1
|
Guo X, Yuan J, Zhang Y, Wu J, Wang X. Developmental landscape and asymmetric gene expression in the leaf vasculature of Brassica rapa revealed by single-cell transcriptome. HORTICULTURE RESEARCH 2025; 12:uhaf060. [PMID: 40271455 PMCID: PMC12017798 DOI: 10.1093/hr/uhaf060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/16/2025] [Indexed: 04/25/2025]
Abstract
Leaf vasculature not only acts as a channel for nutrients and signaling information but also influences leaf morphology. It consists of several distinct cell types with specialized functions. Cell type-specific characterizations based on single-cell RNA sequencing technology could aid in understanding the identities of vascular tissues and their roles in leaf morphogenesis in Brassica rapa. Here, we generated a single-cell transcriptome landscape of the Chinese cabbage leaf vasculature. A total of 12 cell clusters covering seven known cell types were identified. Different vascular cell types were characterized by distinct identities. The xylem parenchyma and companion cells exhibited an active expression pattern of amino acid metabolism genes. Tracheary elements and sieve elements were enriched in many genes related to cell wall biosynthesis, and the phloem parenchyma was enriched in many sugar transporter-encoding genes. Pseudo-time analyses revealed the developmental trajectories of the xylem and phloem and the potential roles of auxin and ethylene in xylem development. Furthermore, we identified key candidate regulators along the differentiation trajectory of the sieve elements and companion cells. Most of the homoeologous genes in the syntenic triads from the three subgenomes showed asymmetric gene expression patterns in different vascular cell types. Collectively, our study revealed that Chinese cabbage leaf vasculature cells had highly heterogeneous transcriptomes, providing new insights into the complex processes of leaf vasculature development in B. rapa leafy vegetables and other Brassica crops.
Collapse
Affiliation(s)
- Xinlei Guo
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jingping Yuan
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yuanyuan Zhang
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jian Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaowu Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
2
|
Kondo Y, Ohashi-Ito K. Coordination and regulation of vascular development in roots. CURRENT OPINION IN PLANT BIOLOGY 2025; 85:102726. [PMID: 40279844 DOI: 10.1016/j.pbi.2025.102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/18/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025]
Abstract
Vascular tissue is crucial for the transport of substances and physical support in most plants. Vascular development in roots encompasses cell proliferation, pattern formation, cell specification, and differentiation. In the roots, the positions and timing of cell proliferation and the differentiation of xylem and phloem cells are strictly controlled in order to achieve continuous vascular transport. This review describes recent advances in our understanding of the molecular mechanisms of vascular development, with a particular focus on the modulators of each of the above aspects in Arabidopsis roots. In particular, recent technological advances such as genome editing technology and single-cell analysis have led to the discovery of important genes that control vascular development. This paper shows that factors such as hormones, peptides, transcription factors, and microRNAs interact in a multilayered manner to modulate key regulators of root vascular development, ensuring stable vascular formation.
Collapse
Affiliation(s)
- Yuki Kondo
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan.
| | - Kyoko Ohashi-Ito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Guo Y, Shi YX, Song S, Zhao YQ, Lu MZ. PagNAC2a promotes phloem fiber development by regulating PagATL2 in poplar. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112283. [PMID: 39396620 DOI: 10.1016/j.plantsci.2024.112283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Phloem fiber is a key component of phloem tissue and is involved in supporting its structural integrity. NAC domain transcription factors are master switches that regulate secondary cell wall (SCW) biosynthesis in xylem fibers, but the mechanism by which NACs regulate phloem fiber development remains unexplored. Here, a NAC2-like gene in poplar, PagNAC2a, was shown to be involved in phloem fiber differentiation. qRT-PCR and GUS staining revealed that PagNAC2a was specifically expressed in the phloem zone of poplar stems. The overexpression of PagNAC2a in poplar increased plant biomass by increasing plant height, stem diameter, and leaf area. Stem anatomy analysis revealed that overexpression of PagNAC2a resulted in enhanced phloem fiber differentiation and cell wall deposition. In addition, PagNAC2a directly upregulated the expression of PagATL2, a gene involved in phloem development, as revealed by yeast one hybrid (Y1H) and electrophoretic mobility shift assay (EMSA) assays. Overall, we proposed that the PagNAC2a was a positive regulator of phloem fiber development in poplar, and these results provided insights into the molecular mechanisms involved in the differentiation of phloem fibers.
Collapse
Affiliation(s)
- Yu Guo
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China.
| | - Yang-Xin Shi
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Shuo Song
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China.
| | - Yan-Qiu Zhao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China; State Key Laboratory of Subtropical Silviculture, Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
4
|
Dhar S, Kim SY, Shin HJ, Park J, Lee JY. The molecular framework balancing growth and defense in response to plant elicitor peptide-induced signals in Arabidopsis. THE PLANT CELL 2024; 37:koae327. [PMID: 39700410 DOI: 10.1093/plcell/koae327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/24/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Elevated stress signaling compromises plant growth by suppressing proliferative and formative division in the meristem. Plant elicitor peptide, an endogenous danger signal triggered by biotic and abiotic stresses in Arabidopsis (Arabidopsis thaliana), suppresses proliferative division, alters xylem vessel organization, and disrupts cell-to-cell symplastic connections in roots. To gain insight into the dynamic molecular framework that modulates root development under elevated danger signals, we performed a time-course RNA-sequencing analysis of the root meristem after synthetic PEP1 treatment. Our analyses revealed that SALT TOLERANCE ZINC FINGER (STZ) and its homologs are a potential nexus between the stress response and proliferative cell cycle regulation. Through functional, phenotypic, and transcriptomic analyses, we observed that STZ differentially controls the cell cycle, cell differentiation, and stress response genes in various tissue layers of the root meristem. Moreover, we determined the STZ expression level critical for enabling the growth-defense tradeoff. These findings provide valuable information about the dynamic gene expression changes that occur upon perceiving danger signals in the root meristem and potential engineering strategies to generate stress-resilient plants.
