1
|
Smaluk V, Shaftan T, Hidas D. Ultimate brightness of a medium-energy synchrotron light source at operational beam intensity. JOURNAL OF SYNCHROTRON RADIATION 2025; 32:595-604. [PMID: 40266724 DOI: 10.1107/s1600577525002723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/26/2025] [Indexed: 04/25/2025]
Abstract
Synchrotron light sources are key instruments of modern science, providing unique opportunities for groundbreaking studies in diverse scientific disciplines and driving innovation in numerous scientific and technological fields. Fourth-generation light sources provide unprecedented capabilities in imaging, spectroscopy and diffraction techniques. Ultimate brightness is the key to advancing to a smaller scale, faster response, and higher data measurement and processing rate. The brightness is primarily determined by the electron beam emittance and energy spread at operational intensity. A common feature of fourth-generation synchrotrons is the short length of the electron bunches combined with a very small transverse beam size. Consequently, the high particle density leads to strong collective effects that significantly increase the emittance and limit the achievable brightness at operational beam intensity. In this article, we summarize our studies of the emittance and brightness scaled with the beam energy and intensity, taking into account the effects of intrabeam scattering, beam-impedance interaction and bunch lengthening provided by higher-harmonic RF systems to identify optimal combinations of machine and beam parameters.
Collapse
Affiliation(s)
- Victor Smaluk
- Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Timur Shaftan
- Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Dean Hidas
- Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
2
|
Andrä M, Bergamaschi A, Baruffaldi F, Brückner M, Carulla M, Casati N, Cervellino A, Dinapoli R, Fröjdh E, Greiffenberg D, Hasanaj S, Heymes J, Hinger V, Kozlowski P, Lopez Cuenca C, Meister D, Mezza D, Moustakas K, Mozzanica A, Paton K, Ruder C, Scagnoli V, Smolentsev G, Schmitt B, Thattil D, Xie X, Zhang J. MYTHEN III: advancements in single photon counting detectors for synchrotron powder diffraction experiments. JOURNAL OF SYNCHROTRON RADIATION 2025; 32:365-377. [PMID: 39946283 DOI: 10.1107/s1600577525000438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/17/2025] [Indexed: 03/11/2025]
Abstract
The single photon counting microstrip detector MYTHEN III was developed at the Paul Scherrer Institute to satisfy the increasing demands in detector performance of synchrotron radiation experiments, focusing on time-resolved and on-edge powder diffraction measurements. Similar to MYTHEN II, the detector installed on the Material Science beamline covers 120° in 2θ. It is based on the MYTHEN III.0 readout chip wire-bonded to silicon strip sensors with a pitch of 50 µm, and it provides improved performance and features with respect to the previous version. Taking advantage of the three independent comparators of MYTHEN III, it is possible to obtain an improvement in the maximum count rate capability of the detector at 90% efficiency from 2.9 ± 0.8 Mphotons s-1 strip-1 to 11 ± 2 Mphotons s-1 strip-1 thanks to the detection of pile-up at high photon flux. The readout chip offers additional operation modes such as pump-probe and digital on-chip interpolation. The maximum frame rate is up to 360 kHz in 8-bit mode with dead-time-free readout. The minimum detectable energy of MYTHEN III is 4.3 ± 0.3 keV with a minimum equivalent noise charge (ENC) of 121 ± 8 electrons and a threshold dispersion below 33 ± 10 eV. The energy calibration is affected by temperature by less than 0.5% °C-1. This paper presents a comprehensive overview of the MYTHEN III detector system with performance benchmarks, and highlights the improvements reached in powder diffraction experiments compared with the previous detector generation.
Collapse
Affiliation(s)
- Marie Andrä
- Paul Scherrer Insitute, Forschungsstrasse 111, 5232 Villigen - PSI, Switzerland
| | - Anna Bergamaschi
- Paul Scherrer Insitute, Forschungsstrasse 111, 5232 Villigen - PSI, Switzerland
| | - Filippo Baruffaldi
- Paul Scherrer Insitute, Forschungsstrasse 111, 5232 Villigen - PSI, Switzerland
| | - Martin Brückner
- Paul Scherrer Insitute, Forschungsstrasse 111, 5232 Villigen - PSI, Switzerland
| | - Maria Carulla
- Paul Scherrer Insitute, Forschungsstrasse 111, 5232 Villigen - PSI, Switzerland
| | - Nicola Casati
- Paul Scherrer Insitute, Forschungsstrasse 111, 5232 Villigen - PSI, Switzerland
| | - Antonio Cervellino
- Paul Scherrer Insitute, Forschungsstrasse 111, 5232 Villigen - PSI, Switzerland
| | - Roberto Dinapoli
