1
|
Li S, Liu J, Wang J, Jia D, Sun Y, Ding L, Jiang J, Chen S, Chen F. CmCYC2d is a Regulator of Leaf Abaxial Curling in Chrysanthemum morifolium. PLANT, CELL & ENVIRONMENT 2025; 48:4245-4265. [PMID: 39934960 DOI: 10.1111/pce.15410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/20/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025]
Abstract
Leaf morphology is crucial for plant photosynthesis and stress adaptation. While CIN-like TCP transcription factors are well-known for their roles in leaf curling and morphogenesis, the function of CYC-like TCPs in leaf development remains largely unexplored. This study identifies CmCYC2d as a key regulator of abaxial leaf curling in Chrysanthemum morifolium. Phenotypic analysis revealed that the downward curling observed in OX-CmCYC2d transgenic lines was primarily due to the enlargement of adaxial epidermal cells. Furthermore, a reduction in epidermal cell number was identified as a significant contributor to the smaller leaf area in these plants. Transcriptome and WGCNA analyses highlighted CmSAUR55 as a potential downstream target of CmCYC2d. ChIP-qPCR, EMSA, and LUC assays confirmed that CmCYC2d directly bound to the CmSAUR55 promoter. Additionally, transcriptome data revealed that the reduced cell number in OX-CmCYC2d transgenic lines may be mediated by auxin-related pathways and key genes such as CNR7. The CmCYC2d-CmSAUR55 module was also closely linked to the development of enlarged adaxial epidermal cells in the leaf sinus, emphasising its role in this developmental process. This study highlights the regulatory role of CmCYC2d in leaf development and sheds light on the molecular mechanisms underlying leaf curling in chrysanthemum.
Collapse
Affiliation(s)
- Song Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Junqing Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiaqi Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Diwen Jia
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - YanYan Sun
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lian Ding
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Wang J, Jin D, Deng Z, Zheng L, Guo P, Ji Y, Song Z, Zeng HY, Kinoshita T, Liao Z, Chen H, Deng XW, Wei N. The apoplastic pH is a key determinant in the hypocotyl growth response to auxin dosage and light. NATURE PLANTS 2025; 11:279-294. [PMID: 39953357 PMCID: PMC11842274 DOI: 10.1038/s41477-025-01910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 12/20/2024] [Indexed: 02/17/2025]
Abstract
Auxin is a core phytohormone regulating plant elongation growth. While auxin typically promotes hypocotyl elongation, excessive amounts of auxin inhibit elongation. Moreover, auxin usually promotes light-grown, but inhibits dark-grown hypocotyl elongation. How dosage and light condition change the plant's response to auxin, also known as auxin's biphasic effect or dual effect, has long been mysterious. Auxin induces cell expansion primarily through apoplastic acidification and the subsequent 'acid growth' mechanism. Here we show that this pathway operates for both stimulatory and inhibitory auxin doses and under both dark and light conditions. Regardless of the dosage, more auxin induces more transcripts of SAURs (Small Auxin-Up RNAs), leading to a stronger activation of plasma membrane H+-ATPases (AHAs) and progressive acidification of the apoplast in hypocotyl epidermis. Apoplastic acidification promotes growth but only above a certain pH threshold, below which excessive acidification inhibits elongation. Auxin overdosage-triggered hypocotyl inhibition can be alleviated by suppressing the AHA activity or raising the apoplastic pH. Light-grown hypocotyls exhibit a higher apoplastic pH, which impedes cell elongation and counteracts auxin-induced over-acidification. Auxin and light antagonistically regulate the SAUR-PP2C.D-AHA pathway in the hypocotyl and influence plant elongation growth. Our findings suggest that the biphasic effect of auxin results from the biphasic response of hypocotyl cells to decreasing apoplastic pH.
Collapse
Affiliation(s)
- Jiajun Wang
- School of Life Sciences, Southwest University, Chongqing, China
- School of Advanced Agricultural Sciences and Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- School of Life Sciences, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, China
| | - Dan Jin
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Zhaoguo Deng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Lidan Zheng
- School of Advanced Agricultural Sciences and Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Pengru Guo
- Microlens Technologies Co. Ltd., Beijing, China
| | - Yusi Ji
- Microlens Technologies Co. Ltd., Beijing, China
| | - Zihao Song
- School of Life Sciences, Southwest University, Chongqing, China
| | - Hai Yue Zeng
- School of Life Sciences, Southwest University, Chongqing, China
- School of Advanced Agricultural Sciences and Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Toshinori Kinoshita
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Zhihua Liao
- School of Life Sciences, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Haodong Chen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xing Wang Deng
- School of Advanced Agricultural Sciences and Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
3
|
Tang R, Zhao C, Dong J, Liu X, Chang L, Li J, Dong H, Lv Y, Luo Z, Wu M, Shen S, Shan Q, Li Y, Chen Q, Li R, He L, Cao Q, Tang G, Jia X. Post-transcriptional and post-translational regulation of anthocyanin biosynthesis in sweetpotato by Ib-miR2111 and IbKFB: Implications for health promotion. J Adv Res 2025:S2090-1232(25)00042-6. [PMID: 39826613 DOI: 10.1016/j.jare.2025.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025] Open
Abstract
INTRODUCTION Sweetpotato (Ipomoea batatas (L.) Lam.) is a genetically intricate hexaploid crop. The purple-fleshed variety, enriched with anthocyanin pigments, is an outstanding source for creating high-value functional products. Previous research on anthocyanin biosynthesis has primarily focused on the above-ground plant parts at the transcriptional level. However, the regulatory mechanisms underlying anthocyanin accumulation in underground tuberous roots of sweetpotato remain largely unexplored. OBJECTIVES This study aimed to elucidate the post-transcriptional and post-translational mechanisms of Ib-miR2111 and its target gene IbKFB in anthocyanin synthesis in sweetpotato. METHODS Genetic manipulation techniques were used to validate the function of Ib-miR2111 and IbKFB in anthocyanin biosynthesis in sweetpotato. To investigate how IbKFB works, a series of protein interaction assays, including yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BiFC), GST pull-down, co-immunoprecipitation (Co-IP), and ubiquitination, were conducted. Additionally, the impact of anthocyanin extracts from the genetically modified sweetpotato lines on inflammatory cells morphology, cytokine expression, and cell proliferation were evaluated using in vitro assays. RESULTS Purple-fleshed sweetpotato (PFSP) varieties exhibited elevated Ib-miR2111 expression compared to white-fleshed sweetpotato (WFSP) varieties, with an inverse expression pattern in IbKFB. Genetic manipulations, including overexpression, CRISPR/Cas9 knockouts, and targeted mutations, confirmed their critical roles in anthocyanin modulation. Furthermore, IbKFB's interactions and ubiquitination with phenylalanine ammonia-lyase 1 (IbPAL1) and glyceraldehyde-3-phosphate dehydrogenase 1 (IbGAPCp1) were elucidated, revealing intricate regulatory mechanisms. Enhanced anthocyanin content showed significant effects on inflammatory cell morphology, cytokine expression, and cell proliferation. CONCLUSION This study provides new insights into the regulatory mechanisms of Ib-miR2111 and IbKFB in anthocyanin biosynthesis and suggests potential health benefits of anthocyanin-rich sweetpotatoes.
Collapse
Affiliation(s)
- Ruimin Tang
- Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Cailiang Zhao
- Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jingjian Dong
- Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiayu Liu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Henan University, Kaifeng, Henan 475004, China
| | - Lu Chang
- Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jianghui Li
- Institute of Cotton, Shanxi Agricultural University, Yuncheng, Shanxi 044000, China
| | - Haitao Dong
- Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yuntao Lv
- Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zhuang Luo
- Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Meiling Wu
- Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Shan Shen
- Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Qianwen Shan
- Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yuan Li
- Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Qijun Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Runzhi Li
- Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Liheng He
- Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Qinghe Cao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, China.
| | - Guiliang Tang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA.
| | - Xiaoyun Jia
- Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
4
|
Hsiang TF, Yamane H, Lin YJ, Sugimori M, Nishiyama S, Nagasaka K, Nakano R, Tao R. The haplotype-phased genome assembly facilitated the deciphering of the bud dormancy-related QTLs in Prunus mume. DNA Res 2024; 32:dsae034. [PMID: 39656749 PMCID: PMC11747360 DOI: 10.1093/dnares/dsae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
Bud dormancy is a vital physiological process in woody perennials, facilitating their adaptation to seasonal environmental changes. Satisfying genotype-specific chilling requirements (CR) and heat requirements (HR) through exposure to specific chilling and warm temperatures is essential for dormancy release and the subsequent resumption of growth. The genetic mechanisms regulating bud dormancy traits in Prunus mume remain unclear. In this study, we first assembled the genome of 'Nanko', the leading P. mume cultivar in Japan, in a haplotype-resolved manner. Using an F1 segregating population from a cross between 'Nanko' (high-chill) and 'SC' (low-chill), a cultivar adapted to subtropical conditions, we identified quantitative trait loci (QTLs) for vegetative bud dormancy traits on chromosome 4 (LG4 QTLs) in the 'Nanko' genome and for CR and HR on chromosome 7 (LG7 QTL) in the 'SC' genome. A notable 5.6 Mb chromosome inversion was overlapped with LG4 QTL interval in one of the 'Nanko' haplotypes. We also identified candidate genes based on haplotyping, differential expression between the parents or the presence of trait-correlated variants in coding regions. Notably, genes such as PmuMAIN, PmuNAC2, PmuDOG1, PmuSUI1, PmuATG8CL, PmubZIP44, and PmuSAUR50 were identified. This study provides valuable insights into the genetic regulation of vegetative bud dormancy in Prunus species.