Collapse
Affiliation(s)
- Souvik Dhar
- School of Biological Sciences, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Soo Youn Kim
- School of Biological Sciences, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Hee-Ji Shin
- School of Biological Sciences, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jongsung Park
- School of Biological Sciences, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Ji-Young Lee
- School of Biological Sciences, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Plant Immunity Research Center, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| |
Collapse
|
5
|
Zhang H, Wang Q, Blanco-Touriñán N, Hardtke CS. Antagonistic CLE peptide pathways shape root meristem tissue patterning. NATURE PLANTS 2024; 10:1900-1908. [PMID: 39468296 DOI: 10.1038/s41477-024-01838-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
Secreted CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptide ligands dimension the stem cell niche of Arabidopsis shoot meristems by signalling through redundant and cross-compensating CLAVATA1 (CLV1)-type receptor kinases. In the root meristem, the CLV1 homologues BARELY ANY MERISTEM 1 (BAM1) and BAM2 drive CLE13/16-mediated formative divisions that produce the ground tissue layers. Here we report that BAM1/2 are also required to initiate the vascular phloem lineage and that cross-compensation between CLV1-type receptors as observed in the shoot does not operate similarly in the root. Rather, we find that BAM3-mediated CLE45 signalling antagonizes BAM1/2-mediated CLE11/12/13 signalling in the phloem initials but not in the ground tissue. We further observe spatiotemporally contrasting CLE signalling requirements for phloem initiation and differentiation, which are shaped by the SHORT ROOT (SHR) pathway. Our findings thus suggest an intricate quantitative interplay between distinct and antagonistic CLE signalling pathways that organizes tissue layer formation in the Arabidopsis root meristem.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Qian Wang
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Noel Blanco-Touriñán
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
6
|
Blanco-Touriñán N, Rana S, Nolan TM, Li K, Vukašinović N, Hsu CW, Russinova E, Hardtke CS. The brassinosteroid receptor gene BRI1 safeguards cell-autonomous brassinosteroid signaling across tissues. SCIENCE ADVANCES 2024; 10:eadq3352. [PMID: 39321293 PMCID: PMC11423886 DOI: 10.1126/sciadv.adq3352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
Brassinosteroid signaling is essential for plant growth as exemplified by the dwarf phenotype of loss-of-function mutants in BRASSINOSTEROID INSENSITIVE 1 (BRI1), a ubiquitously expressed Arabidopsis brassinosteroid receptor gene. Complementation of brassinosteroid-blind receptor mutants by BRI1 expression with various tissue-specific promoters implied that local brassinosteroid signaling may instruct growth non-cell autonomously. Here, we performed such rescues with a panel of receptor variants and promoters, in combination with tissue-specific transgene knockouts. Our experiments demonstrate that brassinosteroid receptor expression in several tissues is necessary but not sufficient for rescue. Moreover, complementation with tissue-specific promoters requires the genuine BRI1 gene body sequence, which confers ubiquitous expression of trace receptor amounts that are sufficient to promote brassinosteroid-dependent root growth. Our data, therefore, argue for a largely cell-autonomous action of brassinosteroid receptors.
Collapse
Affiliation(s)
- Noel Blanco-Touriñán
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Surbhi Rana
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Trevor M. Nolan
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Kunkun Li
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Nemanja Vukašinović
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Che-Wei Hsu
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Christian S. Hardtke
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Liu J, Fan Y, Liu Y, He M, Sun Y, Zheng Q, Mi L, Liu J, Liu W, Tang N, Zhao X, Hu Z, Guo S, Yan D. APP1/NTL9-CalS8 module ensures proper phloem differentiation by stabilizing callose accumulation and symplastic communication. THE NEW PHYTOLOGIST 2024; 242:154-169. [PMID: 38375601 DOI: 10.1111/nph.19617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/04/2024] [Indexed: 02/21/2024]
Abstract
Phloem sieve elements (PSE), the primary conduits collaborating with neighboring phloem pole pericycle (PPP) cells to facilitate unloading in Arabidopsis roots, undergo a series of developmental stages before achieving maturation and functionality. However, the mechanism that maintains the proper progression of these differentiation stages remains largely unknown. We identified a gain-of-function mutant altered phloem pole pericycle 1 Dominant (app1D), producing a truncated, nuclear-localized active form of NAC with Transmembrane Motif 1-like (NTL9). This mutation leads to ectopic expression of its downstream target CALLOSE SYNTHASE 8 (CalS8), thereby inducing callose accumulation, impeding SE differentiation, impairing phloem transport, and inhibiting root growth. The app1D phenotype could be reproduced by blocking the symplastic channels of cells within APP1 expression domain in wild-type (WT) roots. The WT APP1 is primarily membrane-tethered and dormant in the root meristem cells but entries into the nucleus in several cells in PPP near the unloading region, and this import is inhibited by blocking the symplastic intercellular transport in differentiating SE. Our results suggest a potential maintenance mechanism involving an APP1-CalS8 module, which induces CalS8 expression and modulates symplastic communication, and the proper activation of this module is crucial for the successful differentiation of SE in the Arabidopsis root.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Yongxiao Fan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Yao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Meiqing He
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Yanke Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Qi Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Lingyu Mi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Junzhong Liu
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Wencheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Ning Tang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Xiang Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Dawei Yan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| |
Collapse
|
8
|
Hardtke CS. Phloem development. THE NEW PHYTOLOGIST 2023. [PMID: 37243530 DOI: 10.1111/nph.19003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/13/2023] [Indexed: 05/29/2023]
Abstract
The evolution of the plant vascular system is a key process in Earth history because it enabled plants to conquer land and transform the terrestrial surface. Among the vascular tissues, the phloem is particularly intriguing because of its complex functionality. In angiosperms, its principal components are the sieve elements, which transport phloem sap, and their neighboring companion cells. Together, they form a functional unit that sustains sap loading, transport, and unloading. The developmental trajectory of sieve elements is unique among plant cell types because it entails selective organelle degradation including enucleation. Meticulous analyses of primary, so-called protophloem in the Arabidopsis thaliana root meristem have revealed key steps in protophloem sieve element formation at single-cell resolution. A transcription factor cascade connects specification with differentiation and also orchestrates phloem pole patterning via noncell-autonomous action of sieve element-derived effectors. Reminiscent of vascular tissue patterning in secondary growth, these involve receptor kinase pathways, whose antagonists guide the progression of sieve element differentiation. Receptor kinase pathways may also safeguard phloem formation by maintaining the developmental plasticity of neighboring cell files. Our current understanding of protophloem development in the A. thaliana root has reached sufficient detail to instruct molecular-level investigation of phloem formation in other organs.
