1
|
Shao S, Wu Y, Zhang L, Zhao Z, Li X, Yang M, Zhou H, Wu S, Wang L. Determining the Role of OsAGP6P in Anther Development Within the Arabinogalactan Peptide Family of Rice ( Oryza sativa). Int J Mol Sci 2025; 26:2616. [PMID: 40141257 PMCID: PMC11941891 DOI: 10.3390/ijms26062616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Arabinogalactan proteins (AGPs) are complex proteoglycans present in plant cell walls across the kingdom. They play crucial roles in biological functions throughout the plant life cycle. In this study, we identified 43 gene members of the AG peptide (an AGP subfamily) within the rice genome, detailing their structure, protein-conserved domains, and motif compositions for the first time. We also examined the expression patterns of these genes across 18 tissues and organs, especially the different parts of the flower (anthers, pollen, pistil, sperm cells, and egg cells). Interestingly, the expression of some AG peptides is mainly present in the pollen grain. Transcription data and GUS staining confirmed that OsAGP6P-a member of the AG peptide gene family-is expressed in the stamen during pollen development stages 11-14, which are critical for maturation as microspores form after meiosis of pollen mother cells. It became noticeable from stage 11, when exine formation occurred-specifically at stage 12, when the intine began to develop. The overexpression of this gene in rice decreased the seed-setting rate (from 91.5% to 30.5%) and plant height (by 21.9%) but increased the tillering number (by 34.1%). These results indicate that AGP6P contributes to the development and fertility of pollen, making it a valuable gene target for future genetic manipulation of plant sterility through gene overexpression or editing.
Collapse
Affiliation(s)
- Shuai Shao
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China; (S.S.); (L.Z.); (X.L.); (M.Y.); (H.Z.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yuxin Wu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Lijie Zhang
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China; (S.S.); (L.Z.); (X.L.); (M.Y.); (H.Z.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Zhiyuan Zhao
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China;
| | - Xianlong Li
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China; (S.S.); (L.Z.); (X.L.); (M.Y.); (H.Z.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Mingchong Yang
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China; (S.S.); (L.Z.); (X.L.); (M.Y.); (H.Z.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Haiyu Zhou
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China; (S.S.); (L.Z.); (X.L.); (M.Y.); (H.Z.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Songguo Wu
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China; (S.S.); (L.Z.); (X.L.); (M.Y.); (H.Z.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Lingqiang Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China; (S.S.); (L.Z.); (X.L.); (M.Y.); (H.Z.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia 4072, Australia
| |
Collapse
|
2
|
Foubert-Mendes S, Silva J, Ferreira MJ, Pereira LG, Coimbra S. A review on the function of arabinogalactan-proteins during pollen grain development. PLANT REPRODUCTION 2025; 38:8. [PMID: 39912945 PMCID: PMC11802600 DOI: 10.1007/s00497-024-00515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/20/2024] [Indexed: 02/07/2025]
Abstract
KEY MESSAGE Overview of the current understanding of PG development, PT growth and the role of AGPs in these processes. The pollen grain (PG) is a complex structure composed of three cells: the vegetative cell which develops into a pollen tube (PT) and two sperm cells that will fuse with the egg cell and central cell, giving rise to the embryo and endosperm, respectively. This resilient gametophyte is constantly subjected to selective pressures, leading to a diverse range of characteristics, with one of its defining features being the pollen cell wall. In this review, we closely examine the developmental stages of PG formation and PT growth, with a specific focus on the dynamic roles of arabinogalactan-proteins (AGPs) throughout these processes. AGPs are initially present in pollen mother cells and persist throughout PT growth. In the early stages, AGPs play a crucial role in primexine anchoring, followed by nexine and intine formation as well as cellulose deposition, thereby providing essential structural support to the PG. As PGs mature, AGPs continue to be essential, as their absence often leads to the collapse of PGs before they reach full maturity. Moreover, the absence of AGPs during PT growth leads to abnormal growth patterns, likely due to disruptions of cellulose, callose, and F-actin deposition, as well as perturbations in calcium ion (Ca2+) signalling. Understanding the intricate interplay between AGPs and PG development sheds light on the underlying mechanisms that drive reproductive success and highlights the indispensable role of AGPs in ensuring the integrity and functionality of PGs.
Collapse
Affiliation(s)
- Sara Foubert-Mendes
- LAQV/REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Jessy Silva
- LAQV/REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, Porto, Portugal.
- School of Sciences, University of Minho, Campus de Gualtar, Braga, Portugal.
| | - Maria João Ferreira
- LAQV/REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, Porto, Portugal.
| | - Luís Gustavo Pereira
- GreenUPorto-Sustainable Agrifood Production Research Centre/INOV4AGRO, Biology Department, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Sílvia Coimbra
- LAQV/REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Hassan AS, O’Donovan LA, Cowley JM, Akomeah B, Phillips RJ, Pettolino F, Schultz CJ, Burton RA. In planta ectopic expression of two subtypes of tomato cellulose synthase-like M genes affects cell wall integrity and supports a role in arabinogalactan and/or rhamnogalacturonan-I biosynthesis. PLANT & CELL PHYSIOLOGY 2025; 66:101-119. [PMID: 39658008 PMCID: PMC11775392 DOI: 10.1093/pcp/pcae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/01/2024] [Accepted: 12/09/2024] [Indexed: 12/12/2024]
Abstract
Diversification of the cellulose synthase superfamily of glycosyltransferases has provided plants with the ability to synthesize varied cell wall polysaccharides such as xyloglucan, mannans, and the mixed-linkage glucans of cereals. Surprisingly, some but not all members of the cellulose synthase-like M (CslM) gene family have recently been shown to be involved in the glycosylation of the aglycone core of a range of triterpenoid saponins. However, no cell wall activity has yet been attributed to any of the CslM gene family members. Here, evolution of the CslM gene family in eudicots is explored to better understand the differences between the two metabolically distinct classes of CslMs (CslM1 and CslM2) and the very closely related CslGs. To achieve this, a robust tBLASTn approach was developed to identify CslM1, CslM2, and CslG sequences using diagnostic peptides, suitable for complex genomes using unannotated and short-read datasets. To ascertain whether both CslM1 and CslM2 proteins have cell wall functions, in addition to the 'saponin' role of CslM2, tomato CslM1 and CslM2 genes were ectopically expressed in Arabidopsis thaliana by stable transformation and in the transient Nicotiana benthamiana system. Transformed plants were analysed with immunofluorescence, immunogold transmission electron microscopy, and cell wall polysaccharides were extracted for monosaccharide linkage analysis. Our results support a role for both CslM1 and CslM2 in the biosynthesis of type II arabinogalactan linkages, generating new insight into how the diverse functions of CslMs can coexist and providing clear targets for future research.
Collapse
Affiliation(s)
- Ali S Hassan
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Lisa A O’Donovan
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| | - James M Cowley
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Belinda Akomeah
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Renee J Phillips
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Filomena Pettolino
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia
| | - Carolyn J Schultz
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Rachel A Burton
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
4
|
Golovchenko VV, Khlopin VA, Patova OA, Vityazev FV, Dmitrenok AS, Shashkov AS. Structural characterization of arabinogalactan-II and pectin from Urtica cannabina. Carbohydr Polym 2025; 348:122868. [PMID: 39562131 DOI: 10.1016/j.carbpol.2024.122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 11/21/2024]
Abstract
Comparative analysis of extracellular and cell wall glycans from Urtica cannabina leaves was performed using chemical methods, GC, GC-MS, 1D, and 2D NMR spectroscopy. The structures of extracellular AG-II and cell wall AG-II are similar. The units are typical for AG-IIs: β-GlcpA-4-OMe-(1→, Rhap-(1 → 4)-β-GlcpA-(1→, attached to β-Galp at O-6, as well as arabinan chains attached to β-Galp at O-3. A single Araf and a trisaccharide formed by 2,5-Araf and two terminal Araf form short arabinan side chains in AG-II. 1,5-arabinan with a backbone substituted by a single Araf at O-3 was identified only in the side chains of cell wall AG-II. The side chains can be attached to O-3 and O-6 of the same β-Galp to form a bifurcated AG side chain. The backbone of AG-II is formed by 1,6- rather than 1,3-linked Galp, although it does include some 1,3-Galp. The high content of 3,6-Galp shows the highly branched nature of the AG carbohydrate chains. From the cell wall, AGP was extracted together with pectin, the simultaneous elution of which from both DEAE-cellulose and Sepharose may indicate a link between them.
Collapse
Affiliation(s)
- Victoria V Golovchenko
- Institute of Physiology of Komi Science Centre of The Urals Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, 50, Pervomaiskaya str., 167982 Syktyvkar, Russia.
| | - Victor A Khlopin
- Institute of Physiology of Komi Science Centre of The Urals Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, 50, Pervomaiskaya str., 167982 Syktyvkar, Russia
| | - Olga A Patova
- Institute of Physiology of Komi Science Centre of The Urals Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, 50, Pervomaiskaya str., 167982 Syktyvkar, Russia
| | - Fedor V Vityazev
- Institute of Physiology of Komi Science Centre of The Urals Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, 50, Pervomaiskaya str., 167982 Syktyvkar, Russia
| | - Andrey S Dmitrenok
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prospect, Moscow 119991, Russia
| | - Alexander S Shashkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prospect, Moscow 119991, Russia
| |
Collapse
|
5
|
Munzert KS, Engelsdorf T. Plant cell wall structure and dynamics in plant-pathogen interactions and pathogen defence. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:228-242. [PMID: 39470457 DOI: 10.1093/jxb/erae442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
Plant cell walls delimit cells from their environment and provide mechanical stability to withstand internal turgor pressure as well as external influences. Environmental factors can be beneficial or harmful for plants and vary substantially depending on prevailing combinations of climate conditions and stress exposure. Consequently, the physicochemical properties of plant cell walls need to be adaptive, and their functional integrity needs to be monitored by the plant. One major threat to plants is posed by phytopathogens, which employ a diversity of infection strategies and lifestyles to colonize host tissues. During these interactions, the plant cell wall represents a barrier that impedes the colonization of host tissues and pathogen spread. In a competition for maintenance and breakdown, plant cell walls can be rapidly and efficiently remodelled by enzymatic activities of plant and pathogen origin, heavily influencing the outcome of plant-pathogen interactions. We review the role of locally and systemically induced cell wall remodelling and the importance of tissue-dependent cell wall properties for the interaction with pathogens. Furthermore, we discuss the importance of cell wall-dependent signalling for defence response induction and the influence of abiotic factors on cell wall integrity and cell wall-associated pathogen resistance mechanisms.
Collapse
Affiliation(s)
- Kristina S Munzert
- Molecular Plant Physiology, Department of Biology, Philipps-Universität Marburg, D-35043 Marburg, Germany
| | - Timo Engelsdorf
- Molecular Plant Physiology, Department of Biology, Philipps-Universität Marburg, D-35043 Marburg, Germany
| |
Collapse
|
6
|
Moreira D, Kaur D, Fourbert-Mendes S, Showalter AM, Coimbra S, Pereira AM. Eight hydroxyproline-O-galactosyltransferases play essential roles in female reproductive development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112231. [PMID: 39154893 DOI: 10.1016/j.plantsci.2024.112231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
In angiosperms, ovules give rise to seeds upon fertilization. Thus, seed formation is dependent on both successful ovule development and tightly controlled communication between female and male gametophytes. During establishment of these interactions, cell walls play a pivotal role, especially arabinogalactan-proteins (AGPs). AGPs are highly glycosylated proteins decorated by arabinogalactan side chains, representing 90 % of the AGP molecule. AGP glycosylation is initiated by a reaction catalysed by hydroxyproline-O-galactosyltransferases (Hyp-GALTs), specifically eight of them (GALT2-9), which add the first galactose to Hyp residues. Five Hyp-GALTs (GALT2, 5, 7, 8 and 9) were previously described as essential for AGP functions in pollen and ovule development, pollen-pistil interactions, and seed morphology. In the present work, a higher order Hyp-GALT mutant (23456789) was studied, with a high degree of under-glycosylated AGPs, to gain deeper insight into the crucial roles of these eight enzymes in female reproductive tissues. Notably, the 23456789 mutant demonstrated a high quantity of unfertilized ovules, displaying abnormal callose accumulation both at the micropylar region and, sometimes, throughout the entire embryo sac. Additionally, this mutant displayed ovules with abnormal embryo sacs, had a disrupted spatiotemporal distribution of AGPs in female reproductive tissues, and showed abnormal seed and embryo development, concomitant with a reduction in AGP-GlcA levels. This study revealed that at least three more enzymes exhibit Hyp-O-GALT activity in Arabidopsis (GALT3, 4 and 6), and reinforces the crucial importance of AGP carbohydrates in carrying out the biological functions of AGPs during plant reproduction.