Collapse
Affiliation(s)
- Tzu-Fan Hsiang
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yuan-Jui Lin
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Miku Sugimori
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | - Kyoka Nagasaka
- Experimental Farm, Graduate School of Agriculture, Kyoto University, Kyoto 619-0218, Japan
| | - Ryohei Nakano
- Experimental Farm, Graduate School of Agriculture, Kyoto University, Kyoto 619-0218, Japan
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
5
|
Willoughby AC, Strader LC. Apical hook opening of plant seedlings: Unfolding the role of auxin and the cell wall. Dev Cell 2024; 59:3194-3196. [PMID: 39689682 DOI: 10.1016/j.devcel.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
Apical hook opening is crucial for seedling establishment and is regulated by unequal distribution of the hormone auxin through unknown mechanisms. In this issue of Developmental Cell, Walia et al.4 demonstrate that apical hook opening is an output of tissue-wide forces; auxin and cell wall integrity (CWI) signaling interact to restrict elongation to the concave side of the apical hook.
Collapse
Affiliation(s)
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27708, USA; Duke Center for Quantitative BioDesign, Durham, NC 27708, USA.
| |
Collapse
|
6
|
Dong D, Deng Q, Zhang J, Jia C, Gao M, Wang Y, Zhang L, Zhang N, Guo YD. Transcription factor SlSTOP1 regulates Small Auxin-Up RNA Genes for tomato root elongation under aluminum stress. PLANT PHYSIOLOGY 2024; 196:2654-2668. [PMID: 39343733 DOI: 10.1093/plphys/kiae519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Aluminum (Al) stress, a prevalent constraint in acidic soils, inhibits plant growth by inhibiting root elongation through restricted cell expansion. The molecular mechanisms of Al-induced root inhibition, however, are not fully understood. This study aimed to elucidate the role of Small Auxin-up RNAs (SlSAURs), which function downstream of the key Al stress-responsive transcription factor SENSITIVE TO PROTON RHIZOTOXICITY 1 (SlSTOP1) and its enhancer STOP1-INTERACTING ZINC-FINGER PROTEIN 1 (SlSZP1), in modulating root elongation under Al stress in tomato (Solanum lycopersicum). Our findings demonstrated that tomato lines with knocked-out SlSAURs exhibited shorter root lengths when subjected to Al stress. Further investigation into the underlying mechanisms revealed that SlSAURs interact with Type 2C Protein Phosphatases (SlPP2Cs), specifically D-clade Type 2C Protein Phosphatases (SlPP2C.Ds). This interaction was pivotal as it suppresses the phosphatase activity, leading to the degradation of SlPP2C.D's inhibitory effect on plasma membrane H+-ATPase. Consequently, this promoted cell expansion and root elongation under Al stress. These findings increase our understanding of the molecular mechanisms by which Al ions modulate root elongation. The discovery of the SlSAUR-SlPP2C.D interaction and its impact on H+-ATPase activity also provides a perspective on the adaptive strategies employed by plants to cope with Al toxicity, which may lead to the development of tomato cultivars with enhanced Al stress tolerance, thereby improving crop productivity in acidic soils.
Collapse
Affiliation(s)
- Danhui Dong
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Qilin Deng
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jialong Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Congyang Jia
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Ming Gao
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yiran Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lei Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Li S, Lu K, Zhang L, Fan L, Lv W, Liu DJ, Feng G. Low-dose 60Co-γ-ray irradiation promotes the growth of cucumber seedlings by inducing CsSAUR37 expression. PLANT MOLECULAR BIOLOGY 2024; 114:107. [PMID: 39333431 DOI: 10.1007/s11103-024-01504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024]
Abstract
Cucumber (Cucumis sativus L.) is a major vegetable crop grown globally, with a cultivation history of more than 3000 years. The limited genetic diversity, low rate of intraspecific variation, and extended periods of traditional breeding have resulted in slow progress in their genetic research and the development of new varieties. Gamma (γ)-ray irradiation potentially accelerates the breeding progress; however, the biological and molecular effects of γ-ray irradiation on cucumbers are unknown. Exposing cucumber seeds to 0, 50, 100, 150, 200, and 250 Gy doses of 60Co-γ-ray irradiation, this study aimed to investigate the resulting phenotype and physiological characteristics of seedling treatment to determine the optimal irradiation dose. The results showed that low irradiation doses (50-100 Gy) enhanced root growth, hypocotyl elongation, and lateral root numbers, promoting seedling growth. However, high irradiation doses (150-250 Gy) significantly inhibited seed germination and growth, decreasing the survival rate of seedlings. More than 100 Gy irradiation significantly decreased the total chlorophyll content while increasing the malondialdehyde (MDA) and H2O2 content in cucumber. Transcriptome sequencing analysis at 0, 50, 100, 150, 200, and 250 Gy doses showed that gene expression significantly differed between low and high irradiation doses. Gene Ontology enrichment and functional pathway enrichment analyses revealed that the auxin response pathway played a crucial role in seedling growth under low irradiation doses. Further, gene function analysis revealed that small auxin up-regulated gene CsSAUR37 was a key gene that was overexpressed in response to low irradiation doses, promoting primary root elongation and enhancing lateral root numbers by regulating the expression of protein phosphatase 2Cs (PP2Cs) and auxin synthesis genes.
Collapse
Affiliation(s)
- Shengnan Li
- Key Laboratory of Sugar Beet Genetic Breeding, College of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
- Sugar Beet Engineering Research Center of Heilongjiang Province, Harbin, 150080, China
| | - Ke Lu
- Key Laboratory of Sugar Beet Genetic Breeding, College of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
- Sugar Beet Engineering Research Center of Heilongjiang Province, Harbin, 150080, China
| | - La Zhang
- Key Laboratory of Sugar Beet Genetic Breeding, College of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
- Sugar Beet Engineering Research Center of Heilongjiang Province, Harbin, 150080, China
| | - Lianxue Fan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Lv
- Key Laboratory of Sugar Beet Genetic Breeding, College of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
- Sugar Beet Engineering Research Center of Heilongjiang Province, Harbin, 150080, China
| | - Da Jun Liu
- Key Laboratory of Sugar Beet Genetic Breeding, College of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
- Sugar Beet Engineering Research Center of Heilongjiang Province, Harbin, 150080, China.
| | - Guojun Feng
- Key Laboratory of Sugar Beet Genetic Breeding, College of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
- Sugar Beet Engineering Research Center of Heilongjiang Province, Harbin, 150080, China.
| |
Collapse
|
8
|
Wang JL, Wang M, Zhang L, Li YX, Li JJ, Li YY, Pu ZX, Li DY, Liu XN, Guo W, Di DW, Li XF, Guo GQ, Wu L. WAV E3 ubiquitin ligases mediate degradation of IAA32/34 in the TMK1-mediated auxin signaling pathway during apical hook development. Proc Natl Acad Sci U S A 2024; 121:e2314353121. [PMID: 38635634 PMCID: PMC11047095 DOI: 10.1073/pnas.2314353121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 03/04/2024] [Indexed: 04/20/2024] Open
Abstract
Auxin regulates plant growth and development through downstream signaling pathways, including the best-known SCFTIR1/AFB-Aux/IAA-ARF pathway and several other less characterized "noncanonical" pathways. Recently, one SCFTIR1/AFB-independent noncanonical pathway, mediated by Transmembrane Kinase 1 (TMK1), was discovered through the analyses of its functions in Arabidopsis apical hook development. Asymmetric accumulation of auxin on the concave side of the apical hook triggers DAR1-catalyzed release of the C-terminal of TMK1, which migrates into the nucleus, where it phosphorylates and stabilizes IAA32/34 to inhibit cell elongation, which is essential for full apical hook formation. However, the molecular factors mediating IAA32/34 degradation have not been identified. Here, we show that proteins in the CYTOKININ INDUCED ROOT WAVING 1 (CKRW1)/WAVY GROWTH 3 (WAV3) subfamily act as E3 ubiquitin ligases to target IAA32/34 for ubiquitination and degradation, which is inhibited by TMK1c-mediated phosphorylation. This antagonistic interaction between TMK1c and CKRW1/WAV3 subfamily E3 ubiquitin ligases regulates IAA32/34 levels to control differential cell elongation along opposite sides of the apical hook.
Collapse
Affiliation(s)
- Jun-Li Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Ming Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing210008, People’s Republic of China
| | - Li Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Basic Forestry and Proteomics Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou350002, People’s Republic of China
| | - You-Xia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Jing-Jing Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Yu-Yang Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Zuo-Xian Pu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Dan-Yang Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Xing-Nan Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Wang Guo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Dong-Wei Di
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, People’s Republic of China
| | - Xiao-Feng Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Guang-Qin Guo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Lei Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| |
Collapse
|
9
|
Clark G, Tripathy MK, Roux SJ. Growth regulation by apyrases: Insights from altering their expression level in different organisms. PLANT PHYSIOLOGY 2024; 194:1323-1335. [PMID: 37947023 PMCID: PMC10904326 DOI: 10.1093/plphys/kiad590] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 11/12/2023]
Abstract
Apyrase (APY) enzymes are nucleoside triphosphate (NTP) diphosphohydrolases that can remove the terminal phosphate from NTPs and nucleoside diphosphates but not from nucleoside monophosphates. They have conserved structures and functions in yeast, plants, and animals. Among the most studied APYs in plants are those in Arabidopsis (Arabidopsis thaliana; AtAPYs) and pea (Pisum sativum; PsAPYs), both of which have been shown to play major roles in regulating plant growth and development. Valuable insights on their functional roles have been gained by transgenically altering their transcript abundance, either by constitutively expressing or suppressing APY genes. This review focuses on recent studies that have provided insights on the mechanisms by which APY activity promotes growth in different organisms. Most of these studies have used transgenic lines that constitutively expressed APY in multiple different plants and in yeast. As APY enzymatic activity can also be changed post-translationally by chemical blockage, this review also briefly covers studies that used inhibitors to suppress APY activity in plants and fungi. It concludes by summarizing some of the main unanswered questions about how APYs regulate plant growth and proposes approaches to answering them.