- Paul Scherrer Insitute, Forschungsstrasse 111, 5232 Villigen - PSI, Switzerland
| | - Erik Fröjdh
- Paul Scherrer Insitute, Forschungsstrasse 111, 5232 Villigen - PSI, Switzerland
| | | | - Shqipe Hasanaj
- Paul Scherrer Insitute, Forschungsstrasse 111, 5232 Villigen - PSI, Switzerland
| | - Julian Heymes
- Paul Scherrer Insitute, Forschungsstrasse 111, 5232 Villigen - PSI, Switzerland
| | - Viktoria Hinger
- Paul Scherrer Insitute, Forschungsstrasse 111, 5232 Villigen - PSI, Switzerland
| | - Pawel Kozlowski
- Paul Scherrer Insitute, Forschungsstrasse 111, 5232 Villigen - PSI, Switzerland
| | - Carlos Lopez Cuenca
- Paul Scherrer Insitute, Forschungsstrasse 111, 5232 Villigen - PSI, Switzerland
| | - Dominik Meister
- Paul Scherrer Insitute, Forschungsstrasse 111, 5232 Villigen - PSI, Switzerland
| | - Davide Mezza
- Paul Scherrer Insitute, Forschungsstrasse 111, 5232 Villigen - PSI, Switzerland
| | | | - Aldo Mozzanica
- Paul Scherrer Insitute, Forschungsstrasse 111, 5232 Villigen - PSI, Switzerland
| | - Kirsty Paton
- Paul Scherrer Insitute, Forschungsstrasse 111, 5232 Villigen - PSI, Switzerland
| | - Christian Ruder
- Paul Scherrer Insitute, Forschungsstrasse 111, 5232 Villigen - PSI, Switzerland
| | - Valerio Scagnoli
- Paul Scherrer Insitute, Forschungsstrasse 111, 5232 Villigen - PSI, Switzerland
| | - Grigory Smolentsev
- Paul Scherrer Insitute, Forschungsstrasse 111, 5232 Villigen - PSI, Switzerland
| | - Bernd Schmitt
- Paul Scherrer Insitute, Forschungsstrasse 111, 5232 Villigen - PSI, Switzerland
| | - Dhanya Thattil
- Paul Scherrer Insitute, Forschungsstrasse 111, 5232 Villigen - PSI, Switzerland
| | - Xiangyu Xie
- Paul Scherrer Insitute, Forschungsstrasse 111, 5232 Villigen - PSI, Switzerland
| | - Jiaguo Zhang
- Paul Scherrer Insitute, Forschungsstrasse 111, 5232 Villigen - PSI, Switzerland
| |
Collapse
|
3
|
Grünewald TA, Liebi M, Birkedal H. Crossing length scales: X-ray approaches to studying the structure of biological materials. IUCRJ 2024; 11:708-722. [PMID: 39194257 PMCID: PMC11364038 DOI: 10.1107/s2052252524007838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
Biological materials have outstanding properties. With ease, challenging mechanical, optical or electrical properties are realised from comparatively `humble' building blocks. The key strategy to realise these properties is through extensive hierarchical structuring of the material from the millimetre to the nanometre scale in 3D. Though hierarchical structuring in biological materials has long been recognized, the 3D characterization of such structures remains a challenge. To understand the behaviour of materials, multimodal and multi-scale characterization approaches are needed. In this review, we outline current X-ray analysis approaches using the structures of bone and shells as examples. We show how recent advances have aided our understanding of hierarchical structures and their functions, and how these could be exploited for future research directions. We also discuss current roadblocks including radiation damage, data quantity and sample preparation, as well as strategies to address them.
Collapse
Affiliation(s)
| | - Marianne Liebi
- Photon Science DivisionPaul Scherrer InstituteVilligenPSI5232Switzerland
- Institute of MaterialsÉcole Polytechnique Fédérale de Lausanne1015 LausanneSwitzerland
| | - Henrik Birkedal
- Department of Chemistry & iNANOAarhus UniversityGustav Wieds Vej 14Aarhus8000Denmark
| |
Collapse
|
4
|
Yao Z, Rogalinski J, Asimakopoulou EM, Zhang Y, Gordeyeva K, Atoufi Z, Dierks H, McDonald S, Hall S, Wallentin J, Söderberg D, Nygård K, Villanueva-Perez P. New opportunities for time-resolved imaging using diffraction-limited storage rings. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1299-1307. [PMID: 39078690 PMCID: PMC11371062 DOI: 10.1107/s1600577524005290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/05/2024] [Indexed: 07/31/2024]
Abstract
The advent of diffraction-limited storage rings (DLSRs) has boosted the brilliance or coherent flux by one to two orders of magnitude with respect to the previous generation. One consequence of this brilliance enhancement is an increase in the flux density or number of photons per unit of area and time, which opens new possibilities for the spatiotemporal resolution of X-ray imaging techniques. This paper studies the time-resolved microscopy capabilities of such facilities by benchmarking the ForMAX beamline at the MAX IV storage ring. It is demonstrated that this enhanced flux density using a single harmonic of the source allows micrometre-resolution time-resolved imaging at 2000 tomograms per second and 1.1 MHz 2D acquisition rates using the full dynamic range of the detector system.