Collapse
Affiliation(s)
- Diana Moreira
- LAQV Requimte, Sustainable Chemistry, Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto 4169-007, Portugal
| | - Dasmeet Kaur
- Department of Environmental & Plant Biology, Ohio University, Athens, OH 45701-2979, USA; Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701-2979, USA
| | - Sara Fourbert-Mendes
- LAQV Requimte, Sustainable Chemistry, Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto 4169-007, Portugal
| | - Allan M Showalter
- Department of Environmental & Plant Biology, Ohio University, Athens, OH 45701-2979, USA; Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701-2979, USA
| | - Sílvia Coimbra
- LAQV Requimte, Sustainable Chemistry, Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto 4169-007, Portugal
| | - Ana Marta Pereira
- LAQV Requimte, Sustainable Chemistry, Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto 4169-007, Portugal.
| |
Collapse
|
7
|
Kutyrieva-Nowak N, Leszczuk A, Denic D, Bellaidi S, Blazakis K, Gemeliari P, Lis M, Kalaitzis P, Zdunek A. In vivo and ex vivo study on cell wall components as part of the network in tomato fruit during the ripening process. HORTICULTURE RESEARCH 2024; 11:uhae145. [PMID: 38988613 PMCID: PMC11233857 DOI: 10.1093/hr/uhae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/13/2024] [Indexed: 07/12/2024]
Abstract
Ripening is a process involving various morphological, physiological, and biochemical changes in fruits. This process is affected by modifications in the cell wall structure, particularly in the composition of polysaccharides and proteins. The cell wall assembly is a network of polysaccharides and proteoglycans named the arabinoxylan pectin arabinogalactan protein1 (APAP1). The complex consists of the arabinogalactan protein (AGP) core with the pectin domain including arabinogalactan (AG) type II, homogalacturonan (HG), and rhamnogalacturonan I (RG-I). The present paper aims to determine the impact of a disturbance in the synthesis of one constituent on the integrity of the cell wall. Therefore, in the current work, we have tested the impact of modified expression of the SlP4H3 gene connected with proline hydroxylase (P4H) activity on AGP presence in the fruit matrix. Using an immunolabelling technique (CLSM), an immunogold method (TEM), molecular tools, and calcium mapping (SEM-EDS), we have demonstrated that disturbances in AGP synthesis affect the entire cell wall structure. Changes in the spatio-temporal AGP distribution may be related to the formation of a network between AGPs with other cell wall components. Moreover, the modified structure of the cell wall assembly induces morphological changes visible at the cellular level during the progression of the ripening process. These results support the hypothesis that AGPs and pectins are required for the proper progression of the physiological processes occurring in fruits.
Collapse
Affiliation(s)
| | - Agata Leszczuk
- Institute of Agrophysics, Polish Academy of Sciences, 20-290 Lublin, Poland
| | - Dusan Denic
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | - Samia Bellaidi
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | - Konstantinos Blazakis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | - Petroula Gemeliari
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | - Magdalena Lis
- Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty of Medicine, John Paul II Catholic University of Lublin, 20-708 Lublin, Poland
| | - Panagiotis Kalaitzis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, 20-290 Lublin, Poland
| |
Collapse
|
8
|
Wdowiak A, Kryzheuskaya K, Podgórska A, Paterczyk B, Zebrowski J, Archacki R, Szal B. Ammonium nutrition modifies cellular calcium distribution influencing ammonium-induced growth inhibition. JOURNAL OF PLANT PHYSIOLOGY 2024; 298:154264. [PMID: 38744182 DOI: 10.1016/j.jplph.2024.154264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
Proper plant growth requires balanced nutrient levels. In this study, we analyzed the relationship between ammonium (NH4+) nutrition and calcium (Ca2+) homeostasis in the leaf tissues of wild-type and mutant Arabidopsis specimens provided with different nitrogen sources (NH4+ and nitrate, NO3-). Providing plants with NH4+ as the sole nitrogen source disrupts Ca2+ homeostasis, which is essential for activating signaling pathways and maintaining the cell wall structure. The results revealed that the lower Ca2+ content in Arabidopsis leaves under NH4+ stress might result from reduced transpiration pull, which could impair root-to-shoot Ca2+ transport. Moreover, NH4+ nutrition increased the expression of genes encoding proteins responsible for exporting Ca2+ from the cytosol of leaf cells. Furthermore, overexpression of the Ca2+/H+ antiporter 1 (CAX1) gene alleviates the effects of NH4+ syndrome, including stunted growth. The oeCAX1 plants, characterized by a lower apoplastic Ca2+ level, grew better under NH4+ stress than wild-type plants. Evaluation of the mechanical properties of the leaf blades, including stiffness, strength, toughness, and extensibility, showed that the wild-type and oeCAX1 plants responded differently to the nitrogen source, highlighting the role of cell wall metabolism in inhibiting the growth of NH4+-stressed plants.
Collapse
Affiliation(s)
- Agata Wdowiak
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Katsiaryna Kryzheuskaya
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Anna Podgórska
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Bohdan Paterczyk
- Imaging Laboratory, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Jacek Zebrowski
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1 St, 35-310, Rzeszow, Poland
| | - Rafał Archacki
- Department of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Bożena Szal
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
9
|
Delmer D, Dixon RA, Keegstra K, Mohnen D. The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter. THE PLANT CELL 2024; 36:1257-1311. [PMID: 38301734 PMCID: PMC11062476 DOI: 10.1093/plcell/koad325] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
Mythology is replete with good and evil shapeshifters, who, by definition, display great adaptability and assume many different forms-with several even turning themselves into trees. Cell walls certainly fit this definition as they can undergo subtle or dramatic changes in structure, assume many shapes, and perform many functions. In this review, we cover the evolution of knowledge of the structures, biosynthesis, and functions of the 5 major cell wall polymer types that range from deceptively simple to fiendishly complex. Along the way, we recognize some of the colorful historical figures who shaped cell wall research over the past 100 years. The shapeshifter analogy emerges more clearly as we examine the evolving proposals for how cell walls are constructed to allow growth while remaining strong, the complex signaling involved in maintaining cell wall integrity and defense against disease, and the ways cell walls adapt as they progress from birth, through growth to maturation, and in the end, often function long after cell death. We predict the next century of progress will include deciphering cell type-specific wall polymers; regulation at all levels of polymer production, crosslinks, and architecture; and how walls respond to developmental and environmental signals to drive plant success in diverse environments.
Collapse
Affiliation(s)
- Deborah Delmer
- Section of Plant Biology, University of California Davis, Davis, CA 95616, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kenneth Keegstra
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA
| | - Debra Mohnen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
10
|
Abstract
Plant cells build nanofibrillar walls that are central to plant growth, morphogenesis and mechanics. Starting from simple sugars, three groups of polysaccharides, namely, cellulose, hemicelluloses and pectins, with very different physical properties are assembled by the cell to make a strong yet extensible wall. This Review describes the physics of wall growth and its regulation by cellular processes such as cellulose production by cellulose synthase, modulation of wall pH by plasma membrane H+-ATPase, wall loosening by expansin and signalling by plant hormones such as auxin and brassinosteroid. In addition, this Review discusses the nuanced roles, properties and interactions of cellulose, matrix polysaccharides and cell wall proteins and describes how wall stress and wall loosening cooperatively result in cell wall growth.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
11
|
Tan L, Cheng J, Zhang L, Backe J, Urbanowicz B, Heiss C, Azadi P. Pectic-AGP is a major form of Arabidopsis AGPs. Carbohydr Polym 2024; 330:121838. [PMID: 38368088 DOI: 10.1016/j.carbpol.2024.121838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 02/19/2024]
Abstract
As a key component in cell walls of numerous organisms ranging from green algae to higher plants, AGPs play principal roles in many biological processes such as cell-cell adhesion and regulating Ca2+ signaling pathway as a Ca2+-capacitor. Consistently, AGP structures vary from species to species and from tissue to tissue. To understand the functions of AGPs, it is vital to know their structural differences relative to their location in the plant. Thus, AGPs were purified from different Arabidopsis tissues. Analyses of these AGPs demonstrated that the AGPs comprised covalently linked pectin and AGP, referred to as pectic-AGPs. Importantly, these pectic-AGPs were glycosylated with a remarkable variety of polysaccharides including homogalacturonan, rhamnogalacturonan-I, and type II arabinogalactan at different ratios and lengths. This result not only suggests that pectic-AGP is a major form of Arabidopsis AGPs, but also supports AGPs serve as crosslinkers covalently connecting pectins with structures tailored for tissue-specific functions.
Collapse
Affiliation(s)
- Li Tan
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America.
| | - Jielun Cheng
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America
| | - Liang Zhang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America
| | - Jason Backe
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America
| | - Breeanna Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America
| |
Collapse
|
12
|
Kutyrieva-Nowak N, Leszczuk A, Ezzat L, Kaloudas D, Zając A, Szymańska-Chargot M, Skrzypek T, Krokida A, Mekkaoui K, Lampropoulou E, Kalaitzis P, Zdunek A. The modified activity of prolyl 4 hydroxylases reveals the effect of arabinogalactan proteins on changes in the cell wall during the tomato ripening process. FRONTIERS IN PLANT SCIENCE 2024; 15:1365490. [PMID: 38571716 PMCID: PMC10987753 DOI: 10.3389/fpls.2024.1365490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
Arabinogalactan proteins (AGPs) are proteoglycans with an unusual molecular structure characterised by the presence of a protein part and carbohydrate chains. Their specific properties at different stages of the fruit ripening programme make AGPs unique markers of this process. An important function of AGPs is to co-form an amorphous extracellular matrix in the cell wall-plasma membrane continuum; thus, changes in the structure of these molecules can determine the presence and distribution of other components. The aim of the current work was to characterise the molecular structure and localisation of AGPs during the fruit ripening process in transgenic lines with silencing and overexpression of SlP4H3 genes (prolyl 4 hydroxylase 3). The objective was accomplished through comprehensive and comparative in situ and ex situ analyses of AGPs from the fruit of transgenic lines and wild-type plants at specific stages of ripening. The experiment showed that changes in prolyl 4 hydroxylases (P4H3) activity affected the content of AGPs and the progress in their modifications in the ongoing ripening process. The analysis of the transgenic lines confirmed the presence of AGPs with high molecular weights (120-60 kDa) at all the examined stages, but a changed pattern of the molecular features of AGPs was found in the last ripening stages, compared to WT. In addition to the AGP molecular changes, morphological modifications of fruit tissue and alterations in the spatio-temporal pattern of AGP distribution at the subcellular level were detected in the transgenic lines with the progression of the ripening process. The work highlights the impact of AGPs and their alterations on the fruit cell wall and changes in AGPs associated with the progression of the ripening process.