Collapse
Affiliation(s)
- Greg Clark
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, 100 E 24th Street, TX 78712, USA
| | | | - Stanley J Roux
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, 100 E 24th Street, TX 78712, USA
| |
Collapse
|
10
|
Wang Z, Qiu H, Li Y, Zhao M, Liu R. GlPRMT5 inhibits GlPP2C1 via symmetric dimethylation and regulates the biosynthesis of secondary metabolites in Ganoderma lucidum. Commun Biol 2024; 7:241. [PMID: 38418849 PMCID: PMC10902306 DOI: 10.1038/s42003-024-05942-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
PRMT5, a type II arginine methyltransferase, is involved in transcriptional regulation, RNA processing and other biological processes and signal transduction. Secondary metabolites are vital pharmacological compounds in Ganoderma lucidum, and their content is an important indicator for evaluating the quality of G. lucidum. Here, we found that GlPRMT5 negatively regulates the biosynthesis of secondary metabolites. In further in-depth research, GlPP2C1 (a type 2C protein phosphatase) was identified out as an interacting protein of GlPRMT5 by immunoprecipitation-mass spectrometry (IP-MS). Further mass spectrometry detection revealed that GlPRMT5 symmetrically dimethylates the arginine 99 (R99) and arginine 493 (R493) residues of GlPP2C1 to weaken its activity. The symmetrical dimethylation modification of the R99 residue is the key to affecting GlPP2C1 activity. Symmetrical demethylation-modified GlPP2C1 does not affect the interaction with GlPRMT5. In addition, silencing GlPP2C1 clearly reduced GA content, indicating that GlPP2C1 positively regulates the biosynthesis of secondary metabolites in G. lucidum. In summary, this study reveals the molecular mechanism by which GlPRMT5 regulates secondary metabolites, and these studies provide further insights into the target proteins of GlPRMT5 and symmetric dimethylation sites. Furthermore, these studies provide a basis for the mutual regulation between different epigenetic modifications.
Collapse
Affiliation(s)
- Zi Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Hao Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Yefan Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Rui Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China.
| |
Collapse
|
11
|
Yao X, Fang K, Qiao K, Xiong J, Lan J, Chen J, Tian Y, Kang X, Lei W, Zhang D, Lin H. Cooperative transcriptional regulation by ATAF1 and HY5 promotes light-induced cotyledon opening in Arabidopsis thaliana. Sci Signal 2024; 17:eadf7318. [PMID: 38166030 DOI: 10.1126/scisignal.adf7318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/17/2023] [Indexed: 01/04/2024]
Abstract
The opening of the embryonic leaves (cotyledons) as seedlings emerge from the dark soil into the light is crucial to ensure the survival of the plant. Seedlings that sprout in the dark elongate rapidly to reach light but keep their cotyledons closed. During de-etiolation, the transition from dark to light growth, elongation slows and the cotyledons open. Here, we report that the transcription factor ACTIVATING FACTOR1 (ATAF1) participates in de-etiolation and facilitates light-induced cotyledon opening. The transition from dark to light rapidly induced ATAF1 expression and ATAF1 accumulation in cotyledons. Seedlings lacking or overexpressing ATAF1 exhibited reduced or enhanced cotyledon opening, respectively, and transcriptomic analysis indicated that ATAF1 repressed the expression of genes associated with growth and cotyledon closure. The activation of the photoreceptor phytochrome A (phyA) by far-red light induced its association with the ATAF1 promoter and stimulation of ATAF1 expression. The transcription factor ELONGATED HYPOCOTYL5 (HY5), which is also activated in response far-red light, cooperated with phyA to induce ATAF1 expression. ATAF1 and HY5 interacted with one another and cooperatively repressed the expression of growth-promoting and cotyledon closure genes. Together, our study reveals a mechanism through which far-red light promotes cotyledon opening.
Collapse
Affiliation(s)
- Xiuhong Yao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Department of Agriculture Forestry and Food Engineering, Yibin University, Yibin 644000, China
| | - Ke Fang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Kang Qiao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Jiawei Xiong
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Jiayi Lan
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Juan Chen
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Yuang Tian
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Xinke Kang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Wei Lei
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
12
|
Wang D, Zheng J, Sarsaiya S, Jin L, Chen J. Unveiling terahertz wave stress effects and mechanisms in Pinellia ternata: Challenges, insights, and future directions. PHYSIOLOGIA PLANTARUM 2024; 176:e14195. [PMID: 38332400 DOI: 10.1111/ppl.14195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 02/10/2024]
Abstract
This review aims to elucidate the intricate effects and mechanisms of terahertz (THz) wave stress on Pinellia ternata, providing valuable insights into plant responses. The primary objective is to highlight the imperative for future research dedicated to comprehending THz wave impacts across plant structures, with a specific focus on the molecular intricacies governing root system structure and function, from shoots to roots. Notably, this review highlights the accelerated plant growth induced by THz waves, especially in conjunction with other environmental stressors, and the subsequent alterations in cellular homeostasis, resulting in the generation of reactive oxygen species (ROS) and an increase in brassinosteroids. Brassinosteroids are explored for their dual role as toxic by-products of stress metabolism and vital signal transduction molecules in plant responses to abiotic stresses. The paper further investigates the spatio-temporal regulation and long-distance transport of phytohormones, including growth hormone, cytokinin, and abscisic acid (ABA), which significantly influence the growth and development of P. ternata under THz wave stress. With a comprehensive review of Reactive oxygen species (ROS) and Brassinosteroid Insensitive (BRI) homeostasis and signalling under THz wave stress, the article elucidates the current understanding of BRI involvement in stress perception, stress signalling, and domestication response regulation. Additionally, it underscores the importance of spatio-temporal regulation and long-distance transport of key plant hormones, such as growth hormone, cytokinin, and ABA, in determining root growth and development under THz wave stress. The study of how plants perceive and respond to environmental stresses holds fundamental biological significance, and enhancing plant stress tolerance is crucial for promoting sustainable agricultural practices and mitigating the environmental burdens associated with low-tolerance crop cultivation.
Collapse
Affiliation(s)
- Dongdong Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Jiatong Zheng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Surendra Sarsaiya
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
| | - Leilei Jin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Jishuang Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
13
|
Yang L, Luo S, Jiao J, Yan W, Zeng B, He H, He G. Integrated Transcriptomic and Metabolomic Analysis Reveals the Mechanism of Gibberellic acid Regulates the Growth and Flavonoid Synthesis in Phellodendron chinense Schneid Seedlings. Int J Mol Sci 2023; 24:16045. [PMID: 38003235 PMCID: PMC10671667 DOI: 10.3390/ijms242216045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The phytohormone gibberellic acids (GAs) play a crucial role in the processes of growth, organ development, and secondary metabolism. However, the mechanism of exogenous GA3 regulating the growth and flavonoid synthesis in Phellodendron chinense Schneid (P. chinense Schneid) seedlings remains unclear. In this study, the physicochemical properties, gene expression level, and secondary metabolite of P. chinense Schneid seedlings under GA3 treatment were investigated. The results showed that GA3 significantly improved the plant height, ground diameter, fresh weight, chlorophyll content, soluble substance content, superoxide dismutase, and peroxidase activities. This was accompanied by elevated relative expression levels of Pc(S)-GA2ox, Pc(S)-DELLA, Pc(S)-SAUR50, Pc(S)-PsaD, Pc(S)-Psb 27, Pc(S)-PGK, Pc(S)-CER3, and Pc(S)-FBA unigenes. Conversely, a notable reduction was observed in the carotenoid content, catalase activity and the relative expression abundances of Pc(S)-KAO, Pc(S)-GID1/2, and Pc(S)-GH 3.6 unigenes in leaves of P. chinense Schneid seedlings (p < 0.05). Furthermore, GA3 evidently decreased the contents of pinocembrin, pinobanksin, isosakuranetin, naringin, naringenin, (-)-epicatechin, tricetin, luteolin, and vitexin belonged to flavonoid in stem bark of P. chinense Schneid seedlings (p < 0.05). These results indicated that exogenous GA3 promoted growth through improving chlorophyll content and gene expression in photosynthesis and phytohormone signal pathway and inhibited flavonoid synthesis in P. chinense Schneid seedlings.
Collapse
Affiliation(s)
- Lv Yang
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Sciences and Technology, Central South University of Forestry & Technology, Changsha 410004, China; (L.Y.); (S.L.); (J.J.); (W.Y.); (B.Z.)
| | - Shengwei Luo
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Sciences and Technology, Central South University of Forestry & Technology, Changsha 410004, China; (L.Y.); (S.L.); (J.J.); (W.Y.); (B.Z.)
| | - Jing Jiao
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Sciences and Technology, Central South University of Forestry & Technology, Changsha 410004, China; (L.Y.); (S.L.); (J.J.); (W.Y.); (B.Z.)
| | - Wende Yan
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Sciences and Technology, Central South University of Forestry & Technology, Changsha 410004, China; (L.Y.); (S.L.); (J.J.); (W.Y.); (B.Z.)
| | - Baiquan Zeng
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Sciences and Technology, Central South University of Forestry & Technology, Changsha 410004, China; (L.Y.); (S.L.); (J.J.); (W.Y.); (B.Z.)
| | - Hanjie He
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Sciences and Technology, Central South University of Forestry & Technology, Changsha 410004, China; (L.Y.); (S.L.); (J.J.); (W.Y.); (B.Z.)
| | - Gongxiu He
- College of Forestry, Central South University of Forestry & Technology, Changsha 410004, China
| |
Collapse
|
14
|
Li H, Hua L, Zhao S, Hao M, Song R, Pang S, Liu Y, Chen H, Zhang W, Shen T, Gou JY, Mao H, Wang G, Hao X, Li J, Song B, Lan C, Li Z, Deng XW, Dubcovsky J, Wang X, Chen S. Cloning of the wheat leaf rust resistance gene Lr47 introgressed from Aegilops speltoides. Nat Commun 2023; 14:6072. [PMID: 37770474 PMCID: PMC10539295 DOI: 10.1038/s41467-023-41833-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023] Open
Abstract
Leaf rust, caused by Puccinia triticina Eriksson (Pt), is one of the most severe foliar diseases of wheat. Breeding for leaf rust resistance is a practical and sustainable method to control this devastating disease. Here, we report the identification of Lr47, a broadly effective leaf rust resistance gene introgressed into wheat from Aegilops speltoides. Lr47 encodes a coiled-coil nucleotide-binding leucine-rich repeat protein that is both necessary and sufficient to confer Pt resistance, as demonstrated by loss-of-function mutations and transgenic complementation. Lr47 introgression lines with no or reduced linkage drag are generated using the Pairing homoeologous1 mutation, and a diagnostic molecular marker for Lr47 is developed. The coiled-coil domain of the Lr47 protein is unable to induce cell death, nor does it have self-protein interaction. The cloning of Lr47 expands the number of leaf rust resistance genes that can be incorporated into multigene transgenic cassettes to control this devastating disease.
