance (QDR). QDR is commonly defined as a partial but more durable form of resistance and, therefore, might display a valuable target for resistance breeding. The characterization of QDR phenotypes, especially of wild crop relatives, displays a bottleneck in deciphering QDR's genomic and regulatory background. Moreover, the relationship between QDR parameters, such as infection frequency, lag-phase duration, and lesion growth rate, remains elusive. High hurdles for applying modern phenotyping technology, such as the low availability of phenotyping facilities or complex data analysis, further dampen progress in understanding QDR. Here, we applied a low-cost (<1.000 €) phenotyping system to measure lesion growth dynamics of wild tomato species (e.g., Solanum pennellii or Solanum pimpinellifolium). We provide insight into QDR diversity of wild populations and derive specific QDR mechanisms and their cross-talk. We show how temporally continuous observations are required to dissect end-point severity into functional resistance mechanisms. The results of our study show how QDR can be maintained by facilitating different defense mechanisms during host-parasite interaction and that the capacity of the QDR toolbox highly depends on the host's genetic context. We anticipate that the present findings display a valuable resource for more targeted functional characterization of the processes involved in QDR. Moreover, we show how modest phenotyping technology can be leveraged to help answer highly relevant biological questions.
Collapse
Affiliation(s)
- Severin Einspanier
- Department of Phytopathology and Crop Protection, Institute of Phytopathology, Faculty of Agricultural and Nutritional Sciences,
Christian-Albrechts-University, 24118 Kiel, Germany
| | - Christopher Tominello-Ramirez
- Department of Phytopathology and Crop Protection, Institute of Phytopathology, Faculty of Agricultural and Nutritional Sciences,
Christian-Albrechts-University, 24118 Kiel, Germany
| | - Mario Hasler
- Lehrfach Variationsstatistik, Faculty of Agricultural and Nutritional Sciences,
Christian-Albrechts-University, Kiel, 24118 Kiel, Germany
| | - Adelin Barbacci
- Laboratoire des Interactions Plantes Microorganismes Environnement (LIPME), INRAE, CNRS, Castanet Tolosan Cedex, France
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes Microorganismes Environnement (LIPME), INRAE, CNRS, Castanet Tolosan Cedex, France
| | - Remco Stam
- Department of Phytopathology and Crop Protection, Institute of Phytopathology, Faculty of Agricultural and Nutritional Sciences,
Christian-Albrechts-University, 24118 Kiel, Germany
| |
Collapse
|
5
|
Spada M, Pugliesi C, Fambrini M, Pecchia S. Challenges and Opportunities Arising from Host- Botrytis cinerea Interactions to Outline Novel and Sustainable Control Strategies: The Key Role of RNA Interference. Int J Mol Sci 2024; 25:6798. [PMID: 38928507 PMCID: PMC11203536 DOI: 10.3390/ijms25126798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The necrotrophic plant pathogenic fungus Botrytis cinerea (Pers., 1794), the causative agent of gray mold disease, causes significant losses in agricultural production. Control of this fungal pathogen is quite difficult due to its wide host range and environmental persistence. Currently, the management of the disease is still mainly based on chemicals, which can have harmful effects not only on the environment and on human health but also because they favor the development of strains resistant to fungicides. The flexibility and plasticity of B. cinerea in challenging plant defense mechanisms and its ability to evolve strategies to escape chemicals require the development of new control strategies for successful disease management. In this review, some aspects of the host-pathogen interactions from which novel and sustainable control strategies could be developed (e.g., signaling pathways, molecules involved in plant immune mechanisms, hormones, post-transcriptional gene silencing) were analyzed. New biotechnological tools based on the use of RNA interference (RNAi) are emerging in the crop protection scenario as versatile, sustainable, effective, and environmentally friendly alternatives to the use of chemicals. RNAi-based fungicides are expected to be approved soon, although they will face several challenges before reaching the market.
Collapse
Affiliation(s)
- Maria Spada
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Susanna Pecchia
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
6
|
Bhargavi G, Arya M, Jambhulkar PP, Singh A, Rout AK, Behera BK, Chaturvedi SK, Singh AK. Evaluation of biocontrol efficacy of rhizosphere dwelling bacteria for management of Fusarium wilt and Botrytis gray mold of chickpea. BMC Genom Data 2024; 25:7. [PMID: 38225553 PMCID: PMC10790480 DOI: 10.1186/s12863-023-01178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/04/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Chickpea (Cicer arietinum L.) production is affected by many biotic factors, among them Fusarium wilt caused by Fusarium oxysporum f. sp. ciceri and Botrytis gray mold caused by Botrytis cinerea led to severe losses. As fungicide application is not advisable, biological management is the best alternative for plant protection. The rhizosphere-dwelling antagonistic bacteria are one of the important successful alternative strategy to manage these diseases of chickpea. Rhizosphere dwelling bacteria serve as biocontrol agents by different mechanisms like producing antibiotics, different enzymes, siderophores against pathogens and thereby reducing the growth of pathogens. RESULTS The present study aimed to isolate rhizospheric bacteria from the soils of different chickpea fields to evaluate biocontrol efficacy of the isolated bacteria to manage Fusarium wilt and Botrytis gray mold in chickpea. A total of 67 bacteria were isolated from chickpea rhizosphere from Bundelkhand region of India. Study revealed the isolated bacteria could reduce the Fusarium oxysporum f. sp. ciceris and Botrytis cinerea infection in chickpea between 17.29 and 75.29%. After screening of all the bacteria for their biocontrol efficacy, 13 most promising bacterial isolates were considered for further study out of which, three bacterial isolates (15d, 9c and 14a) have shown the maximum in vitro antagonistic effects against Fusarium oxysporum f. sp. ciceri and Botrytis cinerea comparable to in vivo effects. However, Isolate (15d) showed highest 87.5% and 82.69% reduction in disease against Fusarium wilt and Botrytis gray mold respectively, under pot condition. Three most potential isolates were characterized at molecular level using 16S rRNA gene and found to be Priestia megaterium (9c and 14a) and Serratia marcescens (15d). CONCLUSION This study identified two native biocontrol agents Priestia megaterium and Serratia marcescens from the rhizospheric soils of Bundelkhand region of India for control of Fusarium wilt, Botrytis gray mold. In future, efforts should be made to further validate the biocontrol agents in conjugation with nanomaterials for enhancing the synergistic effects in managing the fungal diseases in chickpea. This study will definitely enhance our understanding of these bioagents, and to increase their performance by developing effective formulations, application methods, and integrated strategies.
Collapse
Affiliation(s)
- Gurreddi Bhargavi
- Rani Lakshmi Bai Central Agricultural University, Jhansi, 284003, Uttar Pradesh, India
| | - Meenakshi Arya
- Rani Lakshmi Bai Central Agricultural University, Jhansi, 284003, Uttar Pradesh, India.
| | | | - Anshuman Singh
- Rani Lakshmi Bai Central Agricultural University, Jhansi, 284003, Uttar Pradesh, India
| | - Ajaya Kumar Rout
- Rani Lakshmi Bai Central Agricultural University, Jhansi, 284003, Uttar Pradesh, India
| | - Bijay Kumar Behera
- Rani Lakshmi Bai Central Agricultural University, Jhansi, 284003, Uttar Pradesh, India
| | | | - Ashok Kumar Singh
- Rani Lakshmi Bai Central Agricultural University, Jhansi, 284003, Uttar Pradesh, India
| |
Collapse
|
7
|
Singh R, Caseys C, Kliebenstein DJ. Genetic and molecular landscapes of the generalist phytopathogen Botrytis cinerea. MOLECULAR PLANT PATHOLOGY 2024; 25:e13404. [PMID: 38037862 PMCID: PMC10788480 DOI: 10.1111/mpp.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Botrytis cinerea Pers. Fr. (teleomorph: Botryotinia fuckeliana) is a necrotrophic fungal pathogen that attacks a wide range of plants. This updated pathogen profile explores the extensive genetic diversity of B. cinerea, highlights the progress in genome sequencing, and provides current knowledge of genetic and molecular mechanisms employed by the fungus to attack its hosts. In addition, we also discuss recent innovative strategies to combat B. cinerea. TAXONOMY Kingdom: Fungi, phylum: Ascomycota, subphylum: Pezizomycotina, class: Leotiomycetes, order: Helotiales, family: Sclerotiniaceae, genus: Botrytis, species: cinerea. HOST RANGE B. cinerea infects almost all of the plant groups (angiosperms, gymnosperms, pteridophytes, and bryophytes). To date, 1606 plant species have been identified as hosts of B. cinerea. GENETIC DIVERSITY This polyphagous necrotroph has extensive genetic diversity at all population levels shaped by climate, geography, and plant host variation. PATHOGENICITY Genetic architecture of virulence and host specificity is polygenic using multiple weapons to target hosts, including secretory proteins, complex signal transduction pathways, metabolites, and mobile small RNA. DISEASE CONTROL STRATEGIES Efforts to control B. cinerea, being a high-diversity generalist pathogen, are complicated. However, integrated disease management strategies that combine cultural practices, chemical and biological controls, and the use of appropriate crop varieties will lessen yield losses. Recently, studies conducted worldwide have explored the potential of small RNA as an efficient and environmentally friendly approach for combating grey mould. However, additional research is necessary, especially on risk assessment and regulatory frameworks, to fully harness the potential of this technology.