Collapse
Affiliation(s)
| | - Agata Leszczuk
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Lamia Ezzat
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania, Greece
| | - Dimitris Kaloudas
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania, Greece
| | - Adrian Zając
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | | | - Tomasz Skrzypek
- Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty of Medicine, John Paul II Catholic University of Lublin, Lublin, Poland
| | - Afroditi Krokida
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania, Greece
| | - Khansa Mekkaoui
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania, Greece
| | - Evangelia Lampropoulou
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania, Greece
| | - Panagiotis Kalaitzis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania, Greece
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| |
Collapse
|
13
|
Ma Y, Johnson K. Arabinogalactan proteins - Multifunctional glycoproteins of the plant cell wall. Cell Surf 2023; 9:100102. [PMID: 36873729 PMCID: PMC9974416 DOI: 10.1016/j.tcsw.2023.100102] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Arabinogalactan-proteins (AGPs) are cell wall glycoproteins that make up a relatively small component of the extracellular matrix of plants yet have significant influence on wall mechanics and signalling. Present in walls of algae, bryophytes and angiosperms, AGPs have a wide range of functional roles, from signalling, cell expansion and division, embryogenesis, responses to abiotic and biotic stress, plant growth and development. AGPs interact with and influence wall matrix components and plasma membrane proteins to regulate developmental pathways and growth responses, yet the exact mechanisms remain elusive. Comprising a large gene family that is highly diverse, from minimally to highly glycosylated members, varying in their glycan heterogeneity, can be plasma membrane bound or secreted into the extracellular matrix, have members that are highly tissue specific to those with constitutive expression; all these factors have made it extremely challenging to categorise AGPs many qualities and roles. Here we attempt to define some key features of AGPs and their biological functions.
Collapse
Affiliation(s)
- Yingxuan Ma
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Kim Johnson
- La Trobe Institute for Sustainable Agriculture & Food, Department of Animal, Plant and Soil Sciences, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
14
|
Ma Y, Ratcliffe J, Bacic A, Johnson KL. Promoter and domain structures regulate FLA12 function during Arabidopsis secondary wall development. FRONTIERS IN PLANT SCIENCE 2023; 14:1275983. [PMID: 38034570 PMCID: PMC10687482 DOI: 10.3389/fpls.2023.1275983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023]
Abstract
Introduction Fasciclin-like arabinogalactan-proteins (FLAs) are a family of multi-domain glycoproteins present at the cell surface and walls of plants. Arabidopsis thaliana FLA12 and homologs in cotton, Populus, and flax have been shown to play important functions regulating secondary cell wall (SCW) development. FLA12 has been shown to have distinct roles from the closely related FLA11 that also functions during SCW development. The promoter and domain features of FLA12 that regulate functional specificity have not been well characterized. Methods In this study, promoter swap experiments of FLA11 and FLA12 were investigated. Mutation of proposed functional regions within FLA12 were used to investigate the role of post-translational modifications on sub-cellular location and trafficking. Domain swap experiments between FLA11 and FLA12 were performed to identify regions of functional specificity. Results Promote swap experiments showed that FLA12 is differentially expressed in both stem and rosette leaves compared to FLA11. Post-translational modifications, in particular addition of the glycosylphosphatidylinositol-anchor (GPI-anchor), were shown to be important for FLA12 location at the plasma membrane (PM)/cell wall interface. Domain swap experiments between FLA11 and FLA12 showed that the C-terminal arabinogalactan (AG) glycan motif acts as a key regulatory region differentiating FLA12 functions from FLA11. Discussion Understanding of FLA12 promoter and functional domains has provided new insights into the regulation of SCW development and functional specificity of FLAs for plant growth and development.
Collapse
Affiliation(s)
- Yingxuan Ma
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC, Australia
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Julian Ratcliffe
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC, Australia
| | - Antony Bacic
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Kim L. Johnson
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
15
|
Kutyrieva-Nowak N, Leszczuk A, Zdunek A. A practical guide to in situ and ex situ characterisation of arabinogalactan proteins (AGPs) in fruits. PLANT METHODS 2023; 19:117. [PMID: 37915041 PMCID: PMC10621164 DOI: 10.1186/s13007-023-01100-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Arabinogalactan proteins (AGPs) are plant cell components found in the extracellular matrix that play crucial roles in fruit growth and development. AGPs demonstrate structural diversity due to the presence of a protein domain and an expanded carbohydrate moiety. Considering their molecular structure, the modification of glycosylation is a primary factor contributing to the functional variety of AGPs. MAIN BODY Immunocytochemical methods are used for qualitative and quantitative analyses of AGPs in fruit tissues. These include in situ techniques such as immunofluorescence and immunogold labelling for visualising AGP distribution at different cellular levels and ex situ methods such as Western blotting and enzyme-linked immunoenzymatic assays (ELISA) for molecular characterisation and quantitative detection of isolated AGPs. The presented techniques were modified by considering the structure of AGPs and the changes that occur in fruit tissues during the development and ripening processes. These methods are based on antibodies that recognise carbohydrate chains, which are the only commercially available highly AGP-specific tools. These probes recognise AGP epitopes and identify structural modifications and changes in spatio-temporal distribution, shedding light on their functions in fruit. CONCLUSION This paper provides a concise overview of AGP research methods, emphasising their use in fruit tissue analysis and demonstrating the accessibility gaps in other tools used in such research (e.g. antibodies against protein moieties). It underscores fruit tissue as a valuable source of AGPs and emphasises the potential for future research to understand of AGP synthesis, degradation, and their roles in various physiological processes. Moreover, the application of advanced probes for AGP visualisation is a milestone in obtaining more detailed insights into the localisation and function of these proteins within fruit.
Collapse
Affiliation(s)
| | - Agata Leszczuk
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland.
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| |
Collapse
|
16
|
Nweke AB, Nagasato D, Matsuoka K. Secreted arabinogalactan protein from salt-adapted tobacco BY-2 cells appears to be glycosylphosphatidyl inositol-anchored and associated with lipophilic moieties. Biosci Biotechnol Biochem 2023; 87:1274-1284. [PMID: 37573142 DOI: 10.1093/bbb/zbad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Arabinogalactan proteins (AGPs) are plant extracellular proteoglycans associated with the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor. This moiety is thought to be cleaved by phospholipase for secretion. Salt-adapted tobacco BY-2 cells were reported to secrete large amounts of AGPs into the medium. To investigate this mechanism, we expressed a fusion protein of tobacco sweet potato sporamin and AGP (SPO-AGP) in BY-2 cells and analyzed its fate after salt-adapting the cells. A two-phase separation analysis using Triton X-114 indicated that a significant proportion of SPO-AGP in the medium was recovered in the detergent phase, suggesting that this protein is GPI-anchored. Differential ultracentrifugation and a gradient density fractionation implicated extracellular vesicles or particles with SPO-AGP in the medium. Endogenous AGP secreted from salt-adapted and nontransgenic BY-2 cells behaved similarly to SPO-AGP. These results suggest that a part of the secreted AGPs from salt-adapted tobacco BY-2 cells are GPI-anchored and associated with particles or vesicles.
Collapse
Affiliation(s)
- Arinze Boniface Nweke
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Daiki Nagasato
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Ken Matsuoka
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
17
|
Fradera-Soler M, Mravec J, Harholt J, Grace OM, Jørgensen B. Cell wall polysaccharide and glycoprotein content tracks growth-form diversity and an aridity gradient in the leaf-succulent genus Crassula. PHYSIOLOGIA PLANTARUM 2023; 175:e14007. [PMID: 37882271 DOI: 10.1111/ppl.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/22/2023] [Accepted: 08/14/2023] [Indexed: 10/27/2023]
Abstract
Cell wall traits are believed to be a key component of the succulent syndrome, an adaptive syndrome to drought, yet the variability of such traits remains largely unknown. In this study, we surveyed the leaf polysaccharide and glycoprotein composition in a wide sampling of Crassula species that occur naturally along an aridity gradient in southern Africa, and we interpreted its adaptive significance in relation to growth form and arid adaptation. To study the glycomic diversity, we sampled leaf material from 56 Crassula taxa and performed comprehensive microarray polymer profiling to obtain the relative content of cell wall polysaccharides and glycoproteins. This analysis was complemented by the determination of monosaccharide composition and immunolocalization in leaf sections using glycan-targeting antibodies. We found that compact and non-compact Crassula species occupy distinct phenotypic spaces in terms of leaf glycomics, particularly in regard to rhamnogalacturonan I, its arabinan side chains, and arabinogalactan proteins (AGPs). Moreover, these cell wall components also correlated positively with increasing aridity, which suggests that they are likely advantageous in terms of arid adaptation. These differences point to compact Crassula species having more elastic cell walls with plasticizing properties, which can be interpreted as an adaptation toward increased drought resistance. Furthermore, we report an intracellular pool of AGPs associated with oil bodies and calcium oxalate crystals, which could be a peculiarity of Crassula and could be linked to increased drought resistance. Our results indicate that glycomics may be underlying arid adaptation and drought resistance in succulent plants.
Collapse
Affiliation(s)
- Marc Fradera-Soler
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Royal Botanic Gardens, London, UK
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Plant Science and Biodiversity Center, Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Nitra, Slovakia
| | | | - Olwen M Grace
- Royal Botanic Gardens, London, UK
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
18
|
Lamport DTA. The Growth Oscillator and Plant Stomata: An Open and Shut Case. PLANTS (BASEL, SWITZERLAND) 2023; 12:2531. [PMID: 37447091 DOI: 10.3390/plants12132531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/12/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Since Darwin's "Power of Movement in Plants" the precise mechanism of oscillatory plant growth remains elusive. Hence the search continues for the hypothetical growth oscillator that regulates a huge range of growth phenomena ranging from circumnutation to pollen tube tip growth and stomatal movements. Oscillators are essentially simple devices with few components. A universal growth oscillator with only four major components became apparent recently with the discovery of a missing component, notably arabinogalactan glycoproteins (AGPs) that store dynamic Ca2+ at the cell surface. Demonstrably, auxin-activated proton pumps, AGPs, Ca2+ channels, and auxin efflux "PIN" proteins, embedded in the plasma membrane, combine to generate cytosolic Ca2+ oscillations that ultimately regulate oscillatory growth: Hechtian adhesion of the plasma membrane to the cell wall and auxin-activated proton pumps trigger the release of dynamic Ca2+ stored in periplasmic AGP monolayers. These four major components represent a molecular PINball machine a strong visual metaphor that also recognises auxin efflux "PIN" proteins as an essential component. Proton "pinballs" dissociate Ca2+ ions bound by paired glucuronic acid residues of AGP glycomodules, hence reassessing the role of proton pumps. It shifts the prevalent paradigm away from the recalcitrant "acid growth" theory that proposes direct action on cell wall properties, with an alternative explanation that connects proton pumps to Ca2+ signalling with dynamic Ca2+ storage by AGPs, auxin transport by auxin-efflux PIN proteins and Ca2+ channels. The extensive Ca2+ signalling literature of plants ignores arabinogalactan proteins (AGPs). Such scepticism leads us to reconsider the validity of the universal growth oscillator proposed here with some exceptions that involve marine plants and perhaps the most complex stress test, stomatal regulation.
Collapse
|
19
|
Li Y, Guo X, Zhong R, Ye C, Chen J. Structure characterization and biological activities evaluation of two hetero-polysaccharides from Lepista nuda: Cell antioxidant, anticancer and immune-modulatory activities. Int J Biol Macromol 2023:125204. [PMID: 37271268 DOI: 10.1016/j.ijbiomac.2023.125204] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/14/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Polysaccharides LNP-1 and LNP-2 were extracted and purified from Lepista nuda, and their structural characteristics and biological activities were evaluated. The molecular weights of LNP-1 and LNP-2 were determined to be 16,263 Da and 17,730 Da, respectively. The monosaccharide composition analysis showed that LNP-1 and LNP-2 were composed of fucose, mannose, glucose, and galactose in a molar ratio of 1.00:2.42:1.09:4.04 and 1.00:2.39:1.61:4.23, respectively. The structure analysis revealed that these two polysaccharides were mainly composed of T-Fuc, T-Man, T-Glc, 1,6-Glc 1,6-Gal, and 1,2,6-Man, 1,2,6-Gal. Additionally, LNP-2 contained an additional 1,4-Glc glycosidic linkage in comparison to LNP-1. Both LNP-1 and LNP-2 exhibited anti-proliferation effects on A375 cells, but not on HepG2 cells. Furthermore, LNP-2 showed better cellular antioxidant activity (CAA) than LNP-1. RT-PCR results indicated that LNP-1 and LNP-2 could induce macrophages to secrete immune-modulatory factors NO, IL-6, and TNF-α by regulating their mRNA expression. Overall, this study provides a theoretical basis for the further development of the structure-function relationship of polysaccharides from L. nuda.
