1
|
Lv J, Dai CB, Wang WF, Sun YH. Genome-wide identification of the tobacco GDSL family and apical meristem-specific expression conferred by the GDSL promoter. BMC PLANT BIOLOGY 2021; 21:501. [PMID: 34717531 PMCID: PMC8556911 DOI: 10.1186/s12870-021-03278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND GDSL esterases/lipases are a large protein subfamily defined by the distinct GDSL motif, and play important roles in plant development and stress responses. However, few studies have reported on the role of GDSLs in the growth and development of axillary buds. This work aims to identify the GDSL family members in tobacco and explore whether the NtGDSL gene contributes to development of the axillary bud in tobacco. RESULTS One hundred fifty-nine GDSL esterase/lipase genes from cultivated tobacco (Nicotiana tabacum) were identified, and the dynamic changes in the expression levels of 93 of these genes in response to topping, as assessed using transcriptome data of topping-induced axillary shoots, were analysed. In total, 13 GDSL esterase/lipase genes responded with changes in expression level. To identify genes and promoters that drive the tissue-specific expression in tobacco apical and axillary buds, the expression patterns of these 13 genes were verified using qRT-PCR. GUS activity and a lethal gene expression pattern driven by the NtGDSL127 promoter in transgenic tobacco demonstrated that NtGDSL127 is specifically expressed in apical buds, axillary buds, and flowers. Three separate deletions in the NtGDSL127 promoter demonstrated that a minimum upstream segment of 235 bp from the translation start site can drive the tissue-specific expression in the apical meristem. Additionally, NtGDSL127 responded to phytohormones, providing strategies for improving tobacco breeding and growth. CONCLUSION We propose that in tobacco, the NtGDSL127 promoter directs expression specifically in the apical meristem and that expression is closely correlated with axillary bud development.
Collapse
Affiliation(s)
- Jing Lv
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chang-Bo Dai
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China.
| | - Wei-Feng Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Yu-He Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China.
| |
Collapse
|
2
|
Magyar-Tábori K, Mendler-Drienyovszki N, Hanász A, Zsombik L, Dobránszki J. Phytotoxicity and Other Adverse Effects on the In Vitro Shoot Cultures Caused by Virus Elimination Treatments: Reasons and Solutions. PLANTS 2021; 10:plants10040670. [PMID: 33807286 PMCID: PMC8066107 DOI: 10.3390/plants10040670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/12/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
In general, in vitro virus elimination is based on the culture of isolated meristem, and in addition thermotherapy, chemotherapy, electrotherapy, and cryotherapy can also be applied. During these processes, plantlets suffer several stresses, which can result in low rate of survival, inhibited growth, incomplete development, or abnormal morphology. Even though the in vitro cultures survive the treatment, further development can be inhibited; thus, regeneration capacity of treated in vitro shoots or explants play also an important role in successful virus elimination. Sensitivity of genotypes to treatments is very different, and the rate of destruction largely depends on the physiological condition of plants as well. Exposure time of treatments affects the rate of damage in almost every therapy. Other factors such as temperature, illumination (thermotherapy), type and concentration of applied chemicals (chemo- and cryotherapy), and electric current intensity (electrotherapy) also may have a great impact on the rate of damage. However, there are several ways to decrease the harmful effect of treatments. This review summarizes the harmful effects of virus elimination treatments applied on tissue cultures reported in the literature. The aim of this review is to expound the solutions that can be used to mitigate phytotoxic and other adverse effects in practice.
Collapse
Affiliation(s)
- Katalin Magyar-Tábori
- Centre for Agricultural Genomics and Biotechnology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, P.O. Box 12, H-4400 Nyíregyháza, Hungary;
- Correspondence:
| | - Nóra Mendler-Drienyovszki
- Research Institute of Nyíregyháza, Institutes for Agricultural Research and Educational Farm (IAREF), University of Debrecen, P.O. Box 12, H-4400 Nyíregyháza, Hungary; (N.M.-D.); (L.Z.)
| | - Alexandra Hanász
- Kerpely Kálmán Doctoral School of Crop Production and Horticultural Sciences, University of Debrecen, Böszörményi Str. 138, H-4032 Debrecen, Hungary;
| | - László Zsombik
- Research Institute of Nyíregyháza, Institutes for Agricultural Research and Educational Farm (IAREF), University of Debrecen, P.O. Box 12, H-4400 Nyíregyháza, Hungary; (N.M.-D.); (L.Z.)
| | - Judit Dobránszki
- Centre for Agricultural Genomics and Biotechnology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, P.O. Box 12, H-4400 Nyíregyháza, Hungary;
| |
Collapse
|
3
|
Schnablová R, Neustupa J, Woodard K, Klimešová J, Herben T. Disentangling phylogenetic and functional components of shape variation among shoot apical meristems of a wide range of herbaceous angiosperms. AMERICAN JOURNAL OF BOTANY 2020; 107:20-30. [PMID: 31885081 DOI: 10.1002/ajb2.1407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
PREMISE The shoot apical meristem (SAM) is the basic determinant of plant body organization, but interspecific variation in SAM shape and its relationship to stem and leaf morphological traits is not well known. Here we tested the hypothesis that different SAM shapes are associated with specific shoot traits of the plant body and examined the phylogenetic conservatism of these relationships. METHODS We used geometric morphometrics of SAM outlines for a phylogenetically representative set of 110 herbaceous angiosperms and examined their relationship to a number of shoot traits. RESULTS We found large variations in SAM shapes across angiosperm lineages, but covering only a subset of geometrically possible shapes. Part of this variation was allometric (due to SAM size), but the dominant shape variation (dome-shaped vs. flat surface) was size-independent and strongly phylogenetically conserved. SAM shapes were largely independent of their cell size and therefore of the number of cells involved. Different patterns in shape variation of outer and inner SAM boundaries were associated with stem thickness, leaf area, and leafiness of the stem. CONCLUSIONS The findings show that geometric interdependence of meristem zones gives rise to correlations among organ numbers, sizes, and their proportions. Phylogenetic conservatism in these correlations indicates conservatism in regulatory processes that underlie the correlations, or the individual traits, that give rise to plant architecture.
Collapse
Affiliation(s)
- Renáta Schnablová
- Institute of Botany, Czech Academy of Sciences, CZ-252 43, Průhonice, Czech Republic
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, CZ-165 02, Praha 6
| | - Jiří Neustupa
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Praha 2, Czech Republic
| | - Kateřina Woodard
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Praha 2, Czech Republic
| | - Jitka Klimešová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Praha 2, Czech Republic
- Institute of Botany, Czech Academy of Sciences, Dukelská 135, CZ-379 82, Třeboň, Czech Republic
| | - Tomáš Herben
- Institute of Botany, Czech Academy of Sciences, CZ-252 43, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Praha 2, Czech Republic
| |
Collapse
|
4
|
Zhu Y, Song D, Xu P, Sun J, Li L. A HD-ZIP III gene, PtrHB4, is required for interfascicular cambium development in Populus. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:808-817. [PMID: 28905477 PMCID: PMC5814583 DOI: 10.1111/pbi.12830] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/26/2017] [Accepted: 08/31/2017] [Indexed: 05/07/2023]
Abstract
Wood production is dependent on the activity of the vascular cambium, which develops from the fascicular and interfascicular cambia. However, little is known about the mechanisms controlling how the vascular cambium is developed in woody species. Here, we show that PtrHB4, belonging to the Populus HD-ZIP III family, plays a critical role in the process of vascular cambium development. PtrHB4 was specifically expressed in shoot tip and stem vascular tissue at an early developmental stage. Repression of PtrHB4 caused defects in the development of the secondary vascular system due to failures in interfascicular cambium formation. By contrast, overexpression of PtrHB4 induced cambium activity and xylem differentiation during secondary vascular development. Transcriptional analysis of PtrHB4 repressed plants indicated that auxin response and cell proliferation were affected in the formation of the interfascicular cambium. Taken together, these results suggest that PtrHB4 is required for interfascicular cambium formation to develop the vascular cambium in woody species.