Collapse
Affiliation(s)
- Ritu Singh
- Department of Plant ScienceUniversity of CaliforniaDavisCaliforniaUSA
| | - Celine Caseys
- Department of Plant ScienceUniversity of CaliforniaDavisCaliforniaUSA
| | | |
Collapse
|
8
|
Zhao H, Ding X, Chu X, Zhang H, Wang X, Zhang X, Liu H, Zhang X, Yin Z, Li Y, Ding X. Plant immune inducer ZNC promotes rutin accumulation and enhances resistance to Botrytis cinerea in tomato. STRESS BIOLOGY 2023; 3:36. [PMID: 37676331 PMCID: PMC10444710 DOI: 10.1007/s44154-023-00106-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 07/09/2023] [Indexed: 09/08/2023]
Abstract
Gray mold is a destructive disease caused by Botrytis cinerea, a pervasive plant pathogen, which poses a threat to both tomato growth and postharvest storage. The utilization of induced resistance presents a potential strategy for combating plant pathogenic attacks. ZNC (zhinengcong), an extract derived from the endophytic fungus Paecilomyces variotii, has been discovered to play a vital role in preventing diverse forms of bacterial infections. Nevertheless, the precise mechanism behind its ability to enhance tomato resistance to fungi remains unclear. In this study, we found that the exogenous spraying of ZNC could significantly improve the resistance of tomato plants to B. cinerea. The results of both the metabolomic analysis and high-performance liquid chromatography (HPLC) demonstrated that tomato plants responded to ZNC treatment by accumulating high levels of rutin. Additional transcriptome analysis uncovered that rutin enhances tomato resistance possible by initiating the generation of reactive oxygen species (ROS) and phosphorylation of mitogen-activated protein kinases (MPKs) related genes expression during the initial phase of invasion by B. cinerea. In addition, we also found that rutin might activate plant immunity by eliciting ethylene (ET) and jasmonic acid (JA)-mediated pathways. Therefore, plant immune inducer ZNC and rutin has bright application prospects and high utilization value to control gray mold.
Collapse
Affiliation(s)
- Haipeng Zhao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, P. R. China
| | - Xiangyu Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, P. R. China
| | - Xiaomeng Chu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, P. R. China
| | - Haimiao Zhang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, P. R. China
| | - Xinyu Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, P. R. China
| | - Xinwen Zhang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, P. R. China
| | - Haoqi Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, P. R. China
| | - Xiaoying Zhang
- Shandong Pengbo Biotechnology Co., Ltd., Taian, 271000, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, P. R. China.
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, P. R. China.
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, P. R. China.
| |
Collapse
|
9
|
Krishnan P, Caseys C, Soltis N, Zhang W, Burow M, Kliebenstein DJ. Polygenic pathogen networks influence transcriptional plasticity in the Arabidopsis-Botrytis pathosystem. Genetics 2023; 224:iyad099. [PMID: 37216906 PMCID: PMC10789313 DOI: 10.1093/genetics/iyad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
Bidirectional flow of information shapes the outcome of the host-pathogen interactions and depends on the genetics of each organism. Recent work has begun to use co-transcriptomic studies to shed light on this bidirectional flow, but it is unclear how plastic the co-transcriptome is in response to genetic variation in both the host and pathogen. To study co-transcriptome plasticity, we conducted transcriptomics using natural genetic variation in the pathogen, Botrytis cinerea, and large-effect genetic variation abolishing defense signaling pathways within the host, Arabidopsis thaliana. We show that genetic variation in the pathogen has a greater influence on the co-transcriptome than mutations that abolish defense signaling pathways in the host. Genome-wide association mapping using the pathogens' genetic variation and both organisms' transcriptomes allowed an assessment of how the pathogen modulates plasticity in response to the host. This showed that the differences in both organism's responses were linked to trans-expression quantitative trait loci (eQTL) hotspots within the pathogen's genome. These hotspots control gene sets in either the host or pathogen and show differential allele sensitivity to the host's genetic variation rather than qualitative host specificity. Interestingly, nearly all the trans-eQTL hotspots were unique to the host or pathogen transcriptomes. In this system of differential plasticity, the pathogen mediates the shift in the co-transcriptome more than the host.
Collapse
Affiliation(s)
- Parvathy Krishnan
- DynaMo Center of Excellence, University of Copenhagen, Copenhagen DL-1165Denmark
| | - Celine Caseys
- Department of Plant Sciences, University of California Davis, Davis, CA 95616USA
| | - Nik Soltis
- Department of Plant Sciences, University of California Davis, Davis, CA 95616USA
| | - Wei Zhang
- Department of Botany & Plant Sciences, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Meike Burow
- DynaMo Center of Excellence, University of Copenhagen, Copenhagen DL-1165Denmark
| | - Daniel J Kliebenstein
- DynaMo Center of Excellence, University of Copenhagen, Copenhagen DL-1165Denmark
- Department of Plant Sciences, University of California Davis, Davis, CA 95616USA
| |
Collapse
|
10
|
Kahlon PS, Förner A, Muser M, Oubounyt M, Gigl M, Hammerl R, Baumbach J, Hückelhoven R, Dawid C, Stam R. Laminarin-triggered defence responses are geographically dependent in natural populations of Solanum chilense. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3240-3254. [PMID: 36880316 DOI: 10.1093/jxb/erad087] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/06/2023] [Indexed: 05/21/2023]
Abstract
Natural plant populations are polymorphic and show intraspecific variation in resistance properties against pathogens. The activation of the underlying defence responses can depend on variation in perception of pathogen-associated molecular patterns or elicitors. To dissect such variation, we evaluated the responses induced by laminarin (a glucan, representing an elicitor from oomycetes) in the wild tomato species Solanum chilense and correlated this to observed infection frequencies of Phytophthora infestans. We measured reactive oxygen species burst and levels of diverse phytohormones upon elicitation in 83 plants originating from nine populations. We found high diversity in basal and elicitor-induced levels of each component. Further we generated linear models to explain the observed infection frequency of P. infestans. The effect of individual components differed dependent on the geographical origin of the plants. We found that the resistance in the southern coastal region, but not in the other regions, was directly correlated to ethylene responses and confirmed this positive correlation using ethylene inhibition assays. Our findings reveal high diversity in the strength of defence responses within a species and the involvement of different components with a quantitatively different contribution of individual components to resistance in geographically separated populations of a wild plant species.
Collapse
Affiliation(s)
- Parvinderdeep S Kahlon
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354, Freising, Germany
| | - Andrea Förner
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354, Freising, Germany
| | - Michael Muser
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354, Freising, Germany
| | - Mhaned Oubounyt
- Research Group of Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
| | - Michael Gigl
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Richard Hammerl
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Jan Baumbach
- Research Group of Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
- Computational BioMedicine lab, Institute of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, Odense, Denmark
| | - Ralph Hückelhoven
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354, Freising, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Remco Stam
- Department of Phytopathology and Crop Protection, Institute for Phytopathology, Kiel University, Hermann Rodewald Str 9, 24118 Kiel, Germany
| |
Collapse
|
11
|
Demirjian C, Vailleau F, Berthomé R, Roux F. Genome-wide association studies in plant pathosystems: success or failure? TRENDS IN PLANT SCIENCE 2023; 28:471-485. [PMID: 36522258 DOI: 10.1016/j.tplants.2022.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Harnessing natural genetic variation is an established alternative to artificial genetic variation for investigating the molecular dialog between partners in plant pathosystems. Herein, we review the successes of genome-wide association studies (GWAS) in both plants and pathogens. While GWAS in plants confirmed that the genetic architecture of disease resistance is polygenic, dynamic during the infection kinetics, and dependent on the environment, GWAS shortened the time of identification of quantitative trait loci (QTLs) and revealed both complex epistatic networks and a genetic architecture dependent upon the geographical scale. A similar picture emerges from the few GWAS in pathogens. In addition, the ever-increasing number of functionally validated QTLs has revealed new molecular plant defense mechanisms and pathogenicity determinants. Finally, we propose recommendations to better decode the disease triangle.