Collapse
Affiliation(s)
- Yimeng Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xuxiang Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ruifang Zhong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Changming Ye
- Era Biotechnology(Shenzhen)Co. Ltd., Shenzhen, Guangdong, China
| | - Jian Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
20
|
Azariadis A, Vouligeas F, Salame E, Kouhen M, Rizou M, Blazakis K, Sotiriou P, Ezzat L, Mekkaoui K, Monzer A, Krokida A, Adamakis ID, Dandachi F, Shalha B, Kostelenos G, Figgou E, Giannoutsou E, Kalaitzis P. Response of Prolyl 4 Hydroxylases, Arabinogalactan Proteins and Homogalacturonans in Four Olive Cultivars under Long-Term Salinity Stress in Relation to Physiological and Morphological Changes. Cells 2023; 12:1466. [PMID: 37296587 PMCID: PMC10252747 DOI: 10.3390/cells12111466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Olive (Olea europeae L.) salinity stress induces responses at morphological, physiological and molecular levels, affecting plant productivity. Four olive cultivars with differential tolerance to salt were grown under saline conditions in long barrels for regular root growth to mimic field conditions. Arvanitolia and Lefkolia were previously reported as tolerant to salinity, and Koroneiki and Gaidourelia were characterized as sensitive, exhibiting a decrease in leaf length and leaf area index after 90 days of salinity. Prolyl 4-hydroxylases (P4Hs) hydroxylate cell wall glycoproteins such as arabinogalactan proteins (AGPs). The expression patterns of P4Hs and AGPs under saline conditions showed cultivar-dependent differences in leaves and roots. In the tolerant cultivars, no changes in OeP4H and OeAGP mRNAs were observed, while in the sensitive cultivars, the majority of OeP4Hs and OeAGPs were upregulated in leaves. Immunodetection showed that the AGP signal intensity and the cortical cell size, shape and intercellular spaces under saline conditions were similar to the control in Arvanitolia, while in Koroneiki, a weak AGP signal was associated with irregular cells and intercellular spaces, leading to aerenchyma formation after 45 days of NaCl treatment. Moreover, the acceleration of endodermal development and the formation of exodermal and cortical cells with thickened cell walls were observed, and an overall decrease in the abundance of cell wall homogalacturonans was detected in salt-treated roots. In conclusion, Arvanitolia and Lefkolia exhibited the highest adaptive capacity to salinity, indicating that their use as rootstocks might provide increased tolerance to irrigation with saline water.
Collapse
Affiliation(s)
- Aristotelis Azariadis
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Filippos Vouligeas
- Department of Botany, Faculty of Biology, University of Athens, 15784 Athens, Greece
| | - Elige Salame
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Mohamed Kouhen
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Myrto Rizou
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Kostantinos Blazakis
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Penelope Sotiriou
- Department of Botany, Faculty of Biology, University of Athens, 15784 Athens, Greece
| | - Lamia Ezzat
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Khansa Mekkaoui
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Aline Monzer
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Afroditi Krokida
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | | | - Faten Dandachi
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Boushra Shalha
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | | | - Eleftheria Figgou
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| | - Eleni Giannoutsou
- Department of Botany, Faculty of Biology, University of Athens, 15784 Athens, Greece
| | - Panagiotis Kalaitzis
- Department of Horticultural Genetics & Biotechnology, Mediterranean Agronomic Institute of Chania, Alsyllion Agrokipiou, 73100 Chania, Greece
| |
Collapse
|
21
|
Ma Y, Shafee T, Mudiyanselage AM, Ratcliffe J, MacMillan CP, Mansfield SD, Bacic A, Johnson KL. Distinct functions of FASCILIN-LIKE ARABINOGALACTAN PROTEINS relate to domain structure. PLANT PHYSIOLOGY 2023; 192:119-132. [PMID: 36797772 PMCID: PMC10152678 DOI: 10.1093/plphys/kiad097] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 05/03/2023]
Abstract
The role of glycoproteins as key cell surface molecules during development and stress is well established; yet, the relationship between their structural features and functional mechanisms is poorly defined. FASCICLIN-LIKE ARABINOGALACTAN PROTEINs (FLAs), which impact plant growth and development, are an excellent example of a glycoprotein family with a complex multidomain structure. FLAs combine globular fasciclin-like (FAS1) domains with regions that are intrinsically disordered and contain glycomotifs for directing the addition of O-linked arabinogalactan (AG) glycans. Additional posttranslational modifications on FLAs include N-linked glycans in the FAS1 domains, a cleaved signal peptide at the N terminus, and often a glycosylphosphatidylinositol (GPI) anchor signal sequence at the C terminus. The roles of glycosylation, the GPI anchor, and FAS1 domain functions in the polysaccharide-rich extracellular matrix of plants remain unclear, as do the relationships between them. In this study, we examined sequence-structure-function relationships of Arabidopsis (Arabidopsis thaliana) FLA11, demonstrated to have roles in secondary cell wall (SCW) development, by introducing domain mutations and functional specialization through domain swaps with FLA3 and FLA12. We identified FAS1 domains as essential for FLA function, differentiating FLA11/FLA12, with roles in SCW development, from FLA3, specific to flowers and involved in pollen development. The GPI anchor and AG glycosylation co-regulate the cell surface location and release of FLAs into cell walls. The AG glycomotif sequence closest to the GPI anchor (AG2) is a major feature differentiating FLA11 from FLA12. The results of our study show that the multidomain structure of different FLAs influences their subcellular location and biological functions during plant development.
Collapse
Affiliation(s)
- Yingxuan Ma
- School of BioSciences, University of Melbourne, Parkville, VIC 3052, Australia
- La Trobe Institute for Sustainable Agriculture and Food, Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Thomas Shafee
- La Trobe Institute for Sustainable Agriculture and Food, Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Asha M Mudiyanselage
- La Trobe Institute for Sustainable Agriculture and Food, Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Julian Ratcliffe
- La Trobe Institute for Sustainable Agriculture and Food, Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Colleen P MacMillan
- CSIRO, Agriculture and Food, CSIRO Black Mountain Science and Innovation Park, Canberra, ACT 2601, Australia
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Antony Bacic
- La Trobe Institute for Sustainable Agriculture and Food, Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, VIC 3086, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin'an, Hangzhou 311300, China
| | - Kim L Johnson
- La Trobe Institute for Sustainable Agriculture and Food, Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, VIC 3086, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin'an, Hangzhou 311300, China
| |
Collapse
|
22
|
Moreira D, Kaur D, Pereira AM, Held MA, Showalter AM, Coimbra S. Type II arabinogalactans initiated by hydroxyproline-O-galactosyltransferases play important roles in pollen-pistil interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:371-389. [PMID: 36775989 DOI: 10.1111/tpj.16141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/01/2023] [Indexed: 05/10/2023]
Abstract
Arabinogalactan-proteins (AGPs) are hydroxyproline-rich glycoproteins containing a high sugar content and are widely distributed in the plant kingdom. AGPs have long been suggested to play important roles in sexual plant reproduction. The synthesis of their complex carbohydrates is initiated by a family of hydroxyproline galactosyltransferase (Hyp-GALT) enzymes which add the first galactose to Hyp residues in the protein backbone. Eight Hyp-GALT enzymes have been identified so far, and in the present work a mutant affecting five of these enzymes (galt2galt5galt7galt8galt9) was analyzed regarding the reproductive process. The galt25789 mutant presented a low seed set, and reciprocal crosses indicated a significant female gametophytic contribution to this mutant phenotype. Mutant ovules revealed abnormal callose accumulation inside the embryo sac and integument defects at the micropylar region culminating in defects in pollen tube reception. In addition, immunolocalization and biochemical analyses allowed the detection of a reduction in the amount of glucuronic acid in mutant ovary AGPs. Dramatically low amounts of high-molecular-weight Hyp-O-glycosides obtained following size exclusion chromatography of base-hydrolyzed mutant AGPs compared to the wild type indicated the presence of underglycosylated AGPs in the galt25789 mutant, while the monosaccharide composition of these Hyp-O-glycosides displayed no significant changes compared to the wild-type Hyp-O-glycosides. The present work demonstrates the functional importance of the carbohydrate moieties of AGPs in ovule development and pollen-pistil interactions.
Collapse
Affiliation(s)
- Diana Moreira
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Dasmeet Kaur
- Department of Environmental & Plant Biology, Ohio University, Athens, Ohio, 45701-2979, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio, 45701, USA
| | - Ana Marta Pereira
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Michael A Held
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio, 45701, USA
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio, 45701, USA
| | - Allan M Showalter
- Department of Environmental & Plant Biology, Ohio University, Athens, Ohio, 45701-2979, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio, 45701, USA
| | - Sílvia Coimbra
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| |
Collapse
|
23
|
Tan L, Xu J, Held M, Lamport DTA, Kieliszewski M. Arabinogalactan Structures of Repetitive Serine-Hydroxyproline Glycomodule Expressed by Arabidopsis Cell Suspension Cultures. PLANTS (BASEL, SWITZERLAND) 2023; 12:1036. [PMID: 36903897 PMCID: PMC10005752 DOI: 10.3390/plants12051036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Arabinogalactan-proteins (AGPs) are members of the hydroxyproline-rich glycoprotein (HRGP) superfamily. They are heavily glycosylated with arabinogalactans, which are usually composed of a β-1,3-linked galactan backbone with 6-O-linked galactosyl, oligo-1,6-galactosyl, or 1,6-galactan side chains that are further decorated with arabinosyl, glucuronosyl, rhamnosyl, and/or fucosyl residues. Here, our work with Hyp-O-polysaccharides isolated from (Ser-Hyp)32-EGFP (enhanced green fluorescent protein) fusion glycoproteins overexpressed in transgenic Arabidopsis suspension culture is consistent with the common structural features of AGPs isolated from tobacco. In addition, this work confirms the presence of β-1,6-linkage on the galactan backbone identified previously in AGP fusion glycoproteins expressed in tobacco suspension culture. Furthermore, the AGPs expressed in Arabidopsis suspension culture lack terminal-rhamnosyl residues and have a much lower level of glucuronosylation compared with those expressed in tobacco suspension culture. These differences not only suggest the presence of distinct glycosyl transferases for AGP glycosylation in the two systems, but also indicate the existence of minimum AG structures for type II AG functional features.
Collapse
Affiliation(s)
- Li Tan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, Athens, GA 30602, USA
| | - Jianfeng Xu
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
| | - Michael Held
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | | | - Marcia Kieliszewski
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
24
|
Cheng Y, Liang C, Qiu Z, Zhou S, Liu J, Yang Y, Wang R, Yin J, Ma C, Cui Z, Song J, Li D. Jasmonic acid negatively regulates branch growth in pear. FRONTIERS IN PLANT SCIENCE 2023; 14:1105521. [PMID: 36824194 PMCID: PMC9941643 DOI: 10.3389/fpls.2023.1105521] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The quality of seedlings is an important factor for development of the pear industry. A strong seedling with few branches and suitable internodes is ideal material as a rootstock for grafting and breeding. Several branching mutants of pear rootstocks were identified previously. In the present study, 'QAU-D03' (Pyrus communis L.) and it's mutants were used to explore the mechanism that affects branch formation by conducting phenotypic trait assessment, hormone content analysis, and transcriptome analysis. The mutant plant (MP) showed fewer branches, shorter 1-year-old shoots, and longer petiole length, compared to original plants (OP), i.e., wild type. Endogenous hormone analysis revealed that auxin, cytokinin, and jasmonic acid contents in the stem tips of MP were significantly higher than those of the original plants. In particular, the jasmonic acid content of the MP was 1.8 times higher than that of the original plants. Transcriptome analysis revealed that PcCOI1, which is a transcriptional regulatory gene downstream of the jasmonic acid signaling pathway, was expressed more highly in the MP than in the original plants, whereas the expression levels of PcJAZ and PcMYC were reduced in the MP compared with that of the original plants. In response to treatment with exogenous methyl jasmonate, the original plants phenotype was consistent with that of the MP in developing less branches. These results indicate that jasmonic acid negatively regulates branch growth of pear trees and that jasmonic acid downstream regulatory genes play a crucial role in regulating branching.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Chenglin Liang
- Haidu College, Qingdao Agricultural University, Laiyang, China
| | - Zhiyun Qiu
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Siqi Zhou
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Jianlong Liu
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Yingjie Yang
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Ran Wang
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Jie Yin
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Chunhui Ma
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Zhenhua Cui
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Jiankun Song
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Dingli Li
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
25
|
Leszczuk A, Kalaitzis P, Kulik J, Zdunek A. Review: structure and modifications of arabinogalactan proteins (AGPs). BMC PLANT BIOLOGY 2023; 23:45. [PMID: 36670377 PMCID: PMC9854139 DOI: 10.1186/s12870-023-04066-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
The aim of this report is to provide general information on the molecular structure and synthesis of arabinogalactan proteins (AGPs) in association to their physiological significance. Assessment of genetic modifications of the activity of enzymes involved in the AGP biosynthesis is an efficient tool to study AGP functions. Thus, P4H (prolyl 4 hydroxylase) mutants, GLCAT (β-glucuronosyltransferase) mutants, and GH43 (glycoside hydrolase family 43) mutants have been described. We focused on the overview of AGPs modifications observed at the molecular, cellular, and organ levels. Inhibition of the hydroxylation process results in an increase in the intensity of cell divisions and thus, has an impact on root system length and leaf area. In turn, overexpression of P4H genes stimulates the density of root hairs. A mutation in GLCAT genes responsible for the transfer of glucuronic acid to the AGP molecule revealed that the reduction of GlcA in AGP disrupts the substantial assembly of the primary cell wall. Furthermore, silencing of genes encoding GH43, which has the ability to hydrolyze the AGP glycan by removing incorrectly synthesized β-1,3-galactans, induces changes in the abundance of other cell wall constituents, which finally leads to root growth defects. This information provides insight into AGPs as a crucial players in the structural interactions present in the plant extracellular matrix.