Collapse
Affiliation(s)
- Zisheng Yao
- Synchrotron Radiation Research and NanoLund, Department of PhysicsLund UniversityLundSweden
| | - Julia Rogalinski
- Synchrotron Radiation Research and NanoLund, Department of PhysicsLund UniversityLundSweden
| | | | - Yuhe Zhang
- Synchrotron Radiation Research and NanoLund, Department of PhysicsLund UniversityLundSweden
| | - Korneliya Gordeyeva
- Department of Fibre and Polymer TechnologyRoyal Institute of TechnologyStockholmSweden
| | - Zhaleh Atoufi
- Department of Fibre and Polymer TechnologyRoyal Institute of TechnologyStockholmSweden
| | - Hanna Dierks
- Synchrotron Radiation Research and NanoLund, Department of PhysicsLund UniversityLundSweden
| | | | - Stephen Hall
- Lund Institute of Advanced Neutron and X-Ray Science (LINXS), Lund, Sweden
| | - Jesper Wallentin
- Synchrotron Radiation Research and NanoLund, Department of PhysicsLund UniversityLundSweden
| | - Daniel Söderberg
- Department of Fibre and Polymer TechnologyRoyal Institute of TechnologyStockholmSweden
| | - Kim Nygård
- MAX IV LaboratoryLund UniversityLundSweden
| | - Pablo Villanueva-Perez
- Synchrotron Radiation Research and NanoLund, Department of PhysicsLund UniversityLundSweden
| |
Collapse
|
5
|
Roesner B, Raabe J, Willmott PR, Flechsig U. The concept for hard X-ray beamline optics at SLS 2.0. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:771-778. [PMID: 38819842 PMCID: PMC11226164 DOI: 10.1107/s1600577524003163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/12/2024] [Indexed: 06/01/2024]
Abstract
In the scope of the latest upgrade of the Swiss Light Source, five hard X-ray beamlines will be constructed or rebuilt. To use synergies between these beamline projects, a concept is developed here for hard X-ray beamlines that is tailored to the new storage ring. Herein, this concept is described from the source, via the front end, to the beamline optics. The latter will be outlined in detail, including a new and modular concept for hard X-ray monochromators, focusing optics and heat-load management. With a simple, easy-to-operate and robust beamline design, the new beamlines will greatly profit from the increased brilliance of the new storage ring. The performance increase is up to four orders of magnitude, while the beamline concept allows for the broad application of experimental techniques, from propagation-based methods, such as phase-contrast tomography, to imaging techniques with nanometre resolution. At the same time, spectroscopy experiments are possible as well as high-performance serial X-ray crystallography.
Collapse
Affiliation(s)
- Benedikt Roesner
- Paul Scherrer InstituteForschungsstrasse 1115232Villigen PSISwitzerland
| | - Joerg Raabe
- Paul Scherrer InstituteForschungsstrasse 1115232Villigen PSISwitzerland
| | | | - Uwe Flechsig
- Paul Scherrer InstituteForschungsstrasse 1115232Villigen PSISwitzerland
| |
Collapse
|
6
|
Carulla M, Barten R, Baruffaldi F, Bergamaschi A, Borghi G, Boscardin M, Brückner M, Butcher TA, Centis Vignali M, Dinapoli R, Ebner S, Ficorella F, Fröjdh E, Greiffenberg D, Hammad Ali O, Hasanaj S, Heymes J, Hinger V, King T, Kozlowski P, Lopez Cuenca C, Mezza D, Moustakas K, Mozzanica A, Paternoster G, Paton KA, Ronchin S, Ruder C, Schmitt B, Sieberer P, Thattil D, Vogelsang K, Xie X, Zhang J. Quantum Efficiency Measurement and Modeling of Silicon Sensors Optimized for Soft X-ray Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:942. [PMID: 38339659 PMCID: PMC10856868 DOI: 10.3390/s24030942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Hybrid pixel detectors have become indispensable at synchrotron and X-ray free-electron laser facilities thanks to their large dynamic range, high frame rate, low noise, and large area. However, at energies below 3 keV, the detector performance is often limited because of the poor quantum efficiency of the sensor and the difficulty in achieving single-photon resolution due to the low signal-to-noise ratio. In this paper, we address the quantum efficiency of silicon sensors by refining the design of the entrance window, mainly by passivating the silicon surface and optimizing the dopant profile of the n+ region. We present the measurement of the quantum efficiency in the soft X-ray energy range for silicon sensors with several process variations in the fabrication of planar sensors with thin entrance windows. The quantum efficiency for 250 eV photons is increased from almost 0.5% for a standard sensor to up to 62% as a consequence of these developments, comparable to the quantum efficiency of backside-illuminated scientific CMOS sensors. Finally, we discuss the influence of the various process parameters on quantum efficiency and present a strategy for further improvement.
Collapse
Affiliation(s)
- Maria Carulla
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Rebecca Barten
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Filippo Baruffaldi
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Anna Bergamaschi
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Giacomo Borghi
- Fondazione Bruno Kessler, Via Sommarive 18, 38126 Povo, Italy; (G.B.); (M.B.); (M.C.V.); (F.F.); (O.H.A.); (G.P.); (S.R.)
| | - Maurizio Boscardin
- Fondazione Bruno Kessler, Via Sommarive 18, 38126 Povo, Italy; (G.B.); (M.B.); (M.C.V.); (F.F.); (O.H.A.); (G.P.); (S.R.)
| | - Martin Brückner
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Tim A. Butcher
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Matteo Centis Vignali
- Fondazione Bruno Kessler, Via Sommarive 18, 38126 Povo, Italy; (G.B.); (M.B.); (M.C.V.); (F.F.); (O.H.A.); (G.P.); (S.R.)
| | - Roberto Dinapoli
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Simon Ebner
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Francesco Ficorella
- Fondazione Bruno Kessler, Via Sommarive 18, 38126 Povo, Italy; (G.B.); (M.B.); (M.C.V.); (F.F.); (O.H.A.); (G.P.); (S.R.)
| | - Erik Fröjdh
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Dominic Greiffenberg
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Omar Hammad Ali
- Fondazione Bruno Kessler, Via Sommarive 18, 38126 Povo, Italy; (G.B.); (M.B.); (M.C.V.); (F.F.); (O.H.A.); (G.P.); (S.R.)
| | - Shqipe Hasanaj
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Julian Heymes
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Viktoria Hinger
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Thomas King
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Pawel Kozlowski
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Carlos Lopez Cuenca
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Davide Mezza
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Konstantinos Moustakas
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Aldo Mozzanica
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Giovanni Paternoster
- Fondazione Bruno Kessler, Via Sommarive 18, 38126 Povo, Italy; (G.B.); (M.B.); (M.C.V.); (F.F.); (O.H.A.); (G.P.); (S.R.)