Collapse
Affiliation(s)
- Choghag Demirjian
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Fabienne Vailleau
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Richard Berthomé
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Fabrice Roux
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France.
| |
Collapse
|
12
|
Thakur R, Devi R, Lal MK, Tiwari RK, Sharma S, Kumar R. Morphological, ultrastructural and molecular variations in susceptible and resistant genotypes of chickpea infected with Botrytis grey mould. PeerJ 2023; 11:e15134. [PMID: 37009149 PMCID: PMC10064989 DOI: 10.7717/peerj.15134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Biotic stress due to fungal infection is detrimental to the growth and development of chickpea. In our study, two chickpea genotypes viz Cicer pinnatifidum (resistant) and PBG5 (susceptible) were inoculated with (1 × 104 spore mL−1) of nectrotrophic fungus Botrytis cinerea at seedling stage. These seedlings were evaluated for morphological, ultrastructural, and molecular differences after 3, 5 and 7 days post inoculation (dpi). Visual symptoms were recorded in terms of water-soaked lesions, rotten pods and twigs with fungal colonies. Light and scanning electron microscopy (SEM) revealed the differences in number of stomata, hyphal network and extent of topographical damage in resistant (C. pinnatifidum) and susceptible (PBG5) genotypes, which were validated by stomatal index studies done by using fluorescence microscopy in the infection process of B. cinerea in leaves of both chickpea genotypes. In case of control (water inoculated) samples, there were differences in PCR analysis done using five primers for screening the genetic variations between two genotypes. The presence of a Botrytis responsive gene (LrWRKY) of size ~300 bp was observed in uninoculated resistant genotype which might have a role in resistance against Botrytis grey mould. The present investigation provides information about the variation in the infection process of B. cinerea in two genotypes which can be further exploited to develop robust and effective strategies to manage grey mould disease.
Collapse
Affiliation(s)
- Richa Thakur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Rajni Devi
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Milan Kumar Lal
- Division of Crop Physiology, Biochemistry and Post harvest Technology, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Rahul Kumar Tiwari
- Division of Plant Protection, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Sucheta Sharma
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Ravinder Kumar
- Division of Plant Protection, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| |
Collapse
|
13
|
Vogel G, Giles G, Robbins KR, Gore MA, Smart CD. Quantitative Genetic Analysis of Interactions in the Pepper- Phytophthora capsici Pathosystem. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:1018-1033. [PMID: 35914305 DOI: 10.1094/mpmi-12-21-0307-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of pepper cultivars with durable resistance to the oomycete Phytophthora capsici has been challenging due to differential interactions between the species that allow certain pathogen isolates to cause disease on otherwise resistant host genotypes. Currently, little is known about the pathogen genes involved in these interactions. To investigate the genetic basis of P. capsici virulence on individual pepper genotypes, we inoculated sixteen pepper accessions, representing commercial varieties, sources of resistance, and host differentials, with 117 isolates of P. capsici, for a total of 1,864 host-pathogen combinations. Analysis of disease outcomes revealed a significant effect of inter-species genotype-by-genotype interactions, although these interactions were quantitative rather than qualitative in scale. Isolates were classified into five pathogen subpopulations, as determined by their genotypes at over 60,000 single-nucleotide polymorphisms (SNPs). While absolute virulence levels on certain pepper accessions significantly differed between subpopulations, a multivariate phenotype reflecting relative virulence levels on certain pepper genotypes compared with others showed the strongest association with pathogen subpopulation. A genome-wide association study (GWAS) identified four pathogen loci significantly associated with virulence, two of which colocalized with putative RXLR effector genes and another with a polygalacturonase gene cluster. All four loci appeared to represent broad-spectrum virulence genes, as significant SNPs demonstrated consistent effects regardless of the host genotype tested. Host genotype-specific virulence variants in P. capsici may be difficult to map via GWAS with all but excessively large sample sizes, perhaps controlled by genes of small effect or by multiple allelic variants that have arisen independently. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Gregory Vogel
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, U.S.A
| | - Garrett Giles
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, U.S.A
| | - Kelly R Robbins
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Christine D Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, U.S.A
| |
Collapse
|
14
|
Rombach H, Alon H, Shapiro OH, Elad Y, Kleiman M. Elucidating the effect of tomato leaf surface microstructure on Botrytis cinerea using synthetic systems. FRONTIERS IN PLANT SCIENCE 2022; 13:1023502. [PMID: 36388570 PMCID: PMC9650585 DOI: 10.3389/fpls.2022.1023502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
For some pathogenic fungi, sensing surface topography is part of their infection strategy. Their directional growth and transformation to a new developmental stage is influenced by contact with topographic features, which is referred to as thigmo-response, the exact functionality of which is not fully understood. Research on thigmo-responses is often performed on biomimetically patterned surfaces (BPS). Polydimethylsiloxane (PDMS) is especially suitable for fabrication of BPS. Here, we used synthetic BPS surfaces, mimicking tomato leaf surface, made from PDMS with the pathogenic fungus Botrytis cinerea to study the influence of structural features of the leaf surface on the fungus behavior. As a control, a PDMS surface without microstructure was fabricated to maintain the same chemical properties. Pre-penetration processes of B. cinerea, including the distribution of conidia on the surface, germination, and germ tube growth were observed on both leaf-patterned and flat PDMS. Microstructure affected the location of immediate attachment of conidia. Additionally, the microstructure of the plant host stimulated the development of germ tube in B. cinerea, at a higher rate than that observed on flat surface, suggesting that microstructure plays a role in fungus attachment and development.
Collapse
Affiliation(s)
- Helen Rombach
- Department of Agriculture and Horticulture, Humboldt University Zu Berlin, Berlin, Germany
- Institute of Plant Sciences, Department of Vegetables and Field Crops, Agricultural Research Organization (Volcani Center), Rishon Lezion, Israel
| | - Haguy Alon
- Institute of Plant Sciences, Department of Vegetables and Field Crops, Agricultural Research Organization (Volcani Center), Rishon Lezion, Israel
- Inter-Faculty Graduate Biotechnology Program, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Orr H. Shapiro
- Institute of Postharvest and Food Sciences, Department of Food Sciences, Agricultural Research Organization (Volcani Center), Rishon Lezion, Israel
| | - Yigal Elad
- Institute of Plant Protection, Department of Plant Pathology and Weed Research, Agricultural Research Organization (Volcani Center), Rishon Lezion, Israel
| | - Maya Kleiman
- Institute of Plant Sciences, Department of Vegetables and Field Crops, Agricultural Research Organization (Volcani Center), Rishon Lezion, Israel
- Agro-Nano Technology and Advanced Materials Center, Agricultural Research Organization (Volcani Center), Rishon Lezion, Israel
| |
Collapse
|
15
|
Li S, Wu P, Yu X, Cao J, Chen X, Gao L, Chen K, Grierson D. Contrasting Roles of Ethylene Response Factors in Pathogen Response and Ripening in Fleshy Fruit. Cells 2022; 11:cells11162484. [PMID: 36010560 PMCID: PMC9406635 DOI: 10.3390/cells11162484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Fleshy fruits are generally hard and unpalatable when unripe; however, as they mature, their quality is transformed by the complex and dynamic genetic and biochemical process of ripening, which affects all cell compartments. Ripening fruits are enriched with nutrients such as acids, sugars, vitamins, attractive volatiles and pigments and develop a pleasant taste and texture and become attractive to eat. Ripening also increases sensitivity to pathogens, and this presents a crucial problem for fruit postharvest transport and storage: how to enhance pathogen resistance while maintaining ripening quality. Fruit development and ripening involve many changes in gene expression regulated by transcription factors (TFs), some of which respond to hormones such as auxin, abscisic acid (ABA) and ethylene. Ethylene response factor (ERF) TFs regulate both fruit ripening and resistance to pathogen stresses. Different ERFs regulate fruit ripening and/or pathogen responses in both fleshy climacteric and non-climacteric fruits and function cooperatively or independently of other TFs. In this review, we summarize the current status of studies on ERFs that regulate fruit ripening and responses to infection by several fungal pathogens, including a systematic ERF transcriptome analysis of fungal grey mould infection of tomato caused by Botrytis cinerea. This deepening understanding of the function of ERFs in fruit ripening and pathogen responses may identify novel approaches for engineering transcriptional regulation to improve fruit quality and pathogen resistance.