Collapse
Affiliation(s)
- Yingying Zhu
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Dongliang Song
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Peng Xu
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
- Present address:
Warnell School of Forestry and Natural Resources and Department of GeneticsUniversity of GeorgiaAthensGA30602USA
| | - Jiayan Sun
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| |
Collapse
|
5
|
Stanislas T, Platre MP, Liu M, Rambaud-Lavigne LES, Jaillais Y, Hamant O. A phosphoinositide map at the shoot apical meristem in Arabidopsis thaliana. BMC Biol 2018; 16:20. [PMID: 29415713 PMCID: PMC5803925 DOI: 10.1186/s12915-018-0490-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/19/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In plants, the shoot apical meristem (SAM) has two main functions, involving the production of all aerial organs on the one hand and self-maintenance on the other, allowing the production of organs during the entire post-embryonic life of the plant. Transcription factors, microRNA, hormones, peptides and forces have been involved in meristem function. Whereas phosphatidylinositol phosphates (PIPs) have been involved in almost all biological functions, including stem cell maintenance and organogenesis in animals, the processes in meristem biology to which PIPs contribute still need to be delineated. RESULTS Using biosensors for PI4P and PI(4,5)P2, the two most abundant PIPs at the plasma membrane, we reveal that meristem functions are associated with a stereotypical PIP tissue-scale pattern, with PI(4,5)P2 always displaying a more clear-cut pattern than PI4P. Using clavata3 and pin-formed1 mutants, we show that stem cell maintenance is associated with reduced levels of PIPs. In contrast, high PIP levels are signatures for organ-meristem boundaries. Interestingly, this pattern echoes that of cortical microtubules and stress anisotropy at the meristem. Using ablations and pharmacological approaches, we further show that PIP levels can be increased when the tensile stress pattern is altered. Conversely, we find that katanin mutant meristems, with increased isotropy of microtubule arrays and slower response to mechanical perturbations, exhibit reduced PIP gradients within the SAM. Comparable PIP pattern defects were observed in phospholipase A3β overexpressor lines, which largely phenocopy katanin mutants at the whole plant level. CONCLUSIONS Using phospholipid biosensors, we identified a stereotypical PIP accumulation pattern in the SAM that negatively correlates with stem cell maintenance and positively correlates with organ-boundary establishment. While other cues are very likely to contribute to the final PIP pattern, we provide evidence that the patterns of PIP, cortical microtubules and mechanical stress are positively correlated, suggesting that the PIP pattern, and its reproducibility, relies at least in part on the mechanical status of the SAM.
Collapse
Affiliation(s)
- Thomas Stanislas
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France
| | - Matthieu Pierre Platre
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France
| | - Mengying Liu
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France
| | - Léa E S Rambaud-Lavigne
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France
| | - Yvon Jaillais
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France.
| |
Collapse
|
6
|
Schnablová R, Herben T, Klimešová J. Shoot apical meristem and plant body organization: a cross-species comparative study. ANNALS OF BOTANY 2017; 120:833-843. [PMID: 29136411 PMCID: PMC5737494 DOI: 10.1093/aob/mcx116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/17/2017] [Accepted: 08/23/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS The shoot apical meristem (SAM) is the key organizing element in the plant body and is responsible for the core of plant body organization and shape. Surprisingly, there are almost no comparative data that would show links between parameters of the SAM and whole-plant traits as drivers of the plant's response to the environment. METHODS Interspecific differences in SAM anatomy were examined in 104 perennial herbaceous angiosperms. KEY RESULTS There were differences in SAM parameters among individual species, their phylogenetic patterns, and how their variation is linked to variation in plant above-ground organs and hence species' environmental niches. SAM parameters were correlated with the size-related traits of leaf area, seed mass and stem diameter. Of the two key SAM parameters (cell size and number), variation in all organ traits was linked more strongly to cell number, with cell size being important only for seed mass. Some of these correlations were due to shared phylogenetic history (e.g. SAM diameter versus stem diameter), whereas others were due to parallel evolution (e.g. SAM cell size and seed mass). CONCLUSION These findings show that SAM parameters provide a functional link among sizes and numbers of plant organs, constituting species' environmental responses.
Collapse
Affiliation(s)
- Renáta Schnablová
- Institute of Botany, Czech Academy of Sciences, CZ-252
43 Průhonice, Czech Republic
| | - Tomáš Herben
- Institute of Botany, Czech Academy of Sciences, CZ-252
43 Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University,
Benátská 2, CZ-128 01 Praha 2, Czech Republic
and
| | - Jitka Klimešová
- Institute of Botany, Czech Academy of Sciences, CZ-379
82 Třeboň, Czech Republic
| |
Collapse
|
7
|
Indoliya Y, Tiwari P, Chauhan AS, Goel R, Shri M, Bag SK, Chakrabarty D. Decoding regulatory landscape of somatic embryogenesis reveals differential regulatory networks between japonica and indica rice subspecies. Sci Rep 2016; 6:23050. [PMID: 26973288 PMCID: PMC4789791 DOI: 10.1038/srep23050] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/25/2016] [Indexed: 11/09/2022] Open
Abstract
Somatic embryogenesis is a unique process in plants and has considerable interest for biotechnological application. Compare to japonica, indica rice has been less responsive to in vitro culture. We used Illumina Hiseq 2000 sequencing platform for comparative transcriptome analysis between two rice subspecies at six different developmental stages combined with a tag-based digital gene expression profiling. Global gene expression among different samples showed greater complexity in japonica rice compared to indica which may be due to polyphyletic origin of two rice subspecies. Expression pattern in initial stage indicate major differences in proembryogenic callus induction phase that may serve as key regulator to observe differences between both subspecies. Our data suggests that phytohormone signaling pathways consist of elaborate networks with frequent crosstalk, thereby allowing plants to regulate somatic embryogenesis pathway. However, this crosstalk varies between the two rice subspecies. Down regulation of positive regulators of meristem development (i.e. KNOX, OsARF5) and up regulation of its counterparts (OsRRs, MYB, GA20ox1/GA3ox2) in japonica may be responsible for its better regeneration and differentiation of somatic embryos. Comprehensive gene expression information in the present experiment may also facilitate to understand the monocot specific meristem regulation for dedifferentiation of somatic cell to embryogenic cells.