Collapse
Affiliation(s)
- Hongna Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, 261325, Shandong, China
| | - Lei Hua
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, 261325, Shandong, China
| | - Shuqing Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, 071000, Baoding, Hebei, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, 611130, Chengdu, China
| | - Rui Song
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, 261325, Shandong, China
| | - Shuyong Pang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, 261325, Shandong, China
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, 071000, Baoding, Hebei, China
| | - Yanna Liu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, 261325, Shandong, China
| | - Hong Chen
- Triticeae Research Institute, Sichuan Agricultural University, 611130, Chengdu, China
| | - Wenjun Zhang
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Tao Shen
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, 261325, Shandong, China
| | - Jin-Ying Gou
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, 100193, Beijing, China
| | - Hailiang Mao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China
| | - Guiping Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, 261325, Shandong, China
| | - Xiaohua Hao
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, 261325, Shandong, China
| | - Jian Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, 261325, Shandong, China
| | - Baoxing Song
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, 261325, Shandong, China
| | - Caixia Lan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China
| | - Zaifeng Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, 071000, Baoding, Hebei, China
| | - Xing Wang Deng
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, 261325, Shandong, China
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Xiaodong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, 071000, Baoding, Hebei, China.
| | - Shisheng Chen
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, 261325, Shandong, China.
| |
Collapse
|
15
|
Zhao H, Ge Z, Zhou M, Zeng H, Wei Y, Liu G, Yan Y, Reiter RJ, He C, Shi H. Histone deacetylase 9 regulates disease resistance through fine-tuning histone deacetylation of melatonin biosynthetic genes and melatonin accumulation in cassava. J Pineal Res 2023; 74:e12861. [PMID: 36750349 DOI: 10.1111/jpi.12861] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/05/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
Melatonin participates in plant growth and development and biotic and abiotic stress responses. Histone acetylation regulates many plant biological processes via transcriptional reprogramming. However, the direct relationship between melatonin and histone acetylation in plant disease resistance remains unclear. In this study, we identified cassava bacterial blight (CBB) responsive histone deacetylase 9 (HDA9), which negatively regulated disease resistance to CBB by reducing melatonin content. In addition, exogenous melatonin alleviated disease sensitivity of MeHDA9 overexpressed plants to CBB. Importantly, MeHDA9 inhibited the expression of melatonin biosynthetic genes through decreasing lysine 5 of histone 4 (H4K5) acetylation at the promoter regions of melatonin biosynthetic genes, thereby modulating melatonin accumulation in cassava. Furthermore, protein phosphatase 2C 12 (MePP2C12) interacted with MeHDA9 in vivo and in vitro, and it was involved in MeHDA9-mediated disease resistance via melatonin biosynthetic pathway. In summary, this study highlights the direct interaction between histone deacetylation and melatonin biosynthetic genes in cassava disease resistance via histone deacetylation, providing new insights into the genetic improvement of disease resistance via epigenetic regulation of melatonin level in tropical crops.
Collapse
Affiliation(s)
- Huiping Zhao
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
| | - Zhongyuan Ge
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
| | - Mengmeng Zhou
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
| | - Hongqiu Zeng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province, China
| | - Yunxie Wei
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province, China
| | - Guoyin Liu
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province, China
| | - Yu Yan
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, Long School of Medicine, San Antonio, Texas, USA
| | - Chaozu He
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province, China
| | - Haitao Shi
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province, China
| |
Collapse
|
16
|
Luan J, Xin M, Qin Z. Genome-Wide Identification and Functional Analysis of the Roles of SAUR Gene Family Members in the Promotion of Cucumber Root Expansion. Int J Mol Sci 2023; 24:ijms24065940. [PMID: 36983023 PMCID: PMC10053606 DOI: 10.3390/ijms24065940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Auxin serves as an essential regulator of the expression of many different genes in plants, thereby regulating growth and development. The specific functional roles of members of the SAUR (small auxin-up RNA) auxin early response gene family in the development of cucumber plants, however, remain to be fully clarified. Here, 62 SAUR family genes were identified, followed by their classification into 7 groups that included several functionally associated cis-regulatory elements. Phylogenetic tree and chromosomal location-based analyses revealed a high degree of homology between two cucumber gene clusters and other plants in the Cucurbitaceae family. These findings, together with the results of an RNA-seq analysis, revealed high levels of CsSAUR31 expression within the root and male flower tissues. Plants overexpressing CsSAUR31 exhibited longer roots and hypocotyls. Together, these results provide a basis for further efforts to explore the roles that SAUR genes play in cucumber plants, while also expanding the pool of available genetic resources to guide research focused on plant growth and development.
Collapse
Affiliation(s)
- Jie Luan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Ming Xin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Zhiwei Qin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
17
|
Wang Y, Peng Y, Guo H. To curve for survival: Apical hook development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:324-342. [PMID: 36562414 DOI: 10.1111/jipb.13441] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Apical hook is a simple curved structure formed at the upper part of hypocotyls when dicot seeds germinate in darkness. The hook structure is transient but essential for seedlings' survival during soil emergence due to its efficient protection of the delicate shoot apex from mechanical injury. As a superb model system for studying plant differential growth, apical hook has fascinated botanists as early as the Darwin age, and significant advances have been achieved at both the morphological and molecular levels to understand how apical hook development is regulated. Here, we will mainly summarize the research progress at these two levels. We will also briefly compare the growth dynamics between apical hook and hypocotyl gravitropic bending at early seed germination phase, with the aim to deduce a certain consensus on their connections. Finally, we will outline the remaining questions and future research perspectives for apical hook development.
Collapse
Affiliation(s)
- Yichuan Wang
- Department of Biology, School of Life Sciences, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yang Peng
- Department of Biology, School of Life Sciences, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hongwei Guo
- Department of Biology, School of Life Sciences, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
18
|
Wang J, Sun N, Zheng L, Zhang F, Xiang M, Chen H, Deng XW, Wei N. Brassinosteroids promote etiolated apical structures in darkness by amplifying the ethylene response via the EBF-EIN3/PIF3 circuit. THE PLANT CELL 2023; 35:390-408. [PMID: 36321994 PMCID: PMC9806594 DOI: 10.1093/plcell/koac316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Germinated plants grow in darkness until they emerge above the soil. To help the seedling penetrate the soil, most dicot seedlings develop an etiolated apical structure consisting of an apical hook and folded, unexpanded cotyledons atop a rapidly elongating hypocotyl. Brassinosteroids (BRs) are necessary for etiolated apical development, but their precise role and mechanisms remain unclear. Arabidopsis thaliana SMALL AUXIN UP RNA17 (SAUR17) is an apical-organ-specific regulator that promotes production of an apical hook and closed cotyledons. In darkness, ethylene and BRs stimulate SAUR17 expression by transcription factor complexes containing PHYTOCHROME-INTERACTING FACTORs (PIFs), ETHYLENE INSENSITIVE 3 (EIN3), and its homolog EIN3-LIKE 1 (EIL1), and BRASSINAZOLE RESISTANT1 (BZR1). BZR1 requires EIN3 and PIFs for enhanced DNA-binding and transcriptional activation of the SAUR17 promoter; while EIN3, PIF3, and PIF4 stability depends on BR signaling. BZR1 transcriptionally downregulates EIN3-BINDING F-BOX 1 and 2 (EBF1 and EBF2), which encode ubiquitin ligases mediating EIN3 and PIF3 protein degradation. By modulating the EBF-EIN3/PIF protein-stability circuit, BRs induce EIN3 and PIF3 accumulation, which underlies BR-responsive expression of SAUR17 and HOOKLESS1 and ultimately apical hook development. We suggest that in the etiolated development of apical structures, BRs primarily modulate plant sensitivity to darkness and ethylene.