Collapse
Affiliation(s)
- Shan Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Correspondence: (S.L.); (D.G.)
| | - Pan Wu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiaofen Yu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jinping Cao
- College of Agriculture and Biotechnology, Zhejiang University, Zijinggang Campus, Hangzhou 310058, China
| | - Xia Chen
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lei Gao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijinggang Campus, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijinggang Campus, Hangzhou 310058, China
| | - Donald Grierson
- College of Agriculture and Biotechnology, Zhejiang University, Zijinggang Campus, Hangzhou 310058, China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
- Correspondence: (S.L.); (D.G.)
| |
Collapse
|
16
|
Zewdie B, Bawin Y, Tack AJM, Nemomissa S, Tesfaye K, Janssens SB, Van Glabeke S, Roldán-Ruiz I, Ruttink T, Honnay O, Hylander K. Genetic composition and diversity of Arabica coffee in the crop's center of origin and its impact on four major fungal diseases. Mol Ecol 2022; 32:2484-2503. [PMID: 35377502 DOI: 10.1111/mec.16458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 11/27/2022]
Abstract
Conventional wisdom states that genetic variation reduces disease levels in plant populations. Nevertheless, crop species have been subject to a gradual loss of genetic variation through selection for specific traits during breeding, thereby increasing their vulnerability to biotic stresses such as pathogens. We explored how genetic variation in Arabica coffee sites in southwestern Ethiopia was related to the incidence of four major fungal diseases. Sixty sites were selected along a gradient of management intensity, ranging from nearly wild to intensively managed coffee stands. We used genotyping-by-sequencing of pooled leaf samples (pool-GBS) derived from 16 individual coffee shrubs in each of the sixty sites to assess the variation in genetic composition (multivariate: reference allele frequency) and genetic diversity (univariate: mean expected heterozygosity) between sites. We found that genetic composition had a clear spatial pattern and that genetic diversity was higher in less managed sites. The incidence of the four fungal diseases was related to the genetic composition of the coffee stands, but in a specific way for each disease. In contrast, genetic diversity was only related to the within-site variation of coffee berry disease, but not to the mean incidence of any of the four diseases across sites. Given that fungal diseases are major challenges of Arabica coffee in its native range, our findings that genetic composition of coffee sites impacted the major fungal diseases may serve as baseline information to study the molecular basis of disease resistance in coffee. Overall, our study illustrates the need to consider both host genetic composition and genetic diversity when investigating the genetic basis for variation in disease levels.
Collapse
Affiliation(s)
- Beyene Zewdie
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Yves Bawin
- Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium.,Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Zwijnaarde, Belgium.,Crop Wild Relatives and Useful Plants, Meise Botanic Garden, Meise, Belgium
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Sileshi Nemomissa
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia
| | - Kassahun Tesfaye
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Steven B Janssens
- Crop Wild Relatives and Useful Plants, Meise Botanic Garden, Meise, Belgium.,Department of Biology, KU Leuven, Leuven, Belgium.,Leuven Plant Institute, Heverlee, Belgium
| | - Sabine Van Glabeke
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Isabel Roldán-Ruiz
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Zwijnaarde, Belgium
| | - Tom Ruttink
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Olivier Honnay
- Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium.,Leuven Plant Institute, Heverlee, Belgium
| | - Kristoffer Hylander
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
17
|
Mercier A, Simon A, Lapalu N, Giraud T, Bardin M, Walker AS, Viaud M, Gladieux P. Population Genomics Reveals Molecular Determinants of Specialization to Tomato in the Polyphagous Fungal Pathogen Botrytis cinerea in France. PHYTOPATHOLOGY 2021; 111:2355-2366. [PMID: 33829853 DOI: 10.1094/phyto-07-20-0302-fi] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many fungal plant pathogens encompass multiple populations specialized on different plant species. Understanding the factors underlying pathogen adaptation to their hosts is a major challenge of evolutionary microbiology, and it should help to prevent the emergence of new specialized pathogens on novel hosts. Previous studies have shown that French populations of the gray mold pathogen Botrytis cinerea parasitizing tomato and grapevine are differentiated from each other, and have higher aggressiveness on their host of origin than on other hosts, indicating some degree of host specialization in this polyphagous pathogen. Here, we aimed at identifying the genomic features underlying the specialization of B. cinerea populations to tomato and grapevine. Based on whole genome sequences of 32 isolates, we confirmed the subdivision of B. cinerea pathogens into two genetic clusters on grapevine and another, single cluster on tomato. Levels of genetic variation in the different clusters were similar, suggesting that the tomato-specific cluster has not recently emerged following a bottleneck. Using genome scans for selective sweeps and divergent selection, tests of positive selection based on polymorphism and divergence at synonymous and nonsynonymous sites, and analyses of presence and absence variation, we identified several candidate genes that represent possible determinants of host specialization in the tomato-associated population. This work deepens our understanding of the genomic changes underlying the specialization of fungal pathogen populations.
Collapse
Affiliation(s)
- Alex Mercier
- Université Paris-Saclay, Institut National de la Recherche Agronomique (INRAE), AgroParisTech, UMR BIOGER, 78850 Thiverval-Grignon, France
- Université Paris-Saclay, Orsay, France
| | - Adeline Simon
- Université Paris-Saclay, Institut National de la Recherche Agronomique (INRAE), AgroParisTech, UMR BIOGER, 78850 Thiverval-Grignon, France
| | - Nicolas Lapalu
- Université Paris-Saclay, Institut National de la Recherche Agronomique (INRAE), AgroParisTech, UMR BIOGER, 78850 Thiverval-Grignon, France
| | - Tatiana Giraud
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
| | - Marc Bardin
- UR0407 Pathologie Végétale, INRAE, 84143 Montfavet, France
| | - Anne-Sophie Walker
- Université Paris-Saclay, Institut National de la Recherche Agronomique (INRAE), AgroParisTech, UMR BIOGER, 78850 Thiverval-Grignon, France
| | - Muriel Viaud
- Université Paris-Saclay, Institut National de la Recherche Agronomique (INRAE), AgroParisTech, UMR BIOGER, 78850 Thiverval-Grignon, France
| | - Pierre Gladieux
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
18
|
Dominguez PG, Conti G, Duffy T, Insani M, Alseekh S, Asurmendi S, Fernie AR, Carrari F. Multiomics analyses reveal the roles of the ASR1 transcription factor in tomato fruits. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6490-6509. [PMID: 34100923 DOI: 10.1093/jxb/erab269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
The transcription factor ASR1 (ABA, STRESS, RIPENING 1) plays multiple roles in plant responses to abiotic stresses as well as being involved in the regulation of central metabolism in several plant species. However, despite the high expression of ASR1 in tomato fruits, large scale analyses to uncover its function in fruits are still lacking. In order to study its function in the context of fruit ripening, we performed a multiomics analysis of ASR1-antisense transgenic tomato fruits at the transcriptome and metabolome levels. Our results indicate that ASR1 is involved in several pathways implicated in the fruit ripening process, including cell wall, amino acid, and carotenoid metabolism, as well as abiotic stress pathways. Moreover, we found that ASR1-antisense fruits are more susceptible to the infection by the necrotrophic fungus Botrytis cinerea. Given that ASR1 could be regulated by fruit ripening regulators such as FRUITFULL1/FRUITFULL2 (FUL1/FUL2), NON-RIPENING (NOR), and COLORLESS NON-RIPENING (CNR), we positioned it in the regulatory cascade of red ripe tomato fruits. These data extend the known range of functions of ASR1 as an important auxiliary regulator of tomato fruit ripening.