Collapse
Affiliation(s)
- Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
9
|
Zhang Y, Xu T, Dong J. Asymmetric cell division in plant development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:343-370. [PMID: 36610013 PMCID: PMC9975081 DOI: 10.1111/jipb.13446] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 05/03/2023]
Abstract
Asymmetric cell division (ACD) is a fundamental process that generates new cell types during development in eukaryotic species. In plant development, post-embryonic organogenesis driven by ACD is universal and more important than in animals, in which organ pattern is preset during embryogenesis. Thus, plant development provides a powerful system to study molecular mechanisms underlying ACD. During the past decade, tremendous progress has been made in our understanding of the key components and mechanisms involved in this important process in plants. Here, we present an overview of how ACD is determined and regulated in multiple biological processes in plant development and compare their conservation and specificity among different model cell systems. We also summarize the molecular roles and mechanisms of the phytohormones in the regulation of plant ACD. Finally, we conclude with the overarching paradigms and principles that govern plant ACD and consider how new technologies can be exploited to fill the knowledge gaps and make new advances in the field.
Collapse
Affiliation(s)
- Yi Zhang
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- The Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Tongda Xu
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Juan Dong
- The Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Plant Biology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08891, USA
| |
Collapse
|
10
|
Li C, Wang K, Chen S, Zhang X, Zhang X, Fan L, Dong J, Xu L, Wang Y, Li Y, Liu L. Genome-wide identification of RsGRAS gene family reveals positive role of RsSHRc gene in chilling stress response in radish (Raphanus sativus L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:285-297. [PMID: 36283201 DOI: 10.1016/j.plaphy.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/06/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Radish (Raphanus sativus L.) is an important worldwide root vegetable crop. Little information of the GRAS gene family was available in radish. Herein, a total of 51 GRAS family members were firstly identified from radish genome, and unevenly located onto nine radish chromosomes. Expression analysis of RsGRAS genes in taproot displayed that RsSCL15a and RsSHRc were highly expressed in the radish cambium, and its expression level was increased with the taproot thickening. Comparative transcriptome analysis revealed that the expression patterns of RsGRAS genes varied upon exposure to different abiotic stresses including heavy metals, salt and heat. The expression level of six RsGRAS genes including RsSHRc was increased under chilling stress in two radish genotypes with different cold tolerance. Further analysis indicated that RsGRAS genes could respond to cold stress rapidly and the expression of RsSHRc was up-regulated at different development stages (cortex splitting and thickening stages) under long-term cold treatment. Transient expression of RsSHRc gene in radish showed that RsSHRc possessed the reliable function of eliminating reactive oxygen species (ROS), inhibiting the formation of malondialdehyde (MDA) and promoting to accumulate proline under cold stress. Together, these findings provided insights into the function of RsGRAS genes in taproot development and chilling stress response in radish.
Collapse
Affiliation(s)
- Cui Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Kai Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Sen Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Xiaoli Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Xinyu Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Lianxue Fan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Junhui Dong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Ying Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China; College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
11
|
Sidorenko A, Omelyanchuk N, Zemlyanskaya E. Molecular mechanisms of vascular tissue patterning in Arabidopsis thaliana L. roots. Vavilovskii Zhurnal Genet Selektsii 2022; 26:721-732. [PMID: 36694717 PMCID: PMC9834716 DOI: 10.18699/vjgb-22-88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 01/06/2023] Open
Abstract
A vascular system in plants is a product of aromorphosis that enabled them to colonize land because it delivers water, mineral and organic compounds to plant organs and provides effective communications between organs and mechanical support. Vascular system development is a common object of fundamental research in plant development biology. In the model plant Arabidopsis thaliana, early stages of vascular tissue formation in the root are a bright example of the self-organization of a bisymmetric (having two planes of symmetry) pattern of hormone distribution, which determines vascular cell fates. In the root, vascular tissue development comprises four stages: (1) specification of progenitor cells for the provascular meristem in early embryonic stages, (2) the growth and patterning of the embryo provascular meristem, (3) postembryonic maintenance of the cell identity in the vascular tissue initials within the root apical meristem, and (4) differentiation of their descendants. Although the anatomical details of A. thaliana root vasculature development have long been known and described in detail, our knowledge of the underlying molecular and genetic mechanisms remains limited. In recent years, several important advances have been made, shedding light on the regulation of the earliest events in provascular cells specification. In this review, we summarize the latest data on the molecular and genetic mechanisms of vascular tissue patterning in A. thaliana root. The first part of the review describes the root vasculature ontogeny, and the second reconstructs the sequence of regulatory events that underlie this histogenesis and determine the development of the progenitors of the vascular initials in the embryo and organization of vascular initials in the seedling root.
Collapse
Affiliation(s)
- A.D. Sidorenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, RussiaNovosibirsk State University, Novosibirsk, Russia
| | - N.A. Omelyanchuk
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E.V. Zemlyanskaya
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, RussiaNovosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
12
|
Yoon EK, Oh J, Lim J. (Don't) Look Up!: Is short-root just a short-root plant? FRONTIERS IN PLANT SCIENCE 2022; 13:1069996. [PMID: 36466291 PMCID: PMC9712719 DOI: 10.3389/fpls.2022.1069996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
SHORT-ROOT (SHR) is a mobile transcription factor that plays important roles in ground tissue patterning, stem cell niche specification and maintenance, and vascular development in Arabidopsis roots. Although mRNA and protein of SHR are also found in hypocotyls, inflorescence stems, and leaves, its role in the above-ground organs has been less explored. In most developmental cases, SHR, together with its partner SCARECROW (SCR), regulates the expression of downstream target genes in controlling formative and proliferative cell divisions. Accumulating evidence on the regulatory role of SHR in shoots suggests that SHR may also play key roles in the above-ground organs. Interestingly, recent work has provided new evidence that SHR is also required for cell elongation in the hypocotyl of the etiolated seedling. This suggests that the novel roles of SHR and SHR-mediated regulatory networks can be found in shoots. Furthermore, comparative research on SHR function in roots and shoots will broaden and deepen our understanding of plant growth and development.
Collapse
|
13
|
Ranjan A, Perrone I, Alallaq S, Singh R, Rigal A, Brunoni F, Chitarra W, Guinet F, Kohler A, Martin F, Street NR, Bhalerao R, Legué V, Bellini C. Molecular basis of differential adventitious rooting competence in poplar genotypes. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4046-4064. [PMID: 35325111 PMCID: PMC9232201 DOI: 10.1093/jxb/erac126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Recalcitrant adventitious root (AR) development is a major hurdle in propagating commercially important woody plants. Although significant progress has been made to identify genes involved in subsequent steps of AR development, the molecular basis of differences in apparent recalcitrance to form AR between easy-to-root and difficult-to-root genotypes remains unknown. To address this, we generated cambium tissue-specific transcriptomic data from stem cuttings of hybrid aspen, T89 (difficult-to-root) and hybrid poplar OP42 (easy-to-root), and used transgenic approaches to verify the role of several transcription factors in the control of adventitious rooting. Increased peroxidase activity was positively correlated with better rooting. We found differentially expressed genes encoding reactive oxygen species scavenging proteins to be enriched in OP42 compared with T89. A greater number of differentially expressed transcription factors in cambium cells of OP42 compared with T89 was revealed by a more intense transcriptional reprograming in the former. PtMYC2, a potential negative regulator, was less expressed in OP42 compared with T89. Using transgenic approaches, we demonstrated that PttARF17.1 and PttMYC2.1 negatively regulate adventitious rooting. Our results provide insights into the molecular basis of genotypic differences in AR and implicate differential expression of the master regulator MYC2 as a critical player in this process.