Collapse
Affiliation(s)
- Agata Leszczuk
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Panagiotis Kalaitzis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania, P.O. Box 85, 73100 Chania, Greece
| | - Joanna Kulik
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
26
|
Kutsuno T, Chowhan S, Kotake T, Takahashi D. Temporal cell wall changes during cold acclimation and deacclimation and their potential involvement in freezing tolerance and growth. PHYSIOLOGIA PLANTARUM 2023; 175:e13837. [PMID: 36461890 PMCID: PMC10107845 DOI: 10.1111/ppl.13837] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 05/19/2023]
Abstract
Plants adapt to freezing stress through cold acclimation, which is induced by nonfreezing low temperatures and accompanied by growth arrest. A later increase in temperature after cold acclimation leads to rapid loss of freezing tolerance and growth resumption, a process called deacclimation. Appropriate regulation of the trade-off between freezing tolerance and growth is necessary for efficient plant development in a changing environment. The cell wall, which mainly consists of polysaccharide polymers, is involved in both freezing tolerance and growth. Still, it is unclear how the balance between freezing tolerance and growth is affected during cold acclimation and deacclimation by the changes in cell wall structure and what role is played by its monosaccharide composition. Therefore, to elucidate the regulatory mechanisms controlling freezing tolerance and growth during cold acclimation and deacclimation, we investigated cell wall changes in detail by sequential fractionation and monosaccharide composition analysis in the model plant Arabidopsis thaliana, for which a plethora of information and mutant lines are available. We found that arabinogalactan proteins and pectic galactan changed in close coordination with changes in freezing tolerance and growth during cold acclimation and deacclimation. On the other hand, arabinan and xyloglucan did not return to nonacclimation levels after deacclimation but stabilized at cold acclimation levels. This indicates that deacclimation does not completely restore cell wall composition to the nonacclimated state but rather changes it to a specific novel composition that is probably a consequence of the loss of freezing tolerance and provides conditions for growth resumption.
Collapse
Affiliation(s)
- Tatsuya Kutsuno
- Graduate School of Science & EngineeringSaitama UniversitySaitamaJapan
| | - Sushan Chowhan
- Graduate School of Science & EngineeringSaitama UniversitySaitamaJapan
| | - Toshihisa Kotake
- Graduate School of Science & EngineeringSaitama UniversitySaitamaJapan
| | - Daisuke Takahashi
- Graduate School of Science & EngineeringSaitama UniversitySaitamaJapan
| |
Collapse
|
27
|
Teh OK, Singh P, Ren J, Huang LT, Ariyarathne M, Salamon BP, Wang Y, Kotake T, Fujita T. Surface-localized glycoproteins act through class C ARFs to fine-tune gametophore initiation in Physcomitrium patens. Development 2022; 149:282110. [PMID: 36520083 DOI: 10.1242/dev.200370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 10/17/2022] [Indexed: 12/23/2022]
Abstract
Arabinogalactan proteins are functionally diverse cell wall structural glycoproteins that have been implicated in cell wall remodeling, although the mechanistic actions remain elusive. Here, we identify and characterize two AGP glycoproteins, SLEEPING BEAUTY (SB) and SB-like (SBL), that negatively regulate the gametophore bud initiation in Physcomitrium patens by dampening cell wall loosening/softening. Disruption of SB and SBL led to accelerated gametophore formation and altered cell wall compositions. The function of SB is glycosylation dependent and genetically connected with the class C auxin response factor (ARF) transcription factors PpARFC1B and PpARFC2. Transcriptomics profiling showed that SB upregulates PpARFC2, which in turn suppresses a range of cell wall-modifying genes that are required for cell wall loosening/softening. We further show that PpARFC2 binds directly to multiple AuxRE motifs on the cis-regulatory sequences of PECTIN METHYLESTERASE to suppress its expression. Hence, our results demonstrate a mechanism by which the SB modulates the strength of intracellular auxin signaling output, which is necessary to fine-tune the timing of gametophore initials formation.
Collapse
Affiliation(s)
- Ooi Kock Teh
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec.2, Academia Rd., Nankang, Taipei 11529, Taiwan.,Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Prerna Singh
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Junling Ren
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Lin Tzu Huang
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec.2, Academia Rd., Nankang, Taipei 11529, Taiwan
| | - Menaka Ariyarathne
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec.2, Academia Rd., Nankang, Taipei 11529, Taiwan
| | - Benjamin Prethiviraj Salamon
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec.2, Academia Rd., Nankang, Taipei 11529, Taiwan
| | - Yu Wang
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec.2, Academia Rd., Nankang, Taipei 11529, Taiwan
| | - Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Tomomichi Fujita
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
28
|
Moreira D, Lopes AL, Silva J, Ferreira MJ, Pinto SC, Mendes S, Pereira LG, Coimbra S, Pereira AM. New insights on the expression patterns of specific Arabinogalactan proteins in reproductive tissues of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:1083098. [PMID: 36531351 PMCID: PMC9755587 DOI: 10.3389/fpls.2022.1083098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/17/2022] [Indexed: 05/25/2023]
Abstract
Arabinogalactan proteins (AGPs) are hydroxyproline-rich glycoproteins containing a high proportion of carbohydrates, widely distributed in the plant kingdom and ubiquitously present in land plants. AGPs have long been suggested to play important roles in plant reproduction and there is already evidence that specific glycoproteins are essential for male and female gametophyte development, pollen tube growth and guidance, and successful fertilization. However, the functions of many of these proteins have yet to be uncovered, mainly due to the difficulty to study individual AGPs. In this work, we generated molecular tools to analyze the expression patterns of a subgroup of individual AGPs in different Arabidopsis tissues, focusing on reproductive processes. This study focused on six AGPs: four classical AGPs (AGP7, AGP25, AGP26, AGP27), one AG peptide (AGP24) and one chimeric AGP (AGP31). These AGPs were first selected based on their predicted expression patterns along the reproductive tissues from available RNA-seq data. Promoter analysis using β-glucuronidase fusions and qPCR in different Arabidopsis tissues allowed to confirm these predictions. AGP7 was mainly expressed in female reproductive tissues, more precisely in the style, funiculus, and integuments near the micropyle region. AGP25 was found to be expressed in the style, septum and ovules with higher expression in the chalaza and funiculus tissues. AGP26 was present in the ovules and pistil valves. AGP27 was expressed in the transmitting tissue, septum and funiculus during seed development. AGP24 was expressed in pollen grains, in mature embryo sacs, with highest expression at the chalazal pole and in the micropyle. AGP31 was expressed in the mature embryo sac with highest expression at the chalaza and, occasionally, in the micropyle. For all these AGPs a co-expression analysis was performed providing new hints on its possible functions. This work confirmed the detection in Arabidopsis male and female tissues of six AGPs never studied before regarding the reproductive process. These results provide novel evidence on the possible involvement of specific AGPs in plant reproduction, as strong candidates to participate in pollen-pistil interactions in an active way, which is significant for this field of study.
Collapse
Affiliation(s)
- Diana Moreira
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Ana Lúcia Lopes
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Biosystems and Integrative Sciences Institute – BioISI, Porto, Portugal
| | - Jessy Silva
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
- Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Maria João Ferreira
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Sara Cristina Pinto
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Sara Mendes
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Luís Gustavo Pereira
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- GreenUPorto - Sustainable Agrifood Production Research Centre, Universidade do Porto, Porto, Portugal
| | - Sílvia Coimbra
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Ana Marta Pereira
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| |
Collapse
|
29
|
Herburger K, Głazowska S, Mravec J. Bricks out of the wall: polysaccharide extramural functions. TRENDS IN PLANT SCIENCE 2022; 27:1231-1241. [PMID: 35989161 DOI: 10.1016/j.tplants.2022.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/07/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Plant polysaccharides are components of plant cell walls and/or store energy. However, this oversimplified classification neglects the fact that some cell wall polysaccharides and glycoproteins can localize outside the relatively sharp boundaries of the apoplastic moiety, where they adopt functions not directly related to the cell wall. Such polysaccharide multifunctionality (or 'moonlighting') is overlooked in current research, and in most cases the underlying mechanisms that give rise to unconventional ex muro trafficking, targeting, and functions of polysaccharides and glycoproteins remain elusive. This review highlights major examples of the extramural occurrence of various glycan cell wall components, discusses the possible significance and implications of these phenomena for plant physiology, and lists exciting open questions to be addressed by future research.
Collapse
Affiliation(s)
- Klaus Herburger
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Sylwia Głazowska
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark.
| |
Collapse
|
30
|
He J, Yang B, Hause G, Rössner N, Peiter-Volk T, Schattat MH, Voiniciuc C, Peiter E. The trans-Golgi-localized protein BICAT3 regulates manganese allocation and matrix polysaccharide biosynthesis. PLANT PHYSIOLOGY 2022; 190:2579-2600. [PMID: 35993897 PMCID: PMC9706472 DOI: 10.1093/plphys/kiac387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/18/2022] [Indexed: 05/11/2023]
Abstract
Manganese (Mn2+) is essential for a diversity of processes, including photosynthetic water splitting and the transfer of glycosyl moieties. Various Golgi-localized glycosyltransferases that mediate cell wall matrix polysaccharide biosynthesis are Mn2+ dependent, but the supply of these enzymes with Mn2+ is not well understood. Here, we show that the BIVALENT CATION TRANSPORTER 3 (BICAT3) localizes specifically to trans-cisternae of the Golgi. In agreement with a role in Mn2+ and Ca2+ homeostasis, BICAT3 rescued yeast (Saccharomyces cerevisiae) mutants defective in their translocation. Arabidopsis (Arabidopsis thaliana) knockout mutants of BICAT3 were sensitive to low Mn2+ and high Ca2+ availability and showed altered accumulation of these cations. Despite reduced cell expansion and leaf size in Mn2+-deficient bicat3 mutants, their photosynthesis was improved, accompanied by an increased Mn content of chloroplasts. Growth defects of bicat3 corresponded with an impaired glycosidic composition of matrix polysaccharides synthesized in the trans-Golgi. In addition to the vegetative growth defects, pollen tube growth of bicat3 was heterogeneously aberrant. This was associated with a severely reduced and similarly heterogeneous pectin deposition and caused diminished seed set and silique length. Double mutant analyses demonstrated that the physiological relevance of BICAT3 is distinct from that of ER-TYPE CA2+-ATPASE 3, a Golgi-localized Mn2+/Ca2+-ATPase. Collectively, BICAT3 is a principal Mn2+ transporter in the trans-Golgi whose activity is critical for specific glycosylation reactions in this organelle and for the allocation of Mn2+ between Golgi apparatus and chloroplasts.