Collapse
Affiliation(s)
- Pia Guadalupe Dominguez
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Gabriela Conti
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
- Facultad de Agronomía. Cátedra de Genética. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tomás Duffy
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Marina Insani
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Sebastián Asurmendi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Fernando Carrari
- Facultad de Agronomía. Cátedra de Genética. Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
19
|
Weiller F, Schückel J, Willats WGT, Driouich A, Vivier MA, Moore JP. Tracking cell wall changes in wine and table grapes undergoing Botrytis cinerea infection using glycan microarrays. ANNALS OF BOTANY 2021; 128:527-543. [PMID: 34192306 PMCID: PMC8422895 DOI: 10.1093/aob/mcab086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS The necrotrophic fungus Botrytis cinerea infects a broad range of fruit crops including domesticated grapevine Vitis vinifera cultivars. Damage caused by this pathogen is severely detrimental to the table and wine grape industries and results in substantial crop losses worldwide. The apoplast and cell wall interface is an important setting where many plant-pathogen interactions take place and where some defence-related messenger molecules are generated. Limited studies have investigated changes in grape cell wall composition upon infection with B. cinerea, with much being inferred from studies on other fruit crops. METHODS In this study, comprehensive microarray polymer profiling in combination with monosaccharide compositional analysis was applied for the first time to investigate cell wall compositional changes in the berries of wine (Sauvignon Blanc and Cabernet Sauvignon) and table (Dauphine and Barlinka) grape cultivars during Botrytis infection and tissue maceration. This was used in conjunction with scanning electron microscopy (SEM) and X-ray computed tomography (CT) to characterize infection progression. KEY RESULTS Grapes infected at veraison did not develop visible infection symptoms, whereas grapes inoculated at the post-veraison and ripe stages showed evidence of significant tissue degradation. The latter was characterized by a reduction in signals for pectin epitopes in the berry cell walls, implying the degradation of pectin polymers. The table grape cultivars showed more severe infection symptoms, and corresponding pectin depolymerization, compared with wine grape cultivars. In both grape types, hemicellulose layers were largely unaffected, as was the arabinogalactan protein content, whereas in moderate to severely infected table grape cultivars, evidence of extensin epitope deposition was present. CONCLUSIONS Specific changes in the grape cell wall compositional profiles appear to correlate with fungal disease susceptibility. Cell wall factors important in influencing resistance may include pectin methylesterification profiles, as well as extensin reorganization.
Collapse
Affiliation(s)
- Florent Weiller
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, South Africa
| | - Julia Schückel
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- DKMS Life Science Lab, Dresden, Germany
| | - William G T Willats
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle-upon-Tyne, UK
| | - Azeddine Driouich
- Université de ROUEN Normandie, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche ‘Normandie-Végétal’-FED 4277, F-76821 Mont-Saint-Aignan, France
| | - Melané A Vivier
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, South Africa
| | - John P Moore
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, South Africa
| |
Collapse
|
20
|
Caseys C, Shi G, Soltis N, Gwinner R, Corwin J, Atwell S, Kliebenstein DJ. Quantitative interactions: the disease outcome of Botrytis cinerea across the plant kingdom. G3 (BETHESDA, MD.) 2021; 11:jkab175. [PMID: 34003931 PMCID: PMC8496218 DOI: 10.1093/g3journal/jkab175] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/28/2021] [Indexed: 11/12/2022]
Abstract
Botrytis cinerea is a fungal pathogen that causes necrotic disease on more than a thousand known hosts widely spread across the plant kingdom. How B. cinerea interacts with such extensive host diversity remains largely unknown. To address this question, we generated an infectivity matrix of 98 strains of B. cinerea on 90 genotypes representing eight host plants. This experimental infectivity matrix revealed that the disease outcome is largely explained by variations in either the host resistance or pathogen virulence. However, the specific interactions between host and pathogen account for 16% of the disease outcome. Furthermore, the disease outcomes cluster among genotypes of a species but are independent of the relatedness between hosts. When analyzing the host specificity and virulence of B. cinerea, generalist strains are predominant. In this fungal necrotroph, specialization may happen by a loss in virulence on most hosts rather than an increase of virulence on a specific host. To uncover the genetic architecture of Botrytis host specificity and virulence, a genome-wide association study (GWAS) was performed and revealed up to 1492 genes of interest. The genetic architecture of these traits is widespread across the B. cinerea genome. The complexity of the disease outcome might be explained by hundreds of functionally diverse genes putatively involved in adjusting the infection to diverse hosts.
Collapse
Affiliation(s)
- Celine Caseys
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Gongjun Shi
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
| | - Nicole Soltis
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Plant Biology Graduate Group, University of California, Davis, Davis, CA 95616 USA
| | - Raoni Gwinner
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Embrapa Amazonia Ocidental, Manaus 69010-970, Brazil
| | - Jason Corwin
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Department of Ecology and Evolution Biology, University of Colorado, Boulder, CO 80309-0334, USA
| | - Susanna Atwell
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- DynaMo Center of Excellence, University of Copenhagen, Frederiksberg C DK-1871, Denmark
| |
Collapse
|
21
|
Kahlon PS, Stam R. Polymorphisms in plants to restrict losses to pathogens: From gene family expansions to complex network evolution. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102040. [PMID: 33882435 DOI: 10.1016/j.pbi.2021.102040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Genetic polymorphisms are the basis of the natural diversity seen in all life on earth, also in plant-pathogen interactions. Initially, studies on plant-pathogen interaction focused on reporting phenotypic variation in resistance properties and on the identification of underlying major genes. Nowadays, the field of plant-pathogen interactions is moving from focusing on families of single dominant genes involved in gene-for-gene interactions to an understanding of the plant immune system in the context of a much more complex signaling network and quantitative resistance. Simultaneously, studies on pathosystems from the wild and genome analyses advanced, revealing tremendous variation in natural plant populations. It is now imperative to place studies on genetic diversity and evolution of plant-pathogen interactions in the appropriate molecular biological, as well as evolutionary, context.
Collapse
Affiliation(s)
- Parvinderdeep S Kahlon
- TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354, Freising, Germany
| | - Remco Stam
- TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354, Freising, Germany.
| |
Collapse
|
22
|
Kahlon PS, Verin M, Hückelhoven R, Stam R. Quantitative resistance differences between and within natural populations of Solanum chilense against the oomycete pathogen Phytophthora infestans. Ecol Evol 2021; 11:7768-7778. [PMID: 34188850 PMCID: PMC8216925 DOI: 10.1002/ece3.7610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 01/01/2023] Open
Abstract
The wild tomato species Solanum chilense is divided into geographically and genetically distinct populations that show signs of defense gene selection and differential phenotypes when challenged with several phytopathogens, including the oomycete causal agent of late blight Phytophthora infestans. To better understand the phenotypic diversity of this disease resistance in S. chilense and to assess the effect of plant genotype versus pathogen isolate, respectively, we evaluated infection frequency in a systematic approach and with large sample sizes. We studied 85 genetically distinct individuals representing nine geographically separated populations of S. chilense. This showed that differences in quantitative resistance can be observed between but also within populations at the level of individual plants. Our data also did not reveal complete immunity in any of the genotypes. We further evaluated the resistance of a subset of the plants against P. infestans isolates with diverse virulence properties. This confirmed that the relative differences in resistance phenotypes between individuals were mainly determined by the plant genotype under consideration with modest effects of pathogen isolate used in the study. Thus, our report suggests that the observed quantitative resistance against P. infestans in natural populations of a wild tomato species S. chilense is the result of basal defense responses that depend on the host genotype and are pathogen isolate-unspecific.
Collapse
Affiliation(s)
| | - Melissa Verin
- TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Ralph Hückelhoven
- TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Remco Stam
- TUM School of Life SciencesTechnical University of MunichFreisingGermany
| |
Collapse
|
23
|
Naegele RP, DeLong J, Alzohairy SA, Saito S, Abdelsamad N, Miles TD. Population Genetic Analyses of Botrytis cinerea Isolates From Michigan Vineyards Using a High-Throughput Marker System Approach. Front Microbiol 2021; 12:660874. [PMID: 33959117 PMCID: PMC8093758 DOI: 10.3389/fmicb.2021.660874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/09/2021] [Indexed: 11/29/2022] Open
Abstract
As sequencing costs continue to decrease, new tools are being developed for assessing pathogen diversity and population structure. Traditional marker types, such as microsatellites, are often more cost effective than single-nucleotide polymorphism (SNP) panels when working with small numbers of individuals, but may not allow for fine scale evaluation of low or moderate structure in populations. Botrytis cinerea is a necrotrophic plant pathogen with high genetic variability that can infect more than 200 plant species worldwide. A panel of 52 amplicons were sequenced for 82 isolates collected from four Michigan vineyards representing 2 years of collection and varying fungicide resistance. A panel of nine microsatellite markers previously described was also tested across 74 isolates from the same population. A microsatellite and SNP marker analysis of B. cinerea populations was performed to assess the genetic diversity and population structure of Michigan vineyards, and the results from both marker types were compared. Both methods were able to detect population structure associated with resistance to the individual fungicides thiabendazole and boscalid, and multiple fungicide resistance (MFR). Microsatellites were also able to differentiate population structure associated with another fungicide, fluopyram, while SNPs were able to additionally differentiate structure based on year. For both methods, AMOVA results were similar, with microsatellite results explaining a smaller portion of the variation compared with the SNP results. The SNP-based markers presented here were able to successfully differentiate population structure similar to microsatellite results. These SNP markers represent new tools to discriminate B. cinerea isolates within closely related populations using multiple targeted sequences.