Collapse
Affiliation(s)
- Yuvraj Indoliya
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi-110 001, India
| | - Poonam Tiwari
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, India
| | - Abhisekh Singh Chauhan
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, India
| | - Ridhi Goel
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi-110 001, India
| | - Manju Shri
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, India
| | - Sumit Kumar Bag
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi-110 001, India
| | - Debasis Chakrabarty
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi-110 001, India
| |
Collapse
|
8
|
Peng L, Skylar A, Chang PL, Bisova K, Wu X. CYCP2;1 integrates genetic and nutritional information to promote meristem cell division in Arabidopsis. Dev Biol 2014; 393:160-70. [PMID: 24951878 DOI: 10.1016/j.ydbio.2014.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/31/2014] [Accepted: 06/11/2014] [Indexed: 11/15/2022]
Abstract
In higher plants, cell cycle activation in the meristems at germination is essential for the initiation of post-embryonic development. We previously identified the signaling pathways of homeobox transcription factor STIMPY and metabolic sugars as two interacting branches of the regulatory network that is responsible for activating meristematic tissue proliferation in Arabidopsis. In this study, we found that CYCP2;1 is both a direct target of STIMPY transcriptional activation and an early responder to sugar signals. Genetic and molecular studies show that CYCP2;1 physically interacts with three of the five mitotic CDKs in Arabidopsis, and is required for the G2 to M transition during meristem activation. Taken together, our results suggest that CYCP2;1 acts as a permissive control of cell cycle progression during seedling establishment by directly linking genetic control and nutritional cues with the activity of the core cell cycle machinery.
Collapse
Affiliation(s)
- Linda Peng
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Anna Skylar
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Peter L Chang
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Katerina Bisova
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň, Czech Republic
| | - Xuelin Wu
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
9
|
Skylar A, Matsuwaka S, Wu X. ELONGATA3 is required for shoot meristem cell cycle progression in Arabidopsis thaliana seedlings. Dev Biol 2013; 382:436-45. [DOI: 10.1016/j.ydbio.2013.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 11/26/2022]
|
10
|
Yang J, Yi J, Yang C, Li C. Agrobacterium tumefaciens-mediated genetic transformation of Salix matsudana Koidz. using mature seeds. TREE PHYSIOLOGY 2013; 33:628-39. [PMID: 23771952 DOI: 10.1093/treephys/tpt038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
An Agrobacterium tumefaciens-mediated transformation method was developed for Salix matsudana Koidz. using mature seeds as starting material. Multiple shoots were induced directly from embryonic shoot apices of germinating seeds. Although thidiazuron, 6-benzylaminopurine and zeatin induced multiple shoot induction with high frequency, zeatin (4.5 μM) was more effective for elongation of shoots and roots. The binary vector pCAMBIA1303, which contained neomycin phosphotransferase as a selectable marker gene and β-glucuronidase as a reporter gene, was used for transformation. Factors affecting transformation efficiency were examined for optimization of the procedure. Up to 35 of 180 seeds regenerated kanamycin-resistant shoots under optimal transformation conditions as follows: seeds were precultured for 4 days, apices of embryonic shoots were removed and infected with A. tumefaciens strain LBA4404 grown to a cell density equivalent (OD600) of 0.6, and then the infected explants were cultivated at 21 °C for 4 days. Storage of seeds at -20 °C for as long as 3 years had no significant effect on the induction of kanamycin-resistant shoots. Using this method, transgenic plants were obtained within ∼5 months with a transformation frequency of 7.2%. Analysis by polymerase chain reaction (PCR) showed that 36.4-93.8% of plants from all 13 tested kanamycin-resistant lines were PCR positive. Several 'escapes' were eliminated by a second round of selection. PCR, Southern blot and reverse transcriptase-PCR analyses of selected transgenic individuals 2 years after cutting propagation confirmed the successful generation of stable transformants. Our method, which minimizes the duration of axenic culture, may provide an alternative procedure for transformation of other recalcitrant Salix species.
Collapse
Affiliation(s)
- Jingli Yang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | | | | | | |
Collapse
|
11
|
Abstract
The dms4 (defective in meristem silencing 4) mutant of Arabidopsis thaliana is unique in having defects in both RNA-directed DNA methylation (RdDM) and plant development. DMS4 is an evolutionarily conserved, putative transcription factor of the Iwr1 (interacts with RNA polymerase II) type. DMS4 interacts with Pol II and also with RNA polymerases IV and V, which function in RdDM. Interactions with multiple polymerases may account for the diverse phenotypic effects of dms4 mutations. To dissect further the roles of DMS4 in RdDM and development, we performed a genetic suppressor screen using the dms4-1 allele, which contains in the sixth intron a splice site acceptor mutation that alters splicing and destroys the open reading frame. Following mutagenesis of dms4-1 seeds using ethyl methanesulfonate (EMS), we retrieved four dominant intragenic suppressor mutations that restored DMS4 function and wild-type phenotypes. Three of the four intragenic suppressor mutations created new splice site acceptors, which resulted in reestablishment of the wild-type open reading frame. Remarkably, the intragenic suppressor mutations were recovered at frequencies ranging from 35 to 150 times higher than expected for standard EMS mutagenesis in Arabidopsis. Whole-genome sequencing did not reveal an elevated mutation frequency genome-wide, indicating that the apparent hypermutation was confined to four specific sites in the dms4 gene. The localized high mutation frequency correlated with restoration of DMS4 function implies an efficient mechanism for targeted mutagenesis or selection of more fit revertant cells in the shoot apical meristem, thereby rapidly restoring a wild-type phenotype that is transmitted to future generations.
Collapse
|
12
|
Differences in cell division rates drive the evolution of terminal differentiation in microbes. PLoS Comput Biol 2012; 8:e1002468. [PMID: 22511858 PMCID: PMC3325182 DOI: 10.1371/journal.pcbi.1002468] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 02/24/2012] [Indexed: 12/01/2022] Open
Abstract
Multicellular differentiated organisms are composed of cells that begin by developing from a single pluripotent germ cell. In many organisms, a proportion of cells differentiate into specialized somatic cells. Whether these cells lose their pluripotency or are able to reverse their differentiated state has important consequences. Reversibly differentiated cells can potentially regenerate parts of an organism and allow reproduction through fragmentation. In many organisms, however, somatic differentiation is terminal, thereby restricting the developmental paths to reproduction. The reason why terminal differentiation is a common developmental strategy remains unexplored. To understand the conditions that affect the evolution of terminal versus reversible differentiation, we developed a computational model inspired by differentiating cyanobacteria. We simulated the evolution of a population of two cell types –nitrogen fixing or photosynthetic– that exchange resources. The traits that control differentiation rates between cell types are allowed to evolve in the model. Although the topology of cell interactions and differentiation costs play a role in the evolution of terminal and reversible differentiation, the most important factor is the difference in division rates between cell types. Faster dividing cells always evolve to become the germ line. Our results explain why most multicellular differentiated cyanobacteria have terminally differentiated cells, while some have reversibly differentiated cells. We further observed that symbioses involving two cooperating lineages can evolve under conditions where aggregate size, connectivity, and differentiation costs are high. This may explain why plants engage in symbiotic interactions with diazotrophic bacteria. The evolution of multicellularity is one of the most fascinating topics of evolutionary biology. Without multicellularity the incredible diversity of extant life would not be possible. In many multicellular organisms with specialized cells, some cell types become terminally differentiated (somatic cells) and lose the ability to reproduce new organisms while other cells maintain this ability (germline). Little is known about the conditions that favor the evolution of terminal differentiation in multicellular organisms. To understand this problem we have developed a computational model, inspired by multicellular cyanobacteria, in which the cells in an organism composed of two cell types (photosynthetic and nitrogen fixing) are allowed to evolve from germline to soma cells. We find three striking results. First, faster dividing cell types always evolve to become the germline. Second, the conditions under which we find different outcomes from the model are in good agreement with the different forms of development observed in multicellular cyanobacteria. Third, some conditions lead to a symbiotic state in which the two cell types separate into different lineages evolving independently of one another. Remarkably, cyanobacteria are also known to engage in symbiotic relationships with plants, producing fixed nitrogen for the plant in exchange for carbohydrates.