Collapse
Affiliation(s)
- Jie He
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Bo Yang
- Independent Junior Research Group—Designer Glycans, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
| | - Gerd Hause
- Biocentre, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Nico Rössner
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Tina Peiter-Volk
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Martin H Schattat
- Plant Physiology, Institute of Biology, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Cătălin Voiniciuc
- Independent Junior Research Group—Designer Glycans, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611, USA
| | | |
Collapse
|
31
|
Pappas D, Giannoutsou E, Panteris E, Gkelis S, Adamakis IDS. Microcystin-LR and cyanobacterial extracts alter the distribution of cell wall matrix components in rice root cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 191:78-88. [PMID: 36195035 DOI: 10.1016/j.plaphy.2022.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacterial toxins (known as cyanotoxins) disrupt the plant cytoskeleton (i.e. microtubules and F-actin), which is implicated in the regulation of cell wall architecture. Therefore, cyanotoxins are also expected to affect cell wall structure and composition. However, the effects of cyanobacterial toxicity on plant cell wall have not been yet thoroughly studied. Accordingly, the alterations of cell wall matrix after treatments with pure microcystin-LR (MC-LR), or cell extracts of one MC-producing and one non-MC-producing Microcystis strain were studied in differentiated Oryza sativa (rice) root cells. Semi-thin transverse sections of variously treated LR-White-embedded roots underwent immunostaining for various cell wall epitopes, including homogalacturonans (HGs), arabinogalactan-proteins (AGPs), and hemicelluloses. Homogalacturonan and arabinan distribution patterns were altered in the affected roots, while a pectin methylesterase (PME) activity assay revealed that PMEs were also affected. Elevated intracellular Ca2+ levels, along with increased callose and mixed linkage glucans (MLGs) deposition, were also observed after treatment. Xyloglucans appeared unaffected and lignification was not observed. The exact mechanism of cyanobacterial toxicity against the cell wall is to be further investigated.
Collapse
Affiliation(s)
- Dimitris Pappas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 541 24, Greece
| | - Eleni Giannoutsou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, Athens, 157 84, Greece
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 541 24, Greece
| | - Spyros Gkelis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 541 24, Greece
| | | |
Collapse
|
32
|
Kikuchi A, Hara K, Yoshimi Y, Soga K, Takahashi D, Kotake T. In vivo structural modification of type II arabinogalactans with fungal endo-β-1, 6-galactanase in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1010492. [PMID: 36438144 PMCID: PMC9682044 DOI: 10.3389/fpls.2022.1010492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Arabinogalactan-proteins (AGPs) are mysterious extracellular glycoproteins in plants. Although AGPs are highly conserved, their molecular functions remain obscure. The physiological importance of AGPs has been extensively demonstrated with β-Yariv reagent, which specifically binds to AGPs and upon introduction into cells, causes various deleterious effects including growth inhibition and programmed cell death. However, structural features of AGPs that determine their functions have not been identified with β-Yariv reagent. It is known that AGPs are decorated with large type II arabinogalactans (AGs), which are necessary for their functions. Type II AGs consist of a β-1,3-galactan main chain and β-1,6-galactan side chains with auxiliary sugar residues such as L-arabinose and 4-O-methyl-glucuronic acid. While most side chains are short, long side chains such as β-1,6-galactohexaose (β-1,6-Gal6) also exist in type II AGs. To gain insight into the structures important for AGP functions, in vivo structural modification of β-1,6-galactan side chains was performed in Arabidopsis. We generated transgenic Arabidopsis plants expressing a fungal endo-β-1,6-galactanase, Tv6GAL, that degrades long side chains specifically under the control of dexamethasone (Dex). Two of 6 transgenic lines obtained showed more than 40 times activity of endo-β-1,6-galactanase when treated with Dex. Structural analysis indicated that long side chains such as β-1,6-Gal5 and β-1,6-Gal6 were significantly reduced compared to wild-type plants. Tv6GAL induction caused retarded growth of seedlings, which had a reduced amount of cellulose in cell walls. These results suggest that long β-1,6-galactan side chains are necessary for normal cellulose synthesis and/or deposition as their defect affects cell growth in plants.
Collapse
Affiliation(s)
- Aina Kikuchi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Katsuya Hara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Yoshihisa Yoshimi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Kouichi Soga
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Daisuke Takahashi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Green Bioscience Research Center, Saitama University, Saitama, Japan
| |
Collapse
|
33
|
Most of the rhamnogalacturonan-I from cultured Arabidopsis cell walls is covalently linked to arabinogalactan-protein. Carbohydr Polym 2022; 301:120340. [DOI: 10.1016/j.carbpol.2022.120340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/16/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
|
34
|
Zhou K. The regulation of the cell wall by glycosylphosphatidylinositol-anchored proteins in Arabidopsis. Front Cell Dev Biol 2022; 10:904714. [PMID: 36036018 PMCID: PMC9412048 DOI: 10.3389/fcell.2022.904714] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
A polysaccharides-based cell wall covers the plant cell, shaping it and protecting it from the harsh environment. Cellulose microfibrils constitute the cell wall backbone and are embedded in a matrix of pectic and hemicellulosic polysaccharides and glycoproteins. Various environmental and developmental cues can regulate the plant cell wall, and diverse glycosylphosphatidylinositol (GPI)-anchored proteins participate in these regulations. GPI is a common lipid modification on eukaryotic proteins, which covalently tethers the proteins to the membrane lipid bilayer. Catalyzed by a series of enzymic complexes, protein precursors are post-translationally modified at their hydrophobic carboxyl-terminus in the endomembrane system and anchored to the lipid bilayer through an oligosaccharidic GPI modification. Ultimately, mature proteins reach the plasma membrane via the secretory pathway facing toward the apoplast and cell wall in plants. In Arabidopsis, more than three hundred GPI-anchored proteins (GPI-APs) have been predicted, and many are reported to be involved in diverse regulations of the cell wall. In this review, we summarize GPI-APs involved in cell wall regulation. GPI-APs are proposed to act as structural components of the cell wall, organize cellulose microfibrils at the cell surface, and during cell wall integrity signaling transduction. Besides regulating protein trafficking, the GPI modification is potentially governed by a GPI shedding system that cleaves and releases the GPI-anchored proteins from the plasma membrane into the cell wall.
Collapse
|
35
|
Liu J, Meng J, Chen H, Li X, Su Z, Chen C, Ning T, He Z, Dai L, Xu C. Different responses of banana classical AGP genes and cell wall AGP components to low-temperature between chilling sensitive and tolerant cultivars. PLANT CELL REPORTS 2022; 41:1693-1706. [PMID: 35789423 DOI: 10.1007/s00299-022-02885-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Seventeen classical MaAGPs and 9 MbAGPs were identified and analyzed. MaAGP1/2/6/9/16/17, the antigens of JIM13 and LM2 antibodies are likely to be involved in banana chilling tolerance. Classical arabinogalactan proteins (AGPs) belong to glycosylphosphatidylinositol-anchored proteins, which are proved to be involved in signaling and cell wall metabolism upon stresses. However, rare information is available on the roles of classical AGPs in low temperature (LT) tolerance. Cultivation of banana in tropical and subtropical region is seriously threatened by LT stress. In the present study, 17 classical MaAGPs and nine MbAGPs in banana A and B genome were identified and characterized, respectively. Great diversity was present among different classical MaAGP/MbAGP members while five members (AGP3/6/11/13/14) showed 100% identity between these two gene families. We further investigated different responses of classical AGPs to LT between a chilling sensitive (CS) and tolerant (CT) banana cultivars. In addition, different changes in the temporal and spatial distribution of cell wall AGP components under LTs between these two cultivars were compared using immunofluorescence labeling. Seven classical MbAGPs were upregulated by LT(s) in the CT cultivar. Classical MaAGP4/6 was induced by LT(s) in both cultivars while MaAGP1/2/9/16/17 only in the CT cultivar. Moreover, these genes showed significantly higher transcription abundance in the CT cultivar than the CS one under LT(s) except classical MaAGP4. Similar results were observed with the epitopes of JIM13 and LM2 antibodies. The antigens of these antibodies and classical MaAGP1/2/6/9/16/17 might be related to LT tolerance of banana. These results provide additional information about plant classical AGPs and their involvement in LT tolerance, as well as their potential as candidate genes to be targeted when breeding CT banana.
Collapse
Affiliation(s)
- Jing Liu
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Meng
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Houbin Chen
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoquan Li
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zuxiang Su
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Chengjie Chen
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Tong Ning
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenting He
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Longyu Dai
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Chunxiang Xu
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
36
|
Wang P, Yamaji N, Ma JF. A Golgi-localized glycosyltransferase, OsGT14;1, is required for growth of both roots and shoots in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:923-935. [PMID: 35791277 DOI: 10.1111/tpj.15897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Glycosyltransferases (GTs) form a large family in plants and are important enzymes for the synthesis of various polysaccharides, but only a few members have been functionally characterized. Here, through mutant screening with gene mapping, we found that an Oryza sativa (rice) mutant with a short-root phenotype was caused by a frame-shift mutation of a gene (OsGT14;1) belonging to the glycosyltransferase gene family 14. Further analysis indicated that the mutant also had a brittle culm and produced lower grain yield compared with wild-type rice, but the roots showed similar root structure and function in terms of the uptake of mineral nutrients. OsGT14;1 was broadly expressed in all organs throughout the entire growth period, with a relatively high expression in the roots, stems, node I and husk. Furthermore, OsGT14;1 was expressed in all tissues of these organs. Subcellular observation revealed that OsGT14;1 encoded a Golgi-localized protein. Mutation of OsGT14;1 resulted in decreased cellulose content and increased hemicellulose, but did not alter pectin in the cell wall of roots and shoots. The knockout of OsGT14;1 did not affect the tolerance to toxic mineral elements, including Al, As, Cd and salt stress, but did increase the sensitivity to low pH. Taken together, OsGT14;1 located at the Golgi is required for growth of both roots and shoots in rice through affecting cellulose synthesis.
Collapse
Affiliation(s)
- Peitong Wang
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| |
Collapse
|
37
|
Lara-Mondragón CM, Dorchak A, MacAlister CA. O-glycosylation of the extracellular domain of pollen class I formins modulates their plasma membrane mobility. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3929-3945. [PMID: 35383367 PMCID: PMC9232206 DOI: 10.1093/jxb/erac131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/31/2022] [Indexed: 06/09/2023]
Abstract
In plant cells, linkage between the cytoskeleton, plasma membrane, and cell wall is crucial for maintaining cell shape. In highly polarized pollen tubes, this coordination is especially important to allow rapid tip growth and successful fertilization. Class I formins contain cytoplasmic actin-nucleating formin homology domains as well as a proline-rich extracellular domain and are candidate coordination factors. Here, using Arabidopsis, we investigated the functional significance of the extracellular domain of two pollen-expressed class I formins: AtFH3, which does not have a polar localization, and AtFH5, which is limited to the growing tip region. We show that the extracellular domain of both is necessary for their function, and identify distinct O-glycans attached to these sequences, AtFH5 being hydroxyproline-arabinosylated and AtFH3 carrying arabinogalactan chains. Loss of hydroxyproline arabinosylation altered the plasma membrane localization of AtFH5 and disrupted actin cytoskeleton organization. Moreover, we show that O-glycans differentially affect lateral mobility in the plasma membrane. Together, our results support a model of protein sub-functionalization in which AtFH5 and AtFH3, restricted to specific plasma membrane domains by their extracellular domains and the glycans attached to them, organize distinct subarrays of actin during pollen tube elongation.