Collapse
Affiliation(s)
- Rachel P Naegele
- Crop Diseases, Pests and Genetics Unit, United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, United States
| | - Jeff DeLong
- Crop Diseases, Pests and Genetics Unit, United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, United States
| | - Safa A Alzohairy
- Small Fruit and Hop Pathology Laboratory, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Seiya Saito
- Commodity Protection and Quality Unit, United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, United States
| | - Noor Abdelsamad
- Crop Diseases, Pests and Genetics Unit, United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, United States
| | - Timothy D Miles
- Small Fruit and Hop Pathology Laboratory, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
24
|
Acosta Morel W, Anta Fernández F, Baroncelli R, Becerra S, Thon MR, van Kan JAL, Díaz-Mínguez JM, Benito EP. A Major Effect Gene Controlling Development and Pathogenicity in Botrytis cinerea Identified Through Genetic Analysis of Natural Mycelial Non-pathogenic Isolates. FRONTIERS IN PLANT SCIENCE 2021; 12:663870. [PMID: 33936154 PMCID: PMC8079791 DOI: 10.3389/fpls.2021.663870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Botrytis cinerea is a necrotrophic plant pathogenic fungus with a wide host range. Its natural populations are phenotypically and genetically very diverse. A survey of B. cinerea isolates causing gray mold in the vineyards of Castilla y León, Spain, was carried out and as a result eight non-pathogenic natural variants were identified. Phenotypically these isolates belong to two groups. The first group consists of seven isolates displaying a characteristic mycelial morphotype, which do not sporulate and is unable to produce sclerotia. The second group includes one isolate, which sporulates profusely and does not produce sclerotia. All of them are unresponsive to light. Crosses between a representative mycelial non-pathogenic isolate and a highly aggressive field isolate revealed that the phenotypic differences regarding pathogenicity, sporulation and production of sclerotia cosegregated in the progeny and are determined by a single genetic locus. By applying a bulked segregant analysis strategy based on the comparison of the two parental genomes the locus was mapped to a 110 kb region in chromosome 4. Subcloning and transformation experiments revealed that the polymorphism is an SNP affecting gene Bcin04g03490 in the reference genome of B. cinerea. Genetic complementation analysis and sequencing of the Bcin04g03490 alleles demonstrated that the mutations in the mycelial isolates are allelic and informed about the nature of the alterations causing the phenotypes observed. Integration of the allele of the pathogenic isolate into the non-pathogenic isolate fully restored the ability to infect, to sporulate and to produce sclerotia. Therefore, it is concluded that a major effect gene controlling differentiation and developmental processes as well as pathogenicity has been identified in B. cinerea. It encodes a protein with a GAL4-like Zn(II)2Cys6 binuclear cluster DNA binding domain and an acetyltransferase domain, suggesting a role in regulation of gene expression through a mechanism involving acetylation of specific substrates.
Collapse
Affiliation(s)
- Wilson Acosta Morel
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
| | - Francisco Anta Fernández
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
| | - Riccardo Baroncelli
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
| | - Sioly Becerra
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
| | - Michael R. Thon
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
| | - Jan A. L. van Kan
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
| | - José María Díaz-Mínguez
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
| | - Ernesto Pérez Benito
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
| |
Collapse
|
25
|
Jaiswal AK, Mengiste TD, Myers JR, Egel DS, Hoagland LA. Tomato Domestication Attenuated Responsiveness to a Beneficial Soil Microbe for Plant Growth Promotion and Induction of Systemic Resistance to Foliar Pathogens. Front Microbiol 2020; 11:604566. [PMID: 33391227 PMCID: PMC7775394 DOI: 10.3389/fmicb.2020.604566] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
Crop domestication events followed by targeted breeding practices have been pivotal for improvement of desirable traits and to adapt cultivars to local environments. Domestication also resulted in a strong reduction in genetic diversity among modern cultivars compared to their wild relatives, though the effect this could have on tripartite relationships between plants, belowground beneficial microbes and aboveground pathogens remains undetermined. We quantified plant growth performance, basal resistance and induced systemic resistance (ISR) by Trichoderma harzianum, a beneficial soil microbe against Botrytis cinerea, a necrotrophic fungus and Phytophthora infestans, a hemi-biotrophic oomycete, in 25 diverse tomato genotypes. Wild tomato related species, tomato landraces and modern commercial cultivars that were conventionally or organically bred, together, representing a domestication gradient were evaluated. Relationships between basal and ISR, plant physiological status and phenolic compounds were quantified to identify potential mechanisms. Trichoderma enhanced shoot and root biomass and ISR to both pathogens in a genotype specific manner. Moreover, improvements in plant performance in response to Trichoderma gradually decreased along the domestication gradient. Wild relatives and landraces were more responsive to Trichoderma, resulting in greater suppression of foliar pathogens than modern cultivars. Photosynthetic rate and stomatal conductance of some tomato genotypes were improved by Trichoderma treatment whereas leaf nitrogen status of the majority of tomato genotypes were not altered. There was a negative relationship between basal resistance and induced resistance for both diseases, and a positive correlation between Trichoderma-ISR to B. cinerea and enhanced total flavonoid contents. These findings suggest that domestication and breeding practices have altered plant responsiveness to beneficial soil microbes. Further studies are needed to decipher the molecular mechanisms underlying the differential promotion of plant growth and resistance among genotypes, and identify molecular markers to integrate selection for responsiveness into future breeding programs.
Collapse
Affiliation(s)
- Amit K Jaiswal
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Tesfaye D Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - James R Myers
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Daniel S Egel
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Lori A Hoagland
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
26
|
Valero-Jiménez CA, Steentjes MBF, Slot JC, Shi-Kunne X, Scholten OE, van Kan JAL. Dynamics in Secondary Metabolite Gene Clusters in Otherwise Highly Syntenic and Stable Genomes in the Fungal Genus Botrytis. Genome Biol Evol 2020; 12:2491-2507. [PMID: 33283866 PMCID: PMC7719232 DOI: 10.1093/gbe/evaa218] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2020] [Indexed: 02/05/2023] Open
Abstract
Fungi of the genus Botrytis infect >1,400 plant species and cause losses in many crops. Besides the broad host range pathogen Botrytis cinerea, most other species are restricted to a single host. Long-read technology was used to sequence genomes of eight Botrytis species, mostly pathogenic on Allium species, and the related onion white rot fungus, Sclerotium cepivorum. Most assemblies contained <100 contigs, with the Botrytis aclada genome assembled in 16 gapless chromosomes. The core genome and pan-genome of 16 Botrytis species were defined and the secretome, effector, and secondary metabolite repertoires analyzed. Among those genes, none is shared among all Allium pathogens and absent from non-Allium pathogens. The genome of each of the Allium pathogens contains 8-39 predicted effector genes that are unique for that single species, none stood out as potential determinant for host specificity. Chromosome configurations of common ancestors of the genus Botrytis and family Sclerotiniaceae were reconstructed. The genomes of B. cinerea and B. aclada were highly syntenic with only 19 rearrangements between them. Genomes of Allium pathogens were compared with ten other Botrytis species (nonpathogenic on Allium) and with 25 Leotiomycetes for their repertoire of secondary metabolite gene clusters. The pattern was complex, with several clusters displaying patchy distribution. Two clusters involved in the synthesis of phytotoxic metabolites are at distinct genomic locations in different Botrytis species. We provide evidence that the clusters for botcinic acid production in B. cinerea and Botrytis sinoallii were acquired by horizontal transfer from taxa within the same genus.