Collapse
|
13
|
Besnard F, Vernoux T, Hamant O. Organogenesis from stem cells in planta: multiple feedback loops integrating molecular and mechanical signals. Cell Mol Life Sci 2011; 68:2885-906. [PMID: 21655916 PMCID: PMC11115100 DOI: 10.1007/s00018-011-0732-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/19/2011] [Accepted: 05/11/2011] [Indexed: 11/27/2022]
Abstract
In multicellular organisms, the coordination of cell behaviors largely relies on biochemical and biophysical signals. Understanding how such signals control development is often challenging, because their distribution relies on the activity of individual cells and, in a feedback loop, on tissue behavior and geometry. This review focuses on one of the best-studied structures in biology, the shoot apical meristem (SAM). This tissue is responsible for the production of all the aerial parts of a plant. In the SAM, a population of stem cells continuously produces new cells that are incorporated in lateral organs, such as leaves, branches, and flowers. Organogenesis from stem cells involves a tight regulation of cell identity and patterning as well as large-scale morphogenetic events. The gene regulatory network controlling these processes is highly coordinated in space by various signals, such as plant hormones, peptides, intracellular mobile factors, and mechanical stresses. Many crosstalks and feedback loops interconnecting these pathways have emerged in the past 10 years. The plant hormone auxin and mechanical forces have received more attention recently and their role is more particularly detailed here. An integrated view of these signaling networks is also presented in order to help understanding how robust shape and patterning can emerge from these networks.
Collapse
Affiliation(s)
- Fabrice Besnard
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, Université de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
| | - Teva Vernoux
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, Université de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, Université de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
- Laboratoire Joliot Curie, Laboratoire de Physique, CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
14
|
Mimida N, Ureshino A, Tanaka N, Shigeta N, Sato N, Moriya-Tanaka Y, Iwanami H, Honda C, Suzuki A, Komori S, Wada M. Expression patterns of several floral genes during flower initiation in the apical buds of apple (Malus × domestica Borkh.) revealed by in situ hybridization. PLANT CELL REPORTS 2011; 30:1485-92. [PMID: 7566148 DOI: 10.1007/s00299-011-1057-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/22/2011] [Accepted: 03/08/2011] [Indexed: 05/14/2023]
Abstract
The apple (Malus × domestica Borkh.) is one of the commercially important fruit crops in the worldwide. The apple has a relatively long juvenile period (up to 4 years) and a long reproductive period between the flower initiation and the mature fruit (14-16 months), which prevent the fruit breeding. Therefore, the understanding of the flowering system is important to improve breeding efficiency in the apple. In this study, to examine the temporal and spatial expression patterns of the floral genes, MdTFL1, MdAP1 (MdMASD5), AFL2, and MdFT, we conducted in situ hybridization analysis in the apple shoot apex. In vegetative phase, MdTFL1 was expressed on the rib meristem zone. When vegetative meristem began converting into inflorescence meristem, the expression level of MdTFL1 was drastically decreased. At the early stage of inflorescence meristem, the expression levels of AFL2, MdFT, and MdAP1 were up-regulated in the leaf primordia and the upper region of cell layers on the shoot apex. In late stage, the expression levels of AFL2 and MdAP1 were up-regulated in the young floral primordia. At a more advanced stage, high expression of MdAP1 was observed in the inflorescence primordium through the inner layer of sepal primordia and the outer layer of receptacle primordia and floral axis. Our results suggest that AFL2, MdFT, and MdAP1 affect to convert from the vegetative meristem into the inflorescence meristem after the decline of MdTFL1 expression. After that, AFL2 and MdAP1 promote the formation of the floral primordia and floral organs.
Collapse
Affiliation(s)
- Naozumi Mimida
- Faculty of Agriculture, Iwate University, Morioka, Iwate, 020-8550, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Skylar A, Wu X. Regulation of meristem size by cytokinin signaling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:446-54. [PMID: 21554538 DOI: 10.1111/j.1744-7909.2011.01045.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The plant meristems possess unique features that involve maintaining the stem cell populations while providing cells for continued development. Although both the primary shoot apical meristem (SAM) and the root apical meristem (RAM) are specified during embryogenesis, post-embryonic tissue proliferation is required for their full establishment and maintenance throughout a plants' life. The phytohormone cytokinin (CK) interacts with other systemic signals and is a key regulator of meristem size and functions. The SAM and the RAM respond to CK stimulations in different manners: CK promotes tissue proliferation in the SAM through pathways dominated by homeobox transcription factors, including the class I KNOX genes, STIP, and WUS; and curiously, it favors proliferation at low levels and differentiation at a slightly higher concentration in the RAM instead. Here we review the current understanding of the molecular mechanisms underlying CK actions in regulating meristematic tissue proliferation.
Collapse
Affiliation(s)
- Anna Skylar
- Molecular and Computational Biology, University of Southern California, Los Angeles, USA
| | | |
Collapse
|
16
|
Skylar A, Sung F, Hong F, Chory J, Wu X. Metabolic sugar signal promotes Arabidopsis meristematic proliferation via G2. Dev Biol 2010; 351:82-9. [PMID: 21185286 DOI: 10.1016/j.ydbio.2010.12.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 12/06/2010] [Accepted: 12/15/2010] [Indexed: 11/17/2022]
Abstract
Most organs in higher plants are generated postembryonically from the meristems, which harbor continuously dividing stem cells throughout a plant's life cycle. In addition to developmental regulations, mitotic activities in the meristematic tissues are modulated by nutritional cues, including carbon source availability. Here we further analyze the relationship between the sugar signal and seedling meristem establishment, taking advantage of our previous observation that exogenously supplied metabolic sugars can rescue the meristem growth arrest phenotype of the Arabidopsis stip mutant seedlings. Our results show that metabolic sugars reactivate the stip meristems by activating the expression of key cell cycle regulators, and therefore, promoting G2 to M transition in Arabidopsis meristematic tissues. One of the early events in this process is the transcriptional repression of TSS, a genetic suppressor of the stip mutations, by sugar signals, suggesting that TSS may act as an integrator of developmental and nutritional signals in regulating meristematic proliferation. We also present evidence that metabolic sugar signals are required for the activation of mitotic entry during de novo meristem formation from G2 arrested cells. Our observations, together with the recent findings that nutrient deprivation leads to G2 arrest of animal germline stem cells, suggest that carbohydrate availability-regulated G2 to M transition may represent a common mechanism in stem cell division regulation in multicellular organisms.