| | - Kirsty A. Paton
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Sabina Ronchin
- Fondazione Bruno Kessler, Via Sommarive 18, 38126 Povo, Italy; (G.B.); (M.B.); (M.C.V.); (F.F.); (O.H.A.); (G.P.); (S.R.)
| | - Christian Ruder
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Bernd Schmitt
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Patrick Sieberer
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Dhanya Thattil
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Konrad Vogelsang
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Xiangyu Xie
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Jiaguo Zhang
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| |
Collapse
|
7
|
Sanchez EA, Flores A, Hernandez-Cobos J, Moreno M, Antillón A. A novel approach using nonlinear surfaces for dynamic aperture optimization in MBA synchrotron light sources. Sci Rep 2023; 13:23007. [PMID: 38155154 PMCID: PMC10754938 DOI: 10.1038/s41598-023-49979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/14/2023] [Indexed: 12/30/2023] Open
Abstract
MBA cell-based synchrotron light sources have enabled an unprecedented increase in beam coherence and brightness, greatly benefiting the scientific disciplines that rely on X-ray techniques. However, controlling the electron dynamics is a theoretical and technological challenge, due to the large number of parameters to adjust and constraints to satisfy when designing modern synchrotrons. Having versatile tools for the description and manipulation of electron dynamics could favor the design of these accelerators and lead to progress on several fronts in the understanding of matter. In this paper, a formalism based on the use of nonlinear geometric surfaces represented by polynomial quasi-invariants, to analyze and optimize the dynamic aperture of electrons in MBA storage rings, is introduced. The formalism considers on- and off-momentum particle dynamics. Within the optimization scheme, different objective functions defined in terms of the nonlinear surfaces, which are minimized using genetic algorithm methods, are proposed. A remarkable horizontal dynamic aperture exceeding 19 mm is obtained for the design particle of a synchrotron model with 86 pm [Formula: see text] rad emittance along with a dynamic aperture above 5 mm for momentum deviations of ± 3[Formula: see text]. According to the results presented, this formalism could be greatly useful for manipulating the dynamical properties of electrons in synchrotrons light sources close to the diffraction limit.
Collapse
Affiliation(s)
- Edgar Andres Sanchez
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Alain Flores
- Departamento de Bioingeniería y Ciencias, Tecnológico de Monterrey, Puebla, 72453, Mexico
| | - Jorge Hernandez-Cobos
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Matías Moreno
- Instituto de Física, Universidad Nacional Autónoma de México, Cd. de México, 04510, Mexico
| | - Armando Antillón
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
8
|
Leonarski F, Nan J, Matej Z, Bertrand Q, Furrer A, Gorgisyan I, Bjelčić M, Kepa M, Glover H, Hinger V, Eriksson T, Cehovin A, Eguiraun M, Gasparotto P, Mozzanica A, Weinert T, Gonzalez A, Standfuss J, Wang M, Ursby T, Dworkowski F. Kilohertz serial crystallography with the JUNGFRAU detector at a fourth-generation synchrotron source. IUCRJ 2023; 10:729-737. [PMID: 37830774 PMCID: PMC10619449 DOI: 10.1107/s2052252523008618] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
Serial and time-resolved macromolecular crystallography are on the rise. However, beam time at X-ray free-electron lasers is limited and most third-generation synchrotron-based macromolecular crystallography beamlines do not offer the necessary infrastructure yet. Here, a new setup is demonstrated, based on the JUNGFRAU detector and Jungfraujoch data-acquisition system, that enables collection of kilohertz serial crystallography data at fourth-generation synchrotrons. More importantly, it is shown that this setup is capable of collecting multiple-time-point time-resolved protein dynamics at kilohertz rates, allowing the probing of microsecond to second dynamics at synchrotrons in a fraction of the time needed previously. A high-quality complete X-ray dataset was obtained within 1 min from lysozyme microcrystals, and the dynamics of the light-driven sodium-pump membrane protein KR2 with a time resolution of 1 ms could be demonstrated. To make the setup more accessible for researchers, downstream data handling and analysis will be automated to allow on-the-fly spot finding and indexing, as well as data processing.