Collapse
Affiliation(s)
| | | | - Jason C Slot
- Department of Plant Pathology, The Ohio State University
| | | | - Olga E Scholten
- Plant Breeding, Wageningen University & Research, The Netherlands
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University, The Netherlands
| |
Collapse
|
27
|
Xu Y, Li X, Liang W, Liu M. Proteome-Wide Analysis of Lysine 2-Hydroxyisobutyrylation in the Phytopathogenic Fungus Botrytis cinerea. Front Microbiol 2020; 11:585614. [PMID: 33329453 PMCID: PMC7728723 DOI: 10.3389/fmicb.2020.585614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
Posttranslational modifications (PTMs) of the whole proteome have become a hot topic in the research field of epigenetics, and an increasing number of PTM types have been identified and shown to play significant roles in different cellular processes. Protein lysine 2-hydroxyisobutyrylation (Khib) is a newly detected PTM, and the 2-hydroxyisobutyrylome has been identified in several species. Botrytis cinerea is recognized as one of the most destructive pathogens due to its broad host distribution and very large economic losses; thus the many aspects of its pathogenesis have been continuously studied. However, distribution and function of Khib in this phytopathogenic fungus are not clear. In this study, a proteome-wide analysis of Khib in B. cinerea was performed, and 5,398 Khib sites on 1,181 proteins were identified. Bioinformatics analysis showed that the 2-hydroxyisobutyrylome in B. cinerea contains both conserved proteins and novel proteins when compared with Khib proteins in other species. Functional classification, functional enrichment and protein interaction network analyses showed that Khib proteins are widely distributed in cellular compartments and involved in diverse cellular processes. Significantly, 37 proteins involved in different aspects of regulating the pathogenicity of B. cinerea were detected as Khib proteins. Our results provide a comprehensive view of the 2-hydroxyisobutyrylome and lay a foundation for further studying the regulatory mechanism of Khib in both B. cinerea and other plant pathogens.
Collapse
Affiliation(s)
- Yang Xu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xiaoxia Li
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liang
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Mengjie Liu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
28
|
Maeda S, Yokotani N, Oda K, Mori M. Enhanced resistance to fungal and bacterial diseases in tomato and Arabidopsis expressing BSR2 from rice. PLANT CELL REPORTS 2020; 39:1493-1503. [PMID: 32772129 DOI: 10.1007/s00299-020-02578-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
The overexpression of rice BSR2 would offer a simple and effective strategy to protect plants from multiple devastating diseases in tomato and Arabidopsis. Many devastating plant diseases are caused by pathogens possessing a wide host range. Fungal Botrytis cinerea and Rhizoctonia solani, as well as bacterial Pseudomonas syringae and Ralstonia pseudosolanacearum are four such pathogens that infect hundreds of plant species, including agronomically important crops, and cause serious diseases, leading to severe economic losses. However, reports of genes that can confer resistance to broad host-range pathogens via traditional breeding methods are currently limited. We previously reported that Arabidopsis plants overexpressing rice BROAD-SPECTRUM RESISTANCE2 (BSR2/CYP78A15) showed tolerance not only to bacterial P. syringae pv. tomato DC3000 but also to fungal Colletotrichum higginsianum and R. solani. Rice plants overexpressing BSR2 displayed tolerance to two R. solani anastomosis groups. In the present study, first, BSR2-overexpressing (OX) Arabidopsis plants were shown to be additionally tolerant to B. cinerea, R. solani, and R. pseudosolanacearum. Next, tomato 'Micro-Tom' was used as a model to determine whether such tolerance by BSR2 can be introduced into dicot crops to prevent infection from pathogens possessing wide host range. BSR2-OX tomato displayed broad-spectrum disease tolerance to fungal B. cinerea and R. solani, as well as to bacterial P. syringae and R. pseudosolanacearum. Additionally, undesirable traits such as morphological changes were not detected. Thus, BSR2 overexpression can offer a simple and effective strategy to protect crops from multiple destructive diseases.
Collapse
Affiliation(s)
- Satoru Maeda
- Institute of Agrobiological Sciences, NARO (NIAS), Tsukuba, Japan
| | - Naoki Yokotani
- Research Institute for Biological Sciences, Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Okayama, Japan
- Kazusa DNA Research Institute, Chiba, Japan
| | - Kenji Oda
- Research Institute for Biological Sciences, Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Okayama, Japan
| | - Masaki Mori
- Institute of Agrobiological Sciences, NARO (NIAS), Tsukuba, Japan.
| |
Collapse
|
29
|
Sucher J, Mbengue M, Dresen A, Barascud M, Didelon M, Barbacci A, Raffaele S. Phylotranscriptomics of the Pentapetalae Reveals Frequent Regulatory Variation in Plant Local Responses to the Fungal Pathogen Sclerotinia sclerotiorum. THE PLANT CELL 2020; 32:1820-1844. [PMID: 32265317 PMCID: PMC7268813 DOI: 10.1105/tpc.19.00806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 05/13/2023]
Abstract
Quantitative disease resistance (QDR) is a conserved form of plant immunity that limits infections caused by a broad range of pathogens. QDR has a complex genetic determinism. The extent to which molecular components of the QDR response vary across plant species remains elusive. The fungal pathogen Sclerotinia sclerotiorum, causal agent of white mold diseases on hundreds of plant species, triggers QDR in host populations. To document the diversity of local responses to S. sclerotiorum at the molecular level, we analyzed the complete transcriptomes of six species spanning the Pentapetalae (Phaseolus vulgaris, Ricinus communis, Arabidopsis [Arabidopsis thaliana], Helianthus annuus, Solanum lycopersicum, and Beta vulgaris) inoculated with the same strain of S. sclerotiorum About one-third of plant transcriptomes responded locally to S. sclerotiorum, including a high proportion of broadly conserved genes showing frequent regulatory divergence at the interspecific level. Evolutionary inferences suggested a trend toward the acquisition of gene induction relatively recently in several lineages. Focusing on a group of ABCG transporters, we propose that exaptation by regulatory divergence contributed to the evolution of QDR. This evolutionary scenario has implications for understanding the QDR spectrum and durability. Our work provides resources for functional studies of gene regulation and QDR molecular mechanisms across the Pentapetalae.
Collapse
Affiliation(s)
- Justine Sucher
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Malick Mbengue
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Axel Dresen
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Marielle Barascud
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Marie Didelon
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Adelin Barbacci
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| |
Collapse
|
30
|
Soltis NE, Caseys C, Zhang W, Corwin JA, Atwell S, Kliebenstein DJ. Pathogen Genetic Control of Transcriptome Variation in the Arabidopsis thaliana - Botrytis cinerea Pathosystem. Genetics 2020; 215:253-266. [PMID: 32165442 PMCID: PMC7198280 DOI: 10.1534/genetics.120.303070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/11/2020] [Indexed: 01/12/2023] Open
Abstract
In plant-pathogen relations, disease symptoms arise from the interaction of the host and pathogen genomes. Host-pathogen functional gene interactions are well described, whereas little is known about how the pathogen genetic variation modulates both organisms' transcriptomes. To model and generate hypotheses on a generalist pathogen control of gene expression regulation, we used the Arabidopsis thaliana-Botrytis cinerea pathosystem and the genetic diversity of a collection of 96 B. cinerea isolates. We performed expression-based genome-wide association (eGWA) for each of 23,947 measurable transcripts in Arabidopsis (host), and 9267 measurable transcripts in B. cinerea (pathogen). Unlike other eGWA studies, we detected a relative absence of locally acting expression quantitative trait loci (cis-eQTL), partly caused by structural variants and allelic heterogeneity hindering their identification. This study identified several distantly acting trans-eQTL linked to eQTL hotspots dispersed across Botrytis genome that altered only Botrytis transcripts, only Arabidopsis transcripts, or transcripts from both species. Gene membership in the trans-eQTL hotspots suggests links between gene expression regulation and both known and novel virulence mechanisms in this pathosystem. Genes annotated to these hotspots provide potential targets for blocking manipulation of the host response by this ubiquitous generalist necrotrophic pathogen.