Collapse
Affiliation(s)
- Anna Skylar
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | |
Collapse
|
17
|
Sun SB, Meng LS, Sun XD, Feng ZH. Using high competent shoot apical meristems of cockscomb as explants for studying function of ASYMMETRIC LEAVES2-LIKE11 (ASL11) gene of Arabidopsis. Mol Biol Rep 2010; 37:3973-82. [DOI: 10.1007/s11033-010-0056-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Accepted: 03/05/2010] [Indexed: 11/24/2022]
|
18
|
Abstract
We devise a stochastic and spatially explicit model for the dynamics of the initials cells in a stratified shoot apical meristem (SAM). The meristem is composed of three layers with seven initials per layer. We investigate the probability and number of divisions for a mutant lineage to either reach fixation or becoming purged through selection or drift. In contrast to previous studies our results show that the functional organization of the initials in stratified SAMs acts as an efficient purging mechanism particularly of deleterious mutations. All mutants are rapidly purged when deleterious. The probability of fixation for mutants with a higher fitness than the wild type increases linearly up to 70%. The median number of divisions to fixation of both genotypes is insensitive to the mutant's fitness. The median number of divisions to wild-type fixation is less than 100, with the upper quartile below 200. The largest number of divisions to wild-type fixation are in the order of 100 000 divisions. Our results indicate that the spatial organization of SAM enables the efficient purging of mutant lineages, particularly if they are deleterious. On the other hand, long-lived chimeric stages are common when mutant lineages succeed to overcome the initial numerical disadvantage.
Collapse
Affiliation(s)
- Mario Pineda-Krch
- Department of Ecology, Theoretical Ecology, Lund University, Lund, Sweden.
| | | |
Collapse
|
19
|
Taguchi-Shiobara F, Yuan Z, Hake S, Jackson D. The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes Dev 2001; 15:2755-66. [PMID: 11641280 PMCID: PMC312812 DOI: 10.1101/gad.208501] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The ability to initiate organs throughout the lifecycle is a unique feature of plant development that is executed by groups of stem cells called meristems. The balance between stem cell proliferation and organ initiation is carefully regulated and ensures that organs can be initiated in regular geometric patterns. To understand how this regulation is achieved, we isolated a novel mutant of maize, fasciated ear2 (fea2), which causes a massive overproliferation of the ear inflorescence meristem and a more modest effect on floral meristem size and organ number. We cloned the fea2 gene using transposon tagging, and it encodes a membrane localized leucine-rich repeat receptor-like protein that is most closely related to CLAVATA2 from Arabidopsis. These findings provide evidence that the CLAVATA pathway for regulation of meristem size is functionally conserved throughout the angiosperms. A possible connection of fea2 to the control of crop yields is discussed.
Collapse
|
20
|
Abstract
1. Evolution in plants has favored both a simpler body plan with fewer cell types and the epigenetic flexibility to regenerate, via growth, dedifferentiation, and redifferentiation, to recover from environmental insults. It has become increasingly apparent that a plant cell uses external signals to differentiate and to maintain or to change the differentiated state. A cell-cell signaling and positional information strategy seems to be the predominant mechanism employed in plant development. 2. An axis can be initiated by physical/chemical forces such as light and ion current, requiring no new gene action. Random chemical fluctuations and physicochemical forces could explain the initiation of differences among cells of equal developmental potential. Amplification of chemical polarizing events may lead to biochemical differences, new gene expression, and finally shoot/root axis establishment. 3. Radial and axial patterning may be governed by a mechanism involving polar auxin transport. 4. Because the meristems and the three fundamental tissues formed during embryogenesis are renewed and extended throughout the life of the plant, with some exceptions, most genes expressed in the embryo are also expressed during postgermination development. 5. Embryogenic competence is acquired during reproductive development. While the zygote is determined for embryogenesis, the developing embryo and often the seedling remain embryogenic. Embryogenic potential declines during vegetative development. The embryogenic strength of a tissue is correlated with its developmental distance from the zygote.
Collapse
Affiliation(s)
- S Bai
- Department of Plant and Microbial Biology, University of California, Berkeley 94720, USA
| | | | | | | |
Collapse
|
21
|
Itoh JI, Kitano H, Matsuoka M, Nagato Y. Shoot organization genes regulate shoot apical meristem organization and the pattern of leaf primordium initiation in rice. THE PLANT CELL 2000; 12:2161-74. [PMID: 11090216 PMCID: PMC150165 DOI: 10.1105/tpc.12.11.2161] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2000] [Accepted: 09/01/2000] [Indexed: 05/18/2023]
Abstract
The mechanism regulating the pattern of leaf initiation was analyzed by using shoot organization (sho) mutants derived from three loci (SHO1, SHO2, and SHO3). In the early vegetative phase, sho mutants show an increased rate of leaf production with random phyllotaxy. The resulting leaves are malformed, threadlike, or short and narrow. Their shoot apical meristems are relatively low and wide, that is, flat shaped, although their shape and size are highly variable among plants of the same genotype. Statistical analysis reveals that the shape of the shoot meristem rather than its size is closely correlated with the variations of plastochron and phyllotaxy. Rapid and random leaf production in sho mutants is correlated with the frequent and disorganized cell divisions in the shoot meristem and with a reduction of expression domain of a rice homeobox gene, OSH1. These changes in the organization and behavior of the shoot apical meristems suggest that sho mutants have fewer indeterminate cells and more determinate cells than wild type, with many cells acting as leaf founder cells. Thus, the SHO genes have an important role in maintaining the proper organization of the shoot apical meristem, which is essential for the normal initiation pattern of leaf primordia.
Collapse
Affiliation(s)
- J I Itoh
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
22
|
Vernoux T, Autran D, Traas J. Developmental control of cell division patterns in the shoot apex. PLANT MOLECULAR BIOLOGY 2000; 43:569-581. [PMID: 11089861 DOI: 10.1023/a:1006464430936] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The shoot apical meristem is a group of rapidly dividing cells that generate all aerial parts of the plant. It is a highly organised structure, which can be divided into functionally distinct domains, characterised by specific proliferation rates of the individual cells. Genetic studies have enabled the identification of regulators of meristem function. These factors are involved in the formation and maintenance of the meristem, as well as in the formation of the primordia. Somehow, they must also govern cell proliferation rates within the shoot apex. Possible links between meristem regulators and the cell cycle machinery will be discussed. In order to analyse the role of cell proliferation in development, cell cycle gene expression has been perturbed using transgenic approaches and mutation. The effect of these alterations on growth and development at the shoot apex will be presented. Together, these studies give a first insight into the regulatory networks controlling the cell cycle and into the significance of cell proliferation in plant development.