Collapse
Affiliation(s)
- Filip Leonarski
- Photon Science Division, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Jie Nan
- MAX IV Laboratory, Lund University, POB. 118, SE-22100 Lund, Sweden
| | - Zdenek Matej
- MAX IV Laboratory, Lund University, POB. 118, SE-22100 Lund, Sweden
| | - Quentin Bertrand
- Division of Biology and Chemistry, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Antonia Furrer
- Division of Biology and Chemistry, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | | | - Monika Bjelčić
- MAX IV Laboratory, Lund University, POB. 118, SE-22100 Lund, Sweden
| | - Michal Kepa
- Division of Biology and Chemistry, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Hannah Glover
- Division of Biology and Chemistry, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Viktoria Hinger
- Photon Science Division, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Thomas Eriksson
- MAX IV Laboratory, Lund University, POB. 118, SE-22100 Lund, Sweden
| | | | - Mikel Eguiraun
- MAX IV Laboratory, Lund University, POB. 118, SE-22100 Lund, Sweden
| | - Piero Gasparotto
- Scientific Computing, Theory and Data, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Aldo Mozzanica
- Photon Science Division, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Tobias Weinert
- Division of Biology and Chemistry, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Ana Gonzalez
- MAX IV Laboratory, Lund University, POB. 118, SE-22100 Lund, Sweden
| | - Jörg Standfuss
- Division of Biology and Chemistry, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Meitian Wang
- Photon Science Division, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Thomas Ursby
- MAX IV Laboratory, Lund University, POB. 118, SE-22100 Lund, Sweden
| | - Florian Dworkowski
- Photon Science Division, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| |
Collapse
|
9
|
Kathyola T, Chang SY, Willneff EA, Willis CJ, Cibin G, Wilson P, Kroner AB, Shotton EJ, Dowding PJ, Schroeder SL. X-ray Absorption Spectroscopy as a Process Analytical Technology: Reaction Studies for the Manufacture of Sulfonate-Stabilized Calcium Carbonate Particles. Ind Eng Chem Res 2023; 62:16198-16206. [PMID: 37841415 PMCID: PMC10571072 DOI: 10.1021/acs.iecr.3c02540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023]
Abstract
Process analytical technologies are widely used to inform process control by identifying relationships between reagents and products. Here, we present a novel process analytical technology system for operando XAS on multiphase multicomponent synthesis processes based on the combination of a conventional lab-scale agitated reactor with a liquid-jet cell. The preparation of sulfonate-stabilized CaCO3 particles from polyphasic Ca(OH)2 dispersions was monitored in real time by Ca K-edge XAS to identify changes in Ca speciation in the bulk solution/dispersion as a function of time and process conditions. Linear combination fitting of the spectra quantitatively resolved composition changes from the initial conversion of Ca(OH)2 to the Ca(R-SO3)2 surfactant to the ultimate formation of nCaCO3·mCa(R- SO3)2 particles. The system provides a novel tool with strong chemical specificity for probing multiphase synthesis processes at a molecular level, providing an avenue to establishing the relationships between critical quality attributes of a process and the quality and performance of the product.
Collapse
Affiliation(s)
- Thokozile
A. Kathyola
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
- Diamond
Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Sin-Yuen Chang
- Diamond
Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | | | - Colin J. Willis
- Infineum
UK Ltd., Milton Hill Business & Technology Centre, Abingdon, Oxfordshire OX13 6BB, U.K.
| | - Giannantonio Cibin
- Diamond
Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Paul Wilson
- Infineum
UK Ltd., Milton Hill Business & Technology Centre, Abingdon, Oxfordshire OX13 6BB, U.K.
| | - Anna B. Kroner
- Diamond
Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Elizabeth J. Shotton
- Diamond
Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Peter J. Dowding
- Infineum
UK Ltd., Milton Hill Business & Technology Centre, Abingdon, Oxfordshire OX13 6BB, U.K.
| | - Sven L.M. Schroeder
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
- Diamond
Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| |
Collapse
|
10
|
Nolting F, Bostedt C, Schietinger T, Braun H. The Swiss Light Source and SwissFEL at the Paul Scherrer Institute. EUROPEAN PHYSICAL JOURNAL PLUS 2023; 138:126. [PMID: 36779165 PMCID: PMC9900202 DOI: 10.1140/epjp/s13360-023-03721-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
At the Paul Scherrer Institute, two electron accelerator-based photon sources are in operation, namely a synchrotron source, the swiss light source (SLS), and an X-ray free-electron laser, SwissFEL. SLS has been operational since 2001 and SwissFEL since 2017. In this time, unique and world-leading scientific programs and methods have developed from the SLS and the SwissFEL in fields as diverse as macromolecular biology, chemical and physical sciences, imaging, and the electronic structure and behaviour of novel and complex materials. To continue the success, a major upgrade of SLS, the SLS2.0 project, is ongoing and at SwissFEL further endstations are under construction.
Collapse
Affiliation(s)
| | | | | | - Hans Braun
- Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| |
Collapse
|
11
|
Samadi N, Vila-Comamala J, Shi X, Sanli UT, David C, Stampanoni M, Bonnin A. Refractive axicon for X-ray microscopy applications: design, optimization, and experiment. OPTICS EXPRESS 2023; 31:2977-2988. [PMID: 36785299 DOI: 10.1364/oe.478114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/05/2022] [Indexed: 06/18/2023]
Abstract
In a full-field transmission X-ray microscopy (TXM) setup, a condenser X-ray optical element is used to illuminate the sample by condensing the X-ray beam delivered by the synchrotron storage ring. On-going and future upgrades of synchrotron facilities to diffraction-limited storage rings will pose new challenges to these TXM setups, such as much smaller X-ray beams on the condenser. Here, we demonstrate that a refractive axicon can be used as an X-ray beam shaper to match the ring-shaped aperture of the condenser. Aiming at more efficient use of the incoming X-ray intensity, we explore several axicon designs both analytically and with numerical simulations. The axicons were produced by two-photon polymerization 3D printing on thin silicon nitride membrane substrates. The first characterization of the axicon was carried out at the TOMCAT beamline of the Swiss Light Source (Switzerland).