Collapse
Affiliation(s)
| | | | | | - Rajesh Singh
- Present address: Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Adeline Rigal
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRAE GrandEst-Nancy, Champenoux, 54280France
| | - Federica Brunoni
- Present address: Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Slechtitelu 27, CZ-78371, Olomouc, Czech Republic
| | - Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), I-10135 Torino, Italy
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), I-31015 Conegliano (TV), Italy
| | - Frederic Guinet
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRAE GrandEst-Nancy, Champenoux, 54280France
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRAE GrandEst-Nancy, Champenoux, 54280France
| | - Francis Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRAE GrandEst-Nancy, Champenoux, 54280France
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90736 Umeå, Sweden
| | - Rishikesh Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Physiology, Swedish Agricultural University, SE-90183 Umeå, Sweden
| | - Valérie Legué
- Present address: Université Clermont Auvergne, INRAE, UMR 547 PIAF, F-63000 Clermont-Ferrand, France
| | | |
Collapse
|
14
|
Zhang L, Xie S, Yang C, Cao D, Fan S, Zhang X. Comparative Transcriptome Analysis Reveals Candidate Genes and Pathways for Potential Branch Growth in Elm ( Ulmus pumila) Cultivars. BIOLOGY 2022; 11:711. [PMID: 35625439 PMCID: PMC9139171 DOI: 10.3390/biology11050711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022]
Abstract
Wood plays a vital role in human life. It is important to study the thickening mechanism of tree branches and explore the mechanism of wood formation. Elm (Ulmus pumila) is a strong essential wood, and it is widely used in cabinets, sculptures, and ship making. In the present study, phenotypic and comparative transcriptomic analyses were performed in U. pumila fast- (UGu17 and UZuantian) and slow-growing cultivars (U81-07 and U82-39). Phenotypic observation showed that the thickness of secondary xylem of 2-year-old fast-growing branches was greater compared with slow-growing cultivars. A total of 9367 (up = 4363, down = 5004), 7159 (3413/3746), 7436 (3566/3870), and 5707 (2719/2988) differentially expressed genes (DEGs) were identified between fast- and slow-growing cultivars. Moreover, GO and KEGG enrichment analyses predicted that many pathways were involved in vascular development and transcriptional regulation in elm, such as "plant-type secondary cell wall biogenesis", "cell wall thickening", and "phenylpropanoid biosynthesis". NAC domain transcriptional factors (TFs) and their master regulators (VND1/MYB26), cellulose synthase catalytic subunits (CESAs) (such as IRX5/IRX3/IRX1), xylan synthesis, and secondary wall thickness (such as IRX9/IRX10/IRX8) were supposed to function in the thickening mechanism of elm branches. Our results indicated that the general phenylpropanoid pathway (such as PAL/C4H/4CL) and lignin metabolism (such as HCL/CSE/CCoAOMT/CCR/F5H) had vital functions in the growth of elm branches. Our transcriptome data were consistent with molecular results for branch thickening in elm cultivars.
Collapse
Affiliation(s)
| | | | | | | | - Shoujin Fan
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, China; (L.Z.); (S.X.); (C.Y.); (D.C.)
| | - Xuejie Zhang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, China; (L.Z.); (S.X.); (C.Y.); (D.C.)
| |
Collapse
|
15
|
Liu Z, Wang J, Zhou Y, Zhang Y, Qin A, Yu X, Zhao Z, Wu R, Guo C, Bawa G, Rochaix J, Sun X. Identification of novel regulators required for early development of vein pattern in the cotyledons by single-cell RNA-sequencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:7-22. [PMID: 35218590 PMCID: PMC9310732 DOI: 10.1111/tpj.15719] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/20/2022] [Indexed: 05/25/2023]
Abstract
The leaf veins of higher plants contain a highly specialized vascular system comprised of xylem and phloem cells that transport water, organic compounds and mineral nutrients. The development of the vascular system is controlled by phytohormones that interact with complex transcriptional regulatory networks. Before the emergence of true leaves, the cotyledons of young seedlings perform photosynthesis that provides energy for the sustainable growth and survival of seedlings. However, the mechanisms underlying the early development of leaf veins in cotyledons are still not fully understood, in part due to the complex cellular composition of this tissue. To better understand the development of leaf veins, we analyzed 14 117 single cells from 3-day-old cotyledons using single-cell RNA sequencing. Based on gene expression patterns, we identified 10 clusters of cells and traced their developmental trajectories. We discovered multiple new marker genes and developmental features of leaf veins. The transcription factor networks of some cell types indicated potential roles of CYCLING DOF FACTOR 5 (CDF5) and REPRESSOR OF GA (RGA) in the early development and function of the leaf veins in cotyledons. These new findings lay a foundation for understanding the early developmental dynamics of cotyledon veins. The mechanisms underlying the early development of leaf veins in cotyledons are still not fully understood. In this study, we comprehensively characterized the early differentiation and development of leaf veins in 3-day-old cotyledons based on single-cell transcriptome analysis. We identified the cell types and novel marker genes of leaf veins and characterized the novel regulators of leaf vein.