Collapse
Affiliation(s)
- T Vernoux
- Laboratoire de Biologie Cellulaire, INRA, Versailles, France
| | | | | |
Collapse
|
23
|
Wegner J. A theoretical approach to the genesis of cell layer arrangements in undifferentiated tissues. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 153:177-183. [PMID: 10717324 DOI: 10.1016/s0168-9452(99)00264-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cell layer arrangements in undifferentiated tissues result from tissue-internal stress generated by a high accumulation of undifferentiated cells. The development of the tunica corpus structure in higher plants is used as an example to explain this thesis. The conditions on which this structure will develop are described. The crucial mark from which a tunica layer in an idealized apex will develop is calculated. This tunica structuring point of 3.85 cell units is a natural constant. A mathematical formula is deduced to determine the existing number of tunica layers in a shoot apex at any given moment. In recent years, a number of genes seen in causal connection with the meristem development could be identified. However, the assumption that the genesis of the layered structure of the shoot apex is also genetically fixed can be refuted with this theory.
Collapse
Affiliation(s)
- J Wegner
- Department of Plant Breeding, Faculty of Agriculture and Horticulture, Humboldt University of Berlin, Wendenschloßstr. 254, 12557, Berlin, Germany
| |
Collapse
|
24
|
Reinhardt D, Mandel T, Kuhlemeier C. Auxin regulates the initiation and radial position of plant lateral organs. THE PLANT CELL 2000; 12:507-518. [PMID: 10760240 DOI: 10.2307/3871065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Leaves originate from the shoot apical meristem, a small mound of undifferentiated tissue at the tip of the stem. Leaf formation begins with the selection of a group of founder cells in the so-called peripheral zone at the flank of the meristem, followed by the initiation of local growth and finally morphogenesis of the resulting bulge into a differentiated leaf. Whereas the mechanisms controlling the switch between meristem propagation and leaf initiation are being identified by genetic and molecular analyses, the radial positioning of leaves, known as phyllotaxis, remains poorly understood. Hormones, especially auxin and gibberellin, are known to influence phyllotaxis, but their specific role in the determination of organ position is not clear. We show that inhibition of polar auxin transport blocks leaf formation at the vegetative tomato meristem, resulting in pinlike naked stems with an intact meristem at the tip. Microapplication of the natural auxin indole-3-acetic acid (IAA) to the apex of such pins restores leaf formation. Similarly, exogenous IAA induces flower formation on Arabidopsis pin-formed1-1 inflorescence apices, which are blocked in flower formation because of a mutation in a putative auxin transport protein. Our results show that auxin is required for and sufficient to induce organogenesis both in the vegetative tomato meristem and in the Arabidopsis inflorescence meristem. In this study, organogenesis always strictly coincided with the site of IAA application in the radial dimension, whereas in the apical-basal dimension, organ formation always occurred at a fixed distance from the summit of the meristem. We propose that auxin determines the radial position and the size of lateral organs but not the apical-basal position or the identity of the induced structures.
Collapse
Affiliation(s)
- D Reinhardt
- Institute of Plant Physiology, University of Berne, CH-3013 Berne, Switzerland
| | | | | |
Collapse
|
25
|
Reinhardt D, Mandel T, Kuhlemeier C. Auxin regulates the initiation and radial position of plant lateral organs. THE PLANT CELL 2000; 12:507-18. [PMID: 10760240 PMCID: PMC139849 DOI: 10.1105/tpc.12.4.507] [Citation(s) in RCA: 661] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/1999] [Accepted: 02/24/2000] [Indexed: 05/17/2023]
Abstract
Leaves originate from the shoot apical meristem, a small mound of undifferentiated tissue at the tip of the stem. Leaf formation begins with the selection of a group of founder cells in the so-called peripheral zone at the flank of the meristem, followed by the initiation of local growth and finally morphogenesis of the resulting bulge into a differentiated leaf. Whereas the mechanisms controlling the switch between meristem propagation and leaf initiation are being identified by genetic and molecular analyses, the radial positioning of leaves, known as phyllotaxis, remains poorly understood. Hormones, especially auxin and gibberellin, are known to influence phyllotaxis, but their specific role in the determination of organ position is not clear. We show that inhibition of polar auxin transport blocks leaf formation at the vegetative tomato meristem, resulting in pinlike naked stems with an intact meristem at the tip. Microapplication of the natural auxin indole-3-acetic acid (IAA) to the apex of such pins restores leaf formation. Similarly, exogenous IAA induces flower formation on Arabidopsis pin-formed1-1 inflorescence apices, which are blocked in flower formation because of a mutation in a putative auxin transport protein. Our results show that auxin is required for and sufficient to induce organogenesis both in the vegetative tomato meristem and in the Arabidopsis inflorescence meristem. In this study, organogenesis always strictly coincided with the site of IAA application in the radial dimension, whereas in the apical-basal dimension, organ formation always occurred at a fixed distance from the summit of the meristem. We propose that auxin determines the radial position and the size of lateral organs but not the apical-basal position or the identity of the induced structures.
Collapse
Affiliation(s)
- D Reinhardt
- Institute of Plant Physiology, University of Berne, CH-3013 Berne, Switzerland
| | | | | |
Collapse
|
26
|
Ding B, Itaya A, Woo YM. Plasmodesmata and Cell-to-Cell Communication in Plants. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s0074-7696(08)62149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
27
|
|
28
|
Hülskamp M, Schnittger A, Folkers U. Pattern formation and cell differentiation: trichomes in Arabidopsis as a genetic model system. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 186:147-78. [PMID: 9770299 DOI: 10.1016/s0074-7696(08)61053-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Arabidopsis trichomes are single-celled hairs that originate from epidermal cells and are distributed regularly on most aerial body parts. During the last decade, trichome formation in Arabidopsis has been established as a genetic and molecular model system to study various general developmental and cellular mechanisms. This review summarizes progress in the investigation of several aspects of trichome development: the spatial regulation of cell fate determination, the regulation of cell differentiation in response to exogenous signals and plant hormones, and the regulation of endoreplication, cell growth, and cell morphogenesis.
Collapse
Affiliation(s)
- M Hülskamp
- Lehrstuhl für Entwicklungsgenetik, Universität Tübingen, Germany
| | | | | |
Collapse
|
29
|
Itoh JI, Hasegawa A, Kitano H, Nagato Y. A recessive heterochronic mutation, plastochron1, shortens the plastochron and elongates the vegetative phase in rice. THE PLANT CELL 1998; 10:1511-22. [PMID: 9724697 PMCID: PMC144075 DOI: 10.1105/tpc.10.9.1511] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We describe two recessive alleles of a rice heterochronic gene, plastochron1-1 (pla1-1) and pla1-2, that reduce the length of the plastochron to approximately half that of the wild type. Because the onset of the reproductive phase in pla1 was not temporally affected, the number of leaves produced in the vegetative phase was nearly twice that produced in the wild type. Panicle development was severely disturbed in pla1 mutants. In pla1-1, many primordia of primary rachis branches were converted into vegetative shoots. These ectopic shoots repeated the initiation of panicle development and the conversion of primary rachis branches into shoots. In the weak allele pla1-2, however, only the basal one or two primordia developed as vegetative shoots, and the remaining primordia developed to produce a truncated panicle. These results indicate that both vegetative and reproductive programs are expressed simultaneously during the reproductive phase of pla1; however, the degree varied depending on the strength of the allele. Accordingly, pla1 is a heterochronic mutation that extends the vegetative period. The shoot apical meristem of pla1 was larger than that of the wild type, although the shape was not modified. An in situ hybridization experiment using the histone H4 gene as a probe revealed that cell divisions are accelerated in the pla1 meristem. The PLA1 gene is considered to regulate the duration of the vegetative phase by controlling the rate of leaf production in the meristem.