Collapse
Affiliation(s)
- Jiajun Wang
- School of Life Sciences, Southwest University, Chongqing 400715, China
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ning Sun
- Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Lidan Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Fangfang Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Mengda Xiang
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Haodong Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
19
|
Herrera-Ubaldo H. Crosstalk between ethylene, light, and brassinosteroid signaling in the control of apical hook formation. THE PLANT CELL 2023; 35:340-342. [PMID: 36377974 PMCID: PMC9806657 DOI: 10.1093/plcell/koac326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Humberto Herrera-Ubaldo
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists, USA
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
20
|
Liu C, Bai L, Cao P, Li S, Huang SX, Wang J, Li L, Zhang J, Zhao J, Song J, Sun P, Zhang Y, Zhang H, Guo X, Yang X, Tan X, Liu W, Wang X, Xiang W. Novel Plant Growth Regulator Guvermectin from Plant Growth-Promoting Rhizobacteria Boosts Biomass and Grain Yield in Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16229-16240. [PMID: 36515163 DOI: 10.1021/acs.jafc.2c07072] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Food is a fundamental human right, and global food security is threatened by crop production. Plant growth regulators (PGRs) play an essential role in improving crop yield and quality, and this study reports on a novel PGR, termed guvermectin (GV), isolated from plant growth-promoting rhizobacteria, which can promote root and coleoptile growth, tillering, and early maturing in rice. GV is a nucleoside analogue like cytokinin (CK), but it was found that GV significantly promoted root and hypocotyl growth, which is different from the function of CK in Arabidopsis. The Arabidopsis CK receptor triple mutant ahk2-2 ahk3-3 cre1-12 still showed a GV response. Moreover, GV led different growth-promoting traits from auxin, gibberellin (GA), and brassinosteroid (BR) in Arabidopsis and rice. The results from a four-year field trial involving 28 rice varieties showed that seed-soaking treatment with GV increased the yields by 6.2 to 19.6%, outperforming the 4.0 to 10.8% for CK, 1.6 to 16.9% for BR, and 2.2 to 7.1% for GA-auxin-BR mixture. Transcriptome analysis demonstrated that GV induced different transcriptome patterns from CK, auxin, BR, and GA, and SAUR genes may regulate GV-mediated plant growth and development. This study suggests that GV represents a novel PGR with a unique signal perception and transduction pathway in plants.
Collapse
Affiliation(s)
- Chongxi Liu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Lu Bai
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Peng Cao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jidong Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Lei Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ji Zhang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Jia Song
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Peng Sun
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Yanyan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui Zhang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Xiaowei Guo
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xilang Yang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Xinqiu Tan
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
21
|
Peng R, Sun S, Li N, Kong L, Chen Z, Wang P, Xu L, Wang H, Geng X. Physiological and transcriptome profiling revealed defense networks during Cladosporium fulvum and tomato interaction at the early stage. FRONTIERS IN PLANT SCIENCE 2022; 13:1085395. [PMID: 36561446 PMCID: PMC9763619 DOI: 10.3389/fpls.2022.1085395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Tomato leaf mold caused by Cladosporium fulvum (C. fulvum) is a serious fungal disease which results in huge yield losses in tomato cultivation worldwide. In our study, we discovered that ROS (reactive oxygen species) burst was triggered by C. fulvum treatment in tomato leaves. RNA-sequencing was used to identify differentially expressed genes (DEGs) induced by C. fulvum inoculation at the early stage of invasion in susceptible tomato plants. Gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were used to annotate functions of DEGs in tomato plants. Based on our comparative analysis, DEGs related to plant-pathogen interaction pathway, plant hormone signal transduction pathway and the plant phenylpropanoid pathway were further analyzed. Our results discovered that a number of core defense genes against fungal invasion were induced and plant hormone signal transduction pathways were impacted by C. fulvum inoculation. Further, our results showed that SA (salicylic acid) and ABA (abscisic acid) contents were accumulated while JA (jasmonic acid) content decreased after C. fulvum inoculation in comparison with control, and quantitative real-time PCR to detect the relative expression of genes involved in SA, ABA and JA signaling pathway further confirmed our results. Together, results will contribute to understanding the mechanisms of C. fulvum and tomato interaction in future.
Collapse
Affiliation(s)
- Rong Peng
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Sheng Sun
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Na Li
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lingjuan Kong
- Vegetable Department, Shanghai Agricultural Technology Extension and Service Center, Shanghai, China
| | - Zhifeng Chen
- College of Biology and Agricultural Technology, Zunyi Normal University, Zunyi, China
| | - Peng Wang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lurong Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hehe Wang
- Clemson University, Edisto Research and Education Center, Blackville, SC, United States
| | - Xueqing Geng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
22
|
Luo C, Yan J, He C, Liu W, Xie D, Jiang B. Genome-Wide Identification of the SAUR Gene Family in Wax Gourd ( Benincasa hispida) and Functional Characterization of BhSAUR60 during Fruit Development. Int J Mol Sci 2022; 23:ijms232214021. [PMID: 36430500 PMCID: PMC9694812 DOI: 10.3390/ijms232214021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
The wax gourd (Benincasa hispida) is an important vegetable crop whose fruits contain nutrients and metabolites. Small auxin upregulated RNA (SAUR) genes constitute the largest early auxin-responsive gene family and regulate various biological processes in plants, although this gene family has not been studied in the wax gourd. Here, we performed genome-wide identification of the SAUR gene family in wax gourds and analyzed their syntenic and phylogenetic relationships, gene structures, conserved motifs, cis-acting elements, and expression patterns. A total of 68 SAUR (BhSAUR) genes were identified, which were distributed on nine chromosomes with 41 genes in two clusters. More than half of the BhSAUR genes were derived from tandem duplication events. The BhSAUR proteins were classified into seven subfamilies. BhSAUR gene promoters contained cis-acting elements involved in plant hormone and environmental signal responses. Further expression profiles showed that BhSAUR genes displayed different expression patterns. BhSAUR60 was highly expressed in fruits, and overexpression led to longer fruits in Arabidopsis. In addition, the plants with overexpression displayed longer floral organs and wavy stems. In conclusion, our results provide a systematic analysis of the wax gourd SAUR gene family and facilitate the functional study of BhSAUR60 during wax gourd fruit development.
Collapse
Affiliation(s)
- Chen Luo
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Jinqiang Yan
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Changxia He
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Wenrui Liu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Dasen Xie
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
- Correspondence: ; Tel.: +86-020-38469441
| |
Collapse
|
23
|
Nagpal P, Reeves PH, Wong JH, Armengot L, Chae K, Rieveschl NB, Trinidad B, Davidsdottir V, Jain P, Gray WM, Jaillais Y, Reed JW. SAUR63 stimulates cell growth at the plasma membrane. PLoS Genet 2022; 18:e1010375. [PMID: 36121899 PMCID: PMC9522268 DOI: 10.1371/journal.pgen.1010375] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 09/29/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
In plants, regulated cell expansion determines organ size and shape. Several members of the family of redundantly acting Small Auxin Up RNA (SAUR) proteins can stimulate plasma membrane (PM) H+-ATPase proton pumping activity by inhibiting PM-associated PP2C.D phosphatases, thereby increasing the PM electrochemical potential, acidifying the apoplast, and stimulating cell expansion. Similarly, Arabidopsis thaliana SAUR63 was able to increase growth of various organs, antagonize PP2C.D5 phosphatase, and increase H+-ATPase activity. Using a gain-of-function approach to bypass genetic redundancy, we dissected structural requirements for SAUR63 growth-promoting activity. The divergent N-terminal domain of SAUR63 has a predicted basic amphipathic α-helix and was able to drive partial PM association. Deletion of the N-terminal domain decreased PM association of a SAUR63 fusion protein, as well as decreasing protein level and eliminating growth-promoting activity. Conversely, forced PM association restored ability to promote H+-ATPase activity and cell expansion, indicating that SAUR63 is active when PM-associated. Lipid binding assays and perturbations of PM lipid composition indicate that the N-terminal domain can interact with PM anionic lipids. Mutations in the conserved SAUR domain also reduced PM association in root cells. Thus, both the N-terminal domain and the SAUR domain may cooperatively mediate the SAUR63 PM association required to promote growth. Plant organs reach their final shape and size after substantial cell expansion. Proton pumps at the plasma membrane promote cell expansion by acidifying the cell wall to loosen it, and by increasing electrochemical potential across the plasma membrane for solute uptake that maintains intracellular turgor. Plasma-membrane-associated proteins tightly regulate proton pump activity, in order for organs to grow to an appropriate extent. We have studied requirements for activity of one such regulatory protein in the model plant Arabidopsis called SAUR63. This protein is made rapidly in response to plant growth hormones, and it increases proton pump activity to promote organ growth. These activities depend on its binding to anionic lipids in the plasma membrane, and forced plasma membrane association of SAUR63 can increase growth. Many proteins in the same family are found within Arabidopsis and in all land plants, and likely differ in their affinity for the plasma membrane or in other properties. Further studies of other family members may show how such proteins regulate growth under diverse physiological contexts.
Collapse
Affiliation(s)
- Punita Nagpal
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Paul H. Reeves
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeh Haur Wong
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Laia Armengot
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Keun Chae
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Nathaniel B. Rieveschl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Brendan Trinidad
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Vala Davidsdottir
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Prateek Jain
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - William M. Gray
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Jason W. Reed
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
- * E-mail:
| |
Collapse
|
24
|
Huang ZH, Bao K, Jing ZH, Wang Q, Duan HF, Zhang S, Tao WW, Wu QN. Euryale Small Auxin Up RNA62 promotes cell elongation and seed size by altering the distribution of indole-3-acetic acid under the light. FRONTIERS IN PLANT SCIENCE 2022; 13:931063. [PMID: 36160968 PMCID: PMC9500450 DOI: 10.3389/fpls.2022.931063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/15/2022] [Indexed: 06/01/2023]
Abstract
Euryale (Euryale ferox Salisb.) is an aquatic crop used as both food and drug in Asia, but its utilization is seriously limited due to low yield. Previously, we hypothesized that Euryale small auxin up RNAs (EuSAURs) regulate seed size, but the underlying biological functions and molecular mechanisms remain unclear. Here, we observed that the hybrid Euryale lines (HL) generate larger seeds with higher indole-3-acetic acid (IAA) concentrations than those in the North Gordon Euryale (WT). Histological analysis suggested that a larger ovary in HL is attributed to longer cells around. Overexpression of EuSAUR62 in rice (Oryza sativa L.) resulted in larger glumes and grains and increased the length of glume cells. Immunofluorescence and protein interaction assays revealed that EuSAUR62 modulates IAA accumulation around the rice ovary by interacting with the rice PIN-FORMED 9, an auxin efflux carrier protein. Euryale basic region/leucine zipper 55 (EubZIP55), which was highly expressed in HL, directly binds to the EuSAUR62 promoter and activated the expression of EuSAUR62. Constant light increased the expression of both EubZIP55 and EuSAUR62 with auxin-mediated hook curvature in HL seedlings. Overall, we proposed that EuSAUR62 is a molecular bridge between light and IAA and plays a crucial role in regulating the size of the Euryale seed.