Collapse
|
12
|
Raimondi P, Benabderrahmane C, Berkvens P, Biasci JC, Borowiec P, Bouteille JF, Brochard T, Brookes NB, Carmignani N, Carver LR, Chaize JM, Chavanne J, Checchia S, Chushkin Y, Cianciosi F, Di Michiel M, Dimper R, D’Elia A, Einfeld D, Ewald F, Farvacque L, Goirand L, Hardy L, Jacob J, Jolly L, Krisch M, Le Bec G, Leconte I, Liuzzo SM, Maccarrone C, Marchial T, Martin D, Mezouar M, Nevo C, Perron T, Plouviez E, Reichert H, Renaud P, Revol JL, Roche B, Scheidt KB, Serriere V, Sette F, Susini J, Torino L, Versteegen R, White S, Zontone F. The Extremely Brilliant Source storage ring of the European Synchrotron Radiation Facility. COMMUNICATIONS PHYSICS 2023; 6:82. [PMID: 37124119 PMCID: PMC10124696 DOI: 10.1038/s42005-023-01195-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
The Extremely Brilliant Source (EBS) is the experimental implementation of the novel Hybrid Multi Bend Achromat (HMBA) storage ring magnetic lattice concept, which has been realised at European Synchrotron Radiation Facility. We present its successful commissioning and first operation. We highlight the strengths of the HMBA design and compare them to the previous designs, on which most operational synchrotron X-ray sources are based. We report on the EBS storage ring's significantly improved horizontal electron beam emittance and other key beam parameters. EBS extends the reach of synchrotron X-ray science confirming the HMBA concept for future facility upgrades and new constructions.
Collapse
Affiliation(s)
- Pantaleo Raimondi
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | | | - Paul Berkvens
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Jean Claude Biasci
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Pawel Borowiec
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | | | - Thierry Brochard
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Nicholas B. Brookes
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Nicola Carmignani
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Lee R. Carver
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Jean-Michel Chaize
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Joel Chavanne
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Stefano Checchia
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Yuriy Chushkin
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Filippo Cianciosi
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Marco Di Michiel
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Rudolf Dimper
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Alessandro D’Elia
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Dieter Einfeld
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Friederike Ewald
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Laurent Farvacque
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Loys Goirand
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Laurent Hardy
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Jorn Jacob
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Laurent Jolly
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Michael Krisch
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Gael Le Bec
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Isabelle Leconte
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Simone M. Liuzzo
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Cristian Maccarrone
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Thierry Marchial
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - David Martin
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Mohamed Mezouar
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Christian Nevo
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Thomas Perron
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Eric Plouviez
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Harald Reichert
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Pascal Renaud
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Jean-Luc Revol
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Benoît Roche
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Kees-Bertus Scheidt
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Vincent Serriere
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Francesco Sette
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Jean Susini
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Laura Torino
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Reine Versteegen
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Simon White
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Federico Zontone
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
13
|
Wu Q, Soppa K, Müller E, Müller J, Odstrcil M, Tsai EHR, Späth A, Holler M, Guizar-Sicairos M, Butz B, Fink RH, Watts B. A modern look at a medieval bilayer metal leaf: nanotomography of Zwischgold. NANOSCALE 2022; 14:15165-15180. [PMID: 36214128 PMCID: PMC9585527 DOI: 10.1039/d2nr03367d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Many European sculptures and altarpieces from the Middle Ages were decorated with Zwischgold, a bilayer metal leaf with an ultra-thin gold face backed by silver. Zwischgold corrodes quickly when exposed to air, causing the surface of the artefact to darken and lose gloss. The conservation of such Zwischgold applied artefacts has been an obstinate problem. We have acquired quantitative, 3D nanoscale images of Zwischgold samples from 15th century artefacts and modern materials using ptychographic X-ray computed tomography (PXCT), a recently developed coherent diffractive imaging technique, to investigate the leaf structure and chemical state of Zwischgold. The measurements clearly demonstrate decreasing density (increasing porosity) of the leaf materials and their corrosion products, as well as delamination of the leaves from their substrate. Each of these effects speak to typically observed issues in the conservation of such Zwischgold applied artefacts. Further, a rare variant of Zwischgold that contains extremely thin multiple gold layers and an overlapping phenomenon of Zwischgold with other metal leaves are observed through PXCT. As supportive data, scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) coupled with energy dispersive X-ray analysis (EDX) were performed on the medieval samples.
Collapse
Affiliation(s)
- Qing Wu
- University of Zurich (UZH), Rämistrasse 73, 8006 Zurich, Switzerland
- TH Köln - University of Applied Sciences, Ubierring 40, 50678 Köln, Germany.
| | - Karolina Soppa
- Bern University of Applied Sciences (BUAS), Fellerstrasse 11, 3027 Bern, Switzerland.
| | - Elisabeth Müller
- Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland.
| | - Julian Müller
- Micro- and Nanoanalytics Group, Universität Siegen, Paul-Bonatz-Strasse 9-11, 57076 Siegen, Germany.
| | - Michal Odstrcil
- Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland.
- Carl Zeiss SMT, Carl-Zeiss-Straße 22, 73447 Oberkochen, Germany
| | - Esther Hsiao Rho Tsai
- Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland.
- Brookhaven National Laboratory, Upton, New York 11973, U.S.A.
| | - Andreas Späth
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen, Germany.
- Institut für Nanotechnologie und korrelative Mikroskopie (INAM), Äußere Nürnberger Strasse 62, 91301 Forchheim, Germany
| | - Mirko Holler
- Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland.
| | | | - Benjamin Butz
- Micro- and Nanoanalytics Group, Universität Siegen, Paul-Bonatz-Strasse 9-11, 57076 Siegen, Germany.
| | - Rainer H Fink
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen, Germany.
| | - Benjamin Watts
- Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland.