Collapse
Affiliation(s)
- Zhixin Liu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress BiologySchool of Life Sciences, Henan University85 Minglun StreetKaifeng475001China
| | - Jiajing Wang
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress BiologySchool of Life Sciences, Henan University85 Minglun StreetKaifeng475001China
| | - Yaping Zhou
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress BiologySchool of Life Sciences, Henan University85 Minglun StreetKaifeng475001China
| | - Yixin Zhang
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress BiologySchool of Life Sciences, Henan University85 Minglun StreetKaifeng475001China
| | - Aizhi Qin
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress BiologySchool of Life Sciences, Henan University85 Minglun StreetKaifeng475001China
| | - Xiaole Yu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress BiologySchool of Life Sciences, Henan University85 Minglun StreetKaifeng475001China
| | - Zihao Zhao
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress BiologySchool of Life Sciences, Henan University85 Minglun StreetKaifeng475001China
| | - Rui Wu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress BiologySchool of Life Sciences, Henan University85 Minglun StreetKaifeng475001China
| | - Chenxi Guo
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress BiologySchool of Life Sciences, Henan University85 Minglun StreetKaifeng475001China
| | - George Bawa
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress BiologySchool of Life Sciences, Henan University85 Minglun StreetKaifeng475001China
| | - Jean‐David Rochaix
- Departments of Molecular Biology and Plant BiologyUniversity of GenevaGeneva1211Switzerland
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress BiologySchool of Life Sciences, Henan University85 Minglun StreetKaifeng475001China
| |
Collapse
|
16
|
Ortigosa F, Lobato-Fernández C, Shikano H, Ávila C, Taira S, Cánovas FM, Cañas RA. Ammonium regulates the development of pine roots through hormonal crosstalk and differential expression of transcription factors in the apex. PLANT, CELL & ENVIRONMENT 2022; 45:915-935. [PMID: 34724238 DOI: 10.1111/pce.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Ammonium is a prominent source of inorganic nitrogen for plant nutrition, but excessive amounts can be toxic for many species. However, most conifers are tolerant to ammonium, a relevant physiological feature of this ancient evolutionary lineage. For a better understanding of the molecular basis of this trait, ammonium-induced changes in the transcriptome of maritime pine (Pinus pinaster Ait.) root apex have been determined by laser capture microdissection and RNA sequencing. Ammonium promoted changes in the transcriptional profiles of multiple transcription factors, such as SHORT-ROOT, and phytohormone-related transcripts, such as ACO, involved in the development of the root meristem. Nano-PALDI-MSI and transcriptomic analyses showed that the distributions of IAA and CKs were altered in the root apex in response to ammonium nutrition. Taken together, the data suggest that this early response is involved in the increased lateral root branching and principal root growth, which characterize the long-term response to ammonium supply in pine. All these results suggest that ammonium induces changes in the root system architecture through the IAA-CK-ET phytohormone crosstalk and transcriptional regulation.
Collapse
Affiliation(s)
- Francisco Ortigosa
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - César Lobato-Fernández
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Hitomi Shikano
- Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima, Japan
| | - Concepción Ávila
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Shu Taira
- Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima, Japan
| | - Francisco M Cánovas
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Rafael A Cañas
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
- Integrative Molecular Biology Lab, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| |
Collapse
|
17
|
Shahan R, Hsu CW, Nolan TM, Cole BJ, Taylor IW, Greenstreet L, Zhang S, Afanassiev A, Vlot AHC, Schiebinger G, Benfey PN, Ohler U. A single-cell Arabidopsis root atlas reveals developmental trajectories in wild-type and cell identity mutants. Dev Cell 2022; 57:543-560.e9. [PMID: 35134336 DOI: 10.1101/2020.06.29.178863] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/27/2021] [Accepted: 01/13/2022] [Indexed: 05/22/2023]
Abstract
In all multicellular organisms, transcriptional networks orchestrate organ development. The Arabidopsis root, with its simple structure and indeterminate growth, is an ideal model for investigating the spatiotemporal transcriptional signatures underlying developmental trajectories. To map gene expression dynamics across root cell types and developmental time, we built a comprehensive, organ-scale atlas at single-cell resolution. In addition to estimating developmental progressions in pseudotime, we employed the mathematical concept of optimal transport to infer developmental trajectories and identify their underlying regulators. To demonstrate the utility of the atlas to interpret new datasets, we profiled mutants for two key transcriptional regulators at single-cell resolution, shortroot and scarecrow. We report transcriptomic and in vivo evidence for tissue trans-differentiation underlying a mixed cell identity phenotype in scarecrow. Our results support the atlas as a rich community resource for unraveling the transcriptional programs that specify and maintain cell identity to regulate spatiotemporal organ development.
Collapse
Affiliation(s)
- Rachel Shahan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Che-Wei Hsu
- Department of Biology, Humboldt Universität zu Berlin, 10117 Berlin, Germany; The Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Trevor M Nolan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Benjamin J Cole
- Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Isaiah W Taylor
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Laura Greenstreet
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Stephen Zhang
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Anton Afanassiev
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Anna Hendrika Cornelia Vlot
- The Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany; Department of Computer Science, Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Geoffrey Schiebinger
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Philip N Benfey
- Department of Biology, Duke University, Durham, NC 27708, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA.
| | - Uwe Ohler
- Department of Biology, Humboldt Universität zu Berlin, 10117 Berlin, Germany; The Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany; Department of Computer Science, Humboldt Universität zu Berlin, 10117 Berlin, Germany.
| |
Collapse
|
18
|
Shahan R, Hsu CW, Nolan TM, Cole BJ, Taylor IW, Greenstreet L, Zhang S, Afanassiev A, Vlot AHC, Schiebinger G, Benfey PN, Ohler U. A single-cell Arabidopsis root atlas reveals developmental trajectories in wild-type and cell identity mutants. Dev Cell 2022; 57:543-560.e9. [PMID: 35134336 PMCID: PMC9014886 DOI: 10.1016/j.devcel.2022.01.008] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/27/2021] [Accepted: 01/13/2022] [Indexed: 12/13/2022]
Abstract
In all multicellular organisms, transcriptional networks orchestrate organ development. The Arabidopsis root, with its simple structure and indeterminate growth, is an ideal model for investigating the spatiotemporal transcriptional signatures underlying developmental trajectories. To map gene expression dynamics across root cell types and developmental time, we built a comprehensive, organ-scale atlas at single-cell resolution. In addition to estimating developmental progressions in pseudotime, we employed the mathematical concept of optimal transport to infer developmental trajectories and identify their underlying regulators. To demonstrate the utility of the atlas to interpret new datasets, we profiled mutants for two key transcriptional regulators at single-cell resolution, shortroot and scarecrow. We report transcriptomic and in vivo evidence for tissue trans-differentiation underlying a mixed cell identity phenotype in scarecrow. Our results support the atlas as a rich community resource for unraveling the transcriptional programs that specify and maintain cell identity to regulate spatiotemporal organ development.