Collapse
Affiliation(s)
- Zhi-heng Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Ke Bao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Zong-hui Jing
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Qian Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Hui-fang Duan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Sen Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Wei-wei Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Qi-nan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| |
Collapse
|
25
|
Xia Y, Du K, Ling A, Wu W, Li J, Kang X. Overexpression of PagSTOMAGEN, a Positive Regulator of Stomatal Density, Promotes Vegetative Growth in Poplar. Int J Mol Sci 2022; 23:ijms231710165. [PMID: 36077563 PMCID: PMC9456429 DOI: 10.3390/ijms231710165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Poplar is an important fast-growing tree, and its photosynthetic capacity directly affects its vegetative growth. Stomatal density is closely related to photosynthetic capacity and growth characteristics in plants. Here, we isolated PagSTOMAGEN from the hybrid poplar (Populus alba × Populus glandulosa) clone 84K and investigated its biological function in vegetative growth. PagSTOMAGEN was expressed predominantly in young tissues and localized in the plasma membrane. Compared with wild-type 84K poplars, PagSTOMAGEN-overexpressing plants displayed an increased plant height, leaf area, internode number, basal diameter, biomass, IAA content, IPR content, and stomatal density. Higher stomatal density improved the net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, and transpiration rate in transgenic poplar. The differential expression of genes related to stomatal development showed a diverged influence of PagSTOMAGEN at different stages of stomatal development. Finally, transcriptomic analysis showed that PagSTOMAGEN affected vegetative growth by affecting the expression of photosynthesis and plant hormone-related genes (such as SAUR75, PQL2, PSBX, ERF1, GNC, GRF5, and ARF11). Taken together, our data indicate that PagSTOMAGEN could positively regulate stomatal density and increase the photosynthetic rate and plant hormone content, thereby promoting vegetative growth in poplar. Our study is of great significance for understanding the relationship between stoma, photosynthesis, and yield breeding in poplar.
Collapse
Affiliation(s)
- Yufei Xia
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Kang Du
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Aoyu Ling
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wenqi Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiang Li
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (J.L.); (X.K.)
| | - Xiangyang Kang
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (J.L.); (X.K.)
| |
Collapse
|
26
|
Li M, Liu C, Hepworth SR, Ma C, Li H, Li J, Wang SM, Yin H. SAUR15 interaction with BRI1 activates plasma membrane H+-ATPase to promote organ development of Arabidopsis. PLANT PHYSIOLOGY 2022; 189:2454-2466. [PMID: 35511168 PMCID: PMC9343009 DOI: 10.1093/plphys/kiac194] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/25/2022] [Indexed: 05/13/2023]
Abstract
Brassinosteroids (BRs) are an important group of plant steroid hormones that regulate growth and development. Several members of the SMALL AUXIN UP RNA (SAUR) family have roles in BR-regulated hypocotyl elongation and root growth. However, the mechanisms are unclear. Here, we show in Arabidopsis (Arabidopsis thaliana) that SAUR15 interacts with cell surface receptor-like kinase BRASSINOSTEROID-INSENSITIVE 1 (BRI1) in BR-treated plants, resulting in enhanced BRI1 phosphorylation status and recruitment of the co-receptor BRI1-ASSOCIATED RECEPTOR KINASE 1. Genetic and phenotypic assays indicated that the SAUR15 effect on BRI1 can be uncoupled from BRASSINOSTEROID INSENSITIVE 2 activity. Instead, we show that SAUR15 promotes BRI1 direct activation of plasma membrane H+-ATPase (PM H+-ATPase) via phosphorylation. Consequently, SAUR15-BRI1-PM H+-ATPase acts as a direct, PM-based mode of BR signaling that drives cell expansion to promote the growth and development of various organs. These data define an alternate mode of BR signaling in plants.
Collapse
Affiliation(s)
- Mengzhan Li
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Chunli Liu
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Shelley R Hepworth
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People’s Republic of China
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Chaofan Ma
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Hong Li
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
- School of Life Sciences, Guangzhou University, Guangzhou 510006, People’s Republic of China
| | | | - Hongju Yin
- Authors for correspondence: (H.Y.) and (S.M.W.)
| |
Collapse
|
27
|
Pan H, Li Y, Chen L, Li J. Molecular Processes of Dodder Haustorium Formation on Host Plant under Low Red/Far Red (R/FR) Irradiation. Int J Mol Sci 2022; 23:ijms23147528. [PMID: 35886875 PMCID: PMC9322645 DOI: 10.3390/ijms23147528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Low R/FR irradiation can promote dodder haustorium formation on the host plant; however, the mechanisms underlying the process are still unknown. In this study, we compared the transcriptomic data during the formation of haustorium of Cuscuta chinensis on host plant Arabidopsisthaliana under low (R/FR = 0.1) versus high (R/FR = 0.2) R/FR irradiation at 12 h, 24 h and 72 h time points. The results show that low R/FR radiation significantly promoted the entanglement and haustorium formation. Transcriptome analysis showed that during the early stage of haustorium formation, low R/FR radiation significantly up-regulated ARR-A related genes and down-regulated peroxidase related genes compared with high R/FR radiation. Meanwhile, during the middle stage of haustorium formation, low R/FR treatment significantly increased the expression of genes related to pectinesterase (PE), polygalacturonase (PG) and pectin lyase (Pel) production, while, during the late stage of haustorium formation, peroxidase (Prx)-related genes were differentially expressed under different R/FR treatments. Overall, our findings show that a low R/FR ratio promotes the parasitism of C. chinensis through plant hormone signal transduction and cell wall degradation pathways. This study provides a basis for the control of parasitic plants.
Collapse
Affiliation(s)
- Hangkai Pan
- School of Life Sciences, Shanghai Normal University, Shanghai 200234, China;
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China; (Y.L.); (L.C.)
| | - Yi Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China; (Y.L.); (L.C.)
| | - Luxi Chen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China; (Y.L.); (L.C.)
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China; (Y.L.); (L.C.)
- Correspondence:
| |
Collapse
|
28
|
Liu Q, Ding J, Huang W, Yu H, Wu S, Li W, Mao X, Chen W, Xing J, Li C, Yan S. OsPP65 Negatively Regulates Osmotic and Salt Stress Responses Through Regulating Phytohormone and Raffinose Family Oligosaccharide Metabolic Pathways in Rice. RICE (NEW YORK, N.Y.) 2022; 15:34. [PMID: 35779169 PMCID: PMC9250576 DOI: 10.1186/s12284-022-00581-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Although type 2C protein phosphatases (PP2Cs) have been demonstrated to play important roles in regulating plant development and various stress responses, their specific roles in rice abiotic stress tolerance are still largely unknown. In this study, the functions of OsPP65 in rice osmotic and salt stress tolerance were investigated. Here, we report that OsPP65 is responsive to multiple stresses and is remarkably induced by osmotic and salt stress treatments. OsPP65 was highly expressed in rice seedlings and leaves and localized in the nucleus and cytoplasm. OsPP65 knockout rice plants showed enhanced tolerance to osmotic and salt stresses. Significantly higher induction of genes involved in jasmonic acid (JA) and abscisic acid (ABA) biosynthesis or signaling, as well as higher contents of endogenous JA and ABA, were observed in the OsPP65 knockout plants compared with the wild-type plants after osmotic stress treatment. Further analysis indicated that JA and ABA function independently in osmotic stress tolerance conferred by loss of OsPP65. Moreover, metabolomics analysis revealed higher endogenous levels of galactose and galactinol but a lower content of raffinose in the OsPP65 knockout plants than in the wild-type plants after osmotic stress treatment. These results together suggest that OsPP65 negatively regulates osmotic and salt stress tolerance through regulation of the JA and ABA signaling pathways and modulation of the raffinose family oligosaccharide metabolism pathway in rice. OsPP65 is a promising target for improvement of rice stress tolerance using gene editing.
Collapse
Affiliation(s)
- Qing Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Jierong Ding
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Hang Yu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Shaowen Wu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Wenyan Li
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Xingxue Mao
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Wenfeng Chen
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Junlian Xing
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Chen Li
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| |
Collapse
|
29
|
Weeraratne G, Wang H, Weeraratne TP, Sabharwal T, Jiang HW, Cantero A, Clark G, Roux SJ. APYRASE1/2 mediate red light-induced de-etiolation growth in Arabidopsis seedlings. PLANT PHYSIOLOGY 2022; 189:1728-1740. [PMID: 35357495 PMCID: PMC9237676 DOI: 10.1093/plphys/kiac150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/07/2022] [Indexed: 05/09/2023]
Abstract
In etiolated seedlings, red light (R) activates phytochrome and initiates signals that generate major changes at molecular and physiological levels. These changes include inhibition of hypocotyl growth and promotion of the growth of primary roots, apical hooks, and cotyledons. An earlier report showed that the sharp decrease in hypocotyl growth rapidly induced by R was accompanied by an equally rapid decrease in the transcript and protein levels of two closely related apyrases (APYs; nucleoside triphosphate-diphosphohydrolases) in Arabidopsis (Arabidopsis thaliana), APY1 and APY2, enzymes whose expression alters auxin transport and growth in seedlings. Here, we report that single knockouts of either APY inhibit R-induced promotion of the growth of primary roots, apical hooks, and cotyledons, and RNAi-induced suppression of APY1 expression in the background of apy2 inhibits R-induced apical hook opening. When R-irradiated primary roots and apical hook-cotyledons began to show a gradual increase in their growth relative to dark controls, they concurrently showed increased levels of APY protein, but in hook-cotyledon tissue, this occurred without parallel increases in their transcripts. In wild-type seedlings whose root growth is suppressed by the photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea, the R-induced increased APY expression in roots was also inhibited. In unirradiated plants, the constitutive expression of APY2 promoted both hook opening and changes in the transcript abundance of Small Auxin Upregulated RNA (SAUR), SAUR17 and SAUR50 that help mediate de-etiolation. These results provide evidence that the expression of APY1/APY2 is regulated by R and that APY1/APY2 participate in the signaling pathway by which phytochrome induces differential growth changes in different tissues of etiolated seedlings.