Collapse
Affiliation(s)
- Nicole E Soltis
- Department of Plant Sciences, University of California, Davis, California 95616
- Plant Biology Graduate Group, University of California, Davis, California 95616
| | - Celine Caseys
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Wei Zhang
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506
| | - Jason A Corwin
- Department of Ecology and Evolution Biology, University of Colorado, Boulder, Colorado 80309-0334
| | - Susanna Atwell
- Plant Biology Graduate Group, University of California, Davis, California 95616
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, California 95616
- Plant Biology Graduate Group, University of California, Davis, California 95616
- DynaMo Center of Excellence, University of Copenhagen, DK-1871, Frederiksberg C, Denmark
| |
Collapse
|
31
|
Bellis ES, Kelly EA, Lorts CM, Gao H, DeLeo VL, Rouhan G, Budden A, Bhaskara GB, Hu Z, Muscarella R, Timko MP, Nebie B, Runo SM, Chilcoat ND, Juenger TE, Morris GP, dePamphilis CW, Lasky JR. Genomics of sorghum local adaptation to a parasitic plant. Proc Natl Acad Sci U S A 2020; 117:4243-4251. [PMID: 32047036 PMCID: PMC7049153 DOI: 10.1073/pnas.1908707117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Host-parasite coevolution can maintain high levels of genetic diversity in traits involved in species interactions. In many systems, host traits exploited by parasites are constrained by use in other functions, leading to complex selective pressures across space and time. Here, we study genome-wide variation in the staple crop Sorghum bicolor (L.) Moench and its association with the parasitic weed Striga hermonthica (Delile) Benth., a major constraint to food security in Africa. We hypothesize that geographic selection mosaics across gradients of parasite occurrence maintain genetic diversity in sorghum landrace resistance. Suggesting a role in local adaptation to parasite pressure, multiple independent loss-of-function alleles at sorghum LOW GERMINATION STIMULANT 1 (LGS1) are broadly distributed among African landraces and geographically associated with S. hermonthica occurrence. However, low frequency of these alleles within S. hermonthica-prone regions and their absence elsewhere implicate potential trade-offs restricting their fixation. LGS1 is thought to cause resistance by changing stereochemistry of strigolactones, hormones that control plant architecture and below-ground signaling to mycorrhizae and are required to stimulate parasite germination. Consistent with trade-offs, we find signatures of balancing selection surrounding LGS1 and other candidates from analysis of genome-wide associations with parasite distribution. Experiments with CRISPR-Cas9-edited sorghum further indicate that the benefit of LGS1-mediated resistance strongly depends on parasite genotype and abiotic environment and comes at the cost of reduced photosystem gene expression. Our study demonstrates long-term maintenance of diversity in host resistance genes across smallholder agroecosystems, providing a valuable comparison to both industrial farming systems and natural communities.
Collapse
Affiliation(s)
- Emily S Bellis
- Department of Biology, The Pennsylvania State University, University Park, PA 16802;
- Arkansas Biosciences Institute, Arkansas State University, State University, AR 72467
- Department of Computer Science, Arkansas State University, State University, AR 72467
| | - Elizabeth A Kelly
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Intercollege Graduate Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802
| | - Claire M Lorts
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - Huirong Gao
- Applied Science and Technology, Corteva Agriscience, Johnston, IA 50131
| | - Victoria L DeLeo
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Intercollege Graduate Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802
| | - Germinal Rouhan
- Institut Systématique Evolution Biodiversité, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, École Pratique des Hautes Études, CP39, 75005 Paris, France
| | - Andrew Budden
- Identification & Naming, Royal Botanic Gardens, Kew, TW9 3AB Richmond, United Kingdom
| | - Govinal B Bhaskara
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| | - Zhenbin Hu
- Department of Agronomy, Kansas State University, Manhattan, KS 66506
| | - Robert Muscarella
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, SE-75236 Uppsala, Sweden
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - Baloua Nebie
- West and Central Africa Regional Program, International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali
| | - Steven M Runo
- Department of Biochemistry and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - N Doane Chilcoat
- Applied Science and Technology, Corteva Agriscience, Johnston, IA 50131
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| | - Geoffrey P Morris
- Department of Agronomy, Kansas State University, Manhattan, KS 66506
| | - Claude W dePamphilis
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - Jesse R Lasky
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
32
|
Mercier A, Carpentier F, Duplaix C, Auger A, Pradier JM, Viaud M, Gladieux P, Walker AS. The polyphagous plant pathogenic fungus Botrytis cinerea encompasses host-specialized and generalist populations. Environ Microbiol 2019; 21:4808-4821. [PMID: 31608584 DOI: 10.1111/1462-2920.14829] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/01/2022]
Abstract
The host plant is often the main variable explaining population structure in fungal plant pathogens, because specialization contributes to reduce gene flow between populations associated with different hosts. Previous population genetic analysis revealed that French populations of the grey mould pathogen Botrytis cinerea were structured by hosts tomato and grapevine, suggesting host specialization in this highly polyphagous pathogen. However, these findings raised questions about the magnitude of this specialization and the possibility of specialization to other hosts. Here we report specialization of B. cinerea populations to tomato and grapevine hosts but not to other tested plants. Population genetic analysis revealed two pathogen clusters associated with tomato and grapevine, while the other clusters co-occurred on hydrangea, strawberry and bramble. Measurements of quantitative pathogenicity were consistent with host specialization of populations found on tomato, and to a lesser extent, populations found on grapevine. Pathogen populations from hydrangea and strawberry appeared to be generalist, while populations from bramble may be weakly specialized. Our results suggest that the polyphagous B. cinerea is more accurately described as a collection of generalist and specialist individuals in populations. This work opens new perspectives for grey mould management, while suggesting spatial optimization of crop organization within agricultural landscapes.
Collapse
Affiliation(s)
- Alex Mercier
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France.,Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Florence Carpentier
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France.,UR MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Clémentine Duplaix
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Annie Auger
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Jean-Marc Pradier
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Muriel Viaud
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Pierre Gladieux
- UMR BGPI, INRA, CIRAD, Montpellier Supagro, Université de Montpellier, Montpellier, France
| | - Anne-Sophie Walker
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| |
Collapse
|
33
|
Zhang W, Corwin JA, Copeland DH, Feusier J, Eshbaugh R, Cook DE, Atwell S, Kliebenstein DJ. Plant-necrotroph co-transcriptome networks illuminate a metabolic battlefield. eLife 2019; 8:e44279. [PMID: 31081752 PMCID: PMC6557632 DOI: 10.7554/elife.44279] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/08/2019] [Indexed: 12/27/2022] Open
Abstract
A central goal of studying host-pathogen interaction is to understand how host and pathogen manipulate each other to promote their own fitness in a pathosystem. Co-transcriptomic approaches can simultaneously analyze dual transcriptomes during infection and provide a systematic map of the cross-kingdom communication between two species. Here we used the Arabidopsis-B. cinerea pathosystem to test how plant host and fungal pathogen interact at the transcriptomic level. We assessed the impact of genetic diversity in pathogen and host by utilization of a collection of 96 isolates infection on Arabidopsis wild-type and two mutants with jasmonate or salicylic acid compromised immunities. We identified ten B. cinereagene co-expression networks (GCNs) that encode known or novel virulence mechanisms. Construction of a dual interaction network by combining four host- and ten pathogen-GCNs revealed potential connections between the fungal and plant GCNs. These co-transcriptome data shed lights on the potential mechanisms underlying host-pathogen interaction.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Plant PathologyKansas State UniversityManhattanUnited States
- Department of Plant SciencesUniversity of California, DavisDavisUnited States
| | - Jason A Corwin
- Department of Ecology and Evolution BiologyUniversity of ColoradoBoulderUnited States
| | | | - Julie Feusier
- Department of Plant SciencesUniversity of California, DavisDavisUnited States
| | - Robert Eshbaugh
- Department of Plant SciencesUniversity of California, DavisDavisUnited States
| | - David E Cook
- Department of Plant PathologyKansas State UniversityManhattanUnited States
| | - Suzi Atwell
- Department of Plant SciencesUniversity of California, DavisDavisUnited States
| | - Daniel J Kliebenstein
- Department of Plant SciencesUniversity of California, DavisDavisUnited States
- DynaMo Center of ExcellenceUniversity of CopenhagenFrederiksbergDenmark
| |
Collapse
|
34
|
Breeze E. 97 Shades of Gray: Genetic Interactions of the Gray Mold, Botrytis cinerea, with Wild and Domesticated Tomato. THE PLANT CELL 2019; 31:280-281. [PMID: 30651347 PMCID: PMC6447008 DOI: 10.1105/tpc.19.00030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Emily Breeze
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|