Collapse
Affiliation(s)
- Cecilia M Lara-Mondragón
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Alexandria Dorchak
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
38
|
Arabinogalactan Proteins: Focus on the Role in Cellulose Synthesis and Deposition during Plant Cell Wall Biogenesis. Int J Mol Sci 2022; 23:ijms23126578. [PMID: 35743022 PMCID: PMC9223364 DOI: 10.3390/ijms23126578] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Arabinogalactan proteins (AGPs) belong to a family of glycoproteins that are widely present in plants. AGPs are mostly composed of a protein backbone decorated with complex carbohydrate side chains and are usually anchored to the plasma membrane or secreted extracellularly. A trickle of compelling biochemical and genetic evidence has demonstrated that AGPs make exciting candidates for a multitude of vital activities related to plant growth and development. However, because of the diversity of AGPs, functional redundancy of AGP family members, and blunt-force research tools, the precise functions of AGPs and their mechanisms of action remain elusive. In this review, we put together the current knowledge about the characteristics, classification, and identification of AGPs and make a summary of the biological functions of AGPs in multiple phases of plant reproduction and developmental processes. In addition, we especially discuss deeply the potential mechanisms for AGP action in different biological processes via their impacts on cellulose synthesis and deposition based on previous studies. Particularly, five hypothetical models that may explain the AGP involvement in cellulose synthesis and deposition during plant cell wall biogenesis are proposed. AGPs open a new avenue for understanding cellulose synthesis and deposition in plants.
Collapse
|
39
|
Přerovská T, Jindřichová B, Henke S, Yvin JC, Ferrieres V, Burketová L, Lipovová P, Nguema-Ona E. Arabinogalactan Protein-Like Proteins From Ulva lactuca Activate Immune Responses and Plant Resistance in an Oilseed Crop. FRONTIERS IN PLANT SCIENCE 2022; 13:893858. [PMID: 35668790 PMCID: PMC9164130 DOI: 10.3389/fpls.2022.893858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Natural compounds isolated from macroalgae are promising, ecofriendly, and multifunctional bioinoculants, which have been tested and used in agriculture. Ulvans, for instance, one of the major polysaccharides present in Ulva spp. cell walls, have been tested for their plant growth-promoting properties as well as their ability to activate plant immune defense, on a large variety of crops. Recently, we have characterized for the first time an arabinogalactan protein-like (AGP-like) from Ulva lactuca, which exhibits several features associated to land plant AGPs. In land plant, AGPs were shown to play a role in several plant biological functions, including cell morphogenesis, reproduction, and plant-microbe interactions. Thus, isolated AGP-like proteins may be good candidates for either the plant growth-promoting properties or the activation of plant immune defense. Here, we have isolated an AGP-like enriched fraction from Ulva lactuca and we have evaluated its ability to (i) protect oilseed rape (Brassica napus) cotyledons against Leptosphaeria maculans, and (ii) its ability to activate immune responses. Preventive application of the Ulva AGP-like enriched fraction on oilseed rape, followed by cotyledon inoculation with the fungal hemibiotroph L. maculans, resulted in a major reduction of infection propagation. The noticed reduction correlated with an accumulation of H2O2 in treated cotyledons and with the activation of SA and ET signaling pathways in oilseed rape cotyledons. In parallel, an ulvan was also isolated from Ulva lactuca. Preventive application of ulvan also enhanced plant resistance against L. maculans. Surprisingly, reduction of infection severity was only observed at high concentration of ulvan. Here, no such significant changes in gene expression and H2O2 production were observed. Together, this study indicates that U. lactuca AGP-like glycoproteins exhibit promising elicitor activity and that plant eliciting properties of Ulva extract, might result not only from an ulvan-originated eliciting activities, but also AGP-like originated.
Collapse
Affiliation(s)
- Tereza Přerovská
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, Rennes, France
| | - Barbora Jindřichová
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Svatopluk Henke
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Jean-Claude Yvin
- Agro Innovation International TIMAC AGRO, Laboratoire de Nutrition Végétale, Pôle Stress Biotique, Saint Malo, France
| | - Vincent Ferrieres
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, Rennes, France
| | - Lenka Burketová
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Petra Lipovová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Eric Nguema-Ona
- Agro Innovation International TIMAC AGRO, Laboratoire de Nutrition Végétale, Pôle Stress Biotique, Saint Malo, France
| |
Collapse
|
40
|
Dora S, Terrett OM, Sánchez-Rodríguez C. Plant-microbe interactions in the apoplast: Communication at the plant cell wall. THE PLANT CELL 2022; 34:1532-1550. [PMID: 35157079 PMCID: PMC9048882 DOI: 10.1093/plcell/koac040] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/29/2022] [Indexed: 05/20/2023]
Abstract
The apoplast is a continuous plant compartment that connects cells between tissues and organs and is one of the first sites of interaction between plants and microbes. The plant cell wall occupies most of the apoplast and is composed of polysaccharides and associated proteins and ions. This dynamic part of the cell constitutes an essential physical barrier and a source of nutrients for the microbe. At the same time, the plant cell wall serves important functions in the interkingdom detection, recognition, and response to other organisms. Thus, both plant and microbe modify the plant cell wall and its environment in versatile ways to benefit from the interaction. We discuss here crucial processes occurring at the plant cell wall during the contact and communication between microbe and plant. Finally, we argue that these local and dynamic changes need to be considered to fully understand plant-microbe interactions.
Collapse
|
41
|
Mi L, Mo A, Yang J, Liu H, Ren D, Chen W, Long H, Jiang N, Zhang T, Lu P. Arabidopsis Novel Microgametophyte Defective Mutant 1 Is Required for Pollen Viability via Influencing Intine Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:814870. [PMID: 35498668 PMCID: PMC9039731 DOI: 10.3389/fpls.2022.814870] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/03/2022] [Indexed: 05/28/2023]
Abstract
The pollen intine layer is necessary for male fertility in flowering plants. However, the mechanisms behind the developmental regulation of intine formation still remain largely unknown. Here, we identified a positive regulator, Arabidopsis novel microgametophyte defective mutant 1 (AtNMDM1), which influences male fertility by regulating intine formation. The AtNMDM1, encoding a pollen nuclei-localized protein, was highly expressed in the pollens at the late anther stages, 10-12. Both the mutations and the knock-down of AtNMDM1 resulted in pollen defects and significantly lowered the seed-setting rates. Genetic transmission analysis indicated that AtNMDM1 is a microgametophyte lethal gene. Calcofluor white staining revealed that abnormal cellulose distribution was present in the aborted pollen. Ultrastructural analyses showed that the abnormal intine rather than the exine led to pollen abortion. We further found, using transcriptome analysis, that cell wall modification was the most highly enriched gene ontology (GO) term used in the category of biological processes. Notably, two categories of genes, Arabinogalactan proteins (AGPs) and pectin methylesterases (PMEs) were greatly reduced, which were associated with pollen intine formation. In addition, we also identified another regulator, AtNMDM2, which interacted with AtNMDM1 in the pollen nuclei. Taken together, we identified a novel regulator, AtNMDM1 that affected cellulose distribution in the intine by regulating intine-related gene expression; furthermore, these results provide insights into the molecular mechanisms of pollen intine development.
Collapse
Affiliation(s)
- Limin Mi
- School of Life Sciences, Fudan University, Shanghai, China
| | - Aowei Mo
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jiange Yang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Hui Liu
- School of Life Sciences, Fudan University, Shanghai, China
| | - Ding Ren
- School of Life Sciences, Fudan University, Shanghai, China
| | - Wanli Chen
- School of Life Sciences, Fudan University, Shanghai, China
| | - Haifei Long
- School of Life Sciences, Fudan University, Shanghai, China
| | - Ning Jiang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Tian Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Pingli Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
42
|
Płachno BJ, Kapusta M, Stolarczyk P, Świątek P. Arabinogalactan Proteins in the Digestive Glands of Dionaea muscipula J.Ellis Traps. Cells 2022; 11:cells11030586. [PMID: 35159395 PMCID: PMC8833951 DOI: 10.3390/cells11030586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 01/05/2023] Open
Abstract
The arabinogalactan proteins (AGP) play important roles in plant growth and developmental processes. However, to the best of our knowledge, there is no information on the spatial distribution of AGP in the plant organs and tissues of carnivorous plants during their carnivorous cycle. The Dionaea muscipula trap forms an "external stomach" and is equipped with an effective digestive-absorbing system. Because its digestive glands are composed of specialized cells, the hypothesis that their cell walls are also very specialized in terms of their composition (AGP) compared to the cell wall of the trap epidermal and parenchyma cells was tested. Another aim of this study was to determine whether there is a spatio-temporal distribution of the AGP in the digestive glands during the secretory cycle of D. muscipula. Antibodies that act against AGPs, including JIM8, JIM13 and JIM14, were used. The localization of the examined compounds was determined using immunohistochemistry techniques and immunogold labeling. In both the un-fed and fed traps, there was an accumulation of AGP in the cell walls of the gland secretory cells. The epitope, which is recognized by JIM14, was a useful marker of the digestive glands. The secretory cells of the D. muscipula digestive glands are transfer cells and an accumulation of specific AGP was at the site where the cell wall labyrinth occurred. Immunogold labeling confirmed an occurrence of AGP in the cell wall ingrowths. There were differences in the AGP occurrence (labeled with JIM8 and JIM13) in the cell walls of the gland secretory cells between the unfed and fed traps.
Collapse
Affiliation(s)
- Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Kraków, Poland
- Correspondence: ; Tel.: +48-12-664-60-39
| | - Małgorzata Kapusta
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308 Gdańsk, Poland;
| | - Piotr Stolarczyk
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54 Ave., 31-425 Kraków, Poland;
| | - Piotr Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland;
| |
Collapse
|
43
|
Ajayi OO, Held MA, Showalter AM. Glucuronidation of type II arabinogalactan polysaccharides function in sexual reproduction of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:164-181. [PMID: 34726315 DOI: 10.1111/tpj.15562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Arabinogalactan proteins (AGPs) are complex, hyperglycosylated plant cell wall proteins with little known about the biological roles of their glycan moieties in sexual reproduction. Here, we report that GLCAT14A, GLCAT14B, and GLCAT14C, three enzymes responsible for the addition of glucuronic acid residues to AGPs, function in pollen development, polytubey block, and normal embryo development in Arabidopsis. Using biochemical and immunolabeling techniques, we demonstrated that the loss of function of the GLCAT14A, GLCAT14B, and GLCAT14C genes resulted in disorganization of the reticulate structure of the exine wall, abnormal development of the intine layer, and collapse of pollen grains in glcat14a/b and glcat14a/b/c mutants. Synchronous development between locules within the same anther was also lost in some glcat14a/b/c stamens. In addition, we observed excessive attraction of pollen tubes targeting glcat14a/b/c ovules, indicating that the polytubey block mechanism was compromised. Monosaccharide composition analysis revealed significant reductions in all sugars in glcat14a/b and glcat14a/b/c mutants except for arabinose and galactose, while immunolabeling showed decreased amounts of AGP sugar epitopes recognized by glcat14a/b and glcat14a/b/c mutants compared with the wild type. This work demonstrates the important roles that AG glucuronidation plays in Arabidopsis sexual reproduction and reproductive development.
Collapse
Affiliation(s)
- Oyeyemi O Ajayi
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA
| | - Michael A Held
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Allan M Showalter
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
44
|
Cai K, Zhou X, Li X, Kang Y, Yang X, Cui Y, Li G, Pei X, Zhao X. Insight Into the Multiple Branches Traits of a Mutant in Larix olgensis by Morphological, Cytological, and Transcriptional Analyses. FRONTIERS IN PLANT SCIENCE 2021; 12:787661. [PMID: 34992622 PMCID: PMC8724527 DOI: 10.3389/fpls.2021.787661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Larix olgensis is a tall deciduous tree species that has many applications in the wood fiber industry. Bud mutations are somatic mutations in plants and are considered an ideal material to identify and describe the molecular mechanism of plant mutation. However, the molecular regulatory mechanisms of bud mutations in L. olgensis remain unknown. In this study, dwarfed (or stunted), short-leaved, and multi-branched mutants of L. olgensis were found and utilized to identify crucial genes and regulatory networks controlling the multiple branch structure of L. olgensis. The physiological data showed that the branch number, bud number, fresh and dry weight, tracheid length, tracheid length-width ratio, inner tracheid diameter, and epidermal cell area of mutant plants were higher than that of wild-type plants. Hormone concentration measurements found that auxin, gibberellin, and abscisic acid in the mutant leaves were higher than that in wild-type plants. Moreover, the transcriptome sequencing of all samples using the Illumina Hiseq sequencing platform. Transcriptome analysis identified, respectively, 632, 157, and 199 differentially expressed genes (DEGs) in buds, leaves, and stems between mutant plants and wild type. DEGs were found to be involved in cell division and differentiation, shoot apical meristem activity, plant hormone biosynthesis, and sugar metabolism. Furthermore, bZIP, WRKY, and AP2/ERF family transcription factors play a role in bud formation. This study provides new insights into the molecular mechanisms of L. olgensis bud and branch formation and establishes a fundamental understanding of the breeding of new varieties in L. olgensis.