| |
Collapse
|
14
|
Liebi M, Lutz-Bueno V, Guizar-Sicairos M, Schönbauer BM, Eichler J, Martinelli E, Löffler JF, Weinberg A, Lichtenegger H, Grünewald TA. 3D nanoscale analysis of bone healing around degrading Mg implants evaluated by X-ray scattering tensor tomography. Acta Biomater 2021; 134:804-817. [PMID: 34333163 DOI: 10.1016/j.actbio.2021.07.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/01/2021] [Accepted: 07/23/2021] [Indexed: 11/28/2022]
Abstract
The nanostructural adaptation of bone is crucial for its biocompatibility with orthopedic implants. The bone nanostructure also determines its mechanical properties and performance. However, the bone's temporal and spatial nanoadaptation around degrading implants remains largely unknown. Here, we present insights into this important bone adaptation by applying scanning electron microscopy, elemental analysis, and small-angle X-ray scattering tensor tomography (SASTT). We extend the novel SASTT reconstruction method and provide a 3D scattering reciprocal space map per voxel of the sample's volume. From this reconstruction, parameters such as the thickness of the bone mineral particles are quantified, which provide additional information on nanostructural adaptation of bone during healing. We selected a rat femoral bone and a degrading ZX10 magnesium implant as model system, and investigated it over the course of 18 months, using a sham as control. We observe that the bone's nanostructural adaptation starts with an initially fast interfacial bone growth close to the implant, which spreads by a re-orientation of the nanostructure in the bone volume around the implant, and is consolidated in the later degradation stages. These observations reveal the complex bulk bone-implant interactions and enable future research on the related biomechanical bone responses. STATEMENT OF SIGNIFICANCE: Traumatic bone injuries are among the most frequent causes of surgical treatment, and often require the placement of an implant. The ideal implant supports and induces bone formation, while being mechanically and chemically adapted to the bone structure, ensuring a gradual load transfer. While magnesium implants fulfill these requirements, the nanostructural changes during bone healing and implant degradation remain not completely elucidated. Here, we unveil these processes in rat femoral bones with ZX10 magnesium implants and show different stages of bone healing in such a model system.
Collapse
Affiliation(s)
- Marianne Liebi
- Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden; Paul Scherrer Institut, 5232 Villigen PSI, Switzerland; Center for X-ray Analytics, Swiss Federal Laboratories for Materials Science and Technology (Empa), 9014 St. Gallen, Switzerland.
| | | | | | - Bernd M Schönbauer
- Institute of Physics and Materials Science, University of Natural Resources and Life Science (BOKU), 1190 Vienna, Austria
| | - Johannes Eichler
- Department of Orthopaedics, Medical University Graz, 8010 Graz, Austria
| | | | - Jörg F Löffler
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Annelie Weinberg
- Department of Orthopaedics, Medical University Graz, 8010 Graz, Austria
| | - Helga Lichtenegger
- Institute of Physics and Materials Science, University of Natural Resources and Life Science (BOKU), 1190 Vienna, Austria
| | | |
Collapse
|
15
|
Tang F, Wu Z, Yang C, Osenberg M, Hilger A, Dong K, Markötter H, Manke I, Sun F, Chen L, Cui G. Synchrotron X-Ray Tomography for Rechargeable Battery Research: Fundamentals, Setups and Applications. SMALL METHODS 2021; 5:e2100557. [PMID: 34928071 DOI: 10.1002/smtd.202100557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/09/2021] [Indexed: 06/14/2023]
Abstract
Understanding the complicated interplay of the continuously evolving electrode materials in their inherent 3D states during the battery operating condition is of great importance for advancing rechargeable battery research. In this regard, the synchrotron X-ray tomography technique, which enables non-destructive, multi-scale, and 3D imaging of a variety of electrode components before/during/after battery operation, becomes an essential tool to deepen this understanding. The past few years have witnessed an increasingly growing interest in applying this technique in battery research. Hence, it is time to not only summarize the already obtained battery-related knowledge by using this technique, but also to present a fundamental elucidation of this technique to boost future studies in battery research. To this end, this review firstly introduces the fundamental principles and experimental setups of the synchrotron X-ray tomography technique. After that, a user guide to its application in battery research and examples of its applications in research of various types of batteries are presented. The current review ends with a discussion of the future opportunities of this technique for next-generation rechargeable batteries research. It is expected that this review can enhance the reader's understanding of the synchrotron X-ray tomography technique and stimulate new ideas and opportunities in battery research.
Collapse
Affiliation(s)
- Fengcheng Tang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Zhibin Wu
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Chao Yang
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109, Berlin, Germany
| | - Markus Osenberg
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109, Berlin, Germany
| | - André Hilger
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109, Berlin, Germany
| | - Kang Dong
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109, Berlin, Germany
| | - Henning Markötter
- Bundesanstalt für Materialforschung und -Prüfung, 12205, Berlin, Germany
| | - Ingo Manke
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109, Berlin, Germany
| | - Fu Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Libao Chen
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Guanglei Cui
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| |
Collapse
|
16
|
Zimmermann P, Peredkov S, Abdala PM, DeBeer S, Tromp M, Müller C, van Bokhoven JA. Modern X-ray spectroscopy: XAS and XES in the laboratory. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213466] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Seiboth F, Brückner D, Kahnt M, Lyubomirskiy M, Wittwer F, Dzhigaev D, Ullsperger T, Nolte S, Koch F, David C, Garrevoet J, Falkenberg G, Schroer CG. Hard X-ray wavefront correction via refractive phase plates made by additive and subtractive fabrication techniques. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:1121-1130. [PMID: 32876586 PMCID: PMC7467333 DOI: 10.1107/s1600577520007900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/11/2020] [Indexed: 06/02/2023]
Abstract
Modern subtractive and additive manufacturing techniques present new avenues for X-ray optics with complex shapes and patterns. Refractive phase plates acting as glasses for X-ray optics have been fabricated, and spherical aberration in refractive X-ray lenses made from beryllium has been successfully corrected. A diamond phase plate made by femtosecond laser ablation was found to improve the Strehl ratio of a lens stack with a numerical aperture (NA) of 0.88 × 10-3 at 8.2 keV from 0.1 to 0.7. A polymer phase plate made by additive printing achieved an increase in the Strehl ratio of a lens stack at 35 keV with NA of 0.18 × 10-3 from 0.15 to 0.89, demonstrating diffraction-limited nanofocusing at high X-ray energies.