Collapse
Affiliation(s)
- JI Itoh
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
30
|
Laufs P, Grandjean O, Jonak C, Kiêu K, Traas J. Cellular parameters of the shoot apical meristem in Arabidopsis. THE PLANT CELL 1998; 10:1375-90. [PMID: 9707536 PMCID: PMC144064 DOI: 10.1105/tpc.10.8.1375] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The shoot apical meristem (SAM) is a small group of dividing cells that generate all of the aerial parts of the plant. With the goal of providing a framework for the analysis of Arabidopsis meristems at the cellular level, we performed a detailed morphometric study of actively growing inflorescence apices of the Landsberg erecta and Wassilewskija ecotypes. For this purpose, cell size, spatial distribution of mitotic cells, and the mitotic index were determined in a series of optical sections made with a confocal laser scanning microscope. The results allowed us to identify zones within the inflorescence SAM with different cell proliferation rates. In particular, we were able to define a central area that was four to six cells wide and had a low mitotic index. We used this technique to compare the meristem of the wild type with the enlarged meristems of two mutants, clavata3-1 (clv3-1) and mgoun2 (mgo2). One of the proposed functions of the CLV genes is to limit cell division rates in the center of the meristem. Our data allowed us to reject this hypothesis, because the mitotic index was reduced in the inflorescence meristem of the clv3-1 mutant. We also observed a large zone of slowly dividing cells in meristems of clv3-1 seedlings. This zone was not detectable in the wild type. These results suggest that the central area is increased in size in the mutant meristem, which is in line with the hypothesis that the CLV3 gene is necessary for the transition of cells from the central to the peripheral zone. Genetic and microscopic analyses suggest that mgo2 is impaired in the production of primordia, and we previously proposed that the increased size of the mgo2 meristem could be due to an accumulation of cells at the periphery. Our morphometric analysis showed that mgo2 meristems, in contrast to those of clv3-1, have an enlarged periphery with high cell proliferation rates. This confirms that clv3-1 and mgo2 lead to meristem overgrowth by affecting different aspects of meristem function.
Collapse
Affiliation(s)
- P Laufs
- Laboratoire de Biologie Cellulaire, Institut National de la Recherche Agronomique, Route de Saint Cyr, 78026 Versailles Cedex, France
| | | | | | | | | |
Collapse
|
31
|
Chen ZJ, Pikaard CS. Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance. Genes Dev 1997; 11:2124-36. [PMID: 9284051 PMCID: PMC316451 DOI: 10.1101/gad.11.16.2124] [Citation(s) in RCA: 260] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nucleolar dominance is an epigenetic phenomenon that describes nucleolus formation around rRNA genes inherited from only one progenitor of an interspecific hybrid or allopolyploid. The phenomenon is widespread, occurring in plants, insects, amphibians, and mammals, yet its molecular basis remains unclear. We have demonstrated nucleolar dominance in three allotetraploids of the plant genus Brassica. In Brassica napus, accurately initiated pre-rRNA transcripts from one progenitor, Brassica rapa are detected readily, whereas transcripts from the approximately 3000 rRNA genes inherited from the other progenitor, Brassica oleracea, are undetectable. Nuclear run-on confirmed that dominance is controlled at the level of transcription. Growth of B. napus seedlings on 5-aza-2'-deoxycytidine to inhibit cytosine methylation caused the normally silent, under-dominant B. oleracea rRNA genes to become expressed to high levels. The histone deacetylase inhibitors sodium butyrate and trichostatin A also derepressed silent rRNA genes. These results reveal an enforcement mechanism for nucleolar dominance in which DNA methylation and histone modifications combine to regulate rRNA gene loci spanning tens of megabase pairs of DNA.
Collapse
Affiliation(s)
- Z J Chen
- Biology Department, Washington University, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
32
|
Crèvecoeur M, Pinedo M, Greppin H, Penel C. Peroxidase activity in shoot apical meristem from Spinacia. Acta Histochem 1997; 99:177-86. [PMID: 9248575 DOI: 10.1016/s0065-1281(97)80040-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Peroxidase activity was localized in the shoot apical meristem (SAM) of Spinacia at the light and electron microscope level with the histochemical method employing H2O2 and 3,3'-diaminobenzidine. At the light microscopic level, peroxidase activity was examined in unfixed cryostat sections at different pHs. The enzyme was found to be more intense at low than at neutral and high pH. The activity was evenly distributed over the different regions of the meristem at low pH, whereas it was more intense in the rib meristem at pH 6.8 and 7.2. At the ultrastructural level, peroxidase activity was found at 3 cellular sites: the cell wall, the tonoplast and the plasmalemma. These results were discussed in relationship with the in situ distribution of peroxidases in plant cells and other enzymes in vegetative SAM.
Collapse
Affiliation(s)
- M Crèvecoeur
- Laboratory of Plant Physiology and Biochemistry, University of Geneva, Suisse
| | | | | | | |
Collapse
|
33
|
The stem cell concept applied to shoot meristems of higher plants. Stem Cells 1997. [DOI: 10.1016/b978-012563455-7/50004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
34
|
Harada JJ. Seed Maturation and Control of Germination. ADVANCES IN CELLULAR AND MOLECULAR BIOLOGY OF PLANTS 1997. [DOI: 10.1007/978-94-015-8909-3_15] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
35
|
Abstract
Leaves are produced repeatedly from the shoot apical meristem of plants. Molecular and cellular evidence show that identity of the leaf and its parts is acquired progressively and that the underlying process changes as the leaf matures. The relative importance of cell lineage compared with a position-dependent model for specifying cell fates is discussed.
Collapse
Affiliation(s)
- A W Sylvester
- Department of Biological Sciences, University of Idaho, Moscow 83844, USA
| | | | | |
Collapse
|
36
|
Zhong H, Sun B, Warkentin D, Zhang S, Wu R, Wu T, Sticklen MB. The Competence of Maize Shoot Meristems for Integrative Transformation and Inherited Expression of Transgenes. PLANT PHYSIOLOGY 1996; 110:1097-1107. [PMID: 12226244 PMCID: PMC160889 DOI: 10.1104/pp.110.4.1097] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We have developed a novel and reproducible system for recovery of fertile transgenic maize (Zea mays L.) plants. The transformation was performed using microprojectile bombardment of cultured shoot apices of maize with a plasmid carrying two linked genes, the Streptomyces hygroscopicus phosphinothricin acetyltransferase gene (bar) and the potato proteinase inhibitor II gene, either alone or in combination with another plasmid containing the 5[prime] region of the rice actin 1 gene fused to the Escherichia coli [beta]-glucuronidase gene (gus). Bombarded shoot apices were subsequently multiplied and selected under 3 to 5 mg/L glufosinate ammonium. Co-transformation frequency was 100% (146/146) for linked genes and 80% (41/51) for unlinked genes. Co-expression frequency of the bar and gus genes was 57% (29/51). The co-integration, co-inheritance, and co-expression of bar, the potato proteinase inhibitor II gene, and gus in transgenic R0, R1, and R2 plants were confirmed. Localized expression of the actin 1-GUS protein in the R0 and R1 plants was extensively analyzed by histochemical and fluorometric assays.