Collapse
Affiliation(s)
- Rachel Shahan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Che-Wei Hsu
- Department of Biology, Humboldt Universität zu Berlin, 10117 Berlin, Germany; The Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Trevor M Nolan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Benjamin J Cole
- Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Isaiah W Taylor
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Laura Greenstreet
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Stephen Zhang
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Anton Afanassiev
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Anna Hendrika Cornelia Vlot
- The Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany; Department of Computer Science, Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Geoffrey Schiebinger
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Philip N Benfey
- Department of Biology, Duke University, Durham, NC 27708, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA.
| | - Uwe Ohler
- Department of Biology, Humboldt Universität zu Berlin, 10117 Berlin, Germany; The Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany; Department of Computer Science, Humboldt Universität zu Berlin, 10117 Berlin, Germany.
| |
Collapse
|
19
|
Kirk P, Benitez-Alfonso Y. Plasmodesmata Structural Components and Their Role in Signaling and Plant Development. Methods Mol Biol 2022; 2457:3-22. [PMID: 35349130 DOI: 10.1007/978-1-0716-2132-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasmodesmata are plant intercellular channels that mediate the transport of small and large molecules including RNAs and transcription factors (TFs) that regulate plant development. In this review, we present current research on plasmodesmata form and function and discuss the main regulatory pathways. We show the progress made in the development of approaches and tools to dissect the plasmodesmata proteome in diverse plant species and discuss future perspectives and challenges in this field of research.
Collapse
Affiliation(s)
- Philip Kirk
- Centre for Plant Science, School of Biology, University of Leeds, Leeds, UK
| | | |
Collapse
|
20
|
Truernit E. Sieve elements and their cell neighbours in the Arabidopsis root - Roles and relationships. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153569. [PMID: 34801777 DOI: 10.1016/j.jplph.2021.153569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Elisabeth Truernit
- ETH Zürich, Institute of Molecular Plant Biology, Department of Biology, Universitätsstrasse 2, 8092 Zürich, Switzerland.
| |
Collapse
|
21
|
Hoang NV, Park S, Park C, Suh H, Kim S, Chae E, Kang B, Lee J. Oxidative stress response and programmed cell death guided by NAC013 modulate pithiness in radish taproots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:144-163. [PMID: 34724278 PMCID: PMC9298717 DOI: 10.1111/tpj.15561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 05/10/2023]
Abstract
Radish, Raphanus sativus L., is an important root crop that is cultivated worldwide. Owing to its evolutionary proximity to Arabidopsis thaliana, radish can be used as a model root crop in research on the molecular basis of agronomic traits. Pithiness is a significant defect that reduces the production of radish with commercial value; however, traditional breeding to eliminate this trait has thus far been unsuccessful. Here, we performed transcriptomics and genotype-by-sequencing (GBS)-based quantitative trait locus (QTL) analyses of radish inbred lines to understand the molecular basis of pithiness in radish roots. The transcriptome data indicated that pithiness likely stems from the response to oxidative stress, leading to cell death of the xylem parenchyma during the root-thickening process. Subsequently, we narrowed down a list of candidates responsible for pithiness near a major QTL and found polymorphisms in a radish homologue of Arabidopsis ANAC013 (RsNAC013), an endoplasmic reticulum bound NAC transcription factor that is targeted to the nucleus to mediate the mitochondrial retrograde signal. We analysed the effects of polymorphisms in RsNAC013 using Arabidopsis transgenic lines overexpressing RsNAC013 alleles as well as in radish inbred lines bearing these alleles. This analysis indicated that non-synonymous variations within the coding sequence result in different levels of RsNAC013 activities, thereby providing a genetic condition for root pithiness. The elevated oxidative stress or hypoxia that activates RsNAC013 for mitochondrial signalling enhances this process. Collectively, this study serves as an exemplary case of translational research taking advantage of the extensive information available from a model organism.
Collapse
Affiliation(s)
- Nam V. Hoang
- School of Biological SciencesSeoul National UniversityGwanak‐roSeoul08826Korea
| | - Suhyoung Park
- National Institute of Horticultural & Herbal ScienceRural Development AdministrationWanju55365Korea
| | - Chulmin Park
- School of Biological SciencesSeoul National UniversityGwanak‐roSeoul08826Korea
| | - Hannah Suh
- School of Biological SciencesSeoul National UniversityGwanak‐roSeoul08826Korea
| | - Sang‐Tae Kim
- Department of Medical & Biological SciencesThe Catholic University of KoreaJibong‐roBucheon‐siGyeonggi‐do14662Korea
| | - Eunyoung Chae
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117543Singapore
| | - Byoung‐Cheorl Kang
- Department of Agriculture, Forestry and BioresourcesSeoul National UniversityGwanak‐roSeoul08826Korea
| | - Ji‐Young Lee
- School of Biological SciencesSeoul National UniversityGwanak‐roSeoul08826Korea
- Plant Genomics and Breeding InstituteSeoul National UniversityGwanak‐roSeoul08826Korea
| |
Collapse
|
22
|
Dhar S, Kim H, Segonzac C, Lee JY. The Danger-Associated Peptide PEP1 Directs Cellular Reprogramming in the Arabidopsis Root Vascular System. Mol Cells 2021; 44:830-842. [PMID: 34764230 PMCID: PMC8627833 DOI: 10.14348/molcells.2021.0203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022] Open
Abstract
When perceiving microbe-associated molecular patterns (MAMPs) or plant-derived damage-associated molecular patterns (DAMPs), plants alter their root growth and development by displaying a reduction in the root length and the formation of root hairs and lateral roots. The exogenous application of a MAMP peptide, flg22, was shown to affect root growth by suppressing meristem activity. In addition to MAMPs, the DAMP peptide PEP1 suppresses root growth while also promoting root hair formation. However, the question of whether and how these elicitor peptides affect the development of the vascular system in the root has not been explored. The cellular receptors of PEP1, PEPR1 and PEPR2 are highly expressed in the root vascular system, while the receptors of flg22 (FLS2) and elf18 (EFR) are not. Consistent with the expression patterns of PEP1 receptors, we found that exogenously applied PEP1 has a strong impact on the division of stele cells, leading to a reduction of these cells. We also observed the alteration in the number and organization of cells that differentiate into xylem vessels. These PEP1-mediated developmental changes appear to be linked to the blockage of symplastic connections triggered by PEP1. PEP1 dramatically disrupts the symplastic movement of free green fluorescence protein (GFP) from phloem sieve elements to neighboring cells in the root meristem, leading to the deposition of a high level of callose between cells. Taken together, our first survey of PEP1-mediated vascular tissue development provides new insights into the PEP1 function as a regulator of cellular reprogramming in the Arabidopsis root vascular system.