Collapse
Affiliation(s)
- Gayani Weeraratne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Huan Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Tharindu P Weeraratne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Tanya Sabharwal
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Han-Wei Jiang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Araceli Cantero
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Greg Clark
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
30
|
Alem AL, Ariel FD, Cho Y, Hong JC, Gonzalez DH, Viola IL. TCP15 interacts with GOLDEN2-LIKE 1 to control cotyledon opening in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:748-763. [PMID: 35132717 DOI: 10.1111/tpj.15701] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/23/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
After germination, exposure to light promotes the opening and expansion of the cotyledons and the development of the photosynthetic apparatus in a process called de-etiolation. This process is crucial for seedling establishment and photoautotrophic growth. TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTORS (TCP) transcription factors are important developmental regulators of plant responses to internal and external signals that are grouped into two main classes. In this study, we identified GOLDEN2-LIKE 1 (GLK1), a key transcriptional regulator of photomorphogenesis, as a protein partner of class I TCPs during light-induced cotyledon opening and expansion in Arabidopsis. The class I TCP TCP15 and GLK1 are mutually required for cotyledon opening and the induction of SAUR and EXPANSIN genes, involved in cell expansion. TCP15 also participates in the expression of photosynthesis-associated genes regulated by GLK1, like LHCB1.4 and LHCB2.2. Furthermore, GLK1 and TCP15 bind to the same promoter regions of different target genes containing either GLK or TCP binding motifs and binding of TCP15 is affected in a GLK1-deficient background, suggesting that a complex between TCP15 and GLK1 participates in the induction of these genes. We postulate that GLK1 helps to recruit TCP15 for the modulation of cell expansion genes in cotyledons and that the functional interaction between these transcription factors may serve to coordinate the expression of cell expansion genes with that of genes involved in the development of the photosynthetic apparatus.
Collapse
Affiliation(s)
- Antonela L Alem
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Federico D Ariel
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Yuhan Cho
- Division of Life Science and Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Jong Chan Hong
- Division of Life Science and Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Daniel H Gonzalez
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Ivana L Viola
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| |
Collapse
|
31
|
PpSAUR43, an Auxin-Responsive Gene, Is Involved in the Post-Ripening and Softening of Peaches. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Auxin’s role in the post-ripening of peaches is widely recognized as important. However, little is known about the processes by which auxin regulates fruit post-ripening. As one of the early auxin-responsive genes, it is critical to understand the role of small auxin-up RNA (SAUR) genes in fruit post-ripening and softening. Herein, we identified 72 PpSAUR auxin-responsive factors in the peach genome and divided them into eight subfamilies based on phylogenetic analysis. Subsequently, the members related to peach post-ripening in the PpSAUR gene family were screened, and we targeted PpSAUR43. The expression of PpSAUR43 was decreased with fruit post-ripening in melting flesh (MF) fruit and was high in non-melting flesh (NMF) fruit. The overexpression of PpSAUR43 showed a slower rate of firmness decline, reduced ethylene production, and a delayed fruit post-ripening process. The MADS-box gene family plays an important regulatory role in fruit ripening. In this study, we showed with yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BIFC) experiments that PpSAUR43 can interact with the MADS-box transcription factor PpCMB1(PpMADS2), which indicates that PpSAUR43 may inhibit fruit ripening by suppressing the function of the PpCMB1 protein. Together, these results indicate that PpSAUR43 acts as a negative regulator involved in the peach post-ripening process.
Collapse
|
32
|
Xia K, Sun HX, Li J, Li J, Zhao Y, Chen L, Qin C, Chen R, Chen Z, Liu G, Yin R, Mu B, Wang X, Xu M, Li X, Yuan P, Qiao Y, Hao S, Wang J, Xie Q, Xu J, Liu S, Li Y, Chen A, Liu L, Yin Y, Yang H, Wang J, Gu Y, Xu X. The single-cell stereo-seq reveals region-specific cell subtypes and transcriptome profiling in Arabidopsis leaves. Dev Cell 2022; 57:1299-1310.e4. [PMID: 35512702 DOI: 10.1016/j.devcel.2022.04.011] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/27/2022] [Accepted: 04/06/2022] [Indexed: 12/15/2022]
Abstract
Understanding the complex functions of plant leaves requires a thorough characterization of discrete cell features. Although single-cell gene expression profiling technologies have been developed, their application in characterizing cell subtypes has not been achieved yet. Here, we present scStereo-seq (single-cell spatial enhanced resolution omics sequencing) that enabled us to show the bona fide single-cell spatial transcriptome profiles of Arabidopsis leaves. Subtle but significant transcriptomic differences between upper and lower epidermal cells have been successfully distinguished. Furthermore, we discovered cell-type-specific gene expression gradients from the main vein to the leaf edge, which led to the finding of distinct spatial developmental trajectories of vascular cells and guard cells. Our study showcases the importance of physical locations of individual cells for exerting complex biological functions in plants and demonstrates that scStereo-seq is a powerful tool to integrate single-cell location and transcriptome information for plant biology study.
Collapse
Affiliation(s)
- Keke Xia
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Hai-Xi Sun
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Li
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiming Li
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Yu Zhao
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | | | - Chao Qin
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Ruiying Chen
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China; College of Informatics, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | | | - Guangyu Liu
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Ruilian Yin
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bangbang Mu
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | | | - Mengyuan Xu
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Xinyue Li
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Peisi Yuan
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Yixin Qiao
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Shijie Hao
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Wang
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Qing Xie
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Jiangshan Xu
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiping Liu
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Yuxiang Li
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Ao Chen
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Longqi Liu
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China; Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen 518120, Guangdong, China
| | - Ye Yin
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China; James D. Watson Institute of Genome Sciences, Hangzhou 310058, Zhejiang, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China; James D. Watson Institute of Genome Sciences, Hangzhou 310058, Zhejiang, China.
| | - Ying Gu
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, Guangdong, China.
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, Guangdong, China.
| |
Collapse
|
33
|
Liu Y, Xiao L, Chi J, Li R, Han Y, Cui F, Peng Z, Wan S, Li G. Genome-wide identification and expression of SAUR gene family in peanut (Arachis hypogaea L.) and functional identification of AhSAUR3 in drought tolerance. BMC PLANT BIOLOGY 2022; 22:178. [PMID: 35387613 PMCID: PMC8988358 DOI: 10.1186/s12870-022-03564-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/25/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Small auxin-upregulated RNAs (SAURs) gene family plays important roles in plant growth, development, and stress responses. However, the function of few SAUR genes is known in the peanut (Arachis hypogaea L.), one of the world's major food legume crops. This study aimed to perform a comprehensive identification of the SAUR gene family from the peanut genome. RESULTS The genome-wide analysis revealed that a total of 162 SAUR genes were identified in the peanut genome. The phylogenetic analysis indicated that the SAUR proteins were classified into eight subfamilies. The SAUR gene family experienced a remarkable expansion after tetraploidization, which contributed to the tandem duplication events first occurring in subgenome A and then segmental duplication events occurring between A and B subgenomes. The expression profiles based on transcriptomic data showed that SAUR genes were dominantly expressed in the leaves, pistils, perianth, and peg tips, and were widely involved in tolerance against abiotic stresses. A total of 18 AhSAUR genes selected from different subfamilies randomly presented 4 major expression patterns according to their expression characteristics in response to indole-3-acetic acid. The members from the same subfamily showed a similar expression pattern. Furthermore, the functional analysis revealed that AhSAUR3 played a negative role in response to drought tolerance. CONCLUSIONS This study provided insights into the evolution and function of the SAUR gene family and may serve as a resource for further functional research on AhSAUR genes.
Collapse
Affiliation(s)
- Yiyang Liu
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Lina Xiao
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Jingxian Chi
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, 250014 Shandong Province China
| | - Rongchong Li
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Yan Han
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Feng Cui
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Zhenying Peng
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Shubo Wan
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Guowei Li
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, 250014 Shandong Province China
| |
Collapse
|
34
|
Ren L, Zhang T, Wu H, Ge X, Wan H, Chen S, Li Z, Ma D, Wang A. Blocking IbmiR319a Impacts Plant Architecture and Reduces Drought Tolerance in Sweet Potato. Genes (Basel) 2022; 13:genes13030404. [PMID: 35327958 PMCID: PMC8953241 DOI: 10.3390/genes13030404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 01/15/2023] Open
Abstract
MicroRNA319 (miR319) plays a key role in plant growth, development, and multiple resistance by repressing the expression of targeted TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) genes. Two members, IbmiR319a and IbmiR319c, were discovered in the miR319 gene family in sweet potato (Ipomoea batatas [L.] Lam). Here, we focused on the biological function and potential molecular mechanism of the response of IbmiR319a to drought stress in sweet potato. Blocking IbmiR319a in transgenic sweet potato (MIM319) resulted in a slim and tender phenotype and greater sensitivity to drought stress. Microscopic observations revealed that blocking IbmiR319a decreased the cell width and increased the stomatal distribution in the adaxial leaf epidermis, and also increased the intercellular space in the leaf and petiole. We also found that the lignin content was reduced, which led to increased brittleness in MIM319. Quantitative real-time PCR showed that the expression levels of key genes in the lignin biosynthesis pathway were much lower in the MIM319 lines than in the wild type. Ectopic expression of IbmiR319a-targeted genes IbTCP11 and IbTCP17 in Arabidopsis resulted in similar phenotypes to MIM319. We also showed that the expression of IbTCP11 and IbTCP17 was largely induced by drought stress. Transcriptome analysis indicated that cell growth-related pathways, such as plant hormonal signaling, were significantly downregulated with the blocking of IbmiR319a. Taken together, our findings suggest that IbmiR319a affects plant architecture by targeting IbTCP11/17 to control the response to drought stress in sweet potato.