Collapse
Affiliation(s)
- Kewei Cai
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xueyan Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Ye Kang
- Seed Orchard of Siping, Siping, China
| | | | | | | | - Xiaona Pei
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Xiyang Zhao
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| |
Collapse
|
45
|
Kaur D, Held MA, Smith MR, Showalter AM. Functional characterization of hydroxyproline-O-galactosyltransferases for Arabidopsis arabinogalactan-protein synthesis. BMC PLANT BIOLOGY 2021; 21:590. [PMID: 34903166 PMCID: PMC8667403 DOI: 10.1186/s12870-021-03362-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/24/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Arabinogalactan-proteins (AGPs) are structurally complex hydroxyproline-rich cell wall glycoproteins ubiquitous in the plant kingdom. AGPs biosynthesis involves a series of post-translational modifications including the addition of type II arabinogalactans to non-contiguous Hyp residues. To date, eight Hyp-galactosyltransferases (Hyp-GALTs; GALT2-GALT9) belonging to CAZy GT31, are known to catalyze the addition of the first galactose residues to AGP protein backbones and enable subsequent AGP glycosylation. The extent of genetic redundancy, however, remains to be elucidated for the Hyp-GALT gene family. RESULTS To examine their gene redundancy and functions, we generated various multiple gene knock-outs, including a triple mutant (galt5 galt8 galt9), two quadruple mutants (galt2 galt5 galt7 galt8, galt2 galt5 galt7 galt9), and one quintuple mutant (galt2 galt5 galt7 galt8 galt9), and comprehensively examined their biochemical and physiological phenotypes. The key findings include: AGP precipitations with β-Yariv reagent showed that GALT2, GALT5, GALT7, GALT8 and GALT9 act redundantly with respect to AGP glycosylation in cauline and rosette leaves, while the activity of GALT7, GALT8 and GALT9 dominate in the stem, silique and flowers. Monosaccharide composition analysis showed that galactose was decreased in the silique and root AGPs of the Hyp-GALT mutants. TEM analysis of 25789 quintuple mutant stems indicated cell wall defects coincident with the observed developmental and growth impairment in these Hyp-GALT mutants. Correlated with expression patterns, galt2, galt5, galt7, galt8, and galt9 display equal additive effects on insensitivity to β-Yariv-induced growth inhibition, silique length, plant height, and pollen viability. Interestingly, galt7, galt8, and galt9 contributed more to primary root growth and root tip swelling under salt stress, whereas galt2 and galt5 played more important roles in seed morphology, germination defects and seed set. Pollen defects likely contributed to the reduced seed set in these mutants. CONCLUSION Additive and pleiotropic effects of GALT2, GALT5, GALT7, GALT8 and GALT9 on vegetative and reproductive growth phenotypes were teased apart via generation of different combinations of Hyp-GALT knock-out mutants. Taken together, the generation of higher order Hyp-GALT mutants demonstrate the functional importance of AG polysaccharides decorating the AGPs with respect to various aspects of plant growth and development.
Collapse
Affiliation(s)
- Dasmeet Kaur
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701-2979 USA
- Department of Environmental & Plant Biology, Ohio University, Athens, OH 45701-2979 USA
| | - Michael A. Held
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701-2979 USA
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH 45701-2979 USA
| | - Mountain R. Smith
- Department of Environmental & Plant Biology, Ohio University, Athens, OH 45701-2979 USA
| | - Allan M. Showalter
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701-2979 USA
- Department of Environmental & Plant Biology, Ohio University, Athens, OH 45701-2979 USA
| |
Collapse
|
46
|
Resentini F, Ruberti C, Grenzi M, Bonza MC, Costa A. The signatures of organellar calcium. PLANT PHYSIOLOGY 2021; 187:1985-2004. [PMID: 33905517 PMCID: PMC8644629 DOI: 10.1093/plphys/kiab189] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/10/2021] [Indexed: 05/23/2023]
Abstract
Recent insights about the transport mechanisms involved in the in and out of calcium ions in plant organelles, and their role in the regulation of cytosolic calcium homeostasis in different signaling pathways.
Collapse
Affiliation(s)
| | - Cristina Ruberti
- Department of Biosciences, University of Milan, Milano 20133, Italy
| | - Matteo Grenzi
- Department of Biosciences, University of Milan, Milano 20133, Italy
| | | | - Alex Costa
- Department of Biosciences, University of Milan, Milano 20133, Italy
- Institute of Biophysics, National Research Council of Italy (CNR), Milano 20133, Italy
| |
Collapse
|
47
|
Haas KT, Wightman R, Peaucelle A, Höfte H. The role of pectin phase separation in plant cell wall assembly and growth. Cell Surf 2021; 7:100054. [PMID: 34141960 PMCID: PMC8185244 DOI: 10.1016/j.tcsw.2021.100054] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 01/12/2023] Open
Abstract
A rapidly increasing body of literature suggests that many biological processes are driven by phase separation within polymer mixtures. Liquid-liquid phase separation can lead to the formation of membrane-less organelles, which are thought to play a wide variety of roles in cell metabolism, gene regulation or signaling. One of the characteristics of these systems is that they are poised at phase transition boundaries, which makes them perfectly suited to elicit robust cellular responses to often very small changes in the cell's "environment". Recent observations suggest that, also in the semi-solid environment of plant cell walls, phase separation not only plays a role in wall patterning, hydration and stress relaxation during growth, but also may provide a driving force for cell wall expansion. In this context, pectins, the major polyanionic polysaccharides in the walls of growing cells, appear to play a critical role. Here, we will discuss (i) our current understanding of the structure-function relationship of pectins, (ii) in vivo evidence that pectin modification can drive critical phase transitions in the cell wall, (iii) how such phase transitions may drive cell wall expansion in addition to turgor pressure and (iv) the periodic cellular processes that may control phase transitions underlying cell wall assembly and expansion.
Collapse
Affiliation(s)
- Kalina T. Haas
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Raymond Wightman
- Microscopy Core Facility, Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Alexis Peaucelle
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Herman Höfte
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
48
|
Domozych DS, Kozel L, Palacio-Lopez K. The effects of osmotic stress on the cell wall-plasma membrane domains of the unicellular streptophyte, Penium margaritaceum. PROTOPLASMA 2021; 258:1231-1249. [PMID: 33928433 DOI: 10.1007/s00709-021-01644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Penium margaritaceum is a unicellular zygnematophyte (basal Streptophyteor Charophyte) that has been used as a model organism for the study of cell walls of Streptophytes and for elucidating organismal adaptations that were key in the evolution of land plants.. When Penium is incubated in sorbitol-enhance medium, i.e., hyperosmotic medium, 1000-1500 Hechtian strands form within minutes and connect the plasma membrane to the cell wall. As cells acclimate to this osmotic stress over time, further significant changes occur at the cell wall and plasma membrane domains. The homogalacturonan lattice of the outer cell wall layer is significantly reduced and is accompanied by the formation of a highly elongate, "filamentous" phenotype. Distinct peripheral thickenings appear between the CW and plasma membrane and contain membranous components and a branched granular matrix. Monoclonal antibody labeling of these thickenings indicates the presence of rhamnogalacturonan-I epitopes. Acclimatization also results in the proliferation of the cell's vacuolar networks and macroautophagy. Penium's ability to acclimatize to osmotic stress offers insight into the transition of ancient zygnematophytes from an aquatic to terrestrial existence.
Collapse
Affiliation(s)
- David S Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY, 12866, USA.
| | - Li Kozel
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY, 12866, USA
| | - Kattia Palacio-Lopez
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
49
|
Camacho-Fernández C, Seguí-Simarro JM, Mir R, Boutilier K, Corral-Martínez P. Cell Wall Composition and Structure Define the Developmental Fate of Embryogenic Microspores in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:737139. [PMID: 34691114 PMCID: PMC8526864 DOI: 10.3389/fpls.2021.737139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Microspore cultures generate a heterogeneous population of embryogenic structures that can be grouped into highly embryogenic structures [exine-enclosed (EE) and loose bicellular structures (LBS)] and barely embryogenic structures [compact callus (CC) and loose callus (LC) structures]. Little is known about the factors behind these different responses. In this study we performed a comparative analysis of the composition and architecture of the cell walls of each structure by confocal and quantitative electron microscopy. Each structure presented specific cell wall characteristics that defined their developmental fate. EE and LBS structures, which are responsible for most of the viable embryos, showed a specific profile with thin walls rich in arabinogalactan proteins (AGPs), highly and low methyl-esterified pectin and callose, and a callose-rich subintinal layer not necessarily thick, but with a remarkably high callose concentration. The different profiles of EE and LBS walls support the development as suspensorless and suspensor-bearing embryos, respectively. Conversely, less viable embryogenic structures (LC) presented the thickest walls and the lowest values for almost all of the studied cell wall components. These cell wall properties would be the less favorable for cell proliferation and embryo progression. High levels of highly methyl-esterified pectin are necessary for wall flexibility and growth of highly embryogenic structures. AGPs seem to play a role in cell wall stiffness, possibly due to their putative role as calcium capacitors, explaining the positive relationship between embryogenic potential and calcium levels.
Collapse
Affiliation(s)
| | - Jose M. Seguí-Simarro
- Cell Biology Group, COMAV Institute, Universitat Politècnica de València, Valencia, Spain
| | - Ricardo Mir
- Cell Biology Group, COMAV Institute, Universitat Politècnica de València, Valencia, Spain
| | - Kim Boutilier
- Bioscience, Wageningen University and Research, Wageningen, Netherlands
| | - Patricia Corral-Martínez
- Cell Biology Group, COMAV Institute, Universitat Politècnica de València, Valencia, Spain
- Bioscience, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
50
|
A Molecular Pinball Machine of the Plasma Membrane Regulates Plant Growth-A New Paradigm. Cells 2021; 10:cells10081935. [PMID: 34440704 PMCID: PMC8391756 DOI: 10.3390/cells10081935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/31/2022] Open
Abstract
Novel molecular pinball machines of the plasma membrane control cytosolic Ca2+ levels that regulate plant metabolism. The essential components involve: 1. an auxin-activated proton pump; 2. arabinogalactan glycoproteins (AGPs); 3. Ca2+ channels; 4. auxin-efflux "PIN" proteins. Typical pinball machines release pinballs that trigger various sound and visual effects. However, in plants, "proton pinballs" eject Ca2+ bound by paired glucuronic acid residues of numerous glycomodules in periplasmic AGP-Ca2+. Freed Ca2+ ions flow down the electrostatic gradient through open Ca2+ channels into the cytosol, thus activating numerous Ca2+-dependent activities. Clearly, cytosolic Ca2+ levels depend on the activity of the proton pump, the state of Ca2+ channels and the size of the periplasmic AGP-Ca2+ capacitor; proton pump activation is a major regulatory focal point tightly controlled by the supply of auxin. Auxin efflux carriers conveniently known as "PIN" proteins (null mutants are pin-shaped) pump auxin from cell to cell. Mechanosensitive Ca2+ channels and their activation by reactive oxygen species (ROS) are yet another factor regulating cytosolic Ca2+. Cell expansion also triggers proton pump/pinball activity by the mechanotransduction of wall stress via Hechtian adhesion, thus forming a Hechtian oscillator that underlies cycles of wall plasticity and oscillatory growth. Finally, the Ca2+ homeostasis of plants depends on cell surface external storage as a source of dynamic Ca2+, unlike the internal ER storage source of animals, where the added regulatory complexities ranging from vitamin D to parathormone contrast with the elegant simplicity of plant life. This paper summarizes a sixty-year Odyssey.
Collapse
|