Collapse
Affiliation(s)
- Souvik Dhar
- School of Biological Sciences, College of Natural Science, Seoul National University, Seoul 08826, Korea
| | - Hyoujin Kim
- School of Biological Sciences, College of Natural Science, Seoul National University, Seoul 08826, Korea
| | - Cécile Segonzac
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 00826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
| | - Ji-Young Lee
- School of Biological Sciences, College of Natural Science, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
23
|
Wei XY, Collings DA, McCurdy DW. Review: More than sweet: New insights into the biology of phloem parenchyma transfer cells in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110990. [PMID: 34315604 DOI: 10.1016/j.plantsci.2021.110990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Transfer cells (TCs) develop extensive wall ingrowths to facilitate enhanced rates of membrane transport. In Arabidopsis, TCs trans-differentiate from phloem parenchyma (PP) cells abutting the sieve element/companion cell complex in minor veins of foliar tissues and, based on anatomy and expression of SWEET sucrose uniporters, are assumed to play pivotal roles in phloem loading. While wall ingrowth deposition in PP TCs is a dynamic process responding to abiotic stresses such as high light and cold, the transcriptional control of PP TC development, including deposition of the wall ingrowths themselves, is not understood. PP TC development is a trait of vegetative phase change, potentially linking wall ingrowth deposition with floral induction. Transcript profiling by RNA-seq identified NAC056 and NAC018 (NARS1 and NARS2) as putative regulators of wall ingrowth deposition, while recent single cell RNA-seq analysis of leaf vasculature identified PP-specific expression of NAC056. Numerous membrane transporters, particularly of the UmamiT family of amino acid efflux carriers, were also identified. Collectively, these findings, and the recent discovery that wall ingrowth deposition is regulated by sucrose-dependent loading activity of these cells, provide new insights into the biology of PP TCs and their importance to phloem loading in Arabidopsis, establishing these cells as a key transport hub for phloem loading.
Collapse
Affiliation(s)
- Xiao-Yang Wei
- Centre for Plant Science, School of Environmental and Life Sciences, The University of Newcastle, Callahan, NSW, 2308, Australia
| | - David A Collings
- Centre for Plant Science, School of Environmental and Life Sciences, The University of Newcastle, Callahan, NSW, 2308, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009 Australia; Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - David W McCurdy
- Centre for Plant Science, School of Environmental and Life Sciences, The University of Newcastle, Callahan, NSW, 2308, Australia.
| |
Collapse
|
24
|
Graeff M, Hardtke CS. Metaphloem development in the Arabidopsis root tip. Development 2021; 148:270791. [PMID: 34224570 DOI: 10.1242/dev.199766] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/29/2021] [Indexed: 11/20/2022]
Abstract
The phloem transport network is a major evolutionary innovation that enabled plants to dominate terrestrial ecosystems. In the growth apices, the meristems, apical stem cells continuously produce early 'protophloem'. This is easily observed in Arabidopsis root meristems, in which the differentiation of individual protophloem sieve element precursors into interconnected conducting sieve tubes is laid out in a spatio-temporal gradient. The mature protophloem eventually collapses as the neighboring metaphloem takes over its function further distal from the stem cell niche. Compared with protophloem, metaphloem ontogenesis is poorly characterized, primarily because its visualization is challenging. Here, we describe the improved TetSee protocol to investigate metaphloem development in Arabidopsis root tips in combination with a set of molecular markers. We found that mature metaphloem sieve elements are only observed in the late post-meristematic root, although their specification is initiated as soon as protophloem sieve elements enucleate. Moreover, unlike protophloem sieve elements, metaphloem sieve elements only differentiate once they have fully elongated. Finally, our results suggest that metaphloem differentiation is not directly controlled by protophloem-derived cues but rather follows a distinct, robust developmental trajectory.
Collapse
Affiliation(s)
- Moritz Graeff
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| |
Collapse
|
25
|
Feng L, Xu W, Tang G, Gu M, Geng Z. Biochar induced improvement in root system architecture enhances nutrient assimilation by cotton plant seedlings. BMC PLANT BIOLOGY 2021; 21:269. [PMID: 34116636 PMCID: PMC8194105 DOI: 10.1186/s12870-021-03026-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 05/10/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Raising nitrogen use efficiency of crops by improving root system architecture is highly essential not only to reduce costs of agricultural production but also to mitigate climate change. The physiological mechanisms of how biochar affects nitrogen assimilation by crop seedlings have not been well elucidated. RESULTS Here, we report changes in root system architecture, activities of the key enzymes involved in nitrogen assimilation, and cytokinin (CTK) at the seedling stage of cotton with reduced urea usage and biochar application at different soil layers (0-10 cm and 10-20 cm). Active root absorption area, fresh weight, and nitrogen agronomic efficiency increased significantly when urea usage was reduced by 25% and biochar was applied in the surface soil layer. Glutamine oxoglutarate amino transferase (GOGAT) activity was closely related to the application depth of urea/biochar, and it increased when urea/biochar was applied in the 0-10 cm layer. Glutamic-pyruvic transaminase activity (GPT) increased significantly as well. Nitrate reductase (NR) activity was stimulated by CTK in the very fine roots but inhibited in the fine roots. In addition, AMT1;1, gdh3, and gdh2 were significantly up-regulated in the very fine roots when urea usage was reduced by 25% and biochar was applied. CONCLUSION Nitrogen assimilation efficiency was significantly affected when urea usage was reduced by 25% and biochar was applied in the surface soil layer at the seedling stage of cotton. The co-expression of gdh3 and gdh2 in the fine roots increased nitrogen agronomic efficiency. The synergistic expression of the ammonium transporter gene and gdh3 suggests that biochar may be beneficial to amino acid metabolism.