Collapse
Affiliation(s)
- Frank Seiboth
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Dennis Brückner
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Maik Kahnt
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | - Felix Wittwer
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Dmitry Dzhigaev
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Tobias Ullsperger
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Albert-Einstein-Strasse 15, 07745 Jena, Germany
| | - Stefan Nolte
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Albert-Einstein-Strasse 15, 07745 Jena, Germany
- Fraunhofer Institute for Applied Optics and Precision Engineering, Albert-Einstein-Strasse 7, 07745 Jena, Germany
| | - Frieder Koch
- Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Christian David
- Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Jan Garrevoet
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Gerald Falkenberg
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Christian G. Schroer
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
18
|
Bührer M, Stampanoni M, Rochet X, Büchi F, Eller J, Marone F. High-numerical-aperture macroscope optics for time-resolved experiments. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1161-1172. [PMID: 31274440 PMCID: PMC6613125 DOI: 10.1107/s1600577519004119] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
A novel high-quality custom-made macroscope optics, dedicated to high-resolution time-resolved X-ray tomographic microscopy at the TOMCAT beamline at the Swiss Light Source (Paul Scherrer Institut, Switzerland), is introduced. The macroscope offers 4× magnification, has a very high numerical aperture of 0.35 and it is modular and highly flexible. It can be mounted both in a horizontal and vertical configuration, enabling imaging of tall samples close to the scintillator, to avoid edge-enhancement artefacts. The macroscope performance was characterized and compared with two existing in-house imaging setups, one dedicated to high spatial and one to high temporal resolution. The novel macroscope shows superior performance for both imaging settings compared with the previous systems. For the time-resolved setup, the macroscope is 4 times more efficient than the previous system and, at the same time, the spatial resolution is also increased by a factor of 6. For the high-spatial-resolution setup, the macroscope is up to 8.5 times more efficient with a moderate spatial resolution improvement (factor of 1.5). This high efficiency, increased spatial resolution and very high image quality offered by the novel macroscope optics will make 10-20 Hz high-resolution tomographic studies routinely possible, unlocking unprecedented possibilities for the tomographic investigations of dynamic processes and radiation-sensitive samples.
Collapse
Affiliation(s)
- Minna Bührer
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen 5232, Switzerland
- Institute for Biomedical Engineering, University and ETH Zürich, Zürich 8092, Switzerland
| | - Marco Stampanoni
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen 5232, Switzerland
- Institute for Biomedical Engineering, University and ETH Zürich, Zürich 8092, Switzerland
| | | | - Felix Büchi
- Electrochemistry Laboratory, Paul Scherrer Institut, Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Jens Eller
- Electrochemistry Laboratory, Paul Scherrer Institut, Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Federica Marone
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen 5232, Switzerland
| |
Collapse
|
19
|
Grünbein ML, Nass Kovacs G. Sample delivery for serial crystallography at free-electron lasers and synchrotrons. Acta Crystallogr D Struct Biol 2019; 75:178-191. [PMID: 30821706 PMCID: PMC6400261 DOI: 10.1107/s205979831801567x] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022] Open
Abstract
The high peak brilliance and femtosecond pulse duration of X-ray free-electron lasers (XFELs) provide new scientific opportunities for experiments in physics, chemistry and biology. In structural biology, one of the major applications is serial femtosecond crystallography. The intense XFEL pulse results in the destruction of any exposed microcrystal, making serial data collection mandatory. This requires a high-throughput serial approach to sample delivery. To this end, a number of such sample-delivery techniques have been developed, some of which have been ported to synchrotron sources, where they allow convenient low-dose data collection at room temperature. Here, the current sample-delivery techniques used at XFEL and synchrotron sources are reviewed, with an emphasis on liquid injection and high-viscosity extrusion, including their application for time-resolved experiments. The challenges associated with sample delivery at megahertz repetition-rate XFELs are also outlined.
Collapse
Affiliation(s)
- Marie Luise Grünbein
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Gabriela Nass Kovacs
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
20
|
Lebugle M, Dworkowski F, Pauluhn A, Guzenko VA, Romano L, Meier N, Marschall F, Sanchez DF, Grolimund D, Wang M, David C. High-intensity x-ray microbeam for macromolecular crystallography using silicon kinoform diffractive lenses. APPLIED OPTICS 2018; 57:9032-9039. [PMID: 30461891 DOI: 10.1364/ao.57.009032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/18/2018] [Indexed: 06/09/2023]
Abstract
Macromolecular crystallography often requires focused high-intensity x-ray beams for solving challenging protein structures from micrometer-sized crystals using current synchrotron radiation sources. The design of optical focusing schemes for hard x-rays showing high efficiency and flexibility in beam size is therefore continuously pursued. Here, we present an innovative solution based on a two-stage demagnification of the undulator source for photon energies from 6 keV to 19 keV, commissioned at the X10SA beamline of the Swiss Light Source, where a secondary source is imaged by two crossed silicon kinoform x-ray diffractive lenses with 75 nm outermost zone width. A source-size limited spot with a size of 4.8 μm×1.7 μm(h×v,FWHM) and flux of 7.5×1010 photons/s at 12.4 keV is demonstrated at the sample position.
Collapse
|