Collapse
Affiliation(s)
- H. Zhong
- 202 Pesticide Research Center, Department of Crop and Soil Sciences, Michigan State University, East Lansing, Michigan 48824-1311 (H.Z., B.S., D.W., S.Z., M.B.S.)
| | | | | | | | | | | | | |
Collapse
|
37
|
Crèvecoeur M, Cissé MB, Albe X, Greppin H. Glucose-6-phosphate dehydrogenase activity in spinach as measured by image analysis: a new approach for plant enzyme histochemistry. THE HISTOCHEMICAL JOURNAL 1996; 28:25-32. [PMID: 8866645 DOI: 10.1007/bf02331424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A relatively low-cost computer-assisted image analysis system is described. Software has been specifically written for the continuous monitoring of absorbance readings on cryostat sections of plant tissues incubated in media to reveal enzyme activities. The equipment was tested by quantifying glucose-6-phosphate dehydrogenase activity in cryostat sections from shoot apices of spinach plants. The reaction rate of the dehydrogenase activity was monitored at two incubation temperatures, 20 degrees C and 30 degrees C. Control incubations were performed in media lacking substrate. The specific test minus control reaction at 30 degrees C was twice that at 20 degrees C. Variation of the substrate concentration at 30 degrees C yielded a Km value of 0.37 mM. These preliminary results show that our image analysis system can be used for kinetic measurements of dehydrogenase activity in frozen tissue sections and constitute a new approach for enzyme histochemistry in the shoot apical meristem.
Collapse
Affiliation(s)
- M Crèvecoeur
- Laboratory of Plant Biochemistry and Physiology, University of Geneva, Switzerland
| | | | | | | |
Collapse
|
38
|
|
39
|
Klinge B, Werr W. Transcription of theZea mays homeobox (ZmHox) genes is activated early in embryogenesis and restricted to meristems of the maize plant. ACTA ACUST UNITED AC 1995. [DOI: 10.1002/dvg.1020160408] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Affiliation(s)
- M P Running
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | | | |
Collapse
|
41
|
Larkin JC. Isolation of a cytochrome P450 homologue preferentially expressed in developing inflorescences of Zea mays. PLANT MOLECULAR BIOLOGY 1994; 25:343-353. [PMID: 8049361 DOI: 10.1007/bf00043864] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Four cDNA clones exhibiting preferential hybridization to transcripts present in developing maize tassels were isolated by differential screening. One of these cDNA clones hybridizes to transcripts detectable only in the shoot apex. The abundance of this transcript is significantly higher in developing inflorescence apices than in vegetative apices. DNA sequence analysis of a 2107 nucleotide cDNA clone corresponding to this transcript revealed that the transcript encodes a polypeptide of 547 amino acids, with a molecular mass of 58.4 kDa. This polypeptide shares significant sequence similarity with members of the cytochrome P450 monooxygenase gene superfamily, including the conserved C-terminal domains typical of the cytochrome P450 monooxygenases.
Collapse
Affiliation(s)
- J C Larkin
- Department of Biochemistry, University of Minnesota, St. Paul 55108
| |
Collapse
|
42
|
Ito M, Sato T, Fukuda H, Komamine A. Meristem-specific gene expression directed by the promoter of the S-phase-specific gene, cyc07, in transgenic Arabidopsis. PLANT MOLECULAR BIOLOGY 1994; 24:863-878. [PMID: 8204824 DOI: 10.1007/bf00014441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A genomic clone for the cyc07 gene, which is expressed specifically at the S phase during the cell cycle in synchronous cultures of periwinkle (Catharanthus roseus) cells, was isolated. Determination of the nucleotide sequence of the clone revealed that the cyc07 gene consists of seven exons separated by six introns. Genomic Southern analysis indicated that the cyc07 gene is present as a single copy per haploid genome in periwinkle. Expression of related genes was detected in a wide range of other plants. Transgenic Arabidopsis plants were generated that expressed the gene for beta-glucuronidase (GUS) under the control of the promoter of the cyc07 gene. The tissue-specific pattern of expression directed by the promoter was investigated by analysis of GUS activity. Histochemical tests demonstrated that 589 bp of the 5'-upstream sequence of the cyc07 gene could direct specifical expression of the GUS reporter gene in meristematic tissues in transgenic plants. The spatial pattern of expression directed by the promoter was closely correlated with meristematic activity and cell proliferation, suggesting an association between the function of the cyc07 gene and cell proliferation.
Collapse
Affiliation(s)
- M Ito
- Nagoya University BioScience Center, Japan
| | | | | | | |
Collapse
|
43
|
Abstract
Trichomes are specialized epidermal cells that are regularly distributed on the leaves of Arabidopsis plants. During leaf development, each trichome undergoes cell morphogenesis, resulting in a very precise architecture. We have isolated and characterized more than 70 trichome mutants that represent 21 different genes. By analyzing their cellular phenotypes, it has been possible to define specific steps in trichome development. Although these steps normally occur in a temporal sequence, genetic dissection indicates that the morphology of the mature cell is largely assembled in independent events. The results suggest a model of how a specialized cell type originates from a uniform cell layer.
Collapse
Affiliation(s)
- M Hülskamp
- Institut für Genetik und Mikrobiologie, Universität München, Federal Republic of Germany
| | | | | |
Collapse
|
44
|
Brandstädter J, Rossbach C, Theres K. The pattern of histone H4 expression in the tomato shoot apex changes during development. PLANTA 1994; 192:69-74. [PMID: 7764315 DOI: 10.1007/bf00198694] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Two histone H4 cDNA clones were isolated from a tomato (Lycopersicon esculentum Mill.) shoot-tip cDNA library using a heterologous probe from barley (Hordeum vulgare L.). Both cDNAs, which are 81% identical in the coding region, are polyadenylated and belong to a small gene family in the tomato genome. Histone H4 message is abundant in young tissues and rare in older tissues. In the shoot apical meristem, the distribution of H4-expressing cells changes during development. In a juvenile vegetative apex, H4 message is detectable in the central region and the peripheral parts of the meristem. In a mature vegetative apical meristem, H4-expressing cells are localized in the peripheral zone extending into the provascular strands and the rib meristem whereas the central zone is almost devoid of H4 mRNA. After floral transition, H4 mRNA is found throughout the floral meristem, indicating a second change in the pattern of H4 expression. The observed changes in H4 expression are indicative of changes in the distribution of mitotic activity in the shoot apical meristem during plant development. In addition, H4-expressing cells were found to occur frequently in clusters, which may indicate a partial synchronization of cell divisions in the shoot apex.
Collapse
|