Collapse
Affiliation(s)
- Lei Feng
- College of Natural Resources and Environment, Northwest Key Laboratory of Plant Nutrition and Agro-Environment, Ministry of Agriculture, Northwest A & F University, Yangling, 712100 China
- Xinjiang Academy of Agricultural Sciences Institute of Soil Fertilizer and Water Conservation, Urumqi, 830092 China
| | - Wanli Xu
- Xinjiang Academy of Agricultural Sciences Institute of Soil Fertilizer and Water Conservation, Urumqi, 830092 China
| | - Guangmu Tang
- Xinjiang Academy of Agricultural Sciences Institute of Soil Fertilizer and Water Conservation, Urumqi, 830092 China
| | - Meiying Gu
- Xinxiang Academy of Agricultural Sciences Institute of Microbial Application, Urumqi, 830091 China
| | - Zengchao Geng
- College of Natural Resources and Environment, Northwest Key Laboratory of Plant Nutrition and Agro-Environment, Ministry of Agriculture, Northwest A & F University, Yangling, 712100 China
| |
Collapse
|
26
|
Johns S, Hagihara T, Toyota M, Gilroy S. The fast and the furious: rapid long-range signaling in plants. PLANT PHYSIOLOGY 2021; 185:694-706. [PMID: 33793939 PMCID: PMC8133610 DOI: 10.1093/plphys/kiaa098] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/08/2020] [Indexed: 05/04/2023]
Abstract
Plants possess a systemic signaling system whereby local stimuli can lead to rapid, plant-wide responses. In addition to the redistribution of chemical messengers that range from RNAs and peptides to hormones and metabolites, a communication system acting through the transmission of electrical, Ca2+, reactive oxygen species and potentially even hydraulic signals has also been discovered. This latter system can propagate signals across many cells each second and researchers are now beginning to uncover the molecular machineries behind this rapid communications network. Thus, elements such as the reactive oxygen species producing NAPDH oxidases and ion channels of the two pore channel, glutamate receptor-like and cyclic nucleotide gated families are all required for the rapid propagation of these signals. Upon arrival at their distant targets, these changes trigger responses ranging from the production of hormones, to changes in the levels of primary metabolites and shifts in patterns of gene expression. These systemic responses occur within seconds to minutes of perception of the initial, local signal, allowing for the rapid deployment of plant-wide responses. For example, an insect starting to chew on just a single leaf triggers preemptive antiherbivore defenses throughout the plant well before it has a chance to move on to the next leaf on its menu.
Collapse
Affiliation(s)
- Sarah Johns
- Department of Botany, University of Wisconsin–Madison, Birge Hall, 430 Lincoln Drive, Madison, WI 35706, USA
| | - Takuma Hagihara
- Department of Biochemistry and Molecular Biology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Simon Gilroy
- Department of Botany, University of Wisconsin–Madison, Birge Hall, 430 Lincoln Drive, Madison, WI 35706, USA
- Author for communication:
| |
Collapse
|
27
|
Seo M, Lee JY. Dissection of Functional Modules of AT-HOOK MOTIF NUCLEAR LOCALIZED PROTEIN 4 in the Development of the Root Xylem. FRONTIERS IN PLANT SCIENCE 2021; 12:632078. [PMID: 33889164 PMCID: PMC8056045 DOI: 10.3389/fpls.2021.632078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/25/2021] [Indexed: 05/13/2023]
Abstract
Xylem development in the Arabidopsis root apical meristem requires a complex cross talk between plant hormone signaling and transcriptional factors (TFs). The key processes involve fine-tuning between neighboring cells, mediated via the intercellular movement of signaling molecules. As an example, we previously reported that AT-HOOK MOTIF NUCLEAR LOCALIZED PROTEIN (AHL) 4 (AHL4), a member of the 29 AT-hook family TFs in Arabidopsis, moves into xylem precursors from their neighbors to determine xylem differentiation. As part of the effort to understand the molecular functions of AHL4, we performed domain swapping analyses using AHL1 as a counterpart, finding that AHL4 has three functionally distinctive protein modules. The plant and prokaryotes conserved (PPC) domain of AHL4 acts as a mediator of protein-protein interactions with AHL members. The N-terminus of AHL4 is required for the regulation of xylem development likely via its unique DNA-binding activity. The C-terminus of AHL4 confers intercellular mobility. Our characterization of modules in the AHL4 protein will augment our understanding of the complexity of regulation and the evolution of intercellular mobility in AHL4 and its relatives.
Collapse
Affiliation(s)
- Minji Seo
- School of Biological Sciences, College of Natural Science, Seoul National University, Seoul, South Korea
| | - Ji-Young Lee
- School of Biological Sciences, College of Natural Science, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
- *Correspondence: Ji-Young Lee,
| |
Collapse
|
28
|
Seo M, Kim H, Lee JY. Information on the move: vascular tissue development in space and time during postembryonic root growth. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:110-117. [PMID: 32905917 DOI: 10.1016/j.pbi.2020.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/08/2020] [Accepted: 08/04/2020] [Indexed: 05/27/2023]
Abstract
Cascades of temporal and spatial regulation of gene expression play crucial roles in the vascular development in plant roots. Once vascular cell fates are determined, the timing of their differentiation is tightly controlled in a cell-autonomous manner. In contrast, extensive cell-to-cell communication contributes to the positioning and specifying of vascular cell types in the root meristem. Diverse factors moving short distances in a radial direction were found to be key contributors to these processes. Furthermore, signals from differentiated phloem were found to influence the phloem precursor and determine how the corresponding asymmetric cell division proceeded. These findings highlight the potential importance of underexplored types of intercellular communication in relation to vascular tissue development during postembryonic root growth.
Collapse
Affiliation(s)
- Minji Seo
- School of Biological Sciences, College of Natural Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyoujin Kim
- School of Biological Sciences, College of Natural Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji-Young Lee
- School of Biological Sciences, College of Natural Science, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
29
|
Gundu S, Tabassum N, Blilou I. Moving with purpose and direction: transcription factor movement and cell fate determination revisited. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:124-132. [PMID: 32992134 DOI: 10.1016/j.pbi.2020.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/13/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Cell diversity in a multicellular organism relies on cell-cell communication where cells must receive positional information as input signals to adopt their proper cell fate in the right place and at the right time. This process is achieved through triggering signaling cascades that drive cellular changes during development. In plants, signaling through mobile transcription factors (TF) plays a central role in development. Rather than acting cell-autonomously and exclusive to their expression domains, many TFs move between cells and deploy regulatory networks and cell type-specific effectors to achieve their biological functions. Here, we highlight a few examples of mobile TFs central to cell fate specification in Arabidopsis.
Collapse
Affiliation(s)
- Shyam Gundu
- Laboratory of Plant Cell and Developmental Biology, King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Naheed Tabassum
- Laboratory of Plant Cell and Developmental Biology, King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Ikram Blilou
- Laboratory of Plant Cell and Developmental Biology, King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
30
|
Shahan R. It's All in the Neighborhood: SHORTROOT-Mediated Intercellular Signals Coordinate Phloem Development in the Root. THE PLANT CELL 2020; 32:1350-1351. [PMID: 32132130 PMCID: PMC7203923 DOI: 10.1105/tpc.20.00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Rachel Shahan
- Department of BiologyDuke UniversityDurham, North Carolina
| |
Collapse
|