Collapse
Affiliation(s)
- Lei Ren
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (L.R.); (T.Z.); (H.W.); (X.G.); (H.W.); (Z.L.)
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Tingting Zhang
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (L.R.); (T.Z.); (H.W.); (X.G.); (H.W.); (Z.L.)
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Haixia Wu
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (L.R.); (T.Z.); (H.W.); (X.G.); (H.W.); (Z.L.)
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Xinyu Ge
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (L.R.); (T.Z.); (H.W.); (X.G.); (H.W.); (Z.L.)
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Huihui Wan
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (L.R.); (T.Z.); (H.W.); (X.G.); (H.W.); (Z.L.)
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Shengyong Chen
- Zhanjiang Academy of Agricultural Sciences, Zhanjiang 524094, China;
| | - Zongyun Li
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (L.R.); (T.Z.); (H.W.); (X.G.); (H.W.); (Z.L.)
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Daifu Ma
- Key Laboratory for Biology and Genetic Breeding of Sweetpotato (Xuzhou), Ministry of Agriculture/Jiangsu Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Xuzhou 221131, China
- Correspondence: (D.M.); (A.W.); Tel.: +86-516-82189200 (D.M.); +86-516-83400033 (A.W.)
| | - Aimin Wang
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (L.R.); (T.Z.); (H.W.); (X.G.); (H.W.); (Z.L.)
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
- Correspondence: (D.M.); (A.W.); Tel.: +86-516-82189200 (D.M.); +86-516-83400033 (A.W.)
| |
Collapse
|
35
|
Zeng L, Wang JZ, He X, Ke H, Lemos M, Gray WM, Dehesh K. A plastidial retrograde signal potentiates biosynthesis of systemic stress response activators. THE NEW PHYTOLOGIST 2022; 233:1732-1749. [PMID: 34859454 PMCID: PMC8776617 DOI: 10.1111/nph.17890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 05/26/2023]
Abstract
Plants employ an array of intricate and hierarchical signaling cascades to perceive and transduce informational cues to synchronize and tailor adaptive responses. Systemic stress response (SSR) is a recognized complex signaling and response network quintessential to plant's local and distal responses to environmental triggers; however, the identity of the initiating signals has remained fragmented. Here, we show that both biotic (aphids and viral pathogens) and abiotic (high light and wounding) stresses induce accumulation of the plastidial-retrograde-signaling metabolite methylerythritol cyclodiphosphate (MEcPP), leading to reduction of the phytohormone auxin and the subsequent decreased expression of the phosphatase PP2C.D1. This enables phosphorylation of mitogen-activated protein kinases 3/6 and the consequential induction of the downstream events ultimately, resulting in biosynthesis of the two SSR priming metabolites pipecolic acid and N-hydroxy-pipecolic acid. This work identifies plastids as a major initiation site, and the plastidial retrograde signal MEcPP as an initiator of a multicomponent signaling cascade potentiating the biosynthesis of SSR activators, in response to biotic and abiotic triggers.
Collapse
Affiliation(s)
- Liping Zeng
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Jin-Zheng Wang
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Xiang He
- Current address: Laboratory of Allergy and Inflammation, Chengdu third people’s hospital branch of National Clinical Research Center for Respiratory Disease, Chengdu 610031, China
| | - Haiyan Ke
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Mark Lemos
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - William M. Gray
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Katayoon Dehesh
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
36
|
Du M, Bou Daher F, Liu Y, Steward A, Tillmann M, Zhang X, Wong JH, Ren H, Cohen JD, Li C, Gray WM. Biphasic control of cell expansion by auxin coordinates etiolated seedling development. SCIENCE ADVANCES 2022; 8:eabj1570. [PMID: 35020423 PMCID: PMC8754305 DOI: 10.1126/sciadv.abj1570] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Seedling emergence is critical for food security. It requires rapid hypocotyl elongation and apical hook formation, both of which are mediated by regulated cell expansion. How these events are coordinated in etiolated seedlings is unclear. Here, we show that biphasic control of cell expansion by the phytohormone auxin underlies this process. Shortly after germination, high auxin levels restrain elongation. This provides a temporal window for apical hook formation, involving a gravity-induced auxin maximum on the eventual concave side of the hook. This auxin maximum induces PP2C.D1 expression, leading to asymmetrical H+-ATPase activity across the hypocotyl that contributes to the differential cell elongation underlying hook development. Subsequently, auxin concentrations decline acropetally and switch from restraining to promoting elongation, thereby driving hypocotyl elongation. Our findings demonstrate how differential auxin concentrations throughout the hypocotyl coordinate etiolated development, leading to successful soil emergence.
Collapse
Affiliation(s)
- Minmin Du
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Firas Bou Daher
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Yuanyuan Liu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Andrew Steward
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Molly Tillmann
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Xiaoyue Zhang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jeh Haur Wong
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Hong Ren
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Jerry D. Cohen
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Corresponding author. (C.L.); (W.M.G.)
| | - William M. Gray
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
- Corresponding author. (C.L.); (W.M.G.)
| |
Collapse
|
37
|
Ravindran N, Ramachandran H, Job N, Yadav A, Vaishak K, Datta S. B-box protein BBX32 integrates light and brassinosteroid signals to inhibit cotyledon opening. PLANT PHYSIOLOGY 2021; 187:446-461. [PMID: 34618149 PMCID: PMC8418414 DOI: 10.1093/plphys/kiab304] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/31/2021] [Indexed: 05/20/2023]
Abstract
Cotyledon opening is a key morphological change that occurs in seedlings during de-etiolation. Brassinosteroids (BRs) inhibit the opening of cotyledons in darkness while light promotes cotyledon opening. The molecular regulation of the interplay between light and BR to regulate cotyledon opening is not well understood. Here, we show the B-box protein BBX32 negatively regulates light signaling and promotes BR signaling to inhibit cotyledon opening in Arabidopsis (Arabidopsis thaliana). BBX32 is highly expressed in the cotyledons of seedlings during de-etiolation. bbx32 and 35S:BBX32 seedlings exhibit enhanced and reduced cotyledon opening, respectively, in response to both light and brassinazole treatment in dark, suggesting that BBX32 mediates cotyledon opening through both light and BR signaling pathways. BBX32 expression is induced by exogenous BR and is upregulated in bzr1-1D (BRASSINAZOLE RESISTANT1-1D). Our in vitro and in vivo interaction studies suggest that BBX32 physically interacts with BZR1. Further, we found that PHYTOCHROME-INTERACTING FACTOR 3 (PIF3) interacts with BBX32 and promotes BR-mediated cotyledon closure. BBX32, BZR1, and PIF3 regulate the expression of common target genes that modulate the opening and closing of cotyledons. Our work suggests BBX32 integrates light and BR signals to regulate cotyledon opening during de-etiolation.
Collapse
Affiliation(s)
- Nevedha Ravindran
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Harshil Ramachandran
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Nikhil Job
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Arpita Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - K.P. Vaishak
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
- Author for communication:
| |
Collapse
|
38
|
Rovira A, Sentandreu M, Nagatani A, Leivar P, Monte E. The Sequential Action of MIDA9/PP2C.D1, PP2C.D2, and PP2C.D5 Is Necessary to Form and Maintain the Hook After Germination in the Dark. FRONTIERS IN PLANT SCIENCE 2021; 12:636098. [PMID: 33767720 PMCID: PMC7985339 DOI: 10.3389/fpls.2021.636098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
During seedling etiolation after germination in the dark, seedlings have closed cotyledons and form an apical hook to protect the meristem as they break through the soil to reach the surface. Once in contact with light, the hook opens and cotyledons are oriented upward and separate. Hook development in the dark after seedling emergence from the seed follows three distinctly timed and sequential phases: formation, maintenance, and eventual opening. We previously identified MISREGULATED IN DARK9 (MIDA9) as a phytochrome interacting factor (PIF)-repressed gene in the dark necessary for hook development during etiolated growth. MIDA9 encodes the type 2C phosphatase PP2C.D1, and pp2c-d1/mida9 mutants exhibit open hooks in the dark. Recent evidence has described that PP2C.D1 and other PP2C.D members negatively regulate SMALL AUXIN UP RNA (SAUR)-mediated cell elongation. However, the fundamental question of the timing of PP2C.D1 action (and possibly other members of the PP2C.D family) during hook development remains to be addressed. Here, we show that PP2C.D1 is required immediately after germination to form the hook. pp2c.d1/mida9 shows reduced cell expansion in the outer layer of the hook and, therefore, does not establish the differential cell growth necessary for hook formation, indicating that PP2C.D1 is necessary to promote cell elongation during this early stage. Additionally, genetic analyses of single and high order mutants in PP2C.D1, PP2C.D2, and PP2C.D5 demonstrate that the three PP2C.Ds act collectively and sequentially during etiolation: whereas PP2C.D1 dominates hook formation, PP2C.D2 is necessary during the maintenance phase, and PP2C.D5 acts to prevent opening during the third phase together with PP2C.D1 and PP2C.D2. Finally, we uncover a possible connection of PP2C.D1 levels with ethylene physiology, which could help optimize hook formation during post-germinative growth in the dark.
Collapse
Affiliation(s)
- Arnau Rovira
- Plant Development and Signal Transduction Program, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Maria Sentandreu
- Plant Development and Signal Transduction Program, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Akira Nagatani
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Pablo Leivar
- Plant Development and Signal Transduction Program, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona, Spain
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain
| | - Elena Monte
- Plant Development and Signal Transduction